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Abstract. Arora & Ge introduced a noise-free polynomial system to
compute the secret of a Learning With Errors (LWE) instance via lin-
earization. Albrecht et al. later utilized the Arora-Ge polynomial model
to study the complexity of Gröbner basis computations on LWE poly-
nomial systems under the assumption of semi-regularity. In this paper
we revisit the Arora-Ge polynomial and prove that it satisfies a generic-
ity condition recently introduced by Caminata & Gorla, called being in
generic coordinates. For polynomial systems in generic coordinates one
can always estimate the complexity of DRL Gröbner basis computations
in terms of the Castelnuovo-Mumford regularity and henceforth also via
the Macaulay bound.
Moreover, we generalize the Gröbner basis algorithm of Semaev & Tenti
to arbitrary polynomial systems with a finite degree of regularity. In
particular, existence of this algorithm yields another approach to esti-
mate the complexity of DRL Gröbner basis computations in terms of
the degree of regularity. In practice, the degree of regularity of LWE
polynomial systems is not known, though one can always estimate the
lowest achievable degree of regularity. Consequently, from a designer’s
worst case perspective this approach yields sub-exponential complexity
estimates for general, binary secret and binary error LWE.
In recent works by Dachman-Soled et al. the hardness of LWE in the
presence of side information was analyzed. Utilizing their framework we
discuss how hints can be incorporated into LWE polynomial systems and
how they affect the complexity of Gröbner basis computations.

Keywords: LWE · LWE with hints · Gröbner bases

1 Introduction

With the emerging threat of Shor’s quantum polynomial time algorithms for
factoring and discrete logarithms [34] on the horizon, cryptographers in the past
20 years have been in desperate search for new cryptographic problems that
cannot be solved in polynomial time on classical as well as quantum computers.
So far, lattice-based cryptography built on Learning With Errors (LWE) and the
Short Integer Solution (SIS) [1] has emerged as most promising candidate for
cryptography in the presence of quantum computers.

In this paper we revisit polynomial models to solve the Search-LWE problem
via Gröbner basis computations. Solving LWE via a polynomial system was
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first done by Arora & Ge [6], though they solved the system via linearization
not via Gröbner bases. Albrecht et al. [2,3] studied the complexity of Gröbner
basis computations for the Arora-Ge polynomial model under the assumption
that the polynomial system is semi-regular [24,29]. Moreover, for binary error
LWE Sun et al. [37] refined the complexity estimates for linearization under the
semi-regularity assumption. For a general review of the computational hardness
of LWE we refer to [4].

We stress that the complexity estimates of [2,3,37] are still hypothetical
since both works do not provide a proof that a LWE polynomial system is
semi-regular except for very special cases, see e.g. [3, Theorem 11]. Moreover,
the complexity bounds rely on asymptotic studies of the Hilbert series of a
semi-regular polynomial system. Needless to say that a priori is not guaranteed
that these complexity estimates apply for practical LWE instantiations.

In this paper we consider two new approaches to estimate the complexity of
Gröbner basis computations. Caminata & Gorla [12] revealed that the solving
degree of polynomial system in generic coordinates is always upper bounded by
the Castelnuovo-Mumford regularity and henceforth also by the Macaulay bound,
see [12, Theorem 10]. For our first approach we prove that any fully determined
LWE polynomial system is in generic coordinates. In particular this implies
that for any LWE polynomial system there exists a Gröbner basis algorithm in
exponential time as well as memory complexity. Semaev & Tenti [33] revealed that
the complexity of Gröbner basis algorithms can also be estimated via the degree
of regularity of a polynomial system. Though, their bound is only applicable
over finite fields and the polynomial system must contain the field equations,
see [33, Theorem 2.1] and [38, Theorem 3.65]. We generalize their result to any
polynomial system that admits a finite degree of regularity regardless of the
underlying field. For a fixed degree of regularity we will determine the minimal
number of LWE samples necessary so that the polynomial system could achieve
the degree of regularity. Hence, for a designer this implies that there could exist
Gröbner basis algorithms in sub-exponential time as well as memory to solve
Search-LWE.

In two recent works Dachman-Soled et al. [18,19] introduced a framework to
study the complexity of attacks on Search-LWE in the presence of side information.
In Section 6 we shortly review their framework and describe how hints can be
incorporated into LWE polynomial systems. Moreover, in Example 28 we showcase
the complexity impact of hints on Gröbner basis computations.

Finally, Semaev & Tenti [33] also investigated the probability that a uniformly
and independently distributed polynomial system F ⊂ Fq[x1, . . . , xn]/(xq

1 −
x1, . . . , xq

n − xn) achieves a certain degree of regularity. Their proof depends
only on combinatorial properties, hence we expect that a similar result can be
proven for uniformly and independently distributed polynomial system F ⊂
Fq[x1, . . . , xn]/

(
f(x1), . . . , f(xn)

)
, where f is univariate and deg (f) ≥ 2 is arbi-

trary. In Appendix A we study the related problem whether a LWE polynomial
is close to the uniform distribution or not. We find a negative answer for this
question, in particular we show that the statistical distance between the high-

2



est degree component of a LWE polynomial and the uniform distribution is
always ≥ 1

2 and has limit 1 if the degree of the LWE polynomial goes to infinity.
Hence, even if Semaev & Tenti’s analysis generalizes it is not applicable to LWE
polynomial systems.

2 Preliminaries

By k we will always denote a field, by k̄ we denote its algebraic closure, and by
Fq we denote the finite field with q elements. Let I ⊂ k[x1, . . . , xn] be an ideal,
then we denote the zero locus of I over k̄ as

Z(I) =
{

x ∈ k̄n | f(x) = 0, ∀f ∈ I
}
⊂ An

k̄
. (1)

If in addition I is homogeneous, then we denote the projective zero locus over k̄
by Z+(I) ⊂ Pn−1

k̄
.

Let f ∈ K[x1, . . . , xn] be a polynomial, and let x0 be an additional variable,
we call

fhom(x0, . . . , xn) = x
deg(f)
0 · f

(
x1

x0
, . . . ,

xn

x0

)
∈ K[x0, . . . , xn] (2)

the homogenization of f with respect to x0, and analog for the homogenization
of ideals Ihom =

{
fhom | f ∈ I

}
and finite systems of polynomials Fhom ={

fhom
1 , . . . , fhom

m

}
. Further, we will always assume that we can extend a term order

on k[x1, . . . , xn] to a term order on k[x0, . . . , xn] according to [12, Definition 8].
For a term order > and an ideal I ⊂ k[x1, . . . , xn] we denote with

in>(I) = {LT>(f) | f ∈ I} (3)

the initial ideal of I, i.e. the ideal of leading terms of I, with respect to >.
Every polynomial f ∈ [x1, . . . , xn] can be written as f = fd + fd−1 + . . . + f0,

where fi is homogeneous of degree i. We denote the highest degree component
fd of f with f top, and analog we denote F top =

{
f top

1 , . . . , f top
m

}
.

For a homogeneous ideal I ⊂ P and an integer d ≥ 0 we denote

Id = {f ∈ I | deg (f) = d, f homogeneous} , (4)

and analog for the polynomial ring P .
Let I, J ⊂ k[x1, . . . , xn] be ideals, then we denote with

I : J = {f ∈ k[x1, . . . , xn] | ∀g ∈ J : f · g ∈ I} (5)

the usual ideal quotient, and with I : J∞ =
⋃

i≥1 I : J i the saturation of I with
respect to J .

Let I,m ∈ k[x0, . . . , xn] be homogeneous ideals where m = (x0, . . . , xn), then
we call Isat = I : m∞ the saturation of I.
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We will often encounter the lexicographic and the degree reverse lexicographic
term order which we will abbreviate as LEX and DRL respectively.

For x, y ∈ kn we denote the standard inner product as

⟨x, y⟩ = x⊺y =
n∑

i=1
xi · yi. (6)

By log we denote the natural logarithm and by log2 the logarithm in base 2.

2.1 Learning With Errors

Learning With Errors (LWE) was introduced by Ajtai in his seminal work [1].
In its base form it can be formulated as a simple computational linear algebra
problem.

Definition 1 (Learning with errors, [1]). Let q be a prime, let n ≥ 1 be an
integer, and let χ be a probability distribution on Z. For a secret vector s ∈ Fn

q

the LWE distribution As,χ over Fn
q ×Fq is sampled by choosing a ∈ Fn

q uniformly
at random, choosing e← χ, and outputting (a, ⟨s, a⟩+ e ∈ Fq).

In Search-LWE we are given m LWE samples (ai, bi) sampled according to
some probability distribution. Our task is then to recover the secret vector s ∈ Fn

q

that has been used to generate the samples.
As probability distribution one typically chooses a discrete Gaussian distri-

bution with mean 0 and standard deviation σ. For ease of computation in this
paper, we ignore the discretization and assume χ = N (0, σ) if not specified
otherwise, hence we do not discuss discretization techniques further. Assume that
X ∼ N (0, σ), we will utilize the following well-known property of the Gaussian
distribution several times in this paper

P [|X| > t · σ] ≤ 2
t ·
√

2 · π
· exp

(
− t2

2

)
. (7)

It is well-known that solving Search-LWE for a discrete Gaussian error
distribution and σ ∈ O (

√
n) is at least as hard as solving several computational

lattice problems, see e.g. [31,30,10,28].
Moreover, on top of LWE many cryptographic functions can be built, e.g.

