
A Two-Layer Blockchain Sharding
Protocol Leveraging Safety and Liveness

for Enhanced Performance

Yibin Xu
Department of Computer Science

University of Copenhagen
yx@di.ku.dk

Jingyi Zheng
Department of Computer Science

University of Copenhagen
jrb385@alumni.ku.dk

Boris Düdder
Department of Computer Science

University of Copenhagen
boris.d@di.ku.dk

Tijs Slaats
Department of Computer Science

University of Copenhagen
slaats@di.ku.dk

Yongluan Zhou
Department of Computer Science

University of Copenhagen
zhou@di.ku.dk

Abstract—Sharding is a critical technique that enhances the
scalability of blockchain technology. However, existing protocols
often assume adversarial nodes in a general term without con-
sidering the different types of attacks, which limits transaction
throughput at runtime because attacks on liveness could be
mitigated. There have been attempts to increase transaction
throughput by separately handling the attacks; however, they
have security vulnerabilities. This paper introduces Reticulum,
a novel sharding protocol that overcomes these limitations and
achieves enhanced scalability in a blockchain network without
security vulnerabilities.

Reticulum employs a two-phase design that dynamically
adjusts transaction throughput based on runtime adversarial
attacks on either or both liveness and safety. It consists of
‘control’ and ‘process’ shards in two layers corresponding to the
two phases. Process shards are subsets of control shards, with
each process shard expected to contain at least one honest node
with high confidence. Conversely, control shards are expected to
have a majority of honest nodes with high confidence. Reticulum
leverages unanimous voting in the first phase to involve fewer
nodes in accepting/rejecting a block, allowing more parallel
process shards. The control shard finalizes the decision made
in the first phase and serves as a lifeline to resolve disputes when
they surface.

Experiments demonstrate that the unique design of Reticulum
empowers high transaction throughput and robustness in the face
of different types of attacks in the network, making it superior
to existing sharding protocols for blockchain networks.

I. INTRODUCTION

Blockchain sharding [16], [27], [14], [5], [29], [7], [8],
[15], [20], [9], [12], [13], [23], [24] is a method that aims to
improve the scalability of a vote-based blockchain system by

randomly dividing the network into smaller divisions, called
shards. The idea is to increase parallelism and reduce the
overhead in the consensus process of each shard, thereby
increasing efficiency. However, there is a trade-off between
parallelism and security in sharding. While making smaller and
more shards can increase parallelism, they are more vulnerable
to corruption.

The security of a shard has two key properties: liveness and
safety. Liveness concerns the shard’s capability to ultimately
achieve a consensus on the sequence of output messages,
whereas safety pertains to the accuracy and exclusivity of
that consensus. For example, if we have M = 10 nodes
in a synchronous communication shard, a decision is made
only if at least seven nodes vote in favor. Then, S = 6/M
is the maximum ratio of adversarial population that can be
tolerated. Otherwise, an adversarial decision may be reached.
However, if at least a 1−S ratio of nodes in the shard always
disagree or keep silent with any proposals, the shard can never
reach any decisions, and the liveness is compromised. The
safety threshold (S) and liveness threshold (L) represent the
maximum ratio of adversarial participants in a shard under
which safety and liveness are guaranteed.

However, existing sharding solutions [27] guarantee secu-
rity under worst-case adversarial conditions (L = S < 50%)
in the synchronous network and assume that the adversary
has equal interests in attacking both safety and liveness
simultaneously. It limits the number of parallel shards and
the performance gains of sharding when the nodes acting
adversarial at runtime is lower than the worst-case.

Recent proposals [7], [21], [22] aim to increase the number
of parallel shards by increasing S and decreasing L of each
shard. This is based on the fact that S < 1− L (synchronous
model) or S < 1 − 2L (partially synchronous model) holds
because given L percent of nodes that attack liveness, a block
will only be accepted if at least 1−L or 1−2L percent of nodes
respectively have voted in favor of it. Therefore, the system
cannot tolerate more than 1 − L or 1 − 2L percent of nodes,
respectively, that attack safety. Based on this theory, one can

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24006
www.ndss-symposium.org

generate smaller shards with higher S (and lower L) to tolerate
the same number of adversaries globally. Note that S ≥ L is
maintained in all cases. Fig. 1 illustrates changing L and S
by adapting the shard size proposed in [7], [22]. This design
allows using small shards when the adversarial population ratio
that intends to attack liveness is low, so more shards run in
parallel. When this ratio is higher at runtime, the shards can be
respawned with a larger shard size, resulting in an increased
L, and a decreased S [7], [22]. The existing shard resizing
approaches either reform the shards from scratch, changing
the shard memberships of all the nodes [22], or perform local
shard adjustments, resulting in overlapping shards [7] as shown
in Fig. 1.

L=0, S<100% L=30%, S<70% L<50%, S<50%

A node

A shard

Fig. 1. The typical structure of a sharding approach leveraging liveness
and safety thresholds. The size of shards increases with the liveness threshold
L increase. There are three shards in the system. The increased size either
reduces the number of shards or causes shards to overlap.

Despite the potential performance gains associated with
leveraging liveness and safety, several key limitations must
be addressed. First, the approaches of adapting shard sizes
and memberships, as mentioned earlier, can result in frequent
and costly shard respawning. Additionally, the presence of
overlapping shards when the adversarial population fluctuates
leads to additional costs. Secondly, our analysis in Sec. V-A
uncovers security vulnerabilities present in all existing designs.
In particular, synchronous shards with S ≥ 1

2 or partially syn-
chronous shards with S ≥ 1

3 are unable to achieve consensus
without the possibility of equivocation. These vulnerabilities
undermine the effectiveness of the approaches. Thirdly, all
approaches so far have no design to mitigate the liveness
attacks. Such attacks can be detected and evidenced in runtime,
allowing for appropriate punitive actions when liveness is
restored while ensuring safety is maintained at all times. For
instance, if there are methods to expel a node when this node
disagrees with correct proposals or frequently remains silent,
such adversarial nodes cannot again attack liveness in the
future after being expelled.

A. Contribution

The contributions of this paper are as follows:

(1) We propose Reticulum, the first protocol leveraging
liveness and safety but does not suffer from security breaches.
Reticulum can inhibit adversarial behaviours. These are
achieved without needing to respawn new shards in runtime
or to overlap shard memberships, which can bring unnecessary
overhead.

(2) We comprehensively analyze Reticulum’s performance
with a comparison with state-of-the-art approaches. We
evaluate Reticulum’s performance empirically by both sim-
ulation and experiments. We compare Reticulum with two

state-of-the-art approaches: Gearbox [7] and Rapidchain [27].
Our analysis shows that Reticulum significantly outperforms
both approaches regarding transaction throughput and storage
requirements.

II. OVERVIEW

To address the shortcomings of existing approaches, we
propose Reticulum, a blockchain sharding approach designed
for a synchronous environment. For simplification, Reticulum
uses a static sharding scheme, i.e., no new members are added
in runtime and we do not respawn any shards. But in reality, the
same as Rapidchain [27] and Omniledger [14], it may allow a
system reboot with fresh nodes added and some nodes removed
every several days using the same design. It may also use the
same design as Rapidchain to swap nodes of different shards
after several epochs to avoid adversaries (slowly) enlarging the
corruption population in a shard (assuming they are capable of
doing so). Reticulum adopts two layers of ledgers to provide
resilience. Fig. 2 illustrates its structure.

A second layer

(control) shard

A first layer

(process) shard

A node

L=0,

S<100%

L=S<50%

Fig. 2. The structure overview of Reticulum protocol. Every node is, at the
same time, in only one process shard (L = 0, S < 100%) and one control
shard ((L = S) < 50%) that governs this process shard.

Reticulum employs a two-phase-voting mechanism in
which a blockchain epoch is divided into two phases. Each
node is assigned to one and only one process shard, which
consists of the first layer of ledgers. Each process shard is
assigned to and governed by one and only one control shard,
which consists of the second layer of ledgers. The shard
memberships do not change at runtime and they do not overlap.
Moreover, all nodes are connected to a public communication
chain, which is used for communicating metadata.

In the first phase, the members of a process shard generate
and vote for the acceptance of a process block containing
transactions associated with the data stored. All process shards
have S < 100%, which means that a block will only be
accepted with a unanimous vote. On the other hand, the process
shards have L = 0%, which means that one adversary would
be sufficient to hinder the progress.

In order to prevent progress hindrance caused by an accept-
able block failing to receive a unanimous verdict in a process
shard, a control shard is used in the second phase to reach a
majority verdict on the block that did not pass in the first phase.
Each control shard has a threshold of L, S < 50%, which

2

ensures that it provides comparable worst-case security to other
state-of-the-art blockchain sharding protocols. The votes in a
process shard are broadcast to all nodes in the corresponding
control shard (sized Nc) using a Byzantine broadcast protocol
called (∆ + δ)-BB [1] with f ≤ ⌊(Nc − 1)/2⌋, this enables
them to align that if a process block needs to be handled in
the control shard.

We design that when a process block cannot be accepted
in a process shard, but later be accepted by the control shard,
all nodes in the process shard which voted for rejection will be
expelled from the system. If a node remained silent in voting, it
is marked as “violated node” in the current voting. A node can
only be marked as “violated node” once in every τ votings for
the process blocks, where τ is a pre-defined liveness threshold.
If node i is marked twice, it is also expelled from the system.

It is important to note that the cost of the second voting
phase will depend on the number of failed process blocks in
the first phase. As the adversarial population decreases (or
increases), fewer (or more) process blocks will likely fail the
first voting phase, which will result in a lower (or higher)
cost for the second phase and higher (or lower) transaction
throughput. When no adversaries are attacking liveness, Retic-
ulum will achieve its highest transaction throughput because
it has no failed process block to vote for in the second phase.
In this way, Reticulum is resilient to the dynamic decrease (or
increase) of the adversarial population with higher (or lower)
transaction throughput.

III. PROBLEM DOMAIN

This section defines the network and threat models for
our sharding protocol, the overview of Reticulum, and the
objectives of Reticulum.

A. System model

Network model: standard synchronous network model. Sim-
ilar to Rapidchain [27], our network model consists of a
peer-to-peer network with N nodes that use a Sybil-resistant
identity generation mechanism to establish their identities (i.e.,
public/private keys). This mechanism requires nodes to attach
a Proof-of-Stake (PoS) of a threshold weight that all other
honest nodes can verify. We assume that all messages sent in
the network are authenticated with the sender’s private key.
These messages are propagated through a synchronous gossip
protocol [11], which guarantees that the message delays are
at most a known upper bound ∆. Note that this protocol does
not necessarily preserve the order of the messages.

It is worth noting that Gearbox [7] claims to utilize a mixed
network model based on L and S, enabling the execution of
a partially synchronous model until L = 25% and S = 49%.
However, as will be demonstrated in Sec. V-A, in practice,
the decision to accept or reject blocks of a shard in Gearbox
can only be safely reached after finalization. Therefore, it is
the confirmation of the heartbeat within a block of the “control
chain” that signifies the completion of the BFT process of each
shard. Since the blocks of the “control chain” also incorporate
heartbeats from other shards, some of which may operate with
L > 25% at the time, in many cases, the block is generated
only after a known time-bound, which implies a synchronous
network model for Gearbox.

Threat model: adaptive but upper-bounded adversaries with
τ liveness guarantee. In our threat model, we consider the
possibility of nodes disconnecting from the network due to
internal failures or network jitter, as well as a probabilistic
polynomial-time Byzantine adversary that can corrupt up to
f ≤ ⌊(N − 1)/3⌋ nodes at any given time. These adversarial
nodes may collude with each other and deviate from the
protocol in arbitrary ways, such as by sending invalid or
inconsistent messages or remaining silent. Note that a non-
sharded synchronous communication environment can tolerate
f ≤ ⌊(N − 1)/2⌋. However, for a sharded network with shard
size M , it is impossible to withstand f ≤ ⌊(M − 1)/2⌋
adversary (the mere majority honesty), while allowing f ≤
⌊(N − 1)/2⌋ globally. This is because the failure probability
(more than the threshold adversary nodes being assigned to the
shard) cannot be decreased to a trivial number with a random
shard assignment for nodes.

