
C’est très CHIC: A compact password-authenticated key

exchange from lattice-based KEM

Afonso Arriaga1 Manuel Barbosa2 Stanislaw Jarecki3

Marjan Škrobot1

1University of Luxembourg, {afonso.delerue, marjan.skrobot}@uni.lu
2University of Porto (FCUP, INESC-TEC and Max Planck Institute for Security

and Privacy), mbb@fc.up.pt
3University of California at Irvine, stanislawjarecki@gmail.com

Abstract

Several Password Authenticated Key Exchange (PAKE) protocols have been recently pro-
posed that leverage a Key-Encapsulation Mechanism (KEM) to create an efficient and easy-
to-implement post-quantum secure PAKE. This line of work is driven by the intention of the
National Institute of Standards and Technology (NIST) to soon standardize a lattice-based post-
quantum KEM called Kyber. In two recent works, Beguinet et al. (ACNS 2023) and Pan and
Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying
on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used
in cryptographic protocols, special care must be taken to instantiate such objects in practice,
especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EURO-
CRYPT 2023) proposed a relaxation of the IC model under the Universal Composability (UC)
framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure
PAKE protocol, named EKE-KEM, from a KEM and a modified 2-round Feistel construction
called m2F. Remarkably, m2F sidesteps the use of IC over a group, instead employing an IC
defined over a fixed-length bitstring domain, which is easier to instantiate.

In this paper, we introduce a novel PAKE protocol called CHIC that improves the commu-
nication and computation efficiency of EKE-KEM. We do so by opening m2F construction in
a white-box manner and avoiding the HIC abstraction in our analysis. We provide a detailed
proof of the security of CHIC and establish precise security requirements for the underlying
KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our
analysis improves prior work by pinpointing the necessary and sufficient conditions for a tight
security proof. Our findings extend to general KEM-based EKE-style protocols, under both
game-based definitions (with Perfect Forward Secrecy) and UC PAKE definitions, and show
that a passively secure KEM is not sufficient. In this respect, our results align with those of
Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by
Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023).

Finally, we provide an implementation of CHIC, highlighting its minimal overhead compared
to an underlying CCA-secure KEM - Kyber. An interesting aspect of the implementation is that
we reuse existing Kyber reference code to solve an open problem concerning instantiating the
half-ideal cipher construction. Specifically, we reuse the rejection sampling procedure, originally
designed for public-key compression, to implement the hash onto the public key space, which is
a component in the half-ideal cipher. As of now, to the best of our knowledge, CHIC stands as
the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.

Keywords: Password Authenticated Key Exchange, Key Encapsulation Mechanism, Universal
Composability, Post-Quantum, Ideal Cipher.

1

https://orcid.org/0000-0002-1967-3390
https://orcid.org/0000-0002-6848-5564
https://orcid.org/0000-0002-5055-2407
https://orcid.org/0000-0002-7132-7591
mailto:afonso.delerue@uni.lu
mailto:marjan.skrobot@uni.lu
mailto:mbb@fc.up.pt
mailto:stanislawjarecki@gmail.com

1 Introduction

The problem of attaining secure communication online is commonly addressed by employing Au-
thenticated Key Exchange (AKE) protocols that involve high-entropy long-term private keys, often
relying on Public Key Infrastructure (PKI). However, in scenarios where humans are involved in the
authentication process, secure storage of long-term private keys by users is impractical, and most
applications resort to a simpler and cost-effective solution—human-memorizable passwords. In most
cases, applications carry out password-based authentication using (variants of) the bare-bones pro-
tocol where the user sends a password across the network to be checked wrt a previously stored
record (usually a salted hashed value) of the same password. This protocol, which is chosen due to
its usability and ease of deployment, has a number of disadvantages from the security point of view.
An obvious shortcoming is that the password is explicitly transferred across the communications
channel, and so it requires a previously established secure and one-side-authenticated channel to
the server checking the password. This opens the way to a number of well-known attacks, such as
impersonating the server via a phishing attack.

Password Authenticated Key Exchange (PAKE) [6, 5, 8] is a cryptographic primitive that can
mitigate some of the limitations associated with low-entropy passwords, and bootstrap a shared
password into a cryptographically strong session key. Intuitively, PAKE protocols guarantee that
the only way to extract a password from a user over the network is to actively perform a password-
guessing attack by trying to run the protocol with the user multiple times.

The most efficient PAKE constructions to date, namely the CPACE protocol that has been
recently chosen for standardization by the IETF [2], are built as variants of the Diffie-Hellman pro-
tocol and they achieve security with essentially no bandwidth overhead and minimal computational
overhead—in CPACE this overhead is reduced to hash operations. Indeed, one of the takeaways of
the CPACE selection process was that performance is critical for adoption.1 This is because tar-
get applications include resource-constrained devices (e.g., IoT networks) and ad-hoc contexts (e.g.,
ePassports and file transfers). Therefore, a natural question to ask in the current context of migra-
tion to post-quantum secure cryptography is how to construct efficient PAKE protocols that are not
Diffie-Hellman based and that, ideally, can leverage the recent results of the NIST post-quantum
competition.

KEM-based PAKE protocols. In this direction, and very recently, several works [15, 19, 4, 18, 3]
proposed black-box constructions of PAKE from a Key-Encapsulation Mechanism (KEM) and an
Ideal Cipher (IC) or its variants (see below).2 Conceptually, this KEM-based design paradigm sheds
new light on the thirty-year-old Encrypted Key Exchange (EKE) approach to PAKE by Bellovin and
Merritt [6]. From a practical point of view, this recent focus on the generic conversion of KEM into
PAKE is largely driven by the efforts of the National Institute of Standards and Technology (NIST)
to standardize Post-Quantum (PQ) cryptographic schemes, including KEM and digital signatures.
In particular, the final stage of KEM scheme standardization is currently underway [16] and the
standardized scheme is based on Crystals-Kyber, a lattice-based post-quantum KEM. Kyber has
undergone extensive scrutiny regarding its security and anonymity properties, as well as secure
and efficient implementation, and this body of research can be leveraged when constructing PAKE
protocols that use KEM in a black-box way.

A common characteristic of the above KEM-based PAKE proposals is their reliance on Random
Oracle (RO) and Ideal Cipher (IC) models.3 Despite the similarities among these proposed protocols,

1https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY
2This list can be extended by the PAPKE protocol of [9], which was originally presented as a generic PAKE from

PKE and IC, but it can be recast as construction from KEM and IC.
3In [15] security is claimed based solely on RO, but that claim has not been formally established.

2

https://mailarchive.ietf.org/arch/msg/cfrg/usR4me-MKbW4QO0LprDKXu3TOHY

they still differ in subtle ways and can be categorized based on the model of analysis, design structure,
and KEM security properties used to establish PAKE security. The protocols put forth by Bradley et
al. [9], McQuoid et al. [15], Beguinet et al. [4] and Dos Santos et al. [19] are analysed under Universal
Composability (UC) PAKE framework [10], while Pan and Zeng [18] and Alnahawi et al. [3] prove
security under the game-based PAKE definition of Bellare-Pointcheval-Rogaway (BPR) [5]. We
note that the UC PAKE security model of Canetti et al. [10] is significantly stronger than the BPR
model. The superiority of the former springs fundamentally from the UC framework’s ability to
capture security under arbitrary correlations of password inputs — which is beyond the scope of
current game-based PAKE security notions. Indeed, another important takeaway from the CPACE
selection process within the IETF, was the relevance of a (thoroughly scrutinized) proof of security
in the UC framework.4

Two approaches to KEM-based PAKE. Prior KEM-based PAKE protocols follow two distinct
design patterns. Firstly, sPAKE [15], CAKE [4], and PAKE-KEM [18], follow a procedure where the
initiator Alice employs an IC to encrypt a KEM public key under her password, and the responder
Bob decrypts this public key and uses it to encapsulate a secret value.5 This secret value is used
by both parties as an input to a hash function—modelled as a Random Oracle (RO)—to derive
a session key. However, Bob does not send the KEM ciphertext to Alice in the clear but instead
utilizes a second IC to encrypt the KEM ciphertext before transmitting it to the initiator. This
approach ensures that both parties are committed to a single password via IC encryption, based on
the collision-freeness of IC outputs. A practical disadvantage of this two-sided usage of IC is that
it requires two distinct IC instances, one over the domain of KEM public keys, and the other over
the domain of KEM ciphertexts. In lattice-based KEMs, these domains are typically different, and
both of them are large, which makes implementing IC for these domains non-trivial.

The second design pattern, used in PAPKE [9], OCAKE [4], EKE-KEM [19], and PAKEM [3],
takes a slightly different approach. Here, the KEM ciphertext obtained by Bob is sent in the clear,
accompanied by a key confirmation tag, whose purpose is to make Bob’s message a commitment to a
single password guess.6 The second design uses only one instance of IC, which makes it more efficient,
and it does not require special properties of KEM ciphertexts, e.g. that they are indistinguishable
from random elements of the ciphertext domain. In this work, we focus on efficiency and therefore
adopt this design pattern.

Opening up the IC blackbox. The sPAKE and EKE-KEM protocols of resp. [15] and [19] deviate
from the above pattern by replacing the Ideal Cipher on the domain of public keys (and ciphertexts
in [15]) with a weaker and easier-to-construct primitive. One motivation for reducing the require-
ment on the password-based encryption component is the difficulty of efficiently instantiating IC on
a group domain—cf. the discussion of the costs of possible approaches in e.g. [19], which is neces-
sary to instantiate the “KEM+IC” design for PAKE using KEM instantiated as an Elliptic-Curve
Diffie-Hellman. However, instantiating the same KEM+IC approach using a lattice-based KEM
is also non-trivial because it would require a special-purpose IC on a domain of large bit strings
(around one kilobyte in the case of Kyber). Even though there exist methods for extending an IC
domain to bitstrings of arbitrary size, e.g., using Feistel networks, [11, 13] these generic IC domain
extension techniques would add significant complexity to an implementation and incur a significant

4https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s
5In sPAKE [15] the IC is replaced by a weaker primitive, see more below.
6A seeming exception is the PAPKE protocol [9], which does not attach such a tag explicitly, but it requires a strong

robustness property of the KEM, and the generic method for achieving this property includes expanding a CCA-secure
KEM ciphertext with a key-committing tag [1]. Protocol PAKEM [3] also diverges from the pattern because it employs
an additional message flow where Alice sends her own key confirmation tag to Bob. This last message achieves explicit
mutual authentication in the Alice-to-Bob direction, but it adds an extra round to the protocol.

3

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s

performance penalty.
Motivated by the above, McQuoid et al. [15] proposed to replace IC in this KEM+IC approach

to PAKE with a weaker primitive of a Programmable-Once Public Function (POPF), which they
showed can be instantiated with a 2-round Feistel network (2F). In particular, in the case of Kyber
KEM, the 2F encryption would involve just one RO hash onto the KEM public key domain, and
one RO hash onto a domain of bitstrings of length 3λ, where λ is the security parameter. However,
this way of implementing password encryption would add at least 384 (=3x128) bits to the KEM
ciphertext. Moreover, as mentioned in footnote 3, the analysis of the resulting protocol as a UC-
secure PAKE is currently incomplete. Dos Santos et al. [19] modify the 2-round Feistel network used
by [15]—calling the result a modified 2-Feistel (m2F)—by reducing the bandwidth overhead to 256
(=2x128) bits: this is achieved at the cost of adding an IC on 256-bit strings into the encryption
procedure. The security proof in [19] shows that m2F realizes a UC abstraction of a (randomized)
Half-Ideal Cipher (HIC), and then shows that the above KEM+IC approach to UC PAKE works also
in the case of KEM+HIC. However, because it is a randomized encryption using a 256-bit random
seed, it adds at least 256 bits to the encrypted public key.

Main contribution: Compact m2F and bandwidth-minimal KEM-to-PAKE compiler.
In this paper we revisit the construction of [19] and reduce the bandwidth overhead to a minimum.
We observe that, for Kyber and other post-quantum KEMs, the public key can be split into two
components, one of which is a 32-byte uniform seed ρ, and ask the following natural question:

Can we reduce the bandwidth overhead of the m2F by using ρ as the ephemeral ran-
domness r in the m2F construction?

We answer this question in the affirmative by giving direct proof that the resulting construction is
a UC secure PAKE in the joint Ideal Cipher and Random Oracle model. By direct proof we mean that
we do not rely on the Half-Ideal-Cipher abstraction of [19], and instead perform the proof over the
fully expanded construction. The reason for this is that the notion of a UC-secure Half-Ideal-Cipher
crucially relies on the fact that the m2F construction is randomized, i.e., that honest parties choose
an ephemeral randomness that is independent of the input public key. By unifying this ephemeral
randomness with a public-key component we lose this property and the ability to modularize the
m2F construction. Nevertheless, we call our construction CHIC for Compact Half-Ideal-Cipher, as a
way to acknowledge the inspiration in the work of [19].

Second contribution: Fixing the Proof. We provide a detailed proof of the security of CHIC and
establish precise security requirements for the underlying KEM, including passive one-way security
(OW-CPA) and pseudo-uniformity of public-keys (UNI-PK), necessary to achieve UC PAKE security.
Like prior works, our proof also shows that anonymity is also a necessary property for the security
of the construction. However, we show that passive anonymity (i.e., indistinguishability of public
keys and ciphertexts) is not sufficient to conclude the proof. More precisely, our result can be seen
as a patch to the proofs by Beguinet et al. [4] and Dos Santos et al. [19], and shows that these
protocols require a ANO-1PCA-secure KEM. Pan and Zeng [18] already suggested using KEMs with
anonymous ciphertexts against plaintext-checkable attacks (ANO-PCA). However, it is not discussed
in their work whether the constructions in [4, 19] could actually be proved under a weaker non-
interactive assumption.

Practical contribution: Implementation and Experimental Evaluation. We give an im-
plementation of the protocol, clarifying all aspects of real-world deployment of the protocol, and
we confirm experimentally the efficiency properties of the protocol. Our implementation builds
on the reference implementation of Kyber—the full construction offering CCA security [7, 20] and
anonymity [12, 14, 21]. We clarify how to instantiate the m2F components showing, in particular,

4

that hashing into the public-key space of Kyber can be done by reusing the code that the Kyber
created for expanding the seed ρ in the public key to a matrix over the algebraic ring that underlies
the KEM construction. The implementation is available as supplementary material.

2 Preliminaries

In this section, we present the definition of Key Encapsulation Mechanism (KEM) and introduce its
security properties of interest for this work.

Definition 1. A Key Encapsulation Mechanism (KEM) scheme is a tuple of polynomial-time algo-
rithms KEM = (Keygen,Encap,Decap) that behaves as follows:

• Keygen(λ)→ (pk, sk): a key-generation algorithm that on input a security parameter λ, outputs
a public/private key pair (pk, sk).

• Encap(pk) → (c,K): an encapsulation algorithm that on input a public key pk, generates a
ciphertext c and a secret key K.

• Decap(sk, c) → K: a decapsulation algorithm that on input a private key sk and a ciphertext
c, output a secret key K.

For correctness, we require that for any key pair (pk, sk) ← Keygen(λ), and ciphertext and secret
key (c,K)← Encap(pk), we have that K = Decap(sk, c).

In this work, we assume that a KEM public key can be encoded as a bitstring and an element
in a group with a Random Oracle indifferentiable hash. More formally:

Definition 2. (KEM with splittable public keys) A KEM scheme has splittable public keys
if there exists polynomial p s.t. each security parameter λ defines domains PKλ, Gλ, and Nλ =
{0, 1}p(λ), and an efficiently computable and invertible map Split : PKλ → Nλ × Gλ, which satisfy
that (1) Gλ is a group s.t. there exists an RO-indifferentiable hash onto Gλ, (2) any (pk, sk) output
by Keygen(λ) satisfies that pk ∈ PKλ, and (3) distribution {r | (pk, sk) ← Keygen(λ), (r,M) ←
Split(pk)} is ϵ-close to being uniform over Nλ, where ϵ = ϵ(λ) is a negligible function of λ.

Crystals-Kyber [20] has splittable keys, where ρ (referred to as r here) is derived from expanding
a purely random bitstring d ∈ B32 using a hash function G(d) that produces two 32-byte outputs,
with ρ being one of them. In the security proofs of Kyber [20, 12, 14, 21], function G is modeled as
a random oracle, which ensures that the distribution of ρ is uniform. In the current draft of FIPS
203 [16], function G is specified to be instantiated as SHA3-512. For the sake of generality, in the
security proof of CHIC 1, we allow r to be statistically indistinguishable from uniform and account
for a distance of ϵ between the distribution of r and the uniform distribution.

KEM security properties. We also require three security properties from KEM, in addition to
the splittable public keys property, namely OW-PCA, ANO-PCA, and UNI-PK, defined in Fig. 1.

First, we adopt the notion of one-wayness under plaintext checkable attacks from [17]. We
consider an adversary whose goal is to decrypt a KEM ciphertext without the private decapsulation
key but with access to a plaintext-checking oracle. This oracle allows the adversary to confirm if
the decapsulation of a ciphertext under the challenge decryption key corresponds to a particular
plaintext (i.e. the secret key K in the context of KEM).

The de facto security notion for key encapsulation mechanisms and public-key encryption in
general is indistinguishability under chosen-ciphertext attacks (IND-CCA). It is trivial to see that

5

Exp OW-iPCAA
KEM(λ)

(pk, sk)← Keygen(λ)

(c∗,)← Encap(pk)

K ← APCOi(sk,·,·)(pk, c∗)

return K == Decap(sk, c∗)

Oracle PCOi(sk, c,K)

[A can only make i queries]

return K == Decap(sk, c)

Exp ANO-iPCAA
KEM(λ)

(pk0, sk0)← Keygen(λ)

(pk1, sk1)← Keygen(λ)

b←$ {0, 1}
(c∗,)← Encap(pkb)

b′ ← APCOi(sk0,·,·)(pk0, pk1, c
∗)

return b == b′

Exp UNI-PKA
KEM(λ)

(pk0,)← Keygen(λ)

pk1 ← PKλ

b←$ {0, 1}
b′ ← A(pkb)
return b == b′

Figure 1: Security experiments defining properties of KEM: (1) One-Wayness under Plaintext-
Checkable Attacks (OW-iPCA); (2) Anonymity under Plaintext-Checkable Attacks (ANO-iPCA); (3)
Public-key uniformity (UNI-PK). A is restricted to making at most i queries to the plaintext-checking
oracle PCO. In particular, if i = 0, the plaintext-checking oracle PCO is not available.

IND-CCA implies the one-wayness counterpart of that definition named OW-CCA, which in turn
implies one-wayness under plaintext-checkable attacks (OW-PCA), as the plaintext-checking oracle
could be easily simulated with a decryption oracle.

In addition to achieving IND-CCA security, many applications also demand the property of
anonymity in a KEM. An anonymous KEM ensures that a ciphertext conceals the identity of the
recipient by revealing no information about the public key employed in the encryption process. Un-
surprisingly, the standard definition of this property is a logical adaptation of IND-CCA known as
‘anonymity under chosen-ciphertext attacks’ (ANO-CCA), and with the adversary’s objective being
to determine which of two public keys was used to generate the given challenge ciphertext. For our
construction, we only require a weaker variant of this definition in which the decryption oracle is
replaced with a less-capable plaintext-checking oracle (ANO-PCA).

Finally, a less common security requirement but which proved to be essential for the constructions
of PAKE protocol from KEM and IC [19, 4, 18, 3] is public key indistinguishability from uniform. In
other words, the public keys output by the KEM key generation algorithm must be computationally
indistinguishable from public keys uniformly sampled from the same key space. This notion is also
known as fuziness [4, 18].

Definition 3. (KEM one-wayness under plaintext-checkable attacks) A Key Encapsulation
Mechanism (KEM) scheme is said to be OW-iPCA secure if for any PPT adversary, A engaged in the
OW-iPCA security game, where A is restricted to making at most i queries to the plaintext-checking
oracle PCO, the advantage of A defined as:

AdvOW-iPCA
KEM,A (λ)

def
= Pr[OW-iPCAA

KEM(λ) = 1] (1)

is a negligible function of the security parameter λ. Experiment OW-iPCA is defined in Fig. 1.

Definition 4. (KEM anonymity under plaintext-checkable attacks) A Key Encapsulation
Mechanism (KEM) scheme is said to be ANO-iPCA secure if for any PPT adversary A engaged in the
ANO-iPCA security game, where A is restricted to making at most i queries to the plaintext-checking

6

oracle PCO, the advantage of A defined as:

AdvANO-iPCA
KEM,A (λ)

def
= 2 · Pr[ANO-iPCAA

KEM(λ) = 1]− 1 (2)

is a negligible function of the security parameter λ. Experiment ANO-iPCA is defined in Fig. 1.

Definition 5. (KEM public-key uniformity) A Key Encapsulation Mechanism (KEM) scheme
is said to be UNI-PK secure if for any PPT adversary A engaged in the UNI-PK security game, the
advantage of A defined as:

AdvUNI-PKKEM,A(λ)
def
= 2 · Pr[UNI-PKA

KEM(λ) = 1]− 1 (3)

is a negligible function of the security parameter λ. Experiment UNI-PK is defined in Fig. 1.

CPA versus iPCA. Some essential points should be noted concerning these security definitions.
Firstly, when access to the PCO oracle is restricted to zero queries, it effectively results in the
removal of the oracle from the experiment. This, in turn, gives rise to the weaker definitional
variants known as ‘chosen-plaintext attacks,’ specifically OW-CPA and ANO-CPA. Furthermore, we
made two adjustments to weaken our ANO-iPCA definition: (a) we refrained from providing the
adversary with the challenge secret key K∗, and (b) we restricted the PCO oracle to queries on the
left private decapsulation key sk0. This contrasts with definitions in [12, 14, 21], which grant the
adversary access to both keys via the oracle. These adaptations, which relax the requirements of
the underlying KEM, are proven to be sufficient for establishing the security of the protocol CHIC
presented in this paper.

It is also worth mentioning that for a very limited number of queries to the PCO oracle, OW-iPCA
is equivalent to OW-CPA, as established by Lemma 1. However, it is essential to recognize that
this equivalence cannot be readily extended to indistinguishability-based games. In such games, a
flawed simulation resulting from an incorrect coin flip could nullify the advantage gained when the
simulation was correct. Consequently, we cannot make a similar assertion regarding the relationship
between ANO-iPCA and ANO-CPA.

Lemma 1. If KEM is a OW-1PCA secure key encapsulation mechanism, then it is also OW-CPA
secure.

Proof. Let A be any adversary against game OW-1PCA. We construct an adversary B against
OW-CPA that simulates game OW-1PCA for A as follows: i. Challenge (pk, c∗) is forwarded to A.
ii. The single oracle query to PCO is answered by B with a coin flip. iii. Finally, B forwards A’s
answer to OW-1PCA as its own answer to OW-CPA.

Notice that B perfectly simulates OW-1PCA for A half of the time, no matter what is A’s strategy
for querying the plaintext-checking oracle. Therefore, at least half of the time (possibly more, in
case A wins regardless of the bad simulation of PCO), a win for A translates into a win for B.

AdvOW-CPA
KEM,B (λ) ≥ 1

2
· AdvOW-1PCA

KEM,A (λ) (4)

In broader terms, OW-iPCA is essentially equivalent to OW-CPA, but only when the number of
queries made to the plaintext-checking oracle is limited to a few, as attempting to guess the PCO
oracle’s responses multiple times leads to an exponential loss in the number of tosses.

7

Definition 6. (Modified 2-Feistel construction: m2F) The modified 2-round Feistel network,
as introduced in [19], is constructed using three components: (1) block cipher denoted by the tuple of
algorithms (IC.Enc, IC.Dec), with key space K and input/output space N ; (2) hash function H whose
output space is represented by group G; and (3) hash function H′ whose output space is K. The m2F
construction encompasses two efficiently computable functions, m2Fpw : N × G → N × G and its
inverse m2F−1

pw, both shown in Figure 2.

m2Fpw(r,M)

R← H(pw, r)

T ←M ⊙R

t← H′(pw, T)

s← IC.Enc(t, r)

return (s, T)

m2F−1
pw(s, T)

t← H′(pw, T)

r ← IC.Dec(t, s)

R← H(pw, r)

M ← T ⊙R−1

return (r,M)

Figure 2: The modified 2-Feistel [19], where ⊙ is a group G operation, and (·)−1 is an inverse in G.

Half-Ideal Cipher (HIC). In their work [19], the authors introduce a UC security notion they
called (randomized) Half-Ideal Cipher (HIC), which is designed to relax the UC notion of an ideal
cipher. This security notion is established through the introduction of an ideal functionality, denoted
as FHIC, and is parameterized by the domain N ×G. Notably, FHIC features ‘honest’ interfaces ac-
cessible for queries by the environment Z, with these queries being mediated through honest parties.
However, the honest interfaces are restricted w.r.t. to half of the input: Z has no control over the
randomness parameter r ∈ N in the encryption direction, and it cannot observe the value of r during
decryption. By contrast, FHIC provides two adversarial interfaces that grant the adversary/simulator
the capability to select r and even program half of the output T ∈ G during encryption. In the
decryption direction, the adversary can also observe the value of r.

It is shown in [19] that the m2F construction realizes FHIC functionality in the Random Oracle
and Ideal Cipher (IC) model. The HIC abstraction serves as an effective replacement for an ideal
cipher in the construction of EKE-like protocols, eliminating the need for the direct use of an IC
over groups, whose instantiations are non-trivial (e.g. see [19]). However, it’s worth noting that the
randomized encryption of HIC introduces an overhead equal to the length of r. Due to the security
proof of m2F requiring no collisions on the domain of the IC, this overhead essentially amounts to
2λ bits, which is precisely what our construction CHIC optimizes.

HIC+ and why it fails. A natural question is whether the FHIC could be extended to FHIC+

which empowers honest parties and provides them with the ability to select and have visibility over
r in respectively encryption and decryption. Unfortunately, the m2F construction would not be
a provably secure realization of such extended functionality. To see why, let us exemplify with a
concrete attack coordinated between an environment Z and its adversary A:

1. Z selects r and M at random from the respective domains, picks arbitary pw, queries FHIC+,
via a honest party, on Enc(pw, (r,M)), and obtains some ciphertext (s, T).

2. Z queries H′(pw, T) via its adversary A and obtains t (a key for IC).

3. Z queries IC.Enc(t, r) via its adversary A and should get back s.

8

Unfortunately, the simulator SIM cannot possibly know how to correctly answer the last query
because it has no visibility over the first query Z made to FHIC+, even though it controls IC, H and
H′. This would not happen using FHIC interfaces because the environment Z can only pass message
M to the honest party Enc interface in step (1) above, and it would not know the randomness r
(which in the real-world would be internally chosen by that honest party).

Although we could not leverage the modular abstraction that FHIC introduces (or an extension
of it), we still take full advantage of the m2F construction, as a white-box drop-in, in our protocol
CHIC and rely directly on the RO and IC in the security proof. Therefore, no security definition is
formally introduced here for FHIC, and m2F is not explicitly parameterized by a security parameter
λ, although its internal components are essential to the security analysis of CHIC.

3 Security Model

We begin this section with a brief review of the Universal Composability (UC) framework. Then we
present the standard PAKE functionality as defined by Canetti et al. [10].

Let P be a protocol of interest whose security properties are modelled within the UC framework.
In the UC framework, the environment Z embodies some higher-level protocol that uses P as a sub-
protocol, but also, at the same time, acts as an adversary that is attacking that higher-level protocol.
Here, the adversary A represents the adversary attacking protocol P. Between the environment Z
and the adversary there is a continuously open communication channel. Such setup allows Z to
launch an attack on the higher-level protocol with the help of A (who is attacking protocol P). Note
that Z can only indirectly (through adversary A) make calls to idealized primitives such as an Ideal
Cipher and/or a Random Oracle.

In the UC framework that models the security of PAKE protocols, parties are initialized by the
environment Z with arbitrary passwords of the environment’s choice. In the real world, protocols are
executed according to protocol specifications, in the presence of an adversary A capable of dropping,
injecting, and modifying protocol messages at will, thus modelling an insecure network. In the ideal
world, parties do not execute the protocol. Instead, they interact via an ideal functionality FPAKE

described in Figure 3, in the presence of a simulator SIM that acts as an adversary operating in the
ideal world. The simulator SIM is also allowed to interact with FPAKE, but only using the FPAKE

adversarial interfaces as defined in Figure 3.
Finally, the goal of the environment Z that interacts with the parties and the adversary (either

real world A or ideal world SIM) is to guess if it is in the real or in a simulation of the ideal
world. Consequently, if for every efficient adversary A no such efficient environment Z exists that
distinguishes the real world from the ideal world, we say that the protocol of interest P securely
emulates ideal functionality FPAKE. The UC PAKE definition results in a stronger notion than game-
based PAKE notions and successfully captures the scenario where clients register related passwords
with different servers, as this is captured by the ability of Z initializing parties with passwords
of its choosing. Furthermore, the UC framework also ensures security under arbitrary protocol
composition. Note that the environment Z may reveal various information to the adversary A, thus
allowing UC PAKE definitions to capture password leaks (static adversaries) and internal state leaks
(adaptive adversaries) that may occur anytime during the protocol execution.

4 UC PAKE from Modified 2-Feistel and KEM

In this section, we present CHIC, a UC-secure Password Authenticated Key Exchange protocol. CHIC
assumes a KEM scheme with splittable public keys (as defined in Def. 2), which is one-way secure

9

New Session. On (NewSession, sid, Pi, Pj , pwC , role) from party Pi:

• Ignore this query if two or more records of the form (sid, ...) already exist.

• Else record (sid, Pi, Pj , fresh, pwC ,⊥) and send (NewSession, sid, Pi, Pj , role) to A.

Test Password Guess. On (TestPw, sid, Pi, pw
∗) from adversary A:

• Retrieve record (sid, Pi, Pj , fresh, pwC ,⊥), abort if no such record exists.

• If pw∗ = pwC , then update the record to (sid, Pi, Pj , compromised, pwC ,⊥) and send
(TestPw, sid, correct) to A.

• Else update record to (sid, Pi, Pj , interrupted, pwC ,⊥) and send (TestPw, sid,wrong) to A.