Regev’s public key cryptosystem [31] as well as a key exchange mechanism [9].

2.2 Gröbner Bases

For an ideal I ⊂ k[x1, . . . , xn] and a term order > on the polynomial ring, a >-
Gröbner basis G = {g1, . . . , gm} is a finite set of generators such that

in>(I) =
(

LT>(g1), . . . , LT>(gm)
)
. (8)

Gröbner bases were introduced by Bruno Buchberger in his PhD thesis [11].
With Gröbner bases one can solve many computational problems on ideals like

4



the ideal membership problem or the computation of the zero locus [17]. For a
general introduction to the theory of Gröbner bases we refer to [17].

Today, two classes of Gröbner basis algorithms are known: Buchberger’s
algorithm and linear algebra-based algorithms. In this paper we only study the
latter family.

Let F = {f1, . . . , fm} ⊂ P = k[x1, . . . , xn] be a homogeneous polynomial
system, and let > be a term order on P . The homogeneous Macaulay matrix in
degree d, denoted as Md, has columns indexed by monomials in Pd sorted from left
to right with respect to >. The rows of Md are indexed by polynomials s·fi, where
s ∈ P is a monomial such that deg (s · fi) = d. The entry of row s · fi at column
t is the coefficient of s · fi at the monomial t. For an inhomogeneous polynomial
system Md is replaced by M≤d and the degree equalities by inequalities. By
performing Gaussian elimination on M0, . . . , Md respectively M≤d for d big
enough one will produce a >-Gröbner basis of F . This idea can be traced back
to Lazard [26]. Since d determines the complexity of this algorithm in space and
time, the least suitable d is of special interest [20].
Definition 2 (Solving degree, [12, Definition 6]). Let F = {f1, . . . , fm} ⊂
k[x1, . . . , xn] and let > be a term order. The solving degree of F is the least
degree d such that Gaussian elimination on the Macaulay matrix M≤d produces
a Gröbner basis of F with respect to >. We denote it by sd>(F).

If F is homogeneous, we consider the homogeneous Macaulay matrix Md and
let the solving degree of F be the least degree d such that Gaussian elimination
on M0, . . . , Md produces a Gröbner basis of F with respect to >.

Today, the most efficient variants of linear algebra-based Gröbner basis
algorithms are Faugére’s F4 [22] and Matrix-F5 [23] algorithms. These algorithms
utilize efficient selection criteria to avoid redundant rows in the Macaulay matrices.
Moreover, they construct the matrices for increasing values of d. Therefore, they
also need stopping criteria, though one could artificially stop the computation
once the solving degree is reached since then a Gröbner basis must already be
contained in the system produced by Gaussian elimination. Hence, we do not
discuss termination criteria further.

Let F ⊂ k[x1, . . . , xn] be a polynomial system, and let Fhom be its homoge-
nization. We always have that, see [12, Theorem 7],

sdDRL (F) ≤ sdDRL

(
Fhom) . (9)

Complexity Estimate via the Solving Degree. For a matrix A ∈ kn×m of
rank r the reduced row echelon form can be computed in O

(
n ·m · rω−2) [36,

§2.2], where 2 ≤ ω < 2.37286 is a linear algebra constant [5].
Let F ⊂ P = k[x1, . . . , xn] be a system of m homogeneous polynomials, it is

well-known that the number of monomials in Pd is given by
(

n+d−1
d

)
. Moreover,

at most
(

n+d−deg(fi)−1
d−deg(fi)

)
≤
(

n+d−1
d

)
many columns can stem from the polynomial

fi. Therefore, the cost of Gaussian elimination on M0, . . . , Md is bounded by

O
(

m · d ·
(

n + d− 1
d

)ω)
. (10)
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Thus, by estimating the solving degree sdDRL(F) we yield a complexity upper
bound for linear algebra-based Gröbner basis computations.

2.3 Generic Coordinates & the Solving Degree

For completeness, we shortly recall the definition of the Castelnuovo-Mumford
regularity [21, Chapter 4], a well-established invariant from commutative algebra
and algebraic geometry. Let P = k[x0, . . . , xn] be the polynomial ring and let

F : · · · → Fi → Fi−1 → · · · (11)

be a graded complex of free P -modules, where Fi =
∑

j P (−ai,j).

Definition 3. The Castelnuovo-Mumford regularity of F is defined as

reg (F) = sup
i

ai,j − i.

By Hilbert’s Syzygy theorem [21, Theorem 1.1] any finitely graded P -module
has a finite free graded resolution. I.e., for every homogeneous ideal I ⊂ P the
regularity of I is computable.

Next we introduce the notion of generic coordinates which first appeared
in the seminal work of Bayer & Stillman [8]. Let I ⊂ P be an ideal, and let
r ∈ P . We use the shorthand notation “r ∤ 0 mod I” for expressing that r is not
a zero-divisor on P/I.

Definition 4 ([12,13, Definition 5]). Let k be an infinite field. Let I ⊂
k[x0, . . . , xn] be a homogeneous ideal with |Z+(I)| < ∞. We say that I is in
generic coordinates if either |Z+(I)| = 0 or x0 ∤ 0 mod Isat.

Let k be any field, and let k ⊂ K be an infinite field extension. I is in
generic coordinates over K if I ⊗k K[x0, . . . , xn] ⊂ K[x0, . . . , xn] is in generic
coordinates.

Provided a polynomial system is in generic coordinates, then the solving
degree is always upper bounded by the Castelnuovo-Mumford regularity.

Theorem 5 ([12, Theorem 9, 10]). Let K be an algebraically closed field, and
let F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] be an inhomogeneous polynomial system
such that

(
Fhom) is in generic coordinates. Then

sdDRL (F) ≤ reg
(
Fhom) .

By a classical result one can always bound the regularity of an ideal with the
Macaulay bound (see [15, Theorem 1.12.4]).

Corollary 6 (Macaulay bound, [26, Theorem 2], [12, Corollary 2]).
Consider a system of equations F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] with di =
deg (fi) and d1 ≥ . . . ≥ dm. Set l = min{n + 1, m}. Assume that

∣∣Z+
(
Fhom)∣∣ <

∞ and that
(
F hom) is in generic coordinates over k̄. Then

sdDRL (F) ≤ reg
(
Fhom) ≤ d1 + . . . + dl − l + 1.
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In particular, if m > n and d = d1, then

sdDRL (F) ≤ (n + 1) · (d− 1) + 1.

In the proof of [12, Theorem 11] Caminata & Gorla implicitly revealed an
efficient criterion to prove that a polynomial system is in generic coordinates.
This observation was later formalized by Steiner in terms of the highest degree
components of a polynomial system [35].

Theorem 7 ([35, Theorem 3.2]). Let k be an algebraically closed field, and
let F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] be an inhomogeneous polynomial system
such that

(i) (F) ̸= (1), and
(ii) dim (F) = 0.

Then the following are equivalent.

(1)
(
Fhom) is in generic coordinates and

∣∣Z+
(
Fhom)∣∣ ̸= 0.

(2)
√
F top = (x1, . . . , xn).

(3) (F top) is zero-dimensional in k[x1, . . . , xn].
(4) For every 1 ≤ i ≤ n there exists an integer di ≥ 1 such that xdi

i ∈
inDRL

(
Fhom).

In particular, (4) implies that every inhomogeneous polynomial system that
contains a zero-dimensional DRL Gröbner basis is already in generic coordinates.

2.4 A Refined Solving Degree

In the Gröbner basis complexity literature there is another quantity that is
also known as solving degree that refines Definition 2, cf. [14, §1]. Again let
F = {f1, . . . , fm} ⊂ P = k[x1, . . . , xn] be a finite set of polynomials, and let >
be a term order on P . We start with M≤d the Macaulay matrix for F up to
degree d and compute a basis B of the row space of M≤d via Gaussian elimination.
Now we construct the Macaulay matrix M≤d for the polynomial system B and
again compute the basis B′ of the row space via Gaussian elimination. We repeat
this procedure until B = B′, at this point multiplying the polynomials in B′ with
all monomials up to degree ≤ d does not add any new elements to the basis after
Gaussian elimination. We denote the final Macaulay matrix for F with M̂d, and
we also denote M̂d’s row space via rowsp

(
M̂d

)
. It is clear that

rowsp
(

M̂d

)
⊂ (F)≤d = {f ∈ (F) | deg (f) ≤ d} , (12)

and for d big enough rowsp
(

M̂d

)
will contain a >-Gröbner basis for F . This

motivates the following definition.
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Definition 8 (Refined solving degree, see [14, Definition 1.1]). Let F =
{f1, . . . , fm} ⊂ k[x1, . . . , xn] and let > be a term order. The refined solving degree
of F is the least degree d such that rowsp

(
M̂d

)
contains a Gröbner basis of F

with respect to >. We denote it by sd>(F).
It is clear from the definitions that

sd> (F) ≤ sd> (F) , (13)

but the inequality might be strict.

