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Abstract

At CRYPTO 2019, Gohr demonstrated that differential-neural distinguishers
(DNDs) for Speck32/64 can learn more features than classical cryptanalysis’s
differential distribution tables (DDT). Furthermore, a non-classical key recovery
procedure is devised by combining the Upper Confidence Bound (UCB) strategy
and theBayesianKeySearch algorithm. Consequently, the time complexity of
11-round key recovery attacks on Speck32/64 is significantly reduced compared
with the state-of-the-art results in classical cryptanalysis. This advancement in
deep learning-assisted cryptanalysis has opened up new possibilities. However,
the specific encryption features exploited by DNDs remain unclear.

In this paper, we begin by analyzing the features learned by DND based
on the probability distribution of a ciphertext pair. Our analysis reveals that
DND not only learns the differential features of the ciphertext pair but also
captures the XOR information of the left and right branches of the ciphertext
pair. This explains why the performance of DND can outperform DDT in cer-
tain cases. For other ciphers, we can also predict whether deep learning methods
can achieve superior results to classical methods based on the probability dis-
tribution of the ciphertext pair. Next, we modify the input data format and
network structure based on the specific features that can be learned to train
DND specifically. With these modifications, it is possible to reduce the size
of their parameters to only 1/16 of their previous networks while maintaining
high precision. Additionally, the training time for the DNDs is significantly
reduced. Finally, to improve the efficiency of deep learning-assisted cryptanal-
ysis, we introduce Bayes-UCB to select promising ciphertext structures more
efficiently. We also introduce an improved BayesianKeySearch algorithm
to retain guessed keys with the highest scores in key guessing. We use both
methods to launch 11-round, 12-round, and 13-round key recovery attacks on
Speck32/64. The results show that under the same conditions, the success rate
of 11-round key recovery attacks has increased from Gohr’s 36.1% to 52.8%, the
success rate of 12-round key recovery attacks has increased from Gohr’s 39%

∗These authors contributed to the work equally and should be regarded as co-first authors
∗∗Corresponding author

Email address: zlwang@xidian.edu.cn (Zilong Wang)

Preprint submitted to Elsevier February 25, 2024



to 50%, and the success rate of 13-round key recovery attacks has increased
from Zhang et al.’s 21% to 24%. In addition, the time complexity of these
experiments is also significantly reduced.

Keywords: Probability Distribution, Neural Network, Parameter Amount,
Bayes-UCB, Key Recovery Attack

1. Introduction

In CRYPTO 2019, Gohr [1] proposed the idea of differential-neural crypt-
analysis. The differential-neural distinguisher (DND), trained by the neural
network, is introduced as the underlying distinguisher to distinguish whether
ciphertexts are encrypted by plaintexts that satisfy a specific input difference
or by random numbers. However, the current differential-neural distinguisher
seems only effective for limited rounds of ciphertexts. Therefore, a short high-
probability classical differential (CD) is prepended before the differential-neural
distinguisher to increase the number of rounds for key recovery attacks. In
the process, BayesianKeySearch algorithm, Wrong Key Response Profile
(WKRP), and UCB speed up key recovery attacks with higher efficiency com-
pared to classical differential cryptanalysis.

From the perspective of the components used in differential-neural crypt-
analysis, there are two ways to improve the performance of differential-neural
cryptana-lysis. One is to increase the number of rounds or accuracy of DND.
There has been a lot of work to improve the performance of DND by modi-
fying the structure of the neural network, changing the format of input data
and hyperparameter optimization [2],[3],[4],[5],[6],[7]. In addition, Bacuieti et
al. [8] used the lottery ticket hypothesis to prune the DND by removing pa-
rameters that have little influence on the results. This reduced the size of the
neural network and constructed a smaller, more efficient DND. The other is
to increase the length of CD. Bao et al. [7] generalized the concept of neutral
bits and searched for (conditional) simultaneous neutral bit-set with a higher
probability for more rounds of the CD. Thus, Bao et al. improved the rounds
of key recovery attacks for Speck32/64 by increasing the length of the CD.

In addition, the DND surpasses the performance of the pure differential
distinguisher built with differential distribution tables (DDT) for Speck32/64
in [1]. The result indicates that the DND learns more than pure differen-
tial cryptanalysis and has been verified with the Real-Differences-Experiments.
More generally, interpretability for deep neural networks has been considered
as a very complex problem. It is hard to interpret the additional differential
captured by the DND. In EUROCRYPT 2021, Benamira et al. [9] proposed
that Gohr’s DND is inherently building an excellent approximation of the DDT
during the learning phase and using that information to classify ciphertext pairs
directly. Moreover, they found that the DND generally relies on the differential
distribution of the ciphertext pair and the differential distribution in the penul-
timate and antepenultimate rounds for Speck32/64. However, they do not

2



come up with a specific form of the additional information the DND utilizes.
Meanwhile, in AICrypt 2023, Gohr [10] proved that the DND for Simon32/64
can only utilize differential features and achieve approximately the same distin-
guishing quality as purely differential ones.

Bao et al. [11] extended the concept of difference information, identified
additional features used by differential-neural distinguishers for Speck32/64,
and applied these features to classical differential distinguishers, which gained
improved performance. Different from directly modifying the input data and
verifying the features used by the neural distinguisher through the results, we
directly analyze the encryption distribution of different ciphertext pairs to ob-
tain the general features of the neural distinguishers with different ciphers and
then conduct experiments to verify that these features do exist. In addition,
we have also done some research on the improvement of neural network struc-
ture and optimization of acceleration methods for key recovery attacks. The
contributions of this work include the following:

- We analyzed the feature information learned by the DND trained on Si-
mon32/64 and Speck32/64 in different input data forms from the perspective
of the probability distribution of a ciphertext pair and verified these infer-
ences through improved Real-Difference-Experiments. The most important
conclusion is that the DND not only learns the differential features from the
ciphertext pair of Speck32/64 but also learns the XOR information of the left
and right branches of the ciphertext pair, which explains why the performance
of the ciphertext pair can surpass DDT.

- Based on the above inferences, we figure out some features exploited by the
neural distinguishers of different ciphers. According to these features, we mod-
ify the input data format and remove the initial convolutional layer to combine
ciphertext pairs linearly. We train a DND using the modified neural network
structure and show that the modified network reduces the number of param-
eters and training time of the model with little degradation in distinguisher
performance, demonstrated in Talbe 5 and 6.

- After an in-depth analysis of the key recovery attack process, we found that
using the UCB to calculate the priority of the ciphertext structure sometimes
got stuck in the wrong ciphertext structure which was difficult to escape.
Therefore, we propose to use the Bayes-UCB strategy to select the correct
ciphertext structure. At the same time, we modified the initial guess key
selection strategy in the BayesianKeySearch algorithm and proposed the
Key-Aided Bayesian Key Search algorithm. After several comparative exper-
iments, it is shown that the two improved methods can effectively improve
the success rate and reduce complexity of key recovery attacks, directed in
Table 9.

Organization. The rest of this paper is organized as follows: Section 2 intro-
duces the design of Speck32/64 and Simon32/64, the network structure, and
an initial introduction to differential-neural cryptanalysis. Section 3 introduces
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some lemma about the probability distribution of the ciphertext pair from differ-
ent ciphers. Section 4 introduces the modified network structure. An improved
key recovery attack method is introduced in Section 5. Finally, we conclude the
paper in Section 6.

