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Abstract

Pseudorandom unitaries (PRUs) are ensembles of efficiently implementable unitary operators that
cannot be distinguished from Haar random unitaries by any quantum polynomial-time algorithm with
query access to the unitary. We present a simple PRU construction that is a concatenation of a random
Clifford unitary, a pseudorandom binary phase operator, and a pseudorandom permutation operator. We
prove that this PRU construction is secure against non-adaptive distinguishers assuming the existence
of quantum-secure one-way functions. This means that no efficient quantum query algorithm that is
allowed a single application of U⊗poly(n) can distinguish whether an n-qubit unitary U was drawn from
the Haar measure or our PRU ensemble. We conjecture that our PRU construction remains secure against
adaptive distinguishers, i.e. secure against distinguishers that can query the unitary polynomially many
times in sequence, not just in parallel.

1 Introduction
Pseudorandom unitaries (PRUs) are ensembles1 {Uk}k∈K of unitaries that are efficient to implement, but
that look indistinguishable from Haar random unitaries to any polynomial-time distinguisher. This means
that no polynomial-time distinguisher with oracle access to either a Haar random unitary or a unitary chosen
uniformly from the PRU ensemble {Uk} can tell the two cases apart.

PRUs are the natural quantum analogue to pseudorandom functions (PRFs), an idea that has proven
enormously useful in classical computer science and cryptography. PRFs are efficient functions that look
indistinguishable from uniformly random functions, just like PRUs are efficient unitaries that look indistin-
guishable from uniformly random (i.e. Haar random) unitaries. One reason why PRFs have been such a
useful primitive in computer science is that they allow us to replace uniformly random functions, which are
easy to analyse but cannot be implemented efficiently, by an efficient family of functions, as long as those
functions are only queried by efficient algorithms. Similarly, PRUs allow us to replace Haar random unitaries,
which are well-understood but not efficiently implementable, by unitaries that are efficient to implement, as
long as those unitaries are only applied by efficient quantum algorithms.2

The concept of PRUs was introduced by Ji, Liu, and Song [JLS18]. Their paper gave a conjectured con-
struction of PRUs, but only proved security (assuming quantum-secure one-way functions) for a much weaker
primitive called pseudorandom states (PRSs). A pseudorandom state ensemble is a set of states (rather than
unitaries) that look indistinguishable from Haar random states (even with access to polynomially many

1Strictly speaking, a PRU ensemble is an infinite sequence U = {Un}n∈N of n-qubit unitary ensembles Un = {Uk}k∈K,
where n ∈ N serves as the security parameter (see Definition 3.1 for a formal statement).

2There is another way of replacing uniformly random functions by efficient functions: if we know ahead of time that a
function will be queried at most t times, we can replace a uniformly random function by a t-wise independent function family.
Similarly, if we know that a unitary will only be applied at most t times, we can replace a Haar random unitary by a t-design.
In contrast, PRFs or PRUs are secure against all polynomial time algorithms, i.e. we do not need to know the number of queries
the algorithm will make ahead of time.
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copies of the state). Since their introduction, PRSs have become an influential concept with applications in
quantum cryptography [AQY22, MY22], lower bounds in quantum learning theory [HBC+22], and even con-
nections to quantum gravity [ABF+24]. However, proving security for a pseudorandom unitary construction
has remained an open problem and [HBK23] even shows restrictions on possible PRU constructions.

Given the difficulty of proving security for PRUs, recent work has considered intermediate steps between
PRSs and PRUs. [LQS+23] introduced the notion of a pseudorandom state scrambler (PRSS). A PRSS
ensemble is a set of unitaries {Uk}k∈K such that for all states |ϕ⟩, the state family {Uk |ϕ⟩}k∈K is a PRS.
If we restrict the state |ϕ⟩ to the all-0 state |0⟩, then we recover PRSs as a special case. [LQS+23] showed
how to construct a PRSS ensemble (assuming quantum-secure one-way functions) by an intricate analysis
of Kac’s random walk. In [AGKL23], the authors achieve a similar result to PRSS ensembles, except that
they consider ensembles of isometries instead of unitaries.

One can also view PRSs and PRSSs as special cases of PRUs, where the distinguisher is restricted to
particular queries: a PRS ensemble is a PRU ensemble that is secure against distinguishers that are only
allowed a single query to U⊗poly(n) on the state |0⟩⊗poly(n), and a PRSS is a PRU ensemble that is secure
against distinguishers that are only allowed a single query to U⊗poly(n) on a tensor power state |ϕ⟩⊗poly(n)

of their choice.
Our main result is a simple PRU construction with non-adaptive security. This means that our PRU

ensemble is secure against any distinguisher that makes polynomially many parallel queries to the PRU,
i.e. the distinguisher is allowed a single query to U⊗poly(n) on any input state, rather than just the restricted
classes of input states allowed in PRSs and PRSSs. We conjecture that our construction also has adaptive
security, i.e. remains secure when the distinguisher is allowed polynomially many sequential queries.

Our construction. Our PRU ensemble is a concatenation of a random Clifford unitary, a pseudorandom
binary phase operator, and a pseudorandom permutation operator3. More concretely, we require:

• An ensemble of (quantum-secure) pseudorandom permutations (PRPs) [Zha16]. Broadly speaking,
this is a family {πk1 : {0, 1}n → {0, 1}n}k1∈K1 of permutations with the property that, for a randomly
chosen key k1 ∼ K1, the permutation πk1 is computationally indistinguishable from a perfectly random
permutation. For a given πk1 , we let Pk1 be the corresponding n-qubit permutation matrix.

• An ensemble of (quantum-secure) pseudorandom functions (PRFs) [Zha21]. More formally, this is a
family {fk2 : {0, 1}n → {0, 1}}k2∈K2

with the property that, for a randomly chosen key k2 ∼ K2, the
function πk1 is computationally indistinguishable from a perfectly random Boolean function. For a
given fk2 , we let Fk2 : |x⟩ → (−1)fk2

(x) |x⟩ be the n-qubit phase oracle implementing fk2 .

• An ensemble {Ck3}k3∈K3
of n-qubit Clifford unitaries. Note that this is an ensemble of size 2O(n2) from

which we can efficiently sample [vdB21].