Complexity Estimate via the Refined Solving Degree. Let F ⊂ P =
k[x1, . . . , xn] be a system of m homogeneous polynomials, let sd>(F) ≤ d for
some term order > on P , and let D denote the number of monomials in P
of degree ≤ d. Then the dimensions of the Macaulay matrix M≤d for F are
bounded by D ·m×D. Without loss of generality we can assume that F does
not contain redundant elements, then the row space basis of M≤d has either at
least m + 1 elements or it contains a Gröbner basis with ≤ m many elements. In
the first case, we have to build a new Macaulay matrix whose size is bounded by
D · (m + 1)×D. Iterating this argument we can build at most (D −m) many
Macaulay matrices, and we have to perform Gaussian elimination at most D−m
times. With D ≤ d ·

(
n+d−1

d

)
and our estimation from Equation (10) we obtain

the following worst case complexity estimate

O

(
D−m−1∑

i=0
(m + i) · d ·

(
n + d− 1

d

)ω
)

(14)

∈ O
((

m ·D + (D −m− 1) · (D −m− 2)
2

)
· d ·

(
n + d− 1

d

)ω)
(15)

∈ O
(

m ·D2 · d ·
(

n + d− 1
d

)ω)
(16)

∈ O

(
m · d3 ·

(
n + d− 1

d

)ω+2
)

. (17)

2.5 Approximation of Binomial Coefficients

We recall the following well-known approximation of binomial coefficients.
Lemma 9 ([16, Lemma 17.5.1]). For 0 < p < 1, q = 1− p such that n · p is
an integer

1√
8 · n · p · q

≤
(

n

n · p

)
· 2−n·H2(p) ≤ 1

√
π · n · p · q

.

With p = k
n the inequality then becomes√

n

8 · k · (n− k) ≤
(

n

k

)
· 2−n·H2( k

n ) ≤
√

n

π · k · (n− k) . (18)
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In case the solving degree is an integer polynomial in the number of variables,
then we have the following generic estimation for the binomial coefficient.

Proposition 10. Let n ≥ 2 be an integer, let α ≥ 1, and let p ∈ Z[x].

(1) If p(n) ≥ n− 1 for all n ≥ 2, then(
n + p(n)− 1
p(n) · (n− 1)

)α

≤ 2α

n− 1 .

(2) If p(n) ≥ 0 for all n ≥ 2, then

H2

(
p(n)

n + p(n)− 1

)
≤
(

4 · (n− 1) · p(n)
(n + p(n)− 1)2

) 1
log(4)

≤
(

4 · p(n)
n− 1

) 1
log(4)

.

In particular if α ≥ 2 and p(n) ≥ n− 1 for all n ≥ 2, then

(
n + p(n)− 1

p(n)

)α

∈ O

 1
n− 1 · 2

α·

(
4·(n−1)·p(n)(

n+p(n)−1
)2−log(4)

) 1
log(4)

 .

Proof. For (1), since α ≥ 1 and n ≥ 2 we have that(
n + p(n)− 1
p(n) · (n− 1)

)α

=
(

1
p(n) + 1

n− 1

)α

≤
(

2
n− 1

)α

≤ 2α

n− 1 ,

which proves the claim.
For (2), let 0 < p < 1 we recall the following inequality for the binary entropy

[39, Theorem 1.2]
H2(p) ≤

(
4 · p · (1− p)

) 1
log(4) .

Then

H2

(
p(n)

n + p(n)− 1

)
≤
(

4 · (n− 1) · p(n)
(n + p(n)− 1)2

) 1
log(4)

.

Since log (4) ≈ 1.3863 we have that n − 1 ≤ n + p(n) − 1 ⇒ (n − 1)
1

log(4) ≤
(n + p(n)− 1)

1
log(4) , so the second inequality follows.

The last claim follows from Equation (18) combined with the two inequalities.
⊓⊔

3 Refined Solving Degree & Degree of Regularity

Another measure to estimate the complexity of linear algebra-based Gröbner
basis algorithms is the so-called degree of regularity.
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Definition 11 (Degree of regularity, [7, Definition 4]). Let k be a field,
and let F ⊂ P = k[x1, . . . , xn]. Assume that (F top)d = Pd for some integer d ≥ 0.
The degree of regularity is defined as

dreg (F) = min
{

d ≥ 0
∣∣ (F top)

d
= Pd

}
.

Note that by Theorem 7 and the projective weak Nullstellensatz [17, Chap-
ter 8 §3 Theorem 8] F is in generic coordinates if and only if dreg(F) <∞.

Let F = {f1, . . . , fm, xq
1 − x1, . . . , xq

n − xn} ⊂ Fq[x1, . . . , xn] be a polynomial
system such that dreg (F) ≥ max{q, deg (f1) , . . . , deg (fm)}, Semaev & Tenti [33,
Theorem 2.1] showed that all S-polynomials appearing in Buchberger’s algorithm
have degree ≤ 2 · dreg (F) − 2. Due to the requirement dreg (F) ≥ q we do
not expect that Semaev & Tenti’s bound outperforms the Macaulay bound in
practice. On the other hand, the inclusion of the field equations was only made
to restrict to the Fq-valued solutions of a polynomial system, the proof of [33,
Theorem 2.1] only requires that dreg (F) <∞. Moreover, we will see that LWE
polynomial systems contain a univariate polynomial fi | xq

i − xi for all variables
xi. Hence, LWE polynomial systems can restrict to the Fq-valued solutions with
polynomials of much smaller degrees than q. Therefore, we will now generalize
[33, Theorem 2.1] to the general case dreg (F) <∞.

Let F = {f1, . . . , fm} ⊂ k[x1, . . . , xn] be such that dreg (F) <∞. Moreover,
let > be a degree compatible1 term order on k[x1, . . . , xn]. In principle, we simply
repeat the refined analysis presented in [38, §3.4]:

(1) Compute the Macaulay matrices M≤dreg(F) of the sequence f1, . . . , fm with
respect to >, and put the matrix into row echelon form.

(2) Choose a finite set of generators (B) = I such that every element of B has
degree ≤ dreg(F), and every monomial in k[x1, . . . , xn] of degree ≥ dreg(F)
is divisible by at least one monomial in

(
LM>(B)

)
. 2 Then we perform

Buchberger’s algorithm on B to obtain a Gröbner basis G.
(3) Compute a reduced Gröbner basis of (F) via G.

Let us now collect some properties of the basis B.

Proposition 12. Let k be a field, let > be a degree compatible term order on
P = k[x1, . . . , xn], and let F = {f1, . . . , fm} ⊂ P be such that dreg (F) < ∞.
There exists a finite generating set B for (F) such that

(1) maxf∈B deg (f) ≤ dreg (F).
(2) Every monomial m ∈ k[x1, . . . , xn] with deg (m) ≥ dreg (F) is divisible by

some LM>(f), where f ∈ B.
(3) For f ∈ B with deg (f) = dreg(F) one has deg

(
f − LT>(f)

)
< dreg(F).

1 A term order > on P is called degree compatible if for f, g ∈ P with deg (f) > deg (f)
one also has that f > g.

2 For ease of writing we introduce the shorthand notation: B = {h1, . . . , hr}, then(
LM>(B)

)
=
(

LM>(h1), . . . , LM>(hr)
)
.

10



Proof. We abbreviate dreg (F) = dreg. First we construct the Macaulay matrix
M≤dreg of F with respect to > and denote with B basis of the row space of
M≤dreg . By assumption, we have that dreg = dreg (B).

For f ∈ F , if deg (f) ≤ dreg, then by construction f ∈ (B)≤dreg . If deg (f) >
dreg, then we compute the remainder rf of f modulo B with respect to > and
add it to B. By elementary properties of multivariate polynomial division, see
[17, Chapter 2 §3 Theorem 3], and the degree of regularity we then have that
deg (rf ) < dreg.

Obviously, we have that (B) = (F) and (1) follows by construction, (2) follows
from dreg = dreg (B), and lastly basis elements that satisfy (3) can always be
constructed with another round of Gaussian elimination on the elements of B of
degree dreg. ⊓⊔

Now we can prove the generalization of Semaev & Tenti’s bound.

Theorem 13. Let k be a field, let > be a degree compatible term order on
P = k[x1, . . . , xn], and let F = {f1, . . . , fm} ⊂ P such that dreg (F) < ∞. If
dreg (F) ≥ max

{
deg (f1) , . . . , deg (fm)

}
, then

sd> (F) ≤ 2 · dreg (F)− 1.