2. Preliminary

2.1. Notations

Denote by n the word size in bits and 2n the state size in bits. Let (Ci
L, C

i
R)

be a state’s left and right branches after encryption of i rounds, ki the subkey
of i rounds. Denote the bitwise XOR by ⊕, the addition modulo 2n by ⊞, the
bitwise AND by ⊙, the bitwise right/left rotation by ≫ / ≪.

2.2. Brief Description of Speck32/64 and Simon32/64

Speck32/64 and Simon32/64 are members in the lightweight block cipher
family Speck and Simon respectively [12]. The i-round Speck32/64 takes a
16-bit subkey ki and a state consisting of two 16-bit words (Ci

L, C
i
L) as input.

The state of the next round (Ci+1
L , Ci+1

R ) is computed as follows:

Ci+1
L := ((Ci

L ≫ 7)⊞ Ci
R)⊕ ki, Ci+1

R := (Ci
R ≪ 2)⊕ Ci+1

L .

The i-round (out of 32) Simon32/64 takes a 16-bit subkey ki and a state con-
sisting of two 16-bit words (Ci

L, C
i
L)) as input. The next round state (Ci+1

L , Ci+1
R )

is computed as follows:

Ci+1
L := (Ci

L ≪ 1)⊙ (Ci
L ≪ 8)⊕ (Ci

L ≪ 2)⊕ Ci
R ⊕ ki, Ci+1

R := Ci
L.

2.3. Differential Scenario

Given an encryption function E : Fnp

2 × Fnk
2 → Fnc

2 , where np represents
the number of plaintext bits, nk represents the number of key bits, and nc

represents the number of ciphertext bits. The task of a differential distinguisher
is to distinguish the encryption sample and the random sample:

• encryption sample: (E(p1, k), E(p2, k)) if p1 ⊕ p2 = ∆

• random sample: (E(p1, k), E(p2, k)) if p1 ⊕ p2 ̸= ∆

where ∆ is a fixed input difference and k and p are independent and identically
distributed over Fnk

2 and Fnp

2 , respectively. Using the neural network to train
the difference-neural distinguisher instead of the differential distinguisher as the
underlying distinguisher, we select encryption samples as positive samples and
random samples as negative samples. The primary purpose of the differential-
neural distinguisher is to distinguish encryption samples from random samples.
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2.4. The Neural Network for Training the Differen-tial-Neural Distinguisher

In [1], a DND was built for Speck32/64, which was trained by the neural
network shown in Figure 1. The neural network’s input layer consisting of
ciphertext pairs (encryption samples or random samples) is arranged in a [n, 4]
array and transposed in the Preprocess module. Module 1 is the initial with-
1 convolution layer that intends to learn bit-sliced functions such as bitwise
addition. Module 2 is the Residual Network. Conv stands for one-dimensional
convolution Conv1D with Nf filters, and ks is the size of the convolution kernel.
The number of modules 2 is determined experimentally. The prediction head
comprises modules 3, 4, and the output layer. FC is a fully connected layer with
d1 or d2 neurons. BN is the batch normalization layer. Relu and Sigmoid are
two different activation functions. If the score exceeds 0.5, the input ciphertext
pair is regarded as a positive sample; otherwise, it is viewed as a negative sample.

Output

Module 4

Module 3

Module 2

Module 2

Module 1

Preprocess

Input

Prediction Head

Residual Blocks

Bit Sliced Layer

Preprocess

Module 1

Conv, 1, Nf

BN

Relu

Module 2

Conv, ks, Nf

BN

Relu

Conv, ks, Nf

BN

Relu

+

Module 3

FC, d1

BN

Relu

Module 4

FC, d2

BN

Relu

Output

FC, 1

Sigmod

Figure 1: Structure of neural network used in [1].

2.5. Key Recovery Attack of Differential-neural Cryptanal-ysis

Gohr [1] proposed a framework for differential-neural cryptanalysis dedicated
to recovering the last two rounds of subkeys for Speck32/64. A key recovery
attack is deemed successful if the last round subkey is guessed correctly and the
Hamming distance between the penultimate round subkey and the real subkey
is no more than two. In the improved key recovery attack, a short s-round CD
(δ → ∆ with probability 2−p) is prepended before the r-round DND. Since
no key addition occurs in Speck32/64 until the first non-linear operation, the
plaintext pairs satisfying the difference δ can be extended for one round without
additional cost. Thus, (1+s+r+1)-round key recovery attack can be launched.
We need to use r-round main DND and (r−1)-round helper DND. In these two
DNDs’ training processes, the plaintext pairs corresponding to the ciphertext
pairs need to satisfy the input difference ∆. Figure 2 illustrates the components
of the key recovery attack.
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Figure 2: (1 + s+ r + 1)-round key recovery attack of differential-neural cryptanalysis in [1]

In terms of ciphertext generation, first, we randomly generate approximately
c× 2p (denoted as ncts) data pairs with an input difference δ, where c is a small
constant. Second, each data pair is extended to a data structure containing nb

data pairs using the neutral bits of s-round CD. Then, the obtained ncts data
structures are decrypted one round with 0 as the subkey to obtain the plaintext
structure. Finally, all plaintext structures are encrypted for 1+ s+ r+1 rounds
to obtain the corresponding ciphertext structure.

When only one round of trial decryption is performed, the wrong key ran-
domization hypothesis does not hold, especially for lightweight ciphers. Based
on this observation, an efficient Bayesian key search strategy for accelerating
the key recovery attack was proposed by Gohr[1]. The expected response of
the distinguisher upon wrong-key decryption depends on the bitwise difference
between the subkey ki and the real subkey k. A new set of candidate sub-
keys can be obtained by minimizing the weighted Euclidean distance using the
precomputed WKRP as a criterion in BayesianKeySearch algorithm.

As the number of encryption rounds increases, the accuracy of the DND
decreases. To reduce the impact of the misjudgment of the single prediction of
the distinguisher, Gohr used the combined response of the DND in ciphertext
structure with the same distribution, which can be satisfied by neutral bits. The
responses vi,k from the DND on ciphertext pairs in the ciphertext structure

(of size nb) are combined using the formula sk =
∑nb−1

i=0 log2

(
vi,k

1−vi,k

)
and sk

is considered as the score of a recommended subkey. The score sk plays a
decisive role in the execution time and success rate of the attack. The number
of samples with the same distribution should be sufficiently large to enhance
the distinguishing ability of the low-accuracy DND.

Since the CD is probabilistic, the plaintext structure satisfying the difference
δ has only a probability of 2−p to propagate to the ciphertext structure with the
difference ∆ after s-round differential propagation. Most ciphertext structures
do not satisfy the expected distribution, so spending the same computation on
each is inefficient. To accelerate the key recovery attack, Gohr proposed to
treat the selection of ciphertext structure as a multi-armed bandit problem and
solve it using standard exploration-exploitation techniques known as the Upper
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Confidence Bound (UCB). The ultimate goal of the algorithm is to determine
the ciphertext structure with the highest distinguisher score and regard it as the
correct ciphertext structure for a key recovery attack. By calculating a priority

priorityp(i) = Xmax(i)+γ×
√

log 2(p)√
Np(i)

to select the ciphertext structure with the

highest priority score for the next key guessing, where Xmax(i) is the maximum
score ever obtained of ciphertext structure i before the p-th iteration, Np(i) is
the number of times the ciphertext structure i was used before the p-th iteration,
and the weights γ =

√
ncts. Each ciphertext structure is prioritised based on

the highest combined score of recommended subkeys and the number of times
it was selected to concentrate computational resources on the most promising
ciphertext structures.

