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Abstract. Since the seminal works by Sasaki and Aoki, Meet-in-the-
Middle (MITM) attacks are recognized as an effective technique for
preimage and collision attacks on hash functions. At Eurocrypt 2021,
Bao et al. automated MITM attacks on AES-like hashing and improved
upon the best manual result. The attack framework has been furnished
by subsequent works, yet far from complete. This paper introduces three
key contributions dedicated to further generalizing the idea of MITM
and refining the automatic model on AES-like hashing. (1) We intro-
duce S-box linearization to MITM pseudo-preimage attacks on AES-like
hashing. The technique works well with superposition states to preserve
information after S-boxes at affordable cost. (2) We propose distributed
initial structures, an extension on the original concept of initial states,
that selects initial degrees of freedom in a more versatile manner to
enlarge the search space. (3) We exploit the structural similarities be-
tween encryption and key schedule in constructions (e.g., Whirlpool and
Streebog) to model propagations more accurately and avoid repeated
costs. Weaponed with these innovative techniques, we further empower
the MITM framework and improve the attack results on AES-like designs
for preimage and collision. We obtain the first preimage attacks on 10-
round AES-192, 10-round Rijndael-192/256, and 7.75-round Whirlpool,
reduced time and/or memory complexities for preimage attacks on 5-,
6-round Whirlpool and 7.5-, 8.5-round Streebog, as well as improved
collision attacks on 6- and 6.5-round Whirlpool.

Keywords: Meet-in-the-Middle Attack · S-box Linearization · Distributed Ini-
tial Structures · Structural Similiarities · AES · Rijndael ·Whirlpool · Streebog



1 Introduction

1.1 Hash Functions

Hash functions map arbitrary long inputs to fixed-length hash values and have
been used in a myriad of applications. There are three fundamental security re-
quirements for a cryptographic hash function to fulfill, namely preimage, second-
preimage, and collision resistance. This work focuses on the notion of preimage
resistance: given a hash function H and a random hash value t, it should be
computationally infeasible to find a preimage x such that H(x) = t.

To make use of the coexistence of encryption and hashing in embedded sys-
tems, a conventional strategy is to construct a hash function from a secure block
cipher to minimize hardware or software costs: the encryption function of a block
cipher is first transformed into a one-way compression function and then iterated
following the Merkle-Damg̊ard design. In 1993, Preneel, Govaerts, and van de
Walle [36] identified 12 secure modes for the encryption-compression-function
conversion, later known as the PGV modes.

The strategy is highly practical if the underlying block cipher is widely used
and has seen a long record of withstanding cryptanalysis, which makes AES the
perfect candidate. The MMO mode (one of the PGV modes) instantiated with
AES-128 have been standardized by the Zigbee [2] protocol suite and ISO/IEC
[24]. Given the high security of AES, several dedicated hash functions are designed
with AES-like structures, e.g., the ISO standards Whirlpool [9,23] or the ISO and
GOST standard Streebog [1,25,15], which are collectively referred to as AES-like
hashing.

1.2 Meet-in-the-Middle Attacks on Block-cipher-based Hashing

The Meet-in-the-Middle (MITM) attack is well-known for its effectiveness in
cryptanalysis of Double-DES [14] and key recovery. In a series of pioneer works
[4,5,39,40], Sasaki and Aoki enlightened the community with MITM attacks
applied to the security analyzation of cryptographic hash functions. The core
attack framework had been extended ever since by numerous techniques, such
as splice-and-cut [4], initial structures [40], indirect and partial matching [4,40],
biclique as a formalization of initial structures [28], sieve-in-the-middle [12] and
match-boxes [17].

MITM attack on block-cipher-based hash functions is, in essence, a pseudo-
preimage attack: the attack splits the computation of the compression function
into two chucks, the forward and the backward chunk, so that two portions of
input bits, called neutral bits, affect only one of the sub-functions. In such a
setting, the chunks are computed independently and end at a common state
where their (partial) values are matched. Usually, a third set of bits is shared by
both chunks, which is captured in the notion of a 3-subset MITM attack [11].

Sasaki was the first to apply this to a preimage attack on AES hashing modes
[38]. However, to avoid the complex relations from the round keys, the key was
still fixed to a constant. Sasaki et al. then introduced the guess-and-determine

2



strategy [41]. Bao et al. [6] revisited the attacks by introducing the degree of
freedom from the key space.

At Eurocrypt 2021, Bao et al. [7] automated the search for efficient MITM
preimage attacks with Mixed-integer Linear Programming (MILP) and applied
it to AES hashing modes and Haraka v2. Dong et al. [16] later extended this
automation model to search for key-recovery and collision attacks and introduced
nonlinear constraints for the neutral bits. Later in 2022, Bao et al. [8] brought
up the concept of superposition bytes, which allowed forward and backward
neutral words to propagate simultaneously and independently at a common byte
through linear operations in the encryption and key schedule. They also proposed
bi-directional attribute propagation and cancellation, i.e., the known values in
each chunk are propagated not only in the direction of the chunk but in both
directions. Moreover, they integrated the guess-and-determine method into their
models. Hua et al. [22] then combined guess-and-determine with nonlinearly
constrained neutral words in their search for preimage attacks. More recently,
Qin et al. [37] applied the new framework to Sponges. As a contrast to those
very detailed frameworks, Schrottenloher and Stevens proposed a simpler MILP-
modeling approach for preimage attacks against keyless permutations [42] and
was later extended to ciphers with very light key schedule [43]. While their model
was considerably more lightweight and applicable to AES-like permutations, its
exclusion of the key schedule made it less effective against the AES than the
detailed frameworks.

1.3 Gaps

While previous works on automating MITM on AES-like hashing already pro-
vided a groundlaying seminal framework [7,8,16,37], the complexity of the task
has left several gaps. Among those, we identified three core challenges:

1. The preimage security evaluation on AES-like hashing has always been at
byte-level as the S-box details are abstracted away. Recently, Zhang et al.
[45] studied the field inversion S-box with algebraic properties and thus can
consider the S-box details. However, quoting their words, this linearizes the
non-linear layer of AES, but unfortunately, no attacks better than the current
state-of-the-art has been found based on this fact.

2. The selection of initial states in previous works was limited to two full states,
one of them in the encryption function and the other in the key schedule.
Initial states could be more scattered, even across several intermediate states.
Thus, the artificial limits on initial states had discarded a fraction of the
solution pool.

3. It has been a long endeavor to address the dependencies in the model that
lead to incorrect measures on the degree of freedom consumption. Particu-
larly, the dependencies due to the structural similarity between the encryp-
tion and key schedule in some designs have been overlooked and may lead
to duplicate costs.
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1.4 Our Contributions

In this work, we have proposed and incorporated three techniques to fill the gaps
and improve the state-of-the-art attacks. We would like to point out that the
core ideas behind the techniques are fairly generic and expected to have more
applications beyond this paper.

Linearizing S-boxes. We introduce S-box linearization (LIN) to MITM at-
tacks on AES-like hashing and efficiently incorporate it with the superposition
structure. Both propagations at a superposition byte are preserved through the
S-box at the cost of guessing over a small pool of hints. Making use of the linear
relation between propagations, LIN checks if a guessed hint is correct efficiently
using for- and backward values at S-box input.

In comparison, the study in [45] exploited the algebraic properties of field
inversion S-boxes thus resulting in guess-and-determine and announced no im-
proved result on AES. A similar conclusion on their work was also drawn by Liu
et al. in [31]. The checking phase in plain guess-and-determine requires full in-
formation on forward and backward neutral bytes and leads to a cost on degrees
of matching, while LIN in our proposal uses only local information and spares
such cost. To conclude, LIN serves as a lightweight alternative to plain guess-
and-determine and introduces a new trade-off rule. The technique enables us to
mount the first bit-level preimage attacks on AES-like hashing and improve the
state-of-the-art.

Distributed Initial Structures. In this work, we further generalize the con-
cept of initial structures, originally proposed by Sasaki and Aoki [40]. We lift the
artificial limitation on selecting two full states as initial states and introduce dis-
tributed initial structures (DIS). We now allow the initial states to be distributed
in a combination of encryption states and round keys, as long as the total initial
degrees of freedom remain the same. An important reflection of this idea is to
assign more superposition bytes in the AES key schedule. As only a portion of
bytes is propagated through the AES S-box in each key schedule round, more
superposition information can be allowed in round keys by the introduction of
DIS. This has expanded the solution pool by adding more alternatives to the
invocation of constraints and allowing more valid propagation patterns.

Structural Similarities. The structural similarities (SIM) between encryption
and key schedule may lead to dependencies across multiple rounds. We observe
that values injected into an encryption state by round key addition may propa-
gate through similar sets of operators in encryption and key schedule. Therefore,
certain costs of degrees of freedom can be traced back to the same constraints
and previous attacks may be suboptimal due to double counting such costs. By
modeling the degree consumption more accurately, we enlarged the search space
by sparing unnecessary double costs of earlier approaches. Moreover, the ap-
proach potentially finds attacks with high concentrations of constraints around
the starting points, which could help reduce the memory complexity of the at-
tack.
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Table 1. Results of our improved attacks on AES-like Hashing.

Preimage Attacks

Cipher (target) #Rounds T1
† T2

‡
Memory Essential technique(s) References

AES-192

8/12 2112§ 2116 216 MITM [6]

(Hash)

8/12 2100 2115 296 LIN, DIS, BiDir∗ App. B

9/12 2120 2125 − MILP [7]
9/12 2112 2121 − BiDir [8]

10/12 2124 2127 2124 LIN, DIS, BiDir Sect. 5.1

Rijndael-192/192 9/12 2184 2189 − BiDir [46]
(Hash) 9/12 2180 2187 2180 LIN, BiDir App. C.1

Rijndael-192/256 9/12 2168 2181 − BiDir [46]

(Hash) 10/12 2180 2187 2180 LIN, BiDir App. C.2

Whirlpool

5/10 2416 2448 296 Dedicated [41]

(Hash)

5/10 2352 2433 2160 BiDir, MulAK∗ [8]
5/10 2320 2417 O(1) SIM, BiDir Sect. 5.2

6/10 2448 2481 2256 Dedicated, GnD∗ [41]
6/10 2440 2477 2192 GnD [8]
6/10 2416 2465 2288 SIM, BiDir, GnD App. D.1

7/10 2480 2497 2128 GnD, MulAK [8]
7.75/10 2480 2497 2256 SIM, BiDir, GnD App. D.2

Streebog-512

7.5/12 2496 − 264 Dedicated method [32]

(Compression)

7.5/12 2441 − 2192 GnD, MulAK [22]
7.5/12 2433 − 2177 SIM, GnD App. E.1

8.5/12 2481 − 2288 GnD, MulAK [22]
8.5/12 2481 − 2129 SIM, GnD App. E.2

Streebog-512

7.5/12 − 2496 264 Dedicated method [32]

(Hash)

7.5/12 − 2478.25 2256 MITM + Multi-collision? [22]
7.5/12 − 2474.25 2256 MITM + Multi-collision App. E.1

8.5/12 − 2498.25 2288 MITM + Multi-collision [22]
8.5/12 − 2498.25 2256 MITM + Multi-collision App. E.2

Collision Attacks

Cipher (target) #Rounds Time Memory Essential technique(s) References

Whirlpool

4.5/10 2120 216 Rebound [34]

(Hash)

4.5/10 264 216 Rebound [30]

5/10 2120 264 Super-SBox [18,29]
5.5/10 2184−s 2s Rebound [30]

6/10 2228 2228 Quantum [20]
6/10 2248 2248 MILP, MITM [16]
6/10 2240 2240 New MILP model, MITM App. A

6.5/10 2240 2240 New MILP model, MITM App. A

†
T1 represents the time complexity of the pseudo-preimage attack on compression function.
‡
T2 represents the time complexity of the preimage attack on hash function.
§
We list only single-target result in [6] for comparison in this table.
∗
BiDir, MulAK and GnD are techniques introduced to the MITM framework in [8], re-
spectively, short for bi-directional attribute propagation and cancellation, multiple ways
of AddRoundKey and guess-and-determine.

?
The attack on the compression function of Streebog is converted into a preimage attack
on its hash function using the technique from [3].
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1.5 Application Results

Our results are as summarized in Table 1. The effectiveness of our proposed tech-
niques is well demonstrated through improved attacks on standards including
AES-192 hashing, Whirlpool, and Streebog, as well as the Rijndael hashing
family. We argue that the techniques are significant and essential to the break-
throughs.

Both LIN and DIS are critical for attacking one additional round of AES-192
hashing, i.e. excluding either technique would not yield an attack. Simply using
guess-and-determine strategy combined with the AES S-box property also could
not improve the attack on Rijndael-192/256. Moreover, the attack advantage
on (pseudo-)preimage is non-trivial, i.e., proportional to the size of a subset
rather than a fixed constant.

Incorporating SIM, we improve the (pseudo-) preimage attacks on 5- and 6-
round Whirlpool in terms of time and/or memory complexity. In particular, we
achieve a memoryless attack on 5-round Whirlpool. Besides, we present the first
preimage attack on 7.75-round Whirlpool, which extends the state-of-the-art by
almost a full round while maintaining the same time complexity. What is more,
our efficient MILP-based search model improves the 6-round collision attack on
Whirlpool and extends it to 6.5 rounds. For Streebog, our approach reduces
the time and/or memory complexity on 7.5- and 8.5-round Streebog compared
to previous best (pseudo-)preimage attacks.

1.6 Organization

The remainder of this work is structured as follows. In Section 2, we provide
preliminaries on the MITM attacks and the target designs. Then we elaborate the
proposed techniques and their significance in Section 3. Thereupon, we present
the enhanced MITM framework and MILP modeling in Section 4. We detailed
pseudo-preimage results of the first attack on 10-round AES-192 hashing and the
memoryless attack on 5-round Whirlpool in Section 5. Furthermore, we provide
the attacks and details of Whirlpool, Rijndael, 8-round AES-192 and Streebog

in the appendix. Finally, we conclude and discuss in Section 6.

2 Preliminaries

2.1 MITM Attacks: Notations and Principle

We provide a high-level overview of MITM pseudo-preimage attacks in Figure 1
and a list of notations common in all our attack descriptions in Table 2.

In block-cipher-based hashing, the MITM technique is often used to mount
only a pseudo-preimage attack, i.e., a preimage that uses a chaining value differ-
ent from the fixed initial value of the hash function specification. The pseudo-
preimage is later transformed into a preimage on the hash function.