Proof. We abbreviate dreg(F) = dreg. Let B = {g1, . . . , gt} be the ideal basis
from Proposition 12 for (F). By assumption, we have that F ⊂ (B)≤dreg , and by
construction B ⊂ rowsp

(
Mdreg(F)

)
. Starting from B we compute a >-Gröbner

basis via Buchberger’s algorithm, see [17, Chapter 2 §7]. Let gi, gj ∈ B, we
consider their >-S-polynomial

S>(gi, gj) = xγ

LM>(gi)
· gi −

xγ

LM>(gj) · gj ,

where xγ = lcm
(

LM>(gi), LM>(gj)
)
. Note that by [17, Chapter 2 §9 Proposi-

tion 4] we only have to consider the pairs with gcd
(

LM>(gi), LM>(gj)
)

≠ 1.
Since LM>(gi) and LM>(gj) must coincide in at least one variable and their
degree is ≤ dreg we can conclude that

deg
(

xγ

LM>(gi)
· gi

)
, deg

(
xγ

LM>(gj) · gj

)
≤ 2 · dreg − 1.

After performing division by remainder of the S-polynomial with respect to B
we then also have that the remainder has degree < dreg since

(
LM>(B)

)
d

=(
k[x1, . . . , xn]

)
d

for all d ≥ dreg. Therefore, we can construct all S-polynomials
within Buchberger’s algorithm with non-trivial remainder via polynomials whose
degree is ≤ 2·dreg−1. Since Buchberger’s algorithm always produces a >-Gröbner
basis we can conclude that sd>(F) ≤ 2 · dreg − 1. ⊓⊔

Corollary 14. In the scenario of Theorem 13, the largest degree of S-polynomials
appearing in Buchberger’s algorithm is less than or equal to 2 · dreg (F)− 2.
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Proof. Let us take another look at the S-polynomial

S>(gi, gj) = xγ

LM>(gi)
· gi −

xγ

LM>(gj) · gj

= xγ

LM>(gi)
· g̃i −

xγ

LM>(gj) · g̃j ,

where xγ = lcm
(

LM>(gi), LM>(gj)
)

and g̃l = gl − LM>(gl) for l = i, j. Since
the leading monomials are not coprime we have that

deg
(

xγ

LM>(gi)

)
, deg

(
xγ

LM>(gj)

)
≤ dreg − 1.

Moreover, by Proposition 12 we have that deg (g̃i) , deg (g̃j) < dreg. ⊓⊔

4 Affine-Derived Polynomial Systems

LWE polynomial systems follow a very special structure. To construct one
polynomial one starts with a univariate polynomial f and then substitutes a
multivariate affine equation ⟨a, x⟩+b into f . Many properties of LWE polynomial
systems solely stem from this substitution, this motivates the following definition.

Definition 15 (Affine-derived polynomial systems). Let k be a field, let
n, m ≥ 1 be integers, let g1, . . . , gm ∈ k[x] be non-constant polynomials, let
a1, . . . , am ∈ kn, and let b1, . . . , bm ∈ k. In the polynomial ring k[x1, . . . , xn], we
call

g1 (a⊺
1 x + b1) = 0,

. . .

gm (a⊺
mx + bm) = 0,

where x = (x1, . . . , xn)⊺, the affine-derived polynomial system of g1, . . . , gm by
(a1, b1), . . . , (am, bm). We also abbreviate affine-derived polynomial systems as
tuple

((
g1, a1, b1

)
, . . . ,

(
gm, am, bm

))
.

Next let us collect some properties of zero-dimensional affine-derived polyno-
mial systems.

Theorem 16. Let k be a field and let k̄ be its algebraic closure, let n ≥ 1 be
an integer, and let F =

((
g1, a1, b1

)
, . . . ,

(
gn, an, bn

))
⊂ k[x1, . . . , xn] be an

affine-derived polynomial system. Assume that the matrix

A =
(
a1 . . . an

)⊺ ∈ kn×n

has rank n. Then

12



(1) LEX and DRL Gröbner bases of F can be computed via an affine transfor-
mation.

(2) F is a 0-dimensional polynomial system.
(3) dimk

(
k[x1, . . . , xn]/(F)

)
=
∏n

i=1 deg (g)i.
(4) Let G ⊂ k̄[x1, . . . , xn] be such that F ⊂ G and (G) ̸= (1). Then

(
Ghom) is in

generic coordinates.

If in addition k is a finite field with q elements, and gi | xq − x for all 1 ≤ i ≤ n.
Then

(5) Any ideal I ⊂ k[x1, . . . , xn] such that F ⊂ I is radical.

Proof. For (1), we define new variables viay1
...

yn

 =
(
a1 . . . an

)⊺x1
...

xn

+

b1
...

bn

 ,

and since the matrix A has full rank this construction is invertible. Then the
polynomial system is of the form g1(y1) = . . . = gn(yn) = 0, so under any LEX
and DRL term order the leading monomials of the polynomials are pairwise
coprime, so by [17, Chapter 2 §9 Theorem 3, Proposition 4] we have found a
Gröbner basis.

For (2), follows from [17, Chapter 5 §3 Theorem 6].
For (3), the quotient space dimension can be computed by counting the

number of monomials not contained in
(

y
deg(g1)
1 , . . . , y

deg(gn)
n

)
.

For (4), follows from Theorem 7.
For (5), let F = (xq

1 − x1, . . . , xq
n − xn) ⊂ k[x1, . . . , xn] be the ideal of field

equations. It is well-known that for any ideal I ⊂ k[x1, . . . , xn] the ideal I + F
is radical, see for example [25, Lemma 3.1.1]. Since gi | xq − x we have for all
1 ≤ i ≤ n that

(a⊺
i x + ci)q − (a⊺

i x + ci) = (a⊺
i x)q − (a⊺

i x)

=
n∑

j=1
ai,j ·

(
xq

j − xj

)
= a⊺

i

xq
1 − x1

...
xq

n − xn

 ∈ (F).

So by invertibility A we have that xq
i − xi ∈ (F) for all 1 ≤ i ≤ n which proves

the claim. ⊓⊔

Remark 17. Note that being in generic coordinates also follows from [12, Re-
mark 13].

Corollary 18. Let k be an algebraically closed field, let m > n ≥ 1, let F =((
g1, a1, b1

)
, . . . ,

(
gm, am, bm

))
⊂ k[x1, . . . , xn] be an affine-derived polynomial

system such that deg (g1) ≥ . . . ≥ deg (gm). Assume that the matrix

A =
(
a1 . . . am

)⊺ ∈ km×n

13



has rank n. Then

sdDRL(F) ≤
n+1∑
i=1

(deg (gi)− 1) + 1.

In particular if d ≥ deg (g1), then

sdDRL(F) ≤ (n + 1) · (d− 1) + 1

Proof. Follows from Theorem 16 and the Macaulay bound Corollary 6. ⊓⊔

4.1 LWE Polynomial Systems

Arora & Ge proposed a noise-free polynomial system to solve the Search-LWE
problem [6]. If the error is distributed via a Gaussian distribution N (0, σ), then
one assumes that the error always falls in the range [−t · σ, t · σ] for some t ∈ Z
such that d = 2 · t + 1 < q. As we saw in Equation (7), the probability of
falling outside this interval decreases exponentially in t. Therefore, up to some
probability, in Fq the error is then always a root of the polynomial

f(x) = x ·
t∏

i=1
(x + i) · (x− i) ∈ Fq[x]. (19)

Since by construction 2 · t + 1 < q there cannot exist 1 ≤ i < j ≤ t such that
i ≡ −j mod q. So f is a square-free polynomial and therefore divides the field
equation xq − x. For LWE samples (ai, ci) = (ai, a⊺

i s + ei) ∈ Zn
q × Zq one then

has that in Fq[x1, . . . , xn]
f (ci − a⊺

i x) = 0 (20)

with probability ≥ 1 − 2
t·

√
2·π · exp

(
− t2

2

)
. Given m LWE samples one then

constructs m polynomials of the form of Equation (20), we call this polynomial
system the LWE polynomial system FLWE. Obviously, the LWE polynomial
system is an affine-derived polynomial system. The failure probability, i.e. the
probability that at least one error term does not lie in the interval [−t · σ, t · σ],
can be estimated via the union bound

pfail = m · P [|X| > t · σ] ≤ m · 2
t ·
√

2 · π
· exp

(
− t2

2

)
. (21)

Moreover, by Theorem 16 for the polynomial system to be fully determined we
have to require that m ≥ n and that n sample vectors are linearly independent.

To devise the complexity of Gröbner basis computations we in principle follow
the strategy of [3, §5]. We assume that σ = nϵ, where 0 ≤ ϵ ≤ 1, and let θ be
such that 0 ≤ θ ≤ ϵ ≤ 1. We consider sample numbers of the following form

mGB = eγθ , (22)

where γθ = 22·(ϵ−θ).
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Lemma 19 ([3, Lemma 5]). Let q, n, σ be parameters of an LWE instance.
Let (a1, b1) , . . . , (am, bm) be elements of Zn

q × Z sampled according to LWE. If
t =

√
2 · log (m), then the LWE polynomial system vanishes with probability at

least

pg = 1−

√
1

π · log (m) .

By [3, Remark 1] m ∈ O(n) implies that pg ∈ 1− o(1).
Therefore, we can deduce the degree DGB required for mGB = eγθ equations

in the LWE polynomial system. By the previous lemma, we have to fix tGB =√
2 · log (mGB) =

√
2 · γθ, so

DGB = 2 ·
√

2 · log (mGB) · σ + 1

∈ O
(√

log (mGB) · σ
)

= O (√γθ · σ) = O
(
n2·ϵ−θ

)
= O

(
γθ · nθ

)
.

(23)

Theorem 20. Let q, n ≥ 2, σ =
√

n
2·π be parameters of an LWE instance. Let

mGB = e
π·n

4 , and let (ai, bi)1≤i≤mGB
be elements of Fn

q × Fq sampled according
to LWE. If the matrix A =

(
a1 . . . am

)⊺ has rank n, then a linear algebra-based
Gröbner basis algorithm that computes a DRL Gröbner basis has time complexity

O
(

n · 2ω·2
1

log(2) ·n
2− 1

log(4) + π·log2(e)
4 ·n

)
and memory complexity

O
(

n · 22
1+ 1

log(2) ·n
2− 1

log(4) + π·log2(e)
4 ·n

)
.

The algorithm has success probability ≥ 1− 2
π·

√
n

.

Proof. As in Lemma 19 let t =
√

2 · log (mGB). By our assumptions and Equa-
tion (23) we have that

DGB = 2 ·
√

2 · log (mGB) · σ + 1 = 2 ·
√

2 · π · n
4 ·

√
n

2 · π + 1 = n + 1.

Since the matrix A has full rank we can apply Corollary 18 to estimate the
solving degree of the LWE polynomial system

sdDRL (FLWE) ≤ (n + 1) · (DGB − 1) + 1 = n2 + n + 1.

Now we apply Proposition 10 with p(n) = n2 + n + 1, then we perform the
additional estimations

n3 − 1 < n3,(
n2)2−log(4) ≤

(
n2 + 2 · n

)2−log(4)
,
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for all n ≥ 1. Also note that 2 − log (4) ≈ 0.6137, so we can divide by the
expressions in the last inequality without affecting the sign. Therefore,(

n + p(n)− 1
)
·H2

(
p(n)

n + p(n)− 1

)
≤ 2

1
log(2) · n2− 1

log(4) .

The final claim then follows by converting mGB into base 2. ⊓⊔

Numerically we have that 2− 1
log(4) ≈ 1.2787.

4.2 LWE With Small Errors

Suppose that the LWE error distribution χ can only take values in E ⊂ Fq with
|E| = D ≪

√
n. Then the error polynomial is

f(x) =
∏
e∈E

(x− e) (24)

of degree D. Moreover, for any LWE sample (a, b) we have f (b− a⊺x) = 0 with
probability 1. Analog to Theorem 20 we can estimate the complexity of a DRL
Gröbner basis computation.

Theorem 21. Let q be a prime, and let m > n ≥ 2 be integers. Let (ai, bi)1≤i≤m

be elements of Fn
q × Fq sampled according to a LWE distribution As,χ such

that the error distribution that χ can take at most D values. If the matrix
A =

(
a1 . . . am

)⊺ has rank n, then a linear algebra-based Gröbner basis algorithm
that computes a DRL Gröbner basis has time complexity

O
(

m · (D − 1) · n · 2ω·(8·Dlog(4)−1)
1

log(4) ·n
)

and memory complexity

O
(

m · (D − 1) · n · 22·(8·Dlog(4)−1)
1

log(4) ·n
)

.

Proof. The LWE polynomial has degree D, therefore by Corollary 18

sdDRL(FLWE) ≤ (n + 1) · (D − 1) + 1.

We apply Proposition 10 with p(n) = (n + 1) · (D− 1) + 1 and do the estimations

(n + 1) · (D − 1) + 1
n− 1 = (n− 1) · (D − 1) + 2 ·D − 1

n− 1 ∈ O(1),

for all n ≥ 2,(
(n + 1) · (D − 1) + 1

)
· (n− 1) =

(
n2 − 1

)
· (D − 1) + n− 1 ≤ 2 · n2 ·D,

(n ·D)2−log(4) ≤ (n ·D + D − 1)2−log(4)
,

for all n ≥ 1. ⊓⊔
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4.3 LWE With Small Secrets

Suppose that the entries of the secret s of a LWE distribution As,χ can only take
values in S ⊂ Fq with |S| = D. Then for 1 ≤ i ≤ n we can add the equations

fi(xi) =
∏
s∈S

(xi − s) (25)

to the LWE polynomial system. Trivially, f1, . . . , fn is a DRL Gröbner basis, so
the monomials g /∈ inDRL(f1, . . . , fn) have degree ≤ n · (D − 1). Moreover, any
univariate polynomial is trivially affine-derived.
Theorem 22. Let q be a prime, and let m > n ≥ 2 be integers. Let (ai, bi)1≤i≤m

be elements of Zn
q × Zq sampled according to a LWE distribution As,χ such that

the components of the secret can only take values in a set of size D. If the
error polynomial f has deg (f) > D, then a linear algebra-based Gröbner basis
algorithm that computes a DRL Gröbner basis has time complexity

O
(

m · (D − 1) · n2 · 2ω·2
1

log(2) ·(D−1)
1− 1

log(4) ·n
2− 1

log(4)
)

and memory complexity

O
(

m · (D − 1)2 · n3 · 22
1+ 1

log(2) ·(D−1)
1− 1

log(4) ·n
2− 1

log(4)
)

.

Proof. Let FLWE be the affine-derived LWE polynomial system, and let FS be
the polynomials that have all possible values of the secret components as zeros,
see Equation (25). As preprocessing we compute the remainder of all polynomials
in FLWE with respect to FS and DRL, then the remainder polynomials can at
most have degree n · (D − 1), see [17, Chapter 2 §6 Proposition 1]. Now we
join the remainders and FS in a single system F and start the Gröbner basis
computation. By Theorem 7 this polynomial system is in generic coordinates,
therefore

sdDRL (F) ≤ (n + 1) ·
(
n · (D − 1)− 1

)
+ 1.

Now we apply Proposition 10 with p(n) = (n + 1) · n · (D − 1) + 1 and perform
the additional estimations

(n + 1) ·
(
n · (D − 1)− 1

)
+ 1

n− 1 ≤ (D − 1) · (n + 1)2

n− 1 ∈ O ((D − 1) · n)

for all n ≥ 2, and(
(n + 1) · n · (D − 1) + 1

)
· (n− 1) ≤ n3 · (D − 1),

n2 · (D − 1) ≤ n + (n + 1) · n · (D − 1),

for all n ≥ 1. Then
n3 · (D − 1)(

n2 · (D − 1)
)2−log(4) = n2·log(4)−1 · (D − 1)log(4)−1

which proves the claim. ⊓⊔
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LWE With Small Secrets & Small Errors. Lastly, let us shortly analyze
the case of small secret small error LWE. Suppose that the errors are drawn from
a set of size DE and that the secrets are drawn from a set of size DS . As for
Theorem 22 we can compute the DRL remainder of the LWE polynomials with
respect to the n univariate polynomials limiting the possible solutions for the
secret.

– If DE ≫ DS , then we can estimate the degrees of the remainders as ≤
n · (DS − 1), then we obtain the Macaulay bound

sdDRL (F) ≤ (n + 1) · n · (DS − 1) + 1. (26)

– If n · (DS − 1)≫ DE ≥ DS , then we can always estimate the degrees of the
remainders as ≤ DE , then

sdDRL (F) ≤ (n + 1) · (DE − 1) + 1. (27)

– If n · (DS − 1) ≫ DS > DE , then we perform a variable transformation so
that the LWE polynomials FLWE include n univariate polynomials, i.e. we
exchange the roles of FS and FLWE. The degrees of the remainders of FS
are then bounded by ≤ DS , and we obtain

sdDRL (F) ≤ n · (DS − 1) + DE . (28)

So the first case reduces to Theorem 22 and the second and the third one to
Theorem 21, though the third case has a different constant term in the solving
degree bound than small error LWE.

5 Sub-Exponential Complexity Estimates via the Refined
Solving Degree

In this section we use Theorem 13 to show that in an ideal scenario general LWE,
binary secret LWE and binary error LWE admit sub-exponential Gröbner basis
algorithms.

5.1 LWE With Exponential Many Samples

For general LWE the lowest achievable degree of regularity is the degree D of the
error polynomial. In that degree there exist

(
n+D−1

D

)
many monomials, hence to

achieve degree of regularity m the number of samples m has to be at least the
aforementioned binomial coefficient.
Theorem 23. Let q, n, σ be parameters of an LWE instance, and let D = 2 ·
t · σ + 1 be the degree of the LWE polynomial. Let m ∈ O

((
n+D−1

D

))
be such

that dreg

(
F top

LWE

)
= D. Then a linear algebra-based Gröbner basis algorithm that

computes a DRL Gröbner basis has time complexity

O
(

D3 · 2(ω+3)·2
1

log(2) ·(2·D−1)
1

log(4) ·(n−1)
1− 1

log(4)
)
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and memory complexity

O
(

D3 · 25·2
1

log(2) ·(2·D−1)
1

log(4) ·(n−1)
1− 1

log(4)
)

.

For t→∞ the success probability of the algorithm approaches 1.

Proof. We can use Theorem 13 and Equation (17) to estimate the complexity of
a linear algebra based Gröbner basis algorithm. Then

O

(
m · (2 ·D − 1)3 ·

(
n + 2 ·D − 2

2 ·D − 1

)ω+2
)
∈ O

(
D3 ·

(
n + 2 ·D − 2

2 ·D − 1

)ω+3
)

.

To estimate the binomial coefficient we use Equation (18) and [39, Theorem 1.2].
Similar to Proposition 10, the term in the square root is estimated by O (1). For
the entropy term we have that

(n + 2 ·D − 2) ·H2

(
2 ·D − 1

n + 2 ·D − 2

)
≤
(

4 · (2 ·D − 1) · (n− 1)
(n + 2 ·D − 2)2−log(4)

) 1
log(4)

.

Without loss of generality D ≥ 1, so n − 1 ≤ n + 2 · D − 2 which implies the
complexity claim.

For the success probability, recall that by Equation (21)

pfail ∈ O
(

m · 2
t ·
√

2 · π
· exp

(
− t2

2

))
∈ O

((
n + D − 1

D

)
· 2

t ·
√

2 · π
· exp

(
− t2

2

))
∈ O

(√
n + D − 1
D · (n− 1) · 2

2·
√

D·n · 2
t ·
√

2 · π
· exp

(
− t2

2

))

∈ O
(

exp
(

2 · log (2) ·
√

2 · t · σ · n− t2

2

))
,

which proves the claim. ⊓⊔

In particular, for σ =
√

n and t = k√
σ

, where k ∈ Z we obtain the complexity
estimate

O
((

k ·
√

n
)3 · 2(ω+3)·2

1
log(2) ·(4·k+1)

1
log(4) ·n

1− 1
2·log(4)

)
. (29)

Since 1− 1
2·log(4) ≈ 0.6393 this complexity estimate is sub-exponential.

5.2 Sub-Exponential Complexity for Binary Secret LWE

Recall that binary secret LWE is the simplest case of small secret LWE, see
Section 4.3. Let F = (x2

1 − x1, . . . , x2
n − xn), and let FLWE = {f1, . . . , fm}
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be a binary secret LWE polynomial system where the (univariate) LWE error
polynomial is of degree D. Without loss of generality we can first reduce the
polynomials in FLWE modulo F with respect to the DRL term order. Let f ∈
FLWE, after the preprocessing step only monomials of the form

m = xα1
1 · · ·xαn

n , (30)

where αi ∈ {0, 1} for all i, are present in f and by elementary properties of
multivariate polynomial division, see [17, Chapter 2 §3], also deg (f) ≤ D after
the reduction.

Suppose that all f ∈ FLWE are of degree D after the reduction, we want to
find the minimal achievable degree of regularity dreg

(
(FLWE) + F

)
. Let g ∈ P =

Fq[x1, . . . , xn] be a monomial such that x2
i | g for some i. Such a monomial can

always be generated by some element in F top, therefore we only have to consider
monomials as in Equation (30). Necessarily, these monomials must be generated
by the elements in F top

LWE. Moreover, by elementary combinatorics there exist
(

n
d

)
many monomials of the form of Equation (30) in degree d.

To compute dreg
(
(FLWE) + F

)
one iterates through:

(1) Let d = 0, and G =
(
F top

LWE

)
.

(2) Perform Gaussian elimination on G to obtain a minimal generating set. If
|G| =

(
n

D+d

)
return D + d, else set d = d + 1.

(3) Compute G =
∑n

i=1 xi · (G) mod (x2
1, . . . , x2

n), and return to step (2).

In order to achieve dreg
(
(FLWE) + F

)
≤ D + d, for some d ≥ 0, we must

require that

m ·
(

n

d

)
!
≥
(

n

D + d

)
(31)

⇔ m
!
≥
(

n
D+d

)(
n
d

) =
D∏

i=1

n− d− i + 1
d + i

. (32)

I.e., m ∈ O
(
nD
)

many samples can be sufficient to achieve dreg
(
(FLWE) + F

)
≤

D + 1.
Provided that m ∈ O

(
nD
)

and dreg(FLWE) ≤ D + 1, then we obtain analog
to Theorem 23 the following complexity estimate

O
(

nD ·D3 · 2(ω+2)·2
1

log(2) ·(2·D+1)
1

log(4) ·(n−1)
1− 1

log(4)
)

. (33)

If D = 2 · t · σ + 1 and σ =
√

n, then we can further estimate 2 ·D + 1 ∈ O (
√

n).
In particular, the exponent of n then becomes

1
2 · log (4) + 1− 1

log (4) = 1− 1
2 · log (4) ≈ 0.6393, (34)

so the complexity estimate is indeed sub-exponential.
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5.3 Polynomial Complexity for Binary Error LWE

Recall that binary error LWE is the simplest case of small error LWE, see
Section 4.2. Every polynomial has degree 2. Analog to Theorem 21, we first pick
n linearly independent samples (ai, bi) and perform a coordinate transformation.
So without loss of generality we can assume that ai is the ith standard basis
vector of Fn

q . After the transformation these n LWE equations become x2
i −xi = 0.

We allocate them in the ideal F = (x2
1 − x1, . . . , x2

n − xn), the remaining m− n
LWE polynomials we collect in FLWE. Therefore, we can interpret binary error
LWE as special case of binary secret LWE, see Section 5.2. Suppose that we want
to achieve dreg

(
(FLWE) + F

)
≤ 2 + d for some d ≥ 0, then by Equation (32)

m− n
!
≥ (n− d− 1) · (n− d)

(d + 1) · (d + 2) (35)

many LWE samples are necessary. In particular, for d = 0 this reduces to Arora
& Ge’s analysis [6]. Analog to Theorem 23 and Equation (33), for m ∈ O

(
n2)

we then obtain the complexity estimate

O

(
n2 · d3 ·

(
n + 2 · d + 2

2 · d + 3

)ω+2
)
∈ O

(
d3 · n(ω+2)·(2·d+3)+2

)
. (36)

It is easy to see from Equation (35) that the higher the value of d the fewer
samples are necessary to achieve a certain degree of regularity. Let us see an
example.

Example 24. Let q be a prime, and let n = 256, and

(1) Let m = 2 · n. The minimum d ∈ Z≥0 such that Equation (35) is satisfied is
d = 14. Analog to Equation (36) with m = 2 · n we yield the complexity of a
DRL Gröbner basis computation

O

(
2 · n · d3 ·

(
n + 30

31

)ω+2
)
∈ O

(
n31·ω+64) .

If we use ω ≤ 3, then direct evaluation of the left complexity yields 434 bits.
(2) Let m = n

3
2 . The minimum d ∈ Z≥0 such that Equation (35) is satisfied is

d = 3. Then we yield the complexity of a DRL Gröbner basis computation

O

(
n

3
2 · d3 ·

(
n + 8

9

)ω+2
)
∈ O

(
n9·ω+19.5) .

If we use ω ≤ 3, then direct evaluation of the left complexity yields 178 bits.

5.4 A Conjecture on the Castelnuovo-Mumford Regularity

Experimentally we observed the following property for all LWE polynomial
systems studied in this paper.
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Conjecture 25. Let Fq be a finite field, and let FLWE ⊂ Fq[x1, . . . , xn] be a
LWE polynomial system.

(1) For small secret LWE where the error is drawn from the interval [−N, N ]

reg
(
Fhom

LWE
)
≤ dreg (FLWE) + N − 1.

(2) For binary secret or binary error LWE

reg
(
Fhom

LWE
)
≤ dreg (FLWE) + 1.

In case the conjecture holds, then the complexity estimates discussed in this
section improve significantly since we can utilize the complexity estimate for
Gaussian elimination on a single Macaulay matrix (Equation (10)).

– The binary error LWE estimate from Equation (33) improves to

O
(

nD ·D · 2ω·2
1

log(2) ·(D+2)
1

log(4) ·(n−1)
1− 1

log(4)
)

. (37)

– The binary secret LWE estimate from Equation (36) improves to

O
(

d · nω·(d+3)+2
)

. (38)

E.g., under the conjecture the numeric complexities of Example 24 improve
to 279 bits and 96 bits respectively.

We also note that for the conservative cryptanalyst there is a non-hypothetical
alternative to Conjecture 25. By [14, Theorem 5.3] for a polynomial system
Fhom ⊂ P [x0] in generic coordinates one always has that

dreg (F) ≤ reg
(
Fhom) . (39)

Thus, one can estimate the lowest achievable complexity estimate for Gaussian
elimination on the Macaulay matrix to produce a Gröbner basis of FLWE as
follows:

(1) Compute/Estimate the lowest achievable degree of regularity d̂ for FLWE.
(2) Use Equation (10) with d = d̂ and ω = 2 to estimate the lowest achievable

complexity upper bound of a Gröbner basis computation for FLWE.

We also recommend utilizing Equation (10) itself for numerical computations
rather than our complexity estimations. Our estimations are not tight but merely
showcase the complexity class, i.e. exponential, sub-exponential & polynomial,
for various LWE Gröbner basis computations.
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5.5 Complexity Estimation of Kyber768

Finally, let us showcase our complexity estimation methods for a concrete crypto-
graphic example: Kyber768 [32], a selected algorithm in the NIST post-quantum
competition. Kyber768 is based on the Module-LWE problem, it has parameters
q = 3329, n = 3 · 256, m = n, D = 2 and errors as well as secrets are drawn
from the interval [−D, D]. I.e., it is an instance of small error and small secret
LWE. Thus, it induces a polynomial system of 1536 equations in 768 variables,
where 768 polynomials stem from LWE samples. The lowest achievable degree of
regularity for Kyber768 is estimated via

m ·
(

n + d− 1
d

)
!
≥
(

n + (2 ·D + 1) + d− 1
(2 ·D + 1) + d

)
. (40)

In Table 2 we list our complexity estimates together with estimates for vari-
ous lattice-based attacks. The complexities for lattice-based attacks have been
computed via the lattice estimator tool3 by Albrecht et al. [4].

Table 1. Bit complexity estimation for various attack strategies on Kyber768. Com-
plexity of lattice-based attacks are computed via the lattice estimator [4]. For attacks
where the lattice estimator provides estimations for multiple steps in an attack the most
difficult step is shown in the table. For Gröbner basis attacks, the proven complexity
estimate is computed via Equation (10) and the Macaulay bound (Corollary 6). The
optimistic complexity estimate is computed via Equation (17), Theorem 13 and the
lowest achievable degree of regularity. The lowest achievable complexity estimate is
computed via Equation (10) with sdDRL (FKyber768) ≤ dreg (FKyber768) + (2 · D + 1) − 1
(Conjecture 25). Gröbner basis complexity estimates are computed with ω = 2.

Method BKW USVP BDD BDD
Hybrid

BDD
MiTM
Hybrid

Dual Dual
Hybrid

Proven
complexity
estimate

Optimistic
complexity
estimate

Lowest
achievable
complexity
estimate

Samples 2226 768 768 768 768 768 768 768 7684 768 7684 768 7684

Complexity
(bits) 239 205 201 201 357 214 206 5554 5581 4717 419 1588 203

Solving
degree n.a. 3077 n.a. n.a.

Lowest
achievable
degree of
regularity

n.a. n.a. 232 7 232 7

6 Integrating Hints into LWE Polynomial Models

In two recent works Dachman-Soled et al. [18,19] introduced a framework for
cryptanalysis of LWE in the presence of side information. E.g., in presence of a side-
channel the information can come from the power consumption, electromagnetic
3 https://github.com/malb/lattice-estimator
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radiation, sound emission, etc. of a device. Once side information has been
obtained it has to be modeled as mathematical hints. Dachman-Soled et al.
categorize hints for LWE into four classes [18, §1]:

– Perfect hints: ⟨s, v⟩ = l ∈ Fq.4
– Modular hints: ⟨s, v⟩ ≡ l mod k.
– Approximate hints: ⟨s, v⟩+ eσ = l ∈ Fq.
– Short vector hints: v ∈ Λ, where Λ is the lattice associated to a LWE instance.

Dachman-Soled et al. [18,19] then discuss how these hints can be incorporated
into Distorted Bounded Distance Decoding (DBDD) problems and lattice reduc-
tion algorithms to attack LWE. For readers interested how such hints can be
obtained in practice we refer to [18, §4, 6]. Except for short vector hints that do
not involve the LWE secret, we can incorporate these hints into LWE polynomial
models.

Integrating a perfect hint is straight-forward since including an affine equation
to the polynomial systems simply eliminates one variable.

If we are given a modular hint, then in principle one can compute a subset
Ω ∈ Fq such that ⟨s, v⟩ − l ∈ Ω (in Fq). Hence, we can set up a new polynomial
with roots in Ω, substitute ⟨s, v⟩ − l into the polynomial and add it to the LWE
polynomial system. Although this sounds simple, in practice the computation of
Ω can be a challenge. In particular, if s and v can take all values in Fn

q , then we
expect the set Ω to be too big to improve Gröbner basis computations. On the
other hand, if s, v ∈ {0, 1}n and we have the modular equation ⟨s, v⟩ ≡ 1 mod 2,
then only the odd numbers in the interval [0, n] can be in Ω, so the univariate
polynomial with roots in Ω is of degree ≤

⌈
n
2
⌉
.

More interesting are approximate hints. Such hints are obtained from noisy
side-channel information. In case the probability distribution of eσ has smaller
width than the one of the LWE error, then we can reduce the degree of a
polynomial in the LWE polynomial system. Another class of hints that we
interpret as approximate hints are Hamming weight hints. Suppose that the
LWE secret entry s1 is drawn from D ⊂ Fq and that we know the Hamming
weight H(s1) = k. Then we can add a univariate polynomial in x1 to the LWE
polynomial system whose roots are exactly the elements of D of Hamming weight
k. I.e., Hamming weight hints restrict the number of possible solutions. We
illustrate this with an example.

Example 26. Let q be a 16 bit prime number, and let (ai, bi)1≤i≤m ⊂ Fn
q × Fq

be a LWE sample generated with secret s ⊂ [−5, 5]n. As discussed in Section 4.3,
for every variable xi we can add a polynomial of degree 11 to the polynomial
system to restrict the solutions to the interval. Suppose that si is represented
by a signed 16 bit integer and that we learned its Hamming weight H(si) = 2,
4 Dachman-Soled et al. [18] considered perfect hints over Zn, our notion of perfect

hint corresponds to their modular hint, where the modulus is the characteristic of Fq.
They made this distinction, because affine equations over Zn and Fn

q require different
integration into lattice algorithms, see [18, §4.1, 4.2]. Though, for integration into
polynomial systems perfect hints are always projected to Fq.
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then si ∈ {3, 5} and we can replace the degree 11 polynomial by a polynomial of
degree 2.

Note that such Hamming weight biases can also persist if one opts for a more
efficient memory representation of the secret entries.

Example 27. Let q be a 16 bit prime number, and let (ai, bi)1≤i≤m ⊂ Fn
q × Fq

be a LWE sample generated with secret s ⊂ [−2, 2]n. As discussed in Section 4.3,
for every variable xi we can add a polynomial of degree 5 to the polynomial
system to restrict the solutions to the interval. Assume that the entries of s are
stored as signed integers in the interval

[
− q

2 , q
2
]
, then

– if H(si) = 0, then s1 = 0,
– if H(si) = 1, then s1 ∈ {1, 2}, and
– if H(si) = 2, then s1 ∈ {−1,−2}.

So if one can learn the Hamming weight of si, then one either obtains a perfect
hint or one can replace the degree 5 polynomial by a degree 2 polynomial.

Moreover, modular and approximate hints can be combined in a hybrid
manner.

Example 28. Let q be a 16 bit prime number, and let (ai, bi)1≤i≤m ⊂ Fn
q × Fq

be a LWE sample generated with secret s ⊂ [−5, 5]n. Assume that the entries of
s are stored as signed integers in the interval

[
− q

2 , q
2
]
. If H(si) = 2 and si ≡ 1

mod 3, then si ∈ {−2, 4}. So we can replace the degree 11 polynomial by a
polynomial of degree 2.

In practice this can have devastating consequences. If we can reduce a small
secret LWE instance to binary secret LWE or even worse to binary secret binary
error LWE, then we expect to achieve a lower degree of regularity with less
number of samples necessary compared to the plain polynomial system. We
numerically showcase this in the following example.

Example 29. Let q be a 16 bit prime number, assume that we are given small
secret small error LWE over F256

q whose secrets and error are drawn from [−2, 2].
Let m = 256 3

2 samples be given, and assume that we have enough Hamming
weight hints for the secret and the error terms to transform the LWE polynomial
system to either

(i) binary secret LWE, or
(ii) binary secret binary error LWE.

In Table 2 we record the least integer d such that dreg (FLWE) ≤ D + d together
with the optimistic complexity estimate from Equation (17) and the lowest
achievable complexity estimate implied by Equation (39) for various numbers of
perfect hints.
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Table 2. Complexity estimates for small secret small error LWE, binary secret LWE
and binary secret binary error LWE over F256

q with error polynomial degree D = 5
and m = 256 3

2 . The column d lists the least integer such that dreg (FLWE) ≤ D + d
for a given number of perfect hints. The optimistic complexity estimate is computed
via Equation (17) and the lowest achievable complexity estimate is computed via
Equation (10) with sdDRL (FLWE) = dreg (FLWE)+D−1 where D = 5, 2 (Conjecture 25).