3. Features Learned by the Differential-neural Distinguisher

By the Real-Difference-Experiment, Gohr shows the DND learns only differ-
ential features from the ciphertext pair of Simon, Skinny, Present, and Katan,
i.e. features present in the difference distribution table (DDT). However, the
DND learns additional features from the ciphertext pair of Speck and ChaCha.
It seems that the DND can surpass the classical differential cryptanalysis if
there are more features than DDT in the encryption sample.

Key Addition Removes Potential Dependency Between Bits. The en-
cryption sample is of the form (c1, c2) = (E(p, k), E(p ⊕ ∆), k) for k ∈ Fnk

2

and p ∈ Fnp

2 drawn independently and uniformly at random, which has to be
distinguished from the random ones. In general, we would think that if E(·, k)
is bijective, choosing p at random is equivalent to choosing c1 or c2 at random.
Hence, in terms of ciphertext, only taking c1(or c2) into account makes no differ-
ence from the random ones. After the key addition, the bits would be uniformly
distributed. The distinguisher cannot directly obtain information from these
bits to distinguish between encryption data and random samples.

Probability Distribution of DDT. When we consider c1 and c2 simultane-
ously, it can be seen from the following lemma that the differences between the
ciphertext pair eliminate the randomness generated by key addition.

Lemma 1. Let X1
1 , . . . , X

1
n, X

2
1 , . . . , X

2
n, and K1, . . . ,Kn be Bernoulli-distributed

random variables, and (x1
1, . . . , x

1
n), (x2

1, . . . , x
2
n) as well as (δ1, . . . , δn) be el-

ements of Fn
2 , where (x2

1, . . . , x
2
n) = (x1

1, . . . , x
1
n) ⊕ (δ1, . . . , δn). Let further

(for every i in K) Ki be 1 with probablity 1
2 and independent of X1

1 , . . . , X
1
n,

X2
1 , . . . , X

2
n, and K1, . . . ,Ki−1,Ki+1, . . . ,Kn. Then

Pr[X1
i = x1

i ⊕Ki, X
2
i = x2

i ⊕Ki∀i] = Pr[X1
i = X2

i ⊕ δi∀i]

Proof. Let (z1, . . . zm), (w1, . . . , wm) as well as (δ1, . . . , δm) be elements of Fm
2 .

Due to key addition, we can have

Pr
[
Vj = vj | X1

i = vi, X
2
i = vi ⊕ δi∀i ̸= j

]
=

1

2
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hold for all (v1, ..., vn) ∈ Fn
2 and all Vj ∈ {X1

i , X
2
i }. Then we have that

Pr
[
X1

i = zi, X
2
i = zi ⊕ δi∀i

]
= Pr

[
X1

i = wi, X
2
i = wi ⊕ δi∀i

]
,

i.e., the probability is independent of the concrete choice of z1, . . . zm[10].

Pr[X1
i = x1

i ⊕Ki, X
2
i = x2

i ⊕Ki∀i]

=
∑

(k1,...,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x2

i ⊕ ki∀i] · Pr[Ki = ki∀i]

=2−n ·
∑

(k1,...,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x2

i ⊕ ki∀i]

=2−n ·
∑

(k1,...,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x1

i ⊕ δi ⊕ ki∀i]

=2−n ·
∑

(k1,...,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
1
i = X2

i ⊕ δi∀i]

=Pr[X1
i = X2

i ⊕ δi∀i]

This means that as long as the key addition to the ciphertext is not in-
volved in a non-linear operation, the probability distribution only depends on
the differences between X1 and X2 and, therefore, it can be equivalent to DDT.

3.1. Distribution of Encryption Sample from Reverted Simon32/64

From Figure 3, even without knowing the key, part of the last round is
always reversible for Simon32/64, i.e. based on the ciphertext (Ci

L, C
i
R), we

are able to calculate (Ci−1
L , Ci−1

R ⊕ K1) in the case of Simon32/64. We take
(Y,X) = (Ci−1

L , Ci−1
R ⊕K1) as known data, and next we analyze the probability

distribution of encryption sample (X1, Y 1, X2, Y 2).

Ci−1
L Ci−1

R

≪ 1

≪ 8

≪ 2
K1

Ci
L Ci

R

Ci−2
L Ci−2

R

≪ 1

≪ 8

≪ 2
K2

Ci−1
L Ci−1

R

Figure 3: The Round Function of The Reverted Simon32/64
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X = Ci−1
R ⊕K1

=(Ci
L ⊕ (Ci

R ≪ 1)⊙ (Ci
R ≪ 8)⊕ (Ci

R ≪ 2))⊕K1 = x⊕K1

Y = Ci−1
L

=(Ci−2
R ⊕ (Ci−1

R ≪ 1)⊙ (Ci−1
R ≪ 8)⊕ (Ci−1

R ≪ 2))⊕K2 = y ⊕K2

Lemma 2. Let X1
1 , . . . , X

1
n, Y

1
1 , . . . , Y

1
n , X

2
1 , . . . , X

2
n, Y

2
1 , . . . , Y

2
n , K

1
1 , . . . ,K

1
n,

and K2
1 , . . . ,K

2
n, be Bernoulli-dis-tributed random variables. Let (x1

1, . . . , x
1
n),

(x2
1, . . . , x

2
n), (δ

1
1 , . . . , δ

1
n), (y

1
1 , . . . , y

1
n), (y

2
1 , . . . , y

2
n) as well as (δ

2
1 , . . . , δ

2
n) be ele-

ments of Fn
2 , where (x2

1, . . . , x
2
n) = (x1

1, . . . , x
1
n)⊕ (δ11 , . . . , δ

1
n) and (y21 , . . . , y

2
n) =

(y11 , . . . , y
1
n) ⊕ (δ21 , . . . , δ

2
n). Let (for every i in K1) K1

i be 1 with probablity 1
2

and independent of X1
1 , . . . , X

1
n, Y

1
1 , . . . , Y

1
n , X

2
1 , . . . , X

2
n, Y

2
1 , . . . , Y

2
n , K

1
1 , . . . ,

K1
i−1,K

1
i+1, . . . ,K

1
n and K2

1 , . . . ,K
2
n. Let (for every j in K2) K2

j be 1 with prob-

ablity 1
2 and independent of X1

1 , . . . , X
1
n,Y

1
1 , . . . , Y

1
n , X2

1 , . . . , X
2
n, Y 2

1 , . . . , Y
2
n ,

K1
1 , . . . ,K

1
n and K2

1 , . . . ,K
2
j−1,K

2
j+1, . . . ,K

2
n. Then

Pr[X1
i = x1

i ⊕K1
i , X

2
i = x2

i ⊕K1
i ∀i, Y 1

j = y1j ⊕K2
j , Y

2
j = y2j ⊕K2

j ∀j]
=Pr[X1

i = X2
i ⊕ δ1i ∀i, Y 1

j = Y 2
j ⊕ δ2j∀j]

Proof. Similarly, due to key addition, we can have

Pr
[
Vj = vj | X1

i = vi, Y
1
i = vi ⊕ δ1i ∀i ̸= j

]
=

1

2

Pr
[
Wj = wj | X2

i = wi, Y
2
i = wi ⊕ δ2i ∀i ̸= j

]
=

1

2

hold for all (v1, ..., vn), (w1, ..., wn) ∈ Fn
2 and all Vj ∈ {X1

j , Y
1
j },Wj ∈ {X2

j , Y
2
j }

Pr[X1
i = x1

i ⊕K1
i , X

2
i = x2

i ⊕K1
i ∀i, Y 1

j = y1j ⊕K2
j , Y

2
j = y2j ⊕K2

j ∀j]

