
POPSTAR: Lightweight Threshold Reporting with Reduced Leakage

Hanjun Li
University of Washington

hanjul@cs.washington.edu

Sela Navot
University of Washington

senavot@cs.washington.edu

Stefano Tessaro
University of Washington

tessaro@cs.washington.edu

Abstract
This paper proposes POPSTAR, a new lightweight protocol
for the private computation of heavy hitters, also known as
a private threshold reporting system. In such a protocol, the
users provide input measurements, and a report server learns
which measurements appear more than a pre-specified thresh-
old. POPSTAR follows the same architecture as STAR (David-
son et al, CCS 2022) by relying on a helper randomness server
in addition to a main server computing the aggregate heavy
hitter statistics. While STAR is extremely lightweight, it leaks
a substantial amount of information, consisting of an entire
histogram of the provided measurements (but only reveals
the actual measurements that appear beyond the threshold).
POPSTAR shows that this leakage can be reduced at a modest
cost (∼ 7× longer aggregation time). Our leakage is closer to
that of Poplar (Boneh et al, S&P 2021), which relies however
on distributed point functions and a different model which
requires interactions of two non-colluding servers (with equal
workloads) to compute the heavy hitters.

1 Introduction

Telemetry is essential for assessing the proper functioning of
applications and operating systems. For example, a vendor
would like to record which events lead to a crash to mitigate
potential bugs. The desire to minimize the amount of collected
information in this process has led to the emergence of private
telemetry solutions to compute simple statistics M(s1,s2, . . .)
of the users measurements {si}, such as their sum ∑si or
their heavy hitters, i.e., the set of measurements which appear
more than a pre-defined threshold t times. In these systems,
we expect the provider to only learn M(s1,s2, . . .), whereas the
users learn nothing. While this is a special case of multi-party
computation (MPC), rather than using generic off-the-shelf
solutions, we aim for lightweight solutions that require no
interaction among the users, while tolerating some amount
of leakage. This work will propose a new approach for the
private computation of heavy hitters. Prior to introducing our
contribution, however, we start with some background.

Two-server aggregation. Single-server solutions have pri-
marily emerged in the context of Federated Machine Learn-
ing [9,12,27,28]. They require multiple rounds of interaction,
and consequently need to be robust to client dropouts. In con-
trast, a number of lightweight telemetry systems like Prio [18]
(for sums) and Poplar [13] (for heavy hitters) instead rely on
two non-colluding servers. Clients only send a single message
to each server. Such systems are the subject of an IETF stan-
dardization [22], have been generalized [20], and have seen
real-world deployment. Crucially, however, the provider (e.g.,
a browser vendor) needs to enlist an external entity trusted
not to be colluding, and willing to process the same work-
load as the provider. Needless to say, this can be challenging
and expensive, as confirmed by the recent deployment [4] of
Prio as part of Google/Apple’s exposure notification platform
(GAEN). Even if a third party specializes in acting as the
second server for a number of services, its workload would
scale with the number of services supported, and would need
to interact every time a service recovers the output statistics.

An alternative model is offered by STAR [19], a system
for the private computation of heavy hitters which in turn
extends earlier telemetry systems based on anonymous to-
kens [23]. Here, servers operate independently. A very simple
server, which we refer to as the randomness server, merely
implements an oblivious pseudorandom function (OPRF). In
contrast, the provider runs a more expensive report server
which obtains reports (computed by the clients with help of
the randomness server), and recovers the heavy hitters with-
out interacting with the randomness server. The randomness
server is now more likely to be implemented by a third-party
service. The problem with STAR, however, is that its leakage
is substantial–in fact, an anonymized version of the entire
frequency histogram for the inputs {si} is revealed, but only
the actual measurements appearing beyond a certain threshold
are revealed.

In this paper, we ask the following question: Can we reduce
the leakage of STAR while preserving its architecture and
without significantly impacting its efficiency?

1

Our contributions. We present a new threshold reporting
system, POPSTAR, to compute heavy hitters which increases
privacy in the STAR system at a moderate cost. Our system,
not unlike STAR and Poplar, will still leak information. For a
truly passive corrupted report server, our leakage is similar to
that of Poplar when reporting totally random measurements,
without the need of the expensive interactions between two
non-colluding servers. We also show the effect of active at-
tacks to be limited.

Our randomness server remains relatively lightweight (al-
though not as simple as that of STAR), and our report server
is roughly seven times as slow as that of STAR under suitable
parameter choices.

We give a full security analysis of our system: we provide a
functionality that captures its leakage precisely, and prove our
protocol to implement it. We also give an empirical analysis
of the leakage and propose a heuristic mechanism to provide
differential privacy. Finally, we provide an implementation of
the report server, which we benchmark.

2 Overview of POPSTAR

Overview of STAR. We start with an overview of STAR [19]
before introducing the key ideas behind POPSTAR. For
starters, STAR’s randomness server implements an oblivi-
ous PRF (OPRF), used to associate with every potential mea-
surement s ∈ {0,1}∗ a randomly chosen degree t polynomial
ps(X) ∈ F[X] over a finite field F. In particular, each client
querying s to the randomness server will learn the same poly-
nomial ps(X), whereas the randomness server learns nothing
about either of s or the polynomial obtained by the client
within this interaction.

A client’s report for a measurement s has the form

rep= [r, ps(r),Enc(ps(0),s)] ,

where Enc here denotes the encryption procedure of a sym-
metric encryption scheme, r ∈ F is uniformly chosen, and
ps(X) is the polynomial associated with s previously obtained
from the randomness server. If the report server then ob-
tains t + 1 reports for the same measurement s, associated
with distinct r values (which is the case with overwhelming
probability), the value ps(0) can be reconstructed via simple
interpolation, and the value s can be recovered via decryption
from any of the reports.1 A client, when ready, sends the re-
port directly to the report server (or, as we explain below, to
an intermediate mixing server first to eliminate the origin and
timing information of the report).

The problem is that the report server now accumulates
reports for potentially different measurements, but cannot
recognize which reports are associated with the same mea-
surement. For this reason, STAR includes a tag tag(s) in the

1It is often useful to additionally encrypt application-dependent metadata,
along with s, but we will not do this explicitly here for sake of brevity.

report as well—such a tag is also computed from an inde-
pendent OPRF evaluation with the randomness server, and
crucially, tags are deterministic functions of s and unlikely
to collide. With overwhelming probability, any t +1 reports
with the same tag can be used to reconstruct ps(0) efficiently
via interpolation, and then decrypt the associated ciphertexts.

However, tags add unwanted leakage, as the server can
now build histograms for the tags, and while the associated
measurement s is only revealed for tags appearing more than
t times, the histogram information associated with unrevealed
inputs is important information we ideally want to hide.

POPSTAR to the rescue: Reducing leakage. We are now
ready to explain our approach to reducing leakage in POP-
STAR. The main idea is that the the randomness server will
associate with each string y ∈ {0,1}≤ℓ of length at most ℓ an
independent (pseudo)random polynomial py(X) of degree t.
Here, ℓ is a parameter which we will (empirically) show to be
related to the privacy offered by the system–we hence often
refer to it as the privacy parameter.

By interacting with the randomness server, the client obliv-
iously obtains the ℓ polynomials

py1(X), py1y2(X), . . . , py1y2...yℓ(X)

associated with the ℓ prefixes of a (pseudo)random
string y(s) = y1y2 . . .yℓ which is, in turn, associ-
ated with s. The client also obliviously obtains tags
tag(y1), tag(y1y2), . . . , tag(y1y2 . . .yℓ). Crucially, querying
the same s multiple times (by multiple clients) will yield
the same polynomials (and tags), whereas querying distinct
measurements s ̸= s′ will very likely lead to different
sequences of polynomials/tags that partially overlap up to
the length of the longest common substring of y(s) and
y(s′). For example, if ℓ = 4, y(s) = 0000 and y(s′) = 0010,
interacting with the randomness server on input s will reveal
the polynomials

p0(X), p00(X), p000(X), p0000(X)

whereas on input s′ the revealed polynomials are

p0(X), p00(X), p001(X), p0010(X) .

POPSTAR’s report for a measurement s ∈ {0,1}∗ has form

rep=
[
r, py1(r), tag(y1),ct

(1), . . . ,ct(ℓ+1)
]
,

where r ∈ F is randomly chosen, and

ct(i) = Enc(py1...yi(0), py1...yiyi+1(r) ∥ tag(y1 . . .yiyi+1))

for i= 1, . . . , ℓ−1. The ℓ-th ciphertexts encrypts ps(r)∥tag(s),
where ps, tag(s) are computed from an independent OPRF
evaluation with the randomness server. The final ciphertext
encrypts s.

ct(ℓ+1) = Enc(ps(0),s) .

2

Now, the report server is always able to “peel off” an ad-
ditional encryption layer from a report for s with y(s) =
y1y2 . . .yℓ whenever more than t reports for a prefix y1, . . . ,yi
have been received.

While the costs of managing reports are higher in POP-
STAR than in STAR, our implementation shows that they
remain within feasible range. For example, processing 1 mil-
lion reports takes 136.1 seconds, which is roughly 7× slower
than STAR. The randomness server is however more complex
and less efficient than in STAR–in fact, after extensive bench-
marks, the most performing solution we provide is still based
on garbled circuits. Still, even here the end-to-end running
time of one client interaction with the randomness server is
dominated by network latency (∼ 50ms), rather than local
computation times. In POPSTAR, such an interaction takes 2
round trips whereas in STAR, 1 round trip. Hence we estimate
it to be 2× to 3× slower than STAR.

Security Analysis. Our approach substantially reduces leak-
age compared to STAR. A passive server in particular learns:

1. All strings y′ = y1 . . .yi such that > t reports are for a
measurement s such that y1 . . .yi−1 is a prefix of y(s).

2. For each such string y′, which reports are for a measure-
ment s such that y′ is a prefix y(s)

This leakage profile resembles that of Poplar, which however
uses either the measurement itself in lieu of y(s), or a deter-
ministic hash of s, which makes our system stronger in this
one dimension. However, in contrast to (2) above, each of
the two Poplar servers cannot link a particular report to its
contribution, and hence only learns how many reports are for
a measurement s such that y′ is a prefix y(s), but not which re-
ports. As in STAR, we mitigate this by introducing an abstract
mixing server which is used by the clients when submitting
their reports. This could be an actual third-party service, or
could be implemented heuristically by having all users co-
ordinate sending their reports at pre-specified times using
anonymous communication tools such as ToR.

Another attack by a malicious report server is to maliciously
spawn clients and interact with the randomness server. How-
ever, this attack is rather ineffective due to the randomness
of the mapping between s and y(s), and can intuitively only
help uncover extra information about random processes up to
a small depth. Also, the effect of this attack can be mitigated
via rate limiting measures on the randomness server.

We give a detailed functionality capturing the security of
POPSTARin Section 6.1 (and which we use then to prove
security in Section A), and then interpret it empirically in Sec-
tion 6.2. We also propose a heuristic mechanism to provide
differential privacy in Section 6.3.

Robustness against malicious client input. POPSTAR
as described above is not very robust. For example, even

when the randomness server is honest, a malicious client may
include in its report wrong evaluations of the polynomials,
causing interpolations by the report server to produce wrong
decryption keys. Any honest report containing a ciphertext
that’s supposed to be decrypted by those keys will be affected.
We note that STAR is also not robust against such malicious
reports–while clients can verify that the polynomial is correct
(using e.g. a verifiable OPRF), the report server cannot gener-
ally check that the reports contain legitimate evaluations of
the polynomial.

We describe a robust variant of POPSTAR in Section 5.3
that prevents malicious clients’ reports from affecting the
rest honest reports, assuming the randomness server behaves
honestly.

3 Preliminaries

General notations. For a natural number n ∈ N, we write
[n] to represent the set 1, . . . ,n. We write x∥y to denote the
concatenation of two strings x,y.

Shamir’s secret sharing. Although not explicitly using
Shamir’s secret sharing scheme, POPSTAR relies on the same
underlying idea of sharing a secret via polynomial evaluation,
and reconstructing the secret via interpolation.

We briefly describe Shamir’s scheme over a finite field
F, and its correctness and privacy guarantees. They directly
translate to properties of polynomial interpolation.

In the following, M ∈N is the number of share holders, t ∈
[M] is a threshold, and E = (pt1, . . . ,ptM) is a set of distinct
points in F.

• Y ← Sharet,E(k) outputs shares Y = y1, . . . ,yM of the
secret k ∈ F, computed as yi = fk(pti), where fk(x) =
k+ c1 · x+ . . .ctxt , and c1, . . . ,ct ← F.

• k← Recont,E(I,YI) outputs the secret k, reconstructed
from a subset of > t shares YI as k = fk(0) where fk =
Interpolate(EI ,YI , t).

Lemma 1. Fix any number M ∈N, threshold t ∈ [M], and dis-
tinct points E = (pt1, . . . ,ptM)⊆ F. Let Y = (y1, . . . ,yM)←
Sharet,E(k) be shares of a randomly sampled secret k← F.

1. Any subset of > t shares YI indexed by I ⊆ [M] can re-
cover the correct secret: k = Recont,E(I,YI ,).

2. Any subset of ≤ t shares YI′ indexed by I′ ⊆ [M] leaks
no information about the secret: (E, I′,YI′)≈ (E, I′,U),
where U denotes random values over F.

Symmetric key encryption with key commitment. An
encryption scheme with key commitment guarantees that a
ciphertext may be only decrypted with the same key used to

3

produce it. In particular, the decryptor either learns the correct
plaintext or recognizes a decryption failure.

We describe a simple scheme for encrypting l-bit messages
in the random oracle model, based on the simple padding
idea in [2]. Let HE : {0,1}∗→ {0,1}l+λ be a hash function
modeled as a random oracle.

• Enc(k,msg) samples a random string r← {0,1}λ, and
outputs ct= (r,c) where c = HE(k∥r)⊕ (0λ∥m).

• Dec(k,ct) parses ct = (r,c), and computes (v∗∥m∗) =
c⊕HE(k∥r). It outputs m∗ if v∗ = 0λ, and ⊥ otherwise.

In addition to key commitment, the usual correctness and
IND-CPA security holds for the above scheme.

Concretely in our evaluations, we use AES-GCM with the
padding fix described in [2].

Garbled circuit [10](GC). We use a simplified syntax.

• (Ĉ,K = {k(i)0 ,k(i)1 }[n])← Garb(1λ,C): given a Boolean
circuit C : {0,1}m→{0,1}n, outputs a garbled circuit Ĉ
and m pairs of keys K corresponding to the inputs to C.

• C(x) = Eval(Ĉ,Kx): evaluates the garbled circuit Ĉ using
m keys Kx, which are selected from K according to an
input x ∈ {0,1}m.

Correctness and privacy guarantees the evaluator learns C(x)
and nothing else. 2 POPSTAR uses GC to implement an
oblivious double PRF protocol (Figure 4), between a client
and the randomness server.

Oblivious transfer (OT). An OT protocol runs between a
sender and a receiver with the following interface.

• OTl .send({msg
(i)
0 ,msg

(i)
1 }i∈[l]). The sender inputs l

pairs of messages msg
(i)
0 ,msg

(i)
1 for i = 1, . . . l.

• {msg
(i)
x } ← OTl .receive(x). The receiver inputs a

choice vector x∈ {0,1}l , and receives one message from
each pair chosen by the corresponding bit of x.

Security guarantees that the receiver learns only the messages
chosen by x, while the sender learns nothing about x.

POPSTAR uses OT together with a GC scheme introduced
above to implement the oblivious double PRF protocol (Fig-
ure 4). Concretely, we use the OT protocol of [16].

4 System Overview and Threat Model

4.1 System Overview
Figure 1 illustrates the system model of POPSTAR. We ex-
plain it in more detail below.

2More precisely, the evaluator also learns the topology of C.

Figure 1: POPSTAR architecture. The serverO samples fresh
secret key(s) for each session. In the reporting phase, each
client computes a report by interacting with the server O, and
sends it to the mixing server. In the aggregation phase, the
server S obtains shuffled reports, and locally recovers heavy
hitters and their associated messages.

The basic threshold reporting system. The basic system
consists of a set of clients P1,P2, . . ., a randomness server O,
and a report server S . We envision the system run in recurring
sessions, during which each client computes a report of a
measurement s and a message msg with the help of the server
O, and sends it to the server S. The server O should learn
nothing, and the server S should only learn the measurements
reported more than t times.

The threshold t is a system parameter set appropriately
depending on the application scenario and the duration of
each session. We emphasize that the server S should not be
able to aggregate reports from different sessions.

Clients do not communicate among themselves and the two
servers S andO do not communicate with each other. Clients
communicate with both servers through private and authenti-
cated asynchronous channels (e.g., both servers deploy TLS
for this purpose, and have each a certificate).

Hiding client identities through a mixing server. In many
applications, it is desirable to hide client identities associated
with each report from the server S, as well as the timing of
each report. For this, we will assume the availability of an
abstract mixing server that collects reports from the clients
during each aggregation session, shuffles them randomly, and
delivers them to the server S in one shot (See Figure 1).

The abstract mixing server could be implemented by an ac-
tual third-party service, or heuristically by having the clients
to coordinate sending their reports at pre-specified times
through anonymous communication tools such as ToR.

An alternative suggested in [19] is to also rely on the ran-
domness server O for this purpose. In more detail, we let
the server O act as an oblivious HTTP proxy between the
clients and the server S, which strips away identifying infor-
mation from client messages containing their reports, batches
them until the end of the aggregation session, and delivers all
messages in a shuffled order in one shot.

4

4.2 Threat Model and Security Goals
We consider a static malicious adversary who initially cor-
rupts a subset of the participants, and controls them through-
out the session. As in prior works [13,19], we assume the two
servers O and S do not collude. More specifically, we only
consider three scenarios: (1) a corrupted server S with collud-
ing clients; (2) corrupted clients only; (3) a corrupted server
O with colluding clients. We explain the security goals and
guarantees of POPSTAR in each scenario below. Section 6.1
will also describe a functionality Freport that captures the se-
curity of POPSTAR precisely, but here we limit ourselves to
an informal overview.

Corrupted server S with colluding clients. In this sce-
nario, the goal is to protect privacy of honest clients’ inputs,
i.e., their measurements and associated messages.

POPSTAR guarantees that if an honest client’s measure-
ment is not a heavy hitter, and not among the ones reported
by the corrupted clients, then its input is hidden from the
adversary, except for a small leakage. (Each colluding client
may choose to make a report of an arbitrary measurement s∗.)

Section 6.1 captures the leakage precisely, and Section 6.2
compares with prior works in detail. In short, POPSTAR has
a leakage similar to the hashing variant of Poplar, and much
smaller than STAR.

We note that a baseline attack by an malicious server S in
POPSTAR (and also in STAR) is to spawn many colluding
clients, and use each of them to statically target a different
measurement s∗. This will cause the malicious server to iden-
tify reports by honest clients’ that are on s∗, which will lose
privacy. (Of course, this only happens if the malicious server
can guess an s∗ for which a report is being made.) This at-
tack is somewhat unavoidable in this model, and also affected
STAR. We do not try to address this attack within POPSTAR,
but argue it can be mitigated by other means in practice. For
example, we can prevent the adversary from spawning too
many clients through rate-limiting measures in the server O.
(E.g., a client needs an account to interact with O, and each
account is limited to a number of daily queries.) A high num-
ber of colluding clients spawned by the adversary is also more
likely to be detected by the server O.

Corrupted clients only. In this scenario, the goal is to pre-
vent maliciously generated reports from damaging the aggre-
gation results, e.g. causing some measurements to be unre-
coverable, even if there are > t honest reports of them.

We first present a very efficient construction of POPSTAR
without trying to defend against such malicious reports. We
then describe a robust variant (Section 5.3) that minimizes
the effect of malicious reports.

The robust variant of POPSTAR guarantees that malicious
reports get discarded from the final aggregation results, while
ensuring that honest reports are still counted.

Corrupted server O with colluding clients. In this sce-
nario the goal is to protect privacy of honest clients’ inputs.

POPSTAR completely hides honest clients’ inputs from
the adversary, irrespective of whether the measurements are
heavy hitters or not.

POPSTAR has very limited guarantee against malicious
reports from corrupted clients, and faulty reports from hon-
est clients caused by a malicious server O. Essentially, the
adversary may cause any subset of the honest reports to be
discarded from the final aggregation results.

Remark on colluding servers S and O. POPSTAR is de-
signed with two non-colluding servers S andO in mind. How-
ever, we note that even when they collude, POPSTAR still
provides limited privacy that’s similar to the STARLite vari-
ant in [19]. In contrast, Poplar [13] has no privacy when the
servers collude.

5 Protocol Description

5.1 Threshold Reporting Protocol

The POPSTAR protocol (See Figure 1) consists of a reporting
phase, where each client computes a report with the help
of the server O and sends it to the mixing server, and an
aggregation phase, where the report server obtains reports
from the mixing server and locally recovers the heavy hitters.
We focus on the more efficient non-robust variant in this
section. We describe the robust variant in Section 5.3, and
propose a heuristic mechanism to provide differential privacy
in Section 6.3.

The algorithmic descriptions of each client and the report
server are given in Figure 2 and 3. Below we first introduce the
cryptographic tools used, and the interfaces implemented by
the randomness and the mixing servers. We then describe the
two phases in more detail. Finally, we analyze the correctness
and privacy of the protocol. (Formal security definitions and
proofs can be found in Section 6.1 and A.)

Cryptographic primitives. The protocol uses the sym-
metric key encryption scheme (Enc,Dec) with key commit-
ment described in Section 3. It also uses two hash functions
(modeled as random oracles): (1) Hs : {0,1}∗→{0,1}λ, (2)
Hp : {0,1}∗ → Ft+1×{0,1}λ where F is a λ-bit field. The
output of Hp is a degree t polynomial f and a tag.

The randomness and the mixing server interfaces. The
randomness server O implements two interfaces. We give
details of the implementations in Section 5.2.

• u← OPRF(x). Each client can call OPRF(x) with an
λ-bit string input, and obtain a single λ-bit string.

5

• v(1), . . . ,v(ℓ) ← ODPRF(x). Each client can call
ODPRF(x) with an λ-bit string input, and obtain ℓ λ-
bit strings.

The former result u is supposed to be a PRF evaluation:
u = F(sk,x), where sk is known only to the server O. The
latter results v(1), . . . ,v(ℓ) are supposed to be PRF evalua-
tions v(d) = F ′(sk′,prefix(u,d)), where u′ = F ′(sk′,x), and
prefix(u,d) denotes the first d bits of u, padded appropriately.
sk′ is known only to the server O.

The abstract mixing server implements two interfaces.

• Mix.send(R). Each client can call Mix.send(R) to send
its report to the mixing server.

• {R j} ← Mix.collect(). The report server S can call
Mix.collect() to collect reports sent by the clients, in
a randomly shuffled order.

The reporting phase. During the reporting phase, each
client who wishes to report a measurement s and an associated
message msg independently and asynchronously executes the
following steps (formally described in Figure 2).

First, the client hashes its measurement to a λ-bit string
x = Hs(s), and calls the ODPRF and OPRF interfaces of
the server O with the input x to obtain evaluation results
v(1), . . . ,v(ℓ),u. The client hashes, using Hp, the evaluation
results into ℓ+ 1 degree t polynomials f (1), . . . , f (ℓ) f (ℓ+1),
each associated with a tag.

Next, the client derives a secret key k(d) = f (d)(0) from
each polynomial, and a Shamir’s secret share (Section 3) of
the key y(d) = f (d)(pt). The evaluation point pt is chosen at
random for each report so that pt does not leak anything about
the client identity, and also does not collide with other client’s
choices with overwhelming probability.

Finally, the client creates a chain of encryptions. The first
key k(1) is used to encrypt the second share, together with
the second tag: ct(1)← Enc(k(1), tag(2)∥y(2)), and so on. The
final key k(ℓ+1) is used to encrypt the measurement and the
message: ct(ℓ+1)← Enc(k(ℓ+1),s∥msg). The report consists
of the ciphertexts, the first share and tag, and the evaluation
point: R = (pt, tag(1),y(1),ct(1), . . . ,ct(ℓ+1)). The client sends
it to the mixing server using the interface Mix.send(R).

The aggregation phase. During the aggregation phase, the
server S collects the reports received by the mixing server
using the interface {R j} j∈[m]←Mix.collect(), and executes
the following steps (formally described in Figure 3).

First, the server S divides the reports into depth-1 sub-
groups according the depth-1 tags included in each report,
discarding the ones with size ≤ t.

Next, for each depth-1 subgroup G(1), the server uses the
shares {y(1)j } j∈G(1) and evaluation points {pt j} j∈G(1) included
in the reports to derive a key k(1) by polynomial interpolation.

POPSTAR-Clientℓ,t(s,msg)

1 : x = Hs(s)

2 : v(1), . . . ,v(ℓ)←ODPRF(x)

3 : u←OPRF(x)

4 : for d = 1, . . . , ℓ do

5 : (f (d),tag(d)) = Hp(v(d))

6 : f (ℓ+1),tag(ℓ+1) = Hp(u∥x)
7 : pt← F
8 : for d = 1, . . . , ℓ+1 do

9 : k(d) = f (d)(0), y(d) = f (d)(pt)

10 : for d = 1, . . . , ℓ do

11 : ct(d)← Enc(k(d),tag(d+1)∥y(d+1))

12 : ct(ℓ+1)← Enc(k(ℓ+1),s∥msg)

13 : Mix.send(R = (pt,tag(1),y(1),ct(1), . . . ,ct(ℓ+1)))

Figure 2: The client pseudocode of POPSTAR.

The server decrypts the depth-1 ciphertexts {ct(1)} j∈G(1) in

the group using k(1), discarding reports R j for which ct(1)j fails
to decrypt. Note that by using an encryption scheme with key
commitment, the server recognizes decryption failures and
avoids proceeding with garbage results. A successful decryp-
tion of ct(1)j recovers the depth-2 tags and shares tag(2)j ,y(2)j
for report R j. After recovering a depth-2 tag and share for
each report in the group G(1), the server divides it further into
depth-2 subgroups, discarding the ones with size ≤ t.

The server proceeds analogously for each depth-2 subgroup
G(2), further dividing it into depth-3 subgroups, and so on. In
the end, the server obtains a list of depth-(ℓ+1) subgroups,
each with size > t.

Finally, for each depth-(ℓ+ 1) group G(ℓ+1), the server
decrypts the depth-(ℓ+ 1) ciphertexts in it, discarding the
ones that fails. A successful decryption of ct(ℓ+1)

j recovers
a measurement s and a message msg j for report R j. If the
reports in the group contain the same measurement, then the
server adds it and associated messages to the aggregation
results. Otherwise, the server discards the group.

Correctness. We note three facts of the aggregation phase.
(1) A subgroup with size > t is decrypted successfully. (2) Re-
ports on the same measurement are put into the same depth-d
subgroup, for all d ∈ [ℓ+1]. (3) Reports on different measure-
ments are put into different depth-(ℓ+1) subgroups.

First, a depth-d subgroup contains only reports with the
same tag(d). Hence the shares y(d)j in this group are evalua-
tions on the same degree t polynomial f (d) uniquely associ-
ated with tag(d), and the ciphertexts ct(d)j are encrypted under

6

POPSTAR-Server-Sℓ,t

1 : {R j} j∈[m]←Mix.collect()

2 : parse R j = (pt j,tag
(1)
j ,y(1)j ,ct

(1)
j , . . . ,ct

(ℓ+1)
j)

3 : d-groups← /0, for d ∈ [ℓ+1]

4 : find-subgroups(G(0) = [m],1)

5 : for d = 1, . . . , ℓ do

6 : for G(d) ∈ d-groups do

7 : k(d)← derive-key(G(d),d)

8 : for j ∈ G(d) do

9 : if ⊥←Dec(k(d),ct(d)j) then G(d)← G(d) \{ j}

10 : else (tag
(d+1)
j ,y(d+1)

j)←Dec(k(d),ct(d)j)

11 : find-subgroups(G(d),d +1)

12 : res← [] // Stores measurements and associated messages.

13 : for G(ℓ+1) ∈ (ℓ+1)-groups do

14 : k(ℓ+1)← derive-key(G(ℓ+1), ℓ+1)

15 : s← null, msgs← /0

16 : for j ∈ G(ℓ+1) do

17 : if ⊥←Dec(k(ℓ+1),ct
(ℓ+1)
j) then go to line 16

18 : else (s j,msg j)←Dec(k(ℓ+1),ct
(ℓ+1)
j)

19 : if s ̸= null∧ s ̸= s j then go to line 13

20 : else s← s j,msgs←msgs∪{msg j}
21 : res[s] = res[s]∪msgs

22 : return res

23 : derive-key(G,d)

1 : f = Interpolate({pt j} j∈G,{y
(d)
j } j∈G, t)

2 : return k = f (0)

24 : find-subgroups(G,d)

1 : for distinct tag(d) in G do

2 : G(d) = { j : R j has tag(d)j = tag(d)}

3 : if |G(d)| ≤ t then go to line 1

4 : else d-groups = d-groups∪{G(d)}

Figure 3: The report server S pseudocode of POPSTAR.

the key k(d) = f (d)(0). Interpolation of the > t shares recovers
f (0) and k(d). Hence decryptions for the group are successful.

Second, note that the tags tag(1), . . . tag(ℓ+1) in a report
of s are deterministically derived from s. Hence reports of
the same s share the same tag(d), and are put into the same
depth-d subgroup for all d ∈ [ℓ+1].

Third, note that the final tag tag(ℓ+1) in a report of s is
derived as f (ℓ+1), tag(ℓ+1) = Hp(u∥Hs(s)), where Hs,Hp are

modelled as random oracles. With overwhelming probability,
different s leads to different tag(ℓ+1).

We can now conclude correctness. For any measurement
s with > t reports, the subgroups containing these reports all
have size > t by fact (2), hence are successfully decrypted
by fact (1). The final depth-(ℓ+ 1) subgroup contains only
reports of s by fact (3), hence s and the associated messages
are added to the aggregation results.

Privacy. We informally argue privacy for reports of non-
heavy hitter measurements against the report server S. (See
Section 6.1 and A for formal security definitions and proofs.)

First consider the server S without colluding clients. A
report of some measurement s can be divided into two parts:
(1) the final ciphertext, ct(ℓ+1), encrypting s and a message
under the secret key k(ℓ+1), and (2) the rest of the report,
encrypting (through a chain of ciphertexts) a share of the key
y(ℓ+1). The final ciphertext ct(ℓ+1) remains secure against the
server S when there are ≤ t reports of s, because ≤ t shares
of the key k(ℓ+1) leaks no information about it.

Next, when the server S colludes with some clients, each
such client allows it to target a certain measurement s∗ and
directly learn the secret key k∗(ℓ+1) used for encrypting s∗.
In more detail, the colluding client is allowed one call to the
interface u∗← OPRF(x∗) with x∗ = Hs(s∗). It then derives
k∗(ℓ+1) from u∗. Reports of s∗ lose privacy, while reports for
non-heavy hitters s ̸= s∗ remain private. We emphasize the
server S only chooses targeted measurements s∗ during the
reporting phase, before seeing any honest client’s reports.

Finally, we note that by observing how reports are grouped
together during the aggregation phase, the server S learns
a small amount of leakage of the non-heavy hitter measure-
ments. This is because the tags in a report of some s are
deterministically derived from s. We capture the leakage pre-
cisely in our formal security definition (Figure 6), and give a
detailed comparison with the leakages in prior works in Sec-
tion 6.2. Briefly, our leakage is similar to that of [13] (Poplar),
and much smaller than that of [19] (STAR).

5.2 Implementing the Randomness Server

The randomness server O implements two interfaces, OPRF
and ODPRF (see Section 5.1). The former can be imple-
mented by any oblivious PRF protocol (OPRF), e.g. the one
of [25], or by a simpler variant of the ODPRF protocol below.

To implement the latter, the server O samples a secret key
sk← {0,1}λ for each aggregation session, and listens for
client messages. Upon receiving init from a client, the server
O executes the ODPRF (Figure 4) protocol with the client
using sk as its input. At the end of the session, it deletes sk.

The ODPRF protocol. The protocol has three steps.

7

ODPRF

client(x) Server-O(sk)
init

Ĉsk,{k
(i)
0 ,k(i)1 }i∈[λ]

← Garb(1λ,C(sk, ·))

OTλ

OTλ.receive(x)

Kx = {k
(i)
x }

OTλ.send({k(i)0 ,k(i)1 })

Ĉsk

v(1), . . . ,v(ℓ)

← Eval(Ĉsk,Kx)

C(sk,x)

1 : u = F(sk,x)

2 : for d = 1, . . . , ℓ do

3 : v(d) = F(sk,prefix(u,d)) // prefix padded appropriately.

4 : return v(1), . . . ,v(ℓ)

Figure 4: The oblivious double PRF protocol.

1. The server O defines a circuit C such that C(sk,x) com-
putes ℓ λ-bit strings v(1), . . . ,v(ℓ) exactly as required by
the interface. It computes a garbled circuit (GC) Ĉsk of
C(sk, ·) together with λ pairs of inputs keys {k(i)0 ,k(i)1 }.

2. The serverO and the client run an oblivious transfer (OT)
protocol OTλ. The server calls OTλ.send({k(i)0 ,k(i)1 }) to

send the input keys, and the client calls Kx = {k
(i)
x } ←

OTλ(x) to receive input keys corresponding to x.

3. The server O sends the garbled circuit Ĉsk to the
client, who locally evaluates it to obtain the results
v(1), . . . ,v(ℓ) =C(sk,x).

Correctness follows directly from that of the GC scheme
and the OT protocol. (See Section 3.) Privacy guarantees that
the client’s input x and the server’s secret key sk are hidden
from each other. This also follows directly from the security
of the GC scheme and the OT protocol.

We note that compared to a generic maliciously secure
2PC protocol computing C, our protocol does not enforce the
server O to send the correct garbled circuit corresponding to
C(sk, ·). We make this relaxation for better efficiency.

The observation is that the client’s outputs from the ODPRF
protocol only affect how its report is grouped during the ag-
gregation phase, but not the privacy of the report.

Concrete choice of F . We instantiate F with the
LowMC [3] block-cipher with 128-bit keys and blocks, and
128-bit data security. LowMC is designed to minimize the

number of AND gates in its circuit, which in turn minimizes
our garbled circuit (with free-XOR) size and computation.

According to the parameter calculation script 3, our instanti-
ation of F has 861 AND gates. Hence the circuit C computing
the double PRF evaluations has 861 · (ℓ+1) AND gates.

5.3 The Robust Variant
The we describe a robust variant of our protocol to minimize
the effect of malicious reports from corrupted clients, assum-
ing the randomness server O behaves honestly.

Recall that during the aggregation phase (Figure 3), for
d ∈ [ℓ+ 1], the server S groups reports according to their
revealed depth-d tags. For each group G(d) of size > t, it
interpolates the revealed depth-d shares to obtain a secret key
k(d), and decrypts the depth-d ciphertexts in the group.

A malicious report R∗i in the group may affect the process
in three ways.

1. It may contain a wrong share y∗(d)i ̸= f (d)(pti), where
f (d) is the polynomial uniquely associated with the
tag(d) for this group. The server S may derive a wrong
key k∗(d) as a result, and fail at decrypting all ciphertexts
in the group.

2. It may contain a wrong ciphertext ct∗(d) that fails to
decrypt under the correct key for this group. The server
S drops the malicious report R∗i as a result.

3. When d = ℓ+1, it may contain a (ℓ+1)-th ciphertext
decrypting to a different measurement s∗ from the honest
reports in the group. The server S skips the group as a
result.

We describe how to prevent (1) and (3) below. We don’t
prevent (2), as it only results in the malicious report R∗i itself
to be discarded.

Preventing (3). At high level, we prevent (3) by allowing
the server S to verify that a decrypted measurement s indeed
belongs to its depth-(ℓ+1) group. To this end, we augment
the OPRF interface implemented by the randomness serverO
with verifiability. (We show how to implement this interface
using a verifiable oblivious PRF protocol in the end.)

• (u,πx)←VOPRF(x). Each client can call VOPRF(x) to
obtain a λ-bit evaluation result u, and a proof πx.

The result u is supposed to be a PRF evaluation u=F(sk,x) as
before, and the proof πx is supposed to be verifiable against a
public key pk by an algorithm Verify: b← Verify(pk,u,x,πx).
We assume a PKI setup where every client and the report
server S learns pk.

During the reporting phase (Figure 2), each client calls
(u,πx)← VOPRF in place of u← OPRF(x) (line 3), and

3https://github.com/LowMC/lowmc

8

encrypts u,πx in addition to its measurement and message in
the depth-(ℓ+1) ciphertext: (line 12)

ct
(ℓ+1)
i ← Enc(k(ℓ+1),(s,msgi, u∥πx ∥s∥msg).

During the aggregation phase (Figure 3), the server S
decrypts (u,πx,s,msg)← Dec(k(ℓ+1),ct(ℓ+1)) (line 18), and
checks s against the attached proof πx as follows.

• Compute x = Hs(s), and run b = Verify(pk,us,x,πx).

• If b = 1, then derive f (ℓ+1), tag(ℓ+1) = Hp(u∥x).

• If the derived tagℓ+1 equals the tag for the current depth-
(ℓ+ 1) group, then s is a correct measurement. Other-
wise, discard s.

Preventing (1). Our goal is to prevent the server S from
deriving a wrong key k∗(d) for some depth-d group of > t
reports that contains wrong shares.

We first show a lightweight modification that allows the
server S to efficiently recover the correct key, assuming the
group contains much more than t honest shares, and much
fewer than t wrong shares. When the assumption doesn’t hold,
the server S might time out trying to recover the correct key,
and skips the group. We believe this suffices for many real
world use cases, where the number of corrupted clients in the
system is much smaller than the threshold t, and the majority
of the heavy hitter measurements are reported much more
than t times.

We modify how the server S derives a key for the group.

1. Interpolate a random subset R of t +1 shares to a poly-
nomial f (d)R , and derive a candidate key k(d)R = f (d)(0).

2. Try decrypting the depth-d ciphertexts in R. If all de-
cryption succeeds, then use k(d)R for decrypting the rest
of the group. Otherwise, repeat the above with a fresh
random subset R′.

This procedure succeeds whenever the random subset R con-
tains no malicious reports, which happens with a good prob-
ability when the above assumption holds. As an example,
consider a threshold t = 1000− 1, a group with 50,000 re-
ports, where 50 are malicious. The probability of sampling a
subset R with no malicious reports is

(49,950
1000

)
/
(50,000

1000

)
> 0.36.

Hence in expectation it takes less than 3 tries to recover the
correct secret key.

It’s also possible to let the server S unconditionally rec-
ognize and discard all wrong shares during the aggregation
process using a polynomial commitment scheme (PC). This
allows us to fully prevent (1). We describe this heavier-weight
method very briefly.

At high level, a PC scheme allows each client to compute a
commitment C f to a polynomial f , and a proof πpt, f ,y that an

evaluation y is computed correctly from the committed poly-
nomial as y = f (pt). We use a PC scheme, e.g. that of [26],
where the commitment C f is deterministically derived from
f , so that C f also functions as a unique tag for f .

In the reporting phase, each client replaces tag(d) with a
commitment C(d)

f to the polynomial f (d) and a proof π
(d)
pti, f ,yi

,
for d ∈ [ℓ+1]. During the aggregation phase, whenever the
server S decrypts a share y(d)i together with C(d)

f and π
(d)
pti, f ,yi

,

it verifies that y(d)i is computed correctly from the committed
polynomial and hence is a correct share. All wrong shares are
therefore recognized and discarded.

Implementing the interface VOPRF. We can implement
the interface using any existing verifiable oblivious PRF (VO-
PRF) protocol, e.g. the one of [25] with an extra step.

At high level, a VOPRF protocol allows a client and the
randomness server O securely evaluate a PRF based on the
client’s input x and the server’s secret key sk. Additionally,
the client can verify the evaluation result against a public key
pk, using a proof π from the server.

This almost matches the desired interface, except the proof
is only intended to be verified by the client. To output a proof
that can be verified by anyone holding pk, we simply let the
client attach its view during the protocol, including its internal
randomness, to the proof.

6 Security Analysis

6.1 Ideal Functionality and Security Proofs
We formalize the security properties of POPSTAR into an
ideal functionalityFreport (Figure 5, 6, 7) in the universal com-
posability (UC) framework. (See Section A for an overview
of UC.) The functionality has the following parameters.

• M ∈ N is an upper bound on the number of clients, and
t ∈ [M] is the threshold for heavy hitters.

• ℓ ∈ N is the depth of the prefix tree T internally main-
tained by Freport. As we will explain, the leakage to a
corrupted server S is captured by a set of leaked nodes
on T . Asymptotically, setting ℓ= O(λ), where λ is the
security parameter, bounds the number of leaked nodes
to be O(λ ·M/t) with overwhelming probability.

The honest interface. Figure 5 describes the interface with
honest clients and the two servers O and S, which captures
the following correctness guarantee. If all parties behave
honestly, then Freport reveals exactly the measurements (with
associated messages) reported by > t clients to the server S.
We can verify every distinct measurement s is mapped to a
distinct leaf node on the prefix tree T , and that in the end only
the leaf nodes with count > t are revealed to the server S.

9

Functionality FM,t,ℓ
report

The functionality runs with up to M clients P1,P2, . . ., a
randomness server O and an report server S.
Honest Interface:
Ignore all messages associated with sid before receiv-
ing (init,sid) from the server O and after receiving
(collect,sid) from the server S.

1. Upon receiving (init,sid) from the server O, initialize
two data structures (associated with sid):

• tb: a random table mapping received measure-
ments to ℓ-bit strings.

• T : an ℓ-level binary tree where each node stores
a count (initially 0) and a state (initially hidden).

We call the initial nodes of T inner nodes. The func-
tionality will add a leaf node for each distinct received
measurement.

2. Upon receiving (i,s,msg,sid) from a client Pi, interpret
paths = tb[s] ∈ {0,1}ℓ as a path on the tree T .

• Add a leaf node labelled by s at the end of paths if
there is not one already, and store msg on it. (Let
paths denote the path including the leaf node.)

• Increase the count of each node on paths.

• If a node has count > t, set its state to revealed.

3. Upon receiving (collect,sid) from the server S, col-
lect the measurements and messages stored on each
revealed leaf node, and send them to the server S.

Figure 5: The interface with honest parties. It captures the
correctness of POPSTAR.

The leakage to a corrupted server S. Figure 6 describes
the interface with an adversary who statically corrupts the
server S and a subset of clients. It captures two ways the ad-
versary learns additional information (i.e., the leakage) about
the honest reports besides the legitimate aggregation results.

First, without any colluding clients, the server S learns the
count of every revealed node and its children on the tree T .
(See Figure 8 for an illustration.) This leakage does not reveal
the clients’ reports directly, but only how they are partially
grouped together on the tree T .

To understand this leakage, we focus on the deepest leaked
nodes, which we call end nodes. (The counts on the remaining
leaked nodes can be inferred from those on the end nodes.)
In the extreme case where all nodes on T are leaked, the
end nodes are all the leaves. The counts on them essentially
leaks an anonymized histogram of all received measurements.
We argue the leakage in POPSTAR is much smaller than the

Functionality FM,t,ℓ
report Continued

Corrupted report server S and colluding clients:
For each corrupted client Pi, the adversary may send
(i,s, inner,sid) and (i,s′, leaf,sid) in any order.

• Upon receiving (i,s, inner,sid), set all nodes on
paths to revealed, and leak paths to the adversary;

• Upon receiving (i,s′, leaf,sid), set the leaf for s′ to
revealed, and leak its location on T to the adversary.

In the end, leak all revealed nodes and their children (i.e.,
their locations on T and stored counts) to the adversary.

Figure 6: The interface with the adversary corrupting the
report server S and a subset of clients. It captures the potential
leakages to a corrupted report server S.

extreme case by showing the number of end nodes on T is
much less than the number of all leaves.

• If a revealed path has length l < ℓ, then it creates ≤ l+1
end nodes: two children by the last node on the path, and
1 child by each of the rest.

• The case of l = ℓ is similar, except the last node on
the path causes all its leaves to be end nodes. When
ℓ=O(λ), there are O(1) leaves with overwhelming prob-
ability. Hence ℓ+O(1) end nodes are created.

There are at most M/(t + 1) revealed paths, which creates
at most O(ℓ ·M/(t + 1)) end nodes. If the threshold t is a
constant fraction of M, there are O(ℓ) = O(λ) end nodes.

Second, with each corrupted client Pi, the adversary may
cause Freport to reveal a length-ℓ path and a leaf node, through
the messages (i,s, inner,sid) and (i,s′, leaf,sid). A revealed
path adds at most ℓ+O(1) leaked end nodes in the leakage
above. A revealed leaf (for s′) lets the adversary learn the
count of reports for s′ and their associated messages.

The effect of malicious reports. Figure 7 describes the
interfaces with an adversary who statically corrupts a subset
of clients, and with one who additionally corrupts the server
O. It captures the effects of malicious reports.

When only clients are corrupted, for each corrupted client
Pi, the adversary may first send (i,s,sid) to submit a mea-
surement, but then instruct Freport to update the prefix tree T
based on an arbitrary path∗ of length ℓ∗ ≤ ℓ+1.

In more detail, we assume every node in T is labelled with
some tag τ, and path∗ contains ℓ∗ tags τ1, . . . ,τℓ∗ . The first
tag τ1 indicates the child of the root labelled with τi. Add
such a child if it does not exist in T . Inductively, the d-th tag
τd indicates the child of τd−1 labelled with τd .

In addition to updating the tree T according to path∗,
the adversary specifies one of the two further actions for

10

Functionality FM,t,ℓ
report Continued

Corrupted clients only:
For each corrupted client Pi, the adversary sends
(i,s, inner,sid) to Freport, who replies with paths. The ad-
versary then sends one of the following, where path∗ is
an arbitrary path of length ℓ∗ ≤ ℓ+1.

• (path∗,msg,sid): update the count and state for each
node on path∗ as in the honest interface. If path∗

includes a leaf node, then store msg on it.

• (path∗,damage,sid): after updating the counts and
states for nodes on path∗, set the sub-tree rooted at
its last node to damaged, which can no longer be
revealed.

Corrupted randomness serverO and colluding clients:
Denote the set of corrupted clients C, and the rest H. No-
tify the adversary upon receiving an honest input message.
Upon receiving (collect,sid) from the server S, notify
the adversary, who replies ({i,s∗i ,msg∗i }C,Discard

∗,sid),
where Discard∗ is a circuit that takes {si}i∈H as inputs,
and outputs a subset D⊆ [H].
Run D = Discard∗({si}H), and discard the inputs indi-
cated by D. Output the aggregation results over the re-
maining inputs to the server S .

Figure 7: The interface with the adversary corrupting a sub-
set of clients and possibly also the randomness server O. It
captures the potential damages caused by malicious reports.

Freport. (path∗,msg,sid) instructs Freport to store msg on the
leaf node, if any, specified by path∗. (path∗,damage,sid) in-
structs Freport to mark the sub-tree rooted at the last node on
path∗ as damaged and never revealed.

When the serverO plus a subset of clients are corrupted, the
adversary is allowed to specify an arbitrary function Discard∗

that decides a subset D⊆ [H] of client inputs to discard. More
specifically, the adversary first commits a measurement and
message (s∗i ,msg∗i) for every corrupted client, and specifies
the function Discard∗. Freport then runs it over received hon-
est measurements D = Discard∗({si}i∈H), and computes the
aggregation results over the remaining inputs.

The robust variant. A weakness of Freport, is that even
when only one client is corrupted, its malicious report could
cause many valid measurements to become un-recoverable.
This is modeled as the (path∗,damage,sid) command in Fig-
ure 7, which damages the entire sub-tree rooted at the last
node of path∗. We describe a robust variant of POPSTAR
in Section 5.3 that prevents this attack. Formally, the robust
functionality is identical to Freport, except it does not allow
the (path∗,damage,sid) command.

Figure 8: Example of a prefix-tree visible to the report server
for a threshold t = 4 and depth ℓ = 4. The numbers in the
boxes correspond to the number of reports associated with the
adjacent end nodes. Here, only a single measurement “Hello”
exceeds the threshold.

Theorem statement. We state the security of POPSTAR
below. See Section A for the formally stated theorem, the
analogous theorem for the robust variant, and the proofs.

Theorem 1 (Informal). The protocol described in Section 5
UC-realizes the functionality Freport in the random oracle
model, against a malicious adversary that statically corrupts
at most one of the servers S,O and any number of colluding
clients.

6.2 Leakage Comparisons with Prior Work
This section compares our leakage profile, formally captured
by our ideal functionality, to that of prior works, and offers
a heuristic evaluation of the profile. It is helpful to refer to
Figure 8, which illustrates an example of the prefix tree visible
to the server.

Comparison with [19] (STAR). We first consider the case
where only the report server S is corrupted, without any col-
luding clients. Every report in STAR contains a tag deter-
ministically computed from the measurement s. The server
learns an unlabeled histogram of the reported measurements
by grouping them according to their tags.

While POPSTAR’s leakage profile is complex, and could
lead to more refined leakage abuse attacks, here we discuss
the simplest type of inference attack which exploits the re-
port counts for the end nodes in the prefix tree, and attempts
to reconstruct the frequency histogram leaked by STAR. In
general, because measurements are assigned to uniformly ran-
dom paths, the deeper an end node in the tree, the more likely
its count is attributed to reports for a single measurement.
However, we argue that in POPSTAR many end nodes repre-
sent counts coming from reports for different signals, and this
therefore strictly reduces leakage.

11

To verify this experimentally, we sample 1,000,000 reports
from a Zipf power-law distribution with a support N = 10,000
and parameter s = 1.03, matching the evaluation settings in
Section 7 and in [19]. In Table 1, we report the number of
end nodes in the prefix tree of POPSTAR, (excluding the leaf
nodes for actual heavy hitters,) and compare against the num-
ber of non-heavy hitter report groups formed in STAR. We
also report the number of end nodes whose count is attributed
to a single measurement (denoted “exact counts”) in Table 1.

t = 10,000 t = 1000 t = 100
Groups (STAR) 9990 9899 9059

End nodes (POPSTAR) 175 1071 4568
Exact counts (POPSTAR) 19 167 2120

Table 1: Leakage comparison between STAR and POPSTAR
(with ℓ= 16). A group in STAR leaks the exact count of a non-
heavy hitter. An end node in POPSTAR leaks the combined
count of ≥ 1 non-heavy hitters. The end nodes leaking 1 non-
heavy hitter are called exact counts.

In the above experiment setting, increasing ℓ from 1 to 16
leads to a decrease in the number of end nodes. Increasing ℓ
beyond 16 doesn’t change the numbers anymore.

From Table 1, we observe POPSTAR is most effective at
leakage reduction at high thresholds. At a 0.1% threshold
(t = 1000), which is the main setting considered by STAR
and Poplar, STAR leaks the exact counts of 9899 non-heavy
hitters, while POPSTAR leaks only 1071 (∼ 1/10) combined
counts. Among them, only 167 (∼ 1/7) are exact counts.

Finally, we briefly note that in POPSTAR, a corrupted
server S, with each colluding client, may actively cause a
path on the prefix tree to leak. In the worst case, i.e., when
the leaked path corresponds to a non-heavy hitter reported by
honest clients, this causes ≤ ℓ leaked end nodes. Otherwise,
the leaked path is likely to only overlap with the prefix tree
at top levels, causing few leaked end nodes. In practice, the
attack can be further mitigated by other means, such as rate
limiting measures in the server O.

Leakage comparison with [13] (Poplar). We compare
with the leakage of Poplar when one of its report servers is
corrupted. Similar to POPSTAR, each client’s report in Poplar
is mapped to a path of an ℓ-level binary tree, and the corrupted
server learns the count on every node whose count is > t, and
the counts on its two children.

The difference in leakage between Poplar and POPSTAR
lies in how a measurement s is mapped to a path. In the
main variant of Poplar, the path of s corresponds to the bits
of s. The leakage is exactly the counts of heavy hitter pre-
fixes of reported measurements, which can sometimes be
dangerous. Consider an example borrowed from [19], where
the measurements are country names, and a heavy hitter is
’united states’ with count 4. A leaked prefix ’united’

with a count 5 indicates the existence of a non-heavy hitter
among only a few possibilities (e.g., ’united kingdom’).

In the (slower) hashing variant ([13], Appendix B), the path
of s is a public hash H(s). The leakage is the counts of heavy
hitter prefixes of hashes of the measurements, which is much
safer. Still, a possible attack from the corrupted server is to
locally evaluate H(·) and try matching possible measurements
to the leaked prefixes.

In POPSTAR, the path of s is an oblivious PRF evaluation
F(sk,s), where the secret key sk is known only to the server
O. The corrupted server S cannot evaluate F(sk, ·), hence the
local attack described above is also prevented.

Finally, we briefly note that in Poplar, a corrupted report
server may actively, and adaptively, cause nodes on the prefix
tree to leak. This is because the prefix tree is interactively
reconstructed from the root by the two servers. For each node
with count > t, the servers continue to reconstruct its two chil-
dren. A corrupted server may arbitrarily inflate the count of
any node, causing its two children to be leaked. The only re-
striction is that the total (inflated) counts of each level cannot
exceed M.

6.3 Adding Differential Privacy Heuristically
In the setting where each client reports only its measure-
ment without any associated messages, we propose a heuristic
mechanism that we conjecture satisfies a meaningful notion
of differential privacy 4 for sufficiently large M and when the
threshold t = O(M) is a constant fraction of M. We leave it
as an important open question to analyze this method, and/or
to provide attacks.

The idea is to let each client, in addition to the report of its
actual measurement, send up to two fake reports:

1. with probability p = O(1/M), send a fake report of
its measurement (i.e., reporting the same measurement
twice);

2. send a fake report of a random λ-bit measurement.

For a measurement with an actual count c, the fake reports
may inflate the count to c′ = c · (1+ p)+O(λ). To counter
act the inflation, we increase the original threshold t to t ′ =
t · (1+ p)+O(λ).

We provide some intuitions for the conjectured privacy.
First consider a report of some measurement s with an (in-
flated) count c′ > t ′. The leakage with respect to this report
is exactly the count c′, which contains at least a noise of
Bin(t, p) = Bin(O(M),O(1/M)) contributed by the type-(1)
fake reports, where Bin(t, p) denotes the binomial distribution
with t trials and probability p.

Next consider a report of some s with a count c′ ≤ t ′. The
leakage with respect to this report is the count on a leaked

4the mechanism may still reduce the leakage to a corrupted server S even
if we can not prove it provides differential privacy.

12

inner node at some depth d. If c′ is still relatively large,
c′ > t ′/2, then the leakage still contains at least a noise of
Bin(t/2, p) = Bin(O(M),O(1/M)).

If the count c′ of s is small, c′ < t ′/2, we will argue that
with 1−O(λ/M) probability, the leaked inner node is at a low
depth d < log(4M). In this case, each type-(2) fake report
of a random measurement has a chance 2−d > 1/(4M) of
being mapped also to this leaked node. They contribute to
at least a noise of Bin(M,1/(4M)) = Bin(O(M),O(1/M)) to
the leaked count of the inner node.

It remains to analyze the probability that the leaked inner
node for s has depth d > log(4M). Recall that such a leaked
inner node is a child of a revealed parent node at depth d−
1 > log(2M). Multiple measurements, including s, with a
total count > t ′ are mapped to this parent node. That is, s
is mapped onto the same length-(d− 1) path together with
other measurements with a total count of > t ′/2. We further
distinguish two cases, at least one of which must happen.

1. More than λ other measurements are mapped to the
length-(d − 1) path together with s. Let this number
be k > λ. Then this case happens with probability(M

k

)
/2(d−1)·k < (M/2(d−1))k < 2−k < 2−λ.

2. At least 1 other measurement with count > t ′/(2λ)
is mapped to the length-(d − 1) path together with s.
As there are at most M/(t ′/2λ) = O(λ) such measure-
ments, this case happens with probability O(λ)/2d−1 =
O(λ/M).

In summary, for a report of some measurement s, the
relevant leakage in our system is the number of actual
report of s plus at least a binomial noise of parameter
Bin(O(M),O(1/M)) contributed by the fake reports. We con-
jecture that such noises are enough to hide the contribution of
any single report.

7 Evaluation

We implement (in C++) the clients and the report server S
following the (non-robust) protocol in Figure 2 and 3. We
leave out implementing the oblivious double PRF protocol
(Figure 4) and its simpler variant for oblivious PRF since they
are straightforward compositions of standard tools, garbled
circuit (GC) and oblivious transfer (OT). We estimate their
running times based on existing benchmarks [31].

Our client implementation calls dummy functions locally
to emulate the interfaces ODPRF and OPRF, and our bench-
marks exclude computation times of the dummy functions.

7.1 Implementation Details
Concretely, we choose F = GF(2128), and use the NTL5 li-
brary for polynomial evaluation and interpolation over F.

5https://libntl.org/

We use SHA-256 to implement the two hash func-
tions Hs,Hp in the protocol, and use AES-GCM with
128-bit keys to implement the symmetric key encryption
scheme (Enc,Dec). To ensure the encryption scheme is key-
committing [2], we always append a 96-bit vector 0 to the
encrypted messages. We use the CryptoPP 6 library for the
above cryptographic primitives.

All benchmarks are run using a desktop machine with
32 Gigabyte of memory and a Ryzen 7 3800x CPU. Our
prototype implementations run only on a single thread. For
computation time measurements, we report an average over
10 experiment runs.

Client measurement sampling. We follow the same sam-
pling process as in [19] (STAR) to sample measurements from
a Zipf power-law distribution with a support of N = 10,000
and parameter s = 1.03. Each client’s report contains a sam-
pled 256-bit measurement and a 256-byte message.

Choosing the leakage parameter ℓ. Concretely, we bench-
mark two choices. As discussed in Section 6.2, choosing
ℓ = 16 is optimal for the setting of 1,000,000 reports sam-
pled from a Zipf power-law distribution with a support of
N = 10,000 and parameter s = 1.03. We also benchmark a
more conservative choice ℓ= 32, which will be more suitable
when the reports are sampled from a much larger support.

7.2 Communication Costs

Each client’s communication with the server O consists of
two parts: (1) receiving garbled circuits (GC) for double-PRF
and PRF evaluations v(1), . . . ,v(d), and u; (2) running λ 1-out-
of-2 OT with λ-bit strings as the receiver to obtain input keys
Kx for evaluating the GCs.

The former has size 861 · (ℓ + 2) · 1.5 · λ bits using
LowMC [3] as our choice of PRF, and [34], our choice of
GC. The latter is much smaller compared to the former. We
report concrete GC sizes in Table 2.

Each client’s communication with the server S consists
only of its report, which contains two field elements in the
clear, ℓ encryptions of field element and tag pairs, and a final
encryption of the client’s measurement and message. We
report concrete report sizes in Table 2.

ℓ= 16 ℓ= 32
GC size (KB) 363.23 686.11

Report Size (KB) 1.49 2.62

Table 2: Communication sizes of a client with the randomness
serverO (first row), and with the report server S (second row).

6https://www.cryptopp.com/

13

(a) Client report generation time. (b) Server comp. time, t = 100. (c) Server comp. time, t = 1000. (d) Server comp. time, t = 10000.

Figure 9: The computation times for each client and the report server S.

Client inter-
action w/ O

Client com.
w/ S

Client
comp.

Server S
comp.

STAR 1 round 0.45 (KB) 0.33* (ms) 20 (s)
POPSTAR 2 rounds 1.49 (KB) 2.43* (ms) 136.1 (s)

Table 3: Comparison between STAR (with 129-bit field) and
POPSTAR (with ℓ= 16) for 1 million reports and a threshold
t = 1,000 (0.1%). The client computation time (*) for STAR
excludes the VOPRF verification time. The client computa-
tion time (*) for POPSTAR contains an estimated cost for GC
evaluation based on [31].

7.3 Computational Costs

Client computation time. Client computation has two parts
(Figure 2, and 4): (1) evaluating the GCs received from the
server O; (2) computing its report using the evaluations.

We estimate the cost of GC evaluation in (1) based on
existing benchmarks in [31]. In more detail, Table 6 of [31]
reports 0.305 ms for evaluating the AES-128 circuit with
(1280 + 5120) = 6400 AND gates garbled with [34]. We
estimate the evaluation cost as 47.7 ns per gate, and the time
for (1) as 0.74 ms when ℓ= 16, and 1.40 ms when ℓ= 32.

We benchmark the cost of (2) for thresholds t = 200 to
t = 1,000, i.e. 0.1% of 200,000 to 1,000,000 reports, and
plot the combined computation cost of both steps in Figure 9a.
We observe the computation cost of step 2 increases linearly
with t, which comes from expanding the double PRF and PRF
evaluations v(1), . . . ,v(ℓ),u into degree t +1 polynomials, and
computing their evaluations at a random point.

Server computation times. The computation cost of the
server O consists mainly of preparing garbled circuits for
each client. We estimate this garbling cost per client similarly
based on the benchmarks in [31] as 1.06 ms when ℓ= 16, and
1.99 ms when ℓ= 32.

We benchmark the computation cost of the server S for
aggregating m= 200,000 to m= 1,000,000 reports, and with
thresholds at 0.01%, 0.1%, and 1% respectively. The results
are plotted in Figure 9.

Computation costs of OT The above computation times for
each client and the server O exclude the costs of running λ =
128 OTs where the client is the receiver and the serverO is the
sender. Assuming the state-of-art protocol of [16], the main
computation costs are 2λ and 2+λ group exponentiations for
the receiver and the sender respectively.

While the computation costs of group exponentiations
(∼ 0.1ms each) are significant, we argue that they are categor-
ically different from the rest of the costs that we benchmark.
The OT protocol consists of two round trips, 7 and the group
exponentiations happen in between. In the end-to-end running
time of λ parallel OT protocols, the computation times are
insignificant compared to the network latency (e.g., ∼ 50ms
between AWS datacenters 8). In contrast, the rest of the com-
putations we benchmark above happen entirely locally.

Finally, we also note that the group exponentiations dur-
ing λ OT protocols can be completely parallelized via multi-
threading, while the rest of our benchmarked costs are not
straightforwardly parallelizable.

7.4 Comparing with STAR

In Table 3 we show the comparison in the setting of 1 million
reports with a threshold t = 1,000 (0.1%). Overall, POPSTAR
significantly reduces the leakage of STAR, at the cost of mod-
erately (within 8×) increasing the computation times of each
client and the report server S. Each report in POPSTAR is
roughly 3× larger than in STAR.

Admittedly, each client’s interaction with the randomness
server O is significantly heavier in POPSTAR, both com-
munication wise and computation wise due to our oblivious
double PRF protocol based on GC and OT. However, we ar-
gue that the end-to-end running time of this interaction is
bottlenecked by network latency rather than communication
size or computation time. In POPSTAR, the oblivious dou-
ble PRF protocol requires two round trips, assuming the OT
protocol of [16], while in STAR the oblivious PRF protocol

7The first sender OT message in the protocol of [16] can be reused across
different OT instances. Assuming a PKI setup where every client learns this
message from the server O, we only need 1 round trip for each OT protocol.

8according to https://www.cloudping.co/grid

14

requires only one round trip. Therefore, we estimate each
client’s interaction with the server O to be 2× to 3× slower
than in STAR. Finding a more efficient oblivious double PRF
protocol is an intriguing direction for future work.

We note that in [19], the authors implemented STAR us-
ing the partially oblivious verifiable PRF protocol of [36].
The added verifiability in STAR lets a client detect whenever
the randomness server deviates from the protocol and abort
early, while the partially oblivious feature is not used. Our
non-robust system uses an oblivious PRF without verifiability,
hence gives up clients’ ability to detect a malicious random-
ness server. To make the comparison fair, we exclude the
verification time (0.301 ms) from the reported client compu-
tation time of STAR.

7.5 Comparing with Poplar
POPSTAR achieves a similar leakage profile to the hashing
variant of Poplar ([13], Appendix B), while reducing the
aggregation time dramatically. Note that the authors of [13]
only benchmarked the more efficient variant without hashing.
We use those reported numbers as an optimistic estimate for
their hashing variant to compare with our system.

According to the benchmarking results in [13], the end-
to-end running time for aggregating 1 million reports with
a threshold t = 1,000 takes roughly 2 hours. In comparison,
it only takes POPSTAR report server S roughly 2 minutes,
i.e., 60× faster. Communication wise, each client needs to
communicate 364.72 KB in total in our system, which is
roughly 5× higher than in Poplar (70 KB).

8 Related Work

We briefly discuss alternative approaches (that does not rely
on generic MPC) to privately compute heavy hitters.

Single server aggregation. Single server aggregation sys-
tems [8, 9, 12, 27, 28] allow the server to securely compute
the sum of the clients’ inputs. Melis et al. [29] shows that
these systems can compute approximate heavy hitters using
the count-min sketch data structure [17]. A drawback of these
systems is that they require multiple rounds of interaction,
hence need to tolerate client dropouts.

Out-sourced MPC. A common paradigm is to let each
client secret share its input to multiple (≥ 2) servers, who
then runs a secure protocol to compute heavy hitters. A sub-
class of such systems [1, 13, 18] (with two non-colluding
servers) is formulated in [20] as verifiable distributed aggre-
gation functions (VDAF). Their server protocols involve (1)
a parallelizable phase where the shares are verified, and (2)
a final phase where heavy hitters are computed. Other sys-
tems that do not fit the VDAF model include [7, 33, 35] (with

two servers), and [11, 21, 24, 30] (with three servers). A chal-
lenge in deploying these systems is enlisting external entity(s)
trusted not to be colluding, and willing to process the same
workload as the provider.

Two non-communicating servers. STAR [19], as well as
POPSTAR, involves two non-colluding servers that do not
communicate with each other. One server, upon requests, pro-
vides randomness for clients to compute their reports. The
other receives reports from the clients and computes the heavy
hitters locally. To break the link between reports and clients,
an abstract mixing server may be implemented as a buffer
between the clients and the report server.

Randomized response. The systems for private analytics
based on randomized response [5,6,14,32,37,38] involve each
client just sending a message to a single server. A downside of
these systems is that the clients’ messages leak non-negligible
amount of information about the their private inputs.

9 Conclusions

In this work, we have introduced POPSTAR, a threshold re-
porting system in the two server model, following the same
architecture as STAR [19], and reducing its leakage at a mod-
erate cost. Our prototype implementation is able to aggregate
1 million reports in ∼ 2 minutes (roughly 7× longer than
STAR, but still within feasible range).

We provide an ideal functionality definition that captures
the leakage in POPSTAR precisely, and a heuristic evaluation
of this leakage profile. However, we believe further leakage
analysis (both for POPSTAR and for STAR/Poplar) is needed
to better understand leakage-abuse attacks. We pose this as an
important open direction for future work which goes beyond
the scope of this work.

Acknowledgements

Hanjun Li was supported by a NSF grant CNS-2026774 and
a Cisco Research Award.

Stefano Tessaro was supported in part by NSF grants
CNS-2026774, CNS-2154174, a JP Morgan Faculty Award, a
CISCO Faculty Award, and a gift from Microsoft.

References

[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky,
and Antigoni Polychroniadou. Prio+: Privacy preserv-
ing aggregate statistics via boolean shares. In Clemente
Galdi and Stanislaw Jarecki, editors, Security and Cryp-
tography for Networks - 13th International Conference,

15

SCN 2022, Amalfi, Italy, September 12-14, 2022, Pro-
ceedings, volume 13409 of Lecture Notes in Computer
Science, pages 516–539. Springer, 2022.

[2] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl,
Atul Luykx, and Sophie Schmieg. How to abuse and fix
authenticated encryption without key commitment. In
Kevin R. B. Butler and Kurt Thomas, editors, USENIX
Security 2022, pages 3291–3308. USENIX Association,
August 2022.

[3] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 430–454. Springer, Heidelberg, April
2015.

[4] Apple and Google. Exposure notification privacy-
preserving analytics (enpa) white paper, 2021.
Available at https://covid19-static.cdn-apple.
com/applications/covid19/current/static/
contact-tracing/pdf/ENPA_White_Paper.pdf.

[5] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. J. Mach. Learn. Res., 21:16:1–16:42, 2020.

[6] Raef Bassily and Adam D. Smith. Local, private, ef-
ficient protocols for succinct histograms. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC,
pages 127–135. ACM Press, June 2015.

[7] James Bell, Adrià Gascón, Badih Ghazi, Ravi Ku-
mar, Pasin Manurangsi, Mariana Raykova, and Phillipp
Schoppmann. Distributed, private, sparse histograms in
the two-server model. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 307–321. ACM Press, November 2022.

[8] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu
Li, Sarah Meiklejohn, Mariana Raykova, and Cathie
Yun. ACORN: input validation for secure aggregation.
In Joseph A. Calandrino and Carmela Troncoso, edi-
tors, 32nd USENIX Security Symposium, USENIX Secu-
rity 2023, Anaheim, CA, USA, August 9-11, 2023, pages
4805–4822. USENIX Association, 2023.

[9] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón,
Tancrède Lepoint, and Mariana Raykova. Secure single-
server aggregation with (poly)logarithmic overhead. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1253–1269. ACM
Press, November 2020.

[10] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George

Danezis, and Virgil D. Gligor, editors, ACM CCS 2012,
pages 784–796. ACM Press, October 2012.

[11] Jonas Böhler and Florian Kerschbaum. Secure multi-
party computation of differentially private heavy hitters.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS
2021, pages 2361–2377. ACM Press, November 2021.

[12] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1175–
1191. ACM Press, October / November 2017.

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. In 2021 IEEE Symposium on
Security and Privacy, pages 762–776. IEEE Computer
Society Press, May 2021.

[14] Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy
hitters and the structure of local privacy. ACM Trans.
Algorithms, 15(4):51:1–51:40, 2019.

[15] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October
2001.

[16] Tung Chou and Claudio Orlandi. The simplest protocol
for oblivious transfer. In Kristin E. Lauter and Francisco
Rodríguez-Henríquez, editors, LATINCRYPT 2015, vol-
ume 9230 of LNCS, pages 40–58. Springer, Heidelberg,
August 2015.

[17] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. In Martin Farach-Colton, editor, LATIN
2004, volume 2976 of LNCS, pages 29–38. Springer,
Heidelberg, April 2004.

[18] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In Aditya Akella and Jon Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, pages 259–282. USENIX Association, 2017.

[19] Alex Davidson, Peter Snyder, E. B. Quirk, Joseph
Genereux, Benjamin Livshits, and Hamed Haddadi.
STAR: Secret sharing for private threshold aggregation
reporting. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 697–710.
ACM Press, November 2022.

16

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

[20] Hannah Davis, Christopher Patton, Mike Rosulek, and
Phillipp Schoppmann. Verifiable distributed aggregation
functions. Proc. Priv. Enhancing Technol., 2023(4):578–
592, 2023.

[21] F. Betül Durak, Chenkai Weng, Erik Anderson, Kim
Laine, and Melissa Chase. Precio: Private aggregate
measurement via oblivious shuffling. Cryptology ePrint
Archive, Paper 2021/1490, 2021. https://eprint.
iacr.org/2021/1490.

[22] Tim Geoghegan, Christopher Patton, Brandon Pitman,
Eric Rescorla, and Christopher A. Wood. Distributed
Aggregation Protocol for Privacy Preserving Measure-
ment. Internet-Draft draft-ietf-ppm-dap-09, Internet
Engineering Task Force, December 2023. Work in
Progress.

[23] Sharon Huang, Subodh Iyengar, Sundar Jeyara-
man, Shiv Kushwah, Chen-Kuei Lee, Zutian
Luo, Payman Mohassel, Ananth Raghunathan,
Shaahid Shaikh, Yen-Chieh Sung, and Albert Zhang.
DIT: Deidentified authenticated telemetry at scale,
2021. Technical report, Facebook Inc., https://
research.fb.com/wp-content/uploads/2021/04/
DIT-DeIdentified-Authenticated-Telemetry-at-Scale_
final.pdf.

[24] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita
Patra, Bhavish Raj Gopal, and Somya Sangal. Vogue:
Faster computation of private heavy hitters. Cryptol-
ogy ePrint Archive, Report 2022/1561, 2022. https:
//eprint.iacr.org/2022/1561.

[25] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Heidelberg, December 2014.

[26] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

[27] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and
Stefano Tessaro. LERNA: secure single-server aggre-
gation via key-homomorphic masking. In Jian Guo
and Ron Steinfeld, editors, Advances in Cryptology -
ASIACRYPT 2023 - 29th International Conference on
the Theory and Application of Cryptology and Informa-
tion Security, Guangzhou, China, December 4-8, 2023,
Proceedings, Part I, volume 14438 of Lecture Notes in
Computer Science, pages 302–334. Springer, 2023.

[28] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Poly-
chroniadou, and Tal Rabin. Flamingo: Multi-round
single-server secure aggregation with applications to
private federated learning. In 2023 IEEE Symposium on
Security and Privacy, pages 477–496. IEEE Computer
Society Press, May 2023.

[29] Luca Melis, George Danezis, and Emiliano De Cristo-
faro. Efficient private statistics with succinct sketches.
In NDSS 2016. The Internet Society, February 2016.

[30] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios
Tsoutsos. PLASMA: Private, lightweight aggregated
statistics against malicious adversaries with full secu-
rity. Cryptology ePrint Archive, Report 2023/080, 2023.
https://eprint.iacr.org/2023/080.

[31] Erik Pohle, Aysajan Abidin, and Bart Preneel. Fast eval-
uation of s-boxes with garbled circuits. IACR Cryptol.
ePrint Arch., page 1278, 2022.

[32] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Heavy hitter estimation over set-valued
data with local differential privacy. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages
192–203. ACM Press, October 2016.

[33] Mayank Rathee, Conghao Shen, Sameer Wagh, and
Raluca Ada Popa. ELSA: Secure aggregation for fed-
erated learning with malicious actors. In 2023 IEEE
Symposium on Security and Privacy, pages 1961–1979.
IEEE Computer Society Press, May 2023.

[34] Mike Rosulek and Lawrence Roy. Three halves make
a whole? Beating the half-gates lower bound for gar-
bled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages
94–124, Virtual Event, August 2021. Springer, Heidel-
berg.

[35] Kunal Talwar, Shan Wang, Audra McMillan, Vo-
jta Jina, Vitaly Feldman, Bailey Basile, Áine Cahill,
Yi Sheng Chan, Mike Chatzidakis, Junye Chen, Oliver
Chick, Mona Chitnis, Suman Ganta, Yusuf Goren, Filip
Granqvist, Kristine Guo, Frederic Jacobs, Omid Javid-
bakht, Albert Liu, Richard Low, Dan Mascenik, Steve
Myers, David Park, Wonhee Park, Gianni Parsa, Tommy
Pauly, Christian Priebe, Rehan Rishi, Guy N. Rothblum,
Michael Scaria, Linmao Song, Congzheng Song, Karl
Tarbe, Sebastian Vogt, Luke Winstrom, and Shundong
Zhou. Samplable anonymous aggregation for private
federated data analysis. CoRR, abs/2307.15017, 2023.

[36] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sul-
livan, Stefano Tessaro, and Christopher A. Wood. A fast
and simple partially oblivious PRF, with applications.

17

https://eprint.iacr.org/2021/1490
https://eprint.iacr.org/2021/1490
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-DeIdentified-Authenticated-Telemetry-at-Scale_final.pdf
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2023/080

Functionality FF,ℓ
dPRF

The functionality runs with

• a client P;

• a randomness server O.

Honest Interface:

1. Upon receiving (sk,sid) from the server O, store it.

2. Upon receiving (x,sid) from a client P:

• First evaluate u = F(sk,x). Let u(d) denote its
length d prefix (with appropriate padding).

• Next evaluate v(d) = F(sk,u(d)) for d ∈ [ℓ].

Send (v(1), . . . ,v(ℓ)) to P as its output.

Corrupted randomness server O:
Upon receiving (x,sid) notify the adversary, who replies
with a circuit C∗ : {0,1}λ→ {0,1}ℓ×λ. Send C∗(x) to P
as its output.

Figure 10: The functionality modeling the ODPRF interface.
(An analogous functionality models the OPRF interface.)

In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS,
pages 674–705. Springer, Heidelberg, May / June 2022.

[37] Mingxun Zhou, Tianhao Wang, T.-H. Hubert Chan, Giu-
lia Fanti, and Elaine Shi. Locally differentially private
sparse vector aggregation. In 2022 IEEE Symposium on
Security and Privacy, pages 422–439. IEEE Computer
Society Press, May 2022.

[38] Wennan Zhu, Peter Kairouz, Brendan McMahan,
Haicheng Sun, and Wei Li. Federated heavy hitters
discovery with differential privacy. In Silvia Chiappa
and Roberto Calandra, editors, The 23rd International
Conference on Artificial Intelligence and Statistics, AIS-
TATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy], volume 108 of Proceedings of Machine Learning
Research, pages 3837–3847. PMLR, 2020.

A Security Proofs

The universal composability (UC) framework. In the UC
framework [15], we capture the security goals of POPSTAR
with an ideal functionality Freport. The functionality defines
an ideal protocol execution, where an environmentZ provides
inputs to and reads outputs from the participants. And the
participants simply forward their inputs to and receive outputs
from Freport as specified in the honest interface (Figure 5).

Functionality FM
mix

The functionality runs with

• up to M clients P1,P2, . . .;

• an aggregation server S.

Honest Interface:

1. Upon receiving (Ri,sid) from a client Pi, store it.

2. Upon receiving (collect,sid) from the server S , shuffle
stored client messages randomly and send them to the
server S.

Figure 11: The functionality modeling the Mix interface.

Functionality FF
VOPRF

The functionality runs with

• a client P;

• a randomness server O.

Honest Interface:

1. Upon receiving (sk,sid) from the server O, store it.

2. Upon receiving (x,sid) from a client P: evaluate u =
F(sk,x) and compute a proof πx ← Prove(sk,u,x).
Send u,π to P as its output.

Corrupted randomness server O:
Upon receiving (i,x,sid) notify the adversary, who replies
with either (abort) or (ok). FVOPRF sends ⊥ to Pi in the
former case, and proceeds honestly in the latter case.

Figure 12: The functionality modeling the VOPRF interface.

The ideal adversary/simulator Sim does not directly corrupt
the participants. In our setting of a static corruption, Sim
lets Freport know of the subset of corrupted participants in
the beginning, and then interacts with Freport only according
to the corresponding adversarial interface (Figure 6 and 7).
How much information is leaked to Sim, as well as what
adversarial influences are allowed from Sim, are completely
specified by the adversarial interfaces. The environment Z
also communicates with Sim freely throughout the protocol
execution.

To prove the security of the protocol πreport, we need to
show that the ideal protocol specified above emulates a real
protocol execution with an adversary A controlling corrupted
participants, the honest participants, and the environment Z .
We describe the real protocol execution, and the meaning of
emulation below.

18

In the real protocol execution, the environment Z provides
inputs to and reads outputs from the actual protocol partici-
pants. An adversary A decides a subset of corrupted partici-
pants in the beginning, and controls them throughout the pro-
tocol. The environment Z also communicates with A freely
throughout the protocol execution.

We say that an ideal protocol execution with an ideal adver-
sary Sim emulates a real protocol execution with an adversary
A, if no environment Z can tell whether it’s interacting in
the ideal or the real protocol. We say the protocol πreport UC-
realizes the functionality Freport if for all efficient adversary
A, there exists an efficient ideal adversary Sim such that the
ideal protocol with Sim emulates the real protocol with A.

Formally, let IDEALFreport,Sim,Z and RealFreport,A,Z de-
notes the output of an environment after interacting in the
ideal and the real protocol. We require that for all efficient A,
there exists an efficient Sim such that for all efficient Z:

IDEALFreport,Sim,Z ≈c Realπreport,A,Z .

The UC framework allows for a modular presentation of
protocols, thanks to the universal composition theorem. Con-
sider an inner protocol πin that UC-realizes an inner function-
ality Fin, and an outer protocol πout that has access to copies
of Fin and UC-realizes another outer functionality Fout. The
composition theorem state that the composition of πout and
πin, i.e., replacing each copy ofFin with an instance of πi, still
UC-realizes Fout.

Theorem statements. The security of the non-robust vari-
ant of POPSTAR is captured by the Freport functionality
(Section 6.1). Towards a more modular proof, we model
the ODPRF interface used in the protocol as a functional-
ity FdPRF (Figure 10), the OPRF interface as the analogous
and simpler variant of FdPRF, and the Mix interface as Fmix

(Figure 11).
We prove Theorem 1 in Section A.1 and Theorem 2 in

Section A.2.

Theorem 1. For all polynomials M, t < M, and for all ℓ < λ,
the protocol in Section 5 UC-realizes the functionality FM,t,ℓ

report

in the (FdPRF,FOPRF,Fmix)-hybrid model, and in the random
oracle (RO) model, in the presence of malicious adversaries
who statically corrupts at most one of the servers, and any
number of clients.

Theorem 2. For all polynomial time computable functions F :
{0,1}λ×{0,1}λ→{0,1}λ, and ℓ < λ, the protocol ODPRF
(Figure 4) UC-realizes the functionality FF,ℓ

dPRF in the FOT-
hybrid model, in the presence of malicious adversaries and
static corruptions.

The security of the robust variant of POPSTAR is captured
by a functionality Freport,robust that’s identical to Freport, but
without the (path∗,damage,sid) command specified in Fig-
ure 7. We model the VOPRF interface used for the robust

protocol as FVOPRF (Figure 12), which is parameterized by a
PRF F : {0,1}λ×{0,1}λ→ {0,1}λ that is augmented with
three algorithms:

• KeyGen(1λ)→ (pk,sk): outputs a public key and a se-
cret key sk,pk ∈ {0,1}λ.

• Prove(sk,x)→ πx: outputs a proof that u is computed as
u = F(sk,x). The proof leaks nothing about sk.

• Verify(pk,u,x,πx): verifies u is computed correctly from
x.

As explained at high-level in Section 5.3, the functionality
FVOPRF can be implemented using any existing verifiable
oblivious PRF (VOPRF) protocol.

We omit the proof of Theorem 3, which is largely the same
as the non-robust variant, with the differences intuitively ex-
plained in Section 5.3.

Theorem 3. For all polynomials M, t < M, and for all ℓ < λ,
the robust variant in Section 5.3 using a verifiable PRF proto-
col (VOPRF) and a polynomial commitment (PC) scheme UC-
realizes the functionality FM,t,ℓ

report,robust in the (FdPRF,FVOPRF,
Fmix)-hybrid model, and in the random oracle (RO) model, in
the presence of malicious adversaries who statically corrupts
at most one of the servers, and any number of clients.

A.1 Proof of Theorem 1
We describe an ideal adversary Sim that externally interacts
with the functionality Freport and the environment Z , while
internally simulates a protocol execution with an instance
of the adversary A. When interacting with Z , Sim simply
forwards all communication between A and Z .

A.1.1 When Clients and the Server S Are Corrupted

Sim’s tasks in the internally simulated protocol with A are
the following:

1. During the reporting phase, Sim plays the roles ofFdPRF

and FOPRF by answering queries from each corrupted
client Pi.

2. During the reporting phase and the aggregation phase,
Sim plays the role of Fmix by accepting reports from
corrupted clients, and then sending them, together with
simulated reports for honest clients, to the corrupted
server S.

3. Throughout the protocol, Sim plays the roles of the ran-
dom oracles HE , Hs and Hp by answering queries from
corrupted clients and the server S.

Task (3) is straightforward: Sim maintains random tables
tbE , tbs, tbp to answer the corresponding random oracle
queries. We describe the behaviors of Sim for (1) and (2),
as well as its interactions with Freport below.

19

Answer queries asFdPRF andFOPRF. In the simulated pro-
tocol, the FdPRF and FOPRF answers to some query x = Hs(s)
decides how an honest client’s report of s will be grouped
together with other reports. In the ideal protocol, such group-
ing information is captured by the prefix tree T maintained
by Freport. The goal for Sim is to simulate FdPRF and FOPRF

answers consistently with T , through interacting with Freport

using messages (i,s, inner,sid) and (i,s′, leaf,sid).
In more detail, Sim first initializes an ℓ-level binary tree T̃ ,

where each node may be assigned a λ-bit value v.

• For every query x to FdPRF from a corrupted client Pi,
search tbs to find s such that tbs[s] = x. If x is not in tbs,
sample a random s← {0,1}λ and set tbs[s] = x. Send
(i,s, inner,sid) to Freport and obtain paths as the leakage.

For each node specified by paths on T̃ , assign a random
value v←{0,1}λ to it, if there is no values assigned yet.
The ℓ values corresponding to paths is the answer to Pi.

• For every query x′ to FOPRF from a corrupted Pi, sim-
ilarly find s′ such that tbs[s′] = x′ as above. Send
(i,s′, leaf,sid) to Freport and obtain the location of a leaf
node as the leakage.

Add the leaf node to T̃ if it’s not added yet, assign a
random value u to it. The value u is the answer to Pi.

Simulate honest clients’ reports. The goal for Sim is to
simulate honest clients’ reports consistently with the prefix
tree T maintained by Freport, according to both the leakage
and the aggregation results from Freport in the end.

The leakage consists of the stored counts on a subset of
paths and leaves of T . The aggregation results consists of
the measurement s and associated messages stored on a sub-
set of the leaked leaves. Sim stores the leaked counts to the
corresponding nodes on T̃ , and the revealed measurements
and associated messages to the corresponding leaves. Since
only a subset of leaked leaves have revealed measurements
and messages, Sim stores dummy values to the remaining
leaked leaves. Sim also makes sure each leaked node on T̃ is
assigned a random λ-bit value, if not already.

We call the last node of each leaked path an end node. The
counts on all leaked end nodes sum exactly to the number of
honest clients’ reports Sim needs to simulate. For each leaked
path, with length ℓ′ ≤ ℓ and a count w on its end node, Sim
simulates a group of w honest clients’ reports as follows.

• For each simulated report, use the ℓ′ assigned values
v(1), . . . ,v(ℓ

′) to compute the first ℓ′−1 ciphertexts as in
the honest protocol (Figure 2). That is, for d = [ℓ′−1],
use the d-th key (derived from v(d)) to encrypt the (d +
1)-th evaluation (derived from v(d+1)).

• If ℓ′ < ℓ, then for each simulated report, compute the
ℓ′-th ciphertext as an encryptions of 0 using the ℓ′-th key

(derived from vℓ
′
), and the remaining ℓ− ℓ′ ciphertexts

as encryptions of 0 using fresh random keys.

The subtree under the current path may include leaked
leaf nodes, whose counts sum to w′ < w. First complete
w′ simulated reports with (ℓ+1)-th ciphertexts encrypt-
ing the leaked measurements and associated messages.
Then complete the remaining w−w′ simulated reports
with (ℓ+1)-th ciphertexts encrypting 0 using fresh ran-
dom keys.

• If ℓ′ = ℓ, the last node on the current path may include
leaked leaf nodes, whose counts sum to w′ < w. First
complete w′ simulated reports for the leaked measure-
ments and messages as in the honest protocol. Then
complete the remaining w−w′ simulated reports as in
the above case.

Sketch of IDEALFreport,Sim,Z ≈c REALπreport,A,Z . It re-
mains to show that any efficient environment Z cannot tell
whether it’s interacting with the adversary A, the server O,
and the honest clients in the real protocol or the internally
simulated A, the dummy server O and the dummy honest
clients in the ideal protocol.

We sketch a series of hybrid experiments that transitions
from the real protocol execution REALπreport,A,Z to the ideal
protocol execution IDEALFreport,Sim,Z .

H0: We recap the real protocol execution with an adversary
A, an honest randomness serverO and the honest clients.

• The experiment maintains tables tbE , tbs, tbp to
answer random oracle queries to HE ,Hs,Hp.

• For each corrupted client, the adversary A may
send two queries for arbitrary x and x′ toFdPRF and
FOPRF and obtain evaluation results v(1), . . . ,v(ℓ)

and u computed as follows.

u = F(sk1,x), // intermediate value

v(d)s = F(sk1,d-th-prefix(u)), us = F(sk2,x′).

• Each honest client with some measurement s com-
putes its report using evaluations v(1), . . . ,v(ℓ),u
computed similarly as above, on the same x =
Hs(s). The client reports are sent to A in one shot,
and shuffled.

H1: In this hybrid, the answers v(1), . . . ,v(ℓ) from FdPRF to a
query x, and u from FOPRF to a query x′ are computed
differently using a prefix tree T̃ and a random table tbx
maintained by the experiment.

• To answer a query x to FdPRF, let pathx = tbx[x] be
a random length-ℓ path, and assign random λ-bit
values to the unassigned node of pathx on T̃ . The
answers are the ℓ values on the nodes of pathx.

20

• To answer a query x′ to FOPRF, add a leaf node
associated to x′ to the end of pathx′ = tbx[x′], if
there isn’t one. Assign a λ-bit random value to this
leaf, and use it as the answer.

• For a query from an honest client, increase the
count on the corresponding nodes on T̃ by 1. For
a query from a corrupted client, mark the corre-
sponding nodes as revealed.
The counts and states stored on T̃ are not used in
this hybrid, but will be used later.

This hybrid is computationally indistinguishable from
the previous by the security of the PRF F .

H2: In this hybrid, the pathx to a query x is computed differ-
ently, using a random table tb maintained by the experi-
ment.

• For each query x, search tbs to find an s such that
tbs[s] = x. If x is not in tbs, then sample a random
s←{0,1}λ and set tbs[s] = x. Let pathx = tb[s].

This hybrid is identical to the previous, except when a
query x exists more than once in tbs, i.e., there exist s,s′

such that tbs[s] = tbs[s′] = x. Since x is a λ-bit string,
this happens with negligible probability.

H3.ℓ+1, . . . ,H3.1: For d ∈ [ℓ+ 1], the d-th ciphertext in the
honest reports are computed differently from the previ-
ous hybrid, i.e., Hd+1 (or H2 when d = ℓ+1).

Recall that each s is mapped to a length-ℓ pathx = tb[s]
on the tree T̃ , and a leaf node at the end of pathx. If the
d-th node on the path has count ≤ t and is not revealed,
then change the d-th ciphertexts in honest clients’ reports
of s to encryptions of 0.

We claim the (common) secret key for computing the
d-th ciphertexts in honest reports of s is distributed ran-
domly, independent of the rest of the experiment. Hence
this hybrid is computationally indistinguishable to the
previous by the IND-CPA security of the encryption
scheme.

We note that H3.1 is identical the ideal protocol
IDEALFreport,Sim,Z . Hence by a hybrid argument, we
conclude IDEALFreport,Sim,Z ≈c REALπreport,A,Z .

In the next two scenarios, showing the indistinguishability
involves a similar series of hybrids H0, . . . ,H2 as above, rely-
ing on the PRF security of F . We omit details in the next two
scenarios.

A.1.2 When Only Clients Are Corrupted

Sim’s tasks in the internally simulated protocol with A are
the following:

1. During the reporting phase, Sim plays the roles ofFdPRF

and FOPRF by answering queries from each corrupted
client Pi.

2. During the reporting phase, Sim also plays the role of
Fmix by accepting reports from corrupted clients.

3. Throughout the protocol, Sim plays the roles of the ran-
dom oracles HE , Hs and Hp by answering queries from
corrupted clients and the server S.

Compared to the previous scenario (Section A.1.1), simulating
the protocol with A is much easier: Task (1) and (3) are
handled similarly, and task (2) is trivial. We briefly note the
difference in Task (1) below.

The more challenging task is emulating the effect of ma-
licious reports received in (2) on the aggregation results, by
interacting with Freport. We describe how Sim checks the
validity of each malicious report in detail below.

Answer queries as FdPRF and FOPRF. Like in Sec-
tion A.1.1, the goal for Sim is to simulate FdPRF and FOPRF

answers consistently with the prefix T maintained by Freport.
Sim initializes an ℓ-level binary tree T̃ , and answer every
query x to FdPRF in the same way as described in Sec-
tion A.1.1.

Sim answers queries x′ to FOPRF differently: it computes
PRF evaluations u = F(s̃k,x′) under a secret key s̃k (sampled
once and for all) as the answers. In the end, for each x′ that’s in
tb, i.e., exists s′ such that tbs[s′] = x′, add a leaf node assigned
with u to the end of paths′ on T̃ .

Emulate the effect of a malicious report R∗i . The goal of
Sim is to examine each report R∗i from a corrupted client Pi,
and emulate its effect on the aggregation results by interacting
with Freport.

Specifically, a correctly computed report is supposed to
be derived from the FdPRF answers already provided by Sim
during the above step, i.e., the λ-bit values already assigned
to the nodes on T̃ . Sim checks the report R∗i against T̃ as
follows.

First, Sim pre-processes each value v assigned to a node on
T̃ by deriving a polynomial and a tag (f , tag) from Hp(v) as
in the honest protocol, and storing (f , tag) on the node.

Next, Sim checks whether the ℓ+1 ciphertexts in R∗i cor-
responds to a path on T̃ . Specifically, for d = 1, . . . , ℓ+ 1,
assuming the first (d−1) ciphertexts indeed corresponds to a
path∗ of length (d−1), Sim checks

• whether the decrypted d-th evaluations (pti,y
(d)
i , tag(d))

correspond to a child of the (current) end node;

• whether the d-th ciphertext ct(d)i can be correctly de-
crypted.

21

In more detail, Sim checks (pti,y
(d)
i , tag(d)) against the cur-

rent end node of path∗ as follows.

1. Check that exists a child node storing (f (d), tag(d)).

If not, the malicious tag(d) will cause the report R∗i to
never be grouped with the honest reports starting from
level d.

To emulate this effect,Sim adds a child node to T̃ , storing
tag(d) and the evaluation (pti,y

(d)
i). If such a node (with

evaluations instead of a polynomial) exists, add (pti,y
(d)
i)

to it. And if there are more than t points, interpolate f (d),
and store f (d) to the node.

2. Check that f (d)(pti) = y(d)i .

If not, the malicious evaluation y(d)i will cause a wrong
interpolation result for the reports grouped by tag(d).
Hence decryptions for the group will fail.

To emulate this effect, Sim sends (path∗,damage,sid) to
Freport, indicating the corresponding end node of path∗

on T is damaged.

3. Try decrypting ct
(d)
i with the key k(d) derived from f (d).

k(d) = f (d)(0), (tag(d+1),y(d+1)
i)← Dec(k(d),ctd

i).

(In the case of d = ℓ+1, the results are s∗,msg∗i instead.)

If decryption fails, the report R∗i will be dropped.

To emulate this effect, Sim sends (path∗,0,sid) to
Freport, indicating an early stop at the corresponding
end node of path∗ on T .

Finally, Sim checks whether the decrypted measurement
s∗ will be consistent with other reports grouped by tag(ℓ+1).
There are two cases.

1. There are honest reports also grouped by tagℓ+1.

This is the case when the tree T̃ , without nodes added
in the previous check, already contains a leaf storing
tag(ℓ+1) at the end of path∗. Sim can efficiently find s by
looking through tbs such that an honest report of s will
be grouped together with R∗i . If s∗ = s, then Sim sends
(path∗,msgi,sid) toFreport, indicating s∗,msg∗i from the
report R∗i is added to the tree T .

If not, reports of s will be skipped. To emulate this effect,
Sim sends (path∗,damage,sid) to Freport, indicating the
corresponding leaf node of path∗ on T is damaged.

2. Only malicious reports are grouped by tag(ℓ+1).

This is the case when the leaf storing tag(ℓ+1) is added
in the previous check. Sim can remember all malicious
measurement s∗ stored on this leaf.

Similar to the above case, if they are all equal, then Sim
sends (path∗,msgi,sid) to Freport. Otherwise, Sim sends
(path∗,damage,sid).

A.1.3 When Clients and the Server O Are Corrupted

Sim’s tasks in the internally simulated protocol with A are
the following:

1. During the reporting phase Sim plays the roles of FdPRF

andFOPRF by interacting with the corrupted randomness
server O, as described in Figure 10.

2. During the reporting phase Sim also plays the role of
Fmix by accepting reports from corrupted clients.

3. Throughout the protocol, Sim plays the roles of the ran-
dom oracles HE , Hs and Hp by answering queries from
corrupted clients and the server S.

Compared to the previous scenario (Section A.1.2), simulat-
ing the protocol with A is trivial. The main task for Sim is
emulating the effect of malicious reports from the corrupted
clients and faulty reports from the honest clients (caused by
the corrupted server O) on the aggregation results. More
specifically, as required in Figure 7, Sim needs to (1) extract
effective inputs s∗,msgi from each report R∗i from a corrupted
client Pi, and (2) specify a circuit Discard∗ that captures the
effect of the corrupted server O on the aggregation results.

Extract s∗i ,msg∗i from a malicious report R∗i . The effec-
tive inputs s∗i ,msg∗i is entirely determined by the (ℓ+ 1)-th
ciphertext, ct(ℓ+1) in R∗i . Therefore, it suffices for Sim to ex-
tract s∗i ,msg∗i from ct(ℓ+1).

For this, Sim relies on the fact that in the encryption scheme
described in Section 3, a successfully decryptable ciphertext
can only be created through a query to the random oracle HE .
That is, ct(ℓ+1) = (r,c) is either decryptable by a query (k∥r)
to the random oracle HE , or is un-decryptable.

In the former case, Sim searches can through received ran-
dom oracle queries to decrypt ct(ℓ+1) and output the results
as extracted inputs for Pi. In the latter case, Sim outputs some
default value as extracted inputs for Pi.

Specify the Discard∗ circuit. Sim defines Discard∗ to
match what honest clients and the report server do in the
protocol (Figure 2 and 3):

• Each honest client Pi with some measurement s re-
ceives from FdPRF and FOPRF C∗1,i(Hs(s)) = {v

(d)
i }d∈[ℓ]

C∗2,i(Hs(s)) = ui as results, where C∗1,i,C
∗
2,i are arbitrary

circuits decided by the corrupted server O. It then com-
putes a report Ri using these results.

• The server S computes the aggregation results following
the honest protocol, over the above honest clients’ reports
and also the corrupted clients’ reports sent to Fmix.

Let H denotes the set of honest clients. More specifically,
Sim defines Discard({si}i∈H) to first internally compute hon-
est reports Ri for si as described above, and then internally

22

compute the aggregation results following the honest proto-
col. In the end, Discard∗ outputs the indices D for discarded
reports in the above process.

A.2 Proof of Theorem 2
We describe an ideal adversary Sim that externally interacts
with the functionality FdPRF and the environment Z , while
internally simulates a protocol execution with an instance of
the adversary A.

When interacting with Z , Sim simply forwards all commu-
nication between A and Z . We next describe the simulator in
different corruption scenarios.

A.2.1 When the Client P Is Corrupted

There are two interactions in the internal simulation with A
(see Figure 4):

1. A sends an input x to Sim as the input to FOT, and
receives input keys Kx.

2. A receives a garbled circuit Ĉsk and input keys Ksk.

Sim proceeds as follows:

1. Upon receiving x from A, forward x to the functionality
FdPRF as the input of the corrupted client P. Then receive
v(1), . . .v(ℓ) from FdPRF.

2. Simulate the garbled circuit and and input labels and
send them to A.

C̃sk, K̃x← GC.Sim(C,{v(d)}d∈[ℓ]),

The fact that IDEALFdPRF,Sim,Z ≈C REALODPRF,A,Z fol-
lows straightforwardly from the security of the garbled circuit
scheme and oblivious transfer protocol. We omit formal argu-
ments here.

A.2.2 When the Server O Is Corrupted

There are two interactions in the internal simulation with A:

1. A sends two input keys per wire {k(i)0 ,k(i)1 }[λ] to Sim as
the inputs to FOT.
(Denote K = {k(i)0 ,k(i)1 }[λ] in the following.)

2. A sends garbled circuit Ĉsk to Sim.

Sim proceeds as follows:

1. Send arbitrary sk to FdPRF as the input of the corrupted
server O.

2. Upon receiving a notification from FdPRF, start A for
internal simulation, who sends the input keys K and
garbled Ĉ∗sk.

3. Let Select(K,x) denote the function of selecting Kx ac-
cording to x. The function Eval(Ĉ∗sk,Select(K, ·)) is in-
deed mapping λ-bit inputs to ℓ×λ-bit outputs. 9

Send C∗ := Eval(Ĉ∗sk,Select(K, ·)) to FdPRF.

The fact that IDEALFdPRF,Sim,Z ≈C REALODPRF,A,Z fol-
lows straightforwardly from the security of the oblivious
transfer protocol. We omit formal arguments here.

9We can assume Eval outputs some default value if evaluation fails.

23

	Introduction
	Overview of POPSTAR
	Preliminaries
	System Overview and Threat Model
	System Overview
	Threat Model and Security Goals

	Protocol Description
	Threshold Reporting Protocol
	Implementing the Randomness Server
	The Robust Variant

	Security Analysis
	Ideal Functionality and Security Proofs
	Leakage Comparisons with Prior Work
	Adding Differential Privacy Heuristically

	Evaluation
	Implementation Details
	Communication Costs
	Computational Costs
	Comparing with STAR
	Comparing with Poplar

	Related Work
	Conclusions
	Security Proofs
	Proof of Theorem 1
	When Clients and the Server S Are Corrupted
	When Only Clients Are Corrupted
	When Clients and the Server O Are Corrupted

	Proof of Theorem 2
	When the Client P Is Corrupted
	When the Server O Is Corrupted