Session Key. On (NewKey, sid, Pi, k
∗) from adversary A where |k∗| = λ:

• Retrieve record (sid, Pi, Pj , status, pw,⊥) for status ∈ {fresh, interrupted, compromised}, abort if
no such record exist.

• If status = compromised, set k ← k∗.

• If status = fresh and there exists a record (sid, Pj , Pi, completed, pw, k′) whose status switched
from fresh to completed when Pj received (NewKey, sid, k′), set k ← k′.

• Else set k ←$ {0, 1}λ.
• Update the record to (sid, Pi, Pj , completed, pw, k), and output (NewKey, sid, k) to Pi.

Figure 3: The PAKE ideal functionality FPAKE of Canetti et al. [10].

10

(OW-CPA), anonymous (ANO-1PCA), and has pseudorandom public keys (UNI-PK). The protocol,
shown in Figure 4, is built upon the modified 2-Feistel (m2F) construction of Dos Santos et al. [19].
We take a moment to discuss several design choices in our protocol, which follows an EKE-style
construction combining a KEM and the m2F.

First, a pivotal decision, in contrast to the strategy in [19], was to ‘de-randomize’ the m2F. We
split the KEM public key and use the parts as inputs to the m2F. This approach helps us avoid
employing an ideal cipher over a group, which can be both costly and challenging to instantiate and
eliminates any communication overhead associated with the HIC abstraction.

Second, the inputs used for tag and session key generation realized through the H1 and H2

function calls in CHIC, are identical. This allows us to optimize our implementation by making a
single call to a hash function with an extended output size of 2λ. Subsequently, the output is cut in
two halves, one forming the tag and the other the session key.

Third, the password is exclusively used in the m2F construction and is not provided as input
to either H1 or H2. This design choice means that the initiator does not need to store the input
password in memory while waiting for the responder’s answer. This choice has potential benefits in
the event of a complete compromise of the initiator (including leakage of its internal state), as an
attacker would be required to perform an offline dictionary attack to retrieve the initiator’s password
under such circumstances. (However, we don’t analyse the security of our protocol under adaptive
attacks in the UC sense, and this sort of offline-dictionary-attack-only scenario is not captured by
the FPAKE functionality.)

Fourth, it is worth noting that in our protocol the initiator, instead of aborting, outputs a
random session key in the event that the received tag is invalid. We opt for this approach to
ensure that our construction aligns with the security requirements specified in the standard UC
PAKE functionality from [10] that foresees implicit authentication. However, in practice, when
implementing the protocol, it is possible for the initiator to abort in that case, thus achieving
explicit responder-to-initiator authentication. Furthermore, it is assumed that protocol participants
erase any internal state as soon as it becomes unnecessary for the execution of the protocol. This
means that the initiator instance after computing and sending apk erases its entire internal state
(including the password) except fullsid, apk, pk, and sk.

Note that if function Split can be randomized, specifically if Split(pk) returns (r, pk) for r ←$ N
and Split−1(r, pk) returns pk, then the Split+m2F block in protocol CHIC would instantiate the
randomized Half-Ideal Cipher construction of [19]. In that sense, the Split+m2F procedure used in
CHIC can be seen as a strict generalization of the HIC construction of [19].

5 Security Analysis

In this section, we prove that the protocol described in Figure 4 UC-realizes the standard PAKE
functionality FPAKE shown in Figure 3.

Theorem 1. Let KEM be a OW-CPA, ANO-1PCA, and UNI-PK-secure key encapsulation mechanism
with splittable public keys (Def. 2). Let IC be a block cipher modeled as an ideal cipher, and H, H′,
H1 and H2 be hash functions modeled as random oracles. Then, the PAKE protocol CHIC described
in Fig. 4 UC-realizes FPAKE in the static corruption model. If KEM is OW-PCA-secure then the proof
is tight.

Proof overview. To prove Theorem 1 we show that the environment cannot distinguish between
the “real world” experiment in which the environment Z and adversary A have parties Pi and Pj

11

A on (NewSession, sid,A,B, pw, init) B on (NewSession, sid,B,A, pw, resp)

fullsid← (sid,A,B) fullsid← (sid,A,B)

(sk, pk)←$ KEM.Keygen(1λ)

(r,M)← KEM.Split(pk)

R← H(fullsid, pw, r)

T ←M ⊙R

t← H′(fullsid, pw, T)

s← IC.Enc(t, r)

apk ← (s, T)

Send (apk)

(s, T)← apk

t← H′(fullsid, pw, T)

r ← IC.Dec(t, s)

R← H(fullsid, pw, r)

M ← T ⊙R−1

pk ← KEM.Split−1(r,M)

(c,K)←$ KEM.Encap(pk)

tag ← H1(fullsid, pk, apk, c,K)

Send (c, tag)

K ← KEM.Decap(sk, c)

if tag ̸= H1(fullsid, pk, apk, c,K)

key ←$ {0, 1}λ

else

key ← H2(fullsid, pk, apk, c,K) key ← H2(fullsid, pk, apk, c,K)

return key return key

m2F

m2F−1

Figure 4: The CHIC protocol. KEM scheme has splittable public keys (Def. 2) with an efficiently
computable and invertible map Split : PKλ → Nλ ×Gλ. The protocol makes use of a block cipher
denoted as IC and hash functions H and H′ in an m2F configuration (Def. 6), with domains that align
with Split and that are characterized by security parameter λ, i.e. {IC.Enc, IC.Dec} : Kλ×Nλ → Nλ,
H : {0, 1}∗ → Gλ, H

′ : {0, 1}∗ → Kλ. Group operations within G are represented by ⊙, and the
inverse operation by (·)−1.

12

execute the protocol from Fig. 4, from an “ideal world” experiment in which a simulator SIM inter-
acts with FPAKE and presents to environment Z a view that is consistent with what A produces in
the real world. We assume wlog that A is the dummy adversary, functioning as a communication
intermediary between parties and the environment.

The simulator. We describe the UC simulator SIM for CHIC that will act as the ideal-world ad-
versary, having access to the ideal functionality FPAKE. SIM must simulate to Z protocol messages
between honest participants without knowing the passwords chosen by Z, while consistently answer-
ing random oracle and ideal cipher queries. In a limited number of cases, the simulator is unable
to conclude the simulation and aborts. We argue in the proof that those bad events only happen
with negligible probability and account for these events in the overall probability of Z distinguishing
between the “real world” from the “ideal world”.

• First message: After receiving (NewSession, sid, Pi, Pj , Alice) from FPAKE, SIM picks a random
apk and sends message apk from Pi to Pj .

• Second message: After receiving (NewSession, sid, Pj , Pi, Bob) from FPAKE, SIM waits for a mes-
sage apk sent to Pj from A. Then SIM sets fullsid ← (sid, Pi, Pj). In case the received apk is
an output of the m2F that commits the adversary to a password pw, SIM extracts the password
pw and tests it by sending (TestPwd, sid, Pj , pw) to FPAKE. If FPAKE replies with “correct guess”,
SIM computes the key according to the protocol specification and sends (NewKey, sid, Pj , key) to
FPAKE; in all other cases (including “wrong guess”, honest execution, etc.), SIM runs a KEM.Keygen
algorithm, obtains a fresh key pair (pk, sk), computes the ciphertext c and the tag using the fresh
pk, and sends (NewKey, sid, Pj ,⊥) to FPAKE. To conclude the second message flow, SIM sends
the message (c, tag) from Pj to Pi via A.

• Final output : After receiving message (c, tag) sent to Pi from A, in case of honest execution,
SIM simply sends (NewKey, sid, Pi,⊥) to FPAKE. If message (c, tag) was tampered with by the
adversary, SIM checks for a corresponding random oracle query to H1 that returned tag. If such
query has not been asked, SIM sends (TestPwd, sid, Pi,⊥) and (NewKey, sid, Pi,⊥) to FPAKE,
forcing a random session key. If tag comes from H1, pk and apk are extracted. If appropriate
queries were made to the m2F, the password is also extractable. SIM extracts A’s password guess
pw and sends (TestPwd, sid, Pi, pw) to FPAKE. In case of a “correct guess”, SIM computes the key
by following the protocol and sends (NewKey, sid, Pi, key) to FPAKE. If tag is not valid (even if
the password guess was correct) or FPAKE returned “wrong guess”, SIM sends (NewKey, sid, Pi,⊥)
to FPAKE. If the adversary did not commit to a password in its interaction with m2F, SIM sends
(TestPwd, sid, Pi,⊥) and (NewKey, sid, Pi,⊥) to FPAKE.

Proof. We prove Theorem 1 via a series of game hops. The first game corresponds to a simulator that
is not constrained in any way and executes the real world for the environment perfectly. Concretely,
this simulator controls all inputs/outputs to the parties, as well as their communications with the
environment. In each hop, we modify this simulator gradually, so that in the final game one can
clearly see that it can be divided into two parts, where the first part corresponds to the ideal
functionality FPAKE and the second part to the simulator described earlier, which has only black-box
access to FPAKE and does not know the honest parties secret passwords. Conceptually, we think of
FPAKE as always existing alongside our simulator and receiving the inputs from Z: in the first game
it is not used at all by the simulator, and gradually it will start using FPAKE to define the outputs

13

of parties. Because the first game is identical to the real world and the last game is identical to the
ideal world, we just need to show that the view of the environment is not affected by each of our
modifications. Hence, in each hop, we analyze the probability of Z outputting 1 in the game Gi

compared to that of Z outputting 1 in the game Gi−1 and show that these change by a negligible
amount.

Our analysis depends on the number of interactions between the environment and the execution
model. To account for this, we consider and tally all queries made to the ideal cipher and random
oracles, irrespective of whether they originate from honest parties or the adversary. We denote qIC
as the upper bound on queries to the ideal cipher, regardless of whether it is used for encryption
(IC.Enc) or decryption (IC.Dec). Similarly, qH, qH′ , and qH1

represent upper bounds on the number
of queries made to the H, H′, and H1 oracles, respectively. Furthermore, we take into account the
number of PAKE sessions and interactions occurring within each session. In this context, qnewSession
serves as an upper bound on the number of sessions initiated by Z, while qsend represents an upper
bound on the number of messages delivered by A when interacting with the involved parties.

Game G0 (Real world): Simulation perfectly mimics the world with oracles H, H′, H1, H2, IC.Enc
and IC.Dec.

Pr[G0] = RealZ,A,FPAKE
(5)

Game G1 (Abort on random oracle collisions): On output collisions of H1, H or H′, the
simulation aborts. This is a statistical hop with a birthday bound.

|Pr[G0]− Pr[G1]| ≤
q2H1

2 · |SpaceH1
|
+

q2H
2 · |SpaceH|

+
q2H′

2 · |SpaceH′ |
(6)

Game G2 (Full domain sampling of IC and abort on collisions): On new IC.Enc and IC.Dec
queries, simulator samples s and r regardless of previous answers and instead aborts on output
collisions (even collisions across different keys). s and r are high-entropy, therefore this is a statistical
hop with a negligible difference. Note that queries must be answered consistently and thus decrypting
a ciphertext returned by IC.Enc or encrypting a plaintext returned by IC.Dec, under the same key,
is not considered a new query.

|Pr[G1]− Pr[G2]| ≤
q2IC

2 · |SpaceIC|
(7)

Game G3 (Abort if a new sample for H′ collides with a previous record of the IC): Upon
sampling a new t (key for ideal cipher) for the simulation of H′ oracle, if t is not fresh (and therefore
already included in ListIC), the simulation aborts. This is a statistical hop.

|Pr[G2]− Pr[G3]| ≤
qH′ · qIC
|SpaceH′ |

(8)

Game G4 (Abort if a new sample for IC.Dec collides with a previous record of H): Upon
sampling a new r for the simulation of IC.Dec, if r is not fresh (and therefore already included in
ListH), the simulation aborts. This is a statistical hop.

|Pr[G3]− Pr[G4]| ≤
qIC · qH
|SpaceIC|

(9)

14

Game G5 (On calls to IC.Dec where the password is extractable from the ideal cipher
key, force a record to H): On a new query IC.Dec(t, s)—i.e., a query where a fresh ideal cipher
preimage r is sampled—check if t came out of H′ oracle and, if so, introduce the following change
to the oracle. First, extract the password pw associated with t (there is at most 1 since we have
already discarded the possibility of collisions in H′), then call H(pw, r), forcing r to be added into
the records of oracle H. Note that due to the abort triggers introduced in the previous games, this
modification is equivalent to sampling a random pair (r,R) and trying to program H directly by
adding the tuple (pw, r,R) to ListH. This action will abort if either (∗, r, ∗) ∈ ListH (see Game G4)
or if (∗, ∗, R) ∈ ListH (see Game G1). Nothing really changes unless IC.Dec triggers an abort that
did not occur in the previous game. This is a statistical hop.

|Pr[G4]− Pr[G5]| ≤
qIC · qH
|SpaceIC|

+
qIC · qH
|SpaceH|

(10)

Game G6 (On calls to IC.Dec where the password is extractable from the ideal cipher
key, use KEM.Keygen and store secrets): On a new query IC.Dec(t, s), if t came out of H′ oracle,
instead of directly sampling a random pair (r,R), the simulator relies on KEM.Keygen and KEM.Split,
and stores the secrets for future use. This hop is down to the uniformity of KEM public keys.

|Pr[G5]− Pr[G6]| ≤ qIC · Advpk-uniformity
KEM (11)

Game G7 (Set random key via FPAKE if tag was not output by H1): Modify Alice’s response
when tag was not output by H1 wrt fullsid, apk and c: use FPAKE to generate the session key
totally at random by compromising the session with an invalid password and then completing the
session with NewKey. The protocol specification determines Alice’s session key to be random if tag
is incorrect.7 A tag not coming out of H1 will only be valid with negligible probability. Therefore,
this is a statistical hop.

|Pr[G6]− Pr[G7]| ≤
qsend

|SpaceH1
|

(12)

Game G8 (For passive attacks, use a private oracle H∗
1 without inputs pk and K to

compute tag, and set session key directly via FPAKE instead of using the key coming
from H2): For passive attacks, i.e. messages are correctly computed and forwarded to the intended
party (apk from Alice to Bob, and possibly (c, tag) from Bob to Alice), compute the tag with private
oracle H∗

1 and use the functionality to generate the session key, without testing the password.
The intuition of this hop is that the KEM ciphertext must conceal K, therefore the adversary

will not call H1(∗, ∗, ∗, ∗,K) nor H2(∗, ∗, ∗, ∗,K). If it does, the simulator breaks the one-wayness
of the KEM. The technical difficulty in the reduction is that the simulator does not know ahead of
time if the session will be actively attacked. Therefore, it must embed the challenge pk∗ in each
session, one at a time (hybrid argument), and complete the simulation without detectable changes
to the protocol. If the adversary relays correctly apk from Alice to Bob but then decides to actively
interfere with the communication and forward its own (c, tag) back to Alice, the simulator faces the
dilemma of whether to force Alice to use a random session key (if tag is invalid) or the session key
resulting from H2(fullsid, pk, apk, c,K) (if tag is valid). This boils down to whether c encrypts K
included in tag or not. However, because we embedded the challenge pk∗ to compute the first flow
of messages, we no longer can decrypt c. For this reason, we reduce this hop down to OW-1PCA
and take advantage of the PCO oracle to check if the key K included in the tag is effectively the key
encrypted under c.

7Our protocol is implicitly rejecting to follow the standard FPAKE functionality.

15

The reduction goes as follows (hybrid argument, one public key at a time): i. Embed challenge
pk∗ into Alice’s initialization procedure. ii. If the adversary is passive and delivers apk to Bob,
reduction uses challenge c∗ and private oracles H∗

1 and H∗
2 to proceed. These private oracles receive

the same inputs as their public counterparts H1 and H2, except for the arguments pk and K. (Note
that K∗ encrypted under c∗ is unknown to the reduction.) Since the ciphertext c∗ is an input to
both H1 and H2, this fixes a single key anyway and the games are identical unless K∗ is queried to
either oracle. If such a query is never placed, the usage of these private oracles is independent of
Z’s view. iii. On Alice’s side, if the adversary is still passive, decryption is not needed: tag is valid
and session key is derived from private oracle H∗

2. Due to the uniqueness of inputs, private oracle
H∗

2 will produce the same key on both sides, as would the public oracle H2 in G7 and NewKey query
to FPAKE in G8.

If the adversary is active (and the reduction embedded the challenge pk∗ in this session) the
reduction algorithm will use the PCO oracle to verify the tag: it verifies that the unique H1 entry
corresponding to the tag includes key encrypted under c∗. In this reduction, there is at most one
PCO call per embedded challenge public key pk∗ since KEM decryption occurs only in one place in
our protocol. If this check fails, the reduction returns a fresh random key to the attacker, which
is consistent with both games: trivially so in G7, and in G8 because this forces the functionality to
produce a fresh random session key by issuing a TestPwd with ⊥.

When the adversary concludes its run, the reduction algorithm confirms the inclusion of the
correct K∗ in queries to H1 and H2 via calls to the PCO oracle before submitting its answer against
the one-wayness property of KEM ciphertexts. If no such query with the correct K∗ exists, G7

and G8 are identical. As an alternative approach, randomly selecting an entry from the H1 and H2

tables can lead to a less tight reduction. However, this approach does not require confirmation of
the inclusion of K∗ in H1 and H2 oracle queries, and therefore at most one query to the PCO oracle
is required for the correct simulation of active attacks to Alice, after embedding the challenge public
key in the first flow from Alice to Bob. Importantly, Lemma 1 establishes the equivalence between
OW-1PCA and OW-CPA.

|Pr[G7]− Pr[G8]| ≤ qsend · Advow-pcaKEM (13)

|Pr[G7]− Pr[G8]| ≤ (qH1
+ qH2

) · qsend · Advow-1pcaKEM (14)

Game G9 (Simulate Bob’s response with a fresh public key for passive attacks): For
honestly transmitted apk, the simulator creates ciphertext c with a fresh public key, then computes
tag with the private oracle H∗

1 (as in the previous game), and finally sends (c, tag) on Bob’s behalf.
We bridge this hop using ANO-1PCA, with a hybrid argument, replacing one public key at a time.
Note that Alice does not decrypt honestly transmitted ciphertexts since G8. However, if there’s an
active attack on the second round of the session where the reduction programmed the challenge pk0
from ANO-1PCA game, the decryption key is not available. As before, the reduction takes advantage
of a single call to the PCO oracle and the (single) relevant record of H1 to determine whether the
tag is valid.

More in detail, the reduction goes as follows (hybrid argument, one public key at the time): i.
Embed challenge pk0 into Alice’s initialization procedure. ii. If the adversary is passive and delivers
apk to Bob, reduction uses challenge c∗. iii. On Alice’s side, if the attack is passive, no need to
decrypt c∗. If there is an active attack, extract K from tag by inspecting H1 records, and check
K against c submitted by the adversary and sk0 to determine the validity of tag without actually
decrypting the ciphertext. Note that the PCO oracle of the standard ANO-1PCA game allows checks
against both sk0 and sk1, and the reduction embedded pk0 on Alice’s side. Therefore, checks must
be carried out against sk0.

16

There are a few noteworthy observations regarding the definitional requirements for this reduc-
tion. For starters, we only need a weaker version of ANO-1PCA where the PCO oracle only allows
plaintext checks against one of the secret keys. Another observation is that we don’t require the
challenger of the ANO-1PCA game to provide K∗ as part of the challenge. This is a direct result of
the modification introduced in G8 that lifts the need to use the encapsulated key for passive attacks
(via the usage of private oracle H∗

1 to compute the tag, and NewKey to FPAKE to set the session
key).8

This reduction algorithm perfectly interpolates between games G8 and G9. If challenge c∗ is
a result of KEM.Encap with pk0, this corresponds to G8. On the other hand, if c∗ is a result of
KEM.Encap with pk1, the simulation adheres to the specifications of G9.

|Pr[G8]− Pr[G9]| ≤ qsend · Advano-1pcaKEM (15)

Game G10 (Active attacks on Alice: The tag is invalid if the password cannot be ex-
tracted from an adversarially crafted message from Bob to Alice): On adversarially crafted
(c, tag) sent to Alice, the tag forces a commitment to a single pk and, consequently, to a unique
password due to the joint operation of IC.Dec and H′. The only case in which password extraction
fails is if the adversary did not reconstruct the pk to which it committed using calls to IC.Dec and
H′. However, in this case, the correct pk that Alice will be using is information-theoretically hidden
from the adversary’s view. More in detail, in G10 we check if the pk was not obtained from apk via
the appropriate calls to H′ and then IC.Dec. (Note that since G6 the appropriate decryption calls
create a record in Listsecrets.) If this is not the case, then tag is declared as invalid. In such cases, we
force a random session key via FPAKE.

The two games G9 and G10 are identical unless the adversary guessed Alice’s public key (and
created the tag sent to Alice with it) without having obtained it from apk via the appropriate calls
to H′ and then IC.Dec. This is a statistical hop. We account for a lucky guess of the r part of pk
only, which we know to be uniform and hidden from the adversary’s view.

|Pr[G9]− Pr[G10]| ≤
qsend
|SpaceIC|

(16)

Game G11 (Active attacks on Alice: If the password is extractable, test it and proceed
accordingly): On Alice’s side, if the password can be extracted, test the password via TestPwd. If
the guess is correct, run the protocol honestly and program the session key. If the guess is wrong,
tell functionality to complete the session with a random key. Note that different passwords are
guaranteed to lead to different public keys for a fixed apk, as oracles discard collisions. In turn,
because pk is also included as an argument of H1, the tag-verification procedure is bound to fail.
Therefore, Game G10 and Game G11 are identical from Z’s perspective. This is a bridge hop.

Pr[G10] = Pr[G11] (17)

Game G12 (Simulate Alice’s initial message without using the password): Notice that the
simulator deals with Alice’s response without using sk, except for the case where Alice is actively
attacked with the correct password. Therefore, the simulator can simulate a NewSession for Alice

8We note that this is the point in the proof where we could not find a way to avoid a decryption-like oracle and
that forces us to use an actively secure KEM. This stands in contention with the results in [19, 4], where we believe
the authors have missed this point. We also note that ANO-PCA was already used in the security proof from Pan
and Zeng [18]. The authors claim that OCAKE protocol in [4] lacks perfect forward secrecy (PFS), but it is unclear
whether the claim is attributed to the fact that the original proof for the protocol requires the underlying KEM to
satisfy merely ANO-CPA.

17

by directly sampling apk, leaving the generation of the public key for later. As such, the password
pw is not required at this stage.

Nevertheless, the simulator of G12 creates an IC record for apk := (s, T), with placeholders that
can later be replaced by Alice’s pk. More precisely, it adds (⊥,⊥, s,mode = E) to ListIC. If s is
unfresh, the simulation aborts. The record only gets updated when Alice’s password pw is confirmed
to be correct as a result of a TestPwd query to FPAKE, and m2F−1

pw(apk) is computed by querying
its oracles. Recall that queries to IC.Dec with t that permits password extraction leads to sk being
embedded in Listsecrets. So, the decryption key is always available in the only case still needed (active
attack with the correct password).

Following the rules of the previous game G11, Alice generates a key-pair with KEM.Keygen and
then computes apk by feeding pk to the oracles of the m2F, which leads to early abortion if the
newly sampled R is in ListH (rule added in G1), if the newly sampled t is in ListIC (rule added in G3),
and if the newly sampled s is in ListIC (rule added in G2). In G12, we abort only if the newly sampled
s is in ListIC. This means that the other abortion events have to be accounted for in the analysis of
this game hop. Furthermore, if the adversary places a new query to IC.Enc and happens to land on
s —it’s important to emphasize new query, meaning this only applies to queries IC.Enc(t, r) where
r is not the result of a previous query IC.Dec(t, s),— the game aborts since there’s already a record
(albeit incomplete). Notice that in G11 there is one particular r for which the oracle would respond
without aborting, this is the r of Alice’s pk. We assumed that KEM has splittable keys, and by
definition r is ϵ-close to being uniform where ϵ is negligible in λ. Therefore, this hop is statistical.

|Pr[G11]− Pr[G12]| ≤
qnewSession · qH
|SpaceH|

+
qnewSession · qH′

|SpaceH′ |
+

qnewSession · qIC
|SpaceIC|

+ ϵ (18)

Game G13 (Active attacks on Bob: if there’s no record consistent with apk having been
computed in the forward direction, use private oracle H∗

1 to compute tag an set random
session key via FPAKE): The attacker sends its own apk to Bob and there is no record consistent
with apk having been computed in the forward direction. In such cases, the simulator uses the
private oracle H∗

1 to compute the tag and sets a random session key via FPAKE. Recall that the
private oracle H∗

1 does not take as input pk and K. We reduce this hop down to OW-PCA. We
use a hybrid argument, changing the behavior of one Bob session at a time. The intuition is that
if apk was not computed in the forward direction with an appropriate call to IC.Enc, the attacker
has no control over the KEM public key (and corresponding secret key) associated with apk sent to
Bob. Therefore, the attacker cannot decrypt Bob’s ciphertext, and is unlikely to query H1 with K
encrypted in Bob’s response. If it does, we break the OW-PCA game of KEM.

The reduction algorithm knows Bob’s password. The inverse of the attacker’s apk sent to Bob,
under Bob’s password, must be the challenge pk∗ of the OW-PCA game. The difficulty in arguing
this hop arises from the adversary’s potential actions with apk: they might attempt to decrypt it
using Bob’s password before or after sending it, or they may not decrypt apk with Bob’s password
at all (willingly or because the Bob’s password was never correctly guessed by the adversary).

Remember, in this particular game hop, we are exclusively handling adversary-generated apk
values, which are not computed following the forward direction of the m2F. Therefore, we apply a
hybrid argument over all qsend queries from Alice to Bob, and all IC.Dec queries, carefully associating
the challenge pk∗ with one of these queries. The reduction algorithm loses the ability to decrypt
ciphertexts encrypted under pk∗, but in the protocol only Alice needs to decrypt ciphertexts and
she will do so under her secret key (regardless of whether apk sent out is crafted by the adversary
and possibly associated with pk∗).

The reduction algorithm also embeds c∗ in the computation of tag with private oracle H∗
1 and in

Bob’s response. It also monitors queries to public oracles H1 and H2, extracting K and testing with

18

the PCO oracle against challenge c∗. If the PCO oracle returns true, the reduction would submit
K and would win the OW-PCA game. Otherwise, the usage of private oracle H∗

1 and setting Bob’s
session key to be random via FPAKE is identical from Z’s view.

Alternatively, as also described in the proof strategy of the hop to G8, if we are willing the bear
the cost of a loss in tightness, we could use a guessing argument instead by simply outputting a
K queried to one of the public oracles H1 and H2, and avoid relying on any PCO oracle for this
reduction (as mentioned earlier, Alice is always able to decrypt).

|Pr[G12]− Pr[G13]| ≤ (qsend + qIC) · Advow-pcaKEM (19)

|Pr[G12]− Pr[G13]| ≤ (qH1
+ qH2

) · (qsend + qIC) · Advow-cpaKEM (20)

Game G14 (Active attacks on Bob: if there’s no record consistent with apk having been
computed in the forward direction, encrypt the ciphertext under a freshly generated
public key): As in the case of the previous game hop, the attacker sends its own apk to Bob and
there’s no record consistent with apk having been computed in the forward direction. Now, the
simulator encrypts the ciphertext that Bob sends out under a freshly generated public key. This is
a reduction to ANO-CPA.

The reduction is similar to the previous game hop in that we embed pk0 in one send query to Bob
at the time, and then embed the challenge c∗ in Bob’s response. As in the analysis of the previous
game hop, we have to account for the possibility that the attacker tried to decrypt apk under Bob’s
password before sending it. In that case, pk0 needs to be embedded upon the IC.Dec call. In the
worst case, the lost in tightness w.r.t. to ANO-CPA is limited by qsend+qIC. If c

∗ was encrypted under
pk0, we adhere to the specifications of G13. If it was encrypted under pk1, we adhere to the rules
of G14. We have already established in the previous game that tag is computed via private oracle
H1 (that does not take pk as input). As in the reduction strategy of the previous game hop, the
challenge pk∗ of ANO-CPA is never associated with the apk sent by Alice. Thus, Alice’s decryption
key sk is always available when needed, and a PCO oracle is also not needed for this reduction.

|Pr[G13]− Pr[G14]| ≤ (qsend + qIC) · Advano-cpaKEM (21)

Game G15 (Active attacks on Bob: if there is a record consistent with apk having been
computed in the forward direction, extract the password, test it, and use private oracle
H∗

1 and set a random session key if “wrong guess”): The simulator now deals with the case
where there is a record consistent with apk having been computed in the forward direction. The
simulator extracts the password and tests it. If “correct guess”, the simulator keeps following the
protocol and sets the correctly-computed session key via FPAKE (this doesn’t change anything from
Z’s view). If “wrong guess”, the simulator makes use of private oracle H∗

1 to compute the tag and
sets a random session key via FPAKE. The reduction is similar to that of G13.

|Pr[G14]− Pr[G15]| ≤ (qsend + qIC) · Advow-pcaKEM (22)

|Pr[G14]− Pr[G15]| ≤ (qH1
+ qH2

) · (qsend + qIC) · Advow-cpaKEM (23)

Game G16 (Active attacks on Bob: if there is a record consistent with apk having
been computed in the forward direction, extract the password, test it, and encrypt
the ciphertext under a freshly generated public key if “wrong guess”): This change and
reduction is similar to that argued in G14.

|Pr[G15]− Pr[G16]| ≤ (qsend + qIC) · Advano-cpaKEM (24)

19

Game G17 (Ideal world): At this point, we are in the ideal world, where the simulator is using
the ideal functionality FPAKE to generate all keys except for those where there is a correct password
guess.

Pr[G16] = Pr[G17] = IdealZ,SIM,FPAKE
(25)

Bringing all these elements together and leveraging Lemma 1 to bound the advantage against
OW-1PCA as no more than twice the advantage against OW-CPA, we can simplify the expression
to obtain the following result with minimal requirements on the KEM as shown in Equation 26. Al-
ternatively, assuming KEM is a OW-PCA-secure key encapsulation mechanism, we obtain the tight
result shown in Equation 27.

For the sake of completeness, a description in pseudo-code of the simulator SIM of the ideal world
is provided in Appendix A. Each step of the process, starting from the code execution of uncorrupted
parties in the real world and leading to the simulation of the ideal world, is meticulously detailed.
Every modification is framed and cross-referenced with the specific game hop where it was initially
introduced to ensure a traceable progression of the proof.

|RealZ,A,FPAKE
− IdealZ,SIM,FPAKE

| ≤

qIC · Advpk-uniformity
KEM

+ 4 · (qH1 + qH2) · (qsend + qIC) · Advow-cpaKEM

+ (3 · qsend + 2 · qIC) · Advano-1pcaKEM

+
q2IC + 2 · qIC · qH + qsend + qnewSession · qIC

|SpaceIC|

+
q2H + qIC · qH + qnewSession · qH

|SpaceH|

+
q2H′ + qIC · qH′ + qnewSession · qH′

|SpaceH′ |

+
q2H1

+ qsend

|SpaceH1
|
+ ϵ

(26)

|RealZ,A,FPAKE
− IdealZ,SIM,FPAKE

| ≤

qIC · Advpk-uniformity
KEM

+ (3 · qsend + 2 · qIC) · Advow-pcaKEM

+ (3 · qsend + 2 · qIC) · Advano-1pcaKEM

+
q2IC + 2 · qIC · qH + qsend + qnewSession · qIC

|SpaceIC|

+
q2H + qIC · qH + qnewSession · qH

|SpaceH|

+
q2H′ + qIC · qH′ + qnewSession · qH′

|SpaceH′ |

+
q2H1

+ qsend

|SpaceH1
|
+ ϵ

(27)

On tightness. The bounds we give here are aligned with those obtained in prior works on EKE-like
constructions from KEMs. The main difference wrt Diffie-Hellman based constructions is that we
cannot use self reducibiliy properties to remove the multiplicative factors associated with dealing
with multiple-instance KEM security properties. Intuitively, the qIC multiplicative factor is the most
problematic, but it seems intrinsic to the use of the ideal cipher: it corresponds to the reduction’s
uncertainty as to which of the adversary’s reverse ideal cipher queries will the adversary choose to
fix the KEM public key on which it will be challenged. A KEM with a tight proof of multi-instance
security would solve this problem.

6 Implementation and Performance Analysis

We make two preliminary notes on our instantiation of CHIC, which distinguish this work from
previous proposals for building PAKE from a lattice-based KEM in the Ideal Cipher model.

Firstly, contrary to what has been suggested in previous papers [4, 19, 3], our security proof
shows that the construction requires a KEM that offers more than just passive security (namely

20

ANO-1PCA). For this reason, we take the (CCA-secure) Kyber upcoming standard as the natural
off-the-shelf lattice-based KEM instantiation. Indeed, Kyber has been shown to be IND-CCA [7, 20]
and ANO-CCA secure in [12, 14, 21].

Secondly, we recall that the bandwidth requirements of the IND-CCA version of Kyber are the
same as that of the underlying IND-CPA PKE construction: this is one of the properties of the
Fujisaki-Okamoto transformation used by Kyber. For this reason, when it comes to bandwidth
usage, our construction still outperforms previous proposals that (unjustifiably) propose to use the
IND-CPA version. Indeed, there is no overhead in public-key transmission in the first flow of our
protocol due to the compact half-ideal cipher, whereas in the second flow we have only the overhead
of transmitting the (short) MAC tag.

We now show that Kyber also satisfies the remaining requirements for instantiating CHIC.

Theorem 2. Kyber has splitable and pseudorandom public keys.

Proof. Kyber works over ring Rq = Zq[X]/(Xn + 1), where q = 3329 is a small prime and n = 256.
A public key consists of two parts: 1) a byte encoding of a vector t ∈ Rk

q , where k = 2, 3 or 4, and
2) a seed ρ ∈ {0, 1}256 that is sampled uniformly at random. The first component is computed (in
the NTT domain) as t = AT s+ e, where s (the secret key) and e the ephemeral noise are sampled
from a suitable (low norm) distribution. Matrix A is obtained using a rejection sampling procedure
seeded by ρ that guarantees a uniform distribution over Rk×k

q . Note that this makes the public key
pseudorandom under the MLWE assumption.

To see that this procedure satisfies the conditions specified in Definition 2, we observe that two
of the conditions hold trivially: 1) We have Gλ = Rk

q is an (additive) group, where k is fixed by the
security parameter; 3) The distribution of the second component is uniform over Nλ = {0, 1}256 for
all the considered security parameters. Condition 2) requires that one can hash to Rk

q indifferentiably
from a random oracle. Arguably, the procedure that is used to sample matrix A in the Kyber standard
(one Rq element at the time) has exactly this property, assuming SHAKE-128 is an ideal XOF, i.e.,
that SHAKE-128 generates an arbitrarily large sequence of uniform random bytes when called on a
given input. 9

To construct a uniform polynomial in Rq, the procedure takes as input the seed ρ and some
public domain separation inputs that ensure all Rq values are sampled independently, and it first
uses its input to seed the SHAKE-128 XOF. The procedure then rejection-samples one coefficient at
a time, by taking the next 12 bits from the output of SHAKE-128 and checking if they encode an
integer in the range [q]. Values that are out of range are discarded, so the polynomial is intuitively
just first set of 12-bit sequences produced by SHAKE-128 that fall within the correct range.

We sketch the indifferentiability argument next.10 Let O denote SHAKE-128 and R denote the
rejection sampling procedure, and let I denote the ideal random function that produces uniform
values in Rq when given the same input as R. Indifferentiability requires that a simulator S can
explain the outputs of R to an adversary with access to O in the following sense.

ARO(·),O(·) ∼ AI(·),SI(·) .

Intuitively, S can perfectly simulate O as follows. When A queries O on fresh input X, S can obtain
a ring element Y by querying I(X) (recall that R just passes its own input to the XOF). In parallel,
S can run RO(X) lazily sampling O as needed, to obtain a discardable ring element Y ′. Now S can
just reprogram the O value that gave rise to Y ′, replacing the positions that encode Y ′ coefficients
with values that explain the coefficients of Y . This simulation is perfect.

9The procedure can be truncated, which introduces a non-zero but arbitrarily small failure probability.
10This argument was communicated to us by ⟨anonimized⟩ in private communication and is being published as

independent work.

21

Our Implementation. We have implemented CHIC in C by extending the reference implemen-
tation of Kyber available from github.com/pqcrystals/kyber. The implementation is provided as
supplementary material to this submission.

Before discussing parameter choices and giving some performance figures, we briefly describe
how we implemented the three components of the compact half-ideal cipher construction, as well
as the computation of the MAC tag and key derivation hashes, which are all that’s needed beyond
Kyber KEM:

• Ideal cipher over 256-bits: We take the Rijndael variant that uses 256-bit blocks and 256-
bit keys. The code was taken from the open-source tool ccrypt, which in turn adapts on the
original Rijndael reference implementation. We recall that this block cipher is used to hide the
seed component ρ that results from public-key splitting.

• Hashing to the Kyber polynomial ring Rq: We reuse the implementation of the rejection
sampling procedure that is used internally by Kyber to expand the public-key seed to a k × k
matrix over Rq. The only difference to the Kyber implementation is that, rather than sampling
a k × k matrix starting from a seed ρ, our implementation samples a vector of size k, seeded
by the input to random oracle H in our compact half ideal cipher construction. We recall that
the output of this procedure is used to mask the vector over Rk

q that results from public-key
splitting using a group operation.

• Masking vectors in Rk
q : We reuse the functions already available in the Kyber code that

permit adding and subtracting vectors over Rk
q .

• Hashing to the key space of Rijndael We use SHA3-256 to produce the required 32-bytes.

• Key Derivation Function and Tag Computation Since these two hash functions take the
same input, we implement them as a single SHA3-512 computation that produces 64 bytes,
which we then split to obtain the session key (which is kept secret) and the tag (which is
transmitted).

Parameter selection. We do not carry out a security analysis against quantum attackers11 so
our parameter selection considers only classical adversaries. Nevertheless, we note that the ideal
cipher layer in the protocol is irrelevant against passive adversaries, and so our protocol offers the
same security as Kyber KEM against adversaries that just store protocol traces and try to break
confidentiality in the future using a quantum computer. From this perspective, we consider it
plausible to consider instantiations for all the variants of Kyber, where a higher-level of security
protection against quantum passive attackers is needed, whilst offering only 128-bit security against
classical active attackers. The latter security level follows from the birthday-bound terms in our
main theorem and the fact that we use Rijndael with 256-bit block and key sizes and must exclude
collisions on both, as well as over the tag space.

Performance Analysis. As stated in the start of this section, the bandwidth overhead of our
protocol over Kyber KEM is minimal: it comprises only 32-bytes for the tag in the second flow.

Concerning execution time, Table 1 shows values in microseconds for the two stages of the
initiator and the single stage of the responder for three cases: 1) using just the IND-CPA version of
Kyber (this is a passively secure key exchange); 2) using just the IND-CCA version of Kyber (still

11We are not aware of any results that consider quantum attackers in the Ideal Cipher model against practical
protocols.

22

github.com/pqcrystals/kyber

Table 1: Experimental results in microseconds. Comparison of execution times of CHIC participants
(two initiator stages and responder single stage) with respect to key exchange using only a CPA or
CCA Kyber KEM.

CPA KEM CCA KEM CHIC
KeyGen Enc Dec KeyGen Enc Dec InitStart Resp InitEnd

Kyber512 25 29 9 45 49 12 70 74 14
Kyber768 28 36 41 49 59 65 75 85 93
Kyber1024 36 56 53 61 87 83 89 123 117

only a passively secure key exchange) and 3) using CHIC. The measurements were taken in a modest
laptop with a 2.3 GHz Intel “Core i5” processor with four cores, 128 MB of embedded eDRAM,
a 6 MB shared level 3 cache, and 16GB of RAM. We did not explore aggressive optimizations
using parallelism (or even SIMD implementations), so these results can definitely be improved. The
overhead in computation time for initiators is around 25% for Kyber 768 wrt the bare CCA KEM
key exchange. For responders, it is around 50%. Overall, these overheads decrease as the security
level of Kyber increases, but the execution times are still in the order of tens of microseconds.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio,
editor, Theory of Cryptography – TCC 2010, pages 480–497, Berlin, Heidelberg, 2010. Springer.

[2] Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 711–741,
Cham, 2021. Springer.

[3] Nouri Alnahawi, Kathrin Hövelmanns, Andreas Hülsing, Silvia Ritsch, and Alexander Wies-
maier. Towards post-quantum secure PAKE - a tight security proof for OCAKE in the BPR
model. Cryptology ePrint Archive, Paper 2023/1368, 2023. https://eprint.iacr.org/2023/
1368.

[4] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and Mélissa Rossi. Get
a cake: Generic transformations from key encaspulation mechanisms to password authenticated
key exchanges. In Applied Cryptography and Network Security: 21st International Conference,
ACNS 2023, Kyoto, Japan, June 19–22, 2023, Proceedings, Part II, pages 516–538, Berlin,
Heidelberg, 2023. Springer.

[5] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT
2000, pages 139–155, Berlin, Heidelberg, 2000. Springer.

[6] S.M. Bellovin and M. Merritt. Encrypted key exchange: password-based protocols secure against
dictionary attacks. In Proceedings 1992 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 72–84, 1992.

[7] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In 2018 IEEE European Symposium on Security and Privacy – EuroS&P
2018, pages 353–367, 2018.

23

https://eprint.iacr.org/2023/1368
https://eprint.iacr.org/2023/1368

[8] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure password-authenticated key
exchange using Diffie-Hellman. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT
2000, pages 156–171, Berlin, Heidelberg, 2000. Springer.

[9] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann, Gregory Neven, and Jiayu
Xu. Password-authenticated public-key encryption. In Robert H. Deng, Valérie Gauthier-
Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography and Network Security –
ACNS 2019, pages 442–462, Cham, 2019. Springer.

[10] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology
– EUROCRYPT 2005, pages 404–421, Berlin, Heidelberg, 2005. Springer.

[11] Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin. A domain ex-
tender for the ideal cipher. In Daniele Micciancio, editor, Theory of Cryptography – TCC 2010,
pages 273–289, Berlin, Heidelberg, 2010. Springer.

[12] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum pub-
lic key encryption. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
– EUROCRYPT 2022, pages 402–432, Cham, 2022. Springer.

[13] Chun Guo and Dongdai Lin. Improved domain extender for the ideal cipher. Cryptography and
Communications, 7(4):509–533, 2015.

[14] Varun Maram and Keita Xagawa. Post-quantum anonymity of Kyber. In Alexandra Boldyreva
and Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages 3–35, Cham,
2023. Springer.

[15] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security – CCS 2020, CCS ’20, pages 425–442, New York,
NY, USA, 2020. Association for Computing Machinery.

[16] NIST. FIPS203, Module-Lattice-based Key-Encapsulation Mechanism Standard. Federal In-
formation Processing Standards Publication, 2023.

[17] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001, pages
159–174, Berlin, Heidelberg, 2001. Springer.

[18] Jiaxin Pan and Runzhi Zeng. A generic construction of tightly secure password-based au-
thenticated key exchange. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology –
ASIACRYPT 2023, pages 143–175, Singapore, 2023. Springer.

[19] Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki. Randomized half-ideal cipher
on groups with applications to UC (a)PAKE. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, pages 128–156, Cham, 2023. Springer.

[20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.

24

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[21] Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In Orr Dunkelman and Stefan
Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, pages 551–581, Cham,
2022. Springer.

A The simulator

We detail the ideal world simulator SIM for proof of Theorem 1, using labeled frames to indicate
the game hops where modifications occur.

On query (NewSession, sid, Pi, Pj , role) from FPAKE:

if role = Bob

add (sid, Pi, Pj , Bob,⊥,⊥) to Listtranscripts

if role = Alice

apk ← Spaceapk
(s, T)← apk
if ∃ (∗, ∗, T, ∗) ∈ ListH′ abort
if ∃ (∗, ∗, s, ∗) ∈ ListIC abort
add (⊥,⊥, s,mode = E) to ListIC

G12

add (sid, Pi, Pj , Alice,msg1,⊥) to Listtranscripts

send apk from Pi to Pj

return

On query (Send,msg) from A to (sid, Pi):

find (sid, Pi, Pj , role,msg1,msg2) ∈ Listtranscripts
if not found return ⊥ // ignore query

// msg is either for Alice or Bob;
// check consistency of state in the recorded transcript
if role = Bob && (msg1 ̸=⊥ || msg2 ̸=⊥) return ⊥ // ignore query
if role = Alice && (msg1 =⊥ || msg2 ̸=⊥) return ⊥ // ignore query

if role = Bob
update record (sid, Pi, Pj , Bob,msg,⊥) ∈ Listtranscripts
fullsid← (sid, Pj , Pi)

// case (a) msg is apk transmitted by Alice (legitimate partner of Bob)
if ∃(sid, Pj , Pi, Alice,msg, ∗) ∈ Listtranscripts

(sk, pk)← KEM.Keygen(λ)
(c,)← KEM.Encap(pk)

G9

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G8

// apk comes from A
apk ← msg1
(s, T)← apk

for (fullsid, pw,T, t) ∈ ListH′

find (t, r, s,mode = E) ∈ ListIC
G13

25

// case (b) apk computed in the forward direction
if record found

// pw is extractable; at most 1 record in the forward direction
send (TestPwd, sid, Pi, pw) to FPAKE // test password
if “correct guess”

// execute the protocol honestly
R← H(fullsid, pw, r)
M ← T ⊙R−1

pk ← KEM.Split−1(r,M)
(c,K)← KEM.Encap(pk)
tag ← H1(fullsid, pk, apk, c,K)
key ← H2(fullsid, pk, apk, c,K)
send (c, tag) to Pj

send (NewKey, sid, Pi, key)
update Bob’s record in Listtranscripts
return

if “wrong guess”

// complete session with fresh key
(sk, pk)← KEM.Keygen(λ)
(c,K)← KEM.Encap(pk)

G16

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G15

// case (c) all other cases
// (e.g. no record of apk in the forward direction)
if no record found

(sk, pk)← KEM.Keygen(λ)
(c,)← KEM.Encap(pk)

G14

tag ← H∗
1(fullsid, apk, c)

send (c, tag) to Pj

send (NewKey, sid, Pi,⊥)
update Bob’s record in Listtranscripts
return

G13

if role = Alice

update record (sid, Pi, Pj , Alice,msg1,msg) ∈ Listtranscripts

fullsid← (sid, Pi, Pj)

(c, tag)← msg

apk ← msg1

if ∃(sid, Pj , Pi, Bob, apk,msg) ∈ Listtranscripts
send (NewKey, sid, Pi,⊥)
return

G8

if ∄ (fullsid, ∗, apk, c, ∗, tag) ∈ ListH1

send (TestPwd, sid, Pi,⊥)
send (NewKey, sid, Pi,⊥)
return

G7

// extract pk from tag, record must exist
find (fullsid, pk,apk, c,K, tag) to ListH1

find (pw, sk,pk,apk) to Listsecrets

G10

26

if record found
send (TestPwd, sid, Pi, pw) to FPAKE

if “correct guess”
// run protocol honestly and program the session key
// replace placeholders if needed
(s, T)← apk

if ∃ (⊥,⊥, s,mode = E) ∈ ListIC
(r,M)← KEM.Split(pk)
t← H′(pw,M ⊙ H(fullsid, pw, r))
update record (t, r, s,mode = E) in ListIC

G12

K ← KEM.Decap(sk, c)
if tag ̸= H1(fullsid, pk, apk, c,K)

// send random key via functionality
send (NewKey, sid, Pi,⊥)
return

else
// tell FPAKE to complete session with key
key ← H2(fullsid, apk, c, tag,K)
send (NewKey, sid, Pi, key)
return

if “wrong guess”
// tell FPAKE to complete the session with a random key
send (NewKey, sid, Pi,⊥)
return

G11

if no record found
send (TestPwd, sid, Pi,⊥)
send (NewKey, sid, Pi,⊥)
return

G10

On query H1(fullsid, pk, apk, c,K):
find (fullsid,pk,apk, c,K, tag) ∈ ListH1

if found return tag
tag ← SpaceH1

if ∃ (∗, ∗, ∗, ∗, ∗, tag) ∈ ListH1
abort G1

add (fullsid, pk, apk, c,K, tag) to ListH1

return tag

On query H2(fullsid, apk, c, tag,K):
find (fullsid,apk, c, tag,K, key) ∈ ListH2

if found return key
key ← SpaceH2

add (fullsid, apk, c, tag,K, key) ∈ ListH2

return key

On query H(fullsid, pw, r):
find (fullsid,pw, r, R) ∈ ListH

if found return R
R← SpaceH

if ∃ (∗, ∗, ∗, R) ∈ ListH abort G1

add (fullsid, pw, r,R) to ListH
return R

On query H′(fullsid, pw, T):
find (fullsid,pw,T, t) ∈ ListH′

if found return t
t← SpaceH′

if ∃ (∗, ∗, ∗, t) ∈ ListH′ abort G1

if ∃ (t, ∗, ∗, ∗) ∈ ListIC abort G3

add (pw, T, t) to ListH′

return t

27

On query IC.Enc(t, r):
find (t, r, s,mode) ∈ ListIC

if found return s
s← SpaceIC

if ∃ (∗, ∗, s, ∗) ∈ ListIC abort G2

add (t, r, s,mode = E) to ListIC
return s

On query IC.Dec(t, s):
find (t, r, s,mode) ∈ ListIC

if found return r

find (fullsid, pw, T, t) ∈ ListH′

if found
(sk, pk)← KEM.Keygen(λ)
(r,M)← KEM.Split(pk)
R←M ⊙ T

if (∗, ∗, r, ∗) ∈ ListH abort G4

if (∗, ∗, ∗, R) ∈ ListH abort G5

add (fullsid, pw, r,R) to ListH
apk ← (s, T)
add (pw, sk, pk, apk) to Listsecrets

if not found

G6

r ← SpaceIC

if ∃(t, r, s, ∗) ∈ ListIC abort G2

add (t, r, s,mode = D) to ListIC
return r

28

	Introduction
	Preliminaries
	Security Model
	UC PAKE from Modified 2-Feistel and KEM
	Security Analysis
	Implementation and Performance Analysis
	The simulator