=
∑

(k1
1,...,k

1
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i , X
2
i = x2

i ⊕ k1i ∀i, Y 1
j = y1j ⊕K2

j , Y
2
j = y2j ⊕K2

j

∀j] · Pr[K1
i = k1i ∀i]

=2−n ·
∑

(k1
1,...,k

1
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i , X
2
i = x2

i ⊕ k1i ∀i, Y 1
j = y1j ⊕K2

j , Y
2
j = y2j⊕

K2
j ∀j]

=2−n ·
∑

(k1
1,...,k

1
n)∈Fn

2

∑
(k2

1,...,k
2
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i , X
2
i = x2

i ⊕ k1i ∀i, Y 1
j = y1j ⊕ k2j ,

Y 2
j = y2j ⊕ k2j∀j] · Pr[K2

j = k2j∀j]

=2−n · 2−n ·
∑

(k1
1,...,k

1
n)∈Fn

2

∑
(k2

1,...,k
2
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i , X
2
i = x2

i ⊕ k1i ∀i, Y 1
j = y1j

⊕ k2j , Y
2
j = y2j ⊕ k2j∀j]
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=2−n · 2−n ·
∑

(k1
1,...,k

1
n)∈Fn

2

∑
(k2

1,...,k
2
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i ∀i, Y 1
j = y1j ⊕ k2j∀j,X2

i =

x1
i ⊕ δ1i ⊕ k1i ∀i, Y 2

j = y1j ⊕ δ2j ⊕ k2j∀j]

=2−n · 2−n ·
∑

(k1
1,...,k

1
n)∈Fn

2

∑
(k2

1,...,k
2
n)∈Fn

2

Pr[X1
i = x1

i ⊕ k1i , X
2
i = X1

i ⊕ δ1i ∀i, Y 1
j = y1j

⊕ k2j , Y
2
j = Y 1

j ⊕ δ2j∀j]
=Pr[X1

i = X2
i ⊕ δ1i ∀i, Y 1

j = Y 2
j ⊕ δ2j∀j]

We could see that for the form of the ciphertext pair (Y 1 = y1 ⊕K2, X1 =
x1⊕K1, Y 2 = y2⊕K2, X2 = x2⊕K1), where Y , X represent the left and right
parts of the ciphertext with key addition respectively and K1 is independent
of K2, the encryption sample only implies the differential features of ciphertext
pairs, which means DND can only learn differential features from encryption
samples. This also means that the accuracy of the DND will not exceed the
accuracy of DDT when the input difference is the same.

3.2. The Real-Difference-Experiment for Reverted Simon32/64

To verify whether the DND for reverted Simon32/64 learns only the fea-
tures contained in the ciphertext pair derived in Lemma 2, we did some Real-
Difference-Experiments, and the results are listed in Table 1. First, we must
train a DND. The train and test set include 2× 107 and 2× 106 samples. The
dataset contains half of the positive samples and half of the negative samples,
respectively. The dataset of a 9-round DND for reverted Simon32/64 is shown
below:

• Positive sample: encryption sample.

• Negative sample: random sample.

The accuracy (Acc) and true negative rate (TNR) of DND are 66.1% and 73.6%,
respectively. The Acc indicates the performance of the DND in distinguishing
between the encryption sample and the random sample, and TNR indicates the
ability of the DND to identify a random sample.

Experiment 1: We use a test set of 2×106 and put it into the DND to predict,
and the positive and negative samples of the new test set are as follows:

• Positive sample: encryption sample.

• Negative sample: blind encryption sample.
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The form of the encryption sample is (Y 1, X1, Y 2, X2). Using the random value
R to blind different parts of the ciphertexts, the blind encryption sample has
24 − 1 = 15 cases of counterexamples, as shown in Table 1. We can observe
changes in the accuracy (Accreal) and true negative rate (TNRreal) of the DND.
This will help us analyze and verify what features are learned by the DND. If
the TNRreal is closer to the TNR, it suggests that the blinded encryption sample
would look like the random sample to the DND.

Table 1: The Result of Experiment 1

No. The Form of Negative Sample Accreal TNRreal

1 X1 ⊕R, Y 1, X2 ⊕R, Y 2 50.0% 41.5%
2 X1, Y 1 ⊕R,X2, Y 2 ⊕R 50.0% 41.6%
3 X1 ⊕R, Y 1, X2, Y 2 ⊕R 66.0% 73.4%
4 X1, Y 1 ⊕R,X2 ⊕R, Y 2 66.0% 73.5%
5 X1 ⊕R, Y 1 ⊕R,X2, Y 2 66.0% 73.4%
6 X1, Y 1, X2 ⊕R, Y 2 ⊕R 66.0% 73.4%
7 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 50.0% 41.4%
8 X1, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 63.8% 69.1%
9 X1 ⊕R, Y 1, X2 ⊕R, Y 2 ⊕R 66.0% 73.4%
10 X1 ⊕R, Y 1 ⊕R,X2, Y 2 ⊕R 63.9% 69.2%
11 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 66.0% 73.4%
12 X1 ⊕R, Y 1, X2, Y 2 63.8% 69.1%
13 X1, Y 1 ⊕R,X2, Y 2 66.0% 73.5%
14 X1, Y 1, X2 ⊕R, Y 2 63.8% 69.0%
15 X1, Y 1, X2, Y 2 ⊕R 66.0% 73.5%

• No.1-2: although X1 ⊕ R and X2 ⊕ R are randomized, X1 ⊕ X2 and
Y 1 ⊕ Y 2 keep unchanged. From the Accreal, it can be observed that the
DND could not distinguish two kinds of samples. A similar explanation
for No.2.

• No.3-6: In No.3, due to X1 and Y 2 being randomized by R, (X1⊕R)⊕X2

and Y 1⊕ (Y 2⊕R) are random, i.e. the differences between the ciphertext
pair are randomized. In view of the DND, the negative samples are no
different from random samples. A similar explanation for No.4-6.

• No.7: each word of the ciphertext pair is blinded by a random value R,
but the differences between the ciphertext pair do not change. Therefore,
the DND will not be able to distinguish between the blinded encryption
samples and the encryption samples. The results show that the DND
does not capture any feature more than differential features.

• No.8-15: since the partial randomization of ciphertext pairs destroys the
differences between the ciphertext pair, they are equivalent to a random
sample in terms of the DND.
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In summary, the DND for the reverted Simon32/64 did not learn addi-
tional features other than differential features. Through No.8-15, randomizing
the left and right differences of the ciphertext pair has different effects on the
Accreal. Compared with randomizing X, the Accreal is higher when random-
izing Y , which means the blind encryption sample at this time is closer to the
random sample. In other words, the differences between Y 1 and Y 2 reveal more
information.

3.3. Distribution of Encryption Sample from Simon32/64 (Reverted Speck32/64)

From the right half part of Figure 4, we can calculate Ci−1
R = (Ci

L⊕Ci
R) ≫ 2

based on the ciphertext (Ci
L, C

i
R) in the case of Speck32/64, taking (X,Y ) =

(Ci
L, C

i−1
R ) as known data; For Simon32/64, we take (X,Y ) = (Ci

L, C
i
R) as

known data; The round functions of Simon32/64 and Speck32/64 show that
X is involved in the key addition, but Y is not. Therefore, we can uniformly
analyze the probability distribution of encryption samples from Simon32/64
and reverted Speck32/64.

