
Threshold Garbled Circuits with Low Overhead

Schuyler Rosefield
rosefield.s@northeastern.edu

abhi shelat
abhi@neu.edu

LaKyah Tyner
tyner.l@northeastern.edu

February 23, 2024

Abstract

The folklore approach to designing a threshold variant of symmetric
cryptographic algorithms involves applying generic MPC methods to se-
cret sharing techniques: the MPC first combines participant input shares
using the secret sharing scheme, and then evaluates the cryptographic
function on the reconstructed key. Hardening this secure against n − 1
malicious parties requires some mechanism to ensure input consistency,
e.g., adding MACs to inputs, which consequently, increases the number
of inputs and gates to the MPC. In many cases, this extra overhead is
substantially more than the underlying cost of evaluating the symmetric
cryptographic algorithm.

We present a scheme that can convert any suitable maliciously secure
dishonest majority boolean-circuit FMPC into a threshold scheme Fthresh

with almost no overhead. Specifically, we present an SUC-secure scheme
that allows for reactive threshold t-of-n boolean circuit evaluation amongst
a group of n parties P , for any t ≤ n, against a malicious adversary that
corrupts any number of parties less than the threshold t. Moreover, mul-
tiple circuits can be evaluated sequentially with the secret-shared authen-
ticated outputs of a circuit to be used subsequently as inputs for a new
circuit by any S ⊆ P of size |S| ≥ t.

Building upon the works of Wang et al, Hazay et al, and Yang et al,
[WRK17, HSSV17, YWZ20] for dishonest majority FMPC, our key insight
is to create threshold versions of the “authenticated bits” used to han-
dle input in these recent n-party garbled circuits protocols. The resulting
design incurs a small overhead to produce the reusable “threshold authen-
ticated bits” during preprocessing, and adds no extra communication to
evaluate with the authenticated input during the online phase.

Using our methods, thresholdizing a boolean circuit has essentially no
performance overhead. For example, to compute HMAC, a full Setup+Eval
execution of the (n − 2)-out-of-n thresholdized version is approximately
4% more expensive than the state-of-the-art n-party MPC. In contrast,
using the folklore method is approximately 100% more expensive. This is
especially true for small circuits such as AES which has 6800 gates and
thus incurs the most overhead for thresholdizing. Simply considering the
online Eval cost, our approach can evaluate AES blocks at 2.3/s with 16

1

parties, exceeding the baseline MPC cost without preprocessing, and sur-
passing the folklore method that only achieves .33/s blocks. Ultimately,
this result makes threshold boolean circuit MPC as feasible as any MPC
application.

1 Introduction

A threshold cryptography scheme enables a set of n parties to split a secret key
so that a subset of k of the n parties can jointly perform operations using the key
without explicitly reconstructing it. Recent specialized MPC techniques have
made it feasible to design threshold schemes for legacy signature and encryption
schemes such as ECDSA [LN18, GG18, DKLs19, CCL+20, KMOS21, CGG+20,
ANO+22, oST23] and RSA [RSA78, DK01, Sho00, CDK+22]. These recent
examples of efficient protocols exploit algebraic properties of the underlying
schemes to design efficient threshold protocols. In contrast, there has been little
progress in designing threshold schemes for symmetric cryptographic algorithms
such as AES or SHA-X that have limited algebraic structure. We begin by
discussing the Folklore method to create a threshold scheme using standard
tools and difficulties in the boolean case.

Standard threshold secret sharing schemes are built using polynomial se-
cret shares over a large field F2s that encode the secret as the 0 coordinate
and assigns another unique polynomial evaluation to each party. To achieve
malicious security, one can apply a SPDZ-style MACs in which the authenti-
cated threshold secret share of a value x ∈ F2s consists of three components
〈〈x〉〉 = (JαK, JxK, JαxK) where α is a shared global key.

The Folklore method for constructing a threshold MPC functionality takes
a generic dishonest-majority boolean circuit FMPC, and augments the desired
circuit C(x) to take in and reconstruct threshold authenticated shares 〈〈x〉〉 on
the input, and if valid, output 〈〈C(x)〉〉. Doing so intrinsically adds overhead
over calculating the base circuit C as additional gates and wires are required to
reconstruct the shared value x, check the validity of the MAC αx, and to gener-
ate new authenticated shares as output 〈〈y〉〉. In particular, as our experiments
show, processing the secret shared inputs and performing authentication checks
by compiling into the executed circuit within the MPC can be much more costly
than evaluating the original circuit C. In addition to overhead during evalua-
tion, this Folklore method also induces overhead in a setup phase that is used
to compute authenticated secret shares of the threshold secret key.

To quantify the overhead of this Folkmore method, we must carefully chose
secret sharing parameters, and in particular the finite field, since the overhead
essentially boils down to the circuit complexity of finite field multiplication. In
particular, the field F2s has a boolean circuit for addition that requires 0 AND
gates and a multiplication circuit that uses O(s log s) AND gates (using the Fast
Fourier Transform to calculate polynomial multiplication). In contrast, although
Harvey and van der Hoeven’s integer multiplication also has the same asymp-
totic complexity, modular field multiplication in Fp for p > 2 requires both an

2

asymptotically larger multiplication circuit, and a concretely much larger circuit
(using more practical Karatsuba-style algorithms). Performing the MAC check
in the boolean circuit requires one field multiplication per (field-size) input in
the boolean circuit and an equality check, and requires a multiplicative increase
in input wires that is proportional to the number of parties. Likewise generat-
ing a new MAC requires a field multiplication per field-sized output as well as
the evaluation of a random polynomial on n points. Depending on the circuit
description this O(s log s) gate increase per (field-size) input for MAC checking
can be as costly as the actual application circuit such as AES, or an order of
magnitude more expensive for simpler circuits such as Hamming distance. Al-
together, for a fixed circuit C = (I, G,O) with I input wires, G AND gates,
and O output wires, this Folklore approach incurs an additive communication
overhead of O(nκ(n2 + s log s)O) in setup, and O(nκ(n+ s log s)I) in eval.

1.1 Our Contribution

The main goal of this paper is to understand and improve upon the inherent
overhead in implementing a threshold cryptosystem for arbitrary boolean cir-
cuits.

In contrast to the Folklore approach outlined above, we present a scheme that
can convert any suitable maliciously secure dishonest majority boolean-circuit
FMPC into a threshold scheme Fthresh with almost no overhead.

Specifically, we present an SUC-secure scheme in the Random Oracle Model
that allows for reactive threshold t-of-n boolean circuit evaluation amongst a
group of n parties P , for any t ≤ n, against a malicious adversary that corrupts
any number of parties less than the threshold t. Multiple circuits can be eval-
uated sequentially with the secret-shared authenticated outputs of a circuit to
be used subsequently as inputs for a new circuit by any S ⊆ P of size |S| ≥ t.
This directly supports the pattern of running a re-usable preprocessing phase
followed by any number of evaluation phases. In particular, our method does
not follow the folklore pattern to evaluate a MAC or secret sharing reconstruc-
tion explicitly as a circuit within an MPC. The only communication overhead
incurred in our approach is restricted to key setup where it is at most 10%
among the circuits we selected for benchmarking, as low as .6%, and amortizes
towards 0 across all evaluations.

We present our main theorem here informally.

Theorem 1.1 (Main Theorem (Informal)). The protocol πthresh SUC-realizes
Fthresh in the (FMPC, ·)-hybrid model against a malicious adversary that stati-
cally corrupts up to t−1 parties with O(nκ(O+κ+ s)) additive communication
overhead (O(1) multiplicative) compared to FMPC in Setup, and 0 communica-
tion overhead in Eval.

Roughly the additive overhead of our scheme is derived from Claim 5.1 to
generate the threshold resharing, and the multiplicative overhead from Claim 5.2
being equivalent to the asymptotic complexity of the underlying FMPC scheme.
Comparing results, it follows that the overhead of the folklore method is a factor

3

of (n2 + s log s) greater than our method in Setup, and of course significantly
larger than constant in Eval.

To achieve our result, we extend the notion of authenticated bits used in the
works of Wang et al, Hazay et al, and Yang et al, [WRK17, HSSV17, YWZ20] for
dishonest majority n-party garbled circuits. An authenticated bit 〈b〉 (Def. 2.2)
is an authenticated secret sharing scheme where each party holds an additive
share of a bit b, and pairwise MACs on the shares of b. In the evaluation
phase of the garbling schemes of [WRK17, HSSV17, YWZ20], the parties hold a
random authenticated bit 〈rw〉 for each wire w in the circuit C, and calculate the
masked value Λw = xw + rw as well as the corresponding garbled labels. For an
input wire w provided by Pi with value xw, the public value Λw is calculated by
running Open(xw+〈rw〉). Likewise for an output wire w given to Pi, the parties
open the mask 〈rw〉 to Pi who can then calculate xw = Λw + rw. Immediately
it is clear that the garbling scheme can be extended to use authenticated inputs
and outputs, where an authenticated input is calculated Λw = Open(〈xw〉+〈rw〉)
and an authenticated output 〈xw〉 = Λw + 〈rw〉.

Our main construction is a protocol πthresh that can produce threshold au-
thenticated bits 〈〈·〉〉 (Def. 2.3) such that any set of t parties can locally con-
vert into t-party authenticated bits compatible with FMPC. In this sense πthresh
contains a verifiable secret sharing sub-protocol for BDOZ-style [BDOZ11] au-
thenticated shares. These threshold authenticated bits can either be sampled
uniformly, or converted from non-threshold authenticated bits. This way mul-
tiple instances of the garbling protocol that output authenticated bits can be
chained with a threshold-resharing procedure that ensures consistency between
each garbled circuit.

To construct threshold authenticated bits, we first observe that the scheme
for authenticated bits 〈·〉 is linearly homomorphic and that many standard secret
sharing schemes such as Shamir’s have the property that reconstructing a secret
shared value, which we denote by JxK, is a linear operation. Abusing notation
we consider authenticated bits of a t-of-n secret shared value 〈JxK〉 to be the
authenticated bits created where each party supplies the bit decomposition of
its threshold share Bits(JxKi) as input. A set of parties S can then evaluate the
reconstruction operation ReconS(〈JxK〉) as bit operations on the authenticated
bits. This constructs non-threshold authenticated bits 〈x〉 of the underlying
value. In other words, ReconS(〈JxK〉) performs the following transformation
〈JxK〉 7→ 〈x〉. Moving forward, we will use the notation 〈〈x〉〉 instead of 〈JxK〉 to
denote a threshold authenticated bit x.

Constructing a random value 〈〈x〉〉 requires the parties to first hold t-of-n
threshold shares JxK of a bit x and then authenticate the bit-decomposition

of each share denoted Bi = Bits(JxKi) to create 〈B〉. The parties then run
a consistency check on 〈B〉 to confirm that the authenticated bits represent
evaluations of a valid degree t − 1 polynomial, and if so sets 〈〈x〉〉 = 〈B〉.
The case of re-sharing an existing 〈x〉 is done in an additional round by first
sampling a random threshold share 〈〈r〉〉, opening 〈x〉 + 〈r〉, and calculating
〈〈x〉〉 = (x+ r) + 〈〈r〉〉.

4

In practice, the functionality FaBit that creates authenticated bits 〈x〉 is
realized using a correlated OT extension protocol, and approximately requires
` pairwise extensions each of size κ to create ` threshold authenticated bits.
Asymptotically in `, this per-party cost is O(n`κ), and the full cost analysis can
be found in Section 5.

Next, we use this FaBit (itself a building block of FMPC), in conjunction with
a dishonest-majority maliciously secure FMPC (such as the garbling scheme of
[YWZ20]), to construct threshold protocols for any boolean circuit. This is
done without introducing any additional assumptions, and maintains the desired
constant-round nature of the garbling protocols.

To illustrate our technique, we implement three applications, AES, HMAC-
SHA2, and KMAC where the key material k (and associated preprocessing) is
shared such that any t-of-n parties can evaluate Fk(·) without revealing k.

In contrast to the folklore construction of emulating a threshold cryptosys-
tem within FMPC, our construction for Fthresh does not impart any increase on
the circuit size. Intuitively this is because threshold authenticated bits can
interact natively with FMPC after simple local operations bypassing the need
to check authentication within the circuit being executed. Additionally, the
communication overhead of Fthresh over the generic non-threshold FMPC itself
is minimal. The overhead during setup to create the threshold authenticated
bits 〈〈x〉〉 is approximately the same cost as authenticating the same number
of non-threshold authenticated bits 〈x〉. In fact, for a setup circuit C with `
output bits, FMPC necessarily makes ` authenticated bits regardless. Then even
for a circuit C with 0 AND gates the communication during setup in Fthresh is
at most 2x the cost of running FMPC without the threshold resharing.

Concretely, for the case of key setup for AES (|C| = 1360, ` = 1408) and
KMAC (|C| = 38400, ` = 1600), this communication overhead is 10% and 0.6%
respectively where |C| is the number of AND gates and ` is the size of the
output in bits (see Fig. 1). Further, there is essentially zero overhead during
the evaluation phase of Fthresh over FMPC as parties can locally convert their
threshold authenticated bits 〈〈x〉〉 to t-party authenticated bits 〈x〉, and the
cost of evaluating C is exactly the cost of evaluating FMPC with t parties. We
confirm this through an implementation and concrete analysis in §5.

1.2 Related Work

Several prior works present MPC protocols for securely evaluating boolean cir-
cuits [BMR90, DPSZ12, LPSY19, BLN+21, WRK17, AFSH+20]. In general,
most of these take inspiration from either Yao’s Garbled Circuits [Yao86] or the
Goldreich, Micali, and Wigderson protocol [GMW87]. Damg̊ard et al. (SPDZ),
for example, takes after the latter and is a general MPC protocol for computing
arithmetic circuits [DPSZ12, DKL+12, KOS16, ACE+21], while other are able
to support the use of boolean circuits [LOS14, FKOS15, AFSH+20, CG20].

Many distributed garbling schemes operate in the online/offline model. In
the offline (or preprocessing) phase the parties learn some information about the
function or circuit that will be computed. In the online phase, each party learns

5

their input and the output of the function is computed. Prior works such as
[LPSY19, WRK17, HSSV17, HIV17, KRRW18, ZCSH18, YWZ20, BECO+21,
EXY22, HKO23] present efficient constant round protocols, many of which are
malicious secure against an adversary corrupting any number of parties. Yang,
Wang, and Zhang [YWZ20] presented a constant round protocol which now
serves as the state-of-the art in multiparty setting. It improved upon the effi-
ciency of prior work by developing new methods of generating multiparty au-
thenticated bits and shares. In the maliciously-secure two party setting, the
recent distributed garbling works of [KRRW18, DILO22, CWYY23] achieve ef-
ficiency close to semi-honest half gates in the authenticated garbling framework.

The most direct relevant work is the universal thresholdizer introduced by
Boneh et. al. [BGGK17], which is a fully homomorphic encryption based
framework for augmenting many cryptographic schemes to support threshold
functionality. Their scheme is secure under the Learning with Errors (LWE)
assumption. The framework makes it possible to construct a single round
threshold scheme from any non-threshold signature or encryption scheme. A
follow-up work by Cheon et. al.[CCK23] presents a scheme to reduce the com-
munication required for achieving the compactness property of the Universal
Thresholdizer. They save a factor of approximately O(N2) for the communi-
cation of the [BGGK17] scheme. While these schemes achieve optimal round
complexity, they are otherwise not practical.

2 Preliminaries

Notation Scalars x are represented by lower-case letters; vectors v and ma-
trices M are bolded. The ith entry of a vector is denoted vi, and the ith row
of a matrix by mi. A multidimensional array with ordered dimensions may be
sliced, e.g. M∗,∗,k indicates the degree-2 array with fixed index k. Typically
indexing is 1-based.

Parties are denoted as P1, . . . ,Pn ∈ P , and H,B ⊂ P refer to the sets
of indices of honest, corrupt, and all parties respectively. A party Pi that is
assigned a value is denoted with a superscript xi. Most commonly this is used
to denote Pi’s component of a secret-shared value, such as [x]

i
. The variable κ

represents the computational security parameter, and s the statistical security
parameter.

Primarily operations are performed in the security parameter-sized field F2κ .
Where appropriate, values b ∈ {0, 1} are embedded in elements of F2κ in the
natural way, and likewise, the function Bits(·) : F2κ → {0, 1}κ interprets a
field element as its bit decomposition. The function Combine(·) : Fκ2κ → F2κ

is analogous to the inverse of Bits(·) in that it takes κ elements and combines
them into a single field element. If the basis {1, α, α2, . . . , ακ−1} is used for bit
decomposition, then Combine(x) =

∑
i α

i−1xi.

Notation for authenticated bits We denote simple additive shares of field
elements x ∈ F2κ as [x] where x =

∑
i [x]

i
. To denote polynomial Shamir “t-of-n

6

threshold shares” of a field element x ∈ F2κ , we use JxK.
It is possible to locally convert a threshold sharing JxK to an additive share

[x] amongst a group of parties S using Lagrange interpolation. We denote the
Lagrange basis polynomial with a set of points S and i ∈ S as λSi (x) : F2κ →
F2κ =

∏
j∈S\{i}

x−j
i−j . Then for S ⊆ P with |S| ≥ t and i ∈ S, Pi’s component of

the additive share can be computed as [x]
i

:= λSi (0)·JxKi. This exactly coincides
with reconstructing a Shamir-shared secret. Additionally, we use 〈x〉 to denote
an additive authenticated bit and 〈〈x〉〉 to denote a threshold authenticated bit.

2.1 Definitions

Definition 2.1. Information-Theoretic Message Authention Code (MAC)

A MAC scheme is a tuple of algorithms (KeyGen, Sign, Verify)

• KeyGen(κ): This is a randomized algorithm that takes as input the
security parameter, and outputs a key ∆← F2κ .

• Sign∆(x): This is a randomized algorithm that is parameterized by
a secret key ∆ and takes as input a value x to produce an instance
key K [x] ∈ F2κ and an authentication code M [x] ∈ F2κ on x.

• Verify∆(x,M [x];K [x]): This is an algorithm that is parameterized
by a key and takes a value x, its MAC M [x], and the signing ran-
domness K [x], and output > if M [x] is valid under ∆,K [x] and ⊥
otherwise.

A secure MAC scheme must satisfy the following properties

• Correctness: For each x ∈ F2κ

Pr∆[Verify∆(x, Sign∆(x)) = >] = 1

• Soundness: For each x′ 6= x and M [x′] ∈ F2κ

Pr∆[Verify∆(x′,M [x′],K [x]) = >] ≤ negl(κ)

We define the scheme below.

Authenticated bits Following prior work in the literature [NNOB12, WRK17,
HSSV17, RW19, YWZ20], our protocol uses the concept of an n-party au-
thenticated bit, where each party’s share is authenticated by every other party
with a MAC. Because of its nice algebraic properties, we choose the informa-
tion theoretic MAC scheme where Sign∆(x) samples K [x] ← F2κ and outputs

(K [x],M i[x] := K [x] + x∆). The verification procedure checks that M i[x]
?
=

K [x]+x∆. Each party’s share of an authenticated bit 〈x〉i = (xi, {M i
j [x

i]}j 6=i, {Ki[xj]}j 6=i)

7

is its share of the bit xi, the MACs of its bit for each other party M i
j [x

i], and

the randomness for the MAC of each other party’s bit Ki[xj].

Definition 2.2. Authenticated bit

An n-party authenticated bit 〈b〉 is a linearly-homomorphic authenticated
sharing scheme consisting of a tuple of algorithms (KeyGen, Share, Verify)

• KeyGen(n, κ): This is a randomized algorithm that takes as input
the number of parties and the security parameter, and outputs key
∆1, . . . ,∆n ∈ F2κ

• Share∆(b1, . . . , bn): This is a randomized algorithm parameterized
by a set of keys and takes as input additive shares of a bit b, and
outputs an authenticated bit 〈b〉

• Verify∆(〈b〉): This algorithm is parameterized by a set of keys and
takes as input an authenticated bit, and if 〈b〉 is valid under ∆ outputs
b, otherwise outputs ⊥.

Additionally, an authenticated bit satisfies the following security property:
Let A and B be the distributions created by any n − 1 shares of 〈0〉 and
〈1〉 respectively. Then, A = B are identically distributed.

As authenticated bits are linearly homomorphic, 〈x+ y〉 = 〈x〉 + 〈y〉 and
〈cx〉 = c〈x〉. By distributing addition and constant multiplication through

the components of each share, we have e.g. 〈x+ y〉i = ([x]
i

+ [y]
i
, {M i

j [[x]
i
] +

M i
j [[y]

i
]}, {Ki[[x]

j
] + Ki[[y]

j
]}). By default 〈x〉 refers to an authenticated bit

amongst all n parties P , and we will use the notation 〈x〉S to denote an m-party
authenticated bit shared by some S ⊆ P .

Definition 2.3. Threshold authenticated bit

A “t-of-n threshold authenticated bit” 〈〈b〉〉 is an authenticated bit scheme
(KeyGen, Share, Verify) with an additional conversion procedure:

• ConvS(·): Any m ≥ t sized set of parties S can (locally) convert their
threshold authenticated bit into a valid m-party authenticated bit
〈b〉S = ConvS(〈〈b〉〉) representing the same value.

Threshold authenticated bits satisfy an analogous security property to
authenticated bits, except that the distributions are with respect to t − 1
shares instead of n−1 shares. Let A and B be the distributions created by
any t−1 shares of 〈〈0〉〉 and 〈〈1〉〉 respectively. Then, A = B are identically
distributed.

Like authenticated bits, threshold authenticated bits are also linearly homo-
morphic by simply distributing the operations to each of the components.

8

Definition 2.4. Packed threshold authenticated bits

A packed t-of-n threshold authenticated bit 〈〈x〉〉 is an authenticated secret
sharing scheme (KeyGen, Share) of elements x ∈ F2κ with a conversion
procedure

• ConvS(·): Any m ≥ t sized set of parties S can (locally) convert
their packed threshold authenticated bits into κ valid m-party au-
thenticated bits (〈b1〉S , . . . , 〈bκ〉S) = ConvS(〈〈x〉〉) such that b1 =
Bits(x)1, . . . , bκ = Bits(x)κ.

For packed authenticated shares we equivocate between the field element
representation x ∈ F2κ , 〈〈x〉〉 and the bitwise representation b = Bits(x) ∈
{0, 1}κ, 〈〈b〉〉.

Instead of embedding a single bit as a field element in F2κ , an arbitrary
element x ∈ F2κ is secret shared. To convert into the individual authenticated
bits for k ∈ [κ], the kth authenticated bit 〈bk〉i is extracted using the kth bit

of the interpolation Bits(λSi (0) · JxKi)k, by applying the Shamir reconstruction
algorithm. The corresponding keys and MACs are calculated by lifting the
function Lift(λSi (0) · J·Ki) : Fκ2κ → Fκ2κ that applies the bit operations of λSi (0) ·
J·Ki to the κ values Ki[bj] and M i

j [b
i] respectively. To pack ` > κ bits, the

` can be partitioned into β = d`/κe blocks of size κ and authenticated block-
wise. Thus, a vector of bits b ∈ {0, 1}` can be pack-shared as β shares 〈〈b〉〉 =
(〈〈x1〉〉, . . . , 〈〈xβ〉〉).

2.2 Universal Composability

We use the Simple UC [CCL15] variant of the UC model [Can20] to analyze
security. In this model, an environment Z that is attempting to run a protocol
cannot distinguish whether it is running with the real protocol π and an adver-
sary A, or with a simulator S with access to the ideal functionality F . This
environment is given complete control over the adversary A as well as provides
and sees the inputs and outputs for every party Pi. Additionally the environ-
ment receives the non-uniform advice string z to model the composition of π
with another protocol.

Definition 2.5. SUC-securely computes, [CCL15, Definition 2.2]

Let π be a protocol for up to m parties and let F be an ideal functionality.
We say that π SUC-securely computes F if for every PPT adversary A
there exists a PPT simulator S such that for every PPT environment Z
there exists a negligible function µ(·) such that for every n and poly-n-sized
advice string z

|Pr[SUC-REALπ,A,Z(n, z) = 1]− Pr[SUC-IDEALF,S,Z(n, z) = 1]| ≤ µ(n)

9

In this strong model, the main composition theorem states that if π SUC-
securely computes F (in the H-hybrid model), then for a SUC-secure protocol
ρ in the F-hybrid model the composed protocol π ◦ρ is secure in the Real (resp.
H-hybrid) model.

The SUC model differs from the UC model most prominently through the
assumption of authenticated communication between parties and explicit ad-
versarial control over message delivery. This helps to simplify the definitions of
functionalities and simulators by encoding common assumptions. Additionally
there is an explicit “Functionality” F party that the parties communicate with
directly compared to the modelling of F as a subroutine in UC. Whereas the
contents of a message from Pi to Pj can be observed by the adversary, a mes-
sage from Pi to F consists of a public and private component and the adversary
may only view the public component. The public component of messages to and
from functionalities is the “command”, session id, and other shared information
between parties such as the description of a circuit. The data component of
messages, such as shares of values or commitments, are private.

In this work, we prove security with abort. That is, the adversary is allowed
to instruct the functionality to abort at any time, including after it learns the
output but before the honest parties learn the output. We assume that all
functionalities are equipped with an abort instruction implicitly, but additionally
write explicitly this interaction as delivering the adversary’s output to S and
asking if it should abort or deliver the output to all parties. This is to help
clarify when a cheat is expected to occur in the protocol, compared to other
extraneous aborts.

3 Functionalities

One important detail of UC security that will be used in each of the function-
alities are session ids or sids. sids are used to distinguish between instances of
functionality calls and to relate messages together. When we refer to a “fresh”
sid we mean that it is a new agreed-upon identifier that has not previously been
sent to the functionality. Further, as seen in Fthresh, there will be an additional
sub-session id that we call eid (or eval id) to distinguish between multiple circuit
evaluations using the same shared preprocessing under sid.

We formulate the reactive functionality Fthresh in two stages: Setup and Eval.
In the Setup stage, all parties P jointly agree upon a circuit C that generates
an initial state and each Pi has some private input xi ∈ {0, 1}∗. The output of
the circuit σ = C(x1, . . . ,xn) is stored internally to the functionality to be used
in the Eval stage. Once in the Eval stage, repeatedly, any appropriately sized
group of parties S ⊆ P may interact with the functionality to evaluate a new
circuit C′ that takes as implicit input σ in addition to new per-party inputs vi.
The output of C′ may assign outputs to parties arbitrarily.

Note that this formulation encompasses any (secret) preprocessing model.
In the Setup stage, the parties can evaluate an arbitrary circuit to produce the
shared secret state, and then in the Eval stage the functionality ensures that this

10

state is correctly applied. One simple example is coin tossing, where each party
provides a bit string xi ∈ {0, 1}m and the circuit C simply XORs together each
input. A more complicated example is to sample an AES-128 key and expand
the AES key schedule. Like coin tossing, this setup circuit C first combines
each party’s random input to create the shared key, and then evaluates the key
schedule which involves iteratively applying the non-linear AES S-Box to derive
the full 1408-bit key schedule. In the Eval stage, a set of parties S may wish
to encrypt a message under the shared key, and thus would provide the circuit
C′ that computes AES-128k(m) where k is the preprocessing state, and m is
either hardcoded and public or derived from the inputs of each of the parties in
S. Not only does Fthresh ensure that for multiple executions and multiple sets
of parties the input σ is used consistently, it provides an online advantage by
reducing the size of C′ by the size of the shared preprocessing circuit C.
Functionality 3.1. Fthresh(κ, t, n)

This reactive functionality is parameterized by the security parameter κ, a
threshold t, and the number of parties n. It interacts with parties P1, ...,Pn
in a set P and an ideal adversary S.
Setup: Upon receiving (setup, sid, C,xi) from all parties Pi, where sid
is the session id, xi ∈ {0, 1}Ii , and C : ({0, 1}I1 × · · · × {0, 1}In) →
{0, 1}O is the public boolean circuit which takes input from each party
and produces a secret output of size O, compute σ = C(x1, . . . ,xn) and
record (sid, ready, σ). Send (continue?, sid) to S. If they respond with
(continue, sid), send the confirmation (init-complete, sid) to all Pi. Oth-
erwise send (abort, sid) to each Pi.

Eval: Let S ⊆ P with m = |S| ≥ t be a set of parties. Let eid be the
evaluation id.

Upon receiving (eval, sid||eid, S, C,vi) from all parties Pi for i ∈ S,
where vi ∈ {0, 1}Ii and C : ({0, 1}|σ|×{0, 1}Ii×· · ·×{0, 1}Im)→ ({0, 1}O1×
· · · {0, 1}Om) is the public circuit which takes as input the secret state σ
and inputs from each party i ∈ S of size Ii then produces an output to
each party Pi of size Oi, if a record of the form (sid, ready, σ) exists and
eid is fresh, compute (y1, . . .ym) = C(σ;v1, . . . ,vm).

Send (continue?, sid||eid, {yj}j∈B) to S. If they respond with the mes-
sage (continue, sid||eid), send (output, sid||eid,yi) to each Pi. Otherwise
send (abort, sid||eid) to each Pi.

3.1 Building Blocks

Standard Functionalities The parties make use of standard coin tossing
and zero-testing functionalities, Frand and Fis−zero respectively. These both can
be realized by simple folkloric methods. Frand is realized in the Random Oracle
model by having each party commit to a seed, decommit the value, and use
the sum of each parties’ seeds together with a counter as input to the Random
Oracle to receive the shared random value. Fis−zero can be realized in the Fmult

11

hybrid model by having the parties check if the input [x] multiplied with a
uniform secret field element r is 0. Naturally, except with negligible probability
that r = 0, if the output is 0 then x is zero as well, and any non-zero element
x will be mapped to a uniform field element. Fmult itself can be realized by the
multiplication protocol of [DKLs19] in the correlated OT hybrid model.

Functionality 3.2. Frand(n,X). Coin Tossing

This functionality is parameterized by the number of parties n and any
efficiently samplable distribution X .
Sample: Upon receiving (sample, sid) from all Pi for i ∈ P where sid is
fresh, sample a value x← X and send (value, sid, x) to each Pi.

Functionality 3.3. Fis−zero(n,G). Zero Testing

This functionality is parameterized by the number parties n and a group
G.
Test: Upon receiving (test, sid, xi) from all Pi for i ∈ P where sid is fresh

and each xi ∈ G, calculate x =
∑
i x

i. If x
?
= 0G then send (result, sid, 1),

otherwise send (result, sid, 0).

Functionality 3.4. Fmult(n,R). Multiplication

This functionality is parameterized by the number parties n and a ring R.
Multiply: Upon receiving (mult, sid, xi, yi) from all Pi for i ∈ P where
sid is fresh and each xi, yi ∈ R, calculate z =

∑
i x

i ·
∑
i y
i. For i ∈ [n− 1]

uniform elements zi ← R, and set zn = z−
∑
i∈[n−1] z

i. Send (mult, sid, zi)

to each Pi.

Authenticated MPC We first give the functionality FaBit that creates au-
thenticated bits 〈·〉 according to the authenticated bit scheme Def. 2.2. This
allows the parties to store global keys ∆ and create batches of authenticated
bits 〈x〉 under said keys ∆. FaBit can be realized in the correlated OT extension
hybrid model using the protocols within [WRK17, HSSV17, YWZ20].

Functionality 3.5. FaBit(κ, 〈·〉, n), Authenticated Bits

This functionality is parameterized by the security parameter κ and runs
with a group of parties P of size n and an ideal adversary S. It creates
authenticated bits for the scheme 〈·〉 = (Share∆(·), Verify∆(·)).
Init: Upon receiving (init, sid,∆i) from each Pi with ∆i ∈ F2κ , store
(sid, ready,∆) and send (sid, ready) where ∆ = (∆1, ...,∆n).
Authentication: Upon receiving (aBit, sid, `,xi) from each Pi where
xi ∈ {0, 1}`, and if a record of the form (sid, ready,∆) exists, then

1. For each corrupt party Pj ∈ B, receive (aBit, sid, 〈x〉j) from S.

12

2. Sample ` authenticated bits 〈x〉 ← Share∆(x1, . . .xn) conditioned on

the adversarially chosen values {〈x〉j}j∈B.

Send (aBit, sid, 〈x〉i) to each Pi.

Lastly we give the reactive MPC functionality FMPC that is parameterized
by and works with an authenticated bit scheme 〈·〉. Once initialized with global
keys ∆, FMPC allows parties to provide and evaluate multiple boolean circuits
C1, . . . , Cm reactively. These circuits C take an input from each party Pi of size
Ii and give output of size Oi to Pi. Additionally C may contain special input
and output wires for authenticated inputs 〈σ〉 and outputs 〈σ′〉.

This is in contrast to a typical GMW-style functionality where the function-
ality maintains a state of secret-shared values and allows the protocol to evaluate
or open expressions using the ids of the secret state. Explicitly modeling FMPC

as receiving and providing secret shares 〈·〉 constrains the list of protocols that
realize it, but allows computation using 〈·〉 of unknown provenance such as our
application. Like FaBit the protocols of [WRK17, HSSV17, YWZ20] (implic-
itly) realize FMPC with small modifications to allow authenticated inputs and
outputs.

While the above papers all construct multiparty garbling schemes, our work
does not depend on the implementation details of garbled circuits specifically
and another implementation of FMPC would suffice. In the two-party case the
OT-based protocol of [NNOB12] constructs an analogous functionality, and in-
deed as a building block [HSSV17] creates an n-party variant of [NNOB12] to
produce authenticated AND triples for its garbling construction.

Functionality 3.6. FMPC(κ, 〈·〉, n). Multiparty Computation

This functionality is parameterized by the security parameter κ, an authen-
ticated bit scheme 〈·〉 = (ABit.Share∆(·), ABit.Verify∆(·)), runs with a
group of parties P of size n and an ideal adversary S.
Init: Upon receiving (init, sid, P,∆i) from all Pi ∈ P with sid fresh and
each ∆i ∈ F2κ , record (sid, ready, P,∆) with ∆ = (∆1, . . . ,∆n) to memory
and send (ready, sid) to each Pi .

Eval: Upon receiving (eval, sid, P, C, 〈σ〉i,xi) from all parties Pi ∈ P ,
with the agreed-upon circuit C : ({0, 1}|σ| × {0, 1}I1 × · · · {0, 1}In) →
({0, 1}|σ

′| × {0, 1}O1 × · · · {0, 1}On) and each xi ∈ {0, 1}Ii , if there exists a
record in memory of the form (sid, ready, P,∆), and ABit.Verify∆(〈σ〉) 6=
⊥, then compute (σ′,y1, . . .yn) = C(σ;x1, ...,xn). Otherwise send (abort, sid)
to all parties.

Run 〈σ′〉 ← ABit.Share∆(σ′) and send (continue?, sid, {〈σ′〉j ,yj}j∈B)

to S. If S responds with (continue, sid) then send (output, sid, 〈σ′〉i,yi)
to each Pi. Otherwise send (abort, sid) to all parties.

13

4 The πthresh Protocol

Our protocol πthresh that realizes Fthresh is in the (FMPC,FaBit,Frand,Fis−zero)-
hybrid model. All parties first sample uniform 〈〈r〉〉 which is done with the
ThreshAbits procedure. The parties instruct FMPC with authenticated input
〈r〉 to evaluate the circuit C′(r,x) = C(x) ⊕ r to produce the masked output
σ + r. Once we have the masked output each party can locally calculate their
threshold share 〈〈σ〉〉 = (σ + r) + 〈〈r〉〉. Evaluation with a set of parties S of
C2 simply consists of locally converting the 〈〈σ〉〉 into t-party authenticated bits

〈σ〉S and then with a new t-party instance of FMPC evaluate C2 on (〈σ〉S ,x)
We give the protocol in two parts, first the main protocol that runs the

whole experiment and ties together FMPC, and second is the sub-procedure
ThreshAbits that samples the threshold authenticated bits 〈〈r〉〉. The latter is
given in more detail in the next subsection.

Protocol 4.1. πthresh(κ, n, t). Threshold MPC

This protocol is parameterized by the security parameter κ, number of
parties n, and the threshold t. It runs amongst a group of parties P and is
defined in the (FMPC, FaBit, Frand, Fis−zero)-hybrid model.

Setup: Upon receiving (setup, sid, C,xi) as input from the environment
Z, with C : ({0, 1}I1 × · · · {0, 1}In)→ {0, 1}O, each party Pi ∈ P does the
following:

1. Sample a value ∆i ← F2κ .

2. Sends (init, sid, P,∆i) to FMPC and receives (ready, sid).

3. Sends (init, sid,∆i) to FaBit and receives (ready, sid).

4. Run 〈〈r〉〉i ← ThreshAbits(κ, P, t, O,∆i) to receive O packed random
bits.

5. Let C′ be the circuit that takes (r,x1, . . .xn) as input and outputs
C(x1, . . .xn)⊕ r to each party.

Sends (eval, sid, P, C′, 〈r〉i = ConvP (〈〈r〉〉i),xi) to FMPC. If FMPC re-
sponds with (abort, sid) then output (abort, sid) to Z. Otherwise re-
ceiveO masked bits of the state (output, sid,σ+r) where σ = C(x1, . . . ,xn).

6. For each chunk a ∈ [dO/κe] each party now defines its packed threshold

resharing 〈〈ρa〉〉i := Combine({σk + rk}k∈[(a−1)κ,aκ]) + 〈〈r[(a−1)κ,aκ]〉〉
i

where 〈〈r[(a−1)κ,aκ]〉〉
i

is the ath packed share.

7. Records its share of the threshold authenticated bits (sid, 〈〈σ〉〉i = 〈〈ρ〉〉i)
using the packed authenticated bits 〈〈ρ〉〉i.

14

Eval: Let S be the set of parties wishing to run the evaluation with
m = |S| ≥ t. Let Convi,S(·) be the function that converts the packed
threshold authenticated bits into authenticated bits, according to Definition
2.4.

Upon receiving (eval, sid, eid, S, C2,vi) as input from Z where C2 :
({0, 1}|σ| × {0, 1}I1 × · · · {0, 1}Im) → ({0, 1}O1 × · · · {0, 1}Om). If i ∈ S,

eid is fresh, and a record of the form (sid, 〈〈σ〉〉i) exists, each party Pi does
the following:

1. Calculates its share of them-party authenticated state, 〈σ〉i = Convi,S(〈〈σ〉〉i):

2. Sends (init, sid||eid, S,∆i) to FMPC, and receives (ready, sid)

3. Sends (eval, sid||eid, S, C2, 〈σ〉i,vi) to FMPC.

If FMPC responds with (abort, sid||eid) then output (abort, sid||eid) to
Z. Otherwise receive the circuit output (output, sid||eid,yi).

4. Output (output, sid, eid,yi) to Z.

4.1 The ThreshAbits Procedure

In this section, we describe the procedure for creating packed threshold authen-
ticated bits (Def. 2.4).

Consider the scenario when the parties wish to sample a single random ele-
ment x. First, each party Pi holds a value xi ∈ F2κ , and we define x =

∑
i x

i.

The parties each distribute Shamir shares of their value xi by sending JxiKj ∈
F2κ to each other party Pj . From this the parties can construct the threshold

share of x, JxKi =
∑
j JxjKi. We do want our output to have the structure of a

threshold authenticated bit, so the parties jointly calculate authenticated bits
〈JxK〉 using their individual shares JxKi as input to FaBit. Up until this point, the
steps are folklore for secret sharing a random bit without a malicious adversary.

A malicious adversary can send values JxjKi to each honest Pi that are not
of the correct degree. In order to verify that secret shares JxK are of the correct

degree, or that the polynomial defined by ∀i ∈ P.p(i) = JxKi is of degree t− 1,
define the global predicate f that takes as input each of the parties’ threshold
shares, (JxK1

, . . . , JxKn) and outputs 0 if the interpolation of {(i, JxKi)}i∈P is
a degree t − 1 polynomial. Instead of fully reconstructing the polynomial p,
this predicate can be efficiently implemented with a randomized check using the
Schwartz-Zippel lemma and properties of the interpolation polynomial.

Lemma 4.2 (Schwartz-Zippel Polynomial Identity Testing [DKSS13]). Let p ∈
F2κ [X] be a non-zero polynomial of degree d, then

Prr∈F2κ
[p(r) = 0] ≤ d

|F2κ |

15

The polynomial p that represents the secret shares will not be the 0 poly-
nomial with high probability. Then we need to construct a polynomial p′ that
is 0 iff p is of degree ≤ t − 1. Fortunately it is easy to construct a polynomial
of degree at most t − 1 by interpolating over a set S of size t, {i, xi}i∈S , and
moreover this polynomial is unique. If you take a polynomial g of degree t− 1
and any two distinct set of points S1, S2 of size ≥ t then the interpolated poly-
nomials of {i, g(i)}i∈S1 and {j, g(j)}j∈S2 are identical. We want to rely on, and
show, that the inverse of this statement that deg(g) > t−1 implies that the two
interpolations are different.

Lemma 4.3 (Uniqueness of Interpolation Polynomials). Let p ∈ F2κ [X] be a
non-zero polynomial of degree t ≤ d < 2t and let S1, S2 ⊂ F2κ be two sets
of points where |S1| = |S2| = t and |S1 ∪ S2| > d. Let p1 and p2 be the degree
t−1 polynomial interpolation of {i, p(i)}i∈S1

and {j, p(j)}j∈S2
respectively, then

p1 6= p2.

Proof. Suppose that p1 = p2, then for all i ∈ S1∪S2.p1(i) = p2(i). Let f be the
polynomial interpolation of {i, p1(i)}i∈S1∪S2 . By definition f = p1 = p2 and is
of degree t− 1. But the polynomial p of degree d > t− 1 is also interpolated by
the points {i, p1(i)}i∈S1∪S2

in contradiction to the assumption that the degree
of p is greater than t− 1.

If the threshold secret share JxK represents a polynomial p of degree t′ greater
than t− 1, then reconstructing with two subsets of points of size t− 1 will yield
two different polynomials. By the Schwartz-Zippel lemma, we can test if a
given polynomial g is the zero polynomial by evaluating g on a random point
r and checking if g(r) = 0. Our output of our initial predicate f is simply the

output of g(r) that can be calculated by interpolating at r
∑
i∈S1

λS1
i (r)JxKi +∑

j∈S2
λS2
j (r)JxKj ?

= 0.
However, it is not clear how to evaluate the predicate f directly, because no

one party has all of the secret shares by design. Instead, each party holds au-
thenticated bits of shares 〈JxK〉 and we can utilize the homomorphic properties
of the authenticated bit scheme. Observe that f consists of two linear compo-
nents: sums and constant multiplications, and an equality check. The linearity
of the secret sharing scheme 〈·〉 can be used to evaluate the linear portion of f
on the authenticated bits 〈z〉 = f(〈JxK〉). In an honest execution when JxK is
indeed a degree t− 1 polynomial, then f(JxK) = 0 and the parties can compute
〈z = 0〉 where each party holds zi with

∑
i z
i = 0.

We wish to check that 〈z〉 is in fact a valid authenticated share of 0 without
revealing the values z as that would leak the threshold shares of the honest
parties. We will do this by reducing to the unforgeability of the underlying
MAC scheme. Unfortunately in this way we do not identify which particular
party cheated, only that a cheat does exist. If z = 0 then Pi knows exactly what
the sum of each other Pj ’s bits should be, namely its own value zi =

∑
j 6=i z

j .

Party Pi can calculate the expected sum of the MACs of the other parties
M i
i [z

i] :=
∑
j 6=iK

i[zj] + zi∆i =
∑
j 6=iM

j
i [zj] even though it doesn’t know the

16

individual values zj . Checking if
∑
jM

j
i [zj]

?
= 0 for each i ∈ P individually

would verify that all parties hold correct shares under Pi’s key ∆i. However,
this requires a zero-test per party, so we instead simultaneously test all parties’

inputs by checking that
∑
i

∑
jM

i
j [z

i]
?
= 0 where each party Pi supplies the

input [z]
i

=
∑
jM

i
j [z

i]. Intuitively, if the adversary cheated in the creation of

〈JxK〉, in order to pass this test they would need to forge some MAC M j
i [z̃j] 6=

M j
i [zj]. But by the unforgeability of the MAC scheme the adversary can only

do so with negligible probability.
Using a standard zero-testing functionality Fis−zero to check [z] the parties

have verified that they have a valid t-of-n secret share JxK. Each party can then

output 〈〈x〉〉i = (JxKi, 〈JxK〉i) as its share and the associated authenticated bits.

Algorithm 4.4. ThreshAbits(κ, P, t, O,∆i). Packed Threshold Authenticated Bits

This procedure is parameterized by the security parameter κ, a set of par-
ties P , a threshold t, a number of elements to sample O, and the party’s
correlation ∆i. Let S1, S2 ⊂ P be two different sets of size t such that
S1 ∪ S2 = P . It returns the shares 〈〈ρ〉〉i of O random bits, or ⊥ if a cheat
was detected.

1. Define ` = dO/κe as the number of packed shares to create.

2. Run the share sampling procedure (JρKi, 〈B〉i) ← AuthShare(`) to re-
ceive ` Shamir shares, and authenticated bits of the bit decomposition
of each share.

3. If t < |P |, run the degree testing procedure o← DegreeTest(JρKi, 〈B〉i).
If the output o is not equal to 1, then output ⊥.

4. Return 〈〈ρ〉〉i = (JρKi, {M i
j [B

i]}j 6=i, {Ki[Bj]}j 6=i).

This subroutine creates and authenticates threshold shares of input bits.
AuthShare(`) :

A1. Sample ` threshold t-of-n shares JρiK of random values ρi ← F`2κ , and

send JρiKj to each other Pj . Pi then calculate the threshold share of

the state, JρKi =
∑
j∈P JρjKi.

A2. Use the FaBit functionality to authenticate the bits of each parties’
shares. For a ∈ [`], let Bi

a = Bits(JρaK
i
) ∈ {0, 1}κ be the bit decom-

position of the threshold share.

Send (aBit, sid, `κ,Bi
1, . . . ,B

i
`) to FaBit.

Receive (aBit, sid, 〈B1〉i, . . . , 〈B`〉i).

A3. Return JρKi, 〈B〉i.

17

We define the DegreeTest procedure that validates that the authenticated
bits 〈Ba,∗〉 represent a valid t-of-n threshold sharing JρaK under ∆∗. Recall

that for an authenticated bit 〈b〉 Pi’s share 〈b〉i = (bi, {M i
j [b

i]}j 6=i, {Ki[bj]}j 6=i).
DegreeTest(JρKi, 〈B〉i) :

D1. Call Frand to receive a random point r ← F2κ . Let

fSi (x) =

{
λSi (x) if i ∈ S
0 otherwise

define the output when attempting to calculate a Lagrange interpola-
tion polynomial outside of the basis.

D2. For each a ∈ [`], let M i
j [JρaK

i
] := Combine(M i

j [B
i
a,∗]), and likewise

Ki[JρaK
j
] := Combine(Ki[Bj

a,∗]).

Pi calculates the interpolation at r to check for polynomial equality

yia = (fS1
i (r) + fS2

i (r)) · JρaKi

and then for each other j 6= i, calculates the MAC on its input

M i
j [y

i
a] = (fS1

i (r) + fS2
i (r)) ·M i

j [JρaK
i
]

and its key for each other party’s input

Ki[yja] = (fS1
j (r) + fS2

j (r)) ·Ki[JρaK
j
]

Pi can then define the expected MAC over all other party’s inputs for
batch a

zia = (
∑
j 6=i

Ki[yja]) + yia∆i

D3. Combine the values zi∗ in the following way

Let zi =
∑
a∈[`] z

i
a and M i

j [y
i] =

∑
a∈[`]M

i
j [y

i
a] be the linear com-

bination of each of the ` elements respectively. Then, let [m]
i

=
zi +

∑
j 6=iM

i
j [y

i] ∈ F2κ .

Each party sends (test, sid, [m]
i
) to Fis−zero, and receives (result, sid, o).

D4. Return o.

4.2 Security of πthresh

Theorem 4.5 (SUC Security of πthresh). The protocol πthresh SUC-realizes Fthresh

in the (FMPC, FaBit, Frand, Fis−zero)-hybrid model against a malicious adversary

18

that statically corrupts up to t− 1 parties.

Proof of Theorem 4.5. The protocol πthresh correctly implements the ideal func-
tionality Fthresh, and the Real experiment is statistically indistinguishable from
the Ideal experiment in the given hybrid model:

Realπthresh,A,Z(κ, z)z∈{0,1}∗ ≈ IdealFthresh,Sthresh,Z(κ, z)z∈{0,1}∗

We begin with a description of Sthresh and proceed with a sequence of hybrids.

Simulator 4.6. Sthresh(κ, n, t). Simulator for πthresh

This simulator is parameterized by the security parameter κ, number of
parties n, and the threshold t, and interacts with A as the functionalities
FMPC, FaBit, Frand, and Fis−zero. Let H denote the set of indicies of the
honest parties and B denote the set indicies of the corrupt parties. Let
S1, S2 ⊂ P each be of size t and S1 ∪ S2 = P .

Setup: Let (setup, sid, C, ·) be the input from the environment, with
C : {0, 1}I → {0, 1}O a circuit. Let ` = dO/κe be the number of threshold
shares to create.

S1. As FMPC, receive (init, sid,∆j
1) from each Pj ∈ B, then send (ready, sid)

to each Pj .

S2. As FaBit, receive (init, sid,∆j
2) from each Pj ∈ B, then send (ready, sid)

to each Pj .

S3. For each honest party Pi ∈ H and each a ∈ [`] create threshold t-of-n

shares JρiaK of a random element ρia ∈ F2κ , and send JρiaK
j

to each
corrupt Pj ∈ B. From each corrupt party Pj ∈ B receive the share

for each honest Pi ∈ H, JρjaK
i
. Calculate the honest party shares as

JρKi =
∑
j∈P JρjKi.

S4. As FaBit, receive (aBit, sid, `κ,Bj1, . . . ,B
j
`) and receive (aBit, sid, 〈B〉j)

from A for each Pj ∈ B.

As FaBit, send (aBit, sid, 〈B1〉j , . . . , 〈B`〉j) to each Pj ∈ B.

S5. As Frand, receive (sample, sid) from each corrupt party. Sample a ran-
dom point r ∈ F2κ and send (value, sid, r) to each Pj .

S6. As Fis−zero, receive (test, sid, [m′]
j
) from each corrupt party Pj . Let

[m]
j

be the expected honestly calculated share over

JρKj , 〈B〉j , S1, S2, r

as described in Algorithm 4.4 Step D3. where each JρaK
j

= Combine(Bj
a,∗) ∈

F2κ for all a = [`].

19

S7. If either

∃a ∈ [`] . deg(JρaK) 6= t− 1∑
j∈B

[m′]
j 6=

∑
j∈B

[m]
j

then as Fis−zero send (result, sid, 0) to each corrupt party Pj and send
(abort, sid) to Fthresh and each party, then abort.

Otherwise as Fis−zero send (result, sid, 1) to each corrupt party Pj .

S8. For each j ∈ B let 〈〈ρ〉〉j = (JρKj , 〈B〉i).

S9. As FMPC receive (eval, sid, C′, 〈ρ̃〉j , xj) from each Pj ∈ B.

S10. Send (setup, sid, C, xj) to Fthresh as each Pj . Receive (continue?, sid)
from Fthresh.

Let 〈ρ〉j = ConvP (〈〈ρ〉〉j). If there exists ∆j
1 6= ∆j

2 or if 〈ρ〉j 6= 〈ρ̃〉j
then send (abort, sid) to Fthresh and to each corrupt party Pj .

S11. Sample random values R ∈ {0, 1}O, and on behalf of the FMPC func-
tionality, send the adversary the output (continue?, sid,R) to A.

If A responds with (abort, sid) then send (abort, sid) to Fthresh. Oth-
erwise send (continue, sid) to Fthresh, and send (output, sid, R) to each
Pj .

S12. For each corrupt party Pj ∈ B calculate the expected threshold share
〈〈σ〉〉j = R+ 〈〈ρ〉〉j .

Eval: Let (eval, sid, S, C, ·) be the input from the environment, with the
set of parties S ⊆ P having |S| ≥ t, and C : ({0, 1}σ × {0, 1}I)→ {0, 1}O.

E1. As FMPC receive (init, sid||eid, S,∆j
3) from each corrupt Pj then send

(ready, sidS) to each Pj .

E2. As FMPC receive (eval, sid||eid, S, C, 〈σ̃〉j , vj) from each corrupt Pj .

E3. Send (eval, sid||eid, S, vj) to Fthresh for each corrupt Pj .

E4. Receive (continue?,y) from Fthresh.

Let 〈σ〉j = Convi,S(〈〈σ〉〉j). If 〈σ〉j 6= 〈σ̃〉j or if there exists j such
that ∆j

3 6= ∆j
1 then send (abort, sid||eid) to Fthresh and each Pj and

abort.

Otherwise send (continue?, sid||eid,y) to A.

20

If A responds with (continue, sid||eid) then send (continue, sid||eid)
to Fthresh and send (output, sid||eid, yj) to each corrupt party Pj . If
A responds with (abort, sid||eid) send (abort, sid||eid) to Fthresh and
each Pj and abort.

Hybrid H0. This is the real-world experiment Realπthresh,A,Z(κ, z).

Hybrid H1. In this hybrid, we define a simulator S1 that acts as Fthresh

for the honest parties. It simulates the honest parties and ideal functionalities
FMPC, FaBit, Frand, and Fis−zero for the adversary by running their code, learning
the honest parties inputs to the functionalities as well as their outputs and
intercepting any messages sent by the corrupt parties to the honest parties and
ideal functionalities. By running the code for the honest parties, S1 creates
the keys ∆i used for authentication, and by running the code for the hybrid
functionalities the simulator can exactly construct the authenticated shares and
FMPC outputs used within the protocol. These are syntactic changes so, H1 and
H0 are identically distributed.

Hybrid H2. In this hybrid, we construct the simulator S2 that acts as S1 but
implements Steps S4.-S8. in Setup of Sthresh corresponding to Step 4 of πthresh.
This step samples random threshold authenticated bits to prevent an adversary
cheat from creating incorrect threshold authenticated bits. Importantly S2 will
always create threshold t-of-n authenticated bits 〈〈ρ〉〉 whereas S1 may create a
threshold t′-of-n authenticated bit with t′ > t. The event that S2 aborts where
S1 does not occurs when either the evaluation at r happens to be 0, or when
the adversary successfully creates a value m′ that causes the is-zero test to pass.
As these events occur with negligible probability in κ, the distribution of H2 is
statistically indistinguishable from H1.

Proof. First we show that the probabilistic degree test outputs a false positive
with negligible probability. If JρK is not a t-of-n secret sharing then the poly-

nomial defined by p(i) = JρKi for i ∈ P is of degree d ≥ t. Then by the Lemma
4.3, if we compute two interpolations using appropriate subsets S1, S2 ⊂ P of
points of size t the interpolated polynomials p1, p2 will always be different. If
we evaluate both p1, p2 on a random point r as S1 does, then, by Lemma 4.2
p1(r) = p2(r) only with probability ≤ d

|F2κ | . Therefore as d ≤ n and n = poly(κ)

the degree test will emit a false positive with negligible probability.
Then if an adversary induces shares JρK that are on a polynomial of greater

than degree t−1, it must also cheat in the provided value [m]
j

to cause the zero
test of DegreeTest to pass. The value [m] is composed of terms (

∑
j 6=iK

i[yj])+

yi∆i +
∑
j 6=iM

j
i [yj] = (

∑
i y
i)∆i. In the case that the degree test passes, then∑

i y
i = 0, but if the degree test fails

∑
i y
i = δy 6= 0. For an adversary

that knows {M j
i [yj]}j∈B this is equivalent to guessing the value δy∆i. But for

uniform ∆i and non-zero δy this occurs only with probability 1
|F2κ | .

By the union bound, the probability that both checks pass when the adver-

21

sary provides inconsistent shares is ≤ 1+n
|F2κ | = negl(κ)

Hybrid H3. In this hybrid, we construct S3 that implements Eval Steps E1.-
E3. of Sthresh, and thus S3 no longer acts as Fthresh for the honest parties during
the Eval operation. When attempting to simulate the evaluation of the circuit
C, S3 no longer has the inputs of the honest parties vi and so must rely on
Fthresh to calculate the output y. It is still S3’s responsibility to direct Fthresh

to abort if the adversary cheated by supplying an inconsistent ∆j or invalid
shares of the state 〈σ̃〉j to FMPC. Luckily S3, like S2, creates the threshold
authenticated bits 〈〈σ〉〉 during the Setup operation, S3 can exactly mimic the
authenticated bit verification as performed in FMPC. Then S3 can run the full
Abit.Verify∆(〈σ̃〉) to abort in exactly the same cases that S2 would abort.

In the event that the adversary is able to produce authenticated bits 〈σ̃〉
that are valid, S3 fails to calculate the value C(σ̃,v) as it does not know the
honest parties’ components of v; in contrast, S2 succeeds in calculating this
circuit output in this event. Nonetheless, the security of the authenticated bit
scheme implies that the probability that an adversary can forge a MAC (Def.
2.1) is equal to guessing the uniform key ∆i of an honest party, or 1

|F2κ | . To

forge authenticated bits the adversary must simultaneously forge MACs for each
other party, but we simply bound this probability above by forging a MAC for a
single party. Therefore the probability of this event occurring is negligible and
the distributions of H3 and H2 are statistically indistinguishable.

Hybrid H4. In this hybrid S4 implements Setup Steps S11.-S12. of Sthresh
corresponding to Step 5 of πthresh that samples a random output for FMPC instead
of calculating the correct output σ+ρ. As the adversary only knows t−1 shares
of the threshold authenticated bit 〈〈ρ〉〉 the value ρ is uniformly random and
unknown to the adversary by the privacy of the threshold authenticated bit
scheme 2.3. The value σ + ρ is then also indistinguishable from uniform to the
adversary.

Then S4 replacing the output of FMPC, σ + ρ ∈ {0, 1}O, with the uniform

value R← {0, 1}O and calculating the expected adversary output 〈〈σ〉〉j = R+

〈〈ρ〉〉j is indistinguishable from the distribution of H3. An adversary that knows
the correct circuit output σ = C(x) would be able to calculate the expected

shares JσKi for each honest Pi as σ is a tth point on the shared polynomial.
As the simulator does not know σ it would be unable to produce the “correct”
values 〈〈σ〉〉i except with negligible probability However, the adversary never
sees the corresponding honest party shares of the threshold authenticated bit
〈〈σ〉〉i to be able to identify that the simulator has cheated.

The distribution of H4 is identical to that of H3.

Hybrid H5. In this hybrid S5 no longer generates a key ∆i for each honest
party and likewise does not generate honest party shares of authenticated bits.
S5 implements Setup Step S10. and Eval Step E4. of Sthresh to verify if the au-
thenticated bits from an adversary are valid. Unlike S4, S5 only checks equality
of the input to FMPC with the expected values derived from 〈〈ρ〉〉j and 〈〈σ〉〉j

22

instead of running the code of FMPC that evaluates the Abit.Verify∆(〈σ〉)
algorithm with honest party keys and shares. In the event that the adversary
is able to forge valid authenticated bits 〈σ̃〉 S5 would abort whereas S4 would
not. Again, by the security of the authenticated bit scheme the probability that
an adversary can forge a MAC is equal to guessing the key of the honest party

1
|F2κ | or negligible in the security parameter. Therefore the probability of this

event occurring is negligible and the distributions of H5 and H4 are statistically
indistinguishable.

Hybrid H6. In this hybrid S6 implements the remainder of the Setup of Sthresh
and no longer receives the input (setup, sid, C, xi) of the honest parties as Fthresh.
However, like S5, S6 does not use knowledge of the honest input xi in any way,
and so this is purely a syntactic change. The distribution of H6 is identical to
that of H5.

Hybrid H7. In this hybrid, Z now communicates with Sthresh instead of S6.
This is a syntactic change and so H7 is distributed identically to H6.

By hybrid argument, the protocol πthresh correctly implements the ideal func-
tionality Fthresh, and the Real experiment is statistically indistinguishable from
the Ideal experiment.

Realπthresh,A,Z(κ, z)z∈{0,1}∗ ≈ IdealFthresh,Sthresh,Z(κ, z)z∈{0,1}∗

5 Cost Analysis

In this section we derive a model that can be used to estimate communica-
tion complexity. We derive asymptotic complexity figures using the scheme of
[YWZ20] as the implementation of FaBit and FMPC.

Claim 5.1 (Asymptotic Complexity of ThreshAbits). The per-party asymp-
totic cost to create ` threshold authenticated bits is O(n(`+ κ+ s)κ+ n2κ).

Claim 5.2 (Asymptotic Complexity of πthresh Setup). Let C be a circuit with I
input wires, G AND gates, and O output wires, then the per-party asymptotic

cost of Setup in πthresh is O
(
n · κ ·

(
I + Gs

logG +O + κ
)

+ n2κ
)
.

Claim 5.3 (Asymptotic Complexity of πthresh Eval). Let C be a circuit with I
input wires, G AND gates, and O output wires, then the per-party asymptotic

cost of Eval in πthresh is O
(
n · κ ·

(
I + Gs

logG +O + κ
)

+ n2κ
)
.

Claim 5.4 (Asymptotic Complexity of Folklore). Let C be a circuit with I input
wires, G AND gates, and O output wires, then the per-party asymptotic cost of

Setup in of the Folklore threshold protocol is O
(
n · κ

(
I + (ntO) + (G+O log s)s

log(G+O log s) + κ
)

+ n2κ
)
.

23

These claims follow directly from by expanding taBitSampleCost and tMpcSetupCost

defined below. We provide the equations that were used to derive these asymp-
totics in the following subsections.

5.1 Building Blocks

All functions are implicitly parameterized by the number of parties n, computa-
tional security parameter κ, and the statistical security parameter s. The Fcom

and Frand functionalities are implemented simply as in 3.1.

ComCost(`) 7→ (n− 1)(4κ+ `)

RandSetupCost = ComCost(κ)

We instantiate our protocol with the OT extension protocol of [KOS15] using
base OTs from Simplest OT [CO15] (as implemented in [WMK16]). We remark
that the SoftSpoken OT extension protocol of [Roy22] with base OTs using the
endemic OT protocol of [ZZZR23] can replace the usage of [KOS15] for improved
performance and security. Analysis for each of these cases is provided, where `
is the number of instances, G the element size in the base OT, and m the size
of the desired correlation.

OTCostCO(`,G) 7→ 2`(G+ κ)

OTCostZZZR(`,G) 7→ κ+ (2`+ 1)G+ (5`+ 2)G(κ/ log κ)

2
COTeSetupCostKOS = OTCost(κ, 2κ)

COTeSetupCostRoy = OTCost(κ, 2κ) + κ

COTeCostKOS(`,m) 7→ ` ∗ (m+ κ) + (2κ2 + 4κ)

COTeCostRoy(`,m) 7→ ` ∗m/2 +
5

8
(κ2 + κ) + κ ∗ `/4

The multiplication functionality is instantiated by the multiplication proto-
col of [DKLs19], and Fis−zero by performing a random multiplication followed
by opening the output shares.

MultCost(ζ = κ+ 2s) = (n− 1)(COTeCost(2ζ, 2κ) + (6 + ζ)κ)

IsZeroCost = MultCost + ComCost(κ)

Cost of the Yang et al. [YWZ20] MPC protocol To complete the re-
maining base functionalities we describe the cost of the [YWZ20] protocol in
terms of the base correlated OT extension protocol and the circuit to be exe-
cuted. Internally the MPC protocol first runs a preprocessing phase to generate
authenticated bits as well as authenticated Beaver triples depending on the
number of input wires and AND gates in the circuit. Once the preprocessing
is complete the protocol generates garbling labels for each of the gates in the
circuit, and then takes inputs and evaluates the circuit. We use the notation

24

C = (I, G,O) to describe the number of inputs, AND gates, and outputs for a
circuit C, and ` the number of instances to generate.

aBitCost(`) 7→ 2(n− 1)COTeCost(`+ 2κ+ s, κ) + 2(n2 + n)κ

aAndCost(`, B = 1 +
s

log `+ 1
) 7→ aBitCost(3`B) + 4(n− 1)B`κ

MPCCost(C = (I, G,O)) 7→ aBitCost(I +G) + aAndCost(G)

+ (2Gn+ (2 + 4(n− 2))G)κ+ Iκ+ (G+ 3κ) + (n− 1)Oκ

The costs of the protocol are overall dominated by the preprocessing to
generate authenticated bits and triples, followed by the cost to send the garbled
labels.

Threshold Authenticated Bits The ThreshAbits protocol has two com-
ponents, initialization and sampling, and we describe the cost of each of these
components. Initialization solely consists of running the correlated OT setup for
the FaBit protocol. Sampling is the cost of sampling random threshold shares,
authenticating the bit decomposition, and then evaluating the consistency check
using the multiplication protocol.

taBitSetupCost = 2(n− 1)COTeSetupCost

taBitSampleCost(`, B = d`/κe) 7→ aBitCost(Bκ) + 2(n− 1)Bκ+ IsZeroCost

5.2 Our Threshold MPC Protocol Costs

Here, we combine the analysis from above to analytically describe the full costs
associated with our main Fthresh protocol.

As mentioned in the previous section for FMPC, we use C = (I, G,O) to
describe the size of the circuit being executed. The setup cost consists of the
underlying OT extension setup, sampling threshold authenticated bits of an
output mask, and evaluating the setup circuit. Evaluating a circuit with a
threshold-shared input is simply the cost of the underlying MPC evaluation
(with t ≤ n parties) as there is no other communication.

tMPCSetupCost(C = (I, G,O)) 7→ taBitSetupCost + taBitSampleCost(O)

+ MPCCost((I +O, G,O))

tMPCEvalCost(C) 7→ MPCCost(C)

For a single execution there is small overhead running setup followed by
evaluation over the plain non-threshold MPC due to per-run setup costs and
threshold resharing. This is most notable with AES because of its small circuit
size and increased input size after preprocessing. Regardless as soon as 2 calls
to Eval are performed it is immediately advantageous, ignoring any complexity
of ensuring consistency of inputs using just the plain FMPC.

25

5.3 Comparison with folklore methods

Recall the main difference between our approach and the folklore is that the
folklore approach requires integrating the use of the threshold secrets inside the
MPC evaluation of the circuit.

There are several design choices to make, and we attempt to choose the best
options to maintain a fair comparison. In particular, we compare to the scheme
where each party Pi holds a t-of-n threshold share of global key JαKi, each in-

put JxKi, and MACs on each input Jm = αxKi. While many MPC protocols
use prime-order finite fields, here we specifically choose the field F2κ as field
operations have (relatively) low boolean circuit complexity. As a result, recon-
structing a secret-shared element and computing addition in F2κ solely consists
of XOR gates and does not contribute to the AND complexity of the circuit.

The multiplication over F2κ has AND complexity in O(κ log κ) using the
fast Fourier transform to compute a polynomial multiplication. In particular
the multiplication circuit for F2κ with κ = 128 used in the Folklore circuit is of
size 3888 AND gates. The circuit calculates a multiplication αx for each field
element x that is output.

We also need to create output secret shares JxKi and JαxKi which is done by
having each party input a random degree t − 1 polynomial pi for each output
share, or 2t field elements for each x, αx pair. The circuit then calculates p =∑
pi being just XOR gates, and sets p(0) = x or p(0) = αx as desired. With

the random polynomial p representing the secret shares of x, then with the
coefficients of p calculating JxKi = p(i) is simply a constant multiplication and
only XOR gates.

Letting C = (I, G,O) describe a boolean circuit with I input wires, G AND
gates, and O output wires, then the compiled setup circuit C′ for n parties
with threshold t has I ′ = I + n(2tO + κ) input wires, G′ = G + O log κ AND
gates, and O′ = 2nO output wires. Likewise the compiled Eval circuit C′2 has
I ′2 = n(2I + κ), G′2 = G+ I log κ,O′2 = O.

folkMPCSetupCost(C = (I, G,O)) 7→ MPCCost((I + n(2tO + κ), G+O log κ, 2nO))

folkMPCEvalCost(C = (I, G,O)) 7→ MPCCost((n(2I + κ), G+ I log κ,O))

Comparing to our method we see that the folklore method has substantially
larger circuit sizes with additional multiplicative terms of Ω(n) for inputs and
outputs, and log κ for AND gates. Thus directly the folklore method results in
more expensive overall computation.

6 Benchmarks

We created a proof-of-concept implementation of our protocol in roughly 10
thousand lines of Rust code, including unit tests and comments. 1 Our im-
plementation builds on the EMP toolkit developed by Wang, Malezmoff and

1The code for the implementation is available at https://github.com/Rosefield/thresh_
mpc

26

https://github.com/Rosefield/thresh_mpc
https://github.com/Rosefield/thresh_mpc

Katz [WMK16] and uses their implementation of the authenticated garbling
protocols of Wang et al., and Yang et al. [WRK17, YWZ20] as well as the
(updated) malicious correlated OT extension protocol of Keller, Orsini, and
Scholl [KOS15].

For each Setup or Eval operation being executed, our benchmarking pro-
grams establish insecure connections among the parties and then measures the
wall clock time to complete the operation. Thus, they measure the impact of
latency, computation, and bandwidth constraints. We also count bytes sent,
including session identifier and data serialization overheads (but not authen-
tication overheads, TCP overheads, etc.). In all cases, we compiled our code
against nightly Rust 1.75 and set κ = 128 and s = 80.

We benchmarked our implementation using a set of Google Cloud Platform
(GCP) c2d-highcpu-8 nodes, running Debian 12 with kernel 6.1.52. Each node
of this type has an EPYC 7B13 CPU from the AMD Epyc Milan family, with
four physical cores clocked at 2.45 GHz that can execute eight threads in total,
and 16GB of RAM. Every party in an experiment was allocated one node in the
us-east1-c region.

6.1 Sample Applications

Our evaluation involves benchmarking threshold implementations of three cryp-
tographic functions: AES, HMAC, and KMAC, in both setup for the threshold
key, and evaluation of the function. In each case the Setup(r1, . . . , rn) function
takes in key randomness from each party and, sums the randomness to create
the initial key, and then derives some preprocessing from said key. Likewise the
Evalk(m) function is parameterized by the shared preprocessing and calculates
the encryption/MAC of the message.

In our AES benchmark, the Setup stage computes the AES key schedule
K ′ ← SetupAES(r1, . . . rn) = AES-Schedule(K =

∑
i r
i), and the Eval stage

computes EvalAESK′ (m) = AES-ExpandedK′(m) on the message using the ex-
panded key schedule. 2.

Our HMAC-SHA256 benchmark computes H(K + opad||H(K + ipad||m))
where K is a key, m is the message, and opad and ipad are constants. The Setup
stage computes the first two key-dependent blocks (s1, s2)← SetupHMAC(r1, . . . , rn) =
(SHA(IV, ipad+

∑
i r
i), SHA(IV, opad+

∑
i r
i)) The Eval stage computes the final

tag t← EvalHMAC
(s1,s2) (m) = SHA(s2, SHA(s1,m)).

Finally, the KMAC128(K,M) benchmark computes the KMAC tag on one
block as f(f(IV + K) + M) where f is the Keccak permutation of size 1600
and IV is the 1600-bit initial state for KMAC. The Setup stage computes the
intermediate state s ← SetupKMAC(r1, . . . , rn) = f(IV +

∑
i r
i). The Eval

function computes the final tag t← EvalKMAC
s (m) = f(s+m)[0,256] that is the

truncation of the permutation applied to the state and message.

2We note that in this specific case, the strategy of evaluating the key schedule during the
setup leads to increased overhead (for the folklore method). Here it would be better to re-
evaluate the key schedule instead of authenticating the larger number of bits, but we evaluate
it nonetheless to compare the same design.

27

Original Circuit Folklore circuit

Inputs ∧-Gates Outputs ∧-Gates Blowup

HMAC-SHA256 Setup 256 45.15k 512 68.47k 1.51x
HMAC-SHA256 Eval 512 45.15k 256 61.47k 1.36x

AES128 Setup 128 1360 1408 44.05k 32.4x
AES128 Eval 1408 5440 128 49.74k 9.14x

KMAC128 Setup 256 38.40k 1600 96.72k 2.52x
KMAC128 Eval 1600 38.40k 256 90.86k 2.36x

Figure 1: Circuit complexity for different symmetric primitives. Each primitive
is split into solely key-dependent and message-dependent components. The
left columns indicate the circuit sizes for the standard version of the circuits.
The right columns indicate the circuit size after applying the folklore threshold
transformations; we apply the optimization of using the field F2κ to make the
cost of Shamir reconstruction essentially XOR gates; nonetheless, the MAC
computation and secret sharing steps requires some extra AND gates.

After implementing these functions, we compute their original size and bench-
mark the MPC performance for evaluating them using the state-of-the-art EMP
toolkit. We compare the performance of the threshold schemes to a baseline eval-
uation of each function Fk(m) = EvalSetup(···)(m) without any preprocessing or
threshold resharing.

In addition, we also evaluate the blowup induced by applying the Folklore
threshold method to these functions. Importantly, the folklore setup function
must compute MACs on each batched-output value and additionally produce
secret shares of the output JxK and the MAC JαxK. Calculating the MACs
requires additional AND gates proportional to O log κ. Notably, creating output
shares requires producing evaluations of a polynomial at n points, however, one
can evaluate the polynomial at n fixed points using multiplications with field
constants, which can be compiled into XOR gates and no extra AND gates. In
contrast, our method only requires an additional O input wires and O XOR
gates to mask the output of the circuit.

Figure 1 provides the original (non-threshold) circuit sizes for each these
applications. As the table shows, the folklore method requires several thousand
extra gates in each application, representing between 1.36–32x overhead.

Inputs In addition to the increase in the number of AND and XOR gates,
the folklore method also incurs overhead by increasing the number of inputs in
both the Setup and Eval circuit. In particular, each party inputs its own share
of the keystate and MAC of the keystate during the evaluation, and thus the
protocol overhead grows with the number n of participants in the protocol. The
multiplication circuit for F2κ used in the Folklore circuit is of size 3888 AND
gates. Figure 2 shows this factor of overhead can quickly approach or exceed

28

4 6 8 10 12 14 16

Parties

0

200000

400000

600000

800000

#
o
f

in
p

u
t

w
ir

es
Circuit Complexity for Folklore threshold MPC

AES inputs

HMAC-SHA256 inputs

KMAC inputs

Figure 2: Number of input wires required by the folklore MPC method Setup
as number of parties increases, with t = n − 2. At roughly n = 4, the increase
in the number of input wires already overwhelms the original size of the circuit
for all three of our applications.

the size of the modified circuit.

6.2 Timing and Communication Results

For each of our sample applications and for n ∈ [3, 16] with t = n − 1 we col-
lected the execution statistics for both our πthresh and the Folklore solution, as
well as a Baseline n-party evaluation of the underlying FMPC protocol for the full
circuit. The collected statistics consist of the execution time in milliseconds and
the number of bytes in megabytes, and we show the average of 30 runs for each
data point. Timing and communication include the total cost of each evaluation
including any data-independent “preprocessing” (such as base OTs) to gener-
ate the output of each circuit evaluation. During Setup each of the protocols
executed the appropriate preprocessing circuit described in Fig. 1. Then during
Eval our protocol and the Folklore protocol evaluated the circuit with prepro-
cessed state. We compare the Setup and Eval costs as well as a combined one
Setup+Eval against the cost of simply evaluating the application without any
threshold sharing or preprocessing. Comparing Eval to the Baseline execution
we show the advantage of preprocessing, and comparing Setup+Eval against
Baseline shows the overhead of generating and using the threshold shares. For
each protocol the cost of Eval depends on the number of parties actually evalu-
ating, and so we report the cost of n parties running the Eval in a hypothetical
n-of-X threshold sharing.

AES As per Fig. 3, our threshold protocol’s time and communication per-
formance closely matches the baseline [WRK17, YWZ20] implementation for
evaluating the AES circuit, which supports our title claim that our approach to

29

4 6 8 10 12 14 16

Parties

102

103

104

T
im

e
(m

s)

4 6 8 10 12 14 16

Parties

101

102

103

C
om

m
u

n
ic

at
io

n
(M

B
)

Our Threshold AES Setup

Our Threshold AES Eval

Our Threshold AES Pre+Eval

Folklore Setup

Folklore Eval

Folklore Pre+Eval

Baseline

Figure 3: Computation time and communication for threshold AES evaluation
for κ = 128. Our Setup and Evaluation times are just slightly more expensive
than the Baseline MPC for computing AES (due to the extra work outside of
MPC to Setup authenticated shares). In contrast, the Folklore methods are
almost 1 order of magnitude slower. By re-using the preprocessing from Setup,
our Thresh Eval circuit is only 5440 gates compared to the 6800 gates for the
full AES circuit in the Baseline Eval.

threshold boolean functions is achieved at barely no overhead. In contrast, the
folklore method requires roughly 10x overhead in both time and computation.
This is due to the large increase in the number of input wires and the MAC
computation required by folklore.

At a high level for online evaluation, with a threshold of 3 parties can evaluate
≈ 14/s AES blocks with ≈9MB communication each; or with a threshold of 16,
≈ 2.3/s evaluations with ≈135MB communication each. This gives a savings of
≈ 15% comp./comm. over the Baseline circuit for 3 parties, and ≈ 10% comp.
and 17% comm. with 16 parties.

HMAC-SHA256 In the case of HMAC, the pre-processing step is beneficial
for both the Folklore and our protocol. Specifically, the Setup calculates two
SHA evaluations that include HMAC constants, while the Eval circuit uses
these pre-computed values as the starting state, then computes 1 SHA block to
incorporate the message, and then another SHA block to compute the output.

As a result, both the Folklore and our protocol outperform the Baseline
circuit during Eval. However, as shown in Fig. 4, our implementation runs
faster in Eval than both Folklore and Baseline, and in Setup the Folklore method
considering runtime and communication.

Again for the online evaluation with a threshold of 3 parties can evaluate
≈ 2.3/s HMAC-SHA256 MACs with ≈68MB communication each; or with a

30

4 6 8 10 12 14 16

Parties

103

104

T
im

e
(m

s)

4 6 8 10 12 14 16

Parties

102

103

C
o
m

m
u

n
ic

a
ti

on
(M

B
)

Our Threshold HMAC Setup

Our Threshold HMAC Eval

Our Threshold HMAC Pre+Eval

Folklore Setup

Folklore Eval

Folklore Pre+Eval

Baseline

Figure 4: Computation time and communication for threshold HMAC-SHA256
evaluation. In this example we continue to see that our threshold scheme closely
matches the baseline. Due to the increased circuit size and decreased number
of outputs the Folklore method is relatively more competitive, but still is at
least 50% slower. The preprocessing advantage is more pronounced for HMAC
compared to AES as half of the entire circuit (45k gates) is removed during
evaluation. Because of this both our protocol and the Folklore protocol (61k
gates) outperform the Baseline evaluation (90k gates), with performance relative
to the size of the circuit.

31

4 6 8 10 12 14 16

Parties

103

104

T
im

e
(m

s)

4 6 8 10 12 14 16

Parties

102

103

C
om

m
u

n
ic

at
io

n
(M

B
)

Our Threshold KMAC Setup

Our Threshold KMAC Eval

Our Threshold KMAC Pre+Eval

Folklore Setup

Folklore Eval

Folklore Pre+Eval

Baseline

Figure 5: Computation time and communication for threshold KMAC evalua-
tion. In this example we see that the Folklore method performs poorly in both
Setup and Eval because of the increased state size (1600bits) causing the MAC
creation and validation to dominate the cost of the KMAC circuit itself. As
our threshold resharing is comparatively light the cost of evaluating the KMAC
Setup circuit dominates and we closely match the cost of the Baseline during
Setup and surpass it during Eval.

threshold of 16, ≈ 0.32/s evaluations with ≈1GB communication each. This
gives a savings of ≈ 50% comp./comm. over the Baseline circuit for 3 parties,
and ≈ 48% comp. and 50% comm. with 16 parties.

KMAC Finally, in Fig. 5 we evaluate the performance of our implementation
on the KMAC circuit because it further demonstrates the applicability of our
protocol. Our results here are comparable to what was achieved with HMAC,
closely matching the cost of the Baseline circuit during Setup and surpassing
the Baseline during Eval and the Folklore method in all cases.

In the last example the online evaluation with a threshold of 3 parties can
evaluate ≈ 3.7/s KMAC128 MACs with ≈59MB communication each; or with a
threshold of 16, ≈ 0.37/s evaluations with ≈924MB communication each. This
gives a savings of ≈ 50% comp./comm. over the Baseline circuit for 3 parties,
and ≈ 47% comp. and 50% comm. with 16 parties.

Acknowledgements

The authors of this work were supported by the NSF under grants 1646671,
1816028, and 2055568.

32

References

[ACE+21] Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damg̊ard,
and Chaoping Xing. Improved single-round secure multiplication
using regenerating codes. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021, pages 222–
244, Cham, 2021. Springer International Publishing.

[AFSH+20] Jackson Abascal, Mohammad Hossein Faghihi Sereshgi, Carmit
Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Is the classical gmw paradigm practical? the case of non-
interactive actively secure 2pc. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’20, page 1591–1605, New York, NY, USA, 2020. Association
for Computing Machinery.

[ANO+22] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and
Omer Shlomovits. Low-bandwidth threshold ecdsa via pseudoran-
dom correlation generators. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 2554–2572, 2022.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Za-
karias. Semi-homomorphic encryption and multiparty computa-
tion. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, pages 169–188, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[BECO+21] Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini,
Nigel P. Smart, and Eduardo Soria-Vazquez. Large scale, actively
secure computation from lpn and free-xor garbled circuits. In
Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, pages 33–63, Cham, 2021.
Springer International Publishing.

[BGGK17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, and Sam Kim.
A lattice-based universal thresholdizer for cryptographic systems.
2017. https://eprint.iacr.org/2017/251.

[BLN+21] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Pe-
ter Sebastian Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter
Scholl, and Nigel P. Smart. High-performance multi-party compu-
tation for binary circuits based on oblivious transfer. Journal of
Cryptology, 34(3):34, 2021.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of se-
cure protocols. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, STOC ’90, page 503–513,
New York, NY, USA, 1990. Association for Computing Machinery.

33

https://eprint.iacr.org/2017/251

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5), sep
2020.

[CCK23] Jung Hee Cheon, Wonhee Cho, and Jiseung Kim. Improved
universal thresholdizer from threshold fully homomorphic encryp-
tion. Cryptology ePrint Archive, Paper 2023/545, 2023. https:

//eprint.iacr.org/2023/545.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of
universally composable security for standard multiparty computa-
tion. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, pages 3–22, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Fed-
erico Savasta, and Ida Tucker. Bandwidth-efficient threshold ec-
dsa. Cryptology ePrint Archive, Paper 2020/084, 2020. https:

//eprint.iacr.org/2020/084.

[CDK+22] Megan Chen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler
Rosefield, Abhi Shelat, and Ran Cohen. Multiparty generation of
an rsa modulus. Journal of Cryptology, 35(2):12, 2022.

[CG20] Ignacio Cascudo and Jaron Skovsted Gundersen. A secret-sharing
based mpc protocol for boolean circuits with good amortized com-
plexity. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of
Cryptography, pages 652–682, Cham, 2020. Springer International
Publishing.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. Uc non-interactive, proactive, thresh-
old ecdsa with identifiable aborts. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’20, page 1769–1787, New York, NY, USA, 2020. Association
for Computing Machinery.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for obliv-
ious transfer. In Proceedings of the 4th International Conference
on Progress in Cryptology – LATINCRYPT 2015 - Volume 9230,
page 40–58, Berlin, Heidelberg, 2015. Springer-Verlag.

[CWYY23] Hongrui Cui, Xiao Wang, Kang Yang, and Yu Yu. Actively se-
cure half-gates with minimum overhead under duplex networks. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, pages 35–67, Cham, 2023. Springer Nature
Switzerland.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky.
Authenticated garbling from simple correlations. In Yevgeniy

34

https://eprint.iacr.org/2023/545
https://eprint.iacr.org/2023/545
https://eprint.iacr.org/2020/084
https://eprint.iacr.org/2020/084

Dodis and Thomas Shrimpton, editors, Advances in Cryptology
– CRYPTO 2022, pages 57–87, Cham, 2022. Springer Nature
Switzerland.

[DK01] Ivan Damg̊ard and Maciej Koprowski. Practical threshold rsa sig-
natures without a trusted dealer. In Birgit Pfitzmann, editor,
Advances in Cryptology — EUROCRYPT 2001, pages 152–165,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[DKL+12] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Christian Miles,
and Nigel P. Smart. Implementing aes via an actively/covertly
secure dishonest-majority mpc protocol. In Ivan Visconti and
Roberto De Prisco, editors, Security and Cryptography for Net-
works, pages 241–263, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat.
Threshold ecdsa from ecdsa assumptions; the multiparty case. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1051–
1066, 2019.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan.
Extensions to the method of multiplicities, with applications to
kakeya sets and mergers. SIAM Journal on Computing, 42(6):2305–
2328, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 643–662, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[EXY22] Daniel Escudero, Chaoping Xing, and Chen Yuan. More efficient
dishonest majority secure computation over z2k via galois rings.
In Advances in Cryptology – CRYPTO 2022: 42nd Annual Inter-
national Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15–18, 2022, Proceedings, Part I, page 383–412,
Berlin, Heidelberg, 2022. Springer-Verlag.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and
Peter Scholl. A unified approach to mpc with preprocessing us-
ing ot. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology – ASIACRYPT 2015, pages 711–735, Berlin, Heidel-
berg, 2015. Springer Berlin Heidelberg.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold
ecdsa with fast trustless setup. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,

35

CCS ’18, page 1179–1194, New York, NY, USA, 2018. Association
for Computing Machinery.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, page 218–229, New York, NY,
USA, 1987. Association for Computing Machinery.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. Actively secure garbled circuits with constant commu-
nication overhead in the plain model. In Yael Kalai and Leonid
Reyzin, editors, Theory of Cryptography, pages 3–39, Cham, 2017.
Springer International Publishing.

[HKO23] David Heath, Vladimir Kolesnikov, and Rafail M. Ostrovsky. Tri-
state circuits - a circuit model that captures ram. In Annual In-
ternational Cryptology Conference, 2023.

[HSSV17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost
constant round mpc combining bmr and oblivious transfer. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryp-
tology – ASIACRYPT 2017, pages 598–628, Cham, 2017. Springer
International Publishing.

[KMOS21] Yashvanth Kondi, Benardo Magari, Claudio Orlandi, and Omer
Shlomovitz. Refresh when you wake up: Proactive threshold wal-
lets with offline device. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 608–625, 2021.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively se-
cure ot extension with optimal overhead. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology – CRYPTO
2015, pages 724–741, Berlin, Heidelberg, 2015. Springer Berlin Hei-
delberg.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot:
Faster malicious arithmetic secure computation with oblivious
transfer. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 830–842,
New York, NY, USA, 2016. Association for Computing Machinery.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang.
Optimizing authenticated garbling for faster secure two-party com-
putation. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, pages 365–391, Cham,
2018. Springer International Publishing.

36

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with
practical distributed key generation and applications to cryptocur-
rency custody. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’18, page
1837–1854, New York, NY, USA, 2018. Association for Computing
Machinery.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest
majority multi-party computation for binary circuits. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, pages 495–512, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[LPSY19] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai.
Efficient constant-round multi-party computation combining bmr
and spdz. Journal of Cryptology, 32(3):1026–1069, 2019.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A new approach to practical active-secure
two-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, pages 681–700,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[oST23] National Institute of Standards and Technology. Fips 186-5:digital
signature standard (dss). 2023.

[Roy22] Lawrence Roy. Softspokenot: Quieter OT extension from
small-field silent VOLE in the minicrypt model. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Confer-
ence, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18,
2022, Proceedings, Part I, volume 13507 of Lecture Notes in Com-
puter Science, pages 657–687. Springer, 2022.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, feb 1978.

[RW19] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arith-
metic and boolean circuits with active security. In Feng Hao, Sush-
mita Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology
– INDOCRYPT 2019, pages 227–249, Cham, 2019. Springer Inter-
national Publishing.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel,
editor, Advances in Cryptology — EUROCRYPT 2000, pages 207–
220, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

37

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/

emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale
secure multiparty computation. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 39–56, New York, NY, USA, 2017. Association for
Computing Machinery.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
27th Annual Symposium on Foundations of Computer Science (sfcs
1986), pages 162–167, 1986.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient mpc from
improved triple generation and authenticated garbling. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 1627–1646, New York,
NY, USA, 2020. Association for Computing Machinery.

[ZCSH18] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. Nanopi:
Extreme-scale actively-secure multi-party computation. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 862–879, New York, NY,
USA, 2018. Association for Computing Machinery.

[ZZZR23] Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren.
Endemic oblivious transfer via random oracles, revisited. In Car-
mit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, pages 303–329, Cham, 2023. Springer Nature
Switzerland.

A Example of Threshold Authenticated Bit Con-
version

Consider the following simplified example for the definition of the family of
functions f∗,∗∗ .

Example A.1. Let F24 = F2[X]/〈X4+X+1〉, and say that λS1 (0) = X3+X2+1
with a set of parties S with 1 ∈ S. Then for some element a, with ai the i

th bit

38

https://github.com/emp-toolkit
https://github.com/emp-toolkit

of a, we have

λS1 (0) · a = a+X2a+X3a

= a4X
3 + a3X

2 + a2X + a1

+ a4(X5 = X(X + 1)) + a3(X4 = (X + 1)) + a2(X3) + a1(X2)

+ a4(X6 = X2(X + 1)) + a3(X5 = X(X + 1)) + a2(X4 = (X + 1)) + a1(X3)

= (2a4 + a2 + a1)X3 + (2a3 + 2a4 + a1)X2 + (2a2 + a4 + 2a3)X + (a1 + a3 + a2)

= (a2 + a1)X3 + (a1)X2 + (a4)X + (a1 + a3 + a2)

If we only care about the 1st bit then Bits(λS1 (0) · a)1 = a1 + a3 + a2 and

f1,S
1 : x 7→ x1 + x3 + x2. Observe that

f1,S
1 (M1

j [JxK1
]) = (M1

j [b11] +M1
j [b13] +M1

j [b12])

= (Kj [b11] + b11∆j) + (Kj [b13] + b13∆j) + (Kj [b12] + b12∆j)

= f1,S
1 (Kj [JxK1

]) + (b11 + b13 + b12)∆j

is a valid MAC for Bits(λS1 (0) · JxK1
)1.

39

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Definitions
	Universal Composability

	Functionalities
	Building Blocks

	The [prot:thresh][thresh] Protocol
	The [prot:tabit]ThreshAbits Procedure
	Security of [prot:thresh][thresh]

	Cost Analysis
	Building Blocks
	Our Threshold MPC Protocol Costs
	Comparison with folklore methods

	Benchmarks
	Sample Applications
	Timing and Communication Results

	Example of Threshold Authenticated Bit Conversion