Rapidchain [27] and Gearbox [7] also require that,
at any given moment, at least 2/3 of the computational
resources belong to uncorrupted online participants. Since the
runtime adversarial population is unknown to the uncorrupted
participants, achieving deterministic consensus requires
constant liveness for the same set of ⌊ 2(N−1)

3 ⌋ + 1 honest
nodes, as shown in Thm. 1.

Theorem 1. For guaranteeing constant liveness and safety in
the overall system, a blockchain sharding protocol with a safety
threshold S and a liveness threshold L (both less than 50%)
necessitates the presence of at least

⌊
2(N−1)

3

⌋
+1 uncorrupted

participants who remain active in the system at all times.

Proof: Let us assume that the adversary has control over
f =

⌊
N−1
3

⌋
nodes across the entire network, and these nodes

persistently act in an adversarial manner. Under this scenario,
all other nodes must maintain their integrity to satisfy the live-
ness guarantees and must not leave the system. This is essential
to avoid the following situation: Only one uncorrupted node
among the N −

⌊
N−1
3

⌋
uncorrupted participants leaves the

sharding protocol during a specific epoch, and it happens that
this node belongs to a shard containing f =

⌊
M−1

2

⌋
nodes.

Then the shard becomes unable to deterministic accept an
uncorrupted block for this specific epoch. Consequently, both
liveness and safety are lost. The loss of liveness and safety in
a single shard compromises the constant liveness and safety
guarantee of the overall system.

We use the τ liveness guarantee for the adversarial nodes,
which is defined in Def. 1. If a node violates τ liveness, it
will be expelled from the system.

Definition 1. τ liveness guarantee refers to a blockchain
sharding system that mandates that at least

⌊
2(N−1)

3

⌋
+1 un-

corrupted participants constantly act uncorrupted and remain
alive, but allowing any other participant to not participate in
the system once in every τ epochs.

B. System overview

Reticulum has a determined number of nodes N . Each
node ni of these N nodes is a member of the public

3

communication chain (PC) and is a member of exactly one
process shard and one control shard. We elaborate on our
designs below:

Public communication chain. The public communication
chain (PC) coordinates the sharding protocol and stores
metadata about the shards. It is a totally-ordered broadcast
with persistence and a timestamp guarantee, and all nodes in
the system execute it. The PC stores only metadata, which
means that its size is independent of the contents of the shards.

Shards. Shards are modeled as ledger functionalities
that are parameterized by the size of the shard and the type
(process/control) of the shard. There are Λ control shards,
each containing at least Nc = ⌊N/Λ⌋ nodes, and β process
shards, each containing at least Np = ⌊N/β⌋ nodes. Each
process shard is governed by only one control shard. Each
control shard supervises at least ⌊Nc/Np⌋ process shard. Each
process shard governs a non-overlapping set of keys, and
the related transactions should be sent to the corresponding
process shards. Cross-shard transactions that interact with
multiple shards are used if different process shards govern
the keys involved in the transactions. Each process or control
shard runs an ordinary synchronous BFT protocol, where a
leader node is randomly selected to propose a block followed
by one round of voting. A process block is accepted in a
process shard if all nodes vote to accept it. A control block
is accepted in a control shard if the majority of nodes vote
to accept it. In normal cases, the control shard does not
synchronize the blocks of the process shards. However, they
synchronize the votes for the blocks of each process shard
under their governance. If a block in a process shard does
not obtain unanimous votes within a time-bound (T1), it is
synced by all nodes in the corresponding control shard in
another time-bound(T2). The control shard votes on them to
finalize the verdicts.

State-block-state structure. The state of the process shard is
updated with each process block, and a new state is formed in
each epoch. Rather than linking blocks to preceding blocks,
they are linked to previous states. If a block does not pass
unanimous voting, only the latest state and the rejected block
need to be synced by nodes in the control shard, instead of the
entire blockchain of the process shard. This greatly reduces
the amount of data that needs to be synced, improving the
system efficiency.

Bootstrapping. The system is initialized with a predetermined
list of N participating nodes, which are ranked using a global
random number generated by a distributed random number
generator [6]. Nodes are assigned to different shards after
bootstrapping according to rank.

Simple Cross-shard communication. Cross-shard communi-
cation, which involves the exchange of information and data
between different shards in a sharding system, has been
extensively researched in the literature [14], [28], [2], [19],
[10], [18]. However, implementing a reliable cross-shard com-
munication protocol in a sharding system that potentially have
liveness issues be challenging. Gearbox, for instance, cus-

tomized the existing protocol Atomix [14] to finalize messages
on the shards to address this issue, which further complicated
the algorithm. In contrast, Reticulum eliminates the need for
specialized cross-shard protocols altogether. Since we do not
adjust shard membership, signatures contained in cross-shard
transactions can be trusted without considering if they are
signed by the correct shard members at the time. As a result,
we can use ordinary cross-shard protocols for cross-control-
shard transactions without worrying about the complications
associated with deadlocked shards.

C. Objectives

Our protocol involves processing a set of transactions
submitted to our protocol by external users. Similar to those in
other blockchain systems, these transactions consist of inputs
and outputs referencing other transactions and are accom-
panied by a signature for validity. The set of transactions
is divided into β = ⌊N/Np⌋ blocks proposed by disjoint
process shards each sized Np, with y{i,j} representing the j-
th transaction in the block of i-th process shard. There are
Λ = ⌊N/Nc⌋ control shards, each sized Nc. The i-th process
block is governed by ⌊i/Nc⌋-th control shard. All nodes within
the same process shard have access to an external function
g1 that determines the validity of a transaction, outputting 0
or 1 accordingly. All nodes in the same control shard have
access to an external function g2 that determines the validity
of a process block that did not pass the unanimous voting in
the first phase, outputting 0 or 1 accordingly. Block(i) is the
block of process shard i of the current epoch. If Block(i)
fails to obtain unanimous acceptance in the first phase and
g2(Block(i))) = 1, the leader node of ⌊i/Nc⌋-th control shard
in the current epoch should embed Block(i) to the control
block of current epoch and mark it as “accepted”. z{p, q}
represents the q-th process block embedded in the p-th control
block that is marked as “accepted”. The protocol Π aims
to output a set (Y,Z) containing β disjoint process blocks
Yi = {y{i,j}} where j ∈ {1 . . . |Yi|} and Λ control blocks
Zp = {z{p,q}} where q ∈ {1 . . . |Zp|}, satisfying the following
conditions:

• Agreement: For any i ∈ {1 . . . β}, at least one
honest node agree on Yi with a probability of
greater than 1 − 2−σ , where σ is the security
parameter. In the meantime, Ω(logN) honest nodes
agree on Zp with a probability of greater than 1−2−σ .

• Validity: For each i ∈ {1 . . . β} and j ∈ {1 . . . |Yi|},
g1(y{i,j}) = 1. For each p ∈ {1 . . .Λ} and
q ∈ {1 . . . |Zp|}, g2(y{p,q}) = 1.

• Termination: Each shard i ∈ {1 . . . β} decide (ap-
proved unanimously or not) on Yi within T1. Each
shard in p ∈ {1 . . .Λ} decide on Zp within T2.

The design objectives of Reticulum are to achieve the follow-
ing while satisfying the above conditions.

• Scalability: The number of control shards Λ and
process shards β in Reticulum can grow with the
increase of the total number of nodes in the network,

4

denoted by N , without affecting the aforementioned
conditions. This design ensures that Reticulum can
handle a growing network and maintain high through-
put. Furthermore, as the number of honest nodes in
the network increases, Reticulum’s throughput also
increases.

• Efficiency: Reticulum is designed to minimize per-
node communication, computation, and storage com-
plexity. The per-node communication and computation
complexity is O(N), where N is the total number of
nodes in the network. The per-node storage complex-
ity is O(OT/k), where OT is the total number of
transactions, and k is the average number of process
shards

In summary, our objective is to design a consensus protocol
that achieves agreement among a sufficient number of honest
nodes, ensuring the validity of the agreed-upon transactions,
scales with the size of the network and the runtime adversary
population, and has efficient communication, computation, and
storage cost.

IV. RETICULUM PROTOCOL

This section will provide a detailed description of the
Reticulum protocol. Reticulum comprises three main com-
ponents: bootstrapping, two-layer-shard consensus, and cross-
shard transactions.

In Reticulum, each node participates in the public commu-
nication chain (PC) and exactly one process shard, along with
its corresponding control shard. This means that each node
maintains two additional chains besides PC: the process-shard-
chain specific to the process shard and the control-shard-chain
specific to the control shard. A block proposed for the process-
shard-chain is called a process block, while that for the control-
shard-chain is called a control block. A process block includes
a collection of transactions, and the control block includes the
hashes of process blocks and their vote signatures.

A. Bootstrapping

The Bootstrapping phase is used to assign nodes to shards
randomly and unbiasedly. We first share a predetermined list
of N nodes with all participants. Then, a random sequence
C, where |C| = N , is generated collectively utilizing a
random beacon [6]. The random beacon must be accessible
to all participants, verifiable by all parties, and should not be
controlled by any entity.

We use a getShardIndex function to determine a node’s
shard membership. This function takes a node Nodej as input,
retrieves the index Cindex of Nodej in the sequence C, and
then calculates the indices index1 and index2 for the node’s
process and control shards, respectively. The output is a tuple
(index1, index2). Note that bootstrapping only runs at the
beginning of the protocol or when the protocol re-starts with
new node membership. The pseudo-code for getShardIndex
is given in Alg. 1.

Lemma 1. The bootstrapping phase guarantees the safety
property of shard membership assignment, ensuring that no
node is assigned to multiple shards.

Proof: Please see the full proof in Appx. A1.

Algorithm 1 getShardIndex
1: Nc and Np are the numbers of nodes inside a control

and process shard, respectively, Nc|Np. A sequence C
is generated using a distributed random beacon from
{Node1, Node2, . . . , NodeN}. |C| = N . When N ∤ Nc,
the number of nodes inside the last control shard and the
last process shard may exceed Nc and Np.

2: function GETSHARDINDEX(Nodej)
3: Cindex ← The index of Nodej in the sequence C

starting from 0
4: index1, index2 ← ⌊Cindex/Np⌋, ⌊index1/(Nc/Np)⌋
5: if Cindex ≥ ⌊N/Nc⌋ ×Nc then
6: index2 ← index2 − 1 ▷ Add nodes to the last

control shard but not a new control shard
7: if N ∤ Np then
8: index1 ← min (⌊(Cindex/Np)⌋, ⌊(N/Np)⌋ − 1)

▷ Add nodes to the last process shard but not a new
process shard

9: return (index1, index2) ▷ Nodej belongs to
psindex1

and csindex2

B. The first phase

After nodes are randomly assigned to the process shard and
the control shard during bootstrapping, Reticulum enters the
consensus stage. An epoch for the consensus stage consists of
two phases, with the first phase to be completed within a time-
bound denoted as T1, and the second phase to be completed
within a time-bound denoted as T2. While T1 is set as a
constant number, T2 depends on the number of process shards
and their verdicts in the first phase. We will discuss this in
detail in Sec. IV-C.

The first phase is used for the process shards to reach a
consensus on the process blocks. After bootstrapping, there
are at least Np nodes in any process shard psi, i ∈ [0, β]. At
the beginning of the first phase, each psi tries to generate and
reach consensus on a block using a standard binary vote-based
synchronous consensus protocol [17] within the time-bound
T1. Each process shard requires a unanimous vote to decide on
a block. In other words, as long as there is one adversarial node
in psi, it cannot decide on a block and cannot evolve into a new
state. Therefore the process blocks have L = 0. Apparently, the
consensus protocol in the first phase only yields two possible
outcomes:

• A block is unanimously accepted: This implies that
there is a probability greater than 1 − 2−σ that no
nodes act adversarial in this process shard.

• A block has not received unanimous voting: Be-
cause of the synchronous communication assumption,
all honest nodes vote and receive each other’s vote
within T1. Because we are using a binary vote-based
consensus protocol, the honest nodes will decide on
the same verdict (either accept or reject) of a block.
When a block has not received unanimous voting, it
implies that there are adversarial nodes in the shard.

Note that the votes should be broadcasted to all nodes within
the same control shard governing this process shard using the
Byzantine broadcast protocol (∆+δ)-BB [1] with f ≤ ⌊(Nc−

5

1)/2⌋ to allow nodes in the other process shards to know the
voting output and the deterministic set of votes. The pseudo-
code for the first phase of the two-layer consensus is given in
Alg. 2.

Algorithm 2 First phase of Two-layer consensus
1: procedure FIRSTPHASE(node)▷ node run this procedure
2: votes← empty set of votes
3: if this node is the leader of its process shard then
4: block ← GENERATEBLOCK(node)
5: BROADCASTBLOCK(block, node.ps) ▷

broadcast the block to all nodes in the same process shard
6: if this node is not the leader of its process shard then
7: block ← RECEIVEBLOCK()

8: vote← GENERATEVOTE(node, block) ▷ verify and
vote for the block

9: BROADCASTVOTE(vote, node.cs) ▷
broadcast the vote to all nodes in the same control shard
using a BB protocol

10: while in T1 and CONSENSUS(votes, node.ps)=FAILED
do ▷ wait for votes

11: votes← votes ∪ RECEIVEVOTE() ▷ add the
vote to the set of votes

12: result← CONSENSUS(votes, node.ps)
13: return result
14: function BROADCASTBLOCK(block, ps)
15: for n ∈ ps do
16: send block to node n
17: function BROADCASTVOTE(vote, cs)
18: for n ∈ cs do
19: send vote to node n
20: function CONSENSUS(votes, ps)
21: count1 ← 0
22: for v ∈ votes do
23: if v.value = approve and v.ps = ps then
24: count1 ← count1 + 1

25: if Unanimously approved then
26: return ACCEPTED
27: else
28: return FAILED

Theorem 2. In Reticulum, nodes can reach a consensus for
whether a node is identified as the adversarial node when
the votes of the first phase are broadcasted using Byzantine
broadcast protocol.

Proof: Blockchain consensus ensures the validation of
the consensus for the sequence of transactions, rather than
the correctness of individual transactions. The correctness of
transactions can be verified by referring to information in
previous blocks of the blockchain. Therefore, a node will
only vote to reject blocks if they contain violations such as
double-spending or over-spending transactions that contradict
previous verdicts. The control blocks also include decisions
for expelling nodes that did not participate in the voting
for the process shards. To determine this in consensus, it is
necessary for nodes to reach a consensus on whether a node
voted for the process block within the time-bound. To support
this design, when nodes vote in the first phase, the votes are
broadcast to all nodes in the control shard (sized Nc) using
a Byzantine broadcast protocol called (∆ + δ)-BB [1] with

f ≤ ⌊(Nc− 1)/2⌋. It guarantees that, if a vote V is broadcast
to all nodes in a control shard of size Nc, all honest nodes in
this control shard will terminate the broadcast protocol with
the same value V . Hence, they can reach a consensus on if
a node within the process shard voted or not. Consequently,
when an adversarial node proposes/votes for a process block
containing incorrect messages or its liveness violates τ liveness
guarantees, it can be identified as an adversarial node in
consensus.

As shown in Thm. 2, Reticulum can safely identify nodes
as adversarial in consensus. Reticulum will confiscate the
Proof-of-Stake (PoS) of adversarial nodes and expel them from
the system. We assume that most adversaries act rationally
and do not wish to be marked as adversarial. However, we
demonstrate in Sec. IV-C that Reticulum can also tolerate
attacks when the adversary is willing to risk confiscation of
their PoS.

C. The second phase

The second phase serves as a “safety net” assisting a final
verdict for the blocks not passing the unanimous voting. The
nodes in the process shards that fail to output unanimously
approved blocks send the last state of the process shard and
the failed block to all the other nodes in the same control
shard.

Similar to other vote-based consensus protocols, a leader
node is selected to propose the control block in the sec-
ond phase. The control block contains information about
the process blocks of each process shard under its control.
This information includes: (1) a boolean parameter indicating
whether the process block passed unanimous voting within T1,
(2) if the block passed unanimous voting, the signatures from
the voters are attached as proof, and (3) if the block did not
pass unanimous voting, the hash of the block and a decision to
accept or reject the block are attached. This decision is made
by the creator of the control block, i.e., the current leader.
Nodes can request the full content of the process blocks using
the hash. Nodes in the control shard will verify the blocks
received from the failed process shards and vote for the control
block if they agree with the decision made by the current
leader.

The completion of the second phase must be accomplished
within T2. Unlike T1, the value of T2 for a control shard
is dynamically adjusted based on the count of succeeded
process shards within that control shard, denoted as Ns.
The calculation for T2 can be expressed using the following
equation:

T2 = λ · (⌊Nc/Np⌋ −Ns + 1) (1)

where λ represents a pre-defined constant value, Np and Nc

are the size of process shards and control shards respectively.
T2 is set to ensure that the network bandwidth requirement for
nodes in the second phase is similar to that in the first phase.

After the aforementioned procedures, check if any node i
is considered the adversarial node. The PoS of the node i is
confiscated and the node i is expelled from the system. Cor. 1
shows that it is safe to operate with the remaining nodes.

Note that if the majority of nodes in the control shard reject
the control block, a new proposed block by a new leader will be

6

Vote signature of

ps2.block .X-1

Vote signature of

ps1.block .X

1..X.

state

ps1.X.

block

ps1.X+1.

block

ps1.X+2.

block

(approved

by cs1)

Vote signature of

ps1.block .X

Vote signature of

ps1.block .X+1

ps1.block .X+2 &

Vote result

ps1

cs1

Epoch X Epoch X+1 Epoch X+2

ps1..X.

state

ps1.X+1.

state ps1.X+2.

state

ps2.X.

block

ps2.X+1.

block

(rejected

by cs1)

ps2.X+2.

block

ps2

ps2.X.

state

ps2.X+2.

state

ps2.block .X+1 &

Vote result

Vote signature of

ps2.block .X

Vote signature of

ps2.block .X+2

Timeline:

cs1.X.block cs1.X+1.block cs1.X+2.block

Work on

process

block

Work on

control

block

T2 T1 T2 T1 T2 T1 T2

Work on

process

block

Work on

control block

Work on

process

block

Work on

control block

ps2.X+1.

state=

Ps2.X.

state

ps

ps

Work on

control

block

Fig. 3. An example of the two-layer consensus. In this example, the control
shard cs1 contains two process shards, ps1 and ps2. We denote the state and
block of psi for Epoch X by “psi.X.state” and “psi.X.block” respectively. A
new state of psi is derived by applying the transactions in psi.X.block over
psi.X.state. In the depicted scenario, ps1 and ps2 generated unanimously
approved blocks in Epoch X , but ps2 failed to agree on the process block
of Epoch X + 1 unanimously. Therefore, ps2.(X+1).block is attached to
cs1.(X+1).block, which denotes the block of cs1 for epoch X + 1. Nodes
in cs1 vote on ps2.X + 1.block. In this case, cs1 rejects this block, so
ps2.X +1.state remains the same as ps2.X.state. Note that T2 in Epochs
X + 1 and X + 2 are longer than that in Epoch X because some process
blocks did not pass unanimous voting. T2 in Epoch X + 1 and X + 2 are
longer than that in Epoch X because there are process blocks not passing the
unanimous voting.

voted within the same time-bound T2. A new epoch is initiated
only when a control block is accepted.

When a process block of epoch X + 1 is rejected in an
accepted control block, the corresponding process shard will
not undergo any new state evolution in epoch X+1. Therefore,
the state of that process shard in epoch X + 1 will be the
same as in epoch X . Fig. 3 provides a visual illustration of
the process and control shards in Reticulum. The pseudo-code
for the second phase is given in Alg. 3.

Corollary 1. Even if the adversaries have a node in each
process shard, the system can resist attacks on liveness while
maintaining safety.

Proof: A node is expelled from the system and its PoS
be confiscated if it proposed a process block containing faulty
information (when it is a leader node), or it voted for a process
block containing faulty information or it did not vote at least
τ − 1 times in every τ rounds of voting. Consider two types
of adversarial behaviors:

1) Adversaries aiming to retain PoS: To avoid losing
their PoS, adversaries can only remain silent once in every
τ round of first-phase voting. By setting τ appropriately, the
number of process blocks progressing to the second phase can
be restricted. This restriction inhibits the ability of adversaries
to influence the consensus outcome and preserves the integrity
of the system.

2) Adversaries wishing to halt system progress: Ad-

Algorithm 3 Second phase of Two-layer consensus
1: procedure SECONDPHASE(node) ▷ node run this

procedure
2: if node ∈ failedprocessshard then
3: send last state and the process block to nodes in

the same control shard
4: if node is the leader node in control shard then
5: for B ∈ process shards do
6: VerifyProcessBlock(B)
7: create and broadcast the control block accordingly
8: vote for the control block
9: if control block is accepted by majority within T2 then

10: for node i ∈ control shard do
11: confiscated node i’s PoS and expel node i if

node i is considered the adversarial node.
12: initiate new epoch
13: else
14: repeat second phase with same T2

15: if process block of epoch X + 1 is rejected in control
block then

16: state for process shard in epoch X +1 is set to be
identical to state in epoch X

17: function VERIFYPROCESSBLOCK(B)
18: if B passed unanimous voting within T1 then
19: attach signatures of voters to B to the control block
20: attach boolean parameter indicating B passed

unanimous voting to the control block
21: else
22: attach boolean parameter indicating B failed unan-

imous voting to the control block
23: attach decision to accept or reject B to the control

block
24: Calculate T2:
25: λ - constant value
26: Ns is the count of succeeded process shards in control

shard
27: T2 ← λ · (⌊Nc/Np⌋ −Ns + 1)

versaries may attempt to halt the system progress by leaving
the system permanently, even if their PoS is confiscated by
the system. The loss of a relatively small β number of PoS
(one adversarial node per process shard), is outweighed by
the potential gain of bringing the system to a complete stop.
Although such attacks could be detrimental, the system is
designed to expel these nodes at the second epoch since the
attack and recover liveness by seeking unanimous consensus
among the remaining nodes in the shard.

It can be inferred that the expelled nodes, which fail to
participate in the system at every τ , are not classified as one of
the

⌊
2(N−1)

3

⌋
+1 constant uncorrupted participants nodes. By

referencing Def. 1 (the liveness guarantee theorem), given that
the system maintains τ liveness guarantee for the honest nodes,
there are sufficient honest nodes to ensure the constant safety
and liveness guarantee of the control shards after deleting the
expelled nodes. Consequently, the process shards can safely
seek unanimous consensus among the remaining nodes.

Hence, the two-layer consensus protocol resists attacks
on liveness and will always recover from the attacks while

7

upholding safety.

Theorem 3. The two-layer consensus protocol guarantees
safety, ensuring that only blocks approved by a unanimous
vote in the first phase or by a majority vote in the second
phase are accepted, and rejected blocks do not affect the state
evolution in subsequent epochs.

Proof: Please see the full proof in Appx. A2.

D. Cross-shard transaction

Cross-shard transactions involve the exchange of records
between different process shards. Because nodes only know
transactions within their own shards, the cross-shard trans-
action requires verifying the authenticity and timeliness of
records from other process shards.

A shard in Gearbox may experience deadlock, so Gearbox
requires liveness detection when doing cross-shard transac-
tions. Reticulum does not have deadlock shards. The transac-
tions in the process block is finalized and become usable when
the corresponding control block is accepted. If consider the
control shard as a shard in other sharding approaches, it allows
direct plug-in for various cross-shard transaction protocols
used in the classical sharded blockchains. Several approaches
exist for processing cross-shard transactions. Omniledger [14]
utilizes a client-driven method that collects and transmits
availability certificates. RapidChain [27] divides cross-shard
transactions into single-input single-output transactions and
commits them in a specific order. Additionally, Monoxide [20]
employs relay transactions for cross-shard processing. These
methods can be seamlessly applied in Reticulum.

We show one possible design for implementing cross-shard
transactions, which closely replicates the design implemented
by Rapidchain. In particular, each cross-shard transaction
includes unique participant identifiers, such as one or more
wallet addresses for sending money (or any recorded message)
and one or more addresses for receiving the funds. Each
cross-shard transaction can be decomposed into a set of
transactions involving a single sender address and a single
recipient address in different shards. We refer to these
individual transactions as Txcross. The Txcross is emitted
by pssend and send to psreceive which representing the
shard containing the sender address and the shard containing
the recipient address respectively. Alg. A3 in the appendix
provides the pseudocode for this process. Note that we do not
claim novelty for the cross-shard transaction designs.

Lemma 2. The cross-shard transaction mechanism in Reticu-
lum ensures the security and integrity of transactions between
different process shards, providing transaction validity, con-
sensus participation, proof of transaction, and a fixed shard
membership approach.

Proof: Please see the full proof in appendix A3.

E. Shard size and time-bound

This section calculates the process shard size Np, the
control shard size Nc and the settings for time-bound.

Set the value of Np. Let N be the number of nodes and Np

be the number of nodes in a process shard. The system has
⌊N/Np⌋ process shards and each sized at least Np. Because
nodes are randomly assigned to the shards, to fulfill a given
Pfp, where Pfp represents the probability for a particular
process shard to be compromised, it yields the equation:

Np = logPa
(Pfp) (2)

where the maximum ratio of adversarial population in the
system is Pa.

Set the value of Nc. Let Nc denote the number of nodes in a
control shard. The control shard’s safety threshold is S = L <
50%. A control shard can output illegal blocks if adversarial
nodes control more than ⌊ 12Nc⌋ nodes. The failure rate of a
control shard is:

Pfc =

Nc∑
i=⌊ 1

2Nc⌋+1

(
Nc

i

)
(Pa)

i
(1− Pa)

Nc−i (3)

With a given Pfc and Pa, Nc can be determined
accordingly. Tbl. I exhibits the size of the process and control
shards with different Pa, Pfp and Pfc.

TABLE I. PROCESS SHARD SIZE AND CONTROL SHARD SIZE

Pfp, Pfc

Np&Nc Pa

15% 20% 25% 30% 33%

10−5 7&27 8&41 9&63 10&105 11&149
10−6 8&35 9&51 10&79 12&131 13&185
10−7 9&41 11&61 12&95 14&155 15&221

Security threshold. The failure rate represents the probability
of any shard (regardless if it is a control or a process shard)
outputting illegal blocks and is denoted as Pf .

Pf <
(
(Pf)threshold = 2−σ

)
(4)

with predefined security parameter σ.

Determining Pfp and Pfc. Given (Pf)threshold and N , we
calculate the approximate Pfapprox bounded by:

Pf <
(
Pfapprox

= Pfp × β + Pfc × Λ
)
< (Pf)threshold (5)

where β = ⌊N/Np⌋ and Λ = ⌊N/Nc⌋. We want to minimize
Np and Nc to allow as many shards as possible. Tbl. II shows
several Np and Nc with the given Pfapprox

.

Parameters for time-bounds. Setting up the time-bound
for synchronous protocols is an open question for protocol
designers. A large time-bound delivers redundancy, while a
short time-bound may cause some nodes to be unable to catch
up on the communication of the network. Previous work, e.g.,
Rapidchain runs a pre-scheduled consensus among committee
members about every week to agree on a new time-bound ∆.
Thus, in theory, Reticulum can use the same design to agree
on new T1 and λ.

8

TABLE II. PROCESS SHARD SIZE AND CONTROL SHARD SIZE,
Pa = 33%, CALCULATED USING ALG. 4

Pfapprox

Np&Nc N

500 1000 5000 10000 20000

10−5 15&221 15&221 17&257 17&257 19&293
10−6 17&257 17&257 19&293 19&293 21&329
10−7 19&293 19&293 21&329 21&329 23&367

Algorithm 4 Determining Pfp and Pfc with given Pa and
Pfapprox

1: function GETNp(Pfp)
2: return ⌈logPa

(Pfp)⌉
3: function GETNc(Pfc)
4: return the smallest Nc that failure rate less than Pfc

5: function GETNc AND Np(Pfapprox)
6: argmaxi f(i) = {i × ⌊N/GETNp(i)⌋ + i ×

⌊N/GETNc(i)⌋|f(i) ≤ Pfapprox}
7: return GETNp(i) and GETNc(i)

V. ANALYSIS

This section shows an in-depth analysis for Reticulum.

A. Security Breaches

This section analyzes a possible equivocation of consensus
associated with the design that leverages the liveness (L) and
safety (S) of the shards. Indeed, the adversary cannot force the
acceptance of a block containing incorrect information if the
system only accepts a block when at least (S×M)+1 nodes
(synchronous version) or at least (max(2L, S)×M)+1 nodes
(asynchronous version) in a shard sized M voted to accept
it. This is because the system only allows at most S ratio of
adversarial population in a shard (the probability for a shard to
have more than S ratio of adversarial population is negligible.)

However, we prove in Lem. 3 that synchronous shards with
S ≥ 1

2 or partially synchronous shards with S ≥ 1
3 are unable

to achieve consensus without the possibility of equivocation,
which can lead to security breaches. This issue also affects
Reticulum because the process shards of Reticulum maintain
L = 0% and S < 100%.

Lemma 3. Synchronous shards with S ≥ 1
2 or partially syn-

chronous shards with S ≥ 1
3 are unable to achieve consensus

without the possibility of equivocation.

Proof: We know that the maximum number of adversarial
nodes allowed in a shard is f = S ·M , where S < 1 − L in
the synchronous model and S < 1 − 2L in the asynchronous
model; S ≥ L at all times.

When a block containing correct information is being voted
upon, the security assumption only guarantees that honest
nodes receive the same set of M − f honest votes from
each other. Because M − f < (S × M) + 1 (synchronous
version) and M − f < (max(2L, S)×M) + 1 (asynchronous
version), it would require the adversary nodes to vote to
accept the block. It is possible that the adversary nodes send
inconsistent votes to different nodes. This implies that not

all honest nodes will consider the block as having received
enough votes for approval. This contradicts the termination
and agreement properties of the consensus protocol, which
require all honest nodes to commit to the same value before
the consensus protocol terminates.

Admittedly, the consensus protocol uses phases of voting
(e.g., Pre-prepare, prepare, commit, etc.). For illustration, we
assume that all nodes are in the last phase before accepting a
block. Consider a synchronous example where the adversary
convinces an honest node, Alice, that a block A has received
(S×M)+ 1 votes in favor of acceptance, so Alice thinks the
block is accepted. But all other honest nodes only received
S ×M votes in favor of acceptance, so they think the block
is rejected. After the time-bound expired, the next leader node
will propose a new block B to replace A. Since Alice believes
that A has been accepted, she will not vote to accept B.
However, it is still possible for B to obtain (S×M)+1 votes
in favor of acceptance afterward because only Alice believed
A was accepted.

Ideally, Alice could attach the vote results she previously
received when voting to reject B since A was accepted first.
However, if Alice is an adversary, she can post the vote results
of A after block B has already received (S ×M) + 1 votes
for acceptance, or even after new blocks have been built on
top of B.

This demonstrates that although the adversarial nodes can-
not enforce the acceptance of adversarial blocks, they can still
cause equivocation (both A and B received (S×M)+1 votes).
The reason for this is that M−f < (S×M)+1 (synchronous
version) and M − f < (max(2L, S)×M) + 1 (asynchronous
version), indicating a lack of sufficient votes commonly known
to all honest nodes.

Because the nodes outside the shard did not listen to the
voting inside the shard, they could not determine whether A
or B received enough votes first; thus, the system could not
reach an unequivocal consensus.

One may argue that HotStuff [25] uses the leader node
to transmit the votes with threshold signatures. Thereby, dif-
ferences in the votes could be avoided. However, to achieve
unequivocal consensus, it would require that at least (S ×
M) + 1 or (max(2L, S) ×M) + 1 nodes, depending on the
communication model, follow the voting rules between the
phases. This is also unachievable.

Thus, for these shards to function safely without external
censorship, each honest node would need to initiate an instance
of Byzantine Broadcast (BB) to share the votes it has received.
However, the partially synchronous BB only functions with
f ≤ ⌊(M − 1)/3⌋ [1], which contradicts the setting of f
in the shard. The synchronous BB allows for an adversarial
majority, but it requires (M

M−f − 1)∆ per vote, where ∆
is the known communication time-bound. Therefore, only
synchronous shards with S ≥ 1

2 may function independently,
but they take a long time to finalize the voting process.

Gearbox uses a design in which each shard regularly posts
a heartbeat (a collection of vote signatures) to a “control chain”
that includes all nodes in the system. This design serves solely
the purpose of detecting liveness. However, a new epoch of a
shard does not wait for such a heartbeat to appear in the block

9

of the “control chain.” This oversight disregards the possibility
of equivocation views among honest nodes.

Even if a new epoch starts when the heartbeat is confirmed,
there are still problems. The leader node of the “control
chain” must wait until a specified time-bound to generate the
block and announce any dead shards, unless it has received
valid heartbeats from all shards. However, since there is no
consensus on the set of vote signatures (heartbeats), the leader
node may mistakenly consider a shard as dead while other
honest nodes believe otherwise. These circumstances may lead
to multiple iterations of the consensus-reaching process in the
“control chain” until the honest nodes are aligned.

Theorem 4. Reticulum is secure when operating with L = 0%
and S < 100% process shards and L, S < 50% control shards.

Proof: Reticulum does not suffer from the security
breaches indicated in Lemma 3 because the process shards do
not function independently. The blocks of the process shards
in Reticulum are confirmed in the corresponding control shard
before the next epoch starts. The votes of the process blocks
are broadcasted using synchronous BB with f ≤ ⌊(Nc−1)/2⌋
to all nodes in the corresponding control shard. Therefore, the
honest nodes in the control shard are natively aligned and it
is not possible to have consensus equivocation. We show in
Sec. V-B that such a protocol only requires 4∆ in overall and
at the communication level of O(Nc

2).

Reticulum maintains the control shards instead of a “con-
trol chain” of Gearbox. This is to ensure that the vote broad-
casting only involves Nc nodes, instead of N nodes.

B. Analysis of Overhead in Byzantine Broadcast Protocol
Utilization

In existing sharding protocols, they adopt BFT protocols
like PBFT [4] to build replicae, which incurs O(M2) com-
munication complexity, as it requires nodes to forward the
proposal (block) to avoid equivocation. There is no need
to forward votes and is safe to make a decision when a
block receives f + 1 identical votes (assume synchronous
communication) as it is impossible for a different verdict to
receive more than f votes. When a consensus decision is made
for a proposal, it only guarantees that the votes exceeded f ,
but not a consensus for the exact set of votes.

The first phase of Reticulum requires a determined set of
votes to determine adversarial nodes, therefore, each node i
utilizes a Byzantine broadcast protocol called (∆+ δ)-BB [1]
to broadcast its vote Vi, which requires four steps:

1) Step 1: The broadcaster (node i) sends the proposal
(Vi) with O(Nc) complexity.

2) Step 2: Everyone votes for and re-transmit Vi with
O(Nc

2) complexity.
3) Step 3: Everyone commits and locks with O(Nc

2)
complexity.

4) Step 4: A Byzantine agreement is conducted, which
incurs an overhead of O(Nc).

Therefore, (∆ + δ)-BB demands 4∆ to complete and the
communication complexity for determining a Vi in consensus
is at the level of O(Nc

2). Thereby, the overall complexity for

the BFT process in Reticulum reaches O(Nc
3), which is a big

overhead.

To optimize this, we design that step 2 for all instances of
(∆+δ)-BB are combined together. It is safe to do so as step 1
must end at a fixed time-bound ∆. In this combined design, a
vote in step 2 is a collection of votes for the proposals in step 1.
When step 2 are combined, steps 3 and 4 are automatically
combined.

Then Raticulum’s two-layer consensus incurs the same
complexity level: O(Nc

2) for send and forwards the proposal
and O(Nc

2) for send and forward all the votes for the proposal.
Therefore, Raticulum’s communication overhead is still at the
level of O(Nc

2), just with a bigger constant than PBFT or
other BFT protocols.

C. Attacks on liveness with different τ

This section analyzes the trade-off between the requirement
for the adversarial nodes and the system performance. When
the adversary has more than τ nodes in a process shard, the
adversary can permanently stop the process shard without
being expelled from the system. This is achieved by each
adversarial node taking terms to not participate in voting in
the first phase of the two-layer consensus or the adversarial
leaders propose incorrect blocks. Therefore, τ ≥ Np should
be set to guarantee the eventual liveness of the process shard.
The rate for successfully accepting a process block within the
process shard is

Rp =
τ − a

τ
(6)

where τ ≥ Np and a is the adversary nodes in the process
shard. We allow Np − 1 adversarial nodes in this shard in the
worst case. Thus, considering the worst case, Rp =

τ−Np+1
τ .

Fig. 4 shows different τ corresponding to different Np and
Rp. We show some numerical results: considering the worst
case Rp, to maintain a success rate Rp = 40%, Rp = 70
or Rp = 90%, an adversarial node in a process shard sized
Np = 15 may go offline for one epoch in each 24, 47 or 140
epochs respectively. This is a reasonable relaxation compared
to the constant liveness requirement.

0 100 200 300 400 500

10

20

30

N
p

Rp of the worst case
40%
45%
50%

55%
60%
65%

70%
75%
80%

85%
90%
95%

Fig. 4. τ corresponding to Rp of the worst case

If the adversary wishes to attack liveness and be expelled,
it can stop every process shard and the first phase of the overall
system for around 2a epochs. Afterward, each process shard
maintains Rp = 1.

Discussion over τ liveness. The general security assumption
for Rapidchain assumes that at any given moment, at least
2/3 of the computational resources belong to uncorrupted
participants. It infers the constant liveness for the same set of
honest participants as shown in Thm. 1. Without the constant

10

TABLE III. SOME NOTATION FOR THE CALCULATION

Notation Description

Eshard
Eshard = ⌊Nc/Np⌋ denotes the number of process
shards within a control shard.

Etime
Etime denotes the length for one blockchain epoch.
Etime = T1 + T2 for Reticulum.

Bs
Bs = 2MB denotes the block size of the process
block. It contains 4096 transactions.

Etx

Etx = Eshard × 4096 denotes the number of overall
transactions per epoch logged to the blockchain
within a control shard in Reticulum or a shard in
Rapidchain.

Ni

Ni indicates the number of nodes that store the
i-th process block in the current epoch.
Ni is determined by whether the process shard i
reached a consensus in the first phase. If the
process shard unanimously agreed on its process
block, Ni = Np; otherwise, Ni = Nc.

liveness guarantee, the verdict reached is not deterministic, for
the similar reason shown in the proof of Lem. 3.

If we wish to apply τ liveness also to the honest nodes,
the verdict reached must go through one round of byzantine
broadcast tolerating a majority adversarial population before
the next round of voting may start. which incurs significant
costs. Therefore, the same as all the existing approaches, we
just assume the constant liveness for the honest nodes.

Admittedly that allowing a larger τ (inferring a stronger
Rp) would bring the stricter liveness requirement for the adver-
sarial (unstable) nodes. One practical relaxation, in reality, is
to design that the nodes are only being given a long suspension
when identified as adversarial nodes. They may participate in
voting after the prison term.

D. Analytical performance comparison with Rapidchain

This section provides the performance comparison between
Reticulum and Rapidchain. Because there is no source code
for Rapidchain available for experiments, this section provides
an analytical comparison.

The two-layer consensus of Reticulum will first reject the
process block which contains wrong information in the process
shard and then again in the control shard. The nodes which
proposed these blocks will be marked as adversarial nodes
and be expelled. Therefore, in general terms, we would expect
that the process blocks are correct, and it is only a matter of
being accepted at the process shard or at the control shard.
Therefore we may approximate the throughput (the number of
transactions processed per second) and the storage requirement
(the storage per transaction) as follows, please find some
notations for this section in Tbl. III:

Throughput. We calculate

Throughput =
Etx

Etime
(7)

Rp affects the length of T2, so it affects the throughput.

Storage. Stx measures the overall storage incurred in the
nodes when the blockchain within a control shard logged one

transaction. We calculate

Stx =

Eshard∑
i=1

Bs ×Ni + (Ni −Np)× Statei
Etx

(8)

where Bs×Ni+(Ni−Np)×Statei calculates the combination
of the storage incurred for all the nodes that stored process
block i. Statei is the size of the current state of process shard
i. Rp determines Ni, so it also affects Stx.

To illustrate the relationship between Rp and the perfor-
mance and compare it with Rapidchain, we perform one math-
ematical simulation. In this simulation, we set (Pf)threshold =
10−7, λ = 50, Pa = 33%, N = 5000, Nc = 329 and
Np = 21. Therefore, Reticulum has 15 control shards and
each control shard has Eshard = 15 process shards inside.
Each shard in Rapidchain maintains L, S < 50% so it sized Nc

nodes, the same as the control shard of Reticulum. Therefore,
Rapidchain has 15 shards. Because Rapidchain only uses one
layer consensus, its performance is dependent on the size of
its blocks and the number of shards. The two protocols have
different settings. In order to relate the two works, we set the
same upload bandwidth for broadcasting blocks. We also set
the same Etx for both approaches, so a block of a shard in
Rapidchain sized Bs × Np, containing Etx transactions. We
make Etime different for the two approaches.

In Reticulum, the upload bandwidth requirement for the
nodes sending the process block and the latest states to all
nodes of the same control shard is denoted as UB. This may
happen in the second phase of the two-layer consensus.

1) In the worst scenario when all process shards within
the control shard fail to obtain the unanimous approval
within T1, then T2 = (Eshard + 1) × λ = 800s and
UB =

Bs×Nc+(Nc−Np)×state
T2−∆ . We assume that each state size

256KB. It is intended not to define the structure of the state
in this paper, as that is application-oriented. Here we assume,
each state contains 10922 wallet addresses (160 bits each) and
their balances within the process shard (32 bit each).

2) In the best case scenario, all process blocks obtained
the unanimous approval in the first phase, then T2 = 50s and
there is no need to post any process block to the control shard.
Assuming ∆ = 10s, the upload bandwidth requirement to send
the process block to the control shard in the worst case is,
therefore, UB ≈ 952.708KB/s. With this upload bandwidth,
it is reasonable to set T1 =

Bs×Np

UB + 4∆ ≈ 86s. Then in the
worst case, one epoch for Reticulum lasts Etime = T1+T2 =
886s. In the best case, it lasts 136s.

To use the same upload bandwidth requirement for the
leader node of Rapidchain, UB = Bs×Nc

Etime+∆ . Etime =
Bs×Nc

UB − ∆ ≈ 698s, which is similar to T2 of the worst
case. In this setting, Rapidchain has a constant storage per
transaction Stx = Bs×Nc×Nc

Etx
≈ 3608KB, it does not need

to sync the states and has a constant transaction per second
of Etx

Etime
≈ 88.022tx/s for a shard and 1320.330tx/s in the

overall system (15 shards). Note that Stx refers to the overall
storage incurred in the network instead of the storage incurred
for an individual node.

Fig. 5 shows the simulation for the theoretical performance
of Reticulum with different Rp. Etime is calculated according

11

0.5 0.6 0.7 0.8 0.9
Rp

150

200

250

300

350

400

450

Tr
an

sa
ct

io
n

pe
r s

ec
on

d
wi

th
in

 a
 c

on
tro

l s
ha

rd
0.5 0.6 0.7 0.8 0.9

Rp

20

30

40

50

60

70

80

90

St
or

ag
e

pe
r t

ra
ns

ac
tio

n
(K

B)

0.5 0.6 0.7 0.8 0.9
Rp

2000

3000

4000

5000

6000

7000

Tr
an

sa
ct

io
n

pe
r s

ec
on

d
in

 o
ve

ra
ll

Fig. 5. The theoretical throughput and storage considering different Rp, with
UB = 952.708KB/s

to the given UB. It significantly outperformed Radpichain as,
in theory, Rapidchain can be seen as the design when Reticu-
lum deteriorates to the one-layer design that all process shards
constantly failed. With Pa = 33%, Np = 21 and if set τ = 40,
we get Rp = 50% (assuming the worst case). In this case, the
transaction per second for the overall system is 1980.5tx/s,
approaching the double performance of Rapidchain and only
incurs 93.62KB storage per transaction overall in the network.
When setting τ = 411, we get Rp = 95% (assuming the worst
case). In this case, the transaction per second for the overall
system is 7077.645tx/s and only incurs 18.4099KB storage
per transaction (as more transactions are only stored in the
process shard) in overall in the network. Fig. 5 also confirms
the general assumption of the larger Rp brings the stronger
performance.

Note that we do not consider cross-shard transactions. As
mentioned in Sec. IV-D, we may plug in different cross-shard
transaction protocols and may use exactly the same design
as Rapidchain. There are no different properties in this field
between the two protocols.

VI. EXPERIMENT

This section provides a combination of experiments and
mathematical calculations to evaluate the key characteristics of
Reticulum and compare it with a Rapidchain-like protocol and
also with Gearbox. The Rapidchain-like protocol (baseline)
refers to an ordinary one-layer synchronous sharding proto-
col. We implement both baseline and Reticulum in Golang.
Gearbox was evaluated purely via simulations on mathemat-
ical models since the authors provided no source code, and
some detail designs not related to sharding are not presented,
rendering experiments infeasible.

Experiment setup. We experiment Reticulum and baseline
but simulate Gearbox. It is fair (maybe a little unfair for
Reticulum) to make a comparison in this way, as we set the
communication delays used in the mathematical simulation
the same as we observed in the experiment environment for
Reticulum. Our experiment was conducted on fifteen servers
each equipped with 32-core AMD EPYC 7R13 processors,
providing 128 vCPUs running at 3.30 GHz, 256 GB of
memory, and a network bandwidth of 10 Gbps. We added
a 200ms delay to each message to simulate the geographic
distribution of nodes.

Attack strategies. We consider four kinds of attacks from
the adversary. BankRun, where all adversarial nodes do not
vote for the process blocks at a single epoch. BankRun can

only occur once in every τ epochs. Average, where each
adversarial node does not vote once in a random epoch in
every τ epochs. Worst, where only one adversarial node
refuses to vote at each process shard in every epoch. The
adversary can stop a process shard for i < τ epochs in every
τ epochs where i is the number of adversarial nodes inside
this shard. Suicidal, is based on the worst strategy but all
adversarial nodes vote at most τ − 2 epochs in every τ epoch,
and be expelled at the second time when they remain silent
in voting.

Comparison between Reticulum and Baseline. Fig. 6
suggests that Reticulum has superior performance.

Comparison between Gearbox and Reticulum. Gearbox
assumes that the adversarial population in the system (Pa−run)
is static, unknown but below Pa where Pa−run ≤ Pa ≤ 33%.
It continually refines shard sizes and liveness thresholds until
an optimal arrangement is attained, where the adversarial
population is conquered.

To emulate the outcomes of the Gearbox system, we
instantiate a network comprising 5000 nodes, with a por-
tion represented by Pa−run being designated as adversarial.
These adversarial nodes are distributed randomly within the
network. Nodes are subsequently assigned to shards through
a random allocation process. We then assess each shard to
determine whether the percentage of adversarial nodes exceeds
the shard’s predefined liveness threshold. In cases where this
threshold is surpassed, we dissolve the existing shard and
construct a new one with a higher gear setting. This process
is iteratively executed until all shards maintain a percentage
of adversarial nodes that falls below their respective liveness
thresholds.

Gearbox only discussed the mechanisms for when and
how to rebuild a shard and to enlarge its size, which is very
high level and lacks detailed designs. Therefore, we may not
simulate the performance when rebuilding shards. But we do
know how many overlapping shards a node is in after shards
switch gears. Gearbox recommend the usage of four gears
corresponding to liveness values of 10%, 20%, 25% and 30%
within a shard. To align with our work, we additionally use
a gear of 49%. The shard size corresponding to these gears
are 26, 39, 50, 63 and 293 respectively, this is calculated
considering Pa = 33%. We repeat this entire procedure 1000
times, observing the distribution of shards across different gear
configurations, as illustrated in Fig. 7. Fig 7 also shows the
number of shards in Gearbox that a node is simultaneously
located in (overlap times) with the given adversarial ratio in
runtime. When a node is in multiple shards, it has multiple
workload.

With a given Pa−run ratio of adversarial nodes globally,
we simulate the following process: At the beginning, every
shard is built at the same size using L = 10%. We check if
a shard contains more than L of adversarial nodes, if so we
rebuild it with a larger gear. This process is repeated until there
is no shard that has an adversarial population of more than its
gear. We then know the overlapping situation. We calculate the
performance accordingly. Fig. 8 shows, with different Pa−run,
the comparison between Reticulum and Gearbox after every

12

0 20 40 60 80 100
Epoch

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(T

X/
s)

Expel slient nodes

= 40

0 200 400 600 800 1000
Epoch

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(T

X/
s)

Expel slient nodes

= 411

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

BankRun Throughput
BankRun slient nodes ratio
Suicidal Throughput

Average Throughput
Average slient nodes ratio
Suicidal slient nodes ratio

Worst Throughput
Worst slient nodes ratio
Baseline Throughput

Fig. 6. The experiment result of a system of Reticulum with (Pf)threshold = 10−7, N = 5000, Nc = 329, Np = 21, Pa = 33%, T1 = 86s, λ = 800,
Bs = 2MB (a block has 4096 transactions) and different τ and the result of Baseline with (Pf)threshold = 10−7, N = 5000 and Etime = 698s and each
shard sized 329. Silent nodes stand for the nodes (globally not just within a shard) that did not vote for the process shard at the given epoch. The experiment
setup matches the simulation setup we did in Sec. V-D. As can be seen from the picture, Reticulum outperforms Baseline in all cases. When τ is larger, the
attack worst occurs less frequently. We need at least τ+1 epochs to illustrate BankRun attacks. Therefore, the experiment last 100 epochs for τ = 40 and
1000 epochs for τ = 411.

shard of Gearbox has found a stable gear.

10% 20% 25% 30% 33%
Adversarial Nodes Ratio (%)

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge

Distribution of Gears and Overlap Time vs. Adversarial Nodes Ratio
Gear

Gear1
Gear2
Gear3
Gear4
Gear5

2

4

6

8

Ov
er

la
p

Ti
m

es

Fig. 7. The number of overlapping shards and the distribution of gears with
different adversary ratio globally

As demonstrated in Sec. V-A, the shards within the Gear-
box ecosystem face a critical challenge in achieving indepen-
dent functionality for the majority of the time. Consequently,
these shards must patiently await the finalization of their
respective blocks within the control chain before commencing
the next epoch. Failing to do so would expose them to the risk
of consensus equivocation.

One potential remedy involves configuring the block in-
terval of the control chain to be shorter than that of each
individual shard. This approach ensures that once a shard
has accepted a block, and this decision has reached at least
one honest node within the shard, the current leader node of
the control chain can be promptly informed of this decision.
This, in turn, allows for the incorporation of this decision
into the next control block, substantially mitigating the risk
of equivocation.

However, reducing the block interval of the control chain
comes with a significant drawback: it imposes a substantial
communication burden on network nodes. This is due to the
fact that the acceptance of a control block necessitates the
involvement of the entire system’s nodes, which can be a
considerable number. To address this issue, we have devised
a design in which the entire system outputs only one control
block for each block height. This ensures that the length of

the blockchain within the shards remains identical to that of
the control chain. Consequently, each shard must await the
acceptance of the next control block before initiating a new
blockchain epoch.

It is worth noting that in this simulation, we make the
simplifying assumption of zero communication cost, implying
that once the last shard reaches consensus, the control block
is instantaneously generated and accepted by all nodes—a
scenario that may be unrealistic in practice. Also, we should
acknowledge that we do not account for the possibility of
adversarial behavior by the leader node of the control chain,
such as falsely claiming that certain shards are dead when
they are still operational. Additionally, we do not address the
potential scenario in which the control block is not accepted,
which could introduce further complexities.

In terms of setting the time-bound for block generation
and a round of voting within the shard, our approach closely
follows the simulation design employed in the Gearbox paper.
Within the Gearbox paper, it is mentioned that, in the context
of the control chain, the latency in milliseconds for messages
involving committees (comprising nodes) of size s can be rea-
sonably approximated using the linear functions l = 0.37s+6.
Similarly, for the shard, the approximation is l = 0.67s+ 20.
Unfortunately, the paper does not delve into the specifics of
how these numerical values were derived.

In our paper, we also take into account the latency in-
curred when disseminating data, and we model this latency
as linearly proportional to the number of nodes involved. To
ensure the time-bound for shard-related activities is greater
than the latency incurred during message transmission, we’ve
established a relationship that satisfies l = 2.12x where x
represents the number of nodes within the shard. Note that
this estimation does not consider the potential slowdown when
a node is in multiple shards and have multiple workload in
parallel. 2.12 is chosen base on the fact that Rapidchain would
be able to generate a block and conduct one round of voting
that involves 329 nodes in a shard within 698s, which is
measured in runtime in the same experiment environment for

13

0 10 20 30 40 50
Epoch

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

X/
s)

Expel slient nodes

Pa run=10%

0 10 20 30 40 50
Epoch

0

2000

4000

6000

8000

Expel slient nodes

Pa run=20%

0 10 20 30 40 50
Epoch

0

2000

4000

6000

8000

Expel slient nodes

Pa run=30%

Reticulum Throughput (BankRun slient nodes, = 40)
Reticulum Throughput (Average slient nodes, = 40)
Reticulum Throughput (Suicidal slient nodes, = 40)

Reticulum Throughput (Worst slient nodes, = 40)
Reticulum Throughput (BankRun slient nodes, = 411)
Reticulum Throughput (Average slient nodes, = 411)

Reticulum Throughput (Suicidal slient nodes, = 411)
Reticulum Throughput (Worst slient nodes, = 411)
Gearbox Throughput

Fig. 8. The experiment result of a system of Reticulum with (Pf)threshold = 10−7, N = 5000, Nc = 329, Np = 21, T1 = 86s, λ = 800, Bs = 2MB (a
block has 4096 transactions) and τ = 40. Because Reticulum has methods to mitigate attacks on liveness and Gearbox does not have such features, all Pa−run

nodes will actively attack in Gearbox, but will attack according to the attack strategies in Reticulum as we outlined previously. The figure also shows the result
of Gearbox with (Pf)threshold = 10−7, N = 5000 and Bs = 2MB (a block has 4096 transactions) after each shard has found a stable gear. In the biggest
gear L = 49%, a shard contains 329 nodes, which reaches the same size of a control shard of Reticulum.

Reticulum and Rapidchain. Consequently, the time-bound for
block generation and the subsequent voting rounds are set
at 55.12s, 82.68, 106s, 133.56s, and 621.16s, corresponding
to the various shard sizes in different gears. This approach
ensures that the time intervals are both consistent with the
Gearbox paper’s principles and suitably adjusted to account
for the latency incurred in our specific context. Fig. 8 shows
the performance of the comparison between Geaxbox and
Reticulum in terms of throughput and Fig. 9 shows that for
the storage. The storage and download bandwidth comparison
between Reticulum and Baseline are given in Fig. 10 and
Fig. 11 respectively.

VII. RELATED WORK

Several sharding protocols [16], [21], [24], [14], [27], [2]
have been proposed in recent years to address scalability issues
in blockchain systems. This section reviews some of the most
representative ones. It should be noted that there are alternative
approaches, such as Prism [3] and OHIE [26], which are
limited to the Proof-of-Work (PoW) setting, selecting blocks
via resource competition rather than a leader-and-vote-based
consensus, and will not be discussed here.

A common issue of the works is that they only consider
tolerating an upper bound of the adversarial population, which
may not perform well when the adversarial population is
lower than the upper bound. Recent efforts [22], [7] attempt
to adjust the shards according to the adversarial population.
The first work for sharding that uses S > 50% to the
knowledge of the authors, is proposed in 2020 [21], a proposal
which seeks to achieve f ≤ (M − 1)/2 in a shard with
f ≤ (N − 1)/2 in overall via node classification. However,
the method’s effectiveness depends on the adversary’s strategy,
which is inaccurately represented in the paper. Consequently,
the protocol’s reliability in real-world scenarios is uncertain.
A protocol based on [21] enabling two-way adjustments to
shard size based on the actual percentage of the adversarial

population and the runtime workload, without overlapping
shard membership, is proposed in [22]. However, the protocol
is vulnerable to attacks by adversaries who frequently trigger
adjustments in both directions, causing significant overhead
for adjusting shards and data synchronization. Additionally,
the paper inherits the error of [21], which makes it unreliable.
Gearbox [7] is a protocol that enables one-directional adjust-
ment of shard size based on the percentage of the adversarial
population in the network. It operates under the assumption
that the actual adversarial population in a shard is unknown
but fixed and below the worst-case ((L = S) < 50%). Gearbox
cannot determine the runtime adversary population; it can only
approximate it by gradually “switching gears.” The system
starts with a small shard size and hence a small L value. If a
shard loses liveness, Gearbox continuously increases the shard
size and its L value until it surpasses the actual adversarial
population in the shards. At this point, the shard is considered
alive and can output blocks. This approach, however, does
not account for runtime fluctuations in the population of
adversarial nodes or the presence of different adversaries over
time. Maintaining a shard size that accommodates an all-time
high adversarial population is inefficient when the percentage
may vary at runtime. Simply making shard size adjustments
in both directions to enable runtime increase and decrease
of L will not work in practice. Because the attacker can
easily trigger a loop in “switching gears”, resulting in frequent
and costly shard adjustments. Additionally, overlapping shards
can occur in Gearbox, because it only resizes shards without
adjusting the number of shards. The overlapping shards can
suffer from duplicated workloads, and more transactions need
to involve more than one shard, resulting in more cross-shard
transactions and less parallelism. To maintain non-overlapping
shards, resizing them to form new ones when a single shard
loses liveness is necessary. However, this needs to divide
or merge transactions governed by the original shards into
new ones, which is complicated and costly. Thus, despite the
limitation, Gearbox opts for not adjusting the number of shards

14

0 10 20 30 40 50
Epoch

25

50

75

100

125

150

175

200

St
or

ag
e(

KB
/tx

)

Expel slient nodes

Pa run=10%

0 10 20 30 40 50
Epoch

25

50

75

100

125

150

175

200

Expel slient nodes

Pa run=20%

0 10 20 30 40 50
Epoch

25

50

75

100

125

150

175

200

Expel slient nodes

Pa run=30%

Reticulum Storage (BankRun slient nodes, = 40)
Reticulum Storage (Average slient nodes, = 40)
Reticulum Storage (Suicidal slient nodes, = 40)

Reticulum Storage (Worst slient nodes, = 40)
Reticulum Storage (BankRun slient nodes, = 411)
Reticulum Storage (Average slient nodes, = 411)

Reticulum Storage (Suicidal slient nodes, = 411)
Reticulum Storage (Worst slient nodes, = 411)
Gearbox Storage

Fig. 9. The experimental results in terms of storage occurred over the entire network of Reticulum with (Pf)threshold = 10−7, N = 5000, Nc = 329,
Np = 21, T1 = 86s, λ = 800, Bs = 2MB (a block has 4096 transactions) and τ = 40. The figure also shows the result of Gearbox with (Pf)threshold =
10−7, N = 5000 and Bs = 2MB (a block has 4096 transactions) after each shard has found a stable gear. As can be seen from the picture, Reticulum
uncontestedly outperforms Gearbox in all cases. Note that the storage does not refer to the storage for a single node, but the storage occurred over the entire
network.

0 20 40 60 80 100
Epoch

0

50

100

150

St
or

ag
e(

KB
/tx

)

Expel slient nodes

= 40

0 200 400 600 800 1000
Epoch

0

50

100

150

St
or

ag
e(

KB
/tx

)

Expel slient nodes

= 411

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

BankRun Storage
BankRun slient nodes ratio
Suicidal Storage

Average Storage
Average slient nodes ratio
Suicidal slient nodes ratio

Worst Storage
Worst slient nodes ratio
Baseline Storage

Fig. 10. The experiment result (storage) of a system of Reticulum with (Pf)threshold = 10−7, N = 5000, Nc = 329, Np = 21, Pa = 33%, T1 = 86s,
λ = 800, Bs = 2MB (a block has 4096 transactions) and different τ and the result of Baseline with (Pf)threshold = 10−7, N = 5000 and Etime = 698s
and each shard sized 329. Bs = 2MB (a block has 4096 transactions). Silent nodes (globally not just within a shard) stand for the nodes that did not vote
for the process shard at the given epoch. The experiment setup matches the simulation setup we did in Sec. V-D. As can be seen from the picture, Reticulum
outperforms Baseline in all cases. When τ is larger, the attack worst occurs less frequently. We need at least τ+1 epochs to illustrate BankRun attacks. Therefore,
the experiment last 100 epochs for τ = 40 and 1000 epochs for τ = 411. Because transactions are handled in the process shard level, which consists of fewer
nodes than a shard in Baseline, nodes keep fewer transactions compared to Baseline. Note that the storage does not refer to the storage for a single node, but
the storage occurred over the entire network.

to avoid the aforementioned issues. Lastly, the previous two
works [21], [22] and Gearbox are insecure, as shown in Lem. 3.

VIII. CONCLUSION

In conclusion, the Reticulum sharding protocol presents a
promising solution for enhancing the scalability of blockchain
technology. By separately considering attacks on liveness and
safety and providing methods for liveness attack inhibition,
Reticulum provided superior performance. The two-phase de-
sign of Reticulum, consisting of control and process shards,
enables nodes to detect adversarial behaviours and further split
the workload and storage into tiny groups (process shards).
The protocol leverages unanimous voting in the first phase to

involve fewer nodes for accepting/rejecting a block, allowing
more parallel process shards, while the control shard comes
into play for consensus finalization and as a liveness rescue
when disputes arise. Overall, the analysis and experimental
results demonstrate that Reticulum is a superior sharding
protocol for blockchain networks.

REFERENCES

[1] ABRAHAM, I., NAYAK, K., REN, L., AND XIANG, Z. Good-case la-
tency of byzantine broadcast: A complete categorization. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing
(2021), pp. 331–341.

15

0 20 40 60 80 100
Epoch

500
550
600
650
700
750
800
850

Ba
nd

wi
dt

h(
KB

/s
)

Expel slient nodes

= 40

0 200 400 600 800 1000
Epoch

500
550
600
650
700
750
800
850

ba
nd

wi
dt

h(
KB

/s
)

Expel slient nodes

= 411

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

0%
10%
20%
30%

Sl
ie

nt
 n

od
es

 R
at

io

Expel slient nodes

BankRun bandwidth
BankRun slient nodes ratio
Suicidal bandwidth

Average bandwidth
Average slient nodes ratio
Suicidal slient nodes ratio

Worst bandwidth
Worst slient nodes ratio
Baseline bandwidth

Fig. 11. The experiment result (download bandwidth) of a system of Reticulum with (Pf)threshold = 10−7, N = 5000, Nc = 329, Np = 21, Pa = 33%,
T1 = 86s, λ = 800, Bs = 2MB (a block has 4096 transactions) and different τ and the result of Baseline with (Pf)threshold = 10−7, N = 5000 and
Etime = 698s and each shard sized 329. Bs = 2MB (a block has 4096 transactions). Silent nodes (globally not just within a shard) stand for the nodes that
did not vote for the process shard at the given epoch.

[2] AVARIKIOTI, G., KOKORIS-KOGIAS, E., AND WATTENHOFER, R.
Divide and scale: Formalization of distributed ledger sharding protocols.
arXiv preprint arXiv:1910.10434 (2019).

[3] BAGARIA, V., KANNAN, S., TSE, D., FANTI, G., AND VISWANATH,
P. Prism: Deconstructing the blockchain to approach physical limits. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (2019), pp. 585–602.

[4] CASTRO, M., LISKOV, B., ET AL. Practical byzantine fault tolerance.
In OsDI (1999), vol. 99, pp. 173–186.

[5] DANG, H., DINH, T. T. A., LOGHIN, D., CHANG, E.-C., LIN, Q.,
AND OOI, B. C. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management of
data (2019), pp. 123–140.

[6] DAS, S., YUREK, T., XIANG, Z., MILLER, A., KOKORIS-KOGIAS, L.,
AND REN, L. Practical asynchronous distributed key generation. In
2022 IEEE Symposium on Security and Privacy (SP) (2022), IEEE,
pp. 2518–2534.

[7] DAVID, B., MAGRI, B., MATT, C., NIELSEN, J. B., AND TSCHUDI,
D. Gearbox: Optimal-size shard committees by leveraging the safety-
liveness dichotomy. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security (2022), pp. 683–696.

[8] HONG, Z., GUO, S., LI, P., AND CHEN, W. Pyramid: A layered shard-
ing blockchain system. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications (2021), IEEE, pp. 1–10.

[9] HUANG, C., WANG, Z., CHEN, H., HU, Q., ZHANG, Q., WANG, W.,
AND GUAN, X. Repchain: A reputation-based secure, fast, and high
incentive blockchain system via sharding. IEEE Internet of Things
Journal 8, 6 (2020), 4291–4304.

[10] HUANG, H., PENG, X., ZHAN, J., ZHANG, S., LIN, Y., ZHENG, Z.,
AND GUO, S. Brokerchain: A cross-shard blockchain protocol for
account/balance-based state sharding. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications (2022), IEEE, pp. 1968–
1977.

[11] KARP, R., SCHINDELHAUER, C., SHENKER, S., AND VOCKING, B.
Randomized rumor spreading. In Proceedings 41st Annual Symposium
on Foundations of Computer Science (2000), IEEE, pp. 565–574.

[12] KHACEF, K., BENBERNOU, S., OUZIRI, M., AND YOUNAS, M. Trade-
off between security and scalability in blockchain design: A dynamic
sharding approach. In The International Conference on Deep Learning,
Big Data and Blockchain (Deep-BDB 2021) (2022), Springer, pp. 77–
90.

[13] KIAYIAS, A., RUSSELL, A., DAVID, B., AND OLIYNYKOV, R.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Advances in Cryptology–CRYPTO 2017: 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017,
Proceedings, Part I (2017), Springer, pp. 357–388.

[14] KOKORIS-KOGIAS, E., JOVANOVIC, P., GASSER, L., GAILLY, N.,
SYTA, E., AND FORD, B. Omniledger: A secure, scale-out, decen-
tralized ledger via sharding. In 2018 IEEE Symposium on Security and
Privacy (SP) (2018), IEEE, pp. 583–598.

[15] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclusive block
chain protocols. In Financial Cryptography and Data Security: 19th
International Conference, FC 2015, San Juan, Puerto Rico, January 26-
30, 2015, Revised Selected Papers 19 (2015), Springer, pp. 528–547.

[16] LUU, L., NARAYANAN, V., ZHENG, C., BAWEJA, K., GILBERT, S.,
AND SAXENA, P. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security (2016), pp. 17–30.

[17] REN, L., NAYAK, K., ABRAHAM, I., AND DEVADAS, S. Practical
synchronous byzantine consensus. CoRR abs/1704.02397 (2017).

[18] WANG, C., AND RAVIV, N. Low latency cross-shard transactions
in coded blockchain. In 2021 IEEE International Symposium on
Information Theory (ISIT) (2021), IEEE, pp. 2678–2683.

[19] WANG, G., SHI, Z. J., NIXON, M., AND HAN, S. Sok: Sharding on
blockchain. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies (2019), pp. 41–61.

[20] WANG, J., AND WANG, H. Monoxide: Scale out blockchains with asyn-
chronous consensus zones. In 16th USENIX symposium on networked
systems design and implementation (NSDI 19) (2019), pp. 95–112.

[21] XU, Y., AND HUANG, Y. An n/2 byzantine node tolerate blockchain
sharding approach. In Proceedings of the 35th Annual ACM Symposium
on Applied Computing (2020), pp. 349–352.

[22] XU, Y., HUANG, Y., SHAO, J., AND THEODORAKOPOULOS, G. A
flexible n/2 adversary node resistant and halting recoverable blockchain
sharding protocol. Concurrency and Computation: Practice and Expe-
rience 32, 19 (2020), e5773.

[23] XU, Y., SLAATS, T., AND DÜDDER, B. Poster: Unanimous-majority -
pushing blockchain sharding throughput to its limit. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2022), CCS ’22, Association for
Computing Machinery, p. 3495–3497.

[24] XU, Y., SLAATS, T., AND DÜDDER, B. A two-dimensional sharding
model for access control and data privilege management of blockchain.
Simulation Modelling Practice and Theory 122 (2023), 102678.

[25] YIN, M., MALKHI, D., REITER, M. K., GUETA, G. G., AND ABRA-
HAM, I. Hotstuff: Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (2019), pp. 347–356.

[26] YU, H., NIKOLIĆ, I., HOU, R., AND SAXENA, P. Ohie: Blockchain
scaling made simple. In 2020 IEEE Symposium on Security and Privacy
(SP) (2020), IEEE, pp. 90–105.

16

[27] ZAMANI, M., MOVAHEDI, M., AND RAYKOVA, M. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security (2018),
pp. 931–948.

[28] ZAMYATIN, A., AL-BASSAM, M., ZINDROS, D., KOKORIS-KOGIAS,
E., MORENO-SANCHEZ, P., KIAYIAS, A., AND KNOTTENBELT, W. J.
Sok: Communication across distributed ledgers. In International Con-
ference on Financial Cryptography and Data Security (2021), Springer,
pp. 3–36.

[29] ZHENG, P., XU, Q., ZHENG, Z., ZHOU, Z., YAN, Y., AND ZHANG,
H. Meepo: Sharded consortium blockchain. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE) (2021), IEEE,
pp. 1847–1852.

APPENDIX

A. Security analysis for the design of Reticulum protocol

1) Bootstrapping: Lemma. The bootstrapping phase guar-
antees the safety property of shard membership assignment,
ensuring that no node is assigned to multiple shards.

Proof: To prove the safety property of the bootstrapping
phase, we need to show that no node is assigned to multiple
shards, i.e., there are no conflicts in shard membership assign-
ments.

Suppose there exists a node Nodej that is assigned to both
psindex1

and csindex2
, where psindex1

represents the process
shard with index index1, and csindex2

represents the control
shard with index index2. This would imply a conflict in shard
membership assignment.

Let’s consider the getShardIndex function and its steps:

1) Cindex is the index of Nodej in the sequence C. Since
C is generated using a random beacon and each node is
assigned a unique index, there are no duplicate indices.

2) index1 is calculated as ⌊Cindex/Np⌋. This calculation
ensures that Nodej is assigned to a specific process shard
based on its index.

3) index2 is calculated as ⌊index1/(Nc/Np)⌋. This calcula-
tion ensures that Nodej is assigned to a specific control
shard based on its process shard index.

4) If Cindex exceeds or is equal to ⌊N/Nc⌋ ×Nc, index2 is
decremented by 1 to avoid the creation of a new control
shard. This adjustment ensures that nodes are not duplicated
across multiple shards.

5) If N ∤ Np, additional nodes are added to the last process
shard but not a new process shard. The calculation of
index1 limits the assignment of nodes to the last process
shard, avoiding duplication.

Based on the steps of the getShardIndex algorithm, we can
conclude that the assignment of a node to a process shard
and a control shard is unique and does not conflict with any
other shard assignments. This guarantees the safety property
of the bootstrapping phase, ensuring that no node is assigned
to multiple shards.

Therefore, the bootstrapping phase design provides a safe
and conflict-free mechanism for assigning shard memberships
to nodes.

2) Two-layer Consensus Safety: Theorem. The two-layer
consensus protocol ensures safety by accepting blocks ap-
proved either unanimously in the first phase or by a majority
vote in the second phase. Rejected blocks do not impact
subsequent state evolution.

Proof: To prove safety:

1) Unanimously approved blocks in the first phase are
considered safe and not processed further.

2) Blocks lacking unanimous approval proceed to the
second phase for verification.

3) Only process blocks with majority approval in the
second phase are accepted, ensuring safety.

4) Rejected blocks in the second phase have no impact
on subsequent state evolution, maintaining safety.

Proof of Claim 1: Unanimously accepted blocks are safe,
as all nodes in the process shard agree within the time-bound
T1. No adversarial behavior guarantees unanimous approval.

Proof of Claim 2: Blocks lacking unanimous approval
proceed to the second phase for verification, ensuring safety
against potential adversarial nodes.

Proof of Claim 3: Majority approval in the second phase
ensures safety by accepting process blocks marked as accepted
by the leader node.

Proof of Claim 4: Rejected process blocks in an accepted
control block do not alter subsequent state evolution, main-
taining safety and consistency across epochs.

In conclusion, the two-layer consensus protocol provides a
secure mechanism for distributed system consensus.

3) Cross-shard transactions: Lemma. The cross-shard
transaction mechanism in Reticulum ensures the security and
integrity of transactions between different process shards,
providing transaction validity, consensus participation, proof
of transaction, and a fixed shard membership approach.

Proof:

To prove the security of the cross-shard transaction mech-
anism in Reticulum, we examine each of the key aspects
identified in the security analysis.

Transaction Validity: The validity of each cross-shard
transaction is ensured through signature verification and bal-
ance sufficiency checks. In Alg. A3, both the sender shard
(pssend) and recipient shard (psreceive) validate the signature
of the transaction and verify that the sender’s balance is
sufficient. Only transactions with valid signatures and sufficient
balances are processed and included in the respective shards’
blocks.

Consensus Participation: Reticulum leverages a two-layer
consensus process for including cross-shard transactions in
the blocks of their respective shards. This ensures that the
transactions are agreed upon by the participating nodes. The
consensus process guarantees that the majority of nodes reach a
consensus on the validity and order of transactions, preventing
malicious actors from manipulating the transaction history.

Proof of Transaction: The cross-shard transaction mecha-
nism in Reticulum includes the Merkle proof of the block con-
taining Txcross1 as proof to the recipient shard, psreceive. This

17

Algorithm A.3 Handling of Cross-Shard Transactions
psreceive

1: procedure HANDLETRANSACTION(Txcross)
2: if signature is valid then
3: Generate two transaction: Txcross1 ← deduct from

sender address; Txcross2 ← deposit to recipient address;
4: else
5: Discard this transaction
6: return
7: Send Txcross1 to pssend
8: while Get the Merkle proof of the process block that

contains Txcross1 and the process block has been accepted
do

9: The current leader node adds Txcross2 to the
process block of PSreceive as a normal transaction.

pssend
1: procedure RECEIVE(Txcross1)
2: if signature is valid & balance of sender is sufficient

then
3: The current leader node adds Txcross1 to the

process block as a normal transaction
4: else
5: Discard this transaction
6: return
7: while The block that contains Txcross1 has been

accepted into the blockchain of pssend do
8: Send the Merkle proof of this process block to

psreceive

proof allows psreceive to verify the authenticity and integrity
of the transaction. By validating the Merkle proof, psreceive
can confirm that the sender has sufficient funds and that the
funds have been deducted. This proof mechanism ensures the
security and correctness of cross-shard transactions.

Fixed Shard Membership: Reticulum’s fixed shard mem-
bership approach simplifies the handling of cross-shard trans-
actions for approaches that leverage liveness and security by
avoiding the complexities of dead shards and shard member-
ship changes. With a fixed set of nodes participating in the
consensus process for an epoch, the same as the classical
protocols like Rapidchain or Ominiledger, the system achieves
stability and security. Reticulum’s deadlock-free design much
simplified the process and the time to finalize the cross-shard
transactions.

Based on the above analysis, the cross-shard transaction
mechanism in Reticulum ensures the security and integrity of
transactions between different process shards. By enforcing
transaction validity, leveraging consensus participation, pro-
viding proof of transaction, and employing a fixed node mem-
bership approach, Reticulum establishes a secure foundation
for cross-shard transactions.

Therefore, we can conclude that the lemma holds, and the
security of cross-shard transactions in Reticulum is assured.

B. Artifact Appendix

This section shows the artifact description we submit-
ted to the NDSS 2024 Artifact Evaluation committees. The
committees evaluated a preliminary version of the artifact,

granting the Functional and Reproduced badges. Later in time,
the source materials of the artifact benefited from several
enhancements and additions.

This artifact appendix presents a detailed derivation process
for figures ranging from Fig. 6 to Fig. 11 in the paper.
While we aimed to provide comprehensive design details and
open-source code for the Gearbox component, we had to
resort to mathematical simulations to obtain results due to
the unavailability of detailed design from the Gearbox paper.
Conversely, we were able to gather results for Reticulum and
Rapidchain through experimentation. We developed a protocol
that replicate the relevant details of Rapidchain and denoted
as Baseline.

In the experiment section, we showcased the outcomes of
a system consisting of 5000 nodes distributed across fifteen
servers, each equipped with 32-core AMD EPYC 7R13 pro-
cessors. These servers provided 128 virtual CPUs running at
3.30 GHz, 256 GB of memory, and a network bandwidth of 10
Gbps. However, it’s important to note that the experimentation
process incurred significant costs.

Regrettably, these experiments do not align with the arti-
fact committee’s requirements, which stipulate that proposed
experiments should be executable in a single day and run on a
standard desktop machine. As such, we’ve conducted a scaled-
down experiment using only 45 nodes.

It’s worth highlighting that the security of sharded
blockchains heavily relies on a large number of nodes. Con-
sequently, it was impossible to maintain the proposed 10−7

failure probability with just 45 nodes. 1 In this reduced setup,
we had to adjust the failure probability to 10−2. Under these
conditions, we were able to safely implement one control shard
comprising 45 nodes and three processing shards, each con-
taining 15 nodes. Detailed calculations regarding the numerical
relationship between the failure probability and the sizes of the
control and processing shards can be found in Section IV.D of
the paper.

It is essential to mention that experimenting with only one
control shard is reasonable, as control shards operate indepen-
dently and only communicate when cross-shard transactions
occur. However, it’s important to note that our paper does
not include benchmarks for cross-shard transactions, and our
experiments do not involve them either. Consequently, the
transactions per second for the entire system can be easily
calculated as a simple multiplication of the transaction rate
within a single shard.

Furthermore, when considering storage requirements for
nodes, we only take into account the storage that occurs within
a control shard. Therefore, it is reasonable to perform testing
with just one control shard.

1) Downscaled Experiment for Rapidchain and Reticulum:

• Accessing the Resources. We make these mate-
rials available to the community at https://github.
com/WaterandCola/Reticulum/. We offered a cloud

1The failure proablity refers to the probablity for the adversarial nodes
which are the minority in the system, accumulate enough nodes in a shard to
manipulate the shard consensus.

18

https://github.com/WaterandCola/Reticulum/
https://github.com/WaterandCola/Reticulum/

instance with an x86-64 CPU, 8 cores, and 16 GB
of RAM (c5.2xlarge) during the artifact evaluation
period.

• Hardware Dependencies. The experiment relies on a
cloud instance with the following specifications:
- x86-64 CPU
- 8 cores
- 16 GB of RAM

• Software Dependencies. Ensure that the following
software components are installed:
- golang-1.19
- Ubuntu 20.04

Explanation of Time-Bounds Settings. Both Reticulum and
RapidChain operate as synchronous models. When a time-
bound is reached, a decision is made based on voting, and the
next epoch begins (unless the block is rejected). To maintain
consistent bandwidth usage per node, we have set the following
time-bound parameters:
- T1 = 16s
- λ = 9s
- T2max

= (3 + 1)× 9 = 36s
- δ = 1s

Using the calculation formula from Section V.D, we obtain:

UB =
2MB × 45 + 30× 256KB

T2max
− δ

= 2.78MB/s.

The epoch time for Rapidchain is Etime = 16.2s, ensuring
that both approaches require the same upload bandwidth.

2) Simulation for Gearbox.:

• Accessing the Simulation. Please refer to the file
Gearbox 0930.ipynb in the Github page for access
to the simulation. Note that because it is purely
mathematical simulation, consistent to the original
experiment in the paper, we show the situation for
a system containing 5000 nodes.

• Hardware Dependencies. No specific hardware de-
pendencies are required for this simulation.

• Software Dependencies The simulation does not have
any specific software dependencies.

3) Benchmarks: We have conducted two benchmarks, mea-
suring transactions per second and storage while considering
various attack types for Reticulum, as outlined in the Attack
Strategies section of Section VI. We set τ = 40 (as defined
in the Threat Model of Section III.A). The benchmarks are
defined in the Threat Model of Section III.A as follows:
- Transaction per second is referred to as “Throughput.” -
Storage is referred to as “Storage.”

4) Artifact Installation & Configuration: Please refer
to our GitHub page. If you are using our cloud in-
stance, then run ./runall.sh directly. After the running
of the experiment, run the following terminal command
to generate the experiment result: jupyter-nbconvert –
to=html –ExecutePreprocessor.enabled=True Figure of Exper-
iment.ipynb

5) Experiment Workflow: The experiment follows the fol-
lowing workflow:

1. Each node in the network queries the Drand API to
obtain the current random number, determining their
placement in process and control shards.

2. Leader nodes for the process and control shards are
randomly selected at the beginning of the experiment.

3. Blockchain epochs commence when a control block
from the previous blockchain is accepted, signifying
the end of the previous epoch.

4. During a blockchain epoch, each process shard gen-
erates and votes for process blocks.

5. After the time-bound T1 elapses, the control shard
collects process blocks that didn’t achieve unanimous
voting within T1 and generates a control block.

6. All members within the control shard cast their votes
for the control block.

7. The experiment concludes after a pre-defined number
of epochs. The benchmark results are presented graph-
ically, akin to those in the research paper.

6) Major Claims:

• Claim 1: We propose Reticulum, a pioneering protocol
that achieves both liveness and safety while mitigating
security vulnerabilities. Reticulum effectively prevents
adversarial behaviors, all without the need for dynamic
shard respawning or overlapping shard memberships,
thus minimizing unnecessary overhead. This claim
is substantiated by our design details and proofs,
independent of the experiment.

• Claim 2: We conduct a comprehensive performance
analysis of Reticulum, comparing it with state-of-the-
art approaches. Our empirical evaluation encompasses
both simulations and experiments, wherein Reticu-
lum outperforms two leading protocols, Gearbox and
Rapidchain, in terms of transaction throughput and
storage requirements. We aim to substantiate this
claim through the artifact evaluation.

• Claim 3: We have developed and openly shared a fully
functional prototype of Reticulum. This implementa-
tion addresses the dearth of available block shard-
ing protocol implementations, facilitating comparisons
between different protocols through experimentation.
Researchers can utilize our open-source prototype as
a valuable resource for blockchain sharding research.

7) Evaluation:

1. Download the project code [1 human-minute + 3
compute-minutes].

2. Run the project code [1 human-minute + 3200
compute-minutes]. The experiment spans 100 epochs.

3. Generate a comparison of results between Rapidchain
and Reticulum [1 human-minute + 1 compute-minute].

[Results] The results showcase benchmarks for one control
shard of Reticulum and one shard of Rapidchain. Since we

19

./runall.sh

don’t test cross-shard transactions, the number of shards de-
termines overall transaction throughput. With an increasing
number of nodes, more shards become available. Currently, we
have one control shard and three process shards for Reticulum,
and only one shard for Rapidchain. When we scale up to 5000
nodes, the test results for both approaches will see significant
improvements. However, Rapidchain’s performance remains
significantly lower compared to Reticulum.

20

	Introduction
	Contribution

	Overview
	Problem domain
	System model
	System overview
	Objectives

	Reticulum protocol
	Bootstrapping
	The first phase
	The second phase
	Cross-shard transaction
	Shard size and time-bound

	Analysis
	Security Breaches
	Analysis of Overhead in Byzantine Broadcast Protocol Utilization
	Attacks on liveness with different
	Analytical performance comparison with Rapidchain

	Experiment
	Related Work
	Conclusion
	References
	Appendix
	Security analysis for the design of Reticulum protocol
	Bootstrapping
	Two-layer Consensus Safety
	Cross-shard transactions

	Artifact Appendix
	Downscaled Experiment for Rapidchain and Reticulum
	Simulation for Gearbox.
	Benchmarks
	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation

