
Plinko: Single-Server PIR with Efficient Updates
via Invertible PRFs

Alexander Hoover1,2, Sarvar Patel1, Giuseppe Persiano1,3, and Kevin Yeo1,4

1 Google
2 University of Chicago
3 Università di Salerno
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Abstract. We study single-server private information retrieval (PIR)
where a client wishes to privately retrieve the x-th entry from a database
held by a server without revealing the index x. In our work, we focus on
PIR with client pre-processing where the client may compute hints during
an offline phase. The hints are then leveraged during queries to obtain
sub-linear online time. We present Plinko that is the first single-server
PIR with client pre-processing that obtains optimal trade-offs between
client storage and query time for all parameters. Our scheme uses t =
Õ(n/r) query time for any client storage size r. This matches known lower
bounds of r · t = Ω(n) up to logarithmic factors for all parameterizations
whereas prior works could only match the lower bound when r = Õ(

√
n).

Moreover, Plinko is also the first updateable PIR scheme where an entry
can be updated in worst-case Õ(1) time.

As our main technical tool, we define the notion of an invertible pseudo-
random function (iPRF) that generalizes standard PRFs to be equipped
with an efficient inversion algorithm. We present a construction of an
iPRF from one-way functions where forward evaluation runs in Õ(1)
time and inversion runs in time linear in the inverse set (output) size.
Furthermore, our iPRF construction is the first that remains efficient and
secure for arbitrary domain and range sizes (including small domains and
ranges). In the context of single-server PIR, we show that iPRFs may be
used to construct the first hint set representation where finding a hint
containing an entry x may be done in Õ(1) time.

1 Introduction

Private Information Retrieval (PIR) enables a client to query for elements in
a database held by a potentially adversarial server without revealing what the
client is trying to access. The notion of a PIR was introduced by Chor et al. [20]
that considered the multi-server setting and the single-server setting was first
shown to be feasible by Kushilevitz and Ostrovsky [40]. This powerful primitive
has had a long line of work which focuses on understanding the limitations and
variations of PIR for theory and practice. This interest is spurred primarily by
the potential application for PIR in modern systems including: advertising [34],
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certificate transparency [37], communication [50,6], device enrollment [1], media
consumption [35], password leak check [3], and publish-subscribe systems [19].

The original works studied PIR with information-theoretic security and mul-
tiple non-colluding servers (see [20,4,7,9,61,26] and references therein). However,
more recent work has pushed toward computational PIR and settings with a
single server including [40,17,8,41,28,54,2,5,56,27,3,52,49]. Throughout our work,
we will focus on single-server PIR to avoid the stronger trust assumptions be-
tween different organizations required in multi-server PIR. Unfortunately, there
are known barriers to the computational requirements and cryptographic as-
sumptions for traditional single-server PIR. Specifically, prior work has show
that single-server PIR requires linear server computation [10], and reducing to
sublinear communication implies oblivious transfer [24] (implying that single-
server PIR requires public-key assumptions).

PIR with Pre-processing. One approach to circumvent these barriers was
server pre-processing that was first considered in [10]. In this setting, the server is
able to store pre-process the database with the goal of obtaining sub-linear query
time. Several works study this problem [10,16,58] with the recent breakthrough
work of Lin et al. [45] showing that poly-logarithmic query time is achievable.
However, all these schemes require super-linear server storage to date.

Another line of work, starting from [56], has considered client pre-processing.
In an offline phase, clients will compute hints consisting of parities of random
subsets of database entries that may be used to help speed-up query times. The
breakthrough work of Corrigan-Gibbs and Kogan [22] presented a PIR with client
pre-processing achieving sub-linear query time. This spawned a long line of work
in the area including [59,39,21,63,43,42,64,53,29]. These schemes do not suffer
from super-linear storage blowup. To date, the best single-server constructions
requiring only a single offline phase obtain query time t = Õ(r + n/r) if the
client has Õ(r) storage. Curiously, there remains a gap with the best known
lower bounds of t = Ω(n/r) [62] when client storage r is large. For example,
when r = O(n2/3), the best constructions require Õ(n2/3) time whereas the lower
bound states that only Ω(n1/3) time is necessary. This leads to the following:

Does there exist a single-server PIR construction that obtains optimal
trade-offs between client storage and query time for all parameters?

Another difficulty of PIR with pre-processing is the ability to handle updates
to database entries. Several works [64,45] considered the static-to-dynamic trans-
form of Bentley and Saxe [12]. While these incur amortized logarithmic update
time, the worst-case update time will be linear in the database size. For PIR with
client pre-processing, there is a straightforward approach where the server may
simply send updated entries to clients. Then, clients need to update their hints
(parities of database entries) accordingly. However, this requires Õ(r) client time
to search the hints. In contrast, PIR without pre-processing can handle updates
in worst-case constant time by the server simply updating the according entry
locally. A natural problem one can consider is:

Does there exist a single-server PIR construction
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Scheme Crypto Client Query Query

Name Assumption Storage Time Comm.

CHK [21] LWE r r + n/r n/r

ZLTS [63] LWE r r + n/r polylog(n)

LP [42] LWE r r + n/r polylog(n)

Piano [64] OWF r r + n/r n/r

MIR [53] OWF r r + n/r n/r

GZS [29] OWF r r + n/r
√

n/r

Lower Bound [62] - r n/r -

Plinko OWF r n/r n/r

Fig. 1. Comparison of the amortized query time and query communication for existing
single-server offline/online PIR schemes, ignoring polylog factors. We give a client r
bits of hint storage for a database of size n. See Figure 6 for further comparison.

that handles a database entry update in worst-case Õ(1) time?

1.1 Our Contributions

In this paper, we answer in the affirmative for both of these questions. We im-
prove the state-of-the-art in single-server PIR schemes. We construct the first
single-server PIR scheme, called Plinko, that achieves an optimal trade-off be-
tween client storage and total computation time across the entire curve. For
example, Plinko obtains optimal time for any parameterization of client storage
size. In the process of building Plinko, we define and construct a novel primi-
tive called an invertible PRF (iPRF). As a natural consequence of our method,
Plinko provides a method to implement updates more efficiently and more simply
than methods from prior work.

Invertible PRFs. Our first contribution is a new cryptographic primitive that
generalizes pseudorandom functions that we denote as an invertible PRF (iPRF).
To our knowledge, we are the first to consider PRFs with arbitrary domains and
ranges that are efficiently invertible. This allows someone with the key to effi-
ciently enumerate the inputs which map to any specific output. For security, an
iPRF should appear indistinguishable from a random function to any computa-
tional adversary without the key.

The most similar cryptographic primitive previously studied are pseudoran-
dom permutations (PRP) that also enable inversion. However, it is quite clear
that (pseudorandom) random permutations are distinguishable from (pseudoran-
dom) random functions. For example, random permutations are always bijections
whereas random functions will not be a bijection with overwhelming probability.
Another approach may be to try and build a PRF using a truncated PRP where
one aims to build a PRF using a PRP where each output is truncated. Tight
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Scheme Crypto Update Time Update Comm.

Name Assumption Worst-case Amortized Worst-case Amortized

CHK [21] LWE
√
n

√
n logn logn

ZLTS [63] LWE
√
n

√
n logn logn

LP [42] LWE
√
n

√
n logn logn

Piano [64] OWF n polylog(n) n polylog(n)

MIR [53] OWF
√
n

√
n logn logn

GZS [29] OWF
√
n

√
n logn logn

Plinko OWF polylog(n) polylog(n) logn logn

Fig. 2. Comparison of existing single-server offline/online PIR schemes, for a client
querying a size n database. For simplicity, we set client storage to be r =

√
n for

all schemes. Query times and communication are amortized. For a more complete
comparison, see Figure 6.

bounds for distinguishing a truncated PRP from a random function are well
known [60,36,30,32,48,31]. For most domain and range sizes (including settings
for our PIR applications), an adversary will successfully distinguish between a
truncated PRP and PRF. Therefore, we are unaware of any straightforward way
to build iPRFs from (truncated) PRPs. Finally, we note invertible PRFs were
defined in another context in [13] where only injective random functions were
considered (that is also not appropriate for our PIR application).

Our contributions for iPRFs are twofold. We formally define iPRFs for arbi-
trary domains and ranges. Then, we construct the first iPRF which is secure even
for small domain and range sizes (where it is computationally feasible for an ad-
versary to enumerate the entire input and output space). The small domain and
range property will be critical for our PIR application. Our construction com-
poses a (small-domain) PRP together with a new sampling technique to preserve
a uniform distribution for every input while allowing efficient inversion. Further-
more, our techniques allows us to construct efficient iPRFs for domains and
ranges of any sizes even if they are drastically different. In terms of efficiency,
our iPRF construction enables evaluation in Õ(1) time and inversion in time
linear (ignoring logarithmic factors) in the output size, which is the size of the
inverse set. Furthermore, our construction is built only assuming the existence
of one-way functions. This is in contrast to some other PRF-related primitives
used to build PIR in other contexts, which rely on stronger assumptions such as
learning with errors. We point readers to Section 4 for our iPRF construction.

New Single-Server PIR with Optimal Trade-off Curve. Recent lower
bounds for traditional PIR have shown that any PIR with pre-processing scheme
with client storage r and query time t must obey r · t = Ω(n) [22,21,62]. Recent
work have matched this bound (up to poly-logarithmic factors), but only for cer-
tain parameterizations of client storage. In these prior constructions, the server
requires Õ(n/r) time. However, the query algorithms of prior work requires the
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client to perform a linear pass through O(r) hints stored in client storage, so
that the total runtime for a query is t = Õ(r + (n/r)). In other words, these
prior works obtain trade-offs of r · t = Õ(r2+n). These constructions match the
lower bound for small client storage sizes of r = O(

√
n), but are not optimal for

larger client storage sizes. For example, when r = O(n2/3), prior works require
query times of t = Õ(n2/3) whereas the lower bound specifies query time only
need be as large as Ω(n1/3).

We address this deficiency with our new single-server PIR scheme, Plinko,
that is actually a modification of two recently proposed PIR schemes [64,53].
Both schemes rely on using PRFs to generate uniformly random offsets, that
serve as compressed representations of sets. By substituting the PRFs with
iPRFs in the constructions and maintaining the client’s memory carefully, we
effectively preserve all of the functionality (correctness and privacy) while dra-
matically improving client query time for many parameter choices.

Using iPRFs, our Plinko construction avoids the linear pass over the Õ(r)
hints in client storage. Instead, the client can search for the relevant hint in Õ(1)
time during queries. Furthermore, this improvement does not come at any cost
to the server time either. As a result, we achieve total query time of t = Õ(n/r)
and trade-off of r · t = Õ(n) matching the lower bound (up to poly-logarithmic
factors). In other words, Plinko obtains optimal query time t = Õ(n/r) for any
choice of client storage r. Even more interesting is that we achieve this trade-
off without the use of public-key cryptography, because Plinko only assumes
one-way functions. In contrast, all prior work (even when assuming public-key
cryptography) are unable to obtain optimal query times for all client storage
sizes. See Figure 1 for a detailed comparison with prior works.

In Section 5, we present our Plinko scheme, which is based on the scheme
from [53]. We show that our technique of utilizing iPRFs is flexible by also
presenting another version of Plinko from [64].

Efficient Updates. Yet another benefit of using invertible PRFs is that our
scheme lends itself to a simple and efficient method to support dynamic databases.
Prior work for updateable single-server PIR has taken two main approaches.

First, there are works [12,64,45] relying on the Bentley-Saxe transform [12] to
support database modifications. This involves a server maintaining geometrically
growing PIR instances and rebuilding them on a schedule as updates happen.
This method has logarithmic amortized communication and runtime, but the
worst-case update will require linear communication and time. Additionally, this
requires the client and server to maintain more complicated data structures.

The more simple approach just has the server store a changelog and push
out updates to clients. However, this method requires the client to update their
hints. Until our work, whenever a client needed to update an index, they would
have to perform a linear Õ(r) pass over their hints, checking if each hint was
effected by the update and modifying the hint if it were the case. Fortunately,
invertible PRFs get around this linear pass, when the client maintains their hints
in the appropriate data structure. Specifically, a client can essentially just invert
the PRFs at the updated index and receive an enumeration of every hint that
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needs to be updated. This means, with just one-way, server-to-client, and worst-
case logarithmic time and communication, the client can perform their update!
We point readers to Figure 2 for more comparisons.

1.2 Related Works

PIR without Pre-processing. Beimel et al. [10] show any PIR scheme (even
multi-server) requires linear query time without pre-processing. Therefore, the
majority of PIR without pre-processing focuses on reducing communication as
well as concrete computational costs for practical applications. Earlier single-
server PIR works considered constructions using various number-theoretic as-
sumptions including [40,17,28]. More recent works build single-server PIR using
lattice-based assumptions such as [2,5,27,55,3,52,49,37]. Another line of single-
server PIR work also consider supporting keyword queries [47,57]. A long line
of work has also studied multi-server PIR with information-theoretic privacy in-
cluding [20,4,7,9,61] culminating in the work by Dvir and Gopi [26] showing that
sub-polynomial communication is sufficient for two-server PIR. Two-server PIR
has also been studied in computational setting using function secret sharing [14].

PIR with Pre-processing. To obtain sub-linear query times, prior works have
studied PIR with pre-processing. The first construction by Beimel et al. [10]
presented multi-server PIR schemes with query time t = O(n1/2+ϵ) but required
servers to store pre-processing on the size of r = n1+O(1/ϵ). This primitive has
also been studied under the notion of public-key doubly-efficient PIR [16] from
obfuscation. A very recent breakthrough work by Lin et al. [45] presented a
single-server PIR with t = polylog(n) query time and server pre-processing of
size r = n1+O(1). The highest lower bounds show that r · t = Ω(n log n) [58].

Another line of work considers the case where the client may also store
the pre-processing hidden from the view of the adversarial server. This has
been studied under the notion of private-key doubly-efficient PIR [16,18] us-
ing new assumptions based on permuted puzzles [15]. Patel et al. [56] presented
a single-server PIR with client pre-processing with sub-linear public-key opera-
tions from standard assumptions (also studied in [52]). The breakthrough work
of Corrigan-Gibbs and Kogan [22] presented PIR schemes with total sub-linear
time. This spawned a large number of recent works obtaining sub-linear query
time constructions including [59,39,21,63,62,43,42,64,53,29]. Several works have
studied lower bounds in this setting [22,21,62] where the highest lower bound is
r · t = Ω(n) where t is the online query time and r is the client storage.

PRFs, PRPs, and Truncated PRPs. Pseudorandom functions (PRFs) were
originally introduced by Goldreich et al. [33]. They are an essential building
block of cryptography and can be built only assuming the existence of one-way
functions. There have also been many variations of PRFs that are used in many
different context and rely on different assumptions.

However, the primary variant of PRFs which allows a user with the secret key
to invert are pseudorandom permutations (PRPs) [46]. The distinguishing ad-
vantage between a random permutation and random function is well understood
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through various switching lemmas [38,36,11,25] and matching distinguishing at-
tacks. In particular, it is easy for an adversary to distinguish between a random
function and random permutation when the output space is small. To the au-
thors’ knowledge, the only other variant of PRFs that is efficiently invertible
was introduced by Boneh et al. [13], but this concept is for a random injective
function which is insufficient our application in PIR since evaluations at different
points are correlated.

Prior work has constructed something between a random permutation and a
random function called a truncated permutation, which can be instantiated with
a PRP. There is a long line of work understanding the ability for one to distin-
guish between a random function and a truncated permutation [60,36,30,32,48].
This work culminates with the recent work by Gilboa and Gueron [31], which
summarizes attacks and proves them optimal. These attacks, like those of a PRP,
present a distinguisher with large advantage when the output space is small.

2 Technical Overview

In this section, we present a simplified Offline-Online PIR (OO-PIR) scheme
(similar to [64,53]) to highlight an inefficiency persistent in all Offline-Online
PIR schemes to date. We then (informally) introduce a new primitive called an
invertible PRF (iPRF) and sketch how we can construct them efficiently. Finally,
we show how we can modify the OO-PIR scheme to use our new primitive to
improve over the original’s efficiency.

A Simple Offline-Online PIR. We recall, at a high level, the framework for
building OO-PIR used in multiple recent works [64,53]. These schemes follows
similar ideas from other prior work such as [22,21], but simplifies some of the
ideas to achieve more efficient queries. Both recent works [64,53] stream the
database in the offline phase. In Section 5.2, we discuss that any OO-PIR as-
suming only one-way functions (and query communication is sub-linear) must
have linear offline phase communication meaning database streaming is optimal.

Suppose the client has storage of r bits. The offline phase has the client
retrieve the parity of the database entries for w = r random sets of size n/r.
Throughout our work, we will commonly refer to these parities as hints. To
sample these random sets, we think of the database as being separated into n/r
“blocks” each of size w = r. A random set is represented by n/r ordered offsets
o1, . . . , on/r that are each uniformly chosen from {0, . . . , w − 1}. Then, the set
consists of the indices {j ·w+oj}j∈[n/r]. To find the parity of these sets’ database
entries in the offline phase, the client will stream the database, one block at a
time, and locally compute the parities. Notice that, as described, the client has
to store more than n bits of information for these random sets. However, the
client may use a pseudorandom function to succinctly store these sets.

In the online phase to query at x ∈ [n], the client will find a hint set containing
x. Suppose the found hint is o1, . . . , on/r where i ·w+ oi = x (that is, x appears
in i-th block). Next, the client removes the i-th offset corresponding to x from
the list of offsets, and sends the remaining n/r − 1 offsets to the server. The
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server, not knowing that the i-th block’s offset was removed, will try all possible
n/r options for the missing offsets and compute the parity of the corresponding
n/r − 1 entries. For concreteness, the server’s j-th parity will assume the j-th
block was removed and compute the parity assuming the n/r − 1 offsets are for
the other n/r−1 blocks. We note prior work [64] showed that these n/r parities
may be computed Õ(n/r) time by the server. Finally, the server sends the n/r
parities back to the client. Upon receiving these parities, the client will use the
parity where the i-th block was removed. Then, it can take the difference in the
received parity from the server and client stored parity (hint) from the offline
phase to compute the value of x in the database. As a disclaimer, we presented
the query algorithm from Piano [64] whereas Mughees et al. [53] take a slightly
different approach. Nevertheless, our improvements can apply to either scheme.

Hint Searching. Unfortunately one drawback of the above scheme is elided in
the brief description that the client will “find a hint set containing x,” which
itself will depend on the set representation. When using PRFs, the client can just
run the PRF with the relevant offset for x to test for membership in constant
time. But, this will still require the client to perform a linear pass through their
hints! And in expectation, this requires the client to look through w hints before
they find one containing their query.

Other OO-PIR schemes that use this kind of paradigm represent their sets
in different ways, using for example privately puncturable PRFs [59,63]. These
different representations provide an array of theoretical or practical benefits and
trade-offs in communication/time/etc. However, most proposals rely on building
representations with (near) constant-time set membership tests, and the schemes
require that the client scan through their hints running this set membership on
the order of Õ(r) times. Once it finds the hint, either the client or server must
enumerate the n/r set elements which must take Õ(n/r) time. Therefore, the
total query time is Õ(r+ n/r) across both the client and the server. Note, even
if the client enumerates the set, the server’s time is always Õ(n/r), meaning the
client’s time is the bottleneck. Our work is the first to overcome this bottleneck by
proposing a set representation which has a (near) constant-time hint searching
algorithm that will reduce the total query time to Õ(n/r) by improving the
client’s hint searching time to Õ(1). This allows our new OO-PIR scheme to
obtain optimal space-time trade-offs for all parameters as well as efficient updates
as we will show later.

Invertible PRFs. The primary tool we use to build efficient hint searching is
a new primitive we call an invertible PRF (iPRF). All iPRFs are PRFs, so, to
an adversary who does not know k, evaluating iF.F(k, ·) appears as a random
function. However, iPRFs also have an efficient inversion algorithm iF.F−1(k, ·),
which returns the pre-image of the given input and whose runtime depends only
on the size of the pre-image. This new primitive syntactically makes sense as
a PRF and (for our application) only requires traditional PRF security, but
we define a stronger security game which requires the inversions to appear as
random as well.
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In Section 4, we show how to build an iPRF from one-way functions (the
minimal assumption for iPRF existence). We model a random function from
[n] → [m] as throwing n labeled balls into m labelled bins. At a high level,
our iPRF follows two main steps. We first apply a PRP to the input, which is
analogous to randomly permuting n balls. Then, we give a new method to throw
n ordered balls into m ordered bins (with a PRG). Our method also gives near
constant-time algorithms to determine which bin a particular ball was thrown
into and to enumerate all the balls in a particular bin.

One key insight for our sampling technique is that we can find out how many
balls land in any bin though a series of binary choices. We imagine a binary tree
sitting above the bins, and starting at the root, we decide for each ball whether it
will go left or right. By repeating these binary left/right decisions, each ball can
find its appropriate bin after only logm coin flips. In order to track the number
of balls that land in each bin then, we can sample binomials random variables at
each node of the tree. So, at the root, we decide how many of the n balls go left
or right (i.e. sample from Binomial(n, 1/2)). Then, based on that outcome, we
can follow down any path to a specific bin keeping track of the number of balls
that have fallen along that path.5 In addition to finding the number of balls in
any bin, we can follow down any ball i to find which bin it landed in. We just
canonically say, if k balls go left, we can just imagine the balls labeled from 1 to
k were the ones that went that way.

This ability to find all the balls in a given bin and which bin a given ball
landed in is essential to giving our iPRF efficient computation in both the forward
and reverse directions. In fact, with access to a PRP, the evaluation and inversion
of the iPRF simply amounts to composing our sampler with the PRP in the
appropriate orders.

Fast Hint Searching in OO-PIR. Next, we show how invertible PRFs can be
used to give an efficient hint searching algorithm without sacrificing the cost of
efficient set membership and set enumeration algorithms (which are also impor-
tant to other parts of OO-PIR schemes). Unfortunately, iPRFs do not generi-
cally improve all OO-PIR, because many rely on specific puncturable properties
of their PRFs, which are not provided by iPRFs. However, we can apply iPRFs
to two recently proposed schemes, Piano and MIR [64,53].

Continuing with our sketch of the framework used in [64,53], we can replace
the calls to the PRF with calls to an iPRFs. For each of the n/r blocks, we pick
a different iPRF key, and for hint h, we can compute the offset for block i with a
forward evaluation iF.F(ki, h), which appears uniformly random. Note, the n/r
keys for each of the iPRFs can also be pseudorandomly generated using a PRF.
Therefore, this only requires storing a single PRF key.

Now, to find a hint that contains an element x, which is in block i with offset
o, all we have to do is run iF.F−1(ki, o)! This will give us a set of hint indices that
corresponds exactly with the hints containing x. We show that, if the hints are

5 This insight, which is critical to our efficient algorithm, is the origin of our scheme’s
name “Plinko,” a game where a ball falls on subsequent pegs and will either go left
or right at each level.
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stored in an appropriate data structure, this gives a (near) constant-time way
to find a hint for querying. As a result, the client’s query time becomes Õ(n/r)
with the main cost coming from enumerating the n/r offsets in the found hint
set. In contrast, prior constructions also needed to scan through all w = r hints
requiring Õ(r + n/r) client time.

Improved Space-Time Trade-offs. Our work is the first to achieve an op-
timal trade-off for all parameter choices matching recent lower bounds against
PIR with client pre-processing (ignoring logarithmic factors). In particular, [62]
showed that there is an inverse relationship between the size of the client’s hint
and the total run-time of query processing. For a database of n items, it is
known that r · t = Ω(n), where r is the client’s hint storage size and t is the total
time of the server. Prior constructions have matched this bound for server time,
but have sacrificed the run-time of the client when the client has large storage
sizes, r. To date, all constructions require a client to perform a linear pass over
their own hint before issuing a query. This means, for example, if a client has
r = w = n2/3 bits of storage, the runtime of the client will be Õ(n2/3). So, even
though the server runtime may be Õ(n/r) = Õ(n1/3), the total time to process
a query still grows with the client’s storage size and remains Õ(n2/3). Notice,
that lower bounds show that the total time only need be Ω(n/r) = Ω(n1/3).

Fortunately, an efficient hint searching algorithm circumvents this barrier in
OO-PIR constructions. By finding hints directly without a linear pass over the
entire storage, our clients can run in Õ(n/r) time, which is significantly more
efficient for a large number of hints. This gives us the first OO-PIR scheme with
total query time Õ(n/r) that obtains the optimal r · t = Õ(n) trade-off for any
choice of client storage size r.

Efficient Database Updates. The other primary benefit of our hint search
algorithm allows clients to update their hints more efficiently. One simple way
to design PIR with updates is to require the server to send the changes to the
database each time a client connects (via something like a changelog). However,
if an index changes and the client does not want to recompute all of their hints,
they need to find all of their hint sets that contain the index, so that they can
update the stored parity for that set. Unfortunately, schemes as written currently
would require the client to pass through each hint set and check the membership
for the updated element.

Our efficient hint searching algorithm has the benefit of not only giving one
candidate hint but all hints that contain the specified index. So, when a client
is told to perform an update, they can just do a single call to the iPRF in use,
find the hints containing the index, and then update those parities immediately.
This amounts to only an update functionality that requires only logarithmic
communication, logarithmic time for the client, and is conceptually simple.

This is a large improvement over alternative methods to reduce update time.
Specifically, some prior works have suggested using a type of Bentley-Saxe trans-
form to build a geometrically growing group of PIR [12,64,45]. This gives an
asymptotically logarithmic amortized update time, which is comparable to our
schemes in this paper. However, it also has amortized logarithmic communica-
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tion for updates, and in the worst case, this method requires O(n) time and
communication. Finally, the growing PIR schemes require the client to maintain
independent sets of hints for each and query in a more complicated way, which
leads to more complicated data management. In contrast, our method provides
a very simple and efficient way to perform and manage hints for the client and
the server even in the presence of updates.

3 Preliminaries

Through the paper we use [n] to denote the set {0, 1, . . . , n− 1}. For a function
f : D → R, we define f−1 : R → 2D as f−1(y) = {x ∈ D : f(x) = y}. When f
is a permutation on D, then f−1 : D → D since the pre-image of every y ∈ D is
unique. We also use asymptotic notation to describe the behavior of variables.

Asymptotic Notation. We use notation such as O(·) and Ω(·) in the standard
way. However, we slightly abuse the notation for Õ(·). In particular, we use this
throughout to he paper to denote that we ignore multiplicative factors which are
poly-logarithmic in the main variables we are considering, which is clear from
context. So, for example, we may say algorithm running for PIR on a database
of size n runs in Õ(1) time, which is equivalent polylog(n) time. This differs
from some conventional use, which would ignore poly-logarithmic factors in the
input to Õ(·). We also treat the security parameter λ as a constant for most of
our asymptotic notation.

Distributions. In some of our proofs and constructions we use the Bernoulli
(Bernoulli), binomial (Binomial), and multinomial (MN) distributions. We also
occasionally treat these as randomized functions which take parameters as in-
put and have an output distributed according to the distribution queried. We
also sometimes see these functions with some randomness r to turn it into a de-
terministic function. For example, Binomial(n, p; r) will always return the same
value, but over the random choice of r with sufficient entropy, the output will
be distributed according to a binomial. The MN distribution is parameterized
by n and m, so that MN(n,m) is a tuple of m random variables which are each
distributed according to Binomial(n, 1/m) conditioned on them all summing to
exactly n.

Pseudorandom Functions and Permutations. Next we recall a standard
definition of pseudorandom functions (PRFs) in Definition 1. This definition
captures a class of functions that are indistinguishable from random functions
over the choice of the random key. Notice that for small domains that are poly-
nomial in the security parameter, we could equivalently give the adversary the
entire table of function values.

Definition 1. A pseudorandom function (PRF) [33] from D to R with keyspace
K is pair of efficiently computable functions: a randomized key generation func-
tion Gen : {0, 1}∗ → K and a deterministic function F : K × D → R. For an
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adversary A and PRF F, we define

Advprf
F (λ,A) =

∣∣∣∣ Pr
k←$ Gen(1λ)

[AFk(·)(1λ) = 1]− Pr
R←$ Func[D,R]

[AR(·)(1λ) = 1]

∣∣∣∣ .
We call a PRF F secure if for all efficient A, Advprf

F (A) ≤ negl(λ).

We additionally recall the definition of a pseudorandom permutation (PRP)
in Definition 2. This captures a class of permutations which are indistinguishable
from a random permutation. Notice that for small domains that are polynomial
in the security parameter, we could equivalently give the adversary the entire
table of permutation values.

Definition 2. A pseudorandom permutation (PRP) [46] over D with keyspace
K is triple of efficiently computable functions: a randomized key generation func-
tion Gen : {0, 1}∗ → K, a deterministic function P : K × D → D, and a deter-
ministic function P−1 : K×D → D. For an adversary A and PRF P, we define

Advprp
P (λ,A) =∣∣∣∣ Pr

k←$ Gen(1λ)
[APk(·),P−1

k (·)(1λ) = 1]− Pr
π←$ Perm[D]

[Aπ(·),π−1(·)(1λ) = 1]

∣∣∣∣ .
We call a PRP P secure if for all efficient A, Advprp

P (λ,A) ≤ negl(λ).

We do not provide a formal definition, but we occasionally refer to a truncated
permutation. This is used occasionally by using a PRP on the domain {0, 1}n and
then truncating the output to the first m < n bits. Over large domains, this can
be used to approximate a random function. This type of function has the benefit
that it can be inverted efficiently. For any bit-string in {0, 1}m, one can append
every possible string in {0, 1}n−m and run the PRP inversion. Unfortunately,
for our purposes in this paper, these truncated permutations are insufficient,
because there exists attacks due to [30,32] which have large advantage when the
PRP domain is small.

4 Invertible PRFs

In this section, we generalize the notion of pseudorandom functions (PRFs)
[33] and define what we call invertible pseudorandom functions (iPRFs). Prior
work [13] has defined a primitive by the same name, but our definitions and
constructions differ from theirs. In particular, the prior work only considers
invertibility for injective random functions where each output element has at
most one inverse In contrast, we consider arbitrary random functions without
this restriction (that will be necessary in our later PIR applications).

First, we give a formal definition for an invertible PRF. We require an iPRF
to have a generation method as well as algorithms for forwar and backward
evaluation. We also introduce a security definition for iPRFs which gives an
adversary access to both the forward and inverse oracle. If we just take the
generation and forward functions for a secure iPRF, this will simply be a PRF.
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Definition 3. An invertible pseudorandom function (iPRF) from domain D
to range R with keyspace K is a triple of efficiently computable functions: a
randomized key generation function Gen : {0, 1}∗ → K, a deterministic function
F : K × D → R, and a deterministic function F−1 : K × R → 2D. We say an
iPRF iF is correct if, for all y ∈ R,

Pr
k←$ Gen(1λ)

[F−1k (y) ̸= {x ∈ D | Fk(x) = y}] ≤ negl(λ).

For an adversary A and iPRF iF, we define the adversarial advantage as

Adviprf
iF (λ,A) =∣∣∣∣ Pr

k←$ Gen(1λ)
[AFk(·),F−1

k (·)(1λ) = 1]− Pr
R←$ Func[D,R]

[AR(·),R−1(·)(1λ) = 1]

∣∣∣∣ .
We call a iPRF iF secure if for all efficient A, Adviprf

iF (λ,A) ≤ negl(λ).

We also observe that this definition is strictly stronger than the PRF security
definition. For example, we can construct an iPRF which has a secure forward
function but which is not a fully secure iPRF as specified by Definition 3, at least
in the case of large domains, when n is much larger than the adversary’s runtime.
We can build a pathological iPRF iF′ built from an underlying iPRF iF which
is defined as iF′.Fk(x) = iF.Fk(x) for every x except that iF′.Fk(k) = 0. This is
indistinguishable from the original iF when n is large (because it is unlikely that
any adversary will query k) and therefore it is indistinguishable from a random
function in the forward direction. However, iF′ is clearly not a fully secure iPRF
because an adversary could query the inverse oracle on 0 to get a small list of
candidates (assuming the range is about as large as or larger than the range) for
the key, which it could then check against other evaluations.

In order to construct our own iF, we only require two tools, which can both
be built out of one-way functions. The first is a pseudorandom permutation
Definition 2, which has been well studied. Our other tool is new to this work. It is
a primitive we call a pseudorandom multinomial sampler (PMNS) in Definition 4.
Intuitively, we use a PMNS in our construction of an iPRF to efficiently sample
a pre-image distribution that matches that of a random function.

4.1 Pseudorandom Multinomial Samplers

For integers n and m, the (n,m)-Multinomial Distribution MN(n,m) is the dis-
tribution over the sequences (l0, . . . , lm−1) of the loads of m distinct bins after
each of n identical balls has been assigned to a uniformly random and indipen-
dently chosen bin. Our interest in the multinomial distribution lies in the fact
that MN(n,m) is the distribution of the sizes of the pre-images of a random
function from a domain of size n to a range of size m. Each sequence in the sup-
port of MN(n,m) can be encoded using O(m log n) bits but for our applications
this can be too large and thus we are interested in succinct encodings of size
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polylog(n,m). Clearly, this comes at the cost of having to settle for a distribu-
tion that that is only computationally indistinguishable from the multinomial
distribution. Neverthless, this will suffice for our applications.

We define a Pseudorandom Multinomial Sampler (a PMNS) as a triplet of
algorithms (Gen,S,S−1). Roughly speaking, Gen, on input security parameter 1λ,
samples a sequence (l0, . . . , lm−1) and outputs an encoding k of it. Algorithms
S and S−1 are used to access the encoding. Specifically, algorithm S takes the
encoding k and a ball index 0 ≤ x ≤ n − 1 and outputs x that is the assigned
bin for k. Finally, algorithm S−1 takes as input a description k and a bin index y
and outputs the balls assigned to the y-th bin. There is a subtle point here that
needs to be clarified. The multinomial distribution considers n identical balls
being thrown into m distinct bins. So, we number the balls so that each bin has
consecutively numbered balls and, for i < j, the balls in bin i have indices no
larger than the balls in index j. In this way we obtain an ordered assignment of
balls to bins. For pseudorandomness, we want the descriptions output by Gen
to be computationally indistinguishable from a real MN sampler. In terms of
correctness, we require S and S−1 to be functional inverses of each other.

Definition 4. A multinomial sampler (MNS) for MN(n,m) with encoding space
K is a triple of efficiently computable functions: a randomized encoding genera-
tion function Gen : {0, 1}∗ → K, a deterministic function S : K× [n]→ [m], and
a deterministic function S−1 : K × [m]→ 2[n]. such that y ∈ [m],

Pr
k←$ Gen(1λ)

[S−1(k, y) ̸= {x ∈ [n] | S(k, x) = y}] ≤ negl(λ).

To define pseudorandomness, we consider the advantage of adversary A as

Advpmns
S (λ,A) =

∣∣∣∣ Pr
k←$ Gen(1λ)

[A|S
−1(k,·)|(1λ) = 1]− Pr

D←$ MN(n,m)
[AD(·)(1λ) = 1]

∣∣∣∣ ,
where we use the notation |O(·)| to indicate that the adversary can query an
input in [m] and gets back the size of the set returned and D(y) is the load of
bin y in the sampled sequence D.

Definition 5. A multinomial sampler MN(n,m) = (Gen,S,S−1) is a pseudo-
random multinomial sampler (PMNS) if, for all efficient A, Advpmns

S (λ,A) ≤
negl(λ). Further, if Advpmns

S (λ,A) = 0 for all λ and adversaries A, then we say
that S is a perfectly secure multinomial sampler.

4.2 Building an iPRF

Before explaining how we build a pseudorandom multinomial sampler, we will
show how to compose a PRP with a PMNS to achieve an invertible pseudoran-
dom function. First, it is useful to observe that a PRP is already close to an iPRF
if the domain is large enough, which is a well known fact that is established by
the PRF/PRP switching lemma [38,36,11,25]. However, for small domains, an
adversary can easily observe the distributional differences between a PRP and
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a random function, since one will have no collisions. A potential fix, that has
been well studied but still fails, is to use a truncated PRP, which would still
allow for efficient inversion. This will allow for a few collisions and be harder
to distinguish from a random function than an original PRP, but unfortunately
there are still substantial biases from a random function for small domains [31].
The core issue with truncated PRPs is that each output has the same pre-image
size. This means that means that after each sampled output, the conditional
distribution of the next observed output is changed. This is fundamentally dif-
ferent than a random function from [n] to [m], which will have pre-image sizes
that are distributed as though one threw n balls into m bins.

This is exactly where a pseudorandom multinomial sampler comes to the
rescue. Our PMNS primitive provides an ordered assignment of balls to bins
that is clearly not random looking at all. For this reason, we then use a PRP
to randomly permute the balls. By first throwing n balls into m bins efficiently
and then applying a PRP, we can make use of the invertibility of a PRP while
preserving the necessary distribution of a random function! Theorem 1 gives the
exact construction and proof that this of composition achieves our goals.

Theorem 1. Let P be a secure PRP over [n] and (Gen,S,S−1) be a secure PMNS
from [n] to [m]. Then, there exists a secure iPRF iF, defined as follows:

• iF.Gen(1λ) = (P.Gen(1λ),S.Gen(1λ))
• iF.F((k1, k2), x) = S(k2,P(k1, x))
• iF.F−1((k1, k2), y) = {P−1(k1, x) : x ∈ S−1(k2, y)}

Additionally, iF is efficient and only requires a single call to the underlying S for
both the forward an backward directions and one call to P for every domain or
range element output.

Proof. First, we comment that this construction is efficient when instantiated
with an efficient PMNS and PRP. In Theorem 2, we will give a construction of
such a PMNS and prove that it is efficient. We also can instantiate the above
scheme with a specific small-domain PRP, like the Sometimes-Recurse Shuffle
[51], that provides full security over domains of size n and make only O(log n)
calls to an underlying efficient PRF. This establishes that our iPRF construction
will be efficient for any domain and range.

Next, we go on to prove the security of iF. To do so we consider a sequence
of three pairs of oracles (O0,O−10 ), (O1,O−11 ), (O2,O−12 ) parameterized by n,m
and the security parameter λ. We will show that the three pairs of oracles are
indistinguishable and we finish the proof by showing that the first pair computes
a random function and its inverse and the last pair computes an iF and its inverse.

The three pairs of oracles all work with a partition of [n] into m sets R[0], . . . ,
R[m−1]. Given the m sets, all oracle calls are served in the same way: oracle O,
on input x, returns y such that x ∈ R[y]; oracle O−1, on input y, returns R[y].
The three pairs of oracles though differ in how the m sets are computed.

Let us start by defining O0 and O−10 . We sample (l0, . . . , lm−1) according to
distributionMN(n,m) and then we defineR[0], . . . , R[m−1], by picking a random
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permutation Π of [n] and assigning to R[0] the image under Π of {0, . . . , l0−1};
to R[1] the image under Π of {l0, . . . , l0 + l1 − 1}; and so on, until R[m − 1]
that has the image under Π of {n − lm−1, . . . , n − 1}. The partition of [n] into
the sets R[0], . . . , R[m − 1] then defines the input output behaviors of O0 and
O−10 according to the rules above. It is easy to see that O0 and O−10 compute a
random function and its inverse, respectively.

Now we define O1 and O−11 . The only difference from the previous pair is in
the construction of (l0, . . . , lm−1). Specifically, we start by executing k←$ Gen(1λ)
and by setting ly = |S−1(k, y)|, for y = 0, . . . ,m− 1. The sets R[0], . . . , R[m− 1]
are defined as in O0 and O−10 , based on the sequence (l0, . . . , lm−1).

If (Gen,S,S−1) is a PMNS, then it is easy to see that (O1,O−11 ) are indis-
tinguishable from (O0,O−10 ). For the sake of contradiction, suppose that there
exists an efficient adversary A and a polynomial poly for which

|Pr[AO0(·),O−1
0 (·)(1λ) = 1]− Pr[AO1(·),O−1

1 (·)(1λ) = 1]| ≥ 1/poly(λ)

and consider the following adversary B that has access to an oracle M that
returns sequences (l0, . . . , lm−1). B(1λ) obtains a sequence (l0, . . . , lm−1) by in-
voking M(1λ) and then sets up two oracles G and G−1 based on the sequence
obtained as above. B receives (l0, . . . , lm−1), picks a random permutation Π of
[n] and constructs the partition of [n] into sets R[0], . . . , R[m− 1] used by G and
G−1. Then B runs A with access to the two oracles. When A stops and returns
a bit, B stops and returns the same bit.

Now observe that ifM outputs a sequence sampled according to MN(n,m),
then B is providing A with access to (O0,O−10 ). Consider the case when the
sequence output by M is obtained by first running k←$ Gen(1λ) and then by
setting ly = |S−1(k, y)|, for y = 0, . . . ,m − 1. Then, in this case, B is providing
A with access to (O1,O−11 ). By our assumption that A can distinguish the two
pairs of oracles, we obtain that B can break the pseudorandomness of the PMNS
(Gen,S,S−1) providing a contradiction.

Finally, we define oracles O2 and O−12 . Here, we first randomly sample a
pseudorandom permutation k1←$ P.Gen(1λ) and an encoding k2←$ S.Gen(1λ)
of a multinomial sampler. Then we set R[y] = {P(k1, x) : x ∈ S−1(k2, y)}.
Towards a contradiction, suppose there exists an efficient adversary A satisfying∣∣∣Pr[AO2(·),O−1

2 (·)(1λ) = 1]− Pr[AO1(·),O−1
1 (·)(1λ) = 1]

∣∣∣ ≥ 1/poly(λ)

and consider now the following efficient adversary B that has access to a pair of
oraclesM andM−1. B prepares the sets R[0], . . . , R[m− 1] by randomly sam-
pling an encoding k←$ S.Gen(1λ) of a multinomial sampler and then by setting,
for y = 0, . . . ,m − 1, R[y] = {M(x) : x ∈ S−1(k, y)}. Then, B executes A by
providing access to oracles G and G−1 based on the partition of [n] constructed.
When A stops and outputs a bit, B stops and outputs the same bit. Now we
make the following observations. If M is a random permutation of [n] then A
is run with access to oracles O1,O−11 . On the other hand if M implements a
pseudorandom permutation P then A is run with access to oracles O2,O−12 . By
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our assumption that A can distinguish the two pairs of oracles we obtain that
B can break the pseudorandomness of the PRP.

The proof is completed by observing that oracles O2 and O−12 evaluate,
respectively, an iF and its inverse.

Corollary 1 follows immediately as any secure PRF with efficient inversion
satifies the properties of being a PMNS.

Corollary 1. Let P be a secure PRP and F be a secure PRF with an efficiently
computable deterministic function F−1 : K ×R → 2D which correctly computes
the inverse of F (i.e. x ∈ F−1(k, y) iff F(k, x) = y for every x ∈ D, y ∈ R, and
k ∈ K). Then, there exists an efficient and secure iPRF iF, defined as follows:

• iF.Gen(1λ) = (P.Gen(1λ),F.Gen(1λ))
• iF.F((k1, k2), x) = F(k2,P(k1, x))
• iF.F−1((k1, k2), y) = {P−1(k1, x) : x ∈ F−1(k2, y)}

Additionally, iF is efficient and only requires a single call to the underlying F for
both the forward an backward directions and one call to P for every domain or
range element output.

Proof. Note that a PRF F with an efficiently computable inverse is a pseudo-
random multinomial sampler. This is an immediate corollary of Theorem 1.

4.3 Building a Pseudorandom Multinomial Sampler.

Now that we understand how a pseudorandom multinomial sampler can be used,
we can explore how we can build one.

The key insight is in the following lemma and it relies on the Binomial dis-
tribution. The Binomial distribution is very closely related to the multinomial
as it corresponds to the case of m = 2 to bins. It will be useful in our treatment
to consider Binomial(n, p), for 0 ≤ p ≤ 1, as the distribution of the number of
balls in the first bin when each of the n balls is assigned independently to the
first bin with probability p (and to the second bin with probability 1− p).

Intuitively, the following method of sampling the multinomial distribution is
used in our construction of a pseudorandom multinomial sampler.

Multinomial Algorithm

For every n and m and for every 1 ≤ j ≤ m − 1, the following process
outputs a sequence distributed according to MN(n,m):

1. If n = 0 then Output: the sequence (0, . . . , 0) consisting of m 0’s.
2. If m = 1 then Output: the sequence (n).
3. Sample L←$ Binomial(n, j/m) and set R = n− L.
4. Let left←$ MN(L, j).
5. Let right←$ MN(R,m− j).
6. Output: left||right.
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Fig. 3. Visualization of how our S : [30]→ [8] construction from Figure 4 might throw
30 balls into 8 bins. By seeding the samples, one can compute the value of a leaf by
sampling along its path.

In other words, the algorithm above says that to sample MN(n,m) we can
partition the m bins in a left part, consisting of j bins, and in a right part,
consisting of m− j bins. Then we sample the number of balls L that go to the
left part according to Binomial(n, j/m). Finally we recurse on the left part to
assign the L balls to the j bins and R = n−L balls to the remaining m− j bins.
We implicitly prove the above algorithm correctly samples the MN(n,m) in the
proof of Theorem 2.

For simplicity, let us visualize the process above for m = 2κ, for some integer
κ. In this case we can pick j = m/2 = 2κ−1 and the Binomial invocation tells us
whether the ball falls in left half or in the right half. Specifically, balls 0, . . . , L−1
fall in the first half or not. This determines the first bit of the bin index. We can
then continue specifying the bits of the bin index in a similar for all κ bits.

To build a pseudorandom multinomial sampler, we could try to repeat this
n times with some pseudorandomness and record where each ball lands. This
would give us an efficient way to determine which bin any particular ball lands
in, just by recomputing the logm random bits that correspond to that ball.
However, the inversion function would require finding the balls which landed in
a particular bins, which requires recomputing and testing each of the n balls’
bins to see if it landed in the bin in question.

A key insight, however is that we only need the number of balls in each bin
to be distributed as though we threw n balls into m bins. And by throwing
all n balls into the bins “at the same time,” our construction can simulate this
distribution and invert it efficiently. We visualize our construction in Figure 3.
Following the same idea of coin flips for each ball, we sample (pseudorandomly)
from the binomial distribution at each node in the tree. Then, based on the
number output, we send that many balls to the left child and the remaining
to the right child. By recursively evaluating a binomial distribution with the
number of passed from the parent, our leaf nodes will contain some number of
balls that is distributed identically to that of throwing n balls into m bins.



Plinko: Single-Server PIR with Efficient Updates via Invertible PRFs 19

In more detail, our PMNS construction works by tracing through a binary
tree to determine the bin that a specific ball lands in (the forward evaluation
S) or list all of the balls in a specific bin (the reverse evaluation S−1). In either
direction, our scheme follows the same basic principle of walking the path of a
binary tree, tracking all of the balls which appear along the path. The difference
between the forward and backward evaluation is how the algorithm determines
which path it will follow, and what it ultimately returns. Note that throughout
our construction, the only pseudorandomness comes from our use of a pseudo-
random function to sample the from the binomial distribution. If one were to
instead use true randomness, then our construction would be perfectly secure as
defined in Definition 4.

When evaluated in either direction, our algorithm S begins by sampling a
number s ∼ Binomial(n, 1/2) from a binomial distribution, which is seeded by
an evaluation of some function F (k, ·) (usually a PRF), so that it is the same
on each evaluation. This number represents the number of balls which are in
the left-most bins (bins 0, . . . ,m/2 − 1). Notice that in a random multinomial
distribution, this is distributed according to Binomial(n, 1/2).

Notice that our S construction only needs to have the number of balls to
match the multinomial distribution, and in particular, it does not need the in-
dices of the balls in the bins to appear random. So, the algorithm matches the
multinomial distribution at the first step by sending the balls 0, . . . , s− 1 to the
left and the remaining balls s, . . . , n to the right. This way we can encode the set
of balls along each path (left or right) using the just the number of balls (s or
n− s) and the start index (0 or s) which take at most 2 log n bits. Additionally,
the algorithm tracks where it is in the tree by storing the leftmost and rightmost
leaves it can reach at each step, using only 2 logm bits.

After this first step, the algorithm will determine whether to recurse to the
left or right depending on its input. If evaluated in the forward direction S will
check where the input ball x ∈ [n] was sent. So, for example if x < s, then it will
recurse left and otherwise will recurse right. If instead, the algorithm runs the
backward direction S−1, the algorithm determines if the input bin y ∈ [m] is to
the left or right of the root node (i.e. if y < m/2) and recurse toward the bin y.

Now at this next node, S changes the total number of balls and start index
from the root’s implicit n and 0 respectively to the inherited values for the
children, s and 0 (if it went left) or n − s and s (if it went right). From here,
if we call the new total of balls n̂ and the start index σ̂, our algorithm proceed
with the same procedure as before! In particular, the algorithm will sample a
new ŝ ∼ Binomial(n̂, 1/2), again seeded with function F (k, ·) to remain consistent
across queries. Then, it will send ŝ balls to the left starting with ball σ̂ and n̂− ŝ
balls to the right starting with ball σ̂ + ŝ.

From here, the algorithm continues to recurse left or right along its desired
path. When running forward, S will go left when the input ball σ̂ ≤ x ≤ σ̂+ ŝ−1
and otherwise will go right. When running backward, S−1 will go left when the
input bin y is to the left of the current node, which it can determine using the
leftmost and rightmost descendant leaves.
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Once the algorithm has reached a leaf node (in logm rounds), it outputs the
desired information based on the direction that it was queried. When running
forward, S will have traced the ball x ∈ [n] all the way down to the bin that
it landed it, so the algorithm only needs to output the bin index y ∈ [m] that
x was eventually thrown into. When running backward, S−1 will have tracked
the start index σ and number of balls n′ that landed in its input bin y ∈ [m].
So, in order to output the set of all balls that end up in bin y, the algorithm
just outputs the enumerated set {σ, σ + 1, . . . , σ + n′ − 1} (or ∅ if n′ = 0).
Of course, in practice, we would probably have our algorithm to just output a
compressed representation of this set by just giving the start index and number
of balls (especially when n >> m). This additional practical benefit of our
scheme that falls outside our formalism used throughout the paper. However, it
enables additional functionality that may be practically useful. For example, our
S scheme can be easily adapted to efficiently sample from the pre-image even
when it is inefficient to enumerate the pre-image.

S(k, x ∈ [n])

start← 0 ; count← n
low← 0 ; high← m− 1
node← (start, count, low, high)
While low < high:

(left, right, s)← children(k, node)
If x < start+ s then node← left
Else node← right
(start, count, low, high)← node

Return low

S−1(k, y ∈ [m])

start← 0 ; count← n
low← 0 ; high← m− 1
node← (start, count, low, high)
While low < high:

(left, right, s)← children(k, node)
mid← ⌊(high+ low)/2⌋
If y ≤ mid then node← left
Else node← right
(start, count, low, high)← node

Return {start, . . . , start+ count− 1}

children(k, node)

(start, count, low, high)← node
mid← ⌊(high+ low)/2⌋
p← (mid− low + 1)/(high− low + 1)
s← Binomial(count, p;F (k, node))
left← (start, s, low,mid)
right← (start+ s, count− s,mid+ 1, high)
Return (left, right, s)

Fig. 4. Construction of an pseudorandom binomial sampler. The notation
Binomial(n, p; r) indicates a derandomized binomial sampling function, using the ran-
domness r. The function F can be instantiated with a PRF to achieve a computationally
secure PMNS or a truly random function for a statistically secure PMNS.

For a more precise formulation, we give pseudocode in Figure 4. This pseu-
docode follows the same intuition as above but will additionally work for m
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that is not a power of 2 (by biasing the binomial sampling). And in Theorem 2,
we formally prove that this construction is in fact a PMNS, using following
Lemma 1.

Lemma 1. Let n be an integer and p ∈ [0, 1]. Let X ∼ Binomial(n, p) and
Y ∼ Binomial(X, q). Then, Y ∼ Binomial(n, pq).

Proof. We can express X as a sum of n independent Bernoulli random variables
X = X1 + · · · + Xn, where Xi ∼ Bernoulli(p). We can similarly express Y
as Y = X1Y1 + · · · + XnYn, where Yi ∼ Bernoulli(q). Finally, using the fact
that product of two Bernoulli random variables is itself a Bernoulli random
variable, we observe each XiYi = Zi, where Zi ∼ Bernoulli(pq). So, we can write
Y = Z1 + · · ·+ Zn, establishing that Y ∼ Binomial(n, pq).

Theorem 2. The construction S in Figure 4 from [n] to [m] is a computationally
secure PMNS when F is a pseudorandom function with range of size at least n.
And, it is statistically secure when F is a truly random function.

Additionally, S is efficient and only requires O(logm) time and logm calls
to the F , when evaluated in the forward or reverse direction.

Proof. First, we establish that the construction in Figure 4 is efficient. In partic-
ular, on any forward or reverse evaluation our algorithm makes at most ⌈logm⌉
calls to children as it traces along its path to a leaf (when low = high). The
only other non-atomic operations in our code are the calls to F and Binomial.
By assumption F is efficient, and Binomial can be implemented efficiently which
is logarithmic in the input length (see [23]). So, when F is implemented with a
constant-time PRF, our algorithm can run in time that is polylog(n,m).

Next we go on to prove the security of our construction. By assumption,
F (k, node) outputs elements that are indistinguishable from a random sample
over a range of size at least n. So, we will prove that when every call to F (k, node)
is uniformly random and independently sampled, the tuple

(|S−1(k, 0)|, |S−1(k, 1)|, . . . , |S−1(k,m− 1)|),

is identical to

(D(0), . . . , D(m− 1)) ∼ MN(n,m).

In other words, we assume each uniquely seeded binomial sample in the construc-
tion Figure 4 is independent of other binomial samples. This will also establish
the further claim that it is statistically secure when F is a random function.

For the remainder of the proof, let

X = (X1, . . . , Xm) = (|R−1(1)|, |R−1(2)|, . . . , |R−1(m)|),

and

Y = (Y1, . . . , Ym) = (D(1), . . . , D(m)).

We will show that TV(X;Y ) = 0.
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For simplicity we assume that m is a power of 2. Observe that Y1 is gen-
erated as a series of binomial samples. If we write S1, . . . , Slogm as the in-
termediate samples, we see that S1 = n, S2 ∼ Binomial(S1, 1/2), and so on
until Y1 ∼ Binomial(Slogm, 1/2). By applying Lemma 1 repeatedly, we prove
that Y1 ∼ Binomial(n, 1/m). Since choosing a random function is equivalent to
throwing n balls into a m bins, we know the frequency of balls in the first bin by
itself is distributed according to X1 ∼ Binomial(n, 1/m). This establishes that
TV(X1;Y1) = 0.

Next, we prove that for k ≥ 1, TV(Xk+1;Yk+1|(X1, Y1, . . . , Xk, Yk)) = 0,
which will establish the theorem.

First, observe that

Xk+1|X1, . . . , Xk ∼ Binomial(n−
k∑

i=1

Xi,
1

m− k
).

This can be seen because we are conditioning on sample on an exactly number
of n balls that landed in the first k bins. The remaining balls, we know did not
land in those bins, but will appear uniformly at random among the remaining
m− k bins.

All the remains is to establish is that

Yk+1|Y1, . . . , Yk ∼ Binomial(n−
k∑

i=1

Yi,
1

m− k
).

Here we again consider the intermediate random variables on the path to Yk+1

and call them S1, . . . , Slogm, each of which are the number of balls thrown that
are thrown to their corresponding tree node. Notice that each Si is exactly equal
to the sum of all of its descendant leaves.

First, we consider the root node which corresponds to S1 and is along the
path to any leaf. By definition S1 is always n with probability 1 and is therefore
unaffected by conditioning on the values of Y1, . . . , Yk. The count of S2, however
is usually sampled according according to Binomial(n, 1

2 ). But, when conditioning
on values Y1, . . . , Yk, the distribution of S2 is changed, because we know exactly
how many balls travel along the paths to Y1, . . . , Yk.

If S2 is along the path of every Y1, . . . , Yk (when k < m/2), then this is
equivalent to filling the first k bins with Y1, . . . , Yk balls respectively and then
throwing the remaining balls into S2 according to the number of remaining bins
on either side of the midpoint. So, we can just write

S2|Y1, . . . , Yk ∼
k∑

i=1

Yi + Binomial(S1 −
k∑

i=1

Yi,
m/2− k

m− k
)

since S2 is the left child, since k + 1 ≤ m/2 and S2 is on the path to Yk+1.
If instead S2 is only on some (or none) of the Y1, . . . , Yk paths, then a sim-

ilar argument shows how S2 is sampled. For example when k ≥ m/2, S2 is
actually fixed by the values Y1, . . . , Ym/2. So, we can write that S2|Y1, . . . , Yk ∼
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i=m/2+1 Yi+Binomial(S1−

∑k
i=1 Yi, 1), for the right child which is determined

entirely by S1 (and we write the summation and binomial for convenience later
on). Notice that if k ≥ m/2 then S2 will always be the right child, because the
path to Yk+1 is further right in the tree than any of Y1, . . . , Yk.

This analysis also applies to an intermediate node Si−1 with mi−1 total de-
scendant leaves, including some of the fixed values Ya, . . . , Yk. When determining
the distribution of the child Si in this conditioned space, we break into to cases.
If fewer than mi−1/2 leaves are conditioned (i.e. k − a < mi−1/2), then

Si|Y1, . . . , Yk ∼
k∑

i=a

Yi + Binomial(Si−1 −
k∑

i=a

Yi,
mi−1/2− (k − a)

mi−1 − (k − a)
),

since Si is the left child, because k + 1 ≤ a +mi−1/2 and Si is on the path to
Yk+1. If instead at least mi−1/2 leaves are conditioned, then the right child is

sampled as Si|Y1, . . . , Yk ∼
∑k

i=a+mi−1/2
Yi + Binomial(Si−1 −

∑k
i=a Yi, 1), and

Si will never be the left child in this case because k + 1 is further right than all
of the conditioned on leaves.

Additionally, the applies to the leaf nodes and in particular Yk+1.

Yk+1|Y1, . . . , Yk ∼ Binomial(Slogm, 1/2),

if none of Y1, . . . , Yk are descendants of Slogm and otherwise, if Yk is a descendant
of Slogm, then Yk+1 ∼ Binomial(Slogm − Yk, 1).

In either case, Yk+1 is sampled through a series of recursive binomial distribu-
tions. Each of the conditionally distributed Si random variables can be written as
some fixed valueXi added to a binomial sample, Si ∼ Xi+Binomial(Si−1−Yi, pi).
Notice however that in each case, Yi = Xi−1 and that the base case S1 is trivially
a binomial distribution.

By applying Lemma 1 repeatedly, we find that

Yk+1 ∼ Binomial(S1 −
k∑

i=1

Yi,

logm∏
j=2

pi),

where each pi is the probability used in the description of Si’s distribution. To
finally establish the theorem, we argue that the product of each of these pi is
exactly 1

m−k . This follows because the probabilities (that are not equal to 1) are
telescoping so that the denominator of pi is exactly the numerator of pi−1. So,
we are only left with the denominator of p2 and numerator of plogm, which is
exactly 1

m−k .

5 Single-Server PIR

In this section, we give a new construction for single-server offline-online PIR,
Plinko, with two advantages. First, it obtains optimal query time t = Õ(n/r)
for any client storage size r. Prior works were unable to obtain this trade-off for
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all client storage sizes as they require query time t = Õ(r + (n/r)). Secondly,
Plinko enables worst-case polylog(n) time and O(1) communication to update
a database entry. Prior work required either Θ(n) worst-case runtime and com-
munication for an update or Θ̃(

√
n) runtime for updates with only Θ(log n) bits

of communication. We present a comprehensive comparison of Plinko and prior
works in Figure 6.

5.1 Definitions

Before presenting our scheme, we recall the definition of offline-online private
information retrieval in Definition 6. Our definition stresses the offline model of
two prior works [64,53], which gives the client a single streaming pass over the
database to compute their hints initially. We keep with this model in our formal-
ism of HintInit by giving it streaming oracle access to D because it simplifies the
presentation of our improvements over these schemes, allows using only one-way
functions for security, and amortize out the cost of computing new hints.

However, more in line with other prior works, we could instead consider a
HintInit protocol which is run under fully-homomorphic encryption by the single-
server to return encrypted hints back to the client. In either model, we are the
first to achieve the gains of efficient updates and an optimal space-time trade-off.

In our definition below, we use the notation HintInitD to denote an algorithm
that is run by the client that requires a streaming pass over the database D. In
contrast, we write A(x; y) → z to denote algorithms that take variable(s) x as
input, have random read (and/or write) access to some memory y, and output
z. This is to allow our formalism to define algorithms that run in time that is
sublinear in y (e.g. UpdateHint).

Definition 6. An offline-online private information retrieval (PIR) scheme for
a database D of size n and supporting Q queries is a tuple Π = (HintInit, Query,
Answer, Recon) of efficient algorithms:

• HintInitD(1λ)→ st, a randomized algorithm that takes a security parameter,
has a single streaming pass of D ∈ {0, 1}n, and outputs a client state st.
• Query(i; st)→ (q, h), a randomized algorithm that takes as an index i ∈ [n],
and read access to st, and outputs a query q and reconstruction hint h.
• Answer(q;D) → r, a deterministic algorithm that takes as input a query q
and read access to D ∈ {0, 1}n and outputs a response r.
• Recon(h, r; st) → a, a randomized algorithm that takes as input reconstruc-
tion hint h, a server response r, and read/write access to st, and outputs an
answer a ∈ {0, 1} and may modify st.

For adversary A issuing at most Q queries to its Q oracle and PIR Π, we define

Advcor
Π (λ,A) = Pr[Gcor(λ,A) = 1]

and
Advpir

Π (λ,A) = Pr[Gpir(λ,A) = 1],
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where the games are specified in Figure 5.
We all a PIR scheme Π correct if for all efficient A issuing at most Q

queries, Advcor
Π (λ,A) ≤ negl(λ). Similarly, we call a PIR scheme Π secure if

for all efficient A, Advpir
Π (λ,A) ≤ negl(λ).

Definition 7. An updateable PIR scheme is a tuple of six efficient algorithms.
The first four are as defined in Definition 6, and the last two are defined as:

• UpdateDB(i, d;D) → δ, a deterministic algorithm that take an update (i, d)
and read/write access to the database D, and outputs a summary of the
update δ and changes D[i]← d.

• UpdateHint(δ; st), a deterministic algorithm with no output that takes the a
summary of updates δ, and read/write access to st which it may modify.

We say an updateable PIR scheme is correct and secure if it satisfies for
all efficient A issuing at most Q queries to Q, Advcor

Π (λ,A) ≤ negl(λ) and

Advpir
Π (λ,A) ≤ negl(λ) respectively. And in these games against, A additionally

has access to the U oracle.

We give formal games in Figure 5 for the correctness and privacy of a PIR
scheme, and explicitly allow the adversaries to call an update oracle. However,
these games are effectively equivalent to the traditional definitions given for se-
curity and correctness. We define our offline-online PIR and games with respect
to a fixed number of queries Q, because we can generically convert a PIR satis-
fying the syntax to one which runs HintInit over the Q queries by streaming the
database in n/Q blocks to prepare a new set of hints before the first set expires.5.2 Our Contsruction: Plinko

Now we present our new single-server PIR scheme, called Plinko. Plinko is built
on top off [53], but uses invertible PRFs (Section 4) to achieve significant asymp-
totic improvements. Although, we note our techniques are flexible as they can
also be applied to [64] for example (Appendix B). Plinko is parameterized with
respect to a security parameter λ, a block size w, and a number of supported
queries before refresh q. We view w and q as parameters which influence the
amount of storage required by the client. In prior work, these parameters were
fixed around

√
n for simplicity and asymptotic optimums, but we present Plinko

without fixing these, since it highlights where we differ from prior work and how
we achieve an optimal trade-off between client storage and query time.

Theorem 3. Assuming one-way functions, there exists a single-server, updat-
able, offline-online PIR scheme such that for every n-bit database and every
choice of client storage parameter r < n:

• Each online query runs in Õ(n/r) time.
• Each online query uses Õ(n/r) bits of communication.
• Each database update runs in time Õ(1) time.
• Each database update uses O(log n) bits of communication.
• The client uses Õ(r) memory.
• The offline phase runs in Õ(n) time and uses O(n) communication.
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Game Gcor(λ,A)
D ← A(1λ) ; bad← 0

st←$ HintInitD(1λ, Q)

AQ,U (1λ)
Return bad

Q(i ∈ [n])

(q, h)←$ Query(i; st)
r ← Answer(q;D)
a←$ Recon(h, r; st)
If a ̸= D[i]: bad← 1
Return a

U(i, d)
δ ← UpdateDB(i, d;D)
UpdateHint(δ; st)
Return δ

Game Gpir(λ,A)
b←$ {0, 1}
D ← A(1λ)
st←$ HintInitD(1λ)

b′ ← AQ,U (1λ)
Return b = b′

Q(i0 ∈ [n], i1 ∈ [n])

(q, h)←$ Query(ib; st)
r ← Answer(q;D)
a←$ Recon(h, r; st)
Return q

U(i, d)
δ ← UpdateDB(i, d;D)
UpdateHint(δ; st)
Return δ

Fig. 5. Games for PIR correctness and security. The U oracles are only used for up-
dateable PIR schemes. Here, n is the size of the database D.

For simplicitly, we consider single-bit entries, but one can easily extend our
construction to B-bit entries. The rest of this section will prove this theorem.

Construction with Improved Query Time.We present our Plinko construc-
tion. For detailed pseudocode, see Figure 7. Following previous work, starting
from [56], we let the client pre-compute hints during an offline phase. Roughly
speaking, a hint is the description of a subset P ⊂ [n] of database entries along
with the parity (bitwise XOR) of all entries in P denoted by p. The hints may
be constructed with a single streaming pass of the database or, at the cost of
additional assumptions, we could use either fully-homomorphic encryption or a
second server. Following [64,53], we will assume the streaming approach.

In a query for index x, we look for a hint such that x ∈ P , ask the server to
send us the parities of the entries in P \ {x} without revealing the index x. The
client obtains x-th entry by XORing the response with original parity p. A hint
can only be used once and thus we have the problem of replacing the consumed
hint with a new hint that includes x for two reasons. First, if we do not, we
could be left with no hint that includes x and will not be able to query for x.
More importantly, we want the distribution of the hint be independent of the
queries that have been performed. Next, we are going to describe a novel way of
computing the hints that is designed to efficiently search for hints that contains
the entry for a given index x. This will reduce client computation time at query
time and enable efficient hint modifications when the database is updated.

The set [n] of the indices of the database is partitioned into c := n/w blocks
of w consecutive indices. We write each index i ∈ [n] as i = αw + β with
0 ≤ α ≤ c − 1 and 0 ≤ β ≤ w − 1. One can view that the i-th entry is in the
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α-th block at offset β. Algorithm HintInit constructs a set of λw + q hints: λw
regular hints and q backup hints. We present Plinko in generality, but it may be
helpful to think of w = q = Õ(r) to ensure Õ(r) client storage. Regular and
backup hints are stored in table H and T respectively with each table having
λw + q slots. The regular hint table H is initialized with λw regular hints that
are stored in slots 0, . . . , λw−1. The backup table T is initialized with q backup
hints that are stored in slots λw, . . . , λw + q − 1. The k-th query will consume
one regular hint and promote the backup hint T [λw + k] to a regular hint by
moving it to H[λw + k]. Thus, the number of regular hints always stays λw.
Moreover, the backup hint keeps the same table index when it moves from T to
H and therefore the first λw slots of the backup table T stay empty throughout
the q queries whereas the last q slots of the regular table H are filled one at
a time with a promoted backup hint. All hints (regular, backup and promoted
backup) specify a subset of the blocks and a randomly chosen offset within each
chosen block. The hint will also include the parity of the database entries at
each of the random offsets in the chosen subset of blocks. Regular and backup
hints differ only on the number of chosen blocks of blocks. Backup hints will
require storing two parities (instead of one). Also, promoted backup hints have
a slightly different way of specifying the offsets within blocks than regular hints.

We start with the regular hints found in H[0], . . . ,H[λw − 1]. For j ∈ [λw],
we randomly select a subset of c/2+1 = n/(2w)+1 blocks denoted Pj . For each
block α ∈ Pj , we select entry i = αw+ iF.F(kα, j), where kα is the seed for block
α. Note, iF.F(kα, j) is the offset. We denote pj as the parity of the c/2+1 chosen
database entries specified in Pj . The j-th regular hint is H[j] = (Pj , pj). Next,
the q backup hints are found in T [λw, . . . , λw + q − 1]. The j-th backup hint
will consist of three components T [j] = (Bj , ℓj , rj) for j ∈ {λw, . . . , λw+ q− 1}.
Bj is a randomly selected subset of c/2 = n/(2w) blocks. We select offsets using
iF.F(kα, j) as before for all c blocks α ∈ [c]. The parity ℓj computes the XOR of
the c/2 database entries specified in Bj at the offsets chosen by iF. In contrast,
the parity rj computes the XOR of the c/2 database entries outside of Bj that
are also at the offsets picked by iF.

Note that the same seed kα is used for each block α ∈ [c] in both regular
and backup hints. This has the following significant advantage when searching
for hints for any entry x. Suppose that x = αw + β meaning the x-th entry is
in block α at offset β. Then, we see that iF.F−1(kα, β) immediately returns the
subset of all hints (both regular and backup) where the offset in the α-th block
has chosen β (i.e., the x-th entry).

Let us now describe how a query for entry x is performed. Let x = αw + β
be an entry from block α with offset β. First, we find a regular hint H[j] such
that α ∈ Pj and iF.F(kα, j) = β. To do this, we simply execute iF.F−1(kα, β)
to compute the subset of hints containing the x-th entry. Note, this is a key
difference between Plinko and prior work [64,53] as a hint containing the x-th
entry can be searched efficiently. We also later show that the number of hints
containing the x-th entry is Õ(1) (except with negligible probability). For each
of these Õ(1) candidate hints, we enumerate the subset of blocks Pj to see if the
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α-th block was chosen. Altogether, this requires Õ(n/r) total time. When using
normal PRFs, the process of finding all Õ(1) candidates would require checking
the offsets for each of the λw = Õ(r) unused regular and promoted backup hints
individually meaning an additional Õ(r) time is required during queries.

Back to querying, we pick a random hint in H (either, regular or promoted
backup) that was not previously used. For now, suppose this is a regular hint,
H[j] = (Pj , pj). The query constructs the following two sets of c/2 indices de-

noted by S and Ŝ. S will consist of all database entries with the x-th entry
removed. Ŝ will consist of a random entry from each block outside of Pj , which

is [c] \ Pj as well as α. We can define S and Ŝ as follows:

S = {i = aw + b : a ∈ Pj \ {α}, b = iF.F(ka, j)}
Ŝ = {i = aw + b : a ∈ ([c] \ Pj) ∪ {α} and each b is randomly chosen from [w]}.

One can also set b as the output of iF for all choices of a ̸= α for Ŝ. This is done
in our pseudocode (Figure 7) and [53]. The client sends the two sets to the server
in random order. The server computes two parities of entries s = ⊕i∈SD[i] and
ŝ = ⊕i∈ŜD[i] and sends them to the client. The client uses the parity of entries
in S to recover D[x] = pj⊕s. For privacy, we note that the server sees a random
partitioning of the c blocks into two equal parts of size c/2 as well as a random
entry within each of the c blocks. All of this is independent of the query x.

Next, we show how Plinko promotes backup hints following [53]. After the k-
th query at index x has been completed, we need to provide our hint table with a
hint that contains x in its partition and offset vectors (in order to avoid skewing
our future queries). Fortunately, we can always promote the next backup hint
T [j] = (Bj , ℓj , rj), with j = λw+ k, from our backup table to replace whichever
hint was just consumed. Effectively, if x was in block α with offset β and Bj does
not contain block α, then we can implicitly add the block α to Bj by adding
x to the promoted backup hint. Thus, obtaining a partition of size c/2 + 1 like
in a regular hint. We then update ℓj by setting ℓj = ℓj ⊕D[x] and, finally, set
H[j] = (Bj , 0, x, ℓj). If instead α ∈ Bj , we update rj by setting rj = rj ⊕D[x]
and setH[j] = (Bj , 1, x, rj). Note that rj is the XOR of all entries in [c]\Bj∪{a}.
The 0-1 entry in the promoted backup hint tells us whether we should consider
Bj or its complement Bj = [c] \ Bj as the block subset equivalent in regular
hints. Note, all of this remains compatible with invertible PRFs.

As it is clear from the above, a promoted backup hint H[j] = (Bj , η, x, pj)
will not show up as a candidate when we look for hints containing x, as it is
very unlikely that iF.F(ka, b) = j. Therefore, we store the result of each query in
a hash table Cache and, in case of repeated queries, we return the value found
in Cache and issue a query for another index that has not been queried before.

Finally, we note that the above only enables querying at most q times. There
are several ways to address this. The simplest is to simply re-execute the offline
phase. More recent works [64,53] propose amortizing the offline phase by stream-
ing n/q = Õ(n/r) database entries following each query. Therefore, the client
can maintain a separate regular and backup hint table that is partially con-
structed after each query. Once the original regular and backup hints, the client
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can simply use the new set of regular and backup hints as the database has been
completely streamed. Note, this does not increase query time or communication
as each query already uses Õ(n/r) communication and time.

Update Algorithm. Our updates offer another significant improvement that
Plinko brings over the original construction [53], because we can just use our hint
searching algorithm, which just requires an iPRF inversion. To update an x-th
entry of the database from u to u′, the server just needs to send (x, u⊕u′) to the
client. Then, the client can perform an iPRF inversion, like when querying x, to
enumerate hints which have x in them and update the corresponding parities.
We note that the client must also update the Cache storing repeated query’s
answers as well as hints being constructed in the amortized offline phase. See
Figure 7 for the full details.

Efficiency. We start with query time. As the first step, the client searches for a
hint containing the query index x using our iPRF construction that returns the
subset of all hints containing the x-th entry. We show later that at most Õ(1)
hints containing any single database entry. Afterwards, the client enumerates
the offsets requiring Õ(n/r) time to upload to the server. The server computes
the corresponding parities in Õ(n/r) (there is no change here compared to prior
works [64,53]). To answer the query, the client picks the correct parity and com-
putes a final parity. Afterwards, the client receives a streamed partition of the
database to update client-stored hints also requiring Õ(n/r) time. Altogether,
the query requires Õ(n/r) time. For updates, the server sends the index and
contents of the updated entry to the client. The client executes a single iPRF
inversion and updates all Õ(1) hints containing the updated entry. Finally, for
the offline phase, we use nearly identical algorithms as the ones in [64,53] with
same efficiency.

It remains to show that any database entry does not appear in too many
hints. For any x ∈ [n], we note that each hint (regular or backup) independently
chooses to include the x-th entry with probability O(1/w). As there are λw+q =
Õ(r) hints, we know the expected number of hints containing the x-th entry is
Õ(r/w) = Õ(1). By Chernoff’s bound, we know that the x-th entry will not
appear in more max{O(λ + log n), Õ(r/w)} except with probability 2−λ−logn.
Recall that w = Õ(r), so the x-th entry appears in at most Õ(1) entries except
with probability 2−λ−logn. By a final union bound over all n entries, we know
that no entry will have more than Õ(1) entries except with probability 2−λ. So,
all entries appear in at most Õ(1) hints except with negligible probability.

Correctness. For correctness, we note that the main difference in our PIR
scheme is that we generate hints in a different way than prior works where we
replace PRFs with iPRFs. As iPRFs are also indistinguishable from random
functions, we note that our hint distribution is identical to [53]. As a result, we
can directly use the correctness arguments from [53]. For updates, we note that
the client will correctly update all relevant hints as long as the underlying iPRF
inversion algorithm is correct.

Privacy. The privacy argument follows quite similarly to the correctness argu-
ment. Our replacement of PRFs with iPRFs for hint generation does not change
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the hint distribution (in the view of a computational adversary). Therefore, we
can also directly apply the privacy arguments from [53]. In other words, the us-
age of iPRFs simply speeds up the algorithms for searching and updating hints.
The usage of iPRFs does not affect anything else.

Invertible PRF Requirements. We also briefly discuss the iPRF require-
ments in our PIR scheme. In Plinko, we use an iPRF to map hints to offsets
within a block. It is clear to see that our usage of iPRF requires security for
both small domains and ranges as the number of hints is similar to the size of
client storage meaning truncated PRPs cannot be used. Furthermore, in many
natural parameter settings, the iPRF has a larger domain than range meaning
that the injective invertible PRFs studied in [13] are also unusable. Therefore,
our new iPRF construction for arbitrary domain and range sizes are necessary
to enable our improved PIR scheme.

We note out that our PIR scheme only requires the underlying invertible PRF
to be computational indistinguishable from a random function for an adversary
with access to the forward oracle (as the server only sees forward evaluations).
Nevertheless, we present invertible PRFs in generality as we believe the stronger
security notion where adversaries also have access to the inverse oracle will allow
easier usage in other applications and comes with no additional costs.

Necessity of Database Streaming. In the offline phase of Plinko (as well
as [64,53]), the database is streamed requiring linear communication. One could
consider other options (such as FHE used in [21]) to improve the communication
of the offline phase. If one constructs a single-server PIR with sub-linear offline
phase communication and sub-linear query communication, it is easy to see
that this can be used to build oblivious transfer (OT) following the reduction
in [24]. Given that OT requires public-key operations [38], the offline phase must
use linear communication if one insists on building single-server PIR schemes
with sub-linear query communication from only one-way functions (like Plinko).
Therefore, offline database streaming is optimal in this setting.

6 Conclusion

In this work, we show that it is possible to construct single-server PIR that
obtains optimal trade-offs between client storage and query time for all parame-
ters. Our new construction Plinko achieves this trade-off and additionally is the
first single-server PIR with near-constant worst-case time and communication
updates. In the process of achieving these efficiency games, we define the novel
concept of invertible pseudorandom functions (iPRFs) which allow the client to
quickly perform hint searching. By introducing this notion, we leave open the
possibility of finding other applications for iPRFs in cryptography for either
efficiency or security improvements.

Our works leaves open many interesting open questions for future work in
PIR. We build our iPRF using minimal assumptions (i.e. one-way functions);
however, there are properties of PRFs which one could try and build into iPRFs
from other assumptions. For example, many PIR schemes improve their query
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communication using puncturable PRFs from a learning with errors assumption.
A puncturable iPRF would lead to direct improvements for single-server PIR,
and we leave this as a potential direction for future work.
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A Plinko Pseudocode

In this section, we show how we can use invertible PRFs (iPRFs) to improve
the client-side computation for queries and updates in the construction from
[53]. We present the pseudocode for our modified construction in Figure 7. This
construction is meant to complement the main body of Section 5, which has a
more digestible description of the scheme.

We also provide figure Figure 6, which compares Plinko to other offline-online
PIR schemes across many performance metrics.
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Scheme Crypto Client Servers Query Comm. Query Time Update Time Update Comm.

Name Assumption Storage Upload Download Client Server Worst-case Amortized Worst-case Amortized

CHK [21] LWE λB(λw + q) 1 λn/w λB λ2w + λn/w λn/w λ(λw + q) λ(λw + q) B + logn B + logn

SACM [59] LWE λB(λw + q) 2 λpolylog(n) λB λ2w λn/w λ(λw + q) λ(λw + q) B + logn B + logn

ZLTS [63] LWE λB(λw + q) 1 λpolylog(n) λB λ2w λn/w λ(λw + q) λ(λw + q) B + logn B + logn

LP [42] LWE λB(λw + q) 1 λpolylog(n) λB λ2w λn/w λ(λw + q) λ(λw + q) B + logn B + logn

Piano [64] DDH λB(w + q) 1 n/w B λw + n/w n/w λn λ logn Bn B logn

TreePIR [44] DDH λB(w + q) 2 logn B λw n/w λ(w + q) λ(w + q) B + logn B + logn

GZS [29] DDH λB(w + q) 1 λ
√

n/w λB λ2w + λn/w λn/w λ2(w + q) λ2(w + q) B + logn B + logn

Piano [64] OWF λB(w + q) 1 n/w Bn/w λw + n/w n/w λn λ logn Bn B logn

TreePIR [44] OWF λB(w + q) 2 logn Bn/w λw n/w λ(w + q) λ(w + q) B + logn B + logn

MIR [53] OWF B(λw + q) 1 n/w B λw + n/w n/w λw + q λw + q B + logn B + logn

GZS [29] OWF λB(w + q) 1 λ
√

n/w λB
√

n/w λ2w + λn/w λn/w λ2(w + q) λ2(w + q) B + logn B + logn

Plinko OWF B(λw + q) 1 n/w B λ logn+ n/w n/w λ logn (λ+ q/w) logn B + logn B + logn

Plinko-Piano OWF λB(w + q) 1 n/w Bn/w λ logn+ n/w n/w λ logn λ(1 + q/w) logn B + logn B + logn

Fig. 6. Table comparing existing single-server offline/online PIR schemes, for a client
querying a size n database with B-bit entries. We parameterize the schemes for a PIR
scheme with λ-bits of security that refreshes its hints after q queries, and uses sets of
size n/w (i.e. uses blocks of size w). In all entries, we hide constant and polylog factors.

B Plinko-Piano

In this section, we show how we can use invertible PRFs (iPRFs) to improve the
client-side computation for queries and updates in Piano [64]. We present the
pseudocode for our modified construction in Figure 8.

The main idea in Piano [64] is to use sets of size n/w, where each element is
some offset for a “block” of w elements in the database. The client is allowed to
stream the database in the offline phase and to refresh their hints. Using a PRF
to compute these offsets allows for a compressed representation of the hint sets
and allows the client to efficiently compute their hint parities by only streaming
a n/w block of the database at a time.

In the online phase, the client finds a hint set with the queried index, re-
moves the corresponding offset, and sends the remaining n/w − 1 offsets to the
server. The server responds with n/w possible parities, one for each possible
skipped block. Finally, the client uses their hint parity and the server’s response
to compute the value of the database at the queried index.

By replacing PRFs with iPRFs, we can improve the scheme. First, in the
offline phase, we can efficiently compute hints without streaming blocks at a
time and instead streaming the database one element at a time (and possibly out
of order). Additionally and more importantly, using iPRFs improves the client’s
run-time when they issue a query. With standard PRFs, the client performs a
linear pass over their hint sets to find one with the queried element. But iPRFs
give a more efficient hint searching algorithm. In particular, a simple (efficient)
inversion of the iPRF will give pointers to all of the hints that contain the queried
element.

Finally, the original Piano paper [64] proposed using the Bentley-Saxe trans-
form [12] to perform updates more efficiently. Unfortunately, this method re-
quires additional communication between the client and the server and is only
efficient when amortized. In the worst-case, an update could require a client
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HintInitD(1λ)

For i = 1, . . . , n/w:

K[i]← iF.Gen(1λ)
For i = 1, . . . , λw:

P ←$

(
n/w

(n/2w+1)

)
H[i]← (P, 0B)

For i = (λw + 1), . . . , (λw + q):

P ←$

(
n/w
n/2w

)
T [i]← (P, 0B , 0B)

For each i ∈ [n]:
Stream d← D[i]
(α, β)← (⌊i/w⌋, i mod w)
For each j ∈ iF.F−1(K[α], β):

If j < λw:
(P, p)← H[j]
If α ∈ P : H[j]← (P, p⊕ d)

Else:
(P, p1, p2)← T [j]
If α ∈ P :

T [j]← (P, p1 ⊕ d, p2)
If α ̸∈ P :

T [j]← (P, p1, p2 ⊕ d)
Return st = (K,H, T,Q)

Query(i; st = (K,H, T,Q))

b←$ {0, 1} ; i′ ← i
While Q[i] ̸= ⊥: i←$ [n]
h← (i, i′, b)
(α, β)← (⌊i/w⌋, i mod w)
(P, p, o0, . . . , on/w−1)← GetHint(α, β; (K,H))
P ′ ← P \ {α}
For j ∈ P ′: oj ←$ [w]

If b = 1 then P ′ ← P ′

q ← (P ′, (oj)j∈[n/w])
Return (q, h)

Recon(h, r; st = (K,H, T,Q))

Parse (i′, i, b)← h and (r0, r1)← r
(α, β)← (⌊i/w⌋, i mod w)
(P, p, o0, . . . , on/w−1)← GetHint(α, β; (K,H))
a← p⊕ rb
j′ ← argminj(T [j] ̸= ⊥)
(P, p1, p2)← T [j′]
Q[i]← (a, j′)

If α ∈ P : H[j′]← (P , i, p2 ⊕ a)
If α ̸∈ P : H[j′]← (P, i, p1 ⊕ a)
T [j′]← ⊥
If i′ ̸= i then

(a, j′)← Q[i′]
Return a

UpdateHint(δ; st = (K,H, T,Q))

Parse (i, u)← δ
(α, β)← (⌊i/w⌋, i mod w)
For each j ∈ iF.F−1(K[α], β):

If j < λw and H[j] ̸= ⊥:
(P, p)← H[j]
If α ∈ P :

H[j]← (P, p⊕ u)
If j ≥ λw and H[j] ̸= ⊥:

(P, x, p)← H[j]
If α ∈ P :

H[j]← (P, x, p⊕ u)
If j ≥ λw and T [j] ̸= ⊥:

(P, p1, p2)← T [j]
If α ∈ P :

T [j]← (P, p1 ⊕ u, p2)
If α ̸∈ P :

T [j]← (P, p1, p2 ⊕ u)
If Q[i] ̸= ⊥:

(a, j)← Q[i] ; (P, i, p)← H[j]
H[j]← (P, i, p⊕ u)

Answer(q;D)

Parse (P, o0, . . . , on/w−1)← q
r0 ← 0B ; r1 ← 0B

For i ∈ [n/w]:
If i ∈ P :

r0 ← r0 ⊕D[oi + i · n/w]
If i ̸∈ P :

r1 ← r1 ⊕D[oi + i · n/w]
Return (r0, r1)

UpdateDB(i, d;D)

δ ← (i,D[i]⊕ d)
D[i]← d
Return δ

GetHint(α, β; (K,H))

For j ∈ iF.F−1(K[α], β) (in random order):
(o0, . . . , on/w−1)← (iF.F(K[i], j))i∈[n/w]

If j < λw and H[j] ̸= ⊥:
Parse (P, p)← H[j]
Return (P, p, o0, . . . , on/w−1)

If j ≥ λw and H[j] ̸= ⊥:
Parse (P, x, p)← H[j]
(α′, β′)← (⌊x/w⌋, x mod w)
If α = α′ and β ̸= β′: Continue
oα′ ← β′

Return (P ∪ {α′}, p, o0, . . . , on/w−1)
Return ⊥

Fig. 7. Pseudocode for a variant of MIR [53] with efficient updates by using invertible
PRFs. The client uses an iPRF iF from [λw + q] to [w].
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to re-run the entire offline phase with all n database items! However, a side-
effect of our efficient hint searching algorithm is an efficient way to update the
client’s hints whenever an update occurs. This method only requires logarithmic
communication (the server sending the change and location to the client) and
runs in logarithmic time (a single iPRF inversion) for the client. Further, this
communication and computation is worst-case and doesn’t require amortization.

Security and Correctness. Since our modification of Piano [64] is strictly an
algorithmic improvement, we omit proofs of correctness and security. The proofs
from the original work are sufficient to establish the desired properties. The
communication between the client and server is identical across the two versions.
As long as the iPRF satisfies its own security, efficiency, and correctness, then
the hint selection and distribution will also be preserved.

Note that for the security of the PIR, we only need that the iPRF satisfied
normal PRF security because the server never observes outputs of the inversion
oracle. As long as the output of the client algorithms are identical, security is
unaffected by how the algorithms work.
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HintInitD(1λ)

For i = 1, . . . , n/w:

K[i]← iF.Gen(1λ)
For i = 1, . . . , λw:

H[i]← 0B

For i = (λw + 1), . . . , (λw + λq):
T [i]← 0B

For each i ∈ [n]:
Stream d← D[i]
(α, β)← (⌊i/w⌋, i mod w)
For each j ∈ iF.F−1(K[α], β):

If j < λw:
H[j]← H[j]⊕ d

Else if α ̸= j mod (n/w):
T [j]← T [j]⊕ d

Return (K,H, T,Q)

Query(i; st = (K,H, T,Q))

(α, β)← (⌊i/w⌋, i mod w)
(p, o0, . . . , on/w−1)← GetHint(α, β; (K,H))
q ← (oj)j∈[n/w]\{α}
Return (q, i)

Recon(h, r; st = (K,H, T,Q))

Parse (q, i)← h and (r1, . . . , rn/w)← r
(α, β)← (⌊i/w⌋, i mod w)
(p, o0, . . . , on/w−1)← GetHint(α, β; (K,H))
a← p⊕ rα
j′ ← argminj=α mod (n/w)(T [j] ̸= ⊥)
H[j′]← (i, T [j′]⊕ a) ; T [j′]← ⊥
Q[i]← (a, j′)
Return a

UpdateHint(δ; st = (K,H, T,Q))

Parse (i, u)← δℓ
(α, β)← (⌊i/w⌋, i mod w)
For each j ∈ iF.F−1(K[α], β):

If j < λw and H[j] ̸= ⊥:
H[j]← H[j]⊕ u

If j ≥ λw and H[j] ̸= ⊥:
(x, p)← H[j]
If α ̸= ⌊x/w⌋:

H[j]← (x, p⊕ u)
If j ≥ λw and α ̸= j mod (n/w):

T [j]← T [j]⊕ u
If Q[i] ̸= ⊥:

j ← Q[i] ; (i, p)← H[j]
H[j]← (i, p⊕ u)

Answer(q;D)

Parse (o0, . . . , on/w−2)← q
r0 ← ⊕i∈[n/w−1]D[oi+1 + (i+ 1) · n/w]
For i = 0, . . . , n/w − 1:

prev← D[oi + i · n/w]
next← D[oi + (i+ 1) · n/w]
ri+1 ← ri ⊕ prev ⊕ next

Return (r0, . . . , rn/w−1)

UpdateDB(i, d;D)

δ ← (i,D[i]⊕ d)
D[i]← d
Return δ

GetHint(α, β; (K,H))

For j ∈ iF.F−1(K[α], β) (in random order):
(o0, . . . , on/w−1)← (iF.F(K[i], j))i∈[n/w]

If j < λw and H[j] ̸= ⊥:
Parse p← H[j]
Return (p, o0, . . . , on/w−1)

If j ≥ λw and H[j] ̸= ⊥:
Parse (x, p)← H[j]
(α′, β′)← (⌊x/w⌋, x mod w)
If α = α′ and β ̸= β′: Continue
oα′ ← β′

Return (p, o0, . . . , on/w−1)
Return ⊥

Fig. 8. Simplified pseudocode for a variant of Piano [64] with efficient updates by using
invertible PRFs. The client uses an iPRF iF from [λw + λq] to [w].
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