Ci−1
L Ci−1

R

≪ 1

≪ 8

≪ 2
K

Ci
L Ci

R

Simon32/64 Reverted Speck32/64

Ci
L−1 Ci

R−1

≫ 7

≪ 2

Ci
L Ci

R

K

Figure 4: The Round Function of Simon32/64 Reverted Speck32/64
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2
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i = x1
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2
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2
j = y2j∀j]

=Pr[X1
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j = y1j , Y

2
j = y2j∀j]

Proof. Similarly, due to key addition, we can have

Pr
[
Vj = vj | X1

i = vi, X
2
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]
=

1

2

12



hold for all (v1, ..., vn) ∈ Fn
2 and all Vj ∈ {X1

i , X
2
i }.

Pr[X1
i = x1

i ⊕Ki, X
2
i = x2

i ⊕Ki∀i, Y 1
j = y1j , Y

2
j = y2j∀j]

=
∑

(k1,··· ,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x2

i ⊕ ki∀i, Y 1
j = y1j∀j, Y 2

j = y2j∀j] · Pr[Ki =

ki∀i]

=2−n ·
∑

(k1,··· ,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x2

i ⊕ ki∀i, Y 1
j = y1j , Y

2
j = y2j∀j]

=2−n ·
∑

(k1,··· ,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = x1

i ⊕ δ1i ⊕ ki∀i, Y 1
j = y1j , Y

2
j = y2j∀j]

=2−n ·
∑

(k1,··· ,kn)∈Fn
2

Pr[X1
i = x1

i ⊕ ki, X
2
i = X1

i ⊕ δ1i ∀i, Y 1
j = y1j , Y

2
j = y2j∀j]

=Pr[X1
i = X2

i ⊕ δ1i ∀i, Y 1
j = y1j , Y

2
j = y2j∀j]

We can see that for r-round ciphertexts of the form (X1 = x1⊕K, Y 1, X2 =
x2⊕K, Y 2), whereK is the key independent of (X1, Y 1, X2, Y 2), the encryption
sample implies not only the r-round differential features of the ciphertext pair
but also right half values of the ciphertext pair, which means DND maybe
learn additional features from encryption samples. Note that in some cases,
such as for Simon32/64, since the ciphertext pair can also obtain (r− 1)-round
differential features without knowing the r-round key, the accuracy of DNDr

with the ciphertext pair as input is almost the same as that of DDTr−1[7].

3.4. The Real-Difference-Experiment for Simon32/64

We conducted the Real-Difference-Experiment to more comprehensively ver-
ify the features used by the DND for Simon32/64, and the experimental results
are shown in Table 2. Because experimental analysis results are also similar be-
tween Simon32/64 and reverted Speck32/64, the Real-Difference-Experiment
for reverted Speck32/64 is omitted to avoid duplication of content. Conse-
quently, we only did the Real-Difference-Experiment on Simon32/64. First, we
need to train a DND. The train and test set include 2×107 and 2×106 samples.
The dataset contains half of the positive (encryption) samples and half of the
negative (random) samples, respectively. The Acc and TNR of DND are 66.1%
and 73.6%, respectively.

Experiment 2: The form of the encryption sample is (X1, Y 1, X2, Y 2). Using
the random value R to blind different parts of the ciphertexts, there are 15
cases of counterexamples. The new test set of size 2× 106 includes the positive
samples (encryption samples) and negative samples (blind encryption samples),
We put the new test set into the DND to predict, observing changes in the
Accreal and TNRreal of the DND. This will help us analyze and verify what
features are learned by the DND.
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Table 2: The Result of Experiment 2

No. The Form of Negative Samples Accreal TNRreal

1 X1 ⊕R, Y 1, X2 ⊕R, Y 2 50.0% 41.8%
2 X1, Y 1 ⊕R,X2, Y 2 ⊕R 64.6% 70.8%
3 X1 ⊕R, Y 1, X2, Y 2 ⊕R 65.6% 73.5%
4 X1, Y 1 ⊕R,X2 ⊕R, Y 2 65.7% 73.6%
5 X1 ⊕R, Y 1 ⊕R,X2, Y 2 66.0% 73.7%
6 X1, Y 1, X2 ⊕R, Y 2 ⊕R 66.2% 73.9%
7 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 64.4% 70.9%
8 X1, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 66.2% 74.0%
9 X1 ⊕R, Y 1, X2 ⊕R, Y 2 ⊕R 66.0% 73.9%
10 X1 ⊕R, Y 1 ⊕R,X2, Y 2 ⊕R 65.9% 73.9%
11 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 65.9% 73.7%
12 X1 ⊕R, Y 1, X2, Y 2 66.1% 74.3%
13 X1, Y 1 ⊕R,X2, Y 2 65.9% 73.7%
14 X1, Y 1, X2 ⊕R, Y 2 65.7% 73.6%
15 X1, Y 1, X2, Y 2 ⊕R 66.0% 73.9%

• No.1: although X1 and X2 were randomized, the differences between X1

and X2 are unchanged, and neither did Y 1 nor Y 2. According to the
Lemma 4, this blinded encryption sample is identical to the encryption
sample, and the DND should not be able to distinguish the two kinds of
samples. The Accreal is consistent with our inference.

• No.2: we obtained negative samples by randomizing Y 1 and Y 2 from the
encryption samples. The inference of Lemma 4 is destroyed, thus the
Accreal is greater than 0.5. For Simon32/64, Y 1 and Y 2 contain the
key addition of the previous round. According to Lemma 3, the neural
distinguisher can also directly utilize the differential features of the current
round, which also explains why Accreal accuracy of the DND is slightly
reduced compared to Acc. Therefore, the DND indeed learn the feature
other than differential features.

• No.3-6: not only is (X1⊕R)⊕X2 randomized, but Y 2⊕R is also random-
ized in No.3. Therefore, The inference of Lemma 4 are destroyed. The
DND can effectively distinguish blinded encryption samples and encryp-
tion samples. A similar explanation for No.4-6.

• No.7: X1, X2, Y 1, and Y 2 are randomized simultaneously by bitwise
XORing the random value R. Although the value of Y 1 and Y 2 is ran-
domized, the differences between the ciphertext pair remain the same.
Therefore, Accreal accuracy of the DND is slightly reduced compared
to Acc. The fact that the DND can effectively distinguish encryption
samples from blind encryption samples shows that the DND has learned
features more than differential features.
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• No.8-15: 3
4 or 1

4 of a sample are randomized. The differences between X1

and X2 being randomized or Y 1 and Y 2 being randomized both cause the
blind encryption samples to be more biased towards the random samples,
so the DND can distinguish between the encryption samples and the blind
encryption samples.

The above results show that the DND learns not only the differential fea-
tures but also the features of the right half of the ciphertext pair.

3.5. Distribution of Encryption Sample from Speck32/64

We take (X,Y ) = (Ci
L, C

i
R) as known data. From the round functions

of Speck32/64 in Figure 5, it can be seen that both X and Y involve an
XOR operation of the same key K. Accordingly, we analyze the probability
distribution of encryption sample (X1, Y 1, X2, Y 2).

Ci−1
L Ci−1

R

≫ 7

≪ 2

Ci
L Ci

R

K

Figure 5: The Round Function of Speck32/64
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hold for all (v1, ..., vn) ∈ Fn
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Similarly, we can obtain inference (2), and the same process also applies
to Y 1 or Y 2. We can see that for ciphertexts of the form (X1 = x1 ⊕ K,
Y 1 = y1 ⊕K, X2 = x2 ⊕K, Y 2 = y2 ⊕K), where K is the key independent of
(X1, Y 1, X2, Y 2), the encryption sample implies not only the difference feature
of the ciphertext pair but also XOR information between the left and right
branches of a ciphertext pair.

3.6. The Real-Difference-Experiment for Speck32/64

From Lemma 4, the ciphertext pair contains more features than differential
features. Next, we conduct the Real-Difference-Experiment to more compre-
hensively verify the features used by the DND for Speck32/64, and the exper-
imental results are shown in Table 3. First, we need to train a DND. The train
and test set include 2× 107 and 2× 106 samples. The dataset contains half of
the positive (encryption) and half of the negative (random) samples. The Acc
and TNR of DND for 6-round Speck32/64 are 78.5% and 71.9%, respectively.

Experiment 3: The form of the encryption sample is (X1, Y 1, X2, Y 2). Using
the random value R to blind different parts of the ciphertexts, there are 15
cases of counterexamples. The new test set of size 2× 106 includes the positive
samples (encryption sample) and negative samples (blind encryption samples),
We put the new test set into the DND to predict, observing changes in the
Accreal and TNRreal of the DND. This will help us analyze and verify what
features are learned by the DND.

• No.1-2: X1 and X2 are randomized in No.1. Although the differences
between (X1,X2) remain unchanged, the of (X1⊕R, Y 1) and (X1⊕R, Y 2)
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Table 3: The Result of Experiment 3

No. The Form of Negative Samples Accreal TNRreal

1 X1 ⊕R, Y 1, X2 ⊕R, Y 2 60.1% 48.3%
2 X1, Y 1 ⊕R,X2, Y 2 ⊕R 60.4% 48.7%
3 X1 ⊕R, Y 1, X2, Y 2 ⊕R 76.8% 81.7%
4 X1, Y 1 ⊕R,X2 ⊕R, Y 2 76.7% 81.6%
5 X1 ⊕R, Y 1 ⊕R,X2, Y 2 76.9% 81.9%
6 X1, Y 1, X2 ⊕R, Y 2 ⊕R 77.1% 82.1%
7 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 50.1% 27.6%
8 X1, Y 1 ⊕R,X2 ⊕R, Y 2 ⊕R 78.4% 85.1%
9 X1 ⊕R, Y 1, X2 ⊕R, Y 2 ⊕R 78.7% 85.2%
10 X1 ⊕R, Y 1 ⊕R,X2, Y 2 ⊕R 78.7% 85.2%
11 X1 ⊕R, Y 1 ⊕R,X2 ⊕R, Y 2 78.3% 84.9%
12 X1 ⊕R, Y 1, X2, Y 2 78.7% 85.2%
13 X1, Y 1 ⊕R,X2, Y 2 78.5% 84.8%
14 X1, Y 1, X2 ⊕R, Y 2 78.7% 85.3%
15 X1, Y 1, X2, Y 2 ⊕R 78.4% 84.8%

are randomized. Thus, the DND can distinguish the encryption and blind
encryption samples. It is difficult for the DND to distinguish between the
two kinds of samples, so the Accreal is relatively low. A similar explanation
for No.2.

• No.3-4: X1 and Y 2 are randomized in No.3, the of (X1, X2) and (X1,
Y 1) are randomized. Thus, the DND can distinguish the encryption and
blind encryption samples. Therefore, the Accreal is slightly lower than
Acc. A similar explanation for No.4.

• No.5-6: X1 and Y 1 are randomized in No.5, the of (X1, X2) and (X1,
Y 2) are randomized. Thus, the DND can distinguish the encryption and
blind encryption samples. Therefore, the Accreal is slightly lower than
Acc. A similar explanation for No.6.

• No.7: although X1, Y 1, X2, and Y 2 are randomized, the differences be-
tween the ciphertext pair and the differences between different branches of
the ciphertext pair don’t change. This means that the distribution of the
blind encryption sample is the same as that of the encryption distribution.
Therefore, the DND cannot distinguish between these two samples.

• No.8-15: the blind encryption sample destroys the differences between
the ciphertext pair and the left and right branches of the ciphertext pair,
making the blind encryption sample equal to a random sample. As a
result, the Accreal almost equals the Acc.

The above experiments prove that the DND has indeed learned the differ-
ences between the ciphertext pair and the XOR information between different
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branches of the ciphertext pair. When the differences between the ciphertext
pair are destroyed, the Accreal of the DND is greatly affected compared with
the XOR information between different branches of the ciphertext pair. This
means that the DND mainly learns the differences between ciphertext pairs.

4. Modified Neural Network Structure

In the neural network designed by Gohr [1], the initial convolutional layer
with a kernel size of 1 is for learning simple bit-slicing functions such as bitwise
addition. Furthermore, Benamira et al. [9] proved that the initial convolutional
layer realizes the linear combination of different parts of the ciphertext pair.
Through the analysis of Sect. 3, we already know the probability distribution
of a ciphertext pair and the features that the DND can learn from a ciphertext
pair. Therefore, we can remove the initial convolutional layer from the network
structure proposed in [1]. Specifically, we modify the form of the input data
according to the Lemma 2, 3, 4 as follows:

• Simon32/64: (X1 ⊕X2, Y 1, Y 2)

• Reverted Simon32/64: (X1 ⊕X2, Y 1 ⊕ Y 2)

• Speck32/64: (X1 ⊕X2, X1 ⊕ Y 1, X1 ⊕ Y 2)

• Reverted Speck32/64: (X1 ⊕X2, Y 1, Y 2)

Network Structure: The structure of the modified neural network is shown
in Figure 6. We modify the form of input data to the neural network according
to the probability distribution of the ciphertext pair. Compared to the network
structure presented in [1], the initial convolutional layer is removed. The input
data of the neural network is a sequence of Nw × n bits, where Nw is the
number of words, which is reshaped to an array of (Nw, n) and transposed in
the Preprocess module. Module 2 is the Residual Network. Conv stands for
one-dimensional convolution Conv1D with Nf or Nw filters, and ks is the size
of the convolution kernel. In the two-layer residual block, the number of input
filters must equal the number of output filters, so the number of filters increases
from Nw to Nf and then decreases to Nw. The experiment determines the
number of modules 2 (depth). It should be noted that the circular convolution
(cconv) listed in Table 4 refers to whether Conv1d is replaced by a circular
convolution layer used in [10]. The prediction head comprises modules 3, 4, and
the output layer. Please refer to Table 4 for the value of some parameters in
the network structure.

The Training of DND: We conducted the training for 80 epochs in the dataset
where the size of the train set is 107 and test set 106. The batch size is denoted
by Bs. Optimization was performed against mean square error loss plus a small
penalty L2 using the Adam algorithm. A cyclic learning rate schedule was

applied, setting the learning rate li for epoch i to li = α+ (n−i) mod (n+1)
n ·(β−α)
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Figure 6: Structure of Modified Neural Network.

with n = 9. The model obtained at the end of each epoch was stored, and the
best model by validation loss was evaluated against a test set. Please refer to
Table 4 for the value of some training parameters.

Table 4: Hyperparameters of the modified neural network

Simon32/64
Reverted

Simon32/64
Speck32/64

Reverted
Speck32/64

Bs 5000 5000 2000 2000
β (10−3) 3 4 3.5 4
α (10−4) 1 1 1 1
depth 10 4 10 5
d1 64 64 64 64
d2 64 64 64 64
ks 7 7 3 3
Nf 48 32 32 16
Nw 3 2 3 3

L2(10−7) 40 10 5 20
cconv True True False False

The Accuracy of DND: We summarize the accuracy of DND compared to
previous work in Table 5. On the one hand, when we remove the initial convo-
lutional layer from the neural network and modify the format of the input data
according to the derived lemmas, the accuracy of the DND does not decrease
significantly, which shows the correctness of our lemmas. On the other hand,
the DND trained for reverted Simon32/64/reverted Speck32/64 is not higher
than that of the DND trained for Simon32/64/Speck32/64, which indicates
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that although the DND learns the distribution of the value of a ciphertext pair,
it may not improve the performance of the DND.

Table 5: The Acc of DND trained by modified neural network. For comparison, the Acc is
listed in descending order.

Cipher r Acc Ref.

Simon32/64 9

66.1% [10]
66.0% This work
65.9% [7]

< 63.0% [13]
62.8% [14]

Reverted
Simon32/64

9 65.9% This work

Speck32/64

6
78.8% This work
78.8% [1]
78.4% [2]

7
61.7% [10]
61.4% This work
60.7% [2]

Reverted
Speck32/64

6 78.6% This work
7 61.4% This work

The Parameters Amount of Neural Network: The primary objective of
modifying the network structure is to reduce network size, decrease the model
file size, and accelerate model training. This is accomplished by removing initial
convolutional layers and reducing the number of neurons in the fully connected
layer. Consequently, the modified neural network substantially reduces overall
parameters, as Table 6 illustrates. The reduction in model parameters directly
contributes to shorter training times. Moreover, the reduction in model pa-
rameters also reduces forward propagation time during the prediction process.
This reduction in time may potentially decrease the complexity of key recovery
attacks to some extent.
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Table 6: The total amount of parameters and train time each epoch (on an NVIDIA GeForce
RTX 3070 graphics card)

Cipher
Parameter
Amount

Train Time
Each Epoch(s)

Ref.

Simon32/64
449425 1300 [7]
30583 120 This work

Reverted
Simon32/64

184417 150 [10]
11113 45 This work

Speck32/64
44865 72 [10]
15383 130 This work

Reverted
Speck32/64

9788 73 This work

5. Improvement of Key Recovery Attack

We have made some improvements to the key recovery attack proposed by
Gohr [1] and first introduce the experimental environment1 and complexity cal-
culation method. We consider the key guess successful if the last round subkey
is guessed correctly and the Hamming distance between the penultimate round
subkey and the real subkey is no more than two. The data complexity of the
experiment is calculated by the formula nb × min(nct, nused) × 2, where nused

is the number of ciphertext structures actually used and nb is the number of
ciphertext pairs in each ciphertext structure. The time complexity calculation
formula in our experiment is nkg × 228 × rt, under the assumption that one
second equals the time of 228 fully SIMD-parallel executions of SPECK32/64
or SIMON32/64 on a CPU[1], rt is the average running time of multiple exper-
iments, and nkg is the number of possible values for the bits of the first round
subkey k0, on which the conditions depend.

5.1. Improved Selection Strategy of Ciphertext Structure
In differential-neural cryptanalysis, a CD is employed on top of the DND to

enhance the round of key recovery attacks. However, the s-round CD (δ → ∆)
operates probabilistically. Given a plaintext structure that satisfies the differ-
ence δ that is encrypted after s rounds, if the corresponding ciphertext structure
exhibits a difference that satisfies ∆, it is referred to as the correct ciphertext
structure; otherwise, it is considered the wrong ciphertext structure. Gohr [1]
utilized the UCB (Upper Confidence Bound) strategy to select the correct ci-
phertext structure as follows:

priorityp(i) = Xmax(i) + γ ×
√
log 2(p)√
Np(i)

,

1The experiment is conducted by Python 3.7.15 and Tensorflow 2.5.0 in Ubuntu 20.04.
The device information is Intel(R) Xeon(R) Gold 6226R*2 with 2.90GHz, 256GB RAM, and
NVIDIA RTX2080Ti 12GB*5.
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In the formula, Xmax(i) denotes the maximum score achieved for ciphertext
structure i prior to the p-th iteration, Np(i) represents the number of times
ciphertext structure i has been used until the p-th iteration, and the weight
γ is defined as

√
ncts. This strategy estimates the priority of each ciphertext

structure through multiple sampling and utilizes these sampled results to select
an appropriate ciphertext structure in subsequent iterations.

Due to the term γ ×
√
log 2(p), the early stage of UCB allows for the se-

quential selection of all ciphertext structures. Bring the obtained distinguisher
score into the above formula, and the computed value is used as the initial es-
timation of the ciphertext structure’s priority, which is continuously updated
during the selection process. As a ciphertext structure is repeatedly selected,
Np(i) keeps increasing, potentially decreasing its priority. This strategy enables
escaping from such a ciphertext structure and searching for a more promising
one, effectively avoiding local optima.

In addition, the value of weights γ plays a significant role in balancing the
trade-off between ”finding a new ciphertext structure” and ”utilizing the ci-
phertext structure with the highest priority”. In our experiments, we find that
the UCB algorithm sometimes cannot get rid of incorrect ciphertext structures.
For instance, if we mistakenly choose a ciphertext structure and the guessed
subkey with a small Hamming distance from the real subkey, the DND score
can be higher. This could potentially result in the score of the wrong ciphertext
structure being higher than that of the correct ciphertext structure decrypted
using an incorrect subkey. Consequently, a wrong ciphertext structure might
be selected, leading to an impact on efficiency. The selection of an appropriate
weight γ proves to be a challenging task. Hence, we aim to identify a more
efficient and convenient strategy that does not rely on weight selection.

In [15], the authors propose a general bandit strategy called Bayesian Upper
Confidence Bound (Bayes-UCB). Instead of using the frequency-based UCB
strategy, Bayes-UCB assigns each ciphertext structure a parameter that follows
a prior distribution. This strategy aims to achieve an average performance across
all potential problem instances, taking the prior distribution of the parameters
into account. The agent is confronted with a set of ncts ciphertext structures,
each associated with an unknown parameter. The agent selects the ciphertext
structure (Ip) for the p-th time based on the cumulative score of each ciphertext
structure.

Assuming that the agent selects the ciphertext structure Ip at the p-th it-
eration according to a given policy, we denote the score of DND at the j-th
selection as Xj . For the ciphertext structure i, if Ip = i, we represent it as
1(Ip = i) = 1; otherwise, 1(Ip ̸= i) = 0. The cumulative score of ciphertext
structure i before the p-th selection is denoted as sp(i). We use Q(1 − ν, ρ) to
refer to the quantile function associated with the distribution ρ, and T (d) rep-
resents the t-distribution with d degrees of freedom. By employing Bayes-UCB,
the priority of the ciphertext structure is calculated as follows:

priorityp(i) =
sp(i)

Np(i)
+

√
wp(i)×

Q(1− 1
p , T (Np(i)− 1))√

Np(i)
,
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where

sp(i) =

p−1∑
j=1

1(Ij = i)Xj , wp(i) =
(
∑p−1

j=1 1(Ij = i)X2
j )− s2p(i)/Np(i)

Np(i)− 1

for each ciphertext structure, and the ciphertext structure with the highest
priority is selected for further processing. Compared with the UCB, Bayes-
UCB has the following differences:

• To prevent the strategy from getting trapped in a local optimum caused by
occasional ”good scores” of the ciphertext structure, we opt for utilizing

the average score
sp(i)
Np(i)

instead of the maximum score Xmax(i).

• Using the quantile function, denoted as Q(1 − 1
p , T (Np(i) − 1)), instead

of
√
log2(p) in the UCB is a more favourable approach for identifying

the correct ciphertext structure. In a specific selection scenario, where
the ciphertext structure i is initially chosen according to the strategy and
continuously selected in the following iterations, Q(1− 1

p , T (Np(i)−1)) of
other ciphertext structures tends to increase as the number of iterations
p increases. Consequently, this increased value makes these alternative
ciphertext structures more likely to be selected. Additionally, as the fre-
quency of selecting ciphertext structure i( denoted as NP (i)) continuously
increased, the strategy becomes more prone to breaking away from the
local optimum of ciphertext structure i. This, in turn, accelerates the
process of escaping the local optimum by the strategy and promotes faster
convergence towards the optimal solution.

• Additionally, the initial priorities of the ciphertext structures are sig-
nificantly higher than their actual priorities due to the factor Q(1 −
1
p , T (Np(i) − 1)). As a result, all ciphertext structures can be sequen-
tially selected in the early stages of the algorithm, and the calculated
value estimates the score distribution of the ciphertext structures. To
achieve a better balance between ”exploration” and ”utilization” without
relying on weights, we introduce a dynamic value

√
wp(i) to replace the

weights γ =
√
ncts.

We conducted 11-round key recovery attacks on Speck32/64 using Bayes-
UCB, leveraging the DNDs trained in [1], to evaluate its effectiveness. To
ensure a fair comparison, we reproduced the results of [1] on our equipment,
and the results are presented in Table 7. The experimental results demonstrate
that using Bayes-UCB for key recovery attacks improves time complexity and
success rate.

5.2. Improved BAYESIANKEYSEARCH Algorithm

During the process of recovering the key, we observed that utilizing the
correct key with an incorrect ciphertext structure sometimes leads to a higher
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Table 7: The result of key recovery attack using the Bayes-UCB Algorithm

r Conf. c1 c2 ncts nit nkg Ne rt(s) sr Time Ref.

11 1+2+7+1 5 10 100 500 20 100
227.07 51% 235.83 [1]
182.57 55% 235.52 Bayes-UCB

1. c1 and c2 represent the cutoffs with respect to the scores of the recom-
mended last subkey and second to last subkey, respectively.

2. The success rate sr is calculated as the number of successful recoveries
divided by the total number of experiments (Ne).

3. nit represents the maximum number of iterations in key recovery attacks.

score. As a result, we introduce an improved BayesianKeySearch Algo-
rithm 1, which retains the key with the highest score during key recovery and
employs it to generate a new candidate key for each Bayesian key search. Fur-
thermore, we conducted key recovery attacks to showcase the effectiveness of
the improved BayesianKeySearch Algorithm and obtained Table 8.

Table 8: The result of key recovery attack using the improved BayesianKeySearch Algorithm

r Conf. c1 c2 ncts nit nkg Ne rt(s) sr Time Ref.

11 1+2+7+1 5 10 100 500 20 100
227.07 51% 235.83 [1]
158.84 52% 235.32 Alg. 1

From the above experimental results, it can be seen that when the improved
BayesianKeySearch algorithm is used for key recovery attacks, the sr is
almost not improved, but the time complexity is reduced compared with that
of UCB.

To verify the effectiveness of Bayes-UCB and improvedBayesianKeySearch
algorithm at the same time, we launched 11-round, 12-round and 13-round key
recovery attacks on Speck32/64 using these improved algorithms, with the help
of DNDs of Speck32/64 trained in [1]. For a fairer comparison, the results of
[1] and [7] are reproduced on our equipment, and the results are listed in Table 9.
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Algorithm 1: Improved BayesianKeySearch Algorithm

Input: Ciphertext structures C := C0, . . . , Cnb−1, the number of
candidates to be generated within each iteration ncand, the key
Kbest with the highest score during key recovery, the number of
iterations l, a DND, and its wrong key response profile µ and σ

Output: The list L of tuples of recommended keys and their scores
1 if Kbest = None then
2 S := {k0, k1, . . . , kncand−1} ← choose ncand scores at random

without replacement from the set of all subkey candidates.;

3 else
4 S := {k0, k1, . . . , kncand−2} ← choose ncand − 1 scores at random

except Kbest without replacement from the set of all subkey
candidates.;

5 S := Kbest||S;
6 end
7 L← {};
8 for t = 1 to l do
9 for ∀ki ∈ S do

10 for j = 0 to ncts − 1 do
11 C ′

j,ki
← Decrypt(Cj , ki)

12 zj,ki = DND(C ′
j,ki

)

13 zj,ki = log2
zj,ki

1−zj,ki

14 end

15 ski
=

∑nb−1
j=0 zj,ki

/* the combined score of ki using

neutral bits. */

16 L← L||(ki, ski
)

17 mki =
∑nb−1

j=0 zj,ki/ncts

18 for k ∈ {0, 1, . . . , 216 − 1} do
19 λ =

∑ncand−1
i=0 (mki

− µki⊕k)
2/σ2

ki⊕k

20 end

21 end
22 S ← argsortk(λ)[0 : ncand − 1]; /* Select the ncand keys with

the ncand smallest score as the new candidate keys S */

23 end
24 return L
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Table 9: Summary of key-recovery attacks on Speck32/64

r Conf. c1 c2 ncts nit nkg Ne rt(s) sr Time Data Ref.

11
1+2+
7+1

5 10 100 500 20 1000
216.61 36.1% 235.76 213.49 [1]

168.07 52.8% 235.40 213.50 This work

10 10 256 500 20 1000
69.56 65.2% 234.12 214.66 [1]

68.50 65.4% 234.10 214.61 This work

12

1+3+
7+1

7 10 212 213 21 1000
437.63 100.0% 237.78 218.58 [7]

484.52 100.0% 237.92 218.58 This work

1+2+
8+1

20 500 500 2000 20 100
1842.43 39.0% 238.85 222.92 [1]

1786.86 50.0% 238.81 222.89 This work

13
1+3+
8+1

8 -500 211 212 24 100
17011.22 21% 246.05 227 [16]

16145.12 24% 245.97 227 This work

From the above experimental results, it can be seen that when using the
combination of the Bayes-UCB and improved BayesianKeySearch Algorithm
for key recovery attacks, although the time complexity of the attack is slightly
reduced, the sr is significantly increased.

Remark 1. The sr of correct key guessing in the last round using Gohr’s key
recovery attack algorithm is as high as 55.9%, but the final sr is far lower than
this value when c1 = 5 and c2 = 10. In our experiment, the sr of the last
round of key guessing is only 52.9%, but the final sr hardly decreases. The
main reason for this phenomenon is that the threshold c1 and c2 are not correctly
selected, and the UCB strategy cannot determine the optimal ciphertext structure
well. Suppose the algorithm guesses the correct key while the wrong ciphertext
structure is selected. In that case, this will lead to a situation where the priority
of the wrong ciphertext structure is too high, and the inappropriate threshold
cannot filter the wrong ciphertext structure very well. As a result, the sr is
significantly reduced when recovering the penultimate round subkey. In contrast,
using Bayes-UCB and improved BayesianKeySearch algorithm solves this
problem.

6. Conclusion

In this paper, we first analyze the probability distribution of the ciphertext
pair generated by various ciphers and investigate the learned features of the
differential-neural distinguisher. Subsequently, we validated our findings with
improved Real-Difference-Experiments. Based on the features exploited by the
neural distinguisher, we primarily remove the initial convolutional layers and
modify the input data format to reduce the number of network parameters and
training time while maintaining high accuracy. Additionally, we present some
enhancements to the key recovery attack procedure. We use Bayes-UCB to select
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an appropriate ciphertext structure and propose an improved algorithm called
Key-Aided Bayesian Key Search. These enhancements significantly increase the
success rate and reduce the time complexity of key recovery attacks.
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