Small Secret Small Error LWE Binary Secret LWE Binary Secret Binary Error LWE
D = 5 D = 5 D = 2

Perfect
hints d

Optimistic
complexity
estimate

(bits)

Lowest achievable
complexity

estimate (bits)
d

Optimistic
complexity
estimate

(bits)

Lowest achievable
complexity

estimate (bits)
d

Optimistic
complexity
estimate

(bits)

Lowest achievable
complexity

estimate (bits)

ω = 2

0 57 1391 481 38 1118 370 3 237 92
50 45 1122 393 30 906 303 2 188 78
150 22 596 221 15 499 174 1 127 59
190 13 387 152 8 320 117 0 80 45

ω = 3

0 57 1731 712 38 1389 547 3 291 131
50 45 1394 580 30 1125 336 2 229 110
210 8 339 165 5 290 127 0 88 56

7 Discussion

In this paper we proved that any fully-determined LWE polynomial system is
in generic coordinates. Therefore, bounds for the complexity of DRL Gröbner
basis computations can be found via the Castelnuovo-Mumford regularity. In
particular, this permits provable complexity estimates without relying on strong
but unproven theoretical assumptions like semi-regularity [24,29].

We also demonstrated how the degree of regularity of a LWE polynomial
system can be used to derive complexity estimates. Though, in practice one
has to keep in mind that a degree of regularity computation usually requires
a non-trivial Gröbner basis computation for the highest degree components.
Hence, we interpret complexity bounds based on the lowest achievable degree
of regularity as worst-case bounds from a designer’s perspective that could be
achievable by an adversary.

Based on the lowest achievable degree of regularity, we discussed that a
conservative cryptanalyst should assume that Gaussian elimination on a single
Macaulay matrix in the degree of regularity is sufficient to solve Search-LWE.

Moreover, we discussed how side information can be incorporated into LWE
polynomial systems, and we showcased how it can affect the complexity of
Gröbner basis computations.

Overall, we have presented a new framework to aid algebraic cryptanalysis
for LWE-based cryptosystems under minimal theoretical assumptions on the
polynomial system.
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A Semaev & Tenti’s Probability Analysis

Let P = Fq[x1, . . . , xn] and R = P/ (xq
1, . . . , xq

n), and let F = {f1, . . . , fm} ⊂ R
be a homogeneous polynomial system such deg (fi) = D for all i. Additionally,
we define the notation

le(n, d) =

∣∣∣∣∣
{

(a1, . . . , an) ∈ Zn

∣∣∣∣∣ 0 ≤ ai < e,

n∑
i=1

ai = d

}∣∣∣∣∣ . (41)

Moreover, if we refer to the degree of regularity in the following paragraph,
then we implicitly mean the extension of the degree of regularity to R (see [38,
Definition 3.48, Theorem 3.53]).

Semaev & Tenti analyzed the probability that a uniformly random polynomial
system F achieves a certain degree of regularity. In particular, they proved that
for D > d > 0 and m ≥ lq(n,D+d)

lq(n,d) the probability that dreg (F) ≤ D +d converges
to 1 for n→∞ [33, Theorem 1.1]. For q = D = 2 Tenti also provided an explicit
probability in his PhD thesis [38, Theorem 4.2]

P
[
dreg (F) ≤ 3

]
≥ 1−

n−1∑
v=0

q(n−v
3 )+(n−v+1)·v−(n−v)·m. (42)

For LWE polynomial systems we encounter a very similar scenario, since in
all scenarios in Sections 4.1 to 4.3 we can find a set of univariate polynomials
F =

(
f(x1), . . . , f(xn)

)
, where f is univariate and deg (f) = e ≥ 2, that restricts

the number of possible solutions. Moreover, in all our scenarios f(xi) | xq
i − xi.

Thus, to analyze the degree of regularity analog to Semaev & Tenti we first
construct the polynomials F , and then we replace the polynomials in FLWE
by their remainders modulo F . Finally, for the degree of regularity only the
highest degree components matter, so we can restrict the analysis to F top

LWE ∈
Fq[x1, . . . , xn]/ (xe

1, . . . , xe
n).

The proof of Semaev & Tenti is combinatorial, i.e. in principle it does not
depend on e = q nor the characteristic of the finite field. Therefore, we expect that
their results can be generalized to arbitrary rings Fq[x1, . . . , xn]/ (xe

1, . . . , xe
n).

Instead of repeating their analysis now, we will investigate a simpler problem.
Can we consider the highest degree components of LWE polynomial systems as
uniformly distributed in Fq[x1, . . . , xn]?
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A.1 On The Distance Of LWE Highest Degree Components To The
Uniform Distribution

The highest degree components of LWE polynomials are of the form
(
⟨ai, x⟩

)d, for
some uniform and independent distributed ai ∈ Fn

q . In this section we compute
the distance of the coefficient distribution of

(
⟨ai, x⟩

)d to the uniform distribution

over F(n+d−1
d )

q . Let us first recall the notion of statistical distance also known as
total variation distance.

Definition 30 ([27, §4.1]). Let µ and ν be two probability distributions on a
finite set Ω. The statistical distance (or total variation distance) between µ and
ν is defined as

dTV (µ, ν) = 1
2 ·
∑
x∈Ω

|µ(x)− ν(x)| .

The following identity will be useful to compute the statistical distance.

Lemma 31 ([27, Remark 4.3]). Let µ and ν be two probability distributions
on a finite set Ω. Then

dTV (µ, ν) =
∑

x∈Ω,
µ(x)≥ν(x)

µ(x)− ν(x).

The following lemma is an easy consequence of the previous lemma.

Lemma 32. Let µ and ν be two probability distributions on a finite set Ω, and
assume that dTV (µ, ν) ≤ ϵ for some ϵ > 0. Then

ν(x)− ϵ ≤µ(x) ≤ ν(x) + ϵ,

µ(x)− ϵ ≤ν(x) ≤ µ(x) + ϵ.

Proof. If µ(x)− ν(x) ≥ 0, then by Lemma 31 µ(x)− ν(x) ≤
∑

x∈Ω,
µ(x)≥ν(x)

µ(x)−

ν(x) = dTV (µ, ν) ≤ ϵ. If ν(x)− µ(x) ≥ 0, then ν(x)− µ(x) ≤
∑

x∈Ω,
ν(x)≥µ(x)

ν(x)−

µ(x) = dTV (µ, ν) ≤ ϵ. By combining these two inequalities we derive the claims.
⊓⊔

Hence, if some property holds for the distribution ν, then in principle one can
extend this property to the distribution µ up to some error term that depends
on ϵ.

Let us now return to
(
⟨ai, x⟩

)d, for ease of notation we abbreviate Nn,d =(
n+d−1

d

)
. We consider the function

ϕn,d : Fn
q → FNn,d

q ,

(a1, . . . , an) 7→
(

d!
i1! · · · in! · a

i1
1 · · · ain

n

)
0≤ij≤d,∑n

j=1
ij=d

. (43)
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Obviously, ϕ maps a ∈ Fn
q to the coefficient vector of (⟨a, x⟩)d. Moreover, we

assume that n!
i1!···in! ̸= 0 in Fq for all possible (i1, . . . , in). This condition is for

example satisfied if q is prime and d < q. Then

µ(b) = P [b ∈ im(ϕn,d)] =

∣∣∣ϕ−1
n,d(b)

∣∣∣
qn

. (44)

In particular, if
∣∣∣ϕ−1

n,d(b)
∣∣∣ ̸= 0, then µ(b) ≥ 1

qn . Also, for d ≥ 1 we have that
Nn,d ≥ n. Then with Lemma 31 we have that

dTV

(
µ,

1
qNn,d

)
=

∑
b∈F

Nn,d
q ,

µ(b)≥ 1
q

Nn,d

µ(b)− 1
qNn,d

(45)

=
∑

b∈im(ϕn,d)

∣∣∣ϕ−1
n,d(b)

∣∣∣
qn

− 1
qNn,d

(46)

= 1− |im(ϕn,d)|
qNn,d

(47)

≥ 1− qn

qNn,d
. (48)

Obviously, the last expression has limit 1 for d→∞. Now let a ∈ Fn
q be uniformly

random and let b ∈ FNn,d
q , then

P [ϕn,d(a) = b] =
∑

c∈Fn
q

P [c] · P [ϕn,d(a) = b | a = c] . (49)

Note that P [ϕn,d(a) = b | a = c] ∈ {0, 1}, and it is equal to 1 exactly
∣∣∣ϕ−1

n,d(b)
∣∣∣-

many times. Therefore,

P [ϕn,d(a) = b] = P [b ∈ im(ϕn,d)] . (50)

Hence, in general we consider the distribution of ϕn,d(a), where a ∈ Fn
q is

uniformly random, to be far from the uniform distribution over FNn,d
q . For

example for d = 2 we have that

dTV

(
µ,

1
qNn,2

)
≥ 1− qn

q
(n−1)·n

2

= 1− q
−n2+n

2 ≥ 1
2 , (51)

where the last inequality follows by n, q ≥ 2.
Hence, probability estimations for uniformly distributed highest degree com-

ponents, like the one of Semaev & Tenti, are not applicable to LWE polynomial
systems.
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