
Circuit Bootstrapping: Faster and Smaller

Ruida Wang1,2, Yundi Wen3, Zhihao Li1,2, Xianhui Lu1(�), Benqiang Wei1,2,
Kun Liu1,2, and Kunpeng Wang1

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing, China
{luxianhui,wangruida}@iie.ac.cn

Abstract. We present a novel circuit bootstrapping algorithm that out-
performs the state-of-the-art TFHE method with 9.9× speedup and
15.6× key size reduction. These improvements can be attributed to two
technical contributions. Firstly, we redesigned the circuit bootstrapping
workflow to operate exclusively under the ring ciphertext type, which
eliminates the need of conversion between LWE and RLWE ciphertexts.
Secondly, we improve the LMKC+ blind rotation algorithm by reduc-
ing the number of automorphisms, then propose the first automorphism
type multi-value functional bootstrapping. These automorphism-based
techniques lead to further key size optimization, and are of independent
interest besides circuit bootstrapping. Based our new circuit bootstrap-
ping we can evaluate AES-128 in 26.2s (single thread), achieving 10.3×
speedup compared with the state-of-the-art TFHE-based approach.

Keywords: Circuit Bootstrapping · FHE · TFHE · FHEW.

1 Introduction

Fully homomorphic encryption (FHE) is a powerful tool that enables arbitrary
functions to be run directly on encrypted data, yielding the same encrypted
results as if the functions were applied to plaintext. Currently, most in-use
FHE schemes [3,4,16,8,11] are based on the (ring) learning with errors problem
(LWE/RLWE) [33], and introduce noise during encryption. As the homomorphic
evaluation goes on, the noises accumulate and may lead to decryption failures.
To address this issue, the core procedure of FHE is the bootstrapping technique
presented by Gentry [18]. Bootstrapping refreshes the noise of ciphertext, making
it possible to perform further homomorphic operations.

Third-generation FHE schemes, including GSW [20], FHEW [2,16] and TFHE
[9,10,11], have achieved high bootstrapping efficiency. Among them, the gate
bootstrapping algorithm of TFHE, which has advanced into functional boot-
strapping (FBS) [5], has the lowest bootstrapping latency [11]. It involves the
evaluation of a single-bit logic gate almost for free while refreshing noise. The
computation method based on this technique is called the fully homomorphic

Fig. 1: The LHE mode of TFHE, with circuit bootstrapping highlighted in blue
dashed box. Ellipses hold the types of ciphertexts. Rectangles hold algorithms.

evaluation mode. However, this mode is less suitable for extensive circuits due
to the necessity of bootstrapping after each gate. TFHE also provides a leveled
homomorphic evaluation (LHE) mode, enabling the computation of large-scale
logic circuits before bootstrapping, such as the weighted finite automata (WFA),
bit sequence representation (BSR) and look-up table (LUT). This mode consists
of circuit operations, an LWE-to-LWE pre key switching, and a core procedure
known as circuit bootstrapping.

1.1 Leveled Homomorphic Evaluation Mode

In the LHE mode, the input and output of the circuit evaluations are two dif-
ferent types: the input is a low-noise RGSW ciphertext, while the output is a
high-noise LWE. Therefore, TFHE circuit bootstrapping consists of two steps
with different purposes: the first step is functional bootstrapping, aims to refresh
the noise of the ciphertext and perform essential pre-computations. The second
step is ciphertext conversion, which uses private key switching (PrivateKS). to
convert the LWE ciphertext into its corresponding RGSW form, enabling the
next circuit evaluation.

To ensure security and efficiency, the LHE mode spans three levels with
different parameters. At Level 0, the ciphertext has a small dimension n, a small
modulus q, and a large noise. It is the input for the functional bootstrapping, so
that a small dimension can improve the efficiency. Level 1 uses medium dimension
N and modulus q to balance computational efficiency and the supported circuit
depth. Level 2 has the lowest noise and a highest modulus Q̄. This is a choice to
provide enough depth for the whole LHE evaluation. However, to ensure security,
Level 2 necessitates a large dimension N̄ . The leveled homomorphic evaluation
mode and TFHE circuit bootstrapping are described in Fig. 1.

The LHE mode of the TFHE scheme presents an attractive feature in its
ability to support large-scale circuit evaluations. However, its practical appli-
cation has been limited by the excessive delay and large key size associated
with circuit bootstrapping. Specifically, the latency of circuit bootstrapping is

2

nearly ten times that of functional bootstrapping [21], which presents an effi-
ciency bottleneck. The following research uses multi-value FBS (MV-FBS) [5] to
replace the ℓ times of FBS, where ℓ is the gadget length of the RGSW cipher-
text, at the cost of some additional noise. The state-of-the-art algorithm uses
another MV-FBS method so-called multi-output programmable bootstrapping
(PBSmanyLUT [12]) instead, without noise increases. However, the running time
of these improvements are still seven times more than that of FBS. In addition,
the key size of the circuit bootstrapping can reach hundreds of megabytes. In
particular, homomorphic libraries such as TFHEpp [29] and MOSFHET [21]
implement a pre-computed variant of circuit bootstrapping with a key size ex-
ceeding 2.6 GB. It puts a significant strain on the bandwidth and storage space
in real-world applications, and makes the hardware acceleration through the use
of ASIC and FPGA nearly unfeasible. The motivation of this paper is to design
a faster and smaller circuit bootstrapping algorithm, as a stepping stone towards
the practical FHE applications.

1.2 Our Results

We propose a novel circuit bootstrapping algorithm by making two contributions.
Firstly, we reshape the workflow of circuit bootstrapping, resulting in significant
improvements in the key size and computation efficiency. Secondly, we optimize
the functional bootstrapping step using an automorphism-based variant, which
leads to a further optimization of memory efficiency. Finally, we apply our newly
proposed algorithm in transciphering, greatly reducing the latency of the homo-
morphic evaluation of AES circuit.

Novel Workflow. Our redesigned circuit bootstrapping algorithm and its cor-
responding LHE mode is shown in Fig. 2. The first step is to apply MV-FBS
without the sample extraction4. The output is an RLWE ciphertext, which elim-
inates the conversion from LWE to ring ciphertexts in step 2. Our second step
involves homomorphic trace evaluation (HomTrace) and scheme switching, which
can achieve ciphertext conversion with low computational cost and key size. It
should be noted that the step 2 algorithms are unable to switch ciphertext dimen-
sions, so that our circuit bootstrapping only spans two levels, with parameters
corresponding to level 0 and level 2 of TFHE circuit bootstrapping. The circuit
evaluations in LHE mode are also performed on level 2.5

Under this novel workflow, we propose two variants of circuit bootstrapping
algorithms: the controlled-MUX (CMUX) variant performs the MV-FBS step
using the CMUX gate; and the automorphism (AUTO) variant performs the
MV-FBS step using homomorphic automorphisms.

4 Sample extraction is to extract LWE sample from RLWE, which detailed in Sec. 2.4
5 This results in an slight increase in circuit computation latency as we discussed

in Sup. A, but allows for greater circuit depth and the batch processing of more
ciphertexts at once (see TFHE horizontal/ vertical/mixed packing technology [11]).

3

Fig. 2: Our redesigned circuit bootstrapping and the LHE mode, with circuit
bootstrapping highlighted in blue dashed box. Ellipses hold the types of cipher-
texts. Rectangles hold algorithms.

The Performance of the CMUX Variant. We implement our proposed
method based on the OpenFHE [1] library, and demonstrate that our approach
has the best performance among all known circuit bootstrapping algorithms:

(1) We implement the unit test of the TFHE circuit bootstrapping method [12]
in the same experimental environment, and compare the performance:

– Key size: The key size of our novel workflow in the functional boot-
strapping step and the ciphertext conversion step are 19% and 0.2% of
the original scheme, respectively. In total, our circuit bootstrapping key
size is 6.4% (15.6×) of the TFHE method.

– Runtime: The computational performance of our novel workflow speedup
by factors of 3× and 236× in the functional bootstrapping step and the
ciphertext conversion step, respectively. Overall, our approach boosts
efficiency by up to 9.9×.

(2) There is a pre-computed variant of the circuit bootstrapping algorithm im-
plemented in the TFHEpp [29] library and MOSFHET [21] that trades stor-
age for efficiency. This variant pre-stores all possible results of the modulo
multiplications in PrivateKS, and then replaces them with modulo addition.
Compared with this method, our solution still has a speedup of 3.5×, and
the key size is only 2.2% (45.5×) that of the pre-computed variant.

The Automorphism-Based Variant. The recently proposed LMKC+ boot-
strapping [24] is based on the homomorphic automorphism. This method can
reduce the ciphertext dimension and decrease the key size, offering a memory
improvement over the GINX method [17]. We propose two optimizations based
on LMKC+ and integrate them into our circuit bootstrapping workflow:

(1) We present the first automorphism-based multi-value functional bootstrap-
ping algorithm, which may have independent interests. This method can be
integrated into the MV-FBS step of our proposed circuit bootstrapping work-
flow. As a result, we are able to construct an automorphism-based (AUTO)
variant. This variant achieves an additional 18.6% reduction in key size
relative to the previously discussed CMUX variant, at the cost of a 10.5%

4

increase in run time. Given its characteristics, this variant is suitable for sce-
narios where storage is prioritized, such as in mobile devices and hardware
acceleration applications.

(2) We give an improved automorphism-based functional bootstrapping algo-
rithm using a sparse isomorphism. Compared to LMKC+, under the param-
eters of circuit bootstrapping, our method can reduce the number of auto-
morphisms by 10.4%-26.4% (depending on the tolerable decryption failure
probability), while also slightly reducing the key size.

Application. To demonstrate the efficacy of theoretical results, we look into
the application of our proposed circuit bootstrapping algorithm in transcipher-
ing. The mission of transciphering is to reduce the size of the transfer ciphertext,
making FHE more manageable for devices with limited bandwidth, memory, and
computing power. The core idea is to use symmetric encryption for data trans-
mission, and pre-compute into FHE ciphertext by the server before evaluation.

The pre-computation process is to homomorphic evaluate the decryption cir-
cuit of the symmetric scheme, which is the efficiency bottleneck of transcipher-
ing. Regarding the homomorphic evaluation of the advanced encryption standard
(AES), Gentry et al. first used the BGV scheme, with a latency of 18 minutes6

[19]. The state-of-the-art is recently proposed by Trama et al. using the TFHE
scheme [36]. They utilized functional bootstrapping under FHE mode, managing
to bring down the algorithm latency to 270 seconds (1 thread). We implement
the homomorphic evaluation of AES circuits through our proposed circuit boot-
strapping algorithm under LHE mode, with a latency of only 26.2s. Our result
is 10.3× more efficient than the functional bootstrapping implementation.

1.3 Technical Overview

Novel Workflow. After the optimization from the PBSmanyLUT algorithm
proposed by Chillotti et al. [12], the ciphertext conversion step has become the
most time-consuming part of the circuit bootstrapping algorithm with a huge
evaluation key size. There are two main reasons: firstly, in the LWE-to-RLWE
private key switching algorithm, each evaluation key includes the gadget RLWE
ciphertext for every component of the LWE key sk. This results in a total of
2(N̄ + 1)ℓks RLWE ciphertexts, where N̄ represents the dimension of the level
2 LWE ciphertext, and ℓks denotes the length of gadget decomposition dur-
ing PrivateKS. Simultaneously, since the polynomial multiplication must be per-
formed for each key component, the number of multiplications reaches O(N̄2).
Secondly, the noise from PrivateKS will be accumulated into the RGSW cipher-
text output by function bootstrapping. Thus it is necessary to select a higher
gadget decomposition length ℓks to control the noise. This further reduces the
efficiency of the ciphertext conversion step and increases the key size.

Our approach is to rebuild the circuit bootstrapping algorithm purely on the
ring structure. This eliminates the need for switching between LWE and RLWE,
6 They also propose a 4-minute variant without bootstrapping. However, it can not

be used to transciphering since the ciphertext is too noisy to do further evaluation

5

as seen in the TFHE method. By this way, the evaluation key becomes the gadget
RLWE ciphertext for the RLWE key sk, i.e. for one polynomial instead of every
component of a vector. As a result, each switching key contains O(1) RLWE
ciphertexts, greatly reducing the key size and computation complexity.

However, removing the LWE ciphertext type from the circuit bootstrapping
workflow presents a technical challenge. Specifically, following modulus switching
and blind rotation, the bootstrapping algorithm generates an RLWE ciphertext.
The desired result is located in the constant term of the polynomial encrypted
by this RLWE, while all other powers of X are redundant and may interfere
with the computations. The original functional bootstrapping algorithm extracts
the required term into an LWE ciphertext type, which is undesirable for us. To
address this issue, we employ the technique of the homomorphic trace evaluation
(HomTrace) [6], featuring Trace(Xi) = 0, to eliminate the X power term.

The output from HomTrace is a gadget RLWE ciphertext RLWE′(m). To effi-
ciently reconstruct the RGSW cyphertext, it is necessary to generate RLWE′(sk·
m) without private key switching. This can be achieved using ℓ external prod-
ucts, where ℓ represents the gadget length. However, our attention was drawn to
the recently proposed scheme switching algorithm [14], which accomplishes the
same transformation at nearly half the cost of the naive approach. We employ
this algorithm to complete our ciphertext conversion step.

In our CMUX circuit bootstrapping variant under the novel workflow, the
cost of the ciphertext conversion step, which consists of HomTrace evaluations
and scheme switching, accounts for only 3.0% run time of the circuit bootstrap-
ping, and occupies 2.0% of the key size (compared to 70.8% and 66.9% in [12]).

The Automorphism-Based Variant. We enhance the LMKC+ method and
propose the first automorphism-based multi-value functional bootstrapping to
improve our circuit bootstrapping. The main observation is that, the number
of automorphisms that need to be computed in the LMKC+ blind rotation is
inversely correlated with the ai’s sparsity in Z2N , where ai is the i-th component
of the input LWE ciphertext. Thus a natural approach is to round ai with greater
sparsity. However, there are several technical subtleties for this idea to work:

The naive sparse rounding disrupts the isomorphism Z∗
2N
∼= ZN/2 ⊗ Z2 as

presented in [24], which is used to reduce key size. In response, we propose
a novel sparse isomorphism. Specifically, the numbers of the form k · 2ϑ + 1
within Z2N is isomorphic to Z2N/2ϑ . Based on this isomorphism, we improve
the automorphism-based functional bootstrapping algorithm by reducing the
number of automorphisms. Another challenge is to extend this method to MV-
FBS. There are two approaches to achieve MV-FBS, the first multiplies different
polynomials after blind rotation to calculate multiple functions [5]. Nonetheless,
the noise of the output ciphertext is affected by the polynomial norms, rendering
the circuit bootstrapping sensitive to noise amplitude. The second rounds ai to
multiples of 2ϑ [12], allowing for 2ϑ simultaneous function evaluations. However,
applying this method to our automorphism-based FBS algorithm would destroy
the sparse isomorphism. To solve this problem, we devise a new blind rotation

6

algorithm for ai in the form of k · 2ϑ. Then we obtain an automorphism-based
MV-FBS, which can be used to optimize our circuit bootstrapping algorithm.

1.4 Paper Organization

This paper is organized as follows: Sec.2 reviews the notations and the FHEW-
like cryptosystem. Sec.3 describes our circuit bootstrapping workflow, and com-
pares it with prior works. Sec.4 presents an improved automorphism-based FBS
and extend it into MV-FBS. Sec.5 provides the analysis of the noise, key size,
and computational complexity of proposed algorithms. Sec.6 gives the implemen-
tation, lists the parameters and experimental results. Sec.7 applies our circuit
bootstrapping in the transciphering, providing performance and comparative
analysis of homomorphic evaluation of AES circuits. Sec.8 concludes the paper.

2 Preliminary

2.1 Notations

Let A be a set. Define An as the set of vectors with n elements in A, Aq as the
set A module q, where the elements’ scope is [−q/2, q/2) ∩ A. Use Z to denote
the set of integers, R to denote the set of real numbers, and B = Z2 represents
the set of binary numbers. Denote R as the set of integer coefficient polynomials
modulo XN +1, where N is a power of 2. Then R is the 2N -th cyclotomic ring.

Use regular letters to represent (modular) integers like a ∈ Zq, while bold
letters to represent polynomials a ∈ R or vectors a ∈ Zn. The notation ai refers
to the i-th coefficient/term of a. The floor, ceiling, and rounding functions are
written as ⌊·⌋, ⌈·⌉ ⌊·⌉, respectively.

2.2 Gadget Decomposition

Given a gadget vector v = (v0, v1, ..., vℓ−1), the gadget decomposition of a ring el-
ement t ∈ Rq is to find small elements (t0, ..., tℓ−1) such that

∑
i viti = (or ≈)t.

Gadget decomposition is the key to keeping errors under control in FHE. There
are two types of gadget decomposition differing in the selection of gadget vectors.

Canonical Gadget Decomposition. The gadget vector of the canonical gad-
get decomposition is consisted with the power ofB, where v = (1, B,B2, ..., Bℓ−1).
We say ℓ = ⌈logB q⌉ is the gadget length, and B is the gadget base. With the
gadget vectors, each ring polynomial t can be decomposed into a group of poly-
nomials (t0, ..., tℓ−1) with coefficients less than B, such that

∑
i viti = t.

Approximate Gadget Decomposition. Approximate gadget decomposition
is a generalization of canonical gadget decomposition. When Bℓ < q, the decom-
position of a ring element is inexact, then we define εgadget(t) =

∑
i viti − t is

the decomposition error, and ϵ is its infinite norm, where ϵ = ∥
∑

i viti − t∥∞.

7

In general, the approximate gadget vectors is v = (⌈ q
Bℓ ⌉, ⌈ q

Bℓ ⌉B, ..., ⌈ q
Bℓ ⌉Bℓ−1),

where Bℓ < q. Then each ring polynomial t can be decomposed into a set of
polynomials (t0, ..., tℓ−1) with coefficients less than B, satisfying ϵ ≤ 1

2⌈
q
Bℓ ⌉.

2.3 FHEW-like Cryptosystem

Following the definition from Micciancio and Polyakov [30], we collectively refer
to FHEW [2,16] and TFHE [9,10,11] as FHEW-like cryptosystem. The security
of the FHEW-like cryptosystem is based on the LWE/RLWE problems [33,28].
We summarize the kinds of (ring) LWE ciphertexts as follows:

– LWE: Given two positive integers n and q, the LWE encryption of the
message m ∈ Z is defined by LWEsk,q(m) = (a, b) ∈ Zn+1

q , where b =
−a · sk + m + e. The vector a is uniformly sampled from Zn

q , the key sk
is sampled from a key distribution χ, the error e is sampled from an error
distribution χ′.

– RLWE: RLWE is a ring version of LWE on Rq. The RLWE encryption
of the message m ∈ Rq is defined by RLWEsk,q(m) = (a,b) ∈ R2

q, where
b = −a · sk +m + e. The vector a is uniformly sampled from Rq, the key
sk is sampled from a key distribution χ, and each coefficient of the error ei
is sampled from an error distribution χ′.

– RLWE′: Given a gadget vector v = (v0, v1, ..., vℓ−1), the gadget RLWE
written as RLWE′, is defined by:

RLWE′
sk,q(m) = (RLWEsk,q(v0 ·m), · · · ,RLWEsk,q(vℓ−1 ·m)).

– RGSW: The RGSW encryption of the message m ∈ Rq is defined by:
RGSWsk,q(m) = (RLWE′

sk,q(sk ·m),RLWE′
sk,q(m)).

Remark 1. In FHEW-like cryptosystem, the gadget RLWE is appeared as an
auxiliary input in algorithms such as the gadget product and the key switching.
To simplify the presentation and facilitate the understanding, we provide the
definition and notation of gadget RLWE following Micciancio and Polyakov[30].

2.3.1 Useful Algorithms

Gadget Product: The gadget product ⊙ is defined by:

t⊙ RLWE′
sk,q(m) :=

ℓ−1∑
i=0

ti · RLWEsk,q (vi ·m)

= RLWEsk,q

(
ℓ−1∑
i=0

vi · ti ·m

)
= RLWEsk,q(t ·m),

where (t0, ..., tℓ−1) is the gadget decomposition of t with respect to the gadget
vector v = (v0, v1, ..., vℓ−1).

8

Lemma 1 (Kim et al.[23]). Let B and ℓ denote the base and the length of the
gadget decomposition, respectively, then the error variance of the result of the
gadget product is bounded by

σ2
⊙,input ≤

1

12
ℓB2σ2

input +
1

3
Var(m)ϵ2

where σ2
input is the error variance of the input LWE′ ciphertext, and Var(m) is

the variance of the message distribution.

Lemma.1 is derived from [23] proposition.1 with the fact ϵ ≤ 1
2⌈

q
Bℓ ⌉. When

using canonical gadget decomposition, the error term 1
3Var(m)ϵ2 does not exist.

External Product: The external product � is defined by:
RLWEsk,q (m1) � RGSWsk,q (m2) := a⊙ RLWE′

sk,q (sk ·m2) + b⊙ RLWE′
sk,q (m2)

= RLWEsk,q (a · sk ·m2 + b ·m2)

= RLWEsk,q (m1 ·m2 + e1 ·m2) ,

where RLWEsk,q (m1) = (a,b). The error term e1 ·m2 will be sufficiently small
if m2 has a small norm, e.g., binary key distribution. Then the external prod-
uct output the RLWE encryption of the product of m1 and m2 with the error
variance bounded by σ2� = 2σ2

⊙,RGSW + σ2
RLWE, where σ2

⊙,RGSW denotes the
error variance of the gadget product result with the input RGSW ciphertext,
and σ2

RLWE is the error variance of the input RLWE ciphertext.

LWE-to-RLWE Private Key Switching: Let f : Z → R be a private
Lipschitz morphism, given a private key switching key PrivateKSK contains
RLWE′

sk′,q′(f(si))i∈[1,n] and RLWE′
sk′,q′(f(1)), where si is the i-th term of

the LWE secret key, then the LWE-to-RLWE private key switching algorithm
PrivateKSfsk→sk′ : LWEsk,q(m)→ RLWEsk′,q′(f(m)), is defined by:

PrivateKSf
sk→sk′(LWEsk,q(m)) :=

n∑
i=1

ai ⊙ RLWE′
sk′,q′(f(si)) + b⊙ RLWE′

sk′,q′(f(1))

= RLWEsk′,q′

(
n∑

i=1

f(ai · si) + f(b)

)
= RLWEsk′,q′ (f(m)) ,

where f(m) can be considered a monomial in R.

Homomorphic Automorphism: For an automorphism ψt : R → R given
by a(X) → a(Xt), and an automorphism key ATKt = RLWE′

sk,q(sk(X
t)), the

homomorphic automorphism HomAutot : RLWEsk,q(m) → RLWEsk,q(m(Xt))
is defined by:

HomAutot(RLWEsk,q(m)) = a(Xt)⊙ RLWE′
sk,q(sk(X

t)) + (0,b(Xt))

= RLWEsk,q

(
a(Xt) · sk(Xt) + b(Xt)

)
= RLWEsk,q

(
m(Xt)

)
.

9

Scheme Switching: Given a scheme switching key SSK = RLWE′
sk,q(sk

2), the
scheme switching algorithm SSRLWE′→RGSW : RLWE′

sk,q(m) → RGSWsk,q(m)
is defined by:
for every RLWEsk,q(vi ·m) = (ai,bi) with error ei, i ∈ [0, ℓ− 1], compute

ai ⊙ RLWE′
sk,q

(
sk2

)
+ (bi, 0) = RLWEsk,q

(
ai · sk2 + bi · sk

)
= RLWEsk,q ((ai · sk+ bi) · sk)
= RLWEsk,q (vi · sk ·m+ ei · sk) ,

then obtain RLWE′
sk,q(sk ·m) with an additional error ei · sk. This term can

remain small by choosing the secret key with a small norm (e.g., binary). Then,

SSRLWE′→RGSW(RLWE′
sk,q(m)) := (RLWE′

sk,q(sk ·m),RLWE′
sk,q(m)).

2.4 Functional Bootstrapping

Bootstrapping is the core algorithm in FHE. Functional bootstrapping can eval-
uate a 1-in/1-out LUT function encoded in a test polynomial testP, while re-
freshing ciphertext noise. We mainly focus on the GINX bootstrapping [17] and
LMKC+ [24] bootstrapping. The bootstrapping algorithm can be divided into
three steps:

Modulus Switching. This algorithm receives an LWE ciphertext (a, b) ∈
LWEsk,q(m), and outputs an LWE ciphertext LWEsk,2N (m) with modulus 2N ,
where N is the parameter to denote the RLWE dimension.

– GINX Modulus Switching:
MS(LWEsk,q(m)) := (⌊ 2Nq · a⌉, ⌊

2N
q · b⌉).

– LMKC+ Round-to-Odd Modulus Switching:
MSodd(LWEsk,q(m)) := (⌊ 2Nq · a⌉odd, ⌊

2N
q · b⌉odd), where ⌊·⌉odd outputs the

nearest odd integer for the given input.

Blind Rotation. This algorithm receives the LWE output by the modulus
switching step and a target function f , it outputs RLWEsk(testP ·Xb+

∑
i aisi),

where testP is so-called test polynomial. The coefficients of testP are encoded as

(f(0), . . . , f(0)︸ ︷︷ ︸
N/2p elements

, f(1), . . . , f(1)︸ ︷︷ ︸
N/p elements

, . . . , f(p− 1), . . . , f(p− 1)︸ ︷︷ ︸
N/p elements

, f(0), . . . , f(0)︸ ︷︷ ︸
N/2p elements

)

︸ ︷︷ ︸
p+1 blocks and N coefficients

– GINX CMUX-Based Blind Rotation.
Given an initial accumulator acc0 = (0, X−b · testP) and a bootstrapping key
BSK = RGSWsk,Q(si)i∈[0,n−1], the blind rotation step updates the accumu-
lator by calculating the CMUX gate:

acci = acci−1 � ((Xai − 1) · BSKi) + acci−1 ∈ R2
Q.

10

It should be performed n times to get the final result RLWEsk(testP·Xb+
∑

i aisi).

– LMKC+ Automorphism-Based Blind Rotation.
Under an observation that Z∗

2N
∼= ZN/2 ⊗ Z2, each odd ai can be expressed

using the generators {g,−1}, resulting in the equation:

∑
i

aisi =

∑

j∈I
+
0

sj + · · · + g

∑

j∈I
+
N/2−1

sj − g

∑

j∈I
−
0

sj + · · · + g

∑

j∈I
−
N/2−1

sj

 (mod2N),

where I+ℓ = {i : ai = gℓ}, I−ℓ = {i : ai = −gℓ}, for ℓ ∈ [0, N/2 − 1].
Then giving an initial acc = (0, X−gb · testP(X−g)), a bootstrapping key
BSK = RGSWsk,Q(X

si)i∈[0,n−1], and 2 automorphism keys ATKg,ATK−g,
the blind rotation algorithm first multiply (external product) the accumu-
lator by BSKj for all j ∈ I−N/2−1, then apply HomAutog and repeated for
each I (except when after multiplying I−0 , apply the HomAuto−g). The final
results is RLWEsk(testP ·Xb+

∑
i aisi). The detailed LMKC+ blind rotation

algorithm is demonstrated in Sup. B.

Sample Extraction. The algorithm SampleExtracti receives an RLWE cipher-
text c = (a,b) ∈ RLWEsk,q(m) and a given position i, it returns an LWEsk,q (mi),
where mi is the i-th coefficient of m. The functional bootstrapping algorithm
uses SampleExtract0 to extract LWEsk,q (f(m)) from the RLWE output of the
blind rotation step.

2.5 TFHE Circuit Bootstrapping.

Circuit bootstrapping is the core operation to connect TFHE leveled evaluation,
which can convert high-noise LWE ciphertext to low-noise RGSW ciphertext.
The TFHE circuit bootstrapping consists of the following two steps:

(1) Functional Bootstrapping Step. This step call ℓ times functional boot-
strapping or 1 PBSmanyLUT [12] to refresh noise and do the following conver-
sion: LWEsk(m) → LWEs̄k(vi ·m), i ∈ [0, ℓ − 1], where v = (v0, v1, ..., vℓ−1)
is the gadget vector.

(2) Ciphertext Conversion Step. This step call 2ℓ times of PrivateKS:
PrivateKSf0

s̄k→sk
: LWEs̄k(vi ·m)→ RLWEsk(vi ·m),

PrivateKSf1
s̄k→sk

: LWEs̄k(vi · m) → RLWEsk(vi · sk · m), i ∈ [0, ℓ − 1],
where f0 is the identity function, and f1(x) = sk · x. Then RGSWsk(m) =
(RLWE′

sk(sk ·m),RLWE′
sk(m)).

3 Novel Work Flow of Circuit Bootstrapping

In the original circuit bootstrapping proposed by Chillotti et al. [10], the first
step is achieved by ℓ times of bootstrapping, where ℓ is the length of the gadget

11

Fig. 3: The original and our redesigned circuit bootstrapping workflow.

decomposition when evaluating the circuit. The second step requires 2ℓ times of
private key switching, as shown in Sec.2.5. We introduce a novel circuit boot-
strapping workflow that makes it faster and smaller. The original and our re-
designed algorithms are shown in Fig.3.

Multi-Value Bootstrapping. The application of a multi-value bootstrapping
algorithm to circuit bootstrapping is not new. In the state-of-the-art TFHE cir-
cuit bootstrapping method, PBSmanyLUT is employed to reduce the number of
function bootstrappings from ℓ to 1 [12]. This method has already been imple-
mented in the TFHEpp library by Matsuoka et al. [29].

Specifically, the PBSmanyLUT algorithm uses a specialized modulus switch-
ing technique to switch each component ai of the ciphertext to a multiple of
2ϑ:

a′i ←
[⌊
ai · 2N · 2−ϑ

q

⌉
· 2ϑ
]
2N

As a result, the least ϑ significant bits of the noise are removed, permitting its
representation as e′ = e′′ ·2ϑ. Consequently, for each increment of 1 in e′, during
the blind rotation, the test polynomial is rotated by 2ϑ positions instead of just
one. This allows the encoding of 2ϑ distinct function values at these positions:
(. . . , f1(m), . . . , f2ϑ(m), . . . , f1(m), . . . , f2ϑ(m)︸ ︷︷ ︸

N/p elements

, f1(m + 1), . . . , f2ϑ(m + 1), . . . , f1(m + 1), . . . , f2ϑ(m + 1), . . .)︸ ︷︷ ︸
N/p elements

)

︸ ︷︷ ︸
p blocks

Then by setting the test polynomial to be testP = 1
2

∑ N

2ϑ
−1

i=0

∑2ϑ−1
j=0 viX

2ϑ·i+j ,
the ℓ independent FBS in circuit bootstrapping step 1 can be replaced with:{

{c̄i}i∈[0,ℓ̄−1] ← PBSmanyLUT
(
LWEsk,q(m),BSK, testP ·XN/2ϑ+1

)
∀i ∈ [0, ℓ̄− 1], c̄i +

(
0, 1

2
vi
)

3.1 Step 1: Multi-Value Functional Bootstrapping without Sample
Extraction

We adopt the concept of using MV-FBS to reduce the number of bootstrap-
pings, incorporating two improvements. This step receives a high-noise LWE

12

ciphertext, aims to refresh the noise, and transforms it into level 2 redundant
RLWE ciphertexts, where yi coefficients are useless:

LWEsk,q(m)→ RLWEs̄k,Q̄(N̄
−1vi ·m+ y1X + ...+ yN̄−1X

N̄−1), i ∈ [0, ℓ− 1],

The first improvement involves the removal of the SampleExtract step in the
MV-FBS, thereby avoiding the expensive LWE-to-RLWE private key switching.
Specifically, we do not extract all LWEs̄k,Q̄(vi · m) from the accumulator acc.
Instead, when encoding test polynomials, we multiply each coefficient by N̄−1,
to ensure the correctness of HomTrace in step 2. Then, after blind rotation, we
add polynomials (0, 12v0+

1
2v1X+ ...+ 1

2vℓ−1X
ℓ−1) to acc, and use multiplication

by X−j to replace sample extraction. As a result, the term N̄−1vi ·m is rotated
to the constant term of the plaintext polynomial. This step outputs l redundant
polynomialsRLWEs̄k,Q̄(N̄

−1vi ·m+y1X+ ...+yN̄−1X
N̄−1), i ∈ [0, ℓ−1]. Further

details can be found in lines 7-10 in Alg.6.
Secondly, we introduce an automorphism-based circuit bootstrapping algo-

rithm, denoted by AUTO Variant. It can reduce key size while preserving the
functionality. We state this algorithm in Sec. 4, due to its complexity.

3.2 Step 2: Ciphertext Conversion

HomTrace. The homomorphic trace algorithm receives ℓ redundant RLWE
ciphertexts, and aims to transform them into a valid level 2 RLWE′:

RLWEs̄k,Q̄

(
N̄−1vi ·m+ y1X + . . .+ yN̄−1X

N̄−1
)
→ RLWEs̄k,Q̄ (vi ·m) , i ∈ [0, ℓ− 1],

RLWE′
s̄k,Q̄(m) = (RLWEs̄k,Q̄(v0 ·m),RLWEs̄k,Q̄(v1 ·m), ...,RLWEs̄k,Q̄(vℓ−1 ·m)).

If omit N̄−1, the received redundant RLWE ciphertexts have valid values to
reconstruct RGSW in the constant term. Then we perform homomorphic trace
evaluation (HomTrace) to remove the X power terms. Specifically, for an alge-
braic extension E/F , the function Trace denoted as Trace(·) =

∑
σ∈Gal(E/F) σ(·)

has the unique property: Trace(1) = N and Trace
(
Xi

)
= 0 for all 0 ̸= i ∈ [N].

Thus,

HomTrace(RLWEs̄k,Q̄

(
N̄−1vi ·m+ y1X + . . .+ yN̄−1X

N̄−1
)
)

=RLWEs̄k,Q̄

(
Trace(N̄−1vi ·m+ y1X + . . .+ yN̄−1X

N̄−1)
)

=RLWEs̄k,Q̄ (vi ·m) , i ∈ [0, ℓ− 1].

N̄−1 is the inverse of N̄ in ZQ̄, so that N̄ and Q̄ should be coprime numbers.
In our circuit bootstrapping implementation, we choose N̄ to be a power of 2
and Q̄ to be an NTT prime.

An intuitive approach to evaluating the trace function is to calculate each
Galois automorphism and sum all the results. However, this approach has a
high computational complexity. Instead, we employ a more efficient calculation
method used by Chen et al. [6] and Liu et al. [25,26].

13

Algorithm 1 Homomorphic Evaluation of the Trace Function (HomTrace)
Input: the set of RLWE ciphertexts {c̄j}j∈[0,ℓ−1] output by alg.6,
Input: automorphism keys ATKu = RLWE′

s̄k,Q̄(s̄k(X
u))u∈{2,22,...,2log N},

Output: c̄j = RLWEs̄k (vj ·m), j ∈ [0, ℓ− 1].
1: for j = 0 to ℓ− 1 do:
2: for k = 1 to log N̄ do:
3: c̄j ← c̄j + HomAuto2log N−k+1+1(c̄j);
4: end for
5: return c̄j
6: end for

Specifically, for 1 ≤ i ≤ N̄ − 1, if we apply the automorphism ψN̄+1(X
i) =

Xi(N̄+1) = (−1)iXi, we simply preserve or flip the sign according to the parity
of i. Furthermore, for 2k∥i (i.e., 2k|i while 2k+1 ∤ i), we have{

ψN̄/2k+1(X
i) = −Xi,

ψN̄/2j+1(X
i) = Xi, 0 ≤ j < k.

Define an automorphism ϕt = ψ1 + ψN̄/2t+1. It is clear that for 2k∥i,

0∏
t=j

ϕt(X
i) = ϕj ◦ · · · ◦ ϕ0(X

i) =

{
0, k ≤ j ≤ log N̄ ,
2j+1, 0 ≤ j < k.

Since 0 < i < N̄ , we have
∏0

t=log N̄−1 ϕt(X
i) = 0. Therefore,

0∏
t=log N̄−1

ϕt(N̄
−1vi ·m+ y1X + . . .+ yN̄−1X

N̄−1) = vi ·m.

This technique reduces the number of HomAutos needed from N̄ to log N̄ .

Scheme Switching. The scheme switching algorithm receives a level 2 gadget
RLWE ciphertext RLWE′

s̄k,Q̄(m), and aims to generate RLWE′
s̄k,Q̄(s̄k · m) to

reconstruct the level 2 RGSWs̄k,Q̄(m) =
(
RLWE′

s̄k,Q̄(s̄k ·m),RLWE′
s̄k,Q̄(m)

)
.

We call the scheme switching algorithm [14] in our ciphertext conversion step
and propose Alg. 2 as the final component of our circuit bootstrapping algorithm.

Algorithm 2 Scheme Switching (SS)
Input: the set of RLWE ciphertexts {c̄j}j∈[0,ℓ−1] output by alg.1,
Input: a scheme switching key SSK = RLWE′

s̄k,Q̄

(
sk2

)
Output: c̄ = RGSWs̄k,Q̄ (m).
1: RLWE′

s̄k,Q̄(m) = (c̄0, c̄1, ..., c̄ℓ−1)

2: c̄← SSRLWE′→RGSW(RLWE′
s̄k,Q̄(m));

3: return c̄

14

Complexity Storage

Step.1 O(ℓnN̄ log N̄) O(ℓnN̄ log Q̄)

Step.2 TFHE O(ℓ2NN̄) O(ℓNN̄ logQ)

Step.2 Ours O(ℓ2N̄ log2 N̄) O(ℓN̄ log N̄ log Q̄)

Table 1: Computational complexity in the circuit bootstrapping.
3.3 Analysis

The cost of our novel circuit bootstrapping and the original method in Step 1
are similar. Specifically, the MV-FBS requires O(ℓnN̄ log Q̄) bit size storage and
O(ℓnN̄ log N̄) multiplication complexity. We then focus on comparing in Step 2.

Key Size. The ciphertext conversion step of the TFHE circuit bootstrapping
needs two level 1 private key switching keys, resulting in the inclusion of 2(N̄ +
1)ℓks level 1 RLWE ciphertexts. In our novel workflow, the ciphertext conversion
step needs a level 2 HomTrace key, and a level 2 scheme switching key. It contains
(log N̄ℓtrace + ℓss) level 2 RLWE ciphertexts. The number of RLWE ciphertexts
can be easily translated into bit size. For example, an RLWE ciphertext with
dimension N and modulus Q roughly requires 2N logQ bits of space.

Complexity. In the TFHE circuit bootstrapping, the private key switching al-
gorithm involves 4ℓksℓN(N̄ +1) modular multiplications. In our novel workflow,
the HomTrace and scheme switching utilize ℓ log N̄ and ℓ level 2 gadget product,
respectively. Notice that the gadget product can be converted to NTT/FFT, as
each ⊙ operation requires (ℓ+ 1) NTT/FFTs.

Comparison. We then present the performance metrics of prior studies and
conduct a cost analysis of our workflow, as described in Tab. 1. The new cir-
cuit bootstrapping workflow significantly reduces the computational and storage
overhead of the ciphertext conversion step.

Under the specific parameters given in Sec. 67, the key size of the ciphertext
conversion step in TFHE circuit bootstrapping is 320.16 MB, accounting for
66.9% of the overall key size. In contrast, our improved ciphertext conversion
reduces the key size to 0.6 MB, accounting for only 2.0%. In terms of computa-
tional efficiency, the ciphertext conversion step in TFHE circuit bootstrapping
accounts for 70.7% of the total runtime, while the runtime of our optimized Step
2 only accounts for 3.0%. For a detailed data, please consult Tab. 8 in Sec. 6.3.

4 Automorphism-Based Bootstrapping and MV-FBS

In this section, we incorporate the latest automorphism-based bootstrapping
method [24], realizing the AUTO variant of our circuit bootstrapping algorithm.
7 The parameters chosen for the TFHE circuit bootstrapping are listed in Tab. 6. Our

new framework utilizes the parameter set CMUX1 recommended in Tab. 5.

15

Approximate Gadget Decomposition. The approximate gadget decompo-
sition (Sec. 2.3.1) is widely applied in TFHE bootstrapping. It can reduce the
gadget length ℓ of the decomposition while maintaining a noise level similar to
that of the canonical decomposition, thereby enhancing operational efficiency
and reducing key size. However, LMKC+ bootstrapping method [24] do not
consider this technique in their paper. To give a fair comparison and achieve
similar performance between the AUTO variant and the CMUX variant of our
circuit bootstrapping, we first introduce the approximate gadget decomposition
into the automorphism-based bootstrapping algorithm.

By using the approximate gadget decomposition in LMKC+ bootstrapping,
we successfully reduce the gadget length used by the external product and the
automorphism from 3 to 2. Our testing in the OpenFHE library yeilded signifi-
cant benefits. Specifically, it led to a 33.4% reduction in the key siz and 25.6%
decrease in execution time. Detailed results can be found in C.1.

However, we found that the recently released 1.1.0 version of OpenFHE al-
ready include support for LMKC+ bootstrapping based on approximate gadget
decomposition. Even this development is concurrent with ours, we decided to
move this part of contribution to the supporting materials C.1, not as the main
contribution of this paper. We wish to indicate that the remaining improvements
are build upon on the approximate gadget decomposition technique.

Furthermore, we improve the LMKC+ automorphism-based blind rotation
algorithm through a sparse isomorphism, reducing the number of automor-
phisms, and thereby decreasing the runtime and noise growth. Building on this,
we extend the automorphism-based FBS to a MV-FBS without sample extrac-
tion that can be employed in our circuit bootstrapping method.

4.1 Improved Automorphism-Based Blind Rotation using Sparse
Isomorphism

We observed that the number of automorphisms in the LMKC+ blind rotation
algorithm is inversely related to the sparsity of ai in Z∗

2N , i ∈ [0, n−1]. Without
optimization, this number is roughly equal to the count of different values of
ai

8, and is always bounded by min{n,N}. Our strategy to enhance the scheme
involves controlling the sparsity of ai through the modulus switching step. By
using a sparse rounding to enforce ai to take on the form of {kA}k∈[0,⌈2N/A⌉−1],
where A > 2 controls the sparsity, we can reduce the number of automorphisms
from min{n,N} to min{n, ⌈2N/A⌉} in one blind rotation.

A drawback of the naive sparse approach is its requirement for more au-
tomorphism keys compared with LMKC+. Specifically, LMKC+ introduces a
isomorphism Z∗

2N
∼= ZN/2 ⊗ Z2 with generators {g,−1}, reducing the number

of keys from N to 2, by mapping every odd ai to ±gk. We further improve this
technique using a sparse isomorphism: for N ≥ 8 and ϑ ≥ 2, the numbers in the
form of k·2ϑ+1 in Z2N form a multiplicative cyclic group with the generator {g},
8 LMKC+ has proposed an optimization to reduce the number of automorphisms by

using additional storage. More details can be found in Sec. 4.2.

16

Algorithm 3 Memory Efficient Blind Rotation for ai = k · 2ϑ + 1(BR1)
Input: an LWE encryption c = (a, b) ∈ LWEsk,2N (m),
Input: an initial acc = (0, Xgb · testP(Xg)),
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],

Input: a automorphism key ATKg = RLWE′
s̄k,Q̄(s̄k(X

g)).

Output: c̄ ∈ RLWEs̄k(testP ·Xb+
∑n−1

i=0 aisi).
1: for (ℓ = 2N

2ϑ
− 1; ℓ > 0; ℓ = ℓ− 1) do:

2: for j ∈ Iℓ do:
3: acc = acc � BSKj ;
4: end for
5: acc = HomAutog(acc,ATK);
6: end for
7: for j ∈ I0 do:
8: acc = acc � BSKj ;
9: end for

10: return c̄ = acc

which is isomorphic to Z2N/2ϑ . For example, when N = 16 and ϑ = 2, the set
{1, 5, 9, 13, 17, 21, 25, 29} is a multiplicative group generated by g = 5 (mod32).

Thus, every ai can be rewritten as gk, where k ∈ Z2N/2ϑ . Let I0 = {i : ai =
g0}, ..., I2N/2ϑ−1 = {i : ai = g2N/2ϑ−1}, we have

∑
i

aisi =

∑
j∈I0

sj + g

∑
j∈I1

sj + · · ·+ g

 ∑
j∈I

2N/2ϑ−1

sj

 (mod2N)

Then we propose a blind rotation algorithm for ai in the form of k · 2ϑ + 1
that uses a single automorphism key ATKg as in Alg. 3. The correctness of the
algorithm is guaranteed by the homomorphic automorphism, and the correctness
proof can be found in Sup. C.2.

4.2 The Number of Automorphisms

Lee et al. [24] introduced a technique to reduce the number of automorphisms.
This technique can cap the total number of automorphisms at t(w−1)/w+N/w,
where t represents the number of non-empty Iℓ, and w signifies the window size
denoting the pre-stored number of automorphism keys. A comprehensive sum-
mary of this technique is provided in Sup. C.3. Our sparse isomorphism can
reduce the total number of Iℓ from 2N to N ′ = 2N/2ϑ, thereby reducing the cor-
responding upper bound of the number of automorphisms to t(w−1)/w+N ′/w.
We then present a computationally efficient blind rotation algorithm for ai in
the form of k · 2ϑ + 1, see Alg. 4.

Determination of Window Size. However, it is difficult to precisely formu-
late the expected number of the automorphisms nauto from the formula, since

17

Algorithm 4 Computation Efficient Blind Rotation for ai = k · 2ϑ + 1(BR2)
Input: an LWE encryption c = (a, b) ∈ LWEsk,2N (m),
Input: an initial acc = (0, Xgb · testP(Xg)),
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],

Input: a set of automorphism keys ATKgu = RLWE′
s̄k,Q̄(s̄k(X

gu

))u∈[1,w].

Output: c̄ ∈ RLWEs̄k(testP ·Xb+
∑n−1

i=0 aisi).
1: v ← 0
2: for (ℓ = 2N

2ϑ
− 1; ℓ > 0; ℓ = ℓ− 1) do:

3: for j ∈ Iℓ do:
4: acc = acc � BSKj ;
5: end for
6: v ← v + 1
7: if (Iℓ−1 ̸= ∅ or v = w or ℓ = 1) then
8: acc = HomAutogv (acc,ATK);
9: v ← 0

10: end if
11: end for
12: for j ∈ I0 do:
13: acc = acc � BSKj ;
14: end for
15: return c̄ = acc

the distribution of t is complicated. To obtain a perspective on the average per-
formance, we propose to use the Monte Carlo simulation [22] to estimate the
number of automorphisms. We simulate nauto under varying selections of w and
the details of our simulation can be found in Sup. C.4. For different N ′, the
chosen w and minimized nauto are listed in Tab. 2.

N ′ 512 1024 2048
w 8 15 30

nauto 302 368 410

Table 2: Window sizes and the corresponding nauto.

In Sec. 6, considering security, decryption failure probability and computa-
tional efficiency, we choose N = 2048, ϑ = 2. The window size is reduced from
30 to 15, and nauto is reduced from 410 to 368. As analyzed in LMKC+, our
reduction of window size results in smaller key sizes, and the reduction of nauto
results in smaller noise increments. The details are shown in C.5.

4.3 Sparse Rounding and Bootstrapping

We then propose the FBS algorithm, wherein BR2 serves as its core compo-
nent, see Alg. 5. During the modulus switching (line 1), we use sparse rounding

18

Algorithm 5 Functional Bootstrapping Algorithm
Input: an LWE encryption c = (a, b) ∈ LWEsk,q (m),
Input: a LUT represented by L = [f(0), f(1), . . . , f(p− 1)] encoding f ,
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],

Input: a set of automorphism keys ATKgu = RLWE′
s̄k,Q̄(s̄k(X

gu

))u∈[1,w].
Output: c̄ ∈ LWEs̄k,Q̄ (f(m)).

1: b = ⌊ 2Nq b⌉k·2ϑ+1 and ai =
⌊
2N
q ai

⌉
k·2ϑ+1

∈ Z2N for each i ∈ [0, n− 1]

2: testP = X
N
2p

∑p−1
j=0 X

j N
p
∑N

p −1

k=0 f(j)Xk

3: acc = (0, Xgb · testP(Xg))
4: acc = BR2(c = (a, b), acc,BSK,ATK)
5: c̄ = SampleExtract(acc),
6: return c̄

⌊x⌉k·2ϑ+1 instead of ⌊x⌉, where ⌊x⌉k·2ϑ+1 outputs the nearest integer in Z2N of
the form k · 2ϑ + 1 for the input x. This step guarantees that every component
ai in the ciphertext received by the BR2 is in the form of k · 2ϑ +1, allowing the
blind rotation to work properly. However, the rounding error is larger than the
original modulus switching, which we analyze in Sec. 5.

4.4 Automorphism-Based Multi-Value Functional Bootstrapping

In this section, we propose the first automorphism-based MV-FBS. This al-
gorithm exploits the sparsity of the ciphertext components ai to compute 2ϑ

look-up tables at a cost of only one BR2.
As we mentioned in Sec. 3, the method of [12] employs a specialized modulus

switching technique to switch each component ai of the ciphertext to a multiple
of 2ϑ. However, this approach poses a challenge as it disrupts our sparse isomor-
phism, which necessitates the preservation of the form k · 2ϑ+1. To address this
issue, we use uses the following trick:

Xb+
∑

i aisi = Xb+
∑

i(ai+1)si−
∑

i si .

Specifically, we introduce an auxiliary key AUX = RGSWs̄k,Q̄(X
−

∑n−1
i=0 si).

Subsequently, we perform a multiplication of this auxiliary key with acc. Then,
we put the updated acc and a′i = ai +1 meeting the form k · 2ϑ +1 into the BR2

blind rotation algorithm. Finally, we present our automorphism-based MV-FBS
without sample extraction in Alg. 6. Additionally, we provide a standard version
of the automorphism-based MV-FBS which may be of independent interest. For
further details, please refer to Alg. 8 in the Sup. C.6.

5 Analysis

We conduct a comprehensive analysis encompassing error growth, key size, and
computational complexity of our circuit bootstrapping workflow, considering

19

Algorithm 6 Auto-Based MV-FBS Algorithm without Sample Extraction
Input: an LWE encryption c = (a, b) ∈ LWEsk,q (m),
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],

Input: a set of automorphism keys ATKgu = RLWE′
s̄k,Q̄(s̄k(X

gu

))u∈[1,w],

Input: an auxiliary key AUX = RGSWs̄k,Q̄(X
−

∑n−1
i=0 si).

Output: c̄j ∈ RLWEs̄k(testP ·Xb+
∑n−1

i=0 aisi−j)j∈[0,ℓ−1].

1: b =
[⌊

b·2N ·2−ϑ

q

⌉
· 2ϑ

]
2N

and ai =
[⌊

ai·2N ·2−ϑ

q

⌉
· 2ϑ

]
2N

2: testP = 1
2

∑ N

2ϑ
−1

i=0

∑2ϑ−1
j=0 N̄−1viX

2ϑ·i+j

3: acc = (0, Xgb · testP(Xg))
4: acc = acc � AUX
5: [ai = ai + 1]2N
6: acc = BR2(c = (a, b), acc,BSK,ATK)
7: acc = acc+ (0, 12v0 +

1
2v1X + ...+ 1

2vℓ−1X
ℓ−1)

8: for j = 0 to ℓ− 1 do:
9: c̄j = X−j · acc,

10: return c̄j
11: end for

both the CMUX variant and the AUTO variant. The parameters ℓ, ℓep, ℓauto, ℓtrace,
ℓss and B,Bep, Bauto, Btrace, Bss denote the gadget decomposition length and
base in the circuit evaluation, external product, automorphism, HomTrace, and
scheme switching, respectively. Correspondingly, ε, εep, εauto, εtrace, εss denote the
decomposition error. The underline symbol n and q denote the dimension and
modulus of the level 0 ciphertext, respectively, while N̄ and Q̄ represent those
of level 2.

5.1 Error Analysis

The error growth of our circuit bootstrapping algorithm can be calculated through
a step-by-step analysis. In this section, we present the results, with detailed
proofs available in Sup. D. We use σ2

in to denote the maximum ciphertext noise
variance before the circuit bootstrapping process, and use σ2

ms, σ
2
br, σ

2
trace, σ

2
ss to

signify the error variance after each step of our circuit bootstrapping algorithm:

– Modulus Switching (Sparse Rounding):

σ2
ms =

{
4N̄2σ2

in

q2 + (n2 + 1) · (2
2ϑ

12 −
N̄2

3q2) +
nN̄2

4q2 ,CMUX variant;
4N̄2σ2

in

q2 + (nσ2 + 1) · (2
2ϑ

12 + 2N̄2

3q2)−
N̄2

q2 ,AUTO variant;
– Blind Rotation:

σ2
br =

2n×

(
1
6N̄ℓepB

2
ep × σ2 + 1

3 (N̄ + 1)ε2ep
)
,CMUX variant;

n×
(
1
6N̄ℓepB

2
ep × σ2 + 1

3 (N̄ + 1)ε2ep
)

+nauto ×
(

1
12 N̄ℓautoB

2
auto × σ2 + 1

3 ×
N̄
2 ε

2
auto

)
,AUTO variant;

20

– HomTrace:

σ2
trace = σ2

br +
1

3

(
N̄2 − 1

)
·
(

1

12
N̄ℓtraceB

2
trace × σ2 +

1

3
× N̄

2
ε2trace

)
– Scheme Switching:

σ2
ss = σ2

trace +

(
1

12
N̄ℓssB

2
ss × σ2 +

1

3
× N̄2

4
ε2ss

)

5.1.1 Max Depth. σ2
ss depicts the noise variance of the RGSW ciphertext

output by the circuit bootstrapping algorithm, which subsequently serves as
input for the next circuit operations, such as LUT. We use Noise Add to define
the additional noise in each layer of CMUX gates during circuit evaluations, and
MAX Depth is used to define the maximum circuit depth it can support before
the next circuit bootstrapping. Then we have the following:

– RGSW Output = σ2
ss

– Noise Add = 1
12 N̄ℓB

2 × σ2
ss +

1
6 (N̄ + 1)ε2

– MAX Depth ≈ σ2
in−σ2

ms2

q2 /Noise Add
Q̄2

The ciphertext output from circuit evaluation needs to pre-switch from level
2 to level 0 before serving as the input for the next circuit bootstrapping. There-
fore, when calculating the maximum depth, we must also account for the error
introduced during the switching process. There is a modulus switching in the
final step (ms2, which is independent with sparse rounding), and nearly all errors
produced in previous steps can be eliminated during it. The error generated by
modulus switching itself can be calculated using the following formula:

σ2
ms2 =

∥s∥2 + 1

12
,

where σ2
ms2 denotes the error variance, s is the level 0 secret key. We have ∥s∥ ≤√

n/2 for binary secret key, and ∥s∥ =
√
nσ2 for Gaussian secret key [24].

5.1.2 Failure Probability. The ciphertext with the maximum noise through-
out the LHE mode evaluation is after the sparse rounding step and prior to
entering the next blind rotation. At this point, the error variance is σ2

ms, the ci-
phertext modulus is 2N̄ , plaintext space is 2, thus the failure probability can be
calculated by 1− erf

(
2N̄

4
√
2σms

)
, where erf represents the Gaussian error function.

5.2 Key Size

The circuit bootstrapping key can be divided into a multi-value functional boot-
strapping key, a HomTrace key, and a scheme switching key. It can be converted
into the number of RLWE ciphertexts as follows:

21

– Step 1. Multi-Value Functional Bootstrapping:{
2nℓep,CMUX variant;
nℓep + (n+ w + 2)ℓauto,AUTO variant;

– Step 2. HomTrace and Scheme Switching: log N̄ℓtrace + ℓss

The total number of RLWE ciphertexts can be easily translated into bit size.
For example, a level 2 RLWE ciphertext with dimension N̄ and modulus Q̄
roughly requires 2N̄ log Q̄ bits of space.

5.3 Computational Complexity.

We measure the computational complexity of our circuit bootstrapping by the
number of NTTs. Notice that the gadget product can be converted to NTT as
each ⊙ needs (ℓ + 1) NTTs, and each external product � requires 2 gadget
product ⊙. HomTrace requires log N̄ times ⊙ and Scheme Switching can be
performed with 1 ⊙. The number of NTTs can be computed as follows:

– Step 1. Multi-Value Functional Bootstrapping:{
2n(ℓep + 1),CMUX variant;
2n(ℓep + 1) + nauto(ℓauto + 1),AUTO variant;

– Step 2. HomTrace and Scheme Switching: log N̄(ℓtrace + 1) + ℓss + 1

6 Parameter Selection and Implementation

6.1 Parameters for Security.

The security of the FHEW-like cryptosystem is based on the (ring) learning with
errors problem [34,28]. The security level is determined by the key distribution,
ciphertext dimension, ciphertext modulus, and initial noise. We list these param-
eters both for our CMUX variant circuit bootstrapping algorithm and AUTO
variant in Tab. 3, such that the ciphertexts in each level achieve over 128-bit
security. The underline symbol n and q denote the dimension and modulus of
the level 0 ciphertext, respectively, while N̄ and Q̄ represent those of level 2.
The security parameter λ is tested by Lattice estimator9.

Method λ Lv0 key Lv2 key n q N̄ Q̄ σ

CMUX variant 128 Binary Binary 571 210 211 ≈ 254 3.2

AUTO variant 128 σ = 3.2 Binary 458 210 211 ≈ 254 3.2

Table 3: Security and parameters of our circuit bootstrapping.
9 https://github.com/malb/lattice-estimator

22

6.2 Parameters for Noise Management.

FHE algorithms manage the noise growth through gadget decomposition, and
by controlling the decomposition length and base. In the FHE evaluation mode,
the noise level determines the failure probability of the functional bootstrapping
algorithm. Things are different in the LHE evaluation mode. As we pre-define
σ2
in to denote the maximum ciphertext noise variance prior to circuit bootstrap-

ping, the decryption failure probability Prob is determined by σin and the sparse
parameter ϑ. We present the Prob of our circuit bootstrapping algorithm under
different choices of parameters in Tab. 4. Finally, we choose σ2

in = 210, ϑ = 2 to
achieve a lower decryption failure probability, although a larger ϑ can help to
reduce the number of automorphisms nauto.

Terms σ2
in = 210, ϑ = 2 σ2

in = 26, ϑ = 3

Prob 2−49.5 2−31.2

nauto 368 302

Table 4: The decryption failure probability and the number of automorphisms
in average case under different choices of parameter sets. The failure probability
is chosen as the higher one among the CMUX variant and AUTO variant.

Noise control plays a crucial role in determining the supported depth of
circuit evaluations. We then discuss the specifics of gadget decomposition length
and base at each step. Depending on the supported circuit depths, we present
several recommended parameter sets as listed in Tab. 5.

Sets ℓep Bep ℓauto Bauto ℓtrace Btrace ℓss Bss ℓ B Max Depth Key Size # of NTTs

AUTO1 1 226 1 226 2 217 1 228 2 26 7 25.0 MB 2510

CMUX1 1 226 − − 2 217 1 228 2 25 8 30.7 MB 2354

AUTO2 2 217 2 217 2 217 1 228 2 26 73 49.4 MB 3730

CMUX2 2 217 − − 2 217 1 228 2 26 115 60.8 MB 3496

AUTO3 2 217 2 217 2 217 2 219 2 27 149 49.7 MB 3732

CMUX3 2 217 − − 2 217 2 219 2 27 236 60.9 MB 3498

AUTO4 2 217 2 217 3 213 2 219 2 28 7, 900+ 49.7 MB 3754

CMUX4 2 217 − − 3 213 2 219 2 28 10, 900+ 61.1 MB 3520

AUTO5 2 217 2 217 4 211 2 219 2 28 16, 800+ 50.0 MB 3776

CMUX5 2 217 − − 4 211 2 219 2 28 20, 200+ 61.4 MB 3542

Table 5: The recommended parameter sets for noise management. For each pa-
rameter set, we have listed the corresponding max supported circuit depth, cir-
cuit bootstrapping key size, and the number of needed NTT/FFTs.

23

6.3 Implementation Results and Comparison

The TFHE circuit bootstrapping uses three levels of parameters, which we have
set to be consistent with the TFHEpp library [29], as detailed in Tab. 6. It is
important to note that these definitions, following Chillotti [9,10,11], employ
different notions compared with ours. Specifically, TFHE uses the real torus
T = R/Z and TN [X] = R/Z to describe the message and ciphertext spaces, and
implements T by Zq with q = 232 or q = 264.

Level λ Key n Torus σ ℓep Bep ℓks Bks ℓ B

2 153 binary N̄ = 2048 Int64 2−44 4 29 − − − −

1 129 binary N = 1024 Int32 2−25 − − 10 23 3 26

0 128 binary n = 635 Int32 2−15 − − − − − −

Table 6: Security and parameters of the TFHE circuit bootstrapping [29].

It is important to highlight that in the private key switching step of the
TFHE circuit bootstrapping, there exists a pre-computed method that trades
storage for computational efficiency [16]. Specifically, given the fixed gadget de-
composition base Bks, the number of possible results of ai,j · RLWEsk′ (vj · ski)
in the PrivateKS computation is limited, where ai,j represents the gadget decom-
position of ai. Consequently, all possible outcomes can be pre-stored as a new
switching key. This method allows modular multiplication to be substituted with
modular addition, leading to enhanced efficiency and noise management within
the private key switching algorithm. However, it also results in a significant
increase in key size.

In the following analysis, we give the performance for both the original TFHE
circuit bootstrapping method and the pre-computed variant TFHEprecom as two
different control groups. To begin with, we calculate the maximum supported
circuit depth for these two control groups, as presented in Tab. 7.

Method σ2
in RGSW Output Noise Add (per CMUX) Max Depth

TFHE 2−10 2−33.3 2−13.3 9

TFHEprecom 2−10 2−38.2 2−18.2 294

Table 7: Noises and the maximal CMUX depth.

Then, we select the recommended parameter set CMUX/AUTO1 in our method
for comparison with the TFHE method, considering their similar maximum sup-
ported circuit depths. In comparison with the TFHEprecom method, we opt for
CMUX/AUTO5. Although CMUX/AUTO4 would suffice for this comparison, our

24

observations have revealed that the computational costs of sets 4 and 5 are sim-
ilar. However, the supported circuit depth of set 5 significantly exceeds that of
set 4, leading us to choose CMUX/AUTO5 for our implementation.

6.3.1 Implementation Results. We implement our circuit bootstrapping
method in the OpenFHE library [1]. To enable a direct performance compari-
son between TFHE circuit bootstrapping and ours, we also implement the unit
test for TFHE circuit bootstrapping in OpenFHE, replacing all FFT operations
with NTTs. This eliminates the running time difference caused by library opti-
mization and the efficiency difference between FFT and NTT. The evaluation
environment is a PC with 11th Gen Intel(R) Core(TM) i5-11500 @ 2.70GHz
and 32 GB of RAM, running Ubuntu 22.04.2 LTS. Detailed runtime results are
presented in Tab. 8.

Methods Sets
Key Size (in MB) Run Time (in ms)

Step.1 Step.2 Total Step.1 Step.2 Total

TFHE TFHEpp 158.75 320.16 478.91 256.4 620.6 877

Ours
AUTO1 24.41 0.60 25 (5.2%) 96.96 2.64 99.6(8.8×)

CMUX1 30.11 0.60 30.71 (6.4%) 85.94 2.63 88.57(9.9×)

TFHEprecom TFHEpp 158.75 2561.28 2720.03 256.4 227.68 484.08

Ours
AUTO5 48.83 1.21 50.04 (1.8%) 152.31 4.59 156.9(3.1×)

CMUX5 60.22 1.21 61.43 (2.2%) 135.77 4.59 140.36(3.5×)

Table 8: Our proposed circuit bootstrapping performance compared with the
state of the art method.

Remark 2. There are three open-sourced TFHE circuit bootstrapping im-
plementations using FFT and advanced vector extensions (AVX). TFHElib10

achieves a runtime of 137 ms for 110 bit security using AVX-2, while TFHEpp
[29] reduces the run time under 128 bit security using PBSmanyLUT. MOSFHET
[21] further reduces FFT runtime using AVX-512. These implementations la-
tency are shorter than that of our experiment above, but it is due to library
optimization and the use of AVX. As mentioned in [30], AVX-2 can accelerate
FFT operations by up to 8×. We have not found an open-source FHE library
that supports AVX-accelerated NTT.

Therefore, we also provide an optimized implementation of our scheme using
AVX-512 as part of our work. Following extensive testing and comparison, our
experimental results are superior to all existing circuit bootstrapping implemen-
tations, as indicated in Tab. 9. In the time comparison of step 1, it is evident
10 https://github.com/tfhe/experimental-tfhe

25

Methods Library
Run Time (in ms)

Step.1 Step.2 Total

Ours Ours 42.98 1.46 44.4

TFHEprecom

TFHEpp11 25.8 32.3 58.1

MOSFHET12 21.7 181.2 202.9

Table 9: Our AVX-accelerated implementation compared with the state of the
art implementations. It is worth mentioning that the step.2 test results of
MOSFHET is significantly slower than TFHEpp. This is due to the fact that in
this library, the private key switching, which should be executed at level 1, is
executed at level 2.

that, due to a lack of sufficient optimization (such as assembly language), the ef-
ficiency of our basic operation unit (NTT/FFT) is slower than that of TFHEpp
and MOSFHET. However, due to the superiority of our method, our circuit
bootstrapping implementation still leads among libraries. Further optimization
of our library will be included in our future works.

7 Application

Homomorphic Evaluation of AES. In transciphering scenarios13, the evalu-
ation of the advanced encryption standard (AES) circuit through FHE has been
explored using a variety of schemes. For instance, Cheon et al. and Coron et al.
both implemented the AES circuit using the vDGHV[37] scheme[7,13]. Doröz
et al. suggested an AES evaluation using LTV[27] scheme[15]. However, these
evaluation methods exhibit extremely high latency. Gentry et al. proposed an
AES evaluation method using BGV scheme [19]. Although this method still has
a delay of 18 minutes, the amortized time can reach 5.8 seconds, since BGV sup-
ports packing messages into plaintext slots for SIMD (Single Instruction Multiple
Data) computation.

Actually, the FHEW-like scheme proves to be a suitable choice to decrease
the delay of AES homomorphic evaluation. The AES circuit which we detailed in
Sup. E.2 mainly consists of the following four operations: AddRoundKey, Sub-
Bytes, ShiftRows and MixColumns. Under such bit-wise encryption schemes,
most of them are straightforward to implement: AddRoundKey can be calculated
through XOR gates; ShiftRows only requires a reordering of the ciphertext; Mix-
Columns can also be realized through a combination of XOR and shifting[15].
The computationally expensive operation is primarily the SubBytes operation,
also widely known as the S-box evaluation.

11 https://github.com/virtualsecureplatform/TFHEpp
12 https://github.com/antoniocgj/MOSFHET
13 We detailed this application scenario in Sup. E.1

26

Scheme Evaluation Mode Hardware Run Time

BGV − i5-3320M, 4GB RAM 1,080s[19] 14

FHEW-like
FHE i7-12700H, 64GB RAM 270s[36]

LHEour i5-11500, 32GB RAM 26.2s

Table 10: Our AES evaluation time compared with the state-of-the-art works.

AES evaluation under FHE mode using functional bootstrapping: In
FHE mode, each 8 × 8 S-box evaluation requires 16× 255=4,080 gate. The ho-
momorphic evaluation of AES needs 16×10=160 S-boxes, with a total of over
600,000 gate bootstrappings. Trama et al. designed a new evaluation method for
AES using functional bootstrapping with a plaintext space of 4 bits[36]. Through
further optimization utilizing a tree-based look-up-table approach, the complete
AES evaluation requires 4,244 functional bootstrappings. This method currently
offers the best latency for homomorphic AES evaluation, achieving a run time
of 270 seconds on a single thread (TFHE-lib, AVX-2, Assembler Language, In-
tel(R) Core(TM) i7-12700H CPU with 64 GB RAM). The detailed evaluation
methods are shown in Sup. E.3.

AES evaluation under LHE mode using our novel circuit bootstrap-
ping: In LHE mode, each S-box evaluation requires an 8-level CMUX circuit
and 8 circuit bootstrappings. Other operations can be performed almost for free.
Therefore, the evaluation cost of AES primarily stems from 8×160=1,280 cir-
cuit bootstrappings, which take up 98% of the overall runtime. Given that the
S-box evaluation has a maximum circuit depth of 8, we can employ a smaller
parameter set CMUX1 for the circuit bootstrapping algorithm. Under this set
of parameters, the run time of circuit bootstrapping is 19.2(step 1)+0.83(step
2)=20 ms, and the overall latency of homomorphic evaluation of AES is 26.2s,
see Tab. 10. Our result achieves 10.3× better compared to FHE mode evalua-
tion using functional bootstrapping [36]. This is remarkable because we do not
take into account the hardware gap and assembly language, which could further
improve our performance. It is also important to note that, the speedup ratio
of AES evaluation using our proposed circuit bootstrapping method versus the
traditional one should be consistent with our CBS speedup. This is supported by
the experiments, which show that 98% of the time overhead of AES evaluation
comes from circuit bootstrapping.

14 Gentry also proposed a homomorphic AES evaluation approach that does not employ
the BGV bootstrapping algorithm, with a latency of 240s. As the homomorphic
ciphertext derived from this method is noisy and does not support further operations,
it is not considered in the transciphering scenario. It is worth mentioning that even
compared to this method, we have achieved a 9× performance improvement.

27

8 Conclusion

In this paper, we propose a faster and smaller circuit bootstrapping work flow.
Our approach significantly reduces the latency by approximately 90% compared
with the state-of-the-art method, while maintaining the key size within 50 MB.
This storage advancement also opens up the possibility for further research into
hardware acceleration of circuit bootstrapping. We anticipate our work as a
stepping stone towards the practical application of the TFHE LHE mode.

References

1. Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., et al.: Openfhe: Open-source fully homo-
morphic encryption library. In: Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. pp. 53–63 (2022)

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Ad-
vances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34. pp. 297–314.
Springer (2014)

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

5. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. In: Cryptographers Track at the RSA
Conference. pp. 106–126. Springer (2019)

6. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between
(ring) lwe ciphertexts. In: International Conference on Applied Cryptography and
Network Security. pp. 460–479. Springer (2021)

7. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Advances in Cryptology–
EUROCRYPT 2013: 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings 32. pp. 315–335. Springer (2013)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International conference on the theory and application
of cryptology and information security. pp. 409–437. Springer (2017)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. ADVANCES IN
CRYPTOLOGY-ASIACRYPT 2016, PT I 10031, 3–33 (2016)

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for tfhe. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I. pp. 377–408. Springer (2017)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

28

12. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 670–699. Springer (2021)

13. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Public-Key Cryptography–PKC 2014: 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceedings 17. pp. 311–328. Springer (2014)

14. De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster amortized fhew boot-
strapping using ring automorphisms. Cryptology ePrint Archive (2023)

15. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic aes evaluation using the modified ltv
scheme. Designs, Codes and Cryptography 80, 333–358 (2016)

16. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology–EUROCRYPT 2015: 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34. pp. 617–640. Springer
(2015)

17. Gama, N., Izabachene, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems.
In: Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35. pp. 528–558. Springer (2016)

18. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
19. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:

Annual Cryptology Conference. pp. 850–867. Springer (2012)
20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-

rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

21. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems pp.
229–253 (2021)

22. James, F.: Monte carlo theory and practice. Reports on progress in Physics 43(9),
1145 (1980)

23. Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: Lfhe: Fully homomorphic en-
cryption with bootstrapping key size less than a megabyte. Cryptology ePrint
Archive (2023)

24. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient fhew bootstrapping with small evaluation keys, and applications to threshold
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 227–256. Springer (2023)

25. Liu, F.H., Wang, H.: Batch bootstrapping i: a new framework for simd bootstrap-
ping in polynomial modulus. In: Advances in Cryptology–EUROCRYPT 2023:
42nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. pp.
321–352. Springer (2023)

26. Liu, F.H., Wang, H.: Batch bootstrapping ii: bootstrapping in polynomial mod-
ulus only requires o˜(1) fhe multiplications in amortization. In: Advances in
Cryptology–EUROCRYPT 2023: 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part III. pp. 353–384. Springer (2023)

29

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In: Proceedings of
the forty-fourth annual ACM symposium on Theory of computing. pp. 1219–1234
(2012)

28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 1–23. Springer, Heidelberg (2010)

29. Matsuoka, K., Banno, R., Matsumoto, N., Sato, T., Bian, S.: Virtual secure plat-
form: A five-stage pipeline processor over tfhe. In: USENIX Security Symposium.
pp. 4007–4024 (2021)

30. Micciancio, D., Polyakov, Y.: Bootstrapping in fhew-like cryptosystems. In: Pro-
ceedings of the 9th on Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography. pp. 17–28 (2021)

31. Muttaqin, K., Rahmadoni, J.: Analysis and design of file security system aes (ad-
vanced encryption standard) cryptography based. Journal of Applied Engineering
and Technological Science (JAETS) 1(2), 113–123 (2020)

32. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124 (2011)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

35. Rijmen, V., Daemen, J.: Advanced encryption standard. Proceedings of federal
information processing standards publications, national institute of standards and
technology 19, 22 (2001)

36. Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: At last! a homomorphic aes
evaluation in less than 30 seconds by means of tfhe. Cryptology ePrint Archive
(2023)

37. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. pp.
24–43. Springer (2010)

30

Supplementary Material

A Performing Circuit Evaluation in Level 2
As mentioned in Sec.1.2, our LHE mode evaluate circuits at level 2. This results
in an slight increase in circuit computation latency. To determine the exact
performance for large circuits, we run circuit evaluation experiments under the
TFHEpp parameter set and CMUX5 parameter set. The results show that our
approach has a 1.5× latency per CMUX gate compared with the TFHE solution
in OpenFHE library. However, our approach maintains better performance as
the depth of circuit operations approaches 4,000, see Fig.4 (In fact, the TFHE
method under the TFHEpp parameter set does not support such a large circuit
depth). It is important to note that we are comparing our approach to the pre-
computed variant of TFHE circuit bootstrapping, which has a key size nearly 46
times larger than ours. Furthermore, while TFHE has reached its limit for the
depth of CMUX circuits, our approach can continue to compute CMUX gates
to a depth of 20,000+.

0 1000 2000 3000 4000
Depth of CMUX

200

400

600

800

1000

1200

Ti
m
e
(m

s)

TFHE
Ours

Fig. 4: LHE mode run time

B LMKC+ Basic Blind Rotation Algorithm for Odd ai

We give a detailed LMKC+ blind rotation algorithm for Odd ai in Alg. 7.

C Automorphism-Based Bootstrapping and MV-FBS
C.1 Automorphism-Based Gate Bootstrapping with Approximate

Gadget Decomposition
We provide a performance comparison of the bootstrapping algorithm based on
approximate decomposition and canonical decomposition, see Tab. 11. LMKC+

31

Algorithm 7 LMKC+ Blind Rotation Algorithm for Odd ai.
Input: an LWE encryption c = (a, b) ∈ LWEsk,2N (m),
Input: an initial acc = (0, X−gb · testP(X−g)),
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],
Input: two automorphism keys ATKg and ATK−g.

Output: c̄ ∈ RLWEs̄k(testP ·Xb+
∑n−1

i=0 aisi).
1: for (ℓ = N/2− 1; ℓ > 0; ℓ = ℓ− 1) do:
2: for j ∈ I−ℓ do:
3: acc = acc � BSKj ;
4: end for
5: acc = HomAutog(acc,ATKg);
6: end for
7: for j ∈ I−0 do:
8: acc = acc � BSKj ;
9: end for

10: acc = HomAuto−g(acc,ATK−g);
11: for (ℓ = N/2− 1; ℓ > 0; ℓ = ℓ− 1) do:
12: for j ∈ I+ℓ do:
13: acc = acc � BSKj ;
14: end for
15: acc = HomAutog(acc,ATKg);
16: end for
17: for j ∈ I+0 do:
18: acc = acc � BSKj ;
19: end for
20: return c̄ = acc

serves as the control group, utilizing canonical decomposition. GINX uses the
CMUX gate based on approximate decomposition to calculate blind rotation,
while Ours uses the automorphism based on approximate decomposition. ℓep
and ℓauto denote the gadget decomposition length in the external product and
automorphism, respectively.

Method λ key n q N Q σ ℓep ℓauto Key Size Run Time

LMKC+ 128 σ = 3.2 458 210 210 ≈ 228 3.2 3 3 19.03 MB15 99.52ms

GINX 128 Binary 571 210 210 ≈ 225 3.2 2 − 13.94 MB 65.5 ms

Ours 128 σ = 3.2 458 210 210 ≈ 228 3.2 2 2 12.67 MB 73.98ms

Table 11: Security and parameters of our circuit bootstrapping.

32

By using the approximate gadget decomposition, we reduce the gadget length
from 3 to 2. As a result, it can diminish the key size of the algorithm by 33.4%
and the execution time by 25.6%.

C.2 Correctness of Memery Efficiency Blind Rotation Algorithm

We give the correctness proof of our memory efficiency blind rotation algorithm
(Alg. 3) proposed in section 4.1.

Proof. The initial acc can be considered as a trivial ciphertext RLWEs̄k,Q̄ (Xgb ·
testP). For ℓ = 2N

2ϑ
− 1, after executing the steps in line 3, acc is multiplied

together with BSKj,j∈I
2N/2ϑ−1

. Then homomorphically evaluating ψg : X → Xg

in line 5, we obtain

acc = RLWEs̄k,Q̄

(
(Xg2b · testP(Xg2

)) ·X
g·
∑

j∈I
2N/2ϑ−1

sj
)

Repeating the above process and completing the for loop with respect to l,
we get the output

c̄ = acc = RLWEs̄k,Q̄

(
(Xg2N/2ϑb · testP(Xg2N/2ϑ

)) ·X
∑

i aisi

)
Since g2N/2ϑ = 1, we have

c̄ = RLWEs̄k,Q̄

(
testP ·Xb+

∑
i aisi

)
.

C.3 Computation Optimization to Reduce Automorphisms

Lee et al. [24] introduced a technique to reduce the number of automorphisms.
The basic idea is that when some Iℓ16 are empty, there is no external product �
performed, and the automorphisms can be composed into a single one. However,
to handle all possible situations, the number of automorphism keys needed is
N −1. Therefore, techniques are needed to represent all possible automorphisms
with a limited number w of automorphisms, where w is called the window size.

Suppose there are t non-empty sets Iℓ, with the corresponding composed
automorphism being gvℓ , where vℓ ≥ 1 is the index accumulated from Iℓ to
the next non-empty set. In [24], vℓ was represented by vℓ = v′ℓ + v′′ℓ · w, where
0 ≤ v′ℓ < w. By storing {ATKgu}u∈[1,w],

gvℓ = gv
′
ℓ gw · · · gw︸ ︷︷ ︸
v′′
ℓ times

,

can be represented by 1+ v′′ℓ known automorphisms. The total number of auto-
morphisms is then bounded by t(w − 1)/w +N/w, as given in Lee et al. [24].

16 I0 = {i : ai = g0}, ..., I2N/2ϑ−1 = {i : ai = g2N/2ϑ−1}, see section 4.1 for more details

33

C.4 Monte Carlo Simulation

The factors that affect the number of automorphisms are the indices of all non-
empty sets Iℓ and their corresponding vℓ. The simulation can be reduced to a
stochastic process where we randomly place n balls into N ′ bins. Since αi are
uniformly distributed, the probability of a ball going into each container is the
same. For each epoch, the number of automorphisms needed corresponding to a
certain window size w is directly computable.

The convergence of the Monte Carlo process and the changing curve of the
number of automorphisms with respect to w is shown in Fig. 5. Since w only
affects a small proportion of the key size, we pick a w large enough to minimize
the number of automorphisms.

0 2000 4000 6000 8000 10000
Epoch

296

298

300

302

304

306

Es
tim

at
ed

 n
au

to

(a) Convergence of the Process

5 10 15 20 25 30
Window Size w

400

600

800

1000

Ex
pe

ct
ed

 n
au

to

N ′ =512
N ′ =1024
N ′ =2048

(b) Expected nauto

Fig. 5: The Monte Carlo Process

C.5 LMKC Comparison

Error Analysis. When analyzing errors in FHEW-like bootstrapping algo-
rithms, one can intuitively compare the values of σ2

FBS/σ
2
⊙. Tab.12 lists the error

ratios of our proposed bootstrapping Alg. 5 in the worst case, and compare it
with LMKC+ and GINX. It demonstrates that when w is large, our scheme has
the lowest error growth, even in the worst case.

Error Ratio GINX LMKC+ Ours

σ2
FBS/σ

2
⊙ 4n 2n+ w−1

w n+ N
w 2n+ w−1

w min{n, 2N
2ϑ
}+ 2N

2ϑw

Table 12: Error ratio in the worst case.

Key Size and Computational Complexity. The key size and computational
complexity of the LMKC+ bootstrapping method and ours are listed in Tab.
13. Our scheme has a slight advantage in key size due to the elimination of the
need to store ATK−g and the ability to choose a smaller w, as demonstrated by
the experimental results in Sec. 4.2. In terms of computational complexity, both

34

schemes require the same number of external products, but we use fewer auto-
morphisms. We provide expressions for the number of automorphisms required
by the LMKC+ method and our method under both worst-case and average-case.

Methods
keys

(in RLWE′
)

HomAutos

(worst case)

HomAutos

(average case)
�

LMKC+ 2n+ w + 1 w−1
w n+ N

w N − (w−1
w e−n/N)N n

Ours 2n+ w w−1
w min{n, 2N

2ϑ
}+ 2N

2ϑw
2N
2ϑ
− (w−1

w e−n2ϑ/2N) 2N
2ϑ

n

Table 13: Key size and computation complexity.

C.6 Automorphism-Based Muti-Value Functional Bootstrapping

In this section, we provide a standard version of the automorphism-based MV-
FBS algorithm in Alg.8. This algorithm may have independent interests.

Algorithm 8 Automorphism-Based MV-FBS Algorithm
Input: an LWE encryption c = (a, b) ∈ LWEsk,q (m),
Input: 2ϑ LUTs, each represented by Lj encoding fj , for j ∈ [0, 2ϑ − 1]
Input: a bootstrapping key BSK = RGSWs̄k,Q̄(X

si)i∈[0,n−1],

Input: a set of automorphism keys ATKgu = RLWE′
s̄k,Q̄(s̄k(X

gu

))u∈[1,w],

Input: a auxiliary key AUX = RGSWs̄k,Q̄(X
−

∑
i si)i∈[0,n−1].

Output: c̄j ∈ LWEs̄k,Q̄ (fj(m))j∈[0,2ϑ−1].

1: b =
[⌊

b·2N ·2−ϑ

q

⌉
· 2ϑ

]
2N

and ai =
[⌊

ai·2N ·2−ϑ

q

⌉
· 2ϑ

]
2N

2: testP = X
N
2p

∑p−1
j=0 X

j N
p
∑ N

p2ϑ
−1

k=0 Xk·2ϑ ∑2ϑ−1
i=0 fi+1(j)X

i

3: acc = (0, Xgb · testP(Xg))
4: acc = acc � AUX
5: [ai = ai + 1]2N
6: acc = BR2(c = (a, b), acc,BSK,ATK)
7: for j = 0 to 2ϑ − 1 do:
8: c̄j = SampleExtractj(acc),
9: return c̄j

10: end for

35

D Analysis

We provide the detailed analysis of our AUTO variant circuit bootstrapping al-
gorithm, and the analysis of the CMUX variant is similar.

Sparse Rounding Error.

Theorem 1. Let n, q denote the dimension and the modulus of input LWE
ciphertexts, respectively, N̄ denote the ring polynomials dimension of RLWE
ciphertexts. The error variance of the modulus switching result caused by the
k · 2ϑ + 1 sparse rounding is bounded by

σ2
ms =

4N̄2σ2
in

q2
+ (nσ2 + 1) · (2

2ϑ

12
+

2N̄2

3q2
)− N̄2

q2
,

where σ2
in is the error variance of the input LWE ciphertext, and σ2 is the error

variance of the key distribution.

Proof. We consider the input ciphertext c = (a, b) ∈ LWEsk,q (m) satisfying
b = −

∑n−1
i=0 ai · si + m + e, the modulus switching algorithm with sparse

rounding outputs a new ciphertext c = (a, b), where b = ⌊ 2N̄q b⌉k·2ϑ+1 and

ai =
⌊
2N̄
q ai

⌉
k·2ϑ+1

.

Let
⌊
2N̄
q ai

⌉
k·2ϑ+1

= 2N̄
q ai+a

′
i, then we have a′i ∈ 2N̄

q ·U
(J−2ϑ−1 q

2N̄
, 2ϑ−1 q

2N̄
J).

So V ar(a′i) = (2
2ϑ

12 −
N̄2

3q2), E(a′i) = − N̄
q . Since

b +

n−1∑
i=0

ai · si =
2N̄

q
b+ b′ +

n−1∑
i=0

(
2N̄

q
ai + a′i

)
· si

=
2N̄

q

(
b−

n−1∑
i=0

ai · si

)
+ b′ +

n−1∑
i=0

a′i · si

=
2N̄

q
m+

2N̄

q
e+ b′ +

n−1∑
i=0

a′i · si,

then the error variance is,

σ2
ms = V ar(

2N̄

q
e+ b′ +

n−1∑
i=0

a′i · si)

=
4N̄2σ2

in

q2
+ V ar(b′) + n · V ar

(
a′i
)
·
(
V ar (si) + E2 (si)

)
+ n · E2 (a′i) · V ar (si)

=
4N̄2σ2

in

q2
+ (nσ2 + 1) · (2

2ϑ

12
+

2N̄2

3q2
)− N̄2

q2

Circuit Bootstrapping Error.

36

Theorem 2. The parameters ℓ, ℓep, ℓauto, ℓtrace, ℓss and B,Bep, Bauto, Btrace, Bss

denote the gadget decomposition length and base in the circuit evaluation, ex-
ternal product, automorphism, HomTrace, and scheme switching, respectively.
ε, εep, εauto, εtrace, εss denote the corresponding decomposition error. The under-
line symbol n and q denote the dimension and modulus of the level 0 ciphertext,
respectively, while N̄ and Q̄ represent those of level 2. ϑ denotes the sparse round-
ing parameter, then the error variance of the result of the circuit bootstrapping
algorithm is bounded by

σ2
CBS ≤ n×

(
1

6
N̄ℓepB

2
ep × σ2 +

1

3
(N̄ + 1)ε2ep

)
+nauto ×

(
1

12
N̄ℓautoB

2
auto × σ2 +

1

3
× N̄

2
ε2auto

)
+
1

3

(
N̄2 − 1

)
·
(

1

12
N̄ℓtraceB

2
trace × σ2 +

1

3
× N̄

2
ε2trace

)
+

(
1

12
N̄ℓssB

2
ss × σ2 +

1

3
× N̄2

4
ε2ss

)
where σ2 is the error variance of the keys.

Proof. The modulus switching procedure adds a sparse rounding noise bounded
by σ2

ms, but will be refreshed in the blind rotation.
The blind rotation procedure evaluates nauto automorphisms, each requires a

gadget product ⊙, and also evaluates n external products, contains 2n ⊙. From
Lemma 1, this step adds gadget product noises bounded by

n×
(
1

6
N̄ℓepB

2
ep × σ2 +

1

3
(N̄ + 1)ε2ep

)
+nauto×

(
1

12
N̄ℓautoB

2
auto × σ2 +

1

3
× N̄

2
ε2auto

)
.

The sample extraction does not add any noise.
The HomTrace evaluation has log N̄ iterations, the noise variance of the k-th

iteration can be expressed as σ2
k ≤ 4σ2

k−1+σ
2
auto, thus the whole step adds noises

bounded by(
1 + 4 + · · ·+ 4log N̄−1

)
σ2
auto =

1

3

(
N̄2 − 1

)
·
(

1

12
N̄ℓtraceB

2
trace × σ2 +

1

3
× N̄

2
ε2trace

)
.

The scheme switching requires one gadget product ⊙, and adds gadget prod-
uct noises bounded by

1

12
N̄ℓssB

2
ss × σ2 +

1

3
× N̄2

4
ε2ss.

E Application

E.1 Transciphering

In the realm of data security, the concept of transciphering is a novel concept
that leverages the strengths of symmetric encryption to address the transfer

37

challenges posed by FHE. The crux of the problem lies in ciphertext expansion
- the FHE ciphertext is significantly larger than the plaintext. This expansion
can be a major hurdle, especially for devices with limited resources.

Transciphering, however, offers a solution. This method was first proposed
by Naehrig et al[32]. The core idea is to use symmetric encryption for data trans-
mission, which is then converted into homomorphic ciphertext by the server to
do the further evaluation. Specifically, the server receives the symmetric cipher-
text E(m) and the homomorphic ciphertext of the symmetric key Enc(k) from
the client, and locally homomorphically evaluates the decryption circuit of the
symmetric encryption to obtain the corresponding homomorphic ciphertext:

EvalE−1(Enc(k), E(m)) = Enc(E−1(k, E(m))) = Enc(m)

This approach can significantly reduce the transfer size of the ciphertext, making
it more manageable for devices with limited bandwidth, memory, and computing
power.

One of the most widely used encryption standards is the advanced encryption
standard (AES)[35]. Known for its security and efficiency, AES is often the go-to
choice for securing sensitive information. However, when it comes to transcipher-
ing, AES presents a unique challenge due to its high computational complexity.
The issue to reduce the latency of homomorphic evaluation of the AES circuit
during server pre-processing is a matter of academic consideration.

E.2 The Work Flow of The AES Encryption

AES-128 is the most widely used variant of AES, which encrypts 16-byte mes-
sages with a 16-byte key. The encryption process of AES-128 includes 10 rounds
calculations, each round function mainly consists of the following four opera-
tions: AddRoundKey, SubBytes, ShiftRows and MixColumns, see Alg.9. The
details of each operation can be found in Fig.6.

Algorithm 9 AES Encryption and Decryption
1: AES Encryption:
2: AddRoundKey
3: for round = 1 to 9 do
4: SubBytes
5: ShiftRows
6: MixColumns
7: AddRoundKey
8: end for
9: SubBytes

10: ShiftRows
11: AddRoundKey

1: AES Decryption:
2: InvAddRoundKey
3: for round = 1 to 9 do
4: InvShiftRows
5: InvSubBytes
6: InvAddRoundKey
7: InvMixColumns
8: end for
9: InvShiftRows

10: InvSubBytes
11: InvAddRoundKey

38

Fig. 6: The AES algorithm encryption process[31].

E.3 The Detailed AES Evaluation Methods

FHE Mode. In FHE mode, the 8-8 Sbox of the SubBytes is implemented by
functional bootstrapping. Trama et al. demonstrated that the optimal strategy
for AES homomorphic implementation is using 4-bit encryption, where bit-wise
operations are unsupported. This necessitates converting not just SubBytes, but
also AddRoundKey, ShiftRows, and MixColumns, to 8-8 LUTs (equivalent to 4
functional bootstrappings using tree-based LUT [11]). The entire AES evalua-
tion requires 4,244 times 4-bit functional bootstrappings.

LHE Mode. LHE mode uses bit-wise encryption, simplifying AddRoundKey to
mere ciphertext addition, ShiftRows to reordering ciphertexts, and MixColumns
to addition and reordering, making these operations almost cost-free. Each 8-8
Sbox evaluation involves external product LUT (low-cost, detailed in [21]) and
8 circuit bootstrappings (corresponding to 8 input ciphertexts), totaling 1280
circuit bootstrappings.

39

	 Circuit Bootstrapping: Faster and Smaller