Then, our PRU is the n-qubit ensemble {Uk}k∈K which is specified by a key k = (k1, k2, k3), where

Uk = Pk1Fk2Ck3 . (1.1)

Note that, assuming the PRP and PRF scheme both have a key space consisting of K1 = K2 = {0, 1}n,
our PRU ensemble has a key length of |k| = n + n + O(n2) = O(n2), where n ∈ N is the security param-
eter. Because an ensemble of (quantum-secure) PRFs and PRPs can be constructed from the existence of
(quantum-secure) one-way functions [Zha16, Zha21], the same assumption also suffices for our PRU ensemble.

Non-adaptive PRU security. A non-adaptive quantum algorithm starts with an initial state |ψ⟩A1···AtB

where registers A1, . . . ,At are each on n qubits, and B is an arbitrary workspace register. The algorithm
then applies the unitary U⊗t on the registers A1, · · · ,At and performs a measurement afterwards. In order
to show that no such algorithm can distinguish the PRU from a Haar random unitary, it suffices to show that

3Somewhat interestingly, the only place imaginarity shows up (as shown necessary by [HBK23]) is in the Clifford unitary.
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for all t = poly(n) and all initial states |ψ⟩A1···AtB
, the following two density matrices are computationally

indistinguishable:

E
k∼K

(U⊗t
k ⊗ 1) |ψ⟩⟨ψ| (U⊗t

k ⊗ 1)†
c
≈ E
U∼Haar

(U⊗t ⊗ 1) |ψ⟩⟨ψ| (U⊗t ⊗ 1)† . (1.2)

Note that in the above, the registers A1, . . . ,At of |ψ⟩ may all be entangled with each other, the reduced
states on each register may be different from each other, and finally the distinguisher is allowed access to
the purification of the input state to the unitaries. In contrast, as mentioned before, the security of PRSS
was only established for identical pure-state inputs to the queries.

Theorem 1.1. Assuming the existence of quantum-secure one-way functions, the ensemble described in (1.1)
satisfies non-adaptive PRU security.

1.1 Proof overview
For this proof overview, we assume that our algorithm has no workspace, i.e. the initial state is |ψ⟩A1···At

.
This is merely to simplify the notation, the proof works exactly in the same way even in the case of an
entangled workspace. In order to establish computational indistinguishability as in Eq. (1.2), we replace
the pseudorandom permutation and function with their truly random counterparts and show information-
theoretic indistinguishability. Let P denote a uniformly random permutation matrix on n-qubits, let F :
|x⟩ → (−1)f(x) |x⟩ be a diagonal unitary with a uniformly random function f , and let C be a uniformly
random n-qubit Clifford, all sampled independently. It then suffices to show that the following two density
matrices are close in trace distance:

E
PFC

(PFC)⊗t |ψ⟩⟨ψ| ((PFC)⊗t)† ≈ E
U∼Haar

U⊗t |ψ⟩⟨ψ| (U⊗t)† . (1.3)

For this, we leverage Schur-Weyl duality to compute what these two density matrices explicitly look like.
Let d = 2n be the dimension. According to Schur-Weyl duality:

(1) the space (Cd)⊗t can be decomposed as a direct sum4 ⊕
λ⊢t Pλ where Pλ =Wλ ⊗ Vλ is a tensor product

of two spaces, and

(2) any unitary U⊗t only acts non-trivially on the subspaces Wλ and any unitary Rπ that permutes the t
subsystems according to a permutation π ∈ St acts non-trivially only on the subspaces Vλ.

Using this, we show that applying a t-wise Haar twirl to |ψ⟩ to obtain the state on the right hand side
of Eq. (1.3) results in the following state:

E
U∼Haar

U⊗t |ψ⟩⟨ψ| (U⊗t)† =
∑
λ⊢t

1Wλ

Tr[1Wλ
]
⊗ TrWλ

[1Pλ
|ψ⟩⟨ψ|1Pλ

] ,

where 1Wλ
is the identity on the subspaceWλ, i.e. the orthogonal projection onto that subspace. In particular,

the state is a direct sum of tensor product states where the state on the subspaces Wλ is maximally mixed.
Next, we would like to show that applying a t-wise PFC twirl to |ψ⟩ to obtain the left hand side state

in Eq. (1.3) results in a state that is close to the above. For technical reasons, the computations here are
easier if the state |ψ⟩ is supported only on the subspace of distinct computational basis states in the registers
A1, . . .At, i.e., the subspace spanned by |x1, . . . , xt⟩ where x1, . . . , xt are all distinct. We show that applying
a random Clifford ensures this since

Tr

[
ΛE
C
C⊗t |ψ⟩⟨ψ|C⊗t,†

]
≥ 1−O(t2/d),

where Λ denotes the projector on the distinct subspace.
4Here λ ⊢ t means that λ is a partition (commonly described by a Young diagram) of [t].
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For states |ψ⟩ in the distinct subspace, we show that a t-wise PF twirl results in

E
PF

(PF )⊗t |ψ⟩⟨ψ| ((PF )⊗t)† =
∑
λ⊢t

1Λλ

Tr[1Λλ
]
⊗ TrWλ

[1Pλ
|ψ⟩⟨ψ|1Pλ

],

where Λλ is a subspace of Wλ that comes from decomposing the distinct subspace projector in terms of the
Schur-Weyl subspaces. We show that Λλ fills most of Wλ, i.e. the dimension of the subspace Λλ is close to
the dimension of Wλ:

Tr[1Λλ
]

Tr[1Wλ
]
= 1−O

(
t2

d

)
.

This implies that the mixed state on Λλ is close in trace distance to the maximally mixed state on Wλ:∥∥∥∥ 1Λλ

Tr[1Λλ
]
− 1Wλ

Tr[1Wλ
]

∥∥∥∥
1

= O
( t2
d

)
.

Since this is true for each λ, putting all the above together, we get that left and right hand sides in
Eq. (1.3) have trace distance at most t2/d, which is exponentially small since t = poly(n) and d = 2n. This
completes the sketch of the proof.

1.2 Discussion and future directions
We prove that our PRU construction is secure against non-adaptive adversaries. There are two directions
in which one would like to strengthen this result: allow the adversary to access the inverse of the unitary,
too, and allowing the adversary to query the unitary adaptively, i.e. make a query, then apply some efficient
unitary to the resulting state, make another query on that state, and so on.

Aside from constructing PRUs, their applications are also largely unexplored. Given the utility of PRFs
in classical computer science, PRUs appear to be a fundamental primitive for quantum computer science,
but not much is known about concrete applications.

One natural area of application is quantum cryptography. For example, [LQS+23] showed that PRUs
(and even PRSSs) can be useful for multi-copy quantum cryptography: in most encryption schemes for
quantum messages (e.g., the quantum one-time pad and its variants), if we wish to encrypt multiple copies
of the same quantum state, we need to sample fresh keys for each new ciphertext. [LQS+23] observed that
Haar (pseudo)randomness allows one to perform such a task in a compact manner with only a single key (for
an arbitrary polynomial amount of copies). If the state to be encrypted is guaranteed to be unentangled with
the environment, the PRSSs from [LQS+23] suffice; in the general case which allows for entanglement with
an auxiliary system, non-adaptively PRUs as constructed in our work seem necessary. As another example,
PRUs might be useful in the context of unclonable cryptography. Many constructions, such as those for
unclonable encryption [BL20] or quantum copy-protection [CMP20, CLLZ21], make use of either Wiesner
states or subspace coset states—both of which are completely broken once identical copies become available.
It seems plausible that one could use PRUs to construct multi-copy secure unclonable encryption schemes,
and even multi-copy secure quantum copy-protection schemes.

Another area of application concerns the time evolution of chaotic quantum systems. In the past few
years, a series of works has proposed using Haar random unitaries as “perfect scramblers” [HP07, BF12,
Sus16] to model such dynamics. However, a more recent line of work has instead shifted towards quantum
pseudorandomness in order to model such phenomena in terms of efficient processes. For example, Kim
and Preskill [KP23] use PRUs to model the internal dynamics of a black hole, whereas Engelhardt et
al. [EFL+24] use PRUs to model the time evolution operator of a holographic conformal field theory. Due
to their scrambling properties, it is conceivable that PRUs will find more applications in theoretical physics.
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2 Preliminaries

2.1 Notation and basic definitions
Linear Maps. For a Hilbert space H, we denote by L(H) linear operators on H. A map M : L(H) → L(H)
is called a quantum channel if it is completely positive and trace-preserving. If H′ is an additional Hilbert
space and O ∈ L(H ⊗ H′) is an operator on a larger space, we write M(O) to mean M applied to the
H-subsystem, i.e. M(O) is shorthand for (M⊗ 1H′)(O). For a subspace W of a vector space V , we denote
by 1W the orthogonal projection onto W .

Distinct tuples. We use bold faced fonts to denote tuples. For a tuple x = (x1, . . . , xt) ∈ [d]t and a
permutation σ ∈ St, we write xσ = (xσ(1), · · · , xσ(t)) for the tuple where the indices are permuted according
to σ. We call a tuple x ∈ [d]t distinct if xi ̸= xj for all i ̸= j. We denote the set of distinct tuples in [d]t by
distinct(d, t). We also define the projector onto the subspace of distinct tuples

Λd,t =
∑

x∈distinct(d,t)

|x⟩⟨x| . (2.1)

We will frequently drop the indices d, t and just write Λ, with d and t being clear from context.

Permutation operators. We define the following permutation operator on Cd.

Definition 2.1 (Permutation operator on Cd). Define the permutation operator Pπ on Cd for π ∈ Sd to be
the linear map

Pπ : |x⟩ 7→ |π(x)⟩ . (2.2)

We will frequently consider uniformly random permutation operators on Cd. We will suppress the de-
pendence on π and write the random operator as P .

Symmetric group and representations. Unitary representations of a group allow us to represent the
elements of the group as unitary matrices over a vector space in a way that the group operation is represented
by matrix multiplication. We consider the following representation of the symmetric group which permutes
the tensor factors.

Lemma 2.2 (Representation of St on tensor product spaces). For any fixed d, define the permutation
operator Rπ on (Cd)⊗t for π ∈ St to be the map

Rπ : |a⟩ 7→ |aπ−1⟩ .

Then ((Cd)⊗t, Rπ forms a unitary representation of St. Note that we leave the dependence of Rπ on the
choice of d implicit.

We note that the representation ((Cd)⊗t, R(·)) can be decomposed into (isotypic) copies of the irreducible
representations (or irreps) of the symmetric group St, which we denote by {(Vλ, Rλ(·))}λ, where λ ⊢ t is a
partition of t (or Young diagram with at most t boxes) and Vλ are vector spaces called Specht modules.
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Binary phase operators. For a function f : [d] → {0, 1}, we define the binary phase operator

Ff : |x⟩ 7→ (−1)f(x) |x⟩ . (2.3)

We will frequently consider uniformly random binary phase operators, which we will just write as F .

Haar measure and t-wise twirling. We recall the definition of the Haar measure and t-wise twirl.

Definition 2.3 (Haar measure). The Haar measure is the unique left- and right-invariant probability mea-
sure on the unitary group U(d). Throughout this paper, we denote sampling from the Haar measure over
U(d) by U ∼ Haar(d). If the dimension d is clear from the context, we simply write U ∼ Haar.

Definition 2.4 (t-wise R-twirl). Let R be a random unitary matrix sampled from some probability measure
over the unitary group U(d). We define the t-wise R-twirl as the following operator

M(t)
R (·) = E

R
R⊗t(·)R⊗t,† .

When R is sampled from the Haar measure over U(d), we refer to it as t-wise Haar twirl and denote it
by M(t)

Haar (·). We will also frequently consider the t-wise M(t)
PF (·) twirl, where R = PF is a product of a

random permutation operator P and a binary phase operator F , which are sampled independently. We call
this the permutation-phase twirl.

2.2 Schur-Weyl duality
Consider the representation Rπ of the symmetric group St and the representation U⊗t of the unitary group
U(d) on the vector space (Cd)⊗t. Schur-Weyl duality says that the irreducible sub-representations of these
two representation fit together nicely.

Lemma 2.5 (Schur-Weyl duality, see e.g. [Chr06, Theorem 1.10]). The tensor product space (Cd)⊗t can be
decomposed as

(Cd)⊗t ∼=
⊕
λ⊢t

Pλ with Pλ =Wλ ⊗ Vλ

where λ ⊢ t indexes partitions of {1, . . . , t}, which are commonly represented by Young diagrams.5
The Weyl modules Wλ are irreducible subspaces for the unitary group U(d) and the Specht modules Vλ

are irreducible subspaces for the symmetric group St. Consequently, the action of the product group St × Ud
on (Cd)⊗t decomposes as

Rπ =
∑
λ⊢t

1Wλ
⊗R(λ)

π and U⊗t =
∑
λ⊢t

U (λ) ⊗ 1Vλ
,

where (Wλ, U
(λ)) and (Vλ, R

(λ)
π ) are irreducible representations of the unitary group U(d) and the symmetric

group St, respectively.

We denote the specific basis which block-diagonalizes all the above operations as the Schur-Weyl basis.

Definition 2.6 (Schur-Weyl basis). Let {|wλ,i⟩}i and {|vλ,j⟩}j be orthonormal bases of Wλ and Vλ, respec-
tively. Then we call

{|wλ,i⟩ ⊗ |vλ,j⟩}λ,i,j

a Schur-Weyl basis of (Cd)⊗t (where we interpret each vector |wλ,i⟩ ⊗ |vλ,j⟩ ∈ Pλ as a (Cd)⊗t-vector in the
natural way).

5We note that throughout this paper d ≫ t, otherwise the Young diagrams need to be restricted to d rows.
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The following decomposition of the distinct subspace projector Λ easily follows from Schur-Weyl duality:
since Λ is invariant under permutation of the tensor factors (i.e. RπΛ = ΛRπ for all π ∈ St), it acts
as an identity on the Specht modules Vλ by Schur’s lemma. The same decomposition also holds for any
permutation-invariant operator but we shall only need the following.

Lemma 2.7 (Decomposition of the distinct subspace projector). Let Λ ∈ L((Cd)⊗t) be the projector on the
tuples of distinct strings defined in Equation (2.1). Then,

Λ =
∑
λ⊢t

Λ
(λ)
Wλ

⊗ 1Vλ
,

with each Λ
(λ)
Wλ

a projector on a subspace of Wλ.

We will also need the following relation between the dimensions of the Weyl and Specht modules.

Lemma 2.8 ([Chr06], Theorem 1.16). The dimensions of the Weyl and Specht modules Wλ and Vλ satisfy

dim(Wλ) =
dim(Vλ)

t!

∏
(i,j)∈λ

(d+ j − i) ,

where (i, j) denotes the row and column number of a box in the Young diagram corresponding to λ.

The following lemma follows from the standard formula for computing the projector on isotypic copies of
an irreducible subspace (see [FH13, Section 2.4]). Here we apply it to the representation of the symmetric
group St over (Cd)⊗t, where Schur-Weyl duality implies that the subspace of all isotypic copies of the Specht
modules Vλ is exactly Pλ =Wλ ⊗ Vλ.

Lemma 2.9. The projection onto the subspace Pλ is given by

1Pλ
=

dim(Vλ)

t!

∑
π∈St

χλ(π
−1)Rπ , (2.4)

where χλ(·) = Tr
[
Rλ(·)

]
is the character corresponding to the irrep (Vλ, R

(λ)
(·) ).

We will also need (a special case of) the standard Schur orthogonality relations for matrix coefficients
(see [Bum13], Theorems 2.3 and 2.4). These relations say that if we express unitary irreducible represen-
tations of a group in any basis, then the different matrix entries are orthogonal under an inner product
obtained by averaging over the group. Here we specialize the above to the Schur-Weyl basis and the unitary
irreducible sub-representations Rλ(·) of R(·) as given in Lemma 2.5.

Lemma 2.10 (Schur orthogonality relations). Let (Vλ, Rλ(·)), (Vλ′ , Rλ
′

(·)) be two irreducible representations of
the symmetric group St. Then,

E
π∈St

[
⟨vλ,i|Rλπ |vλ,j⟩ ⟨vλ′,k|Rλ′

π |vλ′,ℓ⟩
]
=

1

dim(Vλ)
δλ,λ′δi,kδj,ℓ .

3 Proof of non-adaptive security
In this section, we first give a formal definition of PRUs, as proposed by Ji, Liu, and Song [JLS18]. Then,
we prove that our construction in Equation (1.1) is a non-adaptive pseudorandom unitary.

Definition 3.1 (Pseudorandom unitary). Let n ∈ N be the security parameter. An infinite sequence
U = {Un}n∈N of n-qubit unitary ensembles Un = {Uk}k∈K is a pseudorandom unitary if it satisfies the
following conditions.

7



• (Efficient computation) There exists a polynomial-time quantum algorithm Q such that for all keys
k ∈ K, where K denotes the key space, and any |ψ⟩ ∈ (C2)⊗n, it holds that

Q(k, |ψ⟩) = Uk |ψ⟩ .

• (Pseudorandomness) The unitary Uk, for a random key k ∼ K, is computationally indistinguishable
from a Haar random unitary U ∼ Haar(2n). In other words, for any quantum polynomial-time (QPT)
algorithm A, it holds that

Pr
k∼K

[AUk(1λ) = 1]− Pr
U∼Haar

[AU (1λ) = 1] ≤ negl(n) .

We call U = {Un}n∈N a non-adaptive pseudorandom unitary if A is only allowed to make parallel
queries to the unitary Uk (or U in the Haar random case).

Note that, whenever we write Un = {Uk}k∈K, it is implicit that the key space K depends on the security
parameter n ∈ N, and that the length of each key k ∈ K is polynomial in n.

Our main result is that the construction in Equation (1.1) is indeed a non-adaptive PRU.

Theorem 3.2. Let n ∈ N be the security parameter. Then, the ensemble Un = {Uk}k∈K of n-qubit unitary
operators defined in Equation (1.1) is a non-adaptive pseudorandom unitary when instantiated with ensembles
of n-bit (quantum-secure) PRFs and PRPs.

Proof. From the construction, it is clear that a random unitary Uk from the above family can be sampled
efficiently (see e.g. [vdB21] for simple way to sample a uniform Clifford unitary).

We now show the non-adaptive security of the above PRU family. A non-adaptive quantum adversary
starts with an initial state |ψ⟩AE, where register A ∼= ((C2)⊗n)⊗t is on nt qubits, and E is an arbitrary
workspace register. The algorithm then applies the unitary U⊗t

k on the register A and performs a measure-
ment afterwards. For the rest of the proof, we set d = 2n to be the dimension of each input register. In
order to argue security, it suffices to show that the density matrices

ρ := E
k∈K

(Uk)
⊗t
A |ψ⟩⟨ψ|AE (Uk)

⊗t,†
A and ρhr := E

U∼Haar
U⊗t
A |ψ⟩⟨ψ|AE U

⊗t,†
A ,

are computationally indistinguishable with at most negligible advantage.
From the post-quantum security of the PRF and PRP families used in Equation (1.1), it follows immedi-

ately that if we replace the pseudorandom permutation and function with their fully random counterparts,
then the states are computationally indistinguishable up to negligible advantage in n. Consequently, let P
denote a uniformly random permutation operator on n-qubits as defined in Equation (2.2), let F be a uni-
formly random binary phase operator as in Equation (2.3) and let C be a uniformly random n-qubit Clifford,
all sampled independently. Then, it suffices to argue that the following “fully random” density matrix

ρfr := E
F,P,C

(PFC)⊗tA |ψ⟩⟨ψ|AE (PFC)⊗t,†A

is close in trace distance to ρhr. Recalling the definition of t-wise R-twirl operator (acting on the register A,
which we shall omit from the notation henceforth), our goal is to bound the following trace distance:

∥ρfr − ρhr∥1 =

∥∥∥∥∥∥∥∥M
(t)
PF

E
C
C⊗t

A |ψ⟩⟨ψ|AE C
⊗t,†
A︸ ︷︷ ︸

:=ξAE

−M(t)
Haar

(
E
C
C⊗t

A |ψ⟩⟨ψ|AE C
⊗t,†
A

)∥∥∥∥∥∥∥∥
1

, (3.1)

where the equality uses the fact that the product unitary UC is also Haar distributed by the invariance of
the Haar measure.
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Reduction to distinct subspace. To show the above, the calculations are easier if we restrict attention
to the subspace of (Cd)⊗t, that consists of distinct strings, i.e. basis states of the form |x⟩ where x =
(x1, . . . , xt) ∈ [d]t is a tuple of distinct strings. We show in Section 3.1 that applying a t-wise Clifford twirl
ensures that the input state has a large overlap with this subspace.

Lemma 3.3 (Clifford twirl and distinct subspace). Let Λ be the projector on the distinct subspace defined
in Equation (2.1). Then, for any state ρ on the register A, we have

Tr

[
ΛE
C
C⊗tρC⊗t,†

]
≥ 1−O(t2/d) .

Let ϕAE be the mixed state obtained by normalizing the (positive semi-definite) matrix ΛAξAEΛA, where
ξAE is defined in Equation (3.1). Then the above together with the gentle measurement lemma implies
that ∥ϕ − ξ∥1 ≤ O(t/

√
d). Consider a purification |ϕ⟩AẼ of ϕAE that satisfies ΛA |ϕ⟩AẼ = |ϕ⟩AẼ; such a

purification exists by construction of ϕAE. Then,∥∥ρfr − ρhr
∥∥
1
≤
∥∥∥M(t)

PF (ϕAE)−M(t)
Haar (ϕAE)

∥∥∥
1
+O(t/

√
d)

≤
∥∥∥M(t)

PF (|ϕ⟩⟨ϕ|AẼ)−M(t)
Haar (|ϕ⟩⟨ϕ|AẼ)

∥∥∥
1
+O(t/

√
d) , (3.2)

where we use that a t-wise twirl is a quantum channel and the 1-norm can only decrease under partial trace.
Thus, we may assume for the rest of the the proof that the input is supported over the distinct subspace of
register A.

Haar twirl vs permutation-phase twirl. In Equation (3.2), the twirling operators only act on register
A, and since the input state |ϕ⟩AẼ is only supported on the distinct string subspace of A, it remains to show
that on this subspace of distinct strings, the Haar twirl and PF -twirl essentially act similarly.

Lemma 3.4. Let A ∼= (Cd)⊗t, let Ẽ be an arbitrary quantum register, and let |ϕ⟩AẼ be a state that satisfies
ΛA |ϕ⟩AE = |ϕ⟩AE. Then, ∥∥∥M(t)

Haar (|ϕ⟩⟨ϕ|AẼ)−M(t)
PF (|ϕ⟩⟨ϕ|AẼ)

∥∥∥
1
≤ O(t2/d) .

The proof of the above relies on computing what the two states look like in the Schur-Weyl basis and is
presented in Section 3.2.

Putting everything together, we have that

∥ρfr − ρhr∥1 ≤ O(t/
√
d) .

Since t is polynomial in n and d = 2n, the non-adaptive security follows.

3.1 Clifford twirl and distinct subspace (proof of Lemma 3.3)
We will omit the registers A = A1 . . .At from the notation unless needed. Our goal is to show that applying a
t-wise Clifford twirl on any input state ρ produces a state that has a large overlap with the distinct subspace.
The proof only relies on the standard fact that the Clifford group forms a 2-design. We consider the projector
on the orthogonal complement of the distinct subspace

Λ̄ = 1− Λ =
∑

x∈[d]t\distinct(d,t)

|x⟩⟨x| ,

and decompose the projector into O(t2) sub-projectors according to which elements collide: since any tuple
of non-distinct strings must have at least two equal entries, we have

Λ̄ ≼
∑

1≤i<j≤t

Πij ⊗ 1[n]\{ij} , where Πij =
∑
x∈[d]

|x⟩⟨x|i ⊗ |x⟩⟨x|j ,
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where the subscript i denotes the register Ai. We shall omit the identity from the notation below.
Using cyclicity of trace, we have

Tr

[
Λ̄E
C
C⊗tρC⊗t

]
≤
∑
i<j

Tr

[
E
C
C⊗t,†ΠijC

⊗tρ

]
=
∑
i<j

Tr

[
E
C
(C†

i ⊗ C†
j )Πij(Ci ⊗ Cj)ρ

]
,

where for the second equality, we cancelled the C-unitaries on all systems except i and j, with Ci denoting
application of C on system i.

Using the standard fact that the Clifford group forms a 2-design, we can replace the average over Clifford
unitaries with an average over the Haar measure in the above expression, which only uses the second moment.
Thus,

Tr

[
Λ̄E
C
C⊗tρC⊗t

]
≤
∑
i<j

Tr

[
E

U∼Haar
(U†

i ⊗ U†
j )Πij(Ui ⊗ Uj)ρ

]
=
∑
i<j

Tr

[
E

U∼Haar
(U† ⊗ U†)Πij(U ⊗ U)ρij

]
,

where for the last equality, we performed the partial trace over all systems except i and j, with ρij denoting
the reduced state on these systems. Since ρij is a quantum state, we can bound each of the O(t2) trace
terms by the corresponding operator norms to obtain

tr

[
Λ̄E
C
C⊗tρC⊗t

]
≤ O(t2d)

∥∥∥∥ E
U∼Haar

(U ⊗ U)†
(

Π

Tr[Π]

)
(U ⊗ U)

∥∥∥∥
∞
, (3.3)

where Π =
∑
x∈[d] |x⟩⟨x| ⊗ |x⟩⟨x| with Tr[Π] = d.

Since applying a Haar random unitary on any state gives a Haar random state |ψ⟩ ∈ Cd, by linearity of
expectation the expression inside the operator norm is

E
|ψ⟩∼Haar

[|ψ⟩⟨ψ| ⊗ |ψ⟩⟨ψ|].

It is well known that this is the maximally mixed state on the symmetric subspace Sym2(d) of Cd ⊗ Cd,
which has dimension d(d+1)

2 (see [Har13], Proposition 6). Thus, the operator norm is 2
d(d+1) and inserting

this into Equation (3.3) yields the claimed result.

3.2 Haar twirl vs permutation-phase twirl (proof of Lemma 3.4)
In order to compare the action of the Haar and the permutation-phase twirl, we express the result of
applying these operators in the Schur-Weyl basis. In particular, we consider states |ϕ⟩AẼ where the register
A is supported over the distinct subspace, i.e. states satisfying ΛA |ϕ⟩AẼ = |ϕ⟩AẼ. To apply Schur-Weyl
duality, we decompose A ∼= (Cd)⊗t ∼=

⊕
λ⊢t Pλ (where Pλ = Wλ ⊗ Vλ) in terms of the Weyl and Specht

modules Wλ and Vλ, respectively. We show the following statement, which describes the effect of the Haar
twirl.

Lemma 3.5 (Action of Haar twirl). Let ρλ =
1Wλ

Tr[1Wλ
]

be the maximally mixed state on Wλ. Then

E
U∼Haar

(U⊗t)A |ϕ⟩⟨ϕ|AẼ (U⊗t,†)A =
∑
λ⊢t

ρλ ⊗ TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
] . (3.4)

We prove the above lemma in Section 3.2.1. In fact, the same proof also shows that Lemma 3.5 holds
for arbitrary input states, but for the proof of Lemma 3.4 we only need to consider states supported on the
distinct subspace.

Next, recalling the decomposition of the distinct subspace projector given by Lemma 2.7, we show that
the action of the permutation-phase twirl results in the following; we defer the proof to Section 3.2.2.
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Lemma 3.6 (Action of permutation-phase twirl). Denoting by σλ =
Λ
(λ)
Wλ

Tr
[
Λ
(λ)
Wλ

] the maximally mixed state

on the subspace supp(Λ
(λ)
Wλ

) ∩Wλ, we have

E
P,F

(PF )⊗tA |ϕ⟩⟨ϕ|AẼ ((PF )⊗tA )† =
∑
λ⊢t

σλ ⊗ TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
] .

We now show how Lemma 3.4 follows from Lemmas 3.5 and 3.6. Since all the subspaces Pλ are orthogonal,
we have ∥∥∥M(t)

Haar (|ϕ⟩⟨ϕ|AẼ)−M(t)
PF (|ϕ⟩⟨ϕ|AẼ)

∥∥∥
1
=
∑
λ

∥(ρλ − σλ)⊗ TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
]∥

1

=
∑
λ

∥ρλ − σλ∥1 · ∥TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
]∥

1

≤ max
λ

∥ρλ − σλ∥1, (3.5)

where the second equality used that the 1-norm (trace norm) is multiplicative under tensor products, while
the inequality follows from the fact that

∑
λ ∥TrWλ

[1Pλ
|ϕ⟩⟨ϕ|AẼ 1Pλ

]∥ = 1, which can be seen by taking the
trace on both sides of Equation (3.4).

Note that given a vector space A = B ⊕B⊥, we have that∥∥∥∥ 1A

dim(A)
− 1B

dim(B)

∥∥∥∥
1

=

∥∥∥∥ 1B

dim(A)
− 1B

dim(B)

∥∥∥∥
1

+

∥∥∥∥ 1B⊥

dim(A)

∥∥∥∥
1

= 2− 2
dim(B)

dim(A)
.

Since Λ
(λ)
Wλ

is a projector on a subspace of Wλ, we obtain the following for any λ ⊢ t:

∥ρλ − σλ∥1 =

∥∥∥∥∥∥ 1Wλ

Tr[1Wλ
]
−

Λ
(λ)
Wλ

Tr
[
Λ
(λ)
Wλ

]
∥∥∥∥∥∥
1

= 2− 2
Tr
[
Λ
(λ)
Wλ

]
Tr[1Wλ

]
. (3.6)

We first compute the trace in the numerator of the right hand side.

Claim 3.7. Tr
[
Λ
(λ)
Wλ

]
=

dim(Vλ)

t!
· Tr[Λ].

Proof. Lemma 2.7 implies that Λ =
∑
λ⊢t Λ

(λ)
Wλ

⊗ 1Vλ
. Since Pλ =Wλ ⊗ Vλ, it follows that

Tr
[
Λ
(λ)
Wλ

]
=

1

dimVλ
Tr[Λ1Pλ

] . (3.7)

Plugging in the expression for the projector 1Pλ
from Lemma 2.9, we get that

Tr[Λ1Pλ
] =

dim(Vλ)

t!

∑
π

χλ(π
−1) Tr[ΛRπ] =

dim(Vλ)
2

t!
Tr[Λ] ,

where we used the fact that Tr(RπΛ) = 0 unless π = e, and that χλ(e) = Tr[1Vλ
] = dim(Vλ). This yields

the desired result after insertion into Equation (3.7).

Given the above, we can now compute the quantity in Equation (3.6) by using the dimension bounds for
Weyl and Specht modules.

Claim 3.8. 1−
Tr
[
Λ
(λ)
Wλ

]
Tr[1Wλ

]
≤ O(t2/d).
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Proof. Using Claim 3.7 and Lemma 2.8, we have

1−
Tr
[
Λ
(λ)
Wλ

]
Tr[1Wλ

]
= 1− dim(Vλ) Tr[Λ]

t! dim(Wλ)
= 1− Tr[Λ]

Π(i,j)∈λ(d+ j − i)
.

Note that Tr[Λ] = d!
(d−t)! ≥ (d− t)t and Π(i,j)∈λ(d+ j − i) ≤ (d+ t)t, since there are at most t boxes in

the Young diagram corresponding to λ, and the coordinates i, j range from 1 to t. Thus,

1−
Tr
[
Λ
(λ)
Wλ

]
Tr[1Wλ

]
≤ 1−

(
d− t

d+ t

)t
≤ 1−

(1− t/d

1 + t/d

)t
≤ O(t2/d) ,

using that t2/d≪ 1.

Plugging the above bound into Equation (3.6) and Equation (3.5) completes the proof of Lemma 3.4.

3.2.1 Action of the t-wise Haar twirl (proof of Lemma 3.5)

In order to derive the expression given by Lemma 3.5, we first compute the result of applying the t-wise
Haar twirl on Schur-Weyl basis states.

Lemma 3.9. Let A ∼= (Cd)⊗t and let |α⟩ = |wλ,i⟩ ⊗ |vλ,j⟩ and |β⟩ = |wλ′,i′⟩ ⊗ |vλ′,j′⟩ be Schur-Weyl basis
states on A. Then

M(t)
Haar (|α⟩⟨β|) =

{
1Wλ

dimWλ
⊗ |vλ,j⟩⟨vλ,j′ | , if λ = λ′ and i = i′

0 , otherwise
.

Proof. By Schur-Weyl duality (Lemma 2.5), we have that U⊗t =
∑
λ1
U (λ1) ⊗ 1Vλ1

where U (λ1) only acts
on Wλ1 . Thus,

M(t)
Haar (|α⟩⟨β|) =

∑
λ1,λ2

(
E

U∼Haar
U (λ1) |wλ,i⟩⟨wλ′,i′ |U (λ2),†

)
⊗ 1Vλ1

|vλ,j⟩⟨vλ′,j′ |1Vλ2
.

We may assume that λ = λ′, since the above is zero otherwise. Then, we have that

M(t)
Haar (|α⟩⟨β|) =

(
E

U∼Haar
U (λ) |wλ,i⟩⟨wλ,i′ |U (λ),†

)
⊗ |vλ,j⟩⟨vλ,j′ | .

We claim that the expression inside the parentheses above is zero unless i = i′, in which case it is the
maximally mixed state on the subspace Wλ. This follows from a standard fact in representation theory
called Schur’s Lemma (see [FH13], Lemma 1.7), which says that if (µ,H) is an irreducible representations
of a group G and T : H → H is a linear map such that T ◦ µ = µ ◦ T (such a map is called an intertwiner),
then T = γ · 1H for some scalar γ ∈ C. Applying it to our setting, we see that the operator

T = E
U∼Haar

U (λ) |wλ,i⟩⟨wλ,i′ |U (λ),†

is an intertwiner for the irrep (U (λ),Wλ). This fact is a simple consequence of Haar invariance, since

TŨ (λ) =

(
E

U∼Haar
U (λ) |wλ,i⟩⟨wλ,i′ |U (λ),†

)
Ũ (λ)

= E
U∼Haar

U (λ) |wλ,i⟩⟨wλ,i′ |
(
Ũ (λ),†U (λ)

)†
= E
U∼Haar

(
Ũ (λ)U (λ)

)
|wλ,i⟩⟨wλ,i′ |U (λ),† = Ũ (λ)T.
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Therefore, by Schur’s Lemma,

E
U∼Haar

U (λ) |wλ,i⟩⟨wλ,i′ |U (λ),† = γλ,i,i′1Wλ

for some scalars αλ,i,i′ . Since the operator on the left is traceless if i ̸= i′, we have that αλ,i,i′ = 0 unless
i = i′. For i = i′, the normalisation follows because the operator on the left is a mixed state, i.e. it has unit
trace. This completes the proof.

We can now compute the result of applying a t-wise Haar twirl to a general state.

Proof of Lemma 3.5. Expanding in the Schur-Weyl basis,

|ϕ⟩AẼ =
∑
λ,i,j

(|wλ,i⟩ |vλ,j⟩)A ⊗ |eλ,i,j⟩Ẽ

for not necessarily normalised vectors |eλ,i,j⟩Ẽ. It follows from Lemma 3.9 and linearity that

M(t)
Haar (|ϕ⟩⟨ϕ|AẼ) =

∑
λ,i,j,j′

(
1Wλ

dimWλ
⊗ |vλ,j⟩⟨vλ,j′ |

)
A

⊗ |eλ,i,j⟩⟨eλ,i,j′ |Ẽ

=
∑
λ⊢t

ρλ ⊗ TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
],

where ρλ is the maximally mixed state on the subspace Wλ.

3.2.2 Permutation-phase twirl on distinct subspace (proof of Lemma 3.6)

In order to derive an exact expression for the permutation-phase twirl on the distinct subspace with projector
Λ, we start with the following lemma.

Lemma 3.10. Let x,y ∈ distinct(d, t). Then

M(t)
PF (|x⟩⟨y|) =


ΛRσ
Tr[Λ]

if y = xσ for σ ∈ St,

0 otherwise.

Note that since x,y ∈ distinct(d, t), there exists at most one permutation for which y = xσ.

Proof. Applying the t-wise F -twirl first, we get that

E
F
F⊗t |x⟩⟨y|F⊗t,† =

(
E
f
(−1)

∑
i f(xi)+f(yi)

)
|x⟩⟨y| .

Here, the expectation Ef is over a uniformly random function f : [d] → {0, 1}. Because x and y are both
tuples of distinct strings, it is easy to see that

E
f

[
(−1)

∑
i f(xi)+f(yi)

]
=

{
1, if y = xσ, for some σ ∈ St, and
0, otherwise.

Next applying the t-wise P -twirl,

E
P
P⊗t

(
E
F
F⊗t |x⟩⟨x|F⊗t,†

)
P⊗t,† = E

P
P⊗t |x⟩⟨x|RσP⊗t,† = E

P
P⊗t |x⟩⟨x|P⊗t,†Rσ ,

where we used that P⊗t commutes with Rσ. To conclude, we note that for any tuple of distinct strings x,

E
P
P⊗t |x⟩⟨x|P⊗t,† =

Λ

Tr[Λ]
.
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We will also need the following technical result, which follows from the Schur orthogonality relations
(Lemma 2.10).

Lemma 3.11. Let |α⟩ = |wλ,i⟩ ⊗ |vλ,j⟩ and |β⟩ = |wλ′,i′⟩ ⊗ |vλ′,j′⟩ be Schur-Weyl basis states. Then∑
σ∈St

⟨β|R†
σ |α⟩Rσ = δλ,λ′δi,i′ ·

t!

dimVλ
· (1Wλ

⊗ |vλ,j⟩⟨vλ,j′ |) .

Proof. We compute the matrix elements of R†
σ in the Schur-Weyl basis. Recall that Lemma 2.5 implies that

Rσ =
∑
λ 1Wλ

⊗ R
(λ)
σ , where R(λ)

σ is the irreducible sub-representation of Rσ on the Specht module Vλ.
Thus,

(⟨wλ′,i′ | ⟨vλ′,j′ |)R†
σ(|wλ,i⟩ |vλ,j⟩) = (⟨wλ′,i′ | ⟨vλ′,j′ |)

(∑
λ

1Wλ
⊗R(λ),†

σ

)
(|wλ,i⟩ |vλ,j⟩)

= δλ,λ′δi,i′ · ⟨vλ,j′ |R(λ),†
σ |vλ,j⟩

= δλ,λ′δi,i′ · ⟨vλ,j |R(λ)
σ |vλ,j′⟩ . (3.8)

Therefore, for the rest of the proof, we consider |α⟩ and |β⟩ with λ = λ′ and i = i′.
Again using the decomposition of Rσ in terms of its irreducible sub-representations together with Equa-

tion (3.8), we can write

∑
σ∈St

(⟨wλ,i| ⟨vλ,j′ |)R†
σ(|wλ,i⟩ |vλ,j⟩)Rσ =

∑
λ1⊢t

1Wλ1
⊗

(∑
σ∈St

⟨vλ,j |R(λ)
σ |vλ,j′⟩R(λ1)

σ

)

Schur’s orthogonality relations (Lemma 2.10) now imply that the operator in the parentheses is zero
unless λ1 = λ, in which case it equals∑

σ∈St

⟨vλ,j |R(λ)
σ |vλ,j′⟩R(λ)

σ =
t!

dim(Vλ)
|vλ,j⟩⟨vλ,j′ | .

Plugging this in gives the desired result.

We are now in a position to prove Lemma 3.6 which expresses the result of applying the permutation-phase
twirl to any state that is only supported on distinct strings on A in terms of the Schur-Weyl subspaces.

Proof of Lemma 3.6. We first expand |ϕ⟩ in the standard basis on A:

|ϕ⟩AẼ =
∑

x∈distinct(d,t)

|x⟩A |ẽx⟩Ẽ , (3.9)

where |ẽx⟩E’s are unnormalized and not necessarily orthogonal vectors and we used that |ϕ⟩AẼ is supported
over the distinct subspace in the register A.

Applying the permutation-phase twirl to the register A, we have by linearity,

M(t)
PF (|ϕ⟩⟨ϕ|AE) =

∑
x,y∈distinct(d,t)

(
M(t)

PF (|x⟩⟨y|A)
)
⊗ |ẽx⟩⟨ẽy|Ẽ .

Lemma 3.10 implies that the term in the parentheses is non-zero only when y = xσ for some σ ∈ St. Since
we sum over all possible x,y ∈ distinct(d, t) and there is at most one such σ for each pair of tuples x and y,
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it follows that

M(t)
PF (|ϕ⟩⟨ϕ|AE) =

∑
x∈distinct(d,t)

σ∈St

(ΛRσ)A
Tr[Λ]

⊗ |ẽx⟩⟨ẽxσ |Ẽ

=
ΛA

Tr[Λ]

∑
σ∈St

(Rσ)A ⊗

( ∑
x∈distinct(d,t)

|ẽx⟩⟨ẽxσ
|Ẽ

)

=
ΛA

Tr[Λ]

∑
σ∈St

(Rσ)A ⊗ TrA
[
(R†

σ ⊗ 1Ẽ) |ϕ⟩⟨ϕ|AẼ

]
. (3.10)

For the second equality we simply rearranged sums, and for the last equality we wrote the expression in
parentheses in the second line more compactly as a partial trace, which follows directly from the expansion
in Equation (3.9).

We now rewrite the above partial trace in the Schur-Weyl basis on A. Let

|ϕ⟩AẼ =
∑
λ,i,j

(|wλ,i⟩ |vλ,j⟩)A |eλ,i,j⟩Ẽ (3.11)

be the state in the Schur-Weyl basis, where |eλ,i,j⟩Ẽ are unnormalized and not necessarily orthogonal vectors.
Then,

TrA
[
(R†

σ ⊗ 1Ẽ) |ϕ⟩⟨ϕ|AẼ

]
=
∑
λ,i,j
λ′,i′,j′

(⟨wλ′,i′ | ⟨vλ′,j′ |)R†
σ(|wλ,i⟩ |vλ,j⟩) |eλ,i,j⟩⟨eλ′,i′,j′ |Ẽ .

Plugging the above into Equation (3.10),

M(t)
PF (|ϕ⟩⟨ϕ|AẼ) =

ΛA

Tr[Λ]

∑
λ,i,j
λ′,i′,j′

(∑
σ

(⟨wλ′,i′ | ⟨vλ′,j′ |)R†
σ(|wλ,i⟩ |vλ,j⟩)Rσ

)
A

⊗ |eλ,i,j⟩⟨eλ′,i′,j′ |Ẽ .

Applying Lemma 3.11 to the term in parentheses, we can simplify this to

M(t)
PF (|ϕ⟩⟨ϕ|AẼ) =

ΛA

Tr[Λ]

∑
λ,i,j,j′

t!

dim(Vλ)
(1Wλ

⊗ |vλ,j⟩⟨vλ,j′ |)A ⊗ |eλ,i,j⟩⟨eλ,i,j′ |Ẽ . (3.12)

By Lemma 2.7, we can write Λ =
⊕

λ⊢t Λ
(λ)
Wλ

⊗ 1Vλ
, where Λ

(λ)
Wλ

are projectors supported on Wλ. Since 1Wλ

is simply the identity on subspace Wλ, this implies

Λ(1Wλ
⊗ |vλ,j⟩⟨vλ,j′ |) = Λ

(λ)
Wλ

⊗ |vλ,j⟩⟨vλ,j′ | .

Plugging this into Equation (3.12) and rewriting it as a partial trace,

M(t)
PF (|ϕ⟩⟨ϕ|AẼ) =

∑
λ⊢t

t!

dim(Vλ) Tr[Λ]
Λ
(λ)
Wλ

⊗ TrWλ
[1Pλ

|ϕ⟩⟨ϕ|AẼ 1Pλ
] .

Since Tr
[
Λ
(λ)
Wλ

]
= (dim(Vλ) Tr[Λ])/t! as we showed in Claim 3.7, the first tensor factor is indeed the maximally

mixed state on the support of the projector Λ
(λ)
Wλ

. This completes the proof.
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