The MITM attack divides the computations into two independent chunks,
forward and backward. A byte is called neutral if its value is used only (i.e., is
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Fig. 1. A high-level overview of MITM attacks [38].

known only) in one of the chunks and has a constant influence on the respective
other. Both chunks end at E+ and E−, respectively, which are the input and
output of a matching operationM . Note that the attack exploits the feed-forward
of start and end values in block-cipher-based compression functions. Based on
the properties of M , an MITM attack can invoke certain constraints to filter
ineligible candidates, which are called partial-match constraints. Those pairs
that satisfy these constraints are checked thereupon on larger parts of their
states if their combination constitutes a valid pseudo-preimage.

Table 2. Common notations.

DoF Degree(s) of freedom.
SENC Starting state in the encryption.
SKSA Starting state in the key schedule.
E+/E− Ending states of forward and backward computations, respectively.
M Matching operation between E+ and E−.
dB/dR DoF of the forward and backward chunk, respectively.
gB/gR/gBR DoF of guessed values in the forward, backward, and in both chunks,

respectively.
dM Degrees of matching.
V +/V − Sets of values for forward and backward neutral bytes satisfying the

predefined constraints, with |V +| = 2dB and |V −| = 2dR , respectively.
G+/G−/G Sets of guessed values in forward/backward/both chunk(s), with |G+| =

2gB , |G−| = 2gR , and |G| = 2gBR .
T+/T− Lookup tables constructed at E+/E−.
BKSA/RKSA/GKSA Sets of indices of forward neutral, backward neutral, and constant bytes

in SKSA, respectively.
BENC/RENC/GENC Sets of indices of forward neutral, backward neutral, and constant bytes

in SENC, respectively.
−→ι /←−ι Initial DoF of the forward and backward chunk, respectively, with −→ι =

|BENC|+ |BKSA| and ←−ι = |RENC|+ |RKSA|.
−→σ /←−σ The consumed DoF of the forward and backward chunk, respectively.
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The MITM attack framework [8] with guess-and-determine is described in
the following. Without loss of generality, we assume dB + gB ≤ dR + gR:

1. Assign arbitrary values to the constants in pre-defined constraints.
2. Compute V + and V − based on the constants.
3. For all tuples (v+, g+, g) ∈ V + × G+ × G, compute to E+, obtain m+ for

matching, store (v+, g+) in T+[m+, g]. We have |T+| = 2dB+gB+gBR .
4. For all tuples (v−, g−, g) ∈ V − × G− × G, compute to E−, obtain m− for

matching.
5. For all (v+, g+) in T+[m−, g], compute to check if (g+, g−, g) is compatible

with v+ and v−.
6. For compatible (v+, v−), check for a full match.
7. If a full match is discovered, compute and return the preimage. Otherwise,

revert to Step 1, change the arbitrary values, and repeat the rest.

The computational complexity of the MITM pseudo-preimage attacks is

2n−(dB+dR) ·
(
2dB+gB+gBR + 2dR+gR+gBR + 2dB+gB+dR+gR+gBR−dM)

' 2n−min(dB−gR−gBR,dR−gB−gBR,dM−gB−gR−gBR) := 2l .
(1)

A pseudo-preimage attack with a computational complexity of 2l (l < n −
2) can be converted to a preimage attack with a computation complexity of
2(n+l)/2+1 [35]. First, a total of 2(n−l)/2 pseudo-preimages is obtained. Then,
a total of 2(n+l)/2+1 random values are inserted after the initialization vector
IV to obtain 2(n+l)/2+1 chaining values. Then, one can expect a match between
a chaining value and a pseudo-preimage with non-negligible probability, which
yields a preimage for the hash function.

2.2 AES-like Hashing

To start with, we list some common notations in AES-like hashing:

– Nb/Nk: number of columns of a state in the encryption procedure or the
secret key. When Nb and Nk are identical, we will denote both by NCOL.

– NROW: number of rows in an encryption or key state.

AES-like hashing refers to hash functions whose compression function follows an
AES-like round structure. In this section, we will focus on recalling the necessary
details of AES and Whirlpool that are used in this work.

AES. In 2001, the NIST selected a subset of the Rijndael family of block ciphers
[13] with a block size of 128 bits and key sizes of 128, 192, or 256 bits (Nb = 4,
Nk ∈ {4, 6, 8}, and NROW = 4) as the Advanced Encryption Standard. Conven-
tionally, the transposed of a column is referred to as a word, and the word size
is thus fixed to 4× 8 = 32 bits. As shown in Figure 2, an AES round consists of
the following operations:

– SubBytes (SB): A non-linear byte-wise substitution.
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– ShiftRows (SR): A cyclic left shift on the i-th row by i bytes, for i ∈
{0, 1, 2, 3}.

– MixColumns (MC): A column-wise left multiplication of a 4-×-4 maximum-
distance-separable matrix.

– AddRoundKey (AK): A bitwise XOR of the round key to the state.

The final round differs in the sense that it omits the MixColumns operation.
Before the first round, a whitening key is added to the plaintext.

#SBi

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SB

#SRi

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR

#MCi

MC

#AKi #RKi #SBi+1

Fig. 2. AES-like round function.

The round keys are expanded from the master key key : Let w be an array
of bytes, when i < Nk, the key words are derived directly from the secret key
w[i] = key[i]. Otherwise, w[i] is calculated as follows:

w[i− Nk]⊕ Rot(S(w[i− 1]))⊕ C[i/Nk] i mod Nk ≡ 0 and Nk < 8

w[i− Nk]⊕ S(w[i− 1]) i mod Nk ≡ 4 and Nk = 8

w[i− Nk]⊕ w[i− 1] otherwise ,

(2)

where S denotes the AES S-box, Rot is a left rotation of the input by one byte,
and C represents the list of round constants.

The AES-128 in the Matyas-Meyer-Oseas (MMO) mode is used in the stan-
dards of the Zigbee protocol suite [2] and ISO/IEC [24]. The MMO mode is
defined as the mapping f : f(Hi,Mi) = EHi

(Mi)⊕Mi, where Hi stands for the
i-th chaining value, Mi as the i-th message block, and Ek stands for the block
cipher encryption under key k.

Whirlpool. In 2000, Rijmen and Barreto [9] designed Whirlpool as a submission
to the NESSIE competition that was later tweaked and adopted as an ISO/IEC
standard [23]. Whirlpool is a block-cipher-based hash function with a 512-bit
hash value, which adopts a 10-round AES-like block cipher with 8×8-byte (NROW =
NCOL = 8) keys and plaintexts in Miyaguchi-Preneel mode [36] (MP mode) as its
compression function (CF). The MP mode is defined as f(Hi,Mi) = EHi(Mi)⊕
Mi⊕Hi. It takes the 512-bit chaining value Hi as the key and the 512-bit message
block Mi as its plaintext input. Encryption and key schedule essentially use the
same round function, except for the fact that the key state has additions with
round constants and the encryption state sees additions with the round keys.
The round function is depicted in Figure 3 and consists of:
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– SubBytes (SB): applies the Substitution-Box to each byte.

– ShiftColumns (SC): cyclically shifts the j-column downwards by j bytes.

– MixRows (MR): multiplies each row of the state by an MDS matrix.

– AddRoundKey (AK): XORs the round key to the state.
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Fig. 3. The round function of Whirlpool.

Note that the final round is a complete round unlike that in the AES; a
whitening key is added before the first round of encryption as in the AES. How-
ever, in the MP mode, the whitening key cancels in splice-and-cut MITM attacks
due to the feed-forward operation. The key schedule shares the same operations,
but replaces AddRoundKey by AddRoundConstants (AC), which XORs the round
constants to the first row of the key state before the result of AC is used as the
round key that is added to the state. For more details, we refer the readers to
the design paper [9].

Remark 1. Given that the transposition between row and column has no impact
on attack results, for convenience, we use ShiftRows and MixColumns instead of
ShiftColumns and MixRows in the rest of paper for Whirlpool hereafter. Thus,
the states will be transposed to correspond with the states of Whirlpool.

Remark 2. In the remainder, we will denote a state by the operation that it is
used as the direct input for, and will superscript the round index. For example,
#SBi denotes the state before the SB operation in Round i, as is shown in
Figures 2 and 3.

Remark 3. The Russian national standard Streebog follows a similar structure
as Whirlpool, due to the space limit, we provide the specification of Streebog
in Appendix E.

3 Advanced Techniques in MITM Attacks

We advance the existing automated MITM frameworks with three generic tech-
niques. Here, we detail the ideas and integration into the augmented framework.
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3.1 S-box Linearization (LIN)

In MITM attacks, we have two sets of states V + = (v+0 , . . ., v+
2db−1) and V − =

(v−0 , . . ., v−
2dr−1) propagating through the cipher. The superposition structure

allows any cell of any state vi,j to be represented as the sum of its forward and
backward neutral components: vi,j = v+i ⊕ v−j , such that the components v+i
and v−j can be propagated independently through linear operations. Though,
the nonlinear operations, i.e., an S-box S in AES-like ciphers, prevent such trivial
linear combinations.

Earlier works in the series of automated MITM attacks on AES-like ciphers
had to define propagation rules which either lost knowledge about the cell after
the S-box or which consumed one byte degree of freedom for forcing at least one
neutral value to be constant before and after the nonlinear operation. We can
linearize certain S-boxes partially or fully by restricting the input space or by
guessing a hint from a set that is smaller than the input space.

In this work, we consider full linearization with a hint. Thus, we aim at
finding a decomposition of S, more precisely, functions F,G,H : Fb2 × Fb2 → Fb2
with F and G being linear over F2 such that

S(v+ ⊕ v−) = F (v+, H(v+, v−))⊕G(v−, H(v+, v−)) .

The range of H is the set of space of hints. Assuming balancedness of H, i.e.,
dL = dim(range(H)), then 2dL elements have to be guessed at most to linearize
S, which is beneficial if we find such a function H with dL < b. Then, we add a
complexity term of 2dL to the attack for guessing the hint for each combination
of (v+i , v

−
j ) but can propagate a superposition through the S-box.

The S-box of the AES is given by S(v) = A · v254 ⊕ 0x63 for a fixed A ∈
F8×8
2 . The power map and the XOR is in the field F28 with a fixed irreducible

polynomial; only the affine layer A is not defined over this field. At Asiacrypt
2023, Zhang et al. [45] observed that one can decompose 254 into 17 · 14 + 16
and obtain

(v+ + v−)254 = ((v+ + v−)17)14 · (v+ + v−)16

= (H(v+, v−))14 · ((v+)16 + (v−)16) ,

where the last equality holds since exponentiation with any power of 2 is linear
over F2. Then according to the following Theorem 1, the hint H(v+, v−) can
take |range(H)| = |{v17 : v ∈ F28} = 16 values (including the zero element).
Thus, one can linearize the AES S-box by guessing at most 16 candidates.

Theorem 1. Let d be a divisor of |F∗q | = pn − 1 where q = pn, and let X =

{xd : x ∈ F∗q}. The size of X is |X| = |F∗q |/d = (pn − 1)/d.

3.2 Distributed Initial Structures (DIS)

It has been a common approach in MILP-based MITM models to select two
independent initial states: SENC in the encryption function and SKSA in the key
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schedule, as the generation of round keys is independent of the encryption in
most designs. In this work, we generalize the selection of initial states.

In essence, the initial states in MITM attacks are composed of some inter-
mediate bytes in the compression function where we distribute initial DoFs for
forward and backward computations. There should be no limitations on where
the initial DoF is located, as long as the values of those states can be chosen
independently of each other in the actual attack. In other words, the initial DoFs
can be distributed to several scattered intermediate states, rather than rigidly
selecting two full states in encryption and key schedule, respectively. Previous
models implicitly limited the key bytes to depend only on SKSA and not on SENC,
and consequently, shrunk the solution pool.

x y

k

−→ι

←−ι
a)

x y

k

−→ι

←−ι
b)

x y

k

−→ι ←−ι

c)

Fig. 4. Conceptual strategies of distributing initial states in two states and a key byte.

Consider an intuitive toy example in Figure 4. Assume x and y denotes bytes
in the encryption and k denote a byte in the key, and we distribute initial DoF
in this system for forward and backward computation. The whole system has a
total initial DoF of 2. We use −→ι and←−ι to denote the initial DoF for forward and
backward respectively, and the color green to denote a byte in superposition.
Without loss of generality, there are three possible scenarios as depicted in Figure
4. The previous models covered the first two cases while excluding the third one,
wherein the key byte is dependent on the initial DoF from the encryption.

#AKi−1 #SBi

SB

#SRi

SR

#MCi

MC

#AKi #SBi+1

#Kj

#RKi #RKi+1

Fig. 5. Example of a distributed initial structure on AES-192.

We extend the above insight to MITM attacks by the introduction of DIS.
We now distribute the initial DoF to several intermediate states in the compres-
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sion function, provided that the bytes are independent and there is sufficient
information to define all the round keys and all the intermediate encryption
states. For example, Figure 5 describes an example to distribute initial DoF in
AES-192. We will distribute initial DoFs in #AKi, #SBi+1 and the rightmost
two columns of #Kj . In this way, we have straightforwardly defined a full inter-
mediate encryption state #SBi+1, and we can squeeze out a full #Kj for key
schedule propagations.

The technique is useful in AES, since the key schedule has relatively low
confusion and more linear relations can be preserved. In this work, we realize
DIS in a heuristic manner. We still select SENC and SKSA respectively to search
for attack configurations, but make the exception that superposition bytes are
now allowed in SKSA and remain refrained from SENC. When a configuration is
obtained, we check if the initial states can be equivalently chosen to properly
define the superposition bytes in SKSA within the maximum available DoF of the
target cipher. Our realization of DIS, though heuristic, is more tailored to the
key schedule and helps extend the analysis of AES-192 by one round.

3.3 Structural Similarities (SIM)

The models by Bao et al. and Dong et al. could find longer attacks than the
manual attacks e.g., by Sasaki [38] since the former effectively used the degree of
freedom in key space to obtain reductions in the encryption state. From the XOR
of the state with a round key, state bytes in superposition could become single-
colored, and forward or backward neutral bytes could become constants. Such
concessions are useful and often necessary before and after non-linear operations
so that the knowledge of a byte can be propagated further. However, they come
at the price of consuming a degree of freedom from the possible solution space.

In previous works, the effects of multiple round-key additions on the state
have been usually modeled to be independent from each other and the state
values. However, constraints from some consecutive rounds may stem from the
same source of the neutral words in the key and state, e.g., as depicted in Fig-
ure 6, constraints in states Y r0 and Y r1 are set on the same neutral words in
states Xr and Kr′ . Thus, tracing constraints back to such shared sources may
enlarge the search space by avoiding duplicate DoF consumption. However, mod-
eling all such dependent constraint relations can become challenging since the
relations between all state and key bytes would have to be considered, which
can render models infeasible to compute. Nevertheless, we can efficiently model
certain special cases, and consider here the structural similarities of encryption
and key schedule, e.g., Whirlpool and Streebog use almost the same functions
for updating key and message, differing only in the usage of round constants.
Considering previous best MITM attacks on Whirlpool [8], Bao et al. already
observed such dependency between encryption and key schedule, however, in
their 7-round attacks on Whirlpool, they only used it in a post-processing step
to generate the solution space of neutral words. In this work, we include this
structural similarity explicitly in our MILP models.
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Fig. 6. High-level view of the different constraints connected by key schedule.

General Concept. For SPNs, we can write the round function as a composition
of a nonlinear S-box layer SB, an affine layer A, and a key addition. Assume, the
key schedule employs the same S-box layer SB, an affine layer A′, and a constant
addition. Consider an interval of rounds from i to i+ 1 and assume that we can
split the key #Ki and the state in the encryption #AKi into an active part,
subscripted by a, and a constant part subscripted by c, each: #Ki = #Ki

a‖#Ki
c

and #AKi = #AKi
a‖#AKi

c. Figure 7 illustrates this setting. If the active parts
of the key and encryption state are equal before the S-box layer, then the same
values will also be the results in both the encryption and key schedule:

#SBi+1
a = #Ki+1

a ⇔ #Ai+1
a = #A′

i+1
a .

If #Ai+1
a and #A′i+1

a are mapped to the same positions of the state after A
and A′, respectively, then the nonlinear contributions will cancel. Thus, we can
define a nonlinear function G and a linear function H such that the active part
of the message after the round is given by

#SBi+1
a = G(#Ki

a)⊕H(#Ki
c,#Ki

a,#AKi
c) .

Note that it does not depend on #AKi
a.

We can generalize this observation to multiple rounds if the similarities be-
tween key schedule and message schedule allow. Given that the diffusion of AES-
like ciphers is usually strong, i.e., an MDS matrix, the number of subsequent
rounds where this approach can be employed seems limited to two or three
rounds, depending on the round constants and the linear layers. However, it will
enlarge the search space and lead to high concentrations of constraints around
the starting points, which could help reduce the memory complexity of the at-
tack, as we will demonstrate later in our application results.
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Fig. 7. Exploiting similar operations in the encryption and key schedule.

4 Enhanced Attack Framework and MILP Model

This section demonstrates our enhanced attack framework, that we call the ex-
ceptional MITM framework, and the equipped MILP-based search model.

4.1 Exceptional MITM Framework

We append the following two new notations to Table 2 to reflect the use of LIN:

Table 3. Additional notations.

dL DoF consumed by S-Box linearizations.
H Space or set of hints from linearized S-boxes, with |H| = 2dL .

Again, without loss of generality, we assume dB + gB ≤ dR+ gR. The excep-
tional MITM attack framework is formulated as follows:

1. Assign arbitrary values to the constants in pre-defined constraints.
2. Compute V + and V − based on the constants.
3. For all tuples (v+, g+, g, h+) ∈ V + × G+ × G ×H, compute to E+, obtain
m+ for matching, store (v+, g+) in T+[m+, g, h+].

4. For all tuples (v−, g−, g, h−) ∈ V − × G− × G ×H, compute to E−, obtain
m− for matching.

5. For all (v+, g+) in T+[m−, g, h−] and (v+, v−) consistent with h−, compute
to check if (g+, g−, g) is compatible with (v+, v−).

6. For compatible (v+, v−), check for a full match.
7. If a full match is discovered, compute and return the preimage. Otherwise,

revert to step 1, change the arbitrary values, and repeat the rest.

The computational complexity of the above attack is evaluated as follows:

2n−(dB+dR) ·
(
2dB+gB+gBR+dL + 2dR+gR+gBR+dL + 2dB+gB+dR+gR+gBR−dM)

' 2n−min(dB−gR−gBR−dL,dR−gB−gBR−dL,dM−gB−gR−gBR) .

(3)
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4.2 MILP-based Search Model

Now we introduce an enhanced MILP model to integrate proposed techniques,
including new coloring schemes and corresponding propagation rules in detail.

Color-encoding Scheme of Neutral Words. We encode different byte types
in the superposition structure with three binary variables b, r, and w:.

– A blue cell denotes a forward neutral byte, encoded as (b, r, w) = (1, 0, 0).
– A red cell denotes a backward neutral byte, encoded as (b, r, w) = (0, 1, 0).
– A white cell denotes an arbitrary byte, encoded as (b, r, w) = (0, 0, 1).
– A gray cell denotes a constant byte, encoded as (b, r, w) = (0, 0, 0).
– A green cell denotes a superposition byte, encoded as (b, r, w) = (1, 1, 0).

In the encoding system, b = 1 and r = 1 denote that a byte contains forward
and backward neutral information, respectively. And w = 1 uniquely identifies
an arbitrary byte, whose value is unknown, against other byte types. Such con-
struction has high clarity and interpretability, rather than a simple enumeration
of the five possible byte types in the superposition structure , and allows a more
straightforward realization of propagation rules and efficient counting of DoF.
For example, we can easily obtain the initial DoFs |BENC|, |RENC|, |BKSA|, and
|RKSA| by simply summing up b, r encoders in corresponding states.

Our model achieves high efficiencies and makes it possible for better at-
tacks on designs with large state sizes. The new model can formulate attacks on
Whirlpool and Streebog in full-sized versions (8× 8), while Bao et al. ’s attack
on Whirlpool is limited to 4 × 4 versions with symmetry patterns [8]. Specif-
ically, our improved MITM attack configurations for Whirlpool can be found
within 200 seconds, and the optimization of MITM collision attack models of
6-round Whirlpool can be finished within just 300 seconds7.

In the rest of this chapter, notions bα, rα, and wα are used to represent the
encoders of a byte α.

Propagations through SubBytes. We formulate the SB-rule, a byte-wise
propagation rule for SubBytes, with LIN integrated.

– When the input byte is not green, the color of the output byte is identical
to that of the input byte.

– When the input byte is green, the output byte is either white by default or
green with one cost of linearization (dL incremented by one).

Modeling the SB-rule requires both encoders of the input and output byte as
well as one additional encoder to indicate linearization cost. The rule can be
converted to MILP constraints with the convex-hull method [44].

7 We ran our MILP models with Gurobi 9.5.2 on a desktop computer with 3.6GHz
Intel Core i9 and 16GB 2667MHz DDR4.
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Propagations through MixColumns. The MixColumns operation takes a col-
umn as input and outputs a column. Assume that the input is a mix of nb blue
bytes, nr red bytes, nc gray bytes, ng green bytes, and nw white bytes, the basic
rule for the MixColumns operation, MC-rule in short, is formulated as follows:

– When nw > 0, the output contains only white bytes.
– When nw = 0 and nb + nr + ng = 0, the output contains only gray bytes.
– When nw = nr = 0 and nb + ng > 0, the output contains n′b blue bytes and
n′c gray bytes, with n′c consumed DoF from the forward chunk.

– When nw = nb = 0 and nr + ng > 0, the output contains n′r red bytes and
n′c gray bytes, with n′c consumed DoF from the backward chunk.

– Otherwise, the output is a mix of n′b blue bytes, n′r red bytes, n′c gray bytes,
and n′g green bytes, with n′b + n′c consumed DoF from the backward chunk
and n′r + n′c consumed DoF from the forward chunk.

We use α to denote a byte in the input column and β in the output. To realize
the above functionality, we introduce three column-wise encoders Eb, Er, and
Ew, which is constructed based on the encoding of input bytes:

Eb = max
α

bα, Er = max
α

rα, and Ew = max
α

wα . (4)

Let further −→σβ and ←−σβ be binary variables that respectively track the DoF
consumption at byte β (in the output column) for the forward and backward
chunk. Then, the MC-rule can be formulated as:

∑
β wβ = NROW · Ew∑
α bα +

∑
β bβ = NROW · (Eb− Ew)∑

α rα +
∑
β rβ = NROW · (Er − Ew)

NROW · (Eb− Ew) ≤∑β bβ +
∑
β
−→σβ ≤ NROW ·min(Eb, 1− Ew)

NROW · (Er − Ew) ≤∑β rβ +
∑
β
←−σβ ≤ NROW ·min(Er, 1− Ew)

. (5)

Integrating Guess-and-Determine into MixColumns. We introduce a light-
weight realization of GnD by integrating its functionality into MC-rule, which
is named GnD-MC-rule. We introduce four GnD encoders for an input byte α,
gwα , gbα, grα, and gbrα , which satisfy:

wα = gwα + gbα + grα + gbrα . (6)

The simple constraint ensures that, when an input byte α is non-white, all GnD
encoders are 0, meaning no GnD is incurred. Otherwise, when α is white, exactly
one GnD encoder equals to 1 with the following meaning:

– gwα = 1: GnD is not activated and byte α remains unknown,
– gbα = 1: α is guessed as blue for forward propagation,
– grα = 1: α is guessed as red for backward propagation,
– gbrα = 1: α is guessed as green for both forward and backward propagations.

17



The GnD-MC-rule is formulated based on MC-rule by a simple tweak on the
construction of the column-wise encoders:

Eb′ = max
α
{bα, gbα, gbrα }, Er′ = max

α
{rα, grα, gbrα }, and Ew′ = max

α
gwα . (7)

We count the guessed DoF by summing up the GnD encoders. Moreover, GnD
can be turned off easily for efficiency by adding a simple constraint wα = gwα .

XOR with Two Inputs. The XOR-rule models the propagation of variables
through a simple XOR operation with two inputs:

– When the input involves a white byte, the output is white.

– When the input contains only gray bytes, the output is gray.

– When the input contains only blue bytes, the output is either blue with no
consumption of DoF or gray consuming one DoF from the forward chunk.

– When the input contains only red bytes, the output is either red with no
DoF consumption or gray consuming one DoF from the backward chunk.

– When the input is a mixture of red and blue bytes or involves green bytes,
the output is green.

Generating the constraints to account for the XOR-rule in MILP is well under-
stood and therefore omitted here.

XOR with Multiple Inputs. In addition to sequentially deriving the round
keys following Equation (2), we propose a new approach to model the AES key
schedule. We find the expression of intermediate bytes in terms of bytes in KSA

by invoking a sourcing function, which is designed to recursively obtain the
parents of an intermediate byte and cancels whenever a byte is XORed an even
number of times. Then we propose the n-XOR-rule to determine the coloring of
an intermediate byte and the consumed DoF, detailed as follows:

– When the input involves a white byte, the output is white.

– When the input contains only gray bytes, the output is gray.

– When the input contains only blue bytes, the output is either blue with no
DoF consumed or gray with 1 DoF consumed from the forward chunk.

– When the input contains only red bytes, the output is either red with no
DoF consumed or gray with 1 DoF consumed from the backward chunk.

– When the input contains both red and blue bytes, the output is one of the
following:

- green, with no consumption of DoF,

- blue, with 1 DoF consumed from the backward chunk,

- red, with 1 DoF consumed from the forward chunk, or

- gray, with 1 DoF consumed from each forward and backward chunk.
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We denote a byte in the expression of an intermediate byte as γ and introduce
three encoders Pb, Pr, and Pw for the intermediate byte that satisfy:

Pb = max
γ

bγ , P r = max
γ

rγ , and Pw = max
γ

wγ . (8)

The constraints for the n-input XOR rule can be obtained by using the convex-
hull method on Pb, Pr, Pw, the encoders of the intermediate byte, and two
encoders for DoF costs.

Matching. We deploy two types of matching in our attacks: the XOR-match
and the MC-match. The XOR-match is used at the feed-forward that checks E+,
E−, and #RK−1 byte by byte. If wα = 0 holds for position α in E+, E−, and
#RK−1, then mα = 1. Otherwise, mα = 1. Then, dXORM results from:

dXORM =
∑
α

mα . (9)

Besides, the MC-match takes the input and output of a MixColumns operation
as E+ and E− and counts the cumulative non-white bytes at a common column
index. Let ∆ be a column index and denote the cumulative non-white bytes in
E+
∆ and E−∆ as t∆. If there exist t∆ > NROW, then we have a t∆−NROW degrees for

matching at column ∆. Otherwise, there are no degrees of matching at column
∆. Then dMCM is given by the sum over all columns:

dMCM =
∑
∆

max(0, t∆ − NROW) . (10)

Objective Function. Our search model aims to maximize:

min{dB − gR − gBR − dL, dR − gB − gBR − dL, dM − gB − gR − gBR}. (11)

According to Equation (3), min{−→db ,
←−
dr ,
→←
m } determines the complexity of an

MITM attack. Thus, the search for the optimal MITM attack pattern of given
config is converted to a maximization problem on objective τObj:

5 Applications to AES and Whirlpool

In this section, we briefly describe the first 10-round MITM pseudo-preimage
attack on the compression function of AES-192 and the memoryless 5-round
MITM pseudo-preimage attack on the compression function of Whirlpool.

5.1 First MITM Pseudo-preimage Attack on 10-round AES-192

The previous best MITM pseudo-preimage attack on AES-192 reaches 9 rounds
[8]. Adopting LIN and DIS, we obtain the first MITM pseudo-preimage attack
on 10-round AES-192, which is provided in Figure 8 and summarized below:
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Fig. 8. An MITM pseudo-preimage attack of 10-round AES-192.
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Algorithm 1: Computing forward neutral words (blue) for 10-round
AES-192.

1 Initialize a table T neutral
blue ;

2 Fix 6 bytes #K2[1, 2, 6, 7, 12, 13], 6 cells in #AK2, 3 bytes #MC2[8, 9, 11], 2
bytes #MC1[8, 15] and #AK3[8..15] be all zero.

3 for 4 blue cells #K4[4, 5, 6, 7] ∈ (F8
2)4 do

4 Use 4 constants #K2[6, 7, 12, 13] to derive #K4[12, 13],#K3[20, 23];
5 for 3 blue cells #K3[18, 19, 22] ∈ (F8

2)3 do
6 Use 2 constant #K2[1, 2] to derive #K4[1, 2];
7 for 6 blue cells #K4[8, 9, 10, 11, 14, 15] ∈ (F8

2)6 do
8 Derive #RK2[14, 15] from #K4[6, 7, 14, 15];
9 Use 1 constant #MC1[15] to derive #K3[21] from

#K1[20..23] = #K4[12..15]⊕#K4[8..11]⊕#K3[20..23] and
MC−1 ·#K1[20..23] = (∗, ∗, ∗, 0);

10 Derive #RK2[4, 5] from #K4[4, 5],#K3[21, 22];
11 Use 4 constant #AK2[4, 5, 14, 15] and #RK2[4, 5, 14, 15] to derive

#SB3[4, 5, 14, 15];
12 for 2 blue cells #K4[3],#K3[16] ∈ (F8

2)2 do
13 Derive #RK2[3] from #K3[16, 20],#K4[3];
14 Use 1 constant #AK2[3] to derive #SB3[3];
15 Use 1 constant #MC1[8] to derive #K3[17] from

#K1[16..19] = #K3[16..19]⊕#K4[4..7]⊕#K4[8..11] and
MC−1 ·#K1[16..19] = (0, ∗, ∗, ∗);

16 Derive #K4[16..23];
17 Use 4 constants #AK2[0],#MC2[8, 9, 11] to derive

#K4[0],#SB3[0, 9, 10] by solving 4 linear Equation (12);
// Now we know all blue cells in #SB3 and #K4

18 Derive the blue part of #SR2[2];
// Linearization of S-boxes

19 for 28×0.5 values of c0 = (#SR2[2])17 do
20 Compute 14 constants (#MC0[11], #MC1[2, 5], #SB6[2],

#SB7[8..11, 14], #SB8[0, 5, 10, 15], #K6[3]) = (c1,. . . , c14);

21 Update the table T neutral
blue [c0, . . . , c14]

+
= ( in #K4 and

#SB3);

// For each value of (c0, . . . , c14), 28×(15.5−14.5) = 28×1

candidates expected

22 return T neutral
blue ;
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– Initial DoF for forward neutral words −→ι ( ): 39 bytes (16 in #AK5, 15 bytes
in #SB6, and 8 bytes #K4[16 . . . 23]);

– Initial DoF for backward neutral words ←−ι ( ): 1 byte (#SB6[2]);
– Consumed DoF in forward computation −→σ : 38 bytes;
– Consumed DoF in backward computation ←−σ : zero bytes;
– Guessed bytes for blue, red, and both colors gB, gR, gBR: gR = gBR = 0

bytes and gB = 0 bytes;
– Guessed byte equivalents for linearization: dL = 0.5 bytes.
– Matching DoF dM: 1 byte between #AT9 and #SB0.
– Remaining DoF: dB − dL = 1− 0.5 = 0.5 and dR − dL = 1− 0.5 = 0.5.

Compute initial values forward neutral bytes (Blue). Note that the value of a byte
in this phase represents the value computed from the blue parts. For example,
fixing #K2[2] to zero means that the blue initial bytes have a zero impact on this
byte. To get the initial values of the blue neutral bytes, the following constraints
among states #SB3,#K4,#K3 will be enforced.

#SB3[0]⊕#K4[0]⊕ S(#K3[21])⊕ S(#K3[17]⊕#K3[21]) = #AK2[0]

MC−1 ·


#K4[0]⊕#K4[8]

#SB3[9]⊕#K4[1]⊕#K4[9]

#SB3[10]⊕#K4[2]⊕#K4[10]

#K4[3]⊕#K4[11]

 =


#MC2[8]

#MC2[9]

∗
#MC2[11]

 , (12)

where #AK2[0] and #MC2[8, 9, 11] are fixed as zeroes. Algorithm 1 generates
the solution space of blue neutral words. The time complexity is upper bounded
by 28×15.5 = 2124 operations.

The MITM attack procedure for 10-round AES-192. For backward neutral words
( cells), we will iterate over #SB6[2]. We provide the main attack procedure
derived from Figure 8 in Algorithm 2.

The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 10-round AES-192 is about 2128−8×min(0.5,0.5,1) = 2124. The table T+

dominates the memory complexity with 28×1.5 ≈ 212. The pre-computation table
T neutral
blue dominates the memory complexity with 28×15.5 = 2124.

5.2 Improved MITM Preimage Attacks of Whirlpool

We use the SIM technique to search for attack configurations of Whirlpool, im-
proved MITM (pseudo-)preimage attacks are obtained for both 5- and 6-round
Whirlpool. In particular, we could find an attack on 5-round Whirlpool with
O(1) memory and present the first MITM attack on 7.75-round Whirlpool, in-
cluding the SB, SR, and MC operations in the last round. The previous best
(pseudo-)preimage attacks are the 7-round MITM attacks on Whirlpool pre-
sented by Bao et al. [8] at Crypto 2022.
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Algorithm 2: MITM attack on 10 rounds of the AES-192 compression
function.

1 for (c1, . . . , c14) ∈ (F8
2)14 do

2 Initialize T+;
// For blue neutral words

3 for the 28×0.5 values c0 of the hint pool do

4 Lookup the table T neutral
blue [c0, · · · , c14] to get candidates of blue cells in

#K4 and #SB3;
5 for the values of 28×1 in #K4 and #SB3 do
6 Derive m+ (the blue part of #AT9[7] = #RK9[7]⊕#RK−1[7]) and

update the table T+[m+, c0]
+
= [blue neutral bytes];

// 28×0 entries for each index in T+

// For red neutral words

7 for the 28×0.5 values of c0 do
8 for #SB6[2] ∈ F8

2 do
9 Compute m− (the red part of #AT9[7]⊕#SB0[7]), which equals the

blue part of #AT9[7] ;
10 Check for entries in T+[m−, c0] to derive 1 blue neutral byte;
11 Check if the red and blue parts of #SR2[2] produce c0;

// 28×(14+0.5+1+1−1−0.5) = 28×15 candidates expected

12 Compute the full #AT9 and #SB0 in both colors to check the
remaining 15 cells;

13 if the full match is found then

// 28×(15−15) = 1 candidate expected

14 Output the preimage and stop;

Improved and Memoryless Preimage Attack of 5-round Whirlpool. We
directly perform search on the full-size 8 × 8 version for Whirlpool, and our
improved search result for 5-round Whirlpool is given in Figure 9. Compared to
the previous best result of 5-round Whirlpool found by Bao et al. [8, Figure 13],
GnD is still not required but BiDir is utilized (48 cost at Round 0). However,
the DoF cost for neutral words is more concentrated at the starting point, e.g., 48
red cells canceled at Round 0 (48 bytes DoF cost will be compensated at Round
1), and another 24 red cells will be canceled at the MC operation for #KMC2,
which makes it more efficient to generate the red neutral words and can improve
our attack on 5-round Whirlpool further to memoryless when combined with
the same color match. We elaborate on the attack configuration below.

– Initial DoF for forward neutral words −→ι ( ): 24 bytes (8 blue cells in #SB1

and 16 blue cells in #KK0);

– Initial DoF for backward neutral words ←−ι ( ): 48 bytes (48 red cells in
#KK0 are set to be equal to the corresponding cells in #SB1, then all red
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0
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0
0
0

0
0
0
0

0
0

#AK0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

#AK1

#AK2

#AK3

#AK4

#RK0

#RK1

#RK2

#RK3

#RK4

#KMC0

MC

#KMC1

MC

#KMC2

MC

#KMC3

MC

#KMC4

MC

#KK0

KMC(−0 , −0 )

(+16 , +48 )

SKSA

#KK1

KMC(−0 , −0 )

#KK2

KMC(−0 , −24 )

#KK3

KMC(−0 , −0 )

#KK4

KMC(−0 , −0 )

• (−→ι , ←−ι ) = (8+16)=24 , (48+0)=48 )
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• (dB−gR, dR−gB, dM−gB−gR−gBR) = (24, 24, 24)

Fig. 9. An MITM pseudo-preimage attack of 5-round Whirlpool.

bytes can be canceled to constants marked as zero constant8 0 in #AK0 and
#AK1, with just 48 bytes DoF cost for XOR operation);

– Consumed DoF for forward −→σ : zero;

– Consumed DoF for backward ←−σ : 24 bytes for #KMC2 MC−−→ #KK2;

– Guessed bytes for blue, red and both colors gB, gR, gBR: all zero byte;

– Matching DoF dM: 24 bytes between #MC2 and #AK2.

Then, the remaining DoF for the MITM attack is dB = 24, dR = 24, dM = 24.

Compute initial values for forward neutral words (Blue). As there is no DoF
cost for blue neutral words, to obtain the corresponding initial values, one only
needs to enumerate values of 24(16 + 8) blue cells in #KK0 and #SB1.

8 The AddRoundConstant in the key schedule of Whirlpool is the last operation for
each round (SB, SR, MC, AC), that is the subkey added into the encryption already
involved with the round constant. When using the SIM technique, the corresponding
cells related to the XOR compensation here will be canceled to all zero constants.
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Compute initial values for backward neutral bytes (Red). To get the initial values
of red neutral words, the constraints among #KMC2 and #KK2 are as below



a0 − − a9 − a15 − −
− a3 − − a12 − a18 −
− − a6 − − a16 − a21
a1 − − a10 − − a19 −
− a4 − − a13 − − a22
a2 − a7 − − a18 − −
− a5 − a11 − − a21 −
− − a8 − a14 − − a23


= MC ·



#KMC2
0 #KMC2

8 · · · #KMC2
48 #KMC2

56
#KMC2

1 − · · · #KMC2
49 #KMC2

57
− − · · · #KMC2

50 #KMC2
58

− #KMC2
11 · · · #KMC2

51 −
#KMC2

4 #KMC2
12 · · · − −

#KMC2
5 #KMC2

13 · · · − #KMC2
61

#KMC2
6 #KMC2

14 · · · #KMC2
54 #KMC2

62
#KMC2

7 #KMC2
15 · · · #KMC2

55 #KMC2
63


, (13)

where ai (0 ≤ i ≤ 23) are the chosen constants for #KK2.

The MITM attack procedure for 5-round Whirlpool. We provide the memoryless
attack procedure derived from Figure 9 in Algorithm 3. The same-color match
is employed, which is firstly observed by Guo et al. [19] in MITM preimage
attacks and recently also utilized by Hou et al. [21] for MITM attacks on Feistel
constructions. It means a match with only blue and gray (or only red and
gray ) at the matching point, rather than a mixture of red and blue cells.
While gray cells are fixed as constants, and thus are known in both forward
(blue) or backward (red) computations, a same-color match, e.g., only blue or
gray, can be performed independently of the red neutral words.

Algorithm 3: MITM attack on 5-round Whirlpool compression function

1 Fix 8 constant cells in #SB1 to all zero;
2 Fix 8 constants (a16, a17, · · · , a23) in Equation (13) to all zero;
3 for C = (a0, a1, · · · , a15, a16, · · · , a23) ∈ (F8

2)16 do
// For red neutral words

// As there is no red cell in matching states #MC2 and

#AK2, one does not need a store table T+ and thus does not

need to solve the Equation (13) here for back neutral words,

which can be done after the partial match

// For blue neutral words

4 for 8 blue cells in #SB1 ∈ (F8
2)8 and 16 blue cells in #KK0 ∈ (F8

2)16 do
5 Compute forward to the matching state #MC2;
6 Compute backward to the matching state #AK2;

// Only gray and blue cells in matching states here

7 if #MC2 and #AK2 pass the partial match then

// 28×(16+24−24) = 28×16 candidates expected

8 Solve Equation (13) according to current constant C and obtain
28×24 #KMC2 for red neutral words;

9 Compute forward and backward to match the rest 40 cells;
10 if the full match is found then

// 28×(16+24−40) = 1 candidate expected

11 Output the preimage and stop;
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The attack complexity. The time complexity of the above MITM pseudo-preimage
attack on 5-round Whirlpool is about 2512−8×min(24,24,24) = 2320.9 Thanks to
the same color match between #MC2 and #AK2, the partial-matching is inde-
pendent of backward red neutral words, and the constraints on backward neutral
words are linear, then the store tables for the partial-matching can be saved and
thus the memory complexity is O(1).

6 Conclusion

In this work, we advanced the state-of-the-art MITM attacks on AES-like hash-
ing. Among the new techniques, LIN and DIS contributed to the first 10-round
preimage attack on AES-192 and assorted improved results on Rijndael-based
hashing, while SIM better addressed the dependencies and reduced the attack
complexities on Whirlpool and Streebog. We argued that the ideas behind the
new techniques are generic and expected them to have more applications in other
attack scenarios.

Open Problems. The fact that the non-linear part of the AES S-box is a single
monomial x254 allows us to obtain the full output from guessing a space with
dimension four. We also investigated the S-boxes of Whirlpool and Streebog

and found that their S-boxes possess fewer-dimensional subspaces (yielding parts
of the output thus less powerful) for which we could not find better attacks. If
more properties of S-boxes are revealed for AES-like hashing, i.e., algebraic prop-
erties, better MITM attacks exploiting the LIN technique on these target ciphers
can be expected. Furthermore, we applied the techniques to all AES/Rijndael
variants but could not find other improvements compared to [7,8,16,46]. The
relation between the security margin and block-key ratio remains to be further
investigated.
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Appendix A Improved Collision Attacks of Whirlpool

Besides our results on preimage attacks, we also improve collision attacks on
round-reduced Whirlpool. Our attack on 6-round is shown in Figure 10. Com-
pared to the previous best collision attack on 6 rounds of Whirlpool presented
by Dong et al. at Crypto 2021 [16], we reduced the time complexity from 2248 to
2240. We also extended it to a collision attack on 6.5-round Whirlpool, which is
presented in Figure 11 and has the same complexity of 2240 operations. When
converting an MITM preimage attack into a collision attack, the input for key
schedule will be fixed for Whirlpool, thus there will be no DoF introduced in
key schedule in our search model. To demonstrate, we only provide the attack
details for 6-round Whirlpool as below.

– Initial DoF for forward neutral words −→ι ( ): 36 bytes (in #MC3);
– Initial DoF for backward neutral words ←−ι (in ): 4 bytes (in #MC3);

– Consumed DoF for forward −→σ : 32 bytes (16 for #MC4 MC−−→ #AK4 and 16

for #AK1 MC−1

−−−−→ #MC1);
– Consumed DoF for backward ←−σ : zero bytes;
– Guessed bytes for blue, red and both colors gB, gR, gBR: all zero bytes;
– Matching DoF dM: 4 bytes between #MC5 and #AK5.

Then, the remaining DoF is dB = dR = dM = 4.

Compute initial values for forward neutral words (Blue). To get the initial values
of forward neutral words, one should focus on the constraints among states
#MC4 and #AK4, #MC1 and #AK1 as below

– For #MC4 and #AK4, there are 16 bytes MC DoF cost for forward neutral
words, which applies the constraints in Equation (14):



− − − a6 a8 − − −
− − − − a9 a10 − −
− − − − − a11 a12 −
− − − − − − a13 a14
a0 − − − − − − a15
a1 a2 − − − − − −
− a3 a4 − − − − −
− − a5 a7 − − − −


= MC ·



#MC4
0 #MC4

8 · · · #MC4
56

#MC4
1 #MC4

9 · · · #MC4
57

#MC4
2 #MC4

10 · · · #MC4
58

#MC4
3 #MC4

11 · · · #MC4
59

#MC4
4 #MC4

12 · · · #MC4
60

#MC4
5 #MC4

13 · · · #MC4
61

#MC4
6 #MC4

14 · · · #MC4
62

#MC4
7 #MC4

15 · · · #MC4
63


, (14)

where ai (0 ≤ i ≤ 15) are the chosen constants for #AK4.

– For #MC1 and #AK1, there are also 16 bytes MC DoF cost for forward
neutral words, which applies the constraints in Equation (15) as below



− b2 − − − b10 − −
b0 − − − b8 − − −
− − − b6 − − − b14− − b4 − − − b12 −
− b3 − − − b11 − −
b1 − − − b9 − − −
− − − b7 − − − b15− − b5 − − − b12 −


= MC

−1 ·



#AK1
0 #AK1

8 · · · #AK1
56

#AK1
1 #AK1

9 · · · #AK1
57

#AK1
2 #AK1

10 · · · #AK1
58

#AK1
3 #AK1

11 · · · #AK1
59

#AK1
4 #AK1

12 · · · #AK1
60

#AK1
5 #AK1

13 · · · #AK1
61

#AK1
6 #AK1

14 · · · #AK1
62

#AK1
7 #AK1

15 · · · #AK1
63


, (15)

where bi (0 ≤ i ≤ 15) are the chosen constants for #MC1.
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Fig. 10. An MITM collision attack of 6-round Whirlpool.
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Fig. 11. An MITM collision attack of 6.5-round Whirlpool.
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In Algorithm 4, we provide an efficient method to obtain blue neutral words
satisfying the constraints (in Equation (14) and (15)) in a non-linear system,
which has the time complexity and memory complexity both with 28×30 = 2240.

Algorithm 4: Compute forward neutral words (blue) for 6-round collision
attack on Whirlpool

1 Initiate two tables T ′neutralblue and T neutral
blue ;

// The index list I corresponds with 12 constant cells in columns 0,

2, 3, 5, 6 and 7 of #MC3

2 Set list I = [4, 6, 17, 20, 34, 39, 41, 46, 48, 53, 60, 63];
3 Fix 6 constant cells (a0, · · · , a5) in Equation (14) to all zero;
4 Fix 12 constant cells #MC3[I] to all zero;
5 Fix 12 constant cells in columns 1 and 3 of #MC3 to all zero;
6 for any 24 blue cells in #SB4 = X ∈ (F8

2)24 do
7 Compute to 18 middle values denoted by m+, which correspond with

(a0, · · · , a5) and #MC3[I] when passing MC or MC−1;

8 Update to table with T ′neutralblue [m+][0] += X (with size 28×24);

9 for left 24 blue cells in #SB4 = Y ∈ (F8
2)24 do

10 Compute to 18 middle values denoted by m−, which correspond with
(a0, · · · , a5) and #MC3[I] when passing MC or MC−1;

11 Update to table with T ′neutralblue [m−][1] += Y (with size 28×(48−18) = 28×30);

12 for each (x, y) in T ′neutralblue do
13 Compute to rest 10 constants cells (a6, · · · , a15) in Equation (14);
14 Compute to 16 constants cells (b0, · · · , b15) in Equation (15);

// Each index has 28×(30−26) = 28×4 values on average

15 Update to table with T neutral
blue [(a6, · · · , a15, b0, · · · , b15)] += (x, y);

16 return T neutral
blue ;

Compute initial values backward neutral bytes (Red). As there is no DoF cost
for backward neutral words, to obtain the corresponding initial values, one only
needs to enumerate all possible values of 4 red cells in #MC3.

The MITM collision attack procedure for 6-round Whirlpool. The main attack
procedure derived from Figure 10 is provided in Algorithm 5.

The attack complexity. The time complexity of the above MITM collision attack
of 6-round Whirlpool is about 2240. The table T neutral

blue dominates the memory
complexity with 230×8 = 2240.

Appendix B Improved Pseudo-preimage Attack on
8-round AES-192

The attack configuration is as below:
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Algorithm 5: MITM collision attack of 6-round Whirlpool

1 Let 10 constant cells (a6, · · · , a15) in Equation (14) and 16 constant cells
(b0, · · · , b15) in Equation (15) be CG;

2 Call Algorithm 4 to build T neutral
blue (with size 28×30);

3 Initiate a table Tcollision;
4 for CG ∈ (F8

2)26 do
// For red neutral words

5 for 4 red cells in #MC3 ∈ (F8
2)4 do

// As there is no any blue cell in matching states #AK5

and #MC5, the same color match can be used here

6 Compute forward to the matching state #MC5;
7 Compute backward to the matching state #AK5;
8 if #MC5 and #AK5 pass the partial match then

// 28×(26+4+4−4) = 28×30 candidates expected

9 Lookup in table with T neutral
blue [CG];

10 Reconstruct the message X from neutral words and constants;
11 Insert X into Tcollision indexed by the hash value of X;
12 if The full collision is found then

// One candidate expected

13 Output the collision and stop;

– The initial DoF for forward neutral words −→ι ( ): 36 bytes (16 in #AK4, 12
in #SB5[4..15] and eight in #K3[0..7]);

– Initial DoF for backward neutral words ←−ι (in ): 4 bytes (#SB5[0..3]);

– Consumed DoF for forward −→σ : 32 bytes;

– Consumed DoF for backward ←−σ : zero bytes;

– Guessed bytes for blue, red, and both colors gB, gR, gBR: gR = gB = gBR = 0
bytes;

– Guessed byte equivalents for linearization: dL = 0.5 bytes.

– Matching DoF dM: 4 byte.

The remaining DoF are composed of dB − dL = 4 − 0.5 = 3.5, dR − dL =
4− 0.5 = 3.5 and dM = 4.

Compute initial values forward neutral bytes (Blue). Note that the value of a
byte in this phase represents the value computed from the blue parts.

Fix #K0[23],#K4[20..23],#K5[0, 1, 2],#MC0[1, 3, 8, 10],#MC1[1, 3, 5, 7, 8,
10, 13, 15] be all zero, and the following constraints will be utilized by to get
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Fig. 12. An MITM pseudo-preimage attack of 8-round AES-192.
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the initial values of blue neutral bytes.



5⊕
i=0

#K3[4 · i] ⊕ S(#K3[21]) = 0 ,

5⊕
i=0

#K3[4 · i + 1] ⊕ S(#K3[22]) = 0 ,

5⊕
i=0

#K3[4 · i + 2] ⊕ S(#K3[23]) = 0 ,

5⊕
i=0

#K3[4 · i + 3] ⊕ S(#K3[20]) = 0 ,

#K3[0] ⊕ S(#K3[21]) = 0,

#K3[1] ⊕ S(#K3[22]) = 0,

#K3[2] ⊕ S(#K3[23]) = 0
5⊕

i=2
#K3[4 · i + 3] = 0,

MC−1 ·



4⊕
i=1

#K3[4 · i]

4⊕
i=1

#K3[4 · i + 1]

4⊕
i=1

#K3[4 · i + 2]

4⊕
i=1

#K3[4 · i + 3]


=


∗
0

∗
0

 ,

MC−1 ·


#K3[0] ⊕ S(#K3[17] ⊕#K3[21]) ⊕ S(#K3[13] ⊕#K3[21])

#K3[1] ⊕ S(#K3[18] ⊕#K3[22]) ⊕ S(#K3[14] ⊕#K3[23])

#K3[2] ⊕ S(#K3[19] ⊕#K3[23]) ⊕ S(#K3[15] ⊕#K3[23])

#K3[3] ⊕ S(#K3[16] ⊕#K3[20]) ⊕ S(#K3[12] ⊕#K3[20])

 =


0

∗
0

∗

 .

(16)

In the following, let #X[i] = #SB2[i]⊕#K3[i] for all i ∈ {0, . . . , 15}.

MC
−1·


#X[0] ⊕#K3[8] #X[4] ⊕#K3[12] #K3[8] ⊕#K3[16] #K3[12] ⊕#K3[20]

#K3[1] ⊕#K3[9] #X[5] ⊕#K3[13] #X[9] ⊕#K3[17] #K3[13] ⊕#K3[21]

#K3[2] ⊕#K3[10] #K3[6] ⊕#K3[14] #SB2[10] ⊕#K4[10] ⊕#K4[18] #X[14] ⊕#K3[22]

#X[3] ⊕#K3[11] #K3[7] ⊕#K3[15] #K3[11] ⊕#K3[19] #X[15] ⊕#K3[23]

 =

0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0

 .

(17)

Algorithm 6: Compute forward neutral words (blue) for 8-round AES-192.

1 Initiate two tables T neutral
middle and T neutral

blue ;
2 Fix #K0[23], #K4[20..23], #K5[0, 1, 2], #MC0[1, 3, 8, 10], and

#MC1[1, 3, 5, 7, 8, 10, 13, 15] to zeroes.
3 for 12 blue cells #K3[0..11] ∈ (F8

2)12 do
4 Compute to 18 middle values denoted by m+, which is the part of

Equation (16) that involves #K3[0..11];

5 Update table with T neutral
middle [m+]

+
= #K3[0..11]

6 for 12 blue cells #K3[12..23] ∈ (F8
2)12 do

7 Compute to 18 middle values denoted by m−, which is part of
Equation (16) that involves #K3[0..11];

8 Derive entries in T neutral
middle [m−] to get #K3[0..11];

9 Derieve 8 blue bytes in #SB2 by solving 8 linear equations in
Equation (17);

// Now we know all blue cells in #SB2 and #K3.

10 Compute 8 constants (#SB5[0..3],#SB6[2, 7, 8, 13]) = (c0, . . . , c7) ;

11 Update the table T neutral
blue [c0, . . . , c7]

+
= ( in #K3 and #SB2);

// 28×4 candidates expected

12 return T neutral
blue ;
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Algorithm 6 generates the solution space of blue neutral words. The time
complexity is upper bounded by 28×12 = 296.

The MITM attack procedure for 8-round AES-192. We provide the main attack
procedure derived from Figure 12 in Algorithm 7.

The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 8-round AES-192 is about 2128−8×min(3.5,3.5,4) = 2100. The table T+

dominates the memory complexity with approximately 28×4.5 = 236. The pre-
computation table T neutral

blue dominates the memory complexity with 28×12 = 296.

Algorithm 7: MITM attack on 8 rounds of the AES-192 compression function.

// For constants

1 for (c0, . . . , c7) ∈ (F8
2)8 do

2 Initialize T+.
// For blue neutral words

3 for 28×0.5 values c8 of the hint pool do

4 Lookup the table T neutral
blue [c0, · · · , c7] to get candidates of blue cells in

#K3 and #SB2;
5 for the 28×4 values in #K3 and #SB2 do
6 Compute m+ (the blue part of #AT7[2, 5, 8, 15]) and update the

table T+[m+, c8]
+
= [blue neutral bytes];

// 28×0 entries for each index in T+.

// For red neutral words

7 for red bytes in #SB5 ∈ (F8
2)4 and the 28×0.5 values of c8 do

8 Compute m− (the red part of #AT7[2, 5, 8, 15]⊕#SB0[2, 5, 8, 15]), ,
which equals m+;

9 Check for entries in T+[m−, c8] to derive 1 blue neutral byte;
10 Compute the blue and red parts of #SB7[11];
11 Check if the red and blue parts of #SB7[11] really produce c8;

// 28×(8+4.5−0.5) = 28×12 candidates expected

12 Compute the full #AT7 and #SB0 in both colors to check the
remaining 12 cells;

13 if The full match is found then

// 28×(12−12) = 1 candidate expected

14 Output the preimage and stop;

Appendix C Improved Pseudo-preimage Attack on
9-round Rijndael-192/192

C.1 Improved Pseudo-preimage Attack on 9-round Rijndael-192/192

The attack configuration is as below:
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– The initial DoF for forward neutral words −→ι ( ): 2 bytes (2 in #AK3);
– Initial DoF for backward neutral words←−ι (in ): 44 bytes (#K7 and #SR3);
– Consumed DoF for forward −→σ : zero bytes;
– Consumed DoF for backward ←−σ : 42 bytes;
– Guessed bytes for blue, red, and both colors gB, gR, gBR: gR = gBR = 0

byte and gB = gBR = 0 bytes;
– Guessed byte equivalents for linearization: dL = 0.5 bytes.
– Matching DoF dM: 2 bytes between #AT8 and #SB0.

The remaining DoF are composed of

– dB − gBR − dL = 2− 0− 0.5 = 1.5,
– dR − gBR − dL = 2− 0− 0.5 = 1.5,
– dM − gBR = 2− 0 = 2.

Compute initial values forward neutral bytes (Blue). We choose constants as
follows:

– Fix 1 constant for the red parts of #AK3[19].
– Fix 1 constant for the red part of #SB4[19] that defines the red part of

#MC4[7].
– Fix 6 constants for the red parts of #SB5[4, 5, 6, 7, 10, 11].
– Fix 12 constants for the red parts of #SB6[0, 3, 4, 5, 8, 9, 10, 17, 18, 19, 22, 23].
– Fix 4 constants for the red parts of #SB7[0, 5, 10, 15].
– Fix 1 constant for #K4[19].
– Fix 2 constants for #K8[0, 3].

Moreover, we will iterate over 20 values:

– Define 2 variables for the red parts of #MC0[0, 3] = (a0, a1).
– Define 4 variables for the red parts of #MC1[0, 15, 18, 21] = (a2, a3, a4, a5).
– Define 2 variables for #AK3[16, 17] = (a6, a7).
– Define 1 variable for the red part of #AK3[18] = a8.
– Define 9 variables for the red parts of #SB2[0, 1, 2, 14, 15, 16, 19, 20, 21] that

define #MC2[0, 3, 6, 7, 16, 17, 18, 20, 21] = (a9, . . . , a17).
– Define 2 variables for the red part of #MC5[5, 8] = (a18, a19).

Algorithm 8 generates the solution space of red neutral words. The time
complexity is upper bounded by 28×22.5 = 2180.

The MITM attack procedure for 9-round Rijndael-192/192. For forward neu-
tral words ( cells), we will iterate over #AK3[18, 19]. We provide the main
attack procedure derived from Figure 13 in Algorithm 9.

The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 9-round Rijndael-192/192 is about 2192−8×min(1.5,1.5,2) = 2180. The
table T neutral

red needs memory for 28×22.5 = 2180 entries.
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Fig. 13. An MITM pseudo-preimage attack of 9-round Rijndael-192/192.
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Algorithm 8: Compute backward neutral words (red) for 9-round Rijn-

dael-192/192.

1 Initiate a table T neutral
red ;

2 for all values of #K7[0, 3] do
3 Derive #K7[20, 21] such that #K7[0, 3]⊕ S(#K7[21]), S(#K7[20]) produce

the expected constants of #K8[0, 3].
// 28×(2−0) candidates expected

4 for all values of #K7[7, 11, 15] do
5 Derive #K7[19] such that #K7[7]⊕#K7[11]⊕#K7[15]⊕#K7[19] yields the

constant of #K4[19].
// 28×(3−0) candidates expected

6 Construct #K7 by combining the candidates with all possible values for the
remaining 16 bytes. At this stage, we know the full blue part of #K4 and can
derive the red parts of all key words, including #RK−1[0, 15] and #RK8[0, 15].

// 28×(3+2+16) = 28×21 candidates expected

7 Compute #AK4[4..7] from #RK4[4..7] and the constants of the red parts of
#SB5[4..7]. Derive #MC4[4..7] and keep only those values that yield the
expected constant of the red part of #MC4[7].

// 28×(21−1) = 28×20 candidates expected

8 Compute #AK6[0, 5, 10, 15] from #RK6[0, 5, 10, 15] and the constants of the red
parts of #SB7[0, 5, 10, 15]. With the 12 fixed constants of the red parts of
#MC6[0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 15] (defined by the constants in #SB6),
derive the red parts of #MC6[0..15], #AK6[0..15], and #SB7[0..15] column by
column.

// 28×20 candidates expected

9 for those values 28×20 candidates do
10 Compute backwards to #SB6[12..15]. Combine them with

#RK5[0, 3, 4, 5, 8, 9, 10, 12..15, 17, 18, 19, 22, 23] and the fixed red parts of
#SB6, derive #AK5[0, 3, 4, 5, 8, 9, 10, 12..15, 17, 18, 19, 22, 23].

11 for all possible values of #MC5[5, 8] = (a18, a19) do
12 Combine the knowledge of partial #AK5 with the constants of

#MC5[1, 2, 4, 19, 22, 23] defined from #SB5[4, 5, 6, 7, 10, 11] to derive
the full red part of #MC5 column by column.

// 28×(20+2) = 28×22 candidates expected

13 Compute backwards to #SR4. Guess the 16 possible values of a20 of
#SR4[18] to compute to #AK3.

// 28×(22+0.5) = 28×22.5 candidates expected

14 Define #AK3[16, 17] = (a6, a7) and the red part of #AK3[18] = a8.
15 Compute backwards to #MC2. Define the red parts of

#MC2[0, 3, 6, 7, 16, 17, 18, 20, 21] = (a9, . . . , a17).
16 Compute backwards to #MC1[0..3, 12..23]. Define the red parts of

#MC1[0, 15, 18, 21] = (a2, a3, a4, a5).
17 Compute backwards to #MC0[0..3]. Define the red parts of

#MC0[0, 3] = (a0, a1).

18 Update the table T neutral
red [a0, . . . , a19, a20]

+
= (K7,#RK8[0, 15],

#RK−1[0, 15]);

// For each of the 28×(20+0.5) buckets for each value of

(a0, . . . , a19, a20), 28×(22.5−20.5) = 28×2 candidates expected

19 return T neutral
red ;
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Algorithm 9: MITM attack on 9 rounds of the Rijndael-192/192 com-
pression function.

// For constants

1 for (a0, . . . , a19) ∈ (F8
2)20 combined with the 16 values a20 of the hint pool do

// For red neutral words

2 for all 28×2 red candidates in T neutral
red [a0, · · · , a19, a20] do

3 Retrieve the red parts of #AT8[0, 15] = #RK8[0, 15]⊕#RK−1[0, 15];

// 28×(20.5+2) = 28×22.5 candidates expected

// For blue neutral words

4 for #AK3[18, 19] ∈ (F8
2)2 do

// 28×(20.5+2) = 28×22.5 candidates expected

5 Compute forwards to #AK8[0, 15];
6 Compute backwards to #SB0[0, 15];
7 Check for the candidates whose red part of #RK8[0, 15]⊕#RK−1[0, 15]

equals the red part of
#RK8[0, 15]⊕#RK−1[0, 15]⊕#AT8[0, 15]⊕#SB0[0, 15];

8 if the two-byte partial match is passed then
9 Check if the red and red parts of #SR4[18] really produce a20;

// 28×(22.5−0.5) = 28×22 candidates expected

10 Compute the full #AT9 and #SB0 in both colors to check the
remaining 22 cells;

11 if The full match is found then

// 28×(22−22) = 1 candidate expected

12 Output the preimage and stop;

C.2 Improved Pseudo-preimage Attack on 10-round
Rijndael-192/256

The attack configuration is as below:

– The initial DoF for forward neutral words −→ι ( ): 53 bytes (29 in #K4 and
24 in #SR4);

– Initial DoF for backward neutral words ←−ι (in ): 3 bytes (3 in #K4);
– Consumed DoF for forward −→σ : 50 bytes;
– Consumed DoF for backward ←−σ : zero bytes;
– Guessed bytes for blue, red, and both colors gB, gR, gBR: gR = gBR = 0

bytes and gB = gBR = 0 bytes;
– Guessed byte equivalents for linearization: dL = 1.5 bytes;
– Matching DoF dM: 2 bytes between #AT9 and #SB0.

The remaining DoF are composed of

– dB − gBR − dL = 3− 0− 3× 0.5 = 1.5,
– dR − gBR − dL = 3− 0− 3× 0.5 = 1.5,
– dM − gBR = 2− 0 = 2.
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(−1 ,−0 )

c3 c7

#K2 c3 c7

#K3 c3 c7

#K4

(+29 , +3 )
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S KSA

c3 c7

#K5

(−2 ,−0 )

c3

S

c7

#K6

(−4 ,−0 )

c3 c7

#K7

S

c3 c7

#K8 c3

• (−→ι , ←−ι ) = (53 , 3 )
←→
S ENC=(24 , 0 )

←→
S KSA=(29 , 3 )

• (dB, dR, dM, dL) = (3, 3, 2, 1.5)

• (dB−dL, dR−dL, dM) = (1.5, 1.5, 2)

Fig. 14. An MITM pseudo-preimage attack of 10-round Rijndael-192/256.
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Algorithm 10: Compute forward neutral words (blue) for 10-round Rijn-

dael-192/256.

1 Initiate table T ′ and T neutral
blue ;

2 for values of
#K4[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 15, 18, 20, 21, 22, 23, 26, 29, 30, 31] do

3 Derive all round keys with the 7 fixed zeros in key schedule;
4 Compute α0, . . . , α4 as:
5 MC−1 ·#RK0[0, 1, 2, 3]ᵀ = [α0, ∗, ∗, α1]ᵀ,
6 MC−1 ·#RK1[12, 13, 14, 15]ᵀ = [∗, ∗, ∗, α2]ᵀ,
7 MC−1 ·#RK1[16, 17, 18, 19]ᵀ = [∗, ∗, α3, ∗]ᵀ,
8 MC−1 ·#RK1[20, 21, 22, 23]ᵀ = [∗, α4, ∗, ∗]ᵀ;

9 T ′[α0, . . . , α4,#RK2[1, 2, 6, 7, 11, 16, 20, 21],#RK1[0, 1, 2, 3]]
+
=

(blue parts of #K4);
// At each of the 28×17 indices of T ′, 28×5 entries expected

10 for all blue parts in #MC2, all values of #RK1[0, 1, 2, 3] and all values of h0 do
11 Compute β0, . . . , β4 as:
12 MC−1 · [#SB1[0], 0, 0, 0]ᵀ = [β0, ∗, ∗, β1]ᵀ,
13 MC−1 · [#SB2[12], 0, 0, 0]ᵀ = [∗, ∗, ∗, β2]ᵀ,
14 MC−1 · [0,#SB2[17], 0, 0]ᵀ = [∗, ∗, β3, ∗]ᵀ,
15 MC−1 · [0, 0,#SB2[22], 0]ᵀ = [∗, β4, ∗, ∗]ᵀ;
16 for all 28×5 entries at

T ′[β0, . . . , β4,#AK2[1, 2, 6, 7, 11, 16, 20, 21],#RK1[0, 1, 2, 3]] do
17 for all combinations of h1 and h2 do
18 Forward compute and record #AK5[0, 1, 3],

#SB7[0, 3, 8, 9, 12, . . . , 17, 19, 22, 23], and #SB8[0, 5, 10] as
a0, . . . , a17;

19 T neutral
blue [a0, . . . , a17, h0, h1, h2]

+
= (blue parts of #K4,#MC2);

// Under each of the 28×(18+1.5=19.5) indices, 28×3 entries

expected

20 return T neutral
blue ;

Compute initial values forward neutral bytes (Blue). We first fix the following
13 constants (for the blue parts) as all zeros:

– 13 in encryption states: #MC0[0, 3], #MC1[15, 18, 21], and #AK3[16, . . . , 23],
– 7 in the key schedule: #K1[29], #K5[28, 29], and #K6[12, 15, 24, 27].

Alternatively, we choose the 12 blue parts in #MC2 as the starting point so
that the 12 costs from #AK2 to #MC2 can be bypassed and the XOR cost from
#AK3 to #SB4 can be equivalently considered between #AK2 and #SB3. We
remove #K4[7, 12, 13, 24, 25, 27, 28] from SKSA as they can be computed given the
previous 7 bytes fixed as 0 in key schedule, which leaves 22 bytes to distribute
initial DoF in #K4. Then we will iterate over 18 values:

– Denote 3 variables of #AK5[0, 1, 3] by (a0, a1, a2).
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– Denote 12 variables for the blue parts of #SB7[0, 3, 8, 9, 12, . . . , 17, 19, 22, 23]
by (a3, . . ., a14).

– Denote 3 variables for the blue parts of #SB8[0, 5, 10] by (a15, a16, a17).

Finally, 3 nibbles for the linearization hints are used in #SB1[0], c57[2], and
c73[3] (see in the key schedule in Figure 14), denote them by h0, h1, h2. Algo-
rithm 10 generates the solution space of blue neutral words. The time complexity
is upper bounded by 28×22.5 = 2180.

The MITM attack procedure for 10-round Rijndael-192/256. For backward
neutral words ( cells), we will iterate over #K4[16, 17, 19]. We provide the
main attack procedure derived from Figure 14 in Algorithm 11.

Algorithm 11: MITM attack on 10 rounds of the Rijndael-192/256

compression function.

// For constants

1 for (a0, . . . , a17) ∈ (F8
2)18 combined with the 163 guesses of h0, h1, h2 do

// For blue neutral words

2 for all 28×3 blue candidates do
3 Retrieve the blue part of #AT9[0, 15] = #RK9[0, 15]⊕#RK−1[0, 15];

// 28×(19.5+3) = 28×22.5 candidates expected

// For red neutral words

4 for #K4[16, 17, 19] ∈ (F8
2)3 do

// 28×(19.5+3) = 28×22.5 candidates expected

5 Derive the red parts in the key schedule including #RK9[0, 15] and
#RK−1[0, 15];

6 Derive #SB6[0, 1, 3] and compute forwards to #AK9[0, 15];
7 Derive #AK3[16..23] and compute backwards to #SB0[0, 15];

8 Check for the blue candidates in T neutral
blue whose blue part of

#RK9[0, 15]⊕#RK−1[0, 15] equals the red part of
#RK9[0, 15]⊕#RK−1[0, 15]⊕#AT9[0, 15]⊕#SB0[0, 15];

9 if the two-byte partial match is passed and the 3 hints are compatible
then

// 28×(23.5−1.5) = 28×22 candidates expected

10 Compute and check for a full match;
11 if The full match is found then

// 28×(22−22) = 1 candidate expected

12 Output the preimage and stop;

The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 10-round Rijndael-192/256 is about 2192−8×min(1.5,1.5,2) = 2180.
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Appendix D Improved Preimage Attacks of Whirlpool

D.1 Improved Preimage Attack of 6-round Whirlpool
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SB

#SB1

SB

#SB2

SB

#SB3

SB

#SB4

SB

#SB5

SB

#SR0

SR

#SR1
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#SR2

SR

#SR3

SR

#SR4

SR

#SR5

SR

(+49 , +12 )
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MC(−0 , −0 )

MC AK

XOR(−24 , −0 )
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MC AK
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MC(−0 , −0 )

AK MC
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MAT(+32 ) XOR(−0 , −0 )
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AK MC
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0
0
0

0

0
0
0

0

0

0

0

0
0

0

0
0
0

0
0

0
0

0

0

0
0

0
0

0

0

#AK4
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0

0

0
0

0

0
0

0

0

0
0
0
0

0

0
0

0

0

0
0
0
0

0

0
0
0

0

0

#AK5

#RK0

#RK1

#RK2

#RK3

#RK4

#RK5

#KMC0

MC

#KMC1

MC

#KMC2

MC

#KMC3

MC

#KMC4

MC

#KMC5

MC

#KK0

KMC(−0 , −0 )

#KK1

KMC(−0 , −0 )

#KK2

KMC(−13 , −0 )

#KK3

KMC(−0 , −0 )

#KK4

(+49 , +0 )

SKSA

KMC(−0 , −0 )

#KK5

KMC(−0 , −0 )

• (−→ι , ←−ι ) = (49+20)=69 , (12+0)=12 )

• (dB, dR, dM, gB, gR, gBR) = (+32 , +12 , +32 , +0 , +20 , +0 )

• (dB−gR, dR−gB, dM−gB−gR−gBR) = (12, 12, 12)

Fig. 15. An MITM pseudo-preimage attack of 6-round Whirlpool.

The improved result on 6-round Whirlpool is presented in Figure 15. By
using the SIM technique (at Round 4 and 5), the XOR DoF costs can be com-
pensated at Round 5 with 29 blue bytes DoF cost, which reduces the time
complexity by a factor of 224 compared to previous best MITM pseudo-preimage
attack. It leads to the attack configuration as below:

– Initial DoF for forward neutral words −→ι ( ): 69 bytes (among 49 blue cells
in #SB5, 29 out of 49 cells are set to be equal to the corresponding cells in
#KK4, and thus can be canceled to zero constant 0 in #AK4 and #AK5);
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– Initial DoF for backward neutral words ←−ι (in ): 12 bytes (in #SB5);

– Consumed DoF for forward −→σ : 37 bytes (13 for #KK2 MC−1

−−−−→ #KMC2 and
24 for #AK0 ⊕#RK0 = #SB1);

– Consumed DoF for backward ←−σ : zero bytes;
– Guessed bytes for blue, red and both colors gB, gR, gBR : gB = gBR = 0 byte

and gR = 20 bytes;
– Matching DoF dM: 32 bytes between #MC3 and #AK3.

Then, the remaining DoF is dB − gR = 12, dR = 12, dM − dR = 12.

Compute initial values for forward neutral words (Blue). To get the initial values
of forward neutral words, one should focus on the constraints among states
#KK2 and #KMC2, #RK0, #AK0 and #SB1 as below

– For #KK2 and #KMC2, there are 13 bytes MC DoF cost for forward neutral
words, which applies the constraints in Equation (18) as below



− − b3 b6 − b12 − −− − b4 − b9 − − −
b0 − − b7 − − − −
b1 − b5 − − − − −
− − − − − − − −
b2 − − − − − − −
− − − − b10 − − −
− − − b8 b11 − − −


= MC

−1 ·



#KK2
0 #KK2

8 · · · #KK2
56

#KK2
1 #KK2

9 · · · #KK2
57

#KK2
2 #KK2

10 · · · #KK2
58

#KK2
3 #KK2

11 · · · #KK2
59

#KK2
4 #KK2

12 · · · #KK2
60

#KK2
5 #KK2

13 · · · #KK2
61

#KK2
6 #KK2

14 · · · #KK2
62

#KK2
7 #KK2

15 · · · #KK2
63


, (18)

where bi (0 ≤ i ≤ 12) are the chosen constants for #KMC2.

– For #AK0,#RK0 and #SB1, there are 24 bytes XOR DoF cost for forward
neutral words, which applies the constraints in Equation (19) as below



#AK0
0 #AK0

8 · · · #AK0
56

#AK0
1 #AK0

9 · · · #AK0
57

#AK0
2 #AK0

10 · · · #AK0
58

#AK0
3 #AK0

11 · · · #AK0
59

#AK0
4 #AK0

12 · · · #AK0
60

#AK0
5 #AK0

13 · · · #AK0
61

#AK0
6 #AK0

14 · · · #AK0
62

#AK0
7 #AK0

15 · · · #AK0
63


⊕



#RK0
0 #RK0

8 · · · #RK0
56

#RK0
1 #RK0

9 · · · #RK0
57

#RK0
2 #RK0

10 · · · #RK0
58

#RK0
3 #RK0

11 · · · #RK0
59

#RK0
4 #RK0

12 · · · #RK0
60

#RK0
5 #RK0

13 · · · #RK0
61

#RK0
6 #RK0

14 · · · #RK0
62

#RK0
7 #RK0

15 · · · #RK0
63


=



− − c6 c9 − c15 − −
− − − c10 c12 − c18 −
− − − − c13 c16 − c21
c0 − − − − c17 c19 −
− c3 − − − − c20 c22
c1 − c7 − − − − c23
c2 c4 − c11 − − − −
− c5 c8 − c14 − − −


, (19)

where ci (0 ≤ i ≤ 23) are the chosen constants for #SB1.

However, one still needs an efficient method to obtain blue neutral words
satisfying the constraints (in Equation (18) and (19)) in a non-linear system. We
provide Algorithm 12 to efficiently obtain the solution space of blue neutral words
with the time complexity 28×49 = 2392 and memory complexity 28×36 = 2288.

Compute initial values backward neutral bytes (Red). As there is no DoF cost
for backward neutral words, to obtain the corresponding initial values, one only
needs to enumerate all possible values of 12 red cells in #SB5.

The MITM attack procedure for 6-round Whirlpool. The main attack procedure
derived from Figure 15 is provided in Algorithm 13 as below.
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Algorithm 12: Compute forward neutral words (blue) for 6-round Whirlpool

1 Initiate a table T neutral
blue ;

// The index list I corresponds with constant cells in Equation (19)

2 Set list I =
[3, 5, 6, 12, 14, 15, 16, 21, 23, 24, 25, 30, 33, 34, 39, 40, 42, 43, 49, 51, 52, 58, 60, 61];

3 Fix 15 constant cells in #KK4 to zero;
4 for 49 blue cells in #KK4 ∈ (F8

2)49 do
5 Compute backwards to #KMC2;
6 if 13 constants cells in #KMC2 are all zero then

// 28×(49−13) = 28×36 candidates expected

7 Compute backwards to #KK0;

// 28×(36−24) = 28×12 candidates expected for each row

8 Update to table with T neutral
blue [#KK0[I]] += #KK4;

9 return T neutral
blue ;

Algorithm 13: MITM attack on 6-round Whirlpool compression function

1 Fix 3 constant cells in #AK5 and 15 constant cells in #KK4 to all zero;
2 Fix 13 constants (b0, · · · , b12) in Equation (18) to all zero;
3 Fix 4 constants (c20, c21, c22, c23) in Equation (19) to all zero;
4 Set list I =

[3, 5, 6, 12, 14, 15, 16, 21, 23, 24, 25, 30, 33, 34, 39, 40, 42, 43, 49, 51, 52, 58, 60, 61];

5 Call Algorithm 12 to build T neutral
blue ;

6 for C = (c0, · · · , c19, 0, 0, 0, 0) ∈ (F8
2)20 do

// For red neutral words

7 for 20 guessed red cells in #AK2 ∈ (F8
2)20 do

8 for 12 red cells in #SB5 ∈ (F8
2)12 do

9 Compute forwards and backwards to cells with red information in
#MC3,#AK3 and store in a table T− (with size 28×32);

// For blue neutral words

10 for 20 blue cells in #AK5 ∈ (F8
2)20 do

11 Compute forward to #AK0;

12 Search table with T neutral
blue [C ⊕#AK0[I]] and obtain #KK4;

13 Compute backward to #AK3 according to 28×12 #KK4 on average;
14 Check in the table T−;
15 if #MC3 and #AK3 pass the partial match then

// 28×(20+32+32−32) = 28×52 candidates expected

16 Compute to check 20 guessed red cells in #AK2;
17 if Guess values are correct then

// 28×(52−20) = 28×32 candidates expected

18 Compute to match the rest 32 cells;
19 if The full match is found then

// 28×(32−32) = 1 candidate expected

20 Output the preimage and stop;

47



The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 6-round Whirlpool is about 2512−8×min(12,12,12) = 2416. The table
T neutral
blue dominates the memory complexity with 236×8 = 2288.

D.2 Preimage Attack of 7.75-round Whirlpool

The previous best preimage attacks on 7-round Whirlpool in [8], could not
be extended by another partial round due to the AK operation in the final
round. We can use the SIM technique at the penultimate round #AK6, so that
more constant cells can be guaranteed to pass the final MC operation. More
precisely, we want #AK6 to have equally colored cells10. Finally, for the first
time, we obtain an MITM attack of 7.75-round Whirlpool, which is presented
in Figure 16 and has the attack configuration as below

– Initial DoF for forward neutral words −→ι ( ): 16 bytes (16 blue cells in
#SB6 are set to be equal to the corresponding cells in #KK5, and thus can
be canceled to zero constant 0 in #AK5 and #AK6);

– Initial DoF for backward neutral words ←−ι (in ): 48 bytes (in #SB6);

– Consumed DoF for forward −→σ : 12 bytes (12 for #KK5 MC−1

−−−−→ #KMC5);

– Consumed DoF for backward ←−σ : 32 bytes (16 for #AK5 MC−1

−−−−→ #MC5 and

16 for #MC0 MC−−→ #AK0);
– Guessed bytes for blue, red and both colors gB, gR, gBR: gR = gBR = 0 byte

and gB = 12 bytes;
– Matching DoF dM: 16 bytes between #MC3 and #AK3.

Then, the remaining DoF is dB = 4, dR − gB = 4, dM − gB = 4.

Compute initial values forward neutral bytes (Blue). Considering that the con-
straints on forward neutral words are linear, to obtain the corresponding initial
values, one can choose and enumerate all possible values of 4 blue cells in
#KMC5 for forward neutral words.

Compute initial values for backward neutral words (Red). To get the initial values
of backward neutral words, one should focus on the constraints among states
#AK5 and #MC5, #MC0 and #AK0.

– For #MC0 and #AK0, there are also 16 bytes MC DoF cost for backward
neutral words, which applies the constraints in Equation (20) as below



g0 − − − − − − g14
g1 g2 − − − − − −
− g3 g4 − − − − −
− − g5 g6 − − − −
− − − g7 g8 − − −
− − − − g9 g10 − −
− − − − − g11 g12 −
− − − − − − g13 g15


= MC ·



#MC0
0 #MC0

8 · · · #MC0
56

#MC0
1 #MC0

9 · · · #MC0
57

#MC0
2 #MC0

10 · · · #MC0
58

#MC0
3 #MC0

11 · · · #MC0
59

#MC0
4 #MC0

12 · · · #MC0
60

#MC0
5 #MC0

13 · · · #MC0
61

#MC0
6 #MC0

14 · · · #MC0
62

#MC0
7 #MC0

15 · · · #MC0
63


, (20)

where gi (0 ≤ i ≤ 15) are the chosen constants for #MC5.

10 That is with only blue and gray cells or only red and gray cells.
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0
0
0
0
0
0
0
0
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0
0
0
0
0
0
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0
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#RK3

#RK4

#RK5
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#KMC1

MC

#KMC2

MC

#KMC3

MC

#KMC4

MC
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#KK0

KMC(−0 , −0 )

#KK1

KMC(−0 , −0 )

#KK2
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#KK3

KMC(−0 , −0 )

#KK4

KMC(−0 , −0 )

#KK5

(+16 , +0 )

SKSA

KMC(−12 , −0 )

#KK6

KMC(−0 , −0 )

• (−→ι , ←−ι ) = (16+0)=16 , (48+0)=48 )

• (dB, dR, dM, gB, gR, gBR) = (+4 , +16 , +16 , +12 , +0 , +0 )

• (dB−gR, dR−gB, dM−gB−gR−gBR) = (4, 4, 4)

Fig. 16. An MITM pseudo-preimage attack of 7.75-round Whirlpool.
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– For #AK5 and #MC5, there are 16 bytes MC DoF cost for backward neutral
words, which applies the constraints in Equation (21) as below



− − e2 − e4 − − −
− e0 − − − − − e13− − e3 − − − e10 −
− e1 − − − e7 − e14− − − − e5 − e11 −
− − − − − e8 − e15− − − − e6 − e12 −
− − − − − e9 − −


= MC

−1 ·



#AK5
0 #AK5

8 · · · #AK5
56

#AK5
1 #AK5

9 · · · #AK5
57

#AK5
2 #AK5

10 · · · #AK5
58

#AK5
3 #AK5

11 · · · #AK5
59

#AK5
4 #AK5

12 · · · #AK5
60

#AK5
5 #AK5

13 · · · #AK5
61

#AK5
6 #AK5

14 · · · #AK5
62

#AK5
7 #AK5

15 · · · #AK5
63


, (21)

where ei (0 ≤ i ≤ 15) are the chosen constants for #MC5.

Algorithm 14: MITM attack on 7.75-round Whirlpool compression function

1 Fix 48 constant cells in #KMC5 (columns 1, 2, 4, 5, 6, 7) to all zero;
2 Let constant Cg = (g0, · · · , g15) in Equation (20);
3 Let constant Ce = (e0, · · · , e15) in Equation (21);
4 Let the remaining 12 constant cells in #KMC5 (columns 0, 3) be CG;

// Enumerate Ce because starting from #MC5 for red neutral words

5 for Ce ∈ (F8
2)16 do

// For red neutral words

6 for 32 red cells in #MC5 ∈ (F8
2)32 do

7 Initiate table T neutral
red ;

8 Compute forwards to 16 constant cells in #AK0, i.e., Cg;

// 28×(32−16) = 28×16 candidates expected for each row

9 Update to table T neutral
red [Cg] += #MC5;

// For blue neutral words

10 for CG ∈ (F8
2)12 do

11 for Cg ∈ (F8
2)16 do

12 Search table with T neutral
red [Cg] and obtain #MC5 (28×16 on average);

13 Compute backwards to red cells in #AK3 and store in a table T−;
14 for 4 blue cells in #KMC5 ∈ (F8

2)4 do
15 for 12 guessed blue cells in #AK2 ∈ (F8

2)12 do
16 Compute to the blue cells in #MC3 and #AK3 and check in

T−;
17 if #MC3 and #AK3 pass the partial match then

// 28×(16+12+16+16+16−16) = 2480 candidates expected

18 Compute to check 12 guessed cells in #AK2;
19 if Guess values are correct then

// 28×(60−12) = 28×48 candidates expected

20 Compute to match the rest 48 cells;
21 if The full match is found then

// 28×(48−48) = 1 candidate expected

22 Output the preimage and stop;
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The MITM attack procedure for 7.75-round Whirlpool. We provide the main
attack procedure derived from Figure 16 in Algorithm 14.

The attack complexity. The time complexity of the above MITM pseudo-preimage
attack of 7.75-round Whirlpool is about 2512−8×min(4,4,4) = 2480. The table
T neutral
red dominates the memory complexity with 232×8 = 2256.

