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  Abstract. We suggest  the family of  ciphers sEn, n=2,3,.... with the space of 

plaintexts (Z*2
s)n, s >1 such that the encryption map is the composition of kind 

G=G1A1G2A2 where Ai  are  the affine transformations from AGLn(Z2
s) preserving the 

variety  (Z*2
s)n .  

Eulerian endomorphism Gi , i=1,2 of K[x1, x2,...., xn] moves xi to monomial term 

ϻx1
d(1)x2

 d(2)...xn
d(n) ,  ϻϵ Z*2

s and act on  (Z*2
s)n as bijective transformations.  

   The cipher is converted to a protocol supported cryptosystem. Protocols of Non-

commutative Cryptography implemented on the platform of Eulerian endomorphism 

are used for the delivery of Gi and Ai from Alice to Bob. One can use twisted Diffie 

Hellman protocols which security rests on the complexity of Conjugacy Power prob-

lem or hidden tame homomorphism protocol which security rests of the word decom-

position problem. Instead of delivery of Gi Alice and Bob can elaborate these trans-
formations via the inverse twisted Diffie-Hellman protocol implemented on the plat-

form of tame Eulerian transformations of (Z*2
s)n. The cost of single protocol is O(n3) 

and the cost of the computation of the reimage of used nonlinear map is O(n2). So the 

verification of nt , t≥1 signatures takes time O(nt+2). Instead of inverse twisted Diffie-

Hellman protocol correspondents can use inverse hidden tame homomorphism proto-

col which rests on the complexity of word decomposition for tame Eulerian transfor-

mations. We use natural bijections between Z*2
s and Z2

s-1, Z*2
s and finite field F2

s-1 

and  Z*2
s and Boolean ring Bs-1 of order 2s-1 to modify the family of ciphers or cryp-

tosystems via the change of AGLn(Z2
s) for the AGLn(K), where K is one of the rings  

Z2
s-1, F2

s-1 and Bs-1. New ciphers are defined via the multiplications of two different 

commutative rings Z2
s and K. It does not allow to treat them as stream ciphers of mul-

tivariate cryptography and use corresponding cryptanalytic technique. 
Adversary is not able to use known cryptanalytical methods such as linearisation 

attacks. We discuss the option of change in the mentioned above  elements of 

AGLn(Z2
s) or AGLn(K) for nonlinear multivariate transformation F of (Z2

s)n or Kn with 

the symmetric trapdoor accelerator T, i.e. the piece of information such that  the 

knowledge of T allows to compute the value F(p)  in arbitrarily chosen p ϵ P in time 

O(n2) and to solve the equation of kind F(x)=c  for each c from C in time O(n 2).  

 

Keywords:  Symmetric stream ciphers, Digital signatures, Protocol based cryptosystems, 

Noncommutative Cryptography, Eulerian transformations. 
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1. Introduction. 

Quadratic multivariate public keys of Post-Quantum Cryptography can provide 

‘’short’’ digital signatures  for which the procedure of the verification of signature has 

complexity  O(n3) where n is the length of hash file of the documents. 

There is no a certified standard algorithm from these class. Well known Unbalance 
Rainbow like Oil and Vinegar algorithm was one of the candidates for NIST standard-

ization but finally was rejected due to cryptanalytic results (see [1], [2] and further 

references). The research on the construction of new quadratic multivariate public 

keys  and their cryptanalytic investigation is continued [5]- [25]. 

    This  paper is dedicated to alternative approach to construct new instruments for 

digital signatures. We suggest several new protocol based cryptosystems which secu-

rity rest on the complexity of hard problems of Noncommutative Cryptography (see 

[3] and further references). The complexity of used protocol is O(n3). After the  exe-

cution of O(1) protocols  correspondents can use obtained digital signatures scheme 

as many times as they want. The cost of single signature is O(n2) where n is the length 

of the hash file of the document.The complexity of the verification of the  signatures  

of O(nt) documents is O(nt+2). 
    Section 2 contains some definitions of Multivariate Cryptography and Algebraic 

Geometry. It contains also descriptions of the semigroup of Eulerian transformations 

of K[x1, x2,…, xn] where K  is a commutative ring acting naturally on the variety 

(K*)n. Some bijective transformations of (K*)n induced by Eulerian maps are also 

presented. Some  basic protocols of Noncommutative Cryptography are given there, 

These protocols can be implemented of the platforms of Eulerian transformations. 

Section 3 contains the description of ciphers and protocol based cryptosystems which 

used the compositions of kind E1AE2 where Ei , i=1,2 are Eulerian endomorphisms of 

Z2
s[x1, x1,…, xn] and A is the special element of AGLn(Z2

s) which preserves the variety 

(Z*2
s)n.  In the Section 4 we use fast computable natural bijection between Z*2

s and 

one of the ring K= Z2
s-1, K=F2

s-1 and K=Bs-1 which is the Boolean ring of order 2s-1 . 

We also discuss the idea of change transformation A of degree for nonlinear map F  

with the trapdoor accelerator which is a piece of information sufficient for the compu-

tation of the reimage of F in time O(n2). Last section is the conclusion. 

 

2.On the algorithms of Noncommutative Cryptography  implemented 

on the platforms of multivariate transformations.  

 
      2.1 Some definitions. 

     Classical multivariate public rule is a transformation of n-dimensional vector space 

over  finite field Fq which move vector (x1, x2, … , xn) to the tuple (g1(x1, x2, … , xn), 

g2(x1, x2, …, xn), ..., gn(x1, x2, …, xn)), where polynomials gi are given in their standard 

forms, i.e. lists of monomial terms in the lexicographical order. The degree of this 

transformation is the maximal value of deg(gi). Traditionally public rule has degree 2  

or 3. Degree 2 is preferable (RUOV algorithm claimed to provide ‘’the shortest digital 

signatures’’). Let us consider the following important object of Noncommutative 
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Cryptography. Affine Cremona Semigroup nCS(K) is defined as endomorphism group 

of polynomial ring K[x1, x2,..., xn] over the commutative ring K. It is an important 

object of Algebraic Geometry (see [4]  about mathematics of Luigi Cremona - promi-

nent figure in Algebraic Geometry in XIX).   Element of the semigroup σ can be giv-

en via its values on variables, i. e. as the rule  xi→fi(x1, x2, …, xn), i=1, 2,…, n.  This 

rule induces the map σ’: (a1, a2,.., an)→(f1(a1, a2,.., an), f2(x1, x2, …, xn),…, fn(x1, x2,…, 

xn)) on the free module Kn. Automorphisms of K[x1, x2,..., xn] form affine Cremona 

Group nCG(K). In the case when K is a finite field or arithmetic ring Zm  of residues 

modulo m  elements of affine Cremona Groups or Semigroups are used in algorithms 

of Multivariate Cryptography. Results about subsemigroups S of nCS(K) (or sub-

groups of nCG(K) such that computation of  the superposition of arbitrary n elements 

can be completed for polynomial time can be used as so called platforms of Non-

commutative Cryptography.  One class of such objects is formed by stable subsemi-

groups of degree k, i. e. subsemigroup S such that the maximal degree of its repre-

sentative is bounded by the constant k. We will talk about Multiple Composition 

Computability (MCC) property. In the case of k=1 one can take AGLn(K), stable sub-

semigroups of degree k in  nCG(K) exist for  each k, k=2, 3,.... Affine Cremona semi-

group nCS(K) does not poses MCC. If one takes n quadratic elements is randomly 

their product with the probability close to 1 will have degree 2n. So the computation is 

not feasible. 

EXAMPLE 1. Let us consider the totality  nES(K) of endomorphisms of K[x1, x2,..., 

xn] of kind 

x1 → ϻ1x1 a(1,1) x2 a(1,2) … xn a(1,n) ,  

x2 → ϻ2x1 a(2,1) x2 a(2,2) … xn a(2,n) , (1) 
… 

xm →ϻnx1 a(n,1) x2 a(n,2) … xn a(n,n)  

where ϻi are regular elements of finite commutative ring K with the unity.   

It is easy to see that the complexity of the composition of two elements of kind (1) 

is O(n3). 

So the subsemigroup of Eulerian transformations  nES(K) poses MCC proper-

ty.Semigroups with MCC property can serve as ‘’platforms’’ for protocols of Non-

commutative Cryptography. 

       

2.2 Twisted Diffie-Hellman protocol. 

  
    Let S be  an abstract semigroup which has some invertible elements.Alice and Bob 

share element gϵS and pair of invertible  elements h, h -1 from this semigroup. Alice 

takes positive integers k(A) and  r(A)  and forms hdr(A)gk(A)hr(A)= gA. Bob takes k(B) and  

r(B) and forms h-r(B)gk(B)hr(B)= gB.  They exchange gA and gB and compute collision 

element X as Ag= h-r(A)gB
k(A)hr(A) (Alice) and Bg= h-r(B)gA

k(B)hr(B)  (Bob) respectively.  
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The security of the scheme rest on the Conjugation Power Problem, adversary has to 

solve the problem h-xgyhx= b where b coincides with gB or gA. The complexity of the 

problem depends heavily on the choice of highly noncommutative platform S. 

     

2.3. Inverse twisted Diffie-Hellman protocol. 

 

Let S be  an abstract noncommutative semigroup which has some invertible ele-
ments. Alice and Bob share element gϵS and pair of invertible  elements h, h -1 from 

this semigroup. Alice knows g-1. Alice takes positive integers k(A) and  d=r(A)  and 

forms h-r(A)g-k(A)hr(A)= gA. Bob takes  k(B) and  r(B) and forms h-r(B)gk(B)hr(B)= gB.  

They exchange gA and gB and Alice computes   X= h-r(A)(gB)k(A) hr(A) . Bob computes  Y 

= h-r(B)(gA)k(B) hr(B) (Alice) and Bg= h-pgA
shp respectively. It is clear that Y=X-1 

      The security of the scheme rest on the Conjugation Power Problem, adversary has 

to solve the problem h-xgyhx= b.  

    The complexity of the problem depends heavily on the choice of highly noncom-

mutative platform S. Let us take platform S= nES(K). 

REMARK. Protocols with the security based on the word decomposition problem,  i. 

e. task to decompose g ϵS into the word in given generators g1, g2, ...., gt, t >1 were 

presented during my previous talk. 

 

2.4. On some bijective transformation of (K*)n. 

 

        Let π and δ be two permutations on the set {1,2,..., n}. Let K be a commutative 

ring with unity which has nontrivial multiplicative group K* of order  d =|K*|>1 and 

n≥1. We define transformation AJG(π, δ) of the variety (K*)n, where A is triangular 

matrix with positive integer entries 0≤a(i,j)≤d, i≥d defined by the following closed 

formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 
yπ(n)= ϻnxδ(1)

a(n,1) xδ(2)
a(n,2)

 …xδ(n)
a(n,n)   

where (a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1. 

 

          We refer to  AJG(π, δ) as Jordan transformations Gauss multiplicative transfor-

mation or simply JG element. It is an invertible element of  nES(K) with the inverse of 

kind  BJG(δ, π) such that a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zm  straight-

forward process of computation 

the inverse of JG element is connected with the factorization problem of integer m. If 

n=1 and 

m is a product of two large primes p and q the complexity of the problem is used in 

RSA public key algorithm. The idea to use composition of JG elements or their gen-
eralisations with injective maps of  Kn into Kn was used in [27] (K=Zm) and [26] (K= 

Fq.). 
        We say that   is tame Eulerian element over the commutative ring K.  if it is a 

composition of several Jordan Gauss multiplicative maps over commutative ring or 

field respectively.  It is clear that  sends variable xi to a certain monomial term. The 

decomposition of  into product of Jordan Gauss  transformation allows us to find the 
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solution of equations bx )( for x from 
n

mZ )( *
 or (F*q) m .  So tame Eulerian 

transformations over Zm  or  Fq.  are special elements of nEG(Zm) or  nEG(Fq) respec-

tively. 

We refer to elements of  nES(K)  as multiplicative  Cremona element. As-

sume that the order of K is constant. As it follows from definition the computation of 

the value of element from nES(K) on the given element  of  Kn   is estimated by O(n2). 

The product of two multiplicative  Cremona elements can be computed in time O(n3). 

        We are not discussing here the complexity of computing the inverse for general 

element gϵ nEG(K) on Turing machine or Quantum computer  and problem  finding 

the inverse for tame Eulerian elements. 
 

  3. Some ciphers and cryptosystems based on Eulerian transformations 

over the Z2
s 

 

The main idea of constructions of this section is based on the fact that the compo-

sition of the general element A of AGLn(K) and the general element G of  
nEG(K) has nonpolynomial density.  We can change element A for the general el-

ement F of  CGn(K).  In the case of K=Z2
s, s>1 we can slightly modify F  of kind  

xi →fi(x1, x2,..., xn) and get the bijective transformation *F   of  the variety (Z*2
s)n 

via the following procedure. 

We set the vector b=(b1, b2,...., bn)  where bi=1 if fi(1, 1, ..., 1) mod 2=0 and bi=0 

if  fi(1, 1, ..., 1) mod 2=1 and form *F as transformation of (Z*2
s)n 

of kind x→F(x)+b.  It is easy to see that *F is a bijection.  

Scheme 1. 

If F has a polynomial density or F has a symmetric trapdoor accelerator T then com-

putation of F(1, 1,...,1) can be completed in polynomial time. 

Assume that G from CGn(K) is formed as the composition of k=O(1) Jordan-

Gauss transformations J1, J2,..., Jk  

 Alice and Bob share the information on T and the decomposition of G into Ji, 

i=1,2,..., k. 
They work with the space of plaintext (Z*2

s)n and use encryption procedure x → 

F*(x)=v, v→G(v)=y. 

The cost of the encryption/decryption procedure is O(n 2 ). 

Attacks of adversary with interception of multiple pairs of kind 

plaintext/corresponding ciphertext are unfeasible because of the nonpolynomial den-

sity of G(*F) 

We can obfuscate these scheme without  theoretical change of encryption proce-

dure via the use of  two Eulerian transformations.  

Symmetric cipher. Alice and Bob share two tame Eulerian transformations G1 and 

G2 given with their decompositions via Jordan-Gauss generators.  They also have 

invertible affine transformation  L from AGLn(Z2
s). Alice and Bob use (F, T) , they 

can compute the value of *F in time O(n 2). 

They compute inverses (G1) -1 and  (G2) -1 of the Eulerian transformations and the 

matrix L-1. They work with the space of plaintexts (Z*2
s) n. 

Encryption procedure has the followings steps. 
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S1. The transformation of the plaintext  (p1, p2,…., pn)=p to the 1p=G1(p)=( 1p1, 
1p2,…., 1pn). 

 S2. The computation of *F(1p)= 2p. 

S3. The  computation of  3p = G2(2p). 

S4. The computation of  the ciphertext c as *L(3p).  

Decryption is a consecutive application of operators    *L-1 (c)=(3p),  (G2) -1(3p )=2p,   

*F-1(2p)=1p   and  the plaintext p=(1G) – 1 (1p). 
Each procedure Si, i=1,2, 3,4  and its inverse have the complexity O(n2). So we 

have a symmetric cipher with the complexity O(n2). We refer to it in the simplest case 

of *FϵAGLn(Z2
s) as Double Eulerian Cipher (DEC). 

REMARK 1. The encryption map is induced by multivariate transformation E of  

(Z2
s) n. It has a linear degree of kind an, a>0 and nonpolynomial density which is the 

total number of monomial terms in all F(xi).  So linearization attacks on this cipher 

are unfeasible. 

     Let us convert the Double Eulerian  Cipher to the protocol  based cryptosys-

tems. 

The following definition can be useful. 

Let E be a function from the set P onto the set C. We say that the piece of information 

T is a symmetric trapdoor accelerator if the knowledge of T allows to compute the 

value F(p)  in arbitrarily chosen p ϵ P in time O(n2) and to solve the equation of kind 

F(x)=c  for each c from C in time O(n 2).  
For the encryption map E of the defined above cipher the decomposition of E into he 

composition of G 
1, *F ,   G2  L and together with the decomposition of each Gi into  

the product of O(1) Jordan-Gauss transformation. 

CRYPTOSYSTEM DEC1.  Let us assume that Alice and Bob execute the twisted 

Diffie-Hellman protocol  based on the platform nES( Z2
s) two times. They elaborate 

elements Hi, i=1,2 from this  semigroup.  

Additionally they conduct two sessions  the twisted Diffie Hellman protocol based on 

platform n+1ES( Z2
s+1) and elaborate the elements rH, r=1.2 from this semigroup. 

   Alice forms elements Gj, j=1, 2 as a products of O(1) Jordan-Gauss elements. She 

computes and keeps (Gj) –1.  

   Assume that Hi are maps of kind (1) with (ϻ1, ϻ2,…, ϻn )=(ϻ1(i), ϻ2(i),…, ϻn(i))  and 
a(j,k)=ai (j, k) and maps Gi are elements of kind (1) with (ϻ1, ϻ2,…, ϻn)=(α1(i),  α2(i), 

…, αn(i))  and a(j,k)=bi (j, k) mod 2s-1. 

   Assume that rH, r=1, 2 is element of kind (1) with (ϻ1, ϻ2,…, ϻn )=(rα1,  rα2, …, rαn)  

and a(i, k)=rb(j, k) mod 2s. Let rB=(rb(i,j)). 

    Alice sends parameters  ϻj(i)αj(i), j=1, 2, …, n, i=1,2  and ai(j, k) +ibi (j, k) mod 2s-1 

, j=1,2,…,n, k=1,2,…,n, i=1,2. 

     So Bob restores G1 and G2.  

Alice creates invertible matrices  M and N  with entries from Z2
s  . She sends M+1B 

and N+2B to Bob. So he restores the matrices M and N. 

Finally Alice selects the tuples (d1, d2,…, dn)   and (t1, t2,…, tn)    from (Z2
s )n. She 

takes (rα1, rα2,…, rαn) of elements from  Z*2
s+1. 

 Alice considers the map ϭs=ϭ from Z2
s
  to Z*2

s+1
   such that ϭ(t mod 2 s) is 2t+1 mod 

2s+1. It is a bijection. Let ϭ-1
  be the inverse map from Z*2

s+1
   to Z2

s
 . She forms 

 (ϭ-1(1α1)+d1 mod 2 s,  ϭ-1(1α2)+d2  mod 2 s
 , …, ϭ-1(1αn)+dn mod 2 s

 ) from (Z2
s)n and 

sends it to Bob. He restores the tuple d=(d1, d2,…, dn). Similarly Alice sends 
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(ϭ-1(2α1)+t1 mod 2 s,  ϭ-1(2α2)+t2  mod 2 s
 , …, ϭ-1(2αn)+tn mod 2 s

 ) for the delivery t=(t1, 

t2,…, tn)  to Bob. 

Alice and Bob share the transformations F: x→xM+d and L:x →xN+t . 

   Thus Alice has  the symmetric trapdoor accelerator T of the described above sym-

metric cipher for herself. She delivers the partial information on T in the form of the 

tuple (G1, *F, G2, L). 

    So Bob encrypts the plaintext from (Z*2
s)n via the consecutive use of G1, *F , G2 

and *L. 

Alice has complete information on the trapdoor T. She converts the ciphertext to the 

plaintext via the consecutive use of *L-1  , (G2) -1 , *F-1 and (G1) -1. 

    REMARK 1. The complexity of the protocol is O(n3). It is the cost of operation in 
nES(Z2

s) or nES(Z2
s+1). The encryption and decryption  procedures cost O(n2). 

So encryption of O(n t), t ≥1 documents costs O(nt+2). 

REMARK 2. The security of the cryptosystem rests on the security of the protocol. 

Highly nonlinear nature of the encryption and decryption maps which have linear 

degrees and nonpolynomial density makes unfeasible attacks of adversary with the 

interception of pairs of kind plaintext/corresponding ciphertext.  

The protocol uses Conjugation Power Problem. Adversary has decompose gA or gB 

into the word of kind   hygx h-y. 
     REMARK 3. The following obfuscation is possible. Alice and Bob can use hidden 

tame homomorphisms protocol with the collision  element of kind (1) (see [28]). The 

security of this protocol rests on the word decomposition problem for element g (gA or 

gB) from mES(Z2
s) (or mES(Z2

s+1), m>n, m=O(n). Adversary has to decompose g into 

the word in the alphabet of known generators g1, g2,...., gl, l>1. 

REMARK 4. Alice can  use this cryptosystem as instrument for digital signatures. 

   CRYPTOSYSTEM DEC2.   

Let us assume that Alice selects invertible elements gi and hi, i=1, 2 for two in-

verse twisted Diffie-Hellman protocols. So correspondents use two sessions of this 

protocol with different generators from the platform  nES(Z2
s). 

Alice gets two output elements X1 and X2 while Bob gets their inverses Y1 and Y2. 

Alice and Bob also conduct two twisted Diffie-Hellman protocols with the generators 
from the  platform nES(Z2

s+1) and elaborate the element rH , r=1,2 from this semi-

group given by the tuples (r α1, r α2, …, r αn)ϵ(Z*2
s+1) n  and matrices r B with entries r 

b(i,j) from  Z2
s.  

As in the previous cryptosystem Alice forms affine transformations F and L. She 

delivers them to Bob similarly to the case of cryptosystem 1.  

   Bob writes his plaintext p and computes 1p=Y1(p),2p=*F(1p),  3p =Y2(2p). and c 

=*L(3p). He sends the ciphertext c to Alice. She computes3p as  *L-1(c),  2p= X2(3p), 
 1p=*F-1(2p) and gets p as X1(1p). 

  REMARK 5. The inverse Diffie-Hellman protocol with the security based on the 

complexity of Conjugacy Power problem can be changed for the inverse hidden tame 

homomorphisms protocol with the collision  element of kind (1)  from the group 
nEG(Z2

s) (see [28]). 

It will be used for elaboration of X1, X2, Y1, Y2. For the delivery of F and L corre-

spondents will use hidden tame homomorphism protocol mentioned in the Remark 2.  

The security of new cryptosystem rests on the word decomposition problem for 

element g from mES(Z2
s) (or mES(Z2

s+1), m>n, m=O(n)). 
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 4. Algebraic system with the binary operations defined in terms of  dif-

ferent  commutative rings and its applications 
        We consider some computational relations between Z2

s-1
  , Z*2

s
  and F2

s-1. 

Recall that Z*2
s
  is the totality of odd residues modulo 2 s

 . 

We already consider the map ϭs-1=ϭ from Z2
s-1

  to Z*2
s
   such that ϭ(t mod 2 s-1) is 2t+1 

mod 2s. It is a bijection. Let ϭ-1
  be the inverse map from Z*2

s
   to Z2

s-1
 . 

     Notice that elements from Z2
s-1can be written as b=e0+e12+e2 2 2 +…+es-22 s-2 mod 

2 s-1, where eiϵ{0,1}. Element of the finite field Fq, q=2 s-1 can be written as  

g(x)=e0+e1x+e2x2+…+es-2xs-2 mod p(x) where p(x) is the irreducible  polynomial of 

degree s-1. Let π be the map such that π(b)=g(x) and π -1 is the inverse map from Fq, 

q=2 s-1 onto Z2
s-1. 

    We consider the map ∆ from Fq onto (F2)s-1 sending g(x) to Boolean vector (e0, 

e1,…, es-2) which we identify with the element of Boolean ring Bs-1 of size 2s-1. 

        These bijective maps allow us to identify the set  Z2
s-1

  with Z*2
s and with F2

s-1
  

and with Bs-1. 

  So we can consider the following binary operation defined on the same set Z2
s-1. The 

list contains the  multiplication and addition of residues modulo  2 s-1 , multiplication 

and addition of finite field F2
s-1, multiplication of elements of Boolean ring Bs-1 and 

multiplication of odd residues modulo Z2
s. 

Let us consider the map S of  (Z*2
s
 )n onto (Z2

s-1
 )n which sends (x1, x2,…, xn) to (ϭ-

1(x1), ϭ-1(x2)) ,…., ϭ-1(xn)).   We define the map P of  (Z*2
s)n onto  (F2

s-1
 )n which sends 

(x1, x2,…,xn) to (π(ϭ-1(x1)), π(ϭ-1(x2)) ,…., π(ϭ-1(xn)).   Let D be the map of (Z*2
s
 )n onto 

(Bs-1 )n
.   

Sending (x1, x2,…, xn) to (∆(π(ϭ-1(x1))),       ∆(π(ϭ-1(x2))) ,…., ∆(π(ϭ-1(xn)))). We assume 

that S-1, P-1 and D-1 are inverses of bijective maps S, P and D. 

         Let us consider several modifications of the Double Eulerian Cipher. 

M1. Let K= Z2
s-1  and nF be the family of polynomial maps of Kn onto Kn, i. e  nF(xi) 

is an element of K[x1, x2,…, xn]. Assume that nF has a  symmetric trapdoor accelerator 

T. 

Alice and Bob share (nF, T) together with the element L from AGLn(K) and Eulerian 

transformations  Gi, i=1,2 defined on (Z2
s)n  with their Eulerian inverses  (Gi) -1 for 

which Gi(Gi) -1(x)=x for x ϵ (Z*2
s)n . 

Then they can work with the family of ciphers with the space of plaintexts   (Z*2
s)n  

and use the encryption function G= G1S nF (S-1)G2 S L S-1. The knowledge of T and 
the decomposition of G and G-1 into Gi,  

nF,L,  S and their inverses  allows to encrypt 

and decrypt in time O(n 2). 

M2. Let K=F2
s-1  and nF be the family of polynomial maps of Kn onto Kn, i. e  nF(xi) is 

an element of K[x1, x2,…, xn]. Assume that nF has a symmetric trapdoor accelerator T. 

   Alice and Bob share (nF, T) together with LϵAGLn(K)  and Eulerian transformations  

Gi, i=1,2 defined on (Z2
s)n  with their Eulerian inverses  (Gi) -1 for which Gi(Gi) -

1(x)=x for x ϵ (Z*2
s)n . 

Then they can work with the family of ciphers with the space of plaintexts   (Z*2
s)n  

and use the encryption function G= G1P nF (P-1) G2 P L(P-1). The knowledge of T and 

the decomposition of G and G-1 into Gi,  
nF, L, P and their inverses  allows to encrypt 

and decrypt in time O(n 2). 
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  M3. Let K=Bs-1 and nF be the family of polynomial maps of Kn onto Kn, i. e  nF(xi) is 

an element of K[x1, x2,…, xn]. Assume that nF has a symmetric  trapdoor accelerator T, 

Alice and Bob share (nF, T), LϵAGLn(K)   and Eulerian transformations  Gi, i=1,2 

defined on (Z2
s)n  with their Eulerian inverses  (Gi)-1 for which Gi(Gi)-1(x)=x for x ϵ 

(Z*2
s)n . 

Then they can work with the family of ciphers with the space of plaintexts   (Z*2
s)n  

and use the encryption function G= G1DnF (D-1) G2 D L(D-1).  The knowledge of T 

and the decomposition of G and G-1 into ψi,  
nF, P, L and their inverses  allows to en-

crypt and decrypt in time O(n 2). 

     Some examples of systems of kind  Mi, i=1,2 with the nonlinear symmetric 

trapdoor accelerators are given in the paper [35]. In some cases the conversion of 

these ciphers into protocol bases cryptosystem is also presented there. 

Below we consider  the case of scheme Mi when  F is simply an element of 

AGLn(K)  where K=Z2
s-1, K=Z2

s-1 or K=Bs-1. Its representation in a standard form is a 

symmetric trapdoor accelerator . In this case we refer to the cipher as Affine Double 

Eulerian cipher over K (ADEC(K)). 

   In each case of  Mi we can convert the affine Double Eulerian cipher over the com-

mutative ring K into two distinct  cryptosystems ADEC1(K) and ADEC2(K). 

     If Alice and Bob use ADEC1(K) they use twisted Diffie-Hellman protocol based on 
the platform EG(Z2

s). Two sessions of the protocol Alice uses for the delivery of G1 

and G2 to Bob. Alice and Bob use other two session of this protocol with the same 

platform EG(Z2
s) for the delivery of created by Alice two   affine transformations   of 

kind x→xM+d from AGLn(K). 

Assume that the collision element is given by the tuple (α1, α2,…, αn) with the  co-

ordinates from Z*2
s and matrix B=(b(i, j)) with the entries from Z2

s-1 .  

In the case of M1 Alice simply sends M+B and the tuple (d1, d2, ...., dn)+( ϭ-1 (α1), 

ϭ-1 (α2), 

…, ϭ-1(αn)) to Bob. He restores the affine transformation A. 

In the case of M2 Alice sends the matrix M+(π(b(i,j)) and the  tuple (d1, d2, ...., 

dn)+(π(ϭ-1 (α1), π(ϭ-1 (α2), …, π(ϭ-1 (αn)) to Bob. He restore M and the tuple d.  
In the case of M3 Alice  sends the matrix M+(∆(π(b(i,j))) and the tuple(d1, d2, ...., 

dn)+(∆(π(ϭ-1 (α1)), ∆(π(ϭ-1(α2)), …, ∆(π(ϭ-1(αn)). Bob restores the transformation A 

from AGLn-1(Bs-1). 

In ADEC2 Alice and Bob conduct the inverse twisted Diffie-Hellman protocol 

within the platform nEG(Z2
s) twice and elaborate mutually inverse maps Xi, Yi, i=1, 2 

such that XiYi (x)=x for each x in (Z*2
s) n. They used twisted Diffie-Hellman algorithm 

for the delivery of affine transformation A from AGLn(K) similarly to the case of 

ADEC1. 

So in the case of M1 Bob uses EB = Y1S F(S-1)Y2 S L S-1
 together with the  decom-

position into Yi, F, L and S for the encryption of plaintext p from  (Z*2
s-1) n. 

Alice decrypts it with her transformation  S L-1 S-1
 X2SA-1S-1X1=EA.  

Symmetrically Alice encrypts with her transformation EA and Bob decrypts with 

his EB. 

In the cases of M2  and M3 correspondents has to change the map S for P and D re-

spectively. 

REMARK 6. 
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In the algorithm ADEC1(K) there is an option to change twisted  Diffie-Hellman 

protocols for the hidden Tahoma protocols  with outputs from nES(Z2
s) ( see [28]). 

In the case of ADEC2(K) one can change each inverse twisted Diffie-Hellman pro-

tocol for the two inverse hidden tame homomorphism protocols with the outputs in  

nEG(Z2
s). It will be used for elaboration of X1, X2, Y1, Y2. The third  protocol with the 

security based on the complexity of Conjugacy Power problem can be changed for the 

hidden tame homomorphisms protocol with the collision  element of kind (1)  from 
the semigroup nES(Z2

s) (see [28]). It will be used for the delivery of affine transfor-

mations F and L. 

After these changes we get cryptosystems which security rests on the word de-

composition problem for elements of nES(Z2
s). 

REMARK 7. 

Let K be one of the commutative  rings Z2
s ,  Z2

s-1 , F2
s-1  and Bs-1 , assume that    Kψ 

: Kn→Kn be one of the maps I (identity map), S, P, D correspondingly. 

 Assume that K and Q are distinct elements of the set { Z2
s ,  Z2

s-1 , F2
s-1, Bs-1}   we 

can consider the cipher DEC(K, Q) 

with the space of plaintexts  (Z*2
s )n with the encryption procedure defined as the 

consecutive application of G1,
 Kψ ,  FK,   Kψ  -1 G2 , 

Qψ , LQ,,
 Qψ-1 

where FK  and LK are elements of AGLn(K) for  K of cardinality 2^s-1 and  FK=F*, 

LK=L* for F,L ϵAGL_n(K) if K= Z2
s . 

The cipher DEC(K, Q) can be converted to protocol based cryptosystems 

ADECi(K, Q), i=1,2 similarly to the considered above cases M1, M2 and M3. 

 
5. Conclusions. 
 

Quadratic multivariate public rules can be used for the verification of the signature 

in time O(n3) where n is the size of the hash file of the document. The search for such 

public key is continue. 

     We are working on  alternative method of the use of asymmetric protocol based 

cryptosystem to sign the document. We suggest some protocols of Noncommutative 

Cryptography implemented on the platform of  Eulerian transformations of Z*2
s[x1, 

x2,..., xn]  acting naturally on the variety (Z*2
s)n, s >1. 

     The density of Eulerian transformation, i.e the number of all monomial terms 
in the standard form is n. Degree of general Eulerian transformation is a linear func-

tion in variable n. The composition of Eulerian transformation G1 and affine trans-

formation A from AGLn(Z2
s) has a linear degree and density O(n2

 ).  The composition 

of kind F=G1AG2 where G2 is another Eulerian transformation is different. Substitu-

tion of the polynomials of density n to each variable of monomial terms leads to effect 

of nonpolynomial density of F. So the standard form of F is not computable in poly-

nomial time. 

    We can use four sessions of one of the protocols of Noncommutative Cryptography   

for the safe 

delivery of Eulerian maps G1, G2 and A1, A2 from Alice to her partner Bob. Alter-

natively Gi, i=1,2 can be elaborated via the protocol of inverse type. 
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Selected affine transformations Ai  send  x to  the element of kind  xM+b from  (Z*2
s ) 

n  where each column of the matrix M  has an odd number of  odd residues modulo 2s  

and all coordinates of the tuple b are even residues. 

Eulerian endomorphism Gi , i=1,2  has to act on  (Z*2
s)n as bijective transformations.  

Bob will use the map F=G1A1G2A2. 

The knowledge of the  decomposition of F into G1, G2 and A_i, i=1,2 allows Bob to 

compute the value of F on the tuple from (Z*2
s)n in time O(n2). Additional information 

on the decomposition of each Eulerian transformation into O(1) Jordan -Gauss ele-

ments allows Alice to compute the reimage of F. 

  Attacks of adversary  via the interceptions 

of hash value of documents and corresponding reimages are unfeasible because of the 

nonpolynomial density of F. So adversary has to concentrate on the  attempts to break 

the protocol with the security based on the complexity of Conjugacy Power Problem 

or Word decomposition problems for the platforms of Eulerian transformations. 

Reader can find recent cryptanalytical studies of Noncommutative Cryptography in 

papers [29]-[34]. 

 We note that known cryptanalytical tools are not applicable for the investigation of 

proposed cryptosystem. Some methods to make protocol based digital signatutes with 

Eulerian transformations in the case of general commutative ring K with unity are 
considered in [36]. Examples of the change of affine transformation A for the nonlin-

ear map with the trapdoor accelerator are described in [35]. 

     In the Section  4 we use natural bijections between Z*2
s and Z2

s-1 

, Z*2
s and finite field F2

s-1 and  Z*2
s and Boolean ring Bs-1 of order 2s-1 to modify 

the family of ciphers or cryptosystems from the Section 3  via the change of 

AGLn(Z*2
s) for the AGL(K), where K is one of the rings  

Z2
s-1, F2

s-1 and Bs-1. New ciphers are defined via the algebraic systems with  the 

operations of multiplications of two different commutative rings Z2
s and K and the 

operation of addition in K.  It does not allow to treat them as stream ciphers of multi-

variate cryptography over the single commutative ring. That is why the adversary is 

not able to use known cryptanalytical methods such as linearisation attacks. 
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