Appendix E Improved Preimage Attacks of Streebog

Streebog is a block-cipher based hash function in the Russian national standard
GOST R 34.11-2012 [1] and has been an ISO/IEC standard [25] since 2018. It has
two versions Streebog-512 and Streebog-256, which produce 512-bit and 256-
bit hash values respectively. Similar to Whirlpool, Streebog adopts MP mode
compression function g, defined as g(Ni, Hi,Mi) = EMR◦TP◦SB(Ni⊕Hi)(Mi) ⊕
Mi ⊕Hi, where E is a 12-round AES-like block cipher with 8× 8-byte internal
states, Ni is the counter and MR,TP,SB are operations in one round of E. Note
that the compression function g of Streebog is adopted in the HAIFA frame-
work [10], as shown in Figure 17. The initial state of E is S0 = Mi, for each
round, the state is updated by AddRoundKey (AK), SubBytes(SB), Transposi-
tion (TP) and MixRows (MR), i.e., Sj+1 = MR◦TP◦SB(Sj⊕Kj), j = 0, · · · , 11.
The output of the compression function g is finally computed by S12⊕K12. Key
state is initialized by K0 = MR ◦ TP ◦ SB(Hi ⊕ Ni), then the round key is
updated by Kj+1 = MR ◦ TP ◦ SB(Kj ⊕ Cj), where j = 0, · · · , 11 and Cj is
the round constant. Still for convenience, we transpose the row and column for
the representation of Streebog. For more details, please refer to the original
documents [1,15].
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Fig. 17. Streebog hash function [26].
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E.1 Improved Preimage Attack of 7.5-round Streebog-512

Using the SIM technique, we first search MITM attacks on 7.5-round compres-
sion function of Streebog-512, and our improved search result is given in Fig-
ure 18. Compared to the previous best 7.5-round pseudo-preimage attacks on
Streebog-512 found by Hua et al. [22] at ToSC 2022, we can improve the time
complexity from 2441 to 2433 and memory complexity from 2192 to 2177, our
attack configuration is as below

– Initial DoF for forward neutral words −→ι ( ): 10 bytes (10 blue cells in #SB4

are set to be equal to the corresponding cells in #KK4, and thus can be
canceled to zero constant 0 in #AK3 and some fixed constants11 ai related
to the round constants of Streebog in #AK4);

– Initial DoF for backward neutral words ←−ι (in ): 54 bytes (in #SB4);
– Consumed DoF for forward −→σ : zero byte;

– Consumed DoF for backward ←−σ : 32 bytes (32 for #MC5 MC−−→ #AK5);
– Guessed bytes for blue, red and both colors gB, gR, gBR: gR = gBR = 0 byte

and gB = 12 bytes;
– Matching DoF dM: 24 bytes between #MC2 and #AK2.

Then, the remaining DoF is dB = 10, dR − gB = 10, dM − gB = 12.

Compute initial values forward neutral bytes (Blue). As there is no DoF cost
for forward neutral words, to obtain the corresponding initial values, one only
needs to enumerate all possible values of 10 blue cells in #SB4.

Algorithm 15: Compute backward neutral words (red) for 7.5-round Streebog

1 Initiate a table T neutral
red ;

2 Fix 32 constant cells in #AK5 to all zero;
3 for 26 cells in #AK4 ∈ (F8

2)26 in the four rightmost columns (columns 4-7) do
4 Compute forward to the four bottom rows (rows 4-7) of #MC5;
5 With 32 fixed constants in #AK5, derive the remaining red cells of #AK5;
6 Derive the four topmost rows of #MC5;
7 Compute backward to the four leftmost columns of #AK4;
8 if 4 constants cells in #AK4 in the leftmost columns are (a0, . . . , a3) then

// 28×(26−4) = 28×22 candidates expected

9 Update table with T neutral
red += #AK4;

10 return T neutral
red ;

11 Because the round constant of the key schedule of Streebog is introduced at the
input of the SB operation, which is different from Whirlpool. Thus, when consid-
ering forward computation by using the SIM technique, all zero constants will be
changed to some fixed constants related to the round constants of Streebog, and
this essentially has no impact on the attack.
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Fig. 18. An MITM attack on 7.5-round compression function of Streebog-512.
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Compute initial values for backward neutral words (Red). To get the initial values
of backward neutral words, we provide Algorithm 15 to obtain the solution
space of red neutral words with the time complexity 28×26 = 2208 and memory
complexity 28×22 = 2176.

The MITM attack procedure for 7.5-round Streebog-512. We provide the main
attack procedure derived from Figure 18 in Algorithm 16 as below.

Algorithm 16: MITM attack on 7.5-round Streebog compression function

1 Fix 32 constant cells in #AK5 to all zero;
2 Let 22 constant cells in columns 0, 1 and 2 of #KK4 be all zero;
3 Let 32 constant cells in columns 3, 4, 5 and 7 of #KK4 be CG;

4 Call Algorithm 15 to build T neutral
red (with size 28×22);

5 for CG ∈ (F8
2)32 do

// For blue neutral words

6 for 10 blue cells in #SB4 ∈ (F8
2)10 do

7 for 12 guessed blue cells in #AK1 ∈ (F8
2)12 do

8 Compute forward to the matching state #MC2;
9 Compute backward to the matching state #AK2;

10 Store in a table T+ (with size 28×22);

// For red neutral words

11 for #AK4 ∈ T neutral
red do

12 Compute backward to #AK2;
13 Check in the table T+;
14 if #MC2 and #AK2 pass the partial match then

// 28×(32+22+22−24) = 28×52 candidates expected

15 Compute to check 12 guessed cells in #AK1;
16 if Guess values are correct then

// 28×(52−12) = 28×40 candidates expected

17 Compute forward and backward to match the rest 40 cells;
18 if The full match is found then

// 28×(40−40) = 1 candidate expected

19 Output the preimage and stop;

The attack complexity. According to Algorithm 16, the time complexity of the
above MITM pseudo-preimage attack on the compression function of 7.5-round
Streebog is about 2512−8×10 +2512−8×10 +2512−8×12 ≈ 2433. The tables T+ and
T neutral
red dominate the memory complexity with 2 · 28×22 = 2177.

We use the conversion given by AlTawy et al. [3, Section 6], who employed
Joux’ multi-collision technique [27] and another MITM attack [33] on the HAIFA
framework [10] in their work. By using the conversion, the attack on the com-
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pression function of 7.5-round Streebog can be converted into a preimage attack
on its hash function with the steps below:

1. Given an output H(M) of Streebog-512, we produce 2k preimages (Σ, h515)
for the last compression function and store them in a table T .

2. Using Joux’s multi-collisions [27], 2512 messages can be constructed with a
length of 512 message blocks, which all lead to the same value of h512. That
is Mi = mj

1‖mj
2‖ · · · ‖mj

512 (i ∈ {1, 2, · · · , 2512}, j ∈ {1, 2}), then we have
2512 candidates for ΣMi

.
3. Assume the message has 513 complete blocks, then mpad and |M | are known

constants. By randomly choosing 2512−k m513, together with h512 produced
in step 2 and the known values N513, N514, we can compute h515. Then a
right m513 is expected such that h515 ∈ T . Once we find a matching, Σ is
known, so we can compute the sum ΣMi = Σ −mpad −m513.

4. We compute all the 2256 sums of all the 2256 256-block message ΣM1
=

mj
1 + mj

2 + · · · + mj
256 and store them in a table T1. Then, compute the

sum of other 256-block messages ΣM2 = mj
256 + · · · + mj

512 and check if
ΣMi

− ΣM2
is in table T1. Once we find a matching, we know that the full

513-block message M = mj
1‖mj

2‖ · · · ‖mj
512‖m513 is the preimage of H(M).

For 7.5-round Streebog-512 hash function, k = 40.25 is an almost optimal
solution, so the time complexity is about 240.25 ·2433+512×2256+3×2512−40.25+
2256 ≈ 2474.25 and the memory complexity is bounded by 2256.

E.2 Improved Preimage Attack of 8.5-round Streebog-512

The previous best preimage attack on Streebog-512 is also given by Hua et
al. [22], which reaches 8.5-round and has the time complexity 2481/2498.25 (com-
pression function/hash function) and memory complexity 2288. By using the SIM
technique, obvious memory improvements can be achieved from 2288 to 2129 for
the attack on compression function and to 2256 for the attack on hash function.
Our better search results is provided in Figure 19, to gain the huge memory
improvements, it firstly should be transformed into an equivalent configuration,
which is given in Figure 20 and has the following attack configuration.

– Initial DoF for forward neutral words −→ι ( ): 4 bytes (4 blue cells in #AK4

are set to be equal to the corresponding cells in #KK5, and thus can be some
fixed constants ai in #AK3 and some fixed constants bi in #AK5, these fixed
constants are related to the round constants of Streebog.);

– Initial DoF for backward neutral words ←−ι (in ): 32 bytes (in #AK5);
– Consumed DoF for forward −→σ : zero byte (16 XOR DoF cost for #RK3

cancels blue cells in #SB4 can be compensated by the SIM technique);

– Consumed DoF for backward ←−σ : 16 bytes (16 for #MC6 MC−−→ #AK6);
– Guessed bytes for blue, red and both colors gB, gR, gBR: gR = gBR = 0 byte

and gB = 12 bytes;
– Matching DoF dM: 16 bytes between #MC2 and #AK2.

Then, the remaining DoF is dB = 4, dR − gB = 4, dM − gB = 4.
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Fig. 19. An MITM attack on 8.5-round compression function of Streebog-512.
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Fig. 20. Equivalent MITM attack on 8.5-round compression function of Streebog-512.
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Compute initial values for forward neutral words (Blue). To obtain the initial
values of forward neutral words, one should focus on the constraints among states
#RK3 (#KK4), #AK3 and #SB4 as below



#SB4
0 #SB4

8 · · · #SB4
56

#SB4
1 #SB4

9 · · · #SB4
57

#SB4
2 #SB4

10 · · · #SB4
58

#SB4
3 #SB4

11 · · · #SB4
59

#SB4
4 #SB4

12 · · · #SB4
60

#SB4
5 #SB4

13 · · · #SB4
61

#SB4
6 #SB4

14 · · · #SB4
62

#SB4
7 #SB4

15 · · · #SB4
63


⊕



#RK3
0 #RK3

8 · · · #RK3
56

#RK3
1 #RK3

9 · · · #RK3
57

#RK3
2 #RK3

10 · · · #RK3
58

#RK3
3 #RK3

11 · · · #RK3
59

#RK3
4 #RK3

12 · · · #RK3
60

#RK3
5 #RK3

13 · · · #RK3
61

#RK3
6 #RK3

14 · · · #RK3
62

#RK3
7 #RK3

15 · · · #RK3
63


=



− − − − − − − −
a0 a2 a4 a6 a8 a10 a12 c14− − − − − − − −
− − − − − − − −
a1 a3 a5 a7 a9 a11 a13 a15− − − − − − − −
− − − − − − − −
− − − − − − − −


, (22)

where ai (0 ≤ i ≤ 15) are the chosen constants for #AK3.

Thanks to the SIM technique, the conditions on Equation (22) can be natu-
rally held if we properly set the states #AK4 and #KK5 as below

– Set 16 0 zero constant cells as shown in #AK4 and #KK5;

– Set 4 blue cells in #AK4 to be equal to the corresponding cells in #KK5;

Then for backward computation, as #AK4 and #KK5 follow almost the same
operations in encryption and key schedule except the AddRoundConstant after
passing the SB−1 operation in key schedule, thus it will cancel to 16 fixed con-
stants ai in #AK3, which is related to round constants of Streebog. Similarly,
for forward computation12, it will cancel to 16 fixed constant cells bi in #AK5.
We note that this usage of the SIM technique is different to previous results on
Whirlpool and 7.5-round Streebog, which is asymmetric in terms of the DoF
compensation and covers one more round to three rounds, i.e., #AK3,#AK4

and #AK5. For #AK3 and #AK4, it can be used to efficiently obtain forward
(blue) neutral words, and the 16 fixed constant cells bi in #AK5 can be used to
efficiently obtain backward (red) neutral words.

Compute initial values for backward neutral words (Red). To obtain the initial
values of red neutral words, the constraints among #AK6 and #MC6 are set as
below



− − − − − − − −
− − − − − − − −
e0 e2 e4 e6 e8 e10 e12 e14
e1 e3 e5 e7 e9 e11 e13 e15− − − − − − − −
− − − − − − − −
− − − − − − − −

 = MC ·



#MC6
0 #MC6

8 · · · #MC6
56

#MC6
1 #MC6

9 · · · #MC6
57− − · · · −

− − · · · −
#MC6

4 #MC6
12 · · · #MC6

60
#MC6

5 #MC6
13 · · · #MC6

61
#MC6

6 #MC6
14 · · · #MC6

62
#MC6

7 #MC6
15 · · · #MC6

63


, (23)

where ei (0 ≤ i ≤ 15) are the chosen constants for #AK6. Then the following
Algorithm 17 is provided to obtain the solution space of red neutral words with
the time complexity 28×32 = 2256 and memory complexity 28×16 = 2128.

The MITM attack procedure for 8.5-round Streebog-512. We provide the main
attack procedure derived from Figure 19 in Algorithm 18 as below.

12 According to Streebog’s S-box π, π(0) = FC, thus it has 0
π−→ FC for #SB5 SB−−→ #SR5.
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Algorithm 17: Compute backward neutral words (red) for 8.5-round Streebog

1 Initiate a table T neutral
red ;

2 Fix 16 constants (e0, · · · , e15) in Equation (23) to all zero;
3 Solve Equation (23) to get the solution space Sred (with dimension 32 bytes);
4 for each solution in Sred do
5 Compute backward to #AK5;

6 if 16 bi fixed constant cells in #AK5 are matched then

// 28×(32−16) = 28×16 candidates expected

7 Update to table with T neutral
red += #AK5;

8 return T neutral
red ;

Algorithm 18: MITM attack on 8.5-round Streebog compression function

1 Fix 16 ai constant cells in #AK3;

2 Fix 16 bi constant cells in #AK5;
3 Fix 16 0 constant cells in #AK4;
4 Fix the rest 12 constant cells in #AK4to all zero;
5 Fix 16 0 constant cells in #KK5;
6 Fix 16 constants (e0, · · · , e15) in Equation (23) to all zero;
7 Fix any 4 constant cells in #KK5 (#RK4) be all zero;
8 Let the rest 44 constant cells in #KK5 be CG;

9 Call Algorithm 17 to build T neutral
red (with size 28×16);

10 for CG ∈ (F8
2)44 do

// For red neutral words

11 Compute backward to #AK2 by T neutral
red and store in a table T−;

// For blue neutral words

12 for 4 blue cells in #AK4 ∈ (F8
2)4 do

13 Set 4 corresponding blue cells in #AK5 to be equal to that in #AK4;
14 for 12 guessed blue cells in #MC1 ∈ (F8

2)12 do
15 Compute to #MC2 and #AK2 and check in the table T−;
16 if #MC2 and #AK2 pass the partial match then

// 28×(44+16+12+4−16) = 28×60 candidates expected

17 Compute to check 12 guessed cells in #AK1;
18 if Guess values are correct then

// 28×(60−12) = 28×48 candidates expected

19 Compute forward and backward to match the rest 48 cells;
20 if The full match is found then

// 28×(48−48) = 1 candidate expected

21 Output the preimage and stop;
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The attack complexity. According to Algorithm 18, the time complexity of the
above MITM pseudo-preimage attack on the compression function of 8.5-round
Streebog is about 2512−8×4 + 2512−8×4 + 2512−8×4 ≈ 2481. The table T− and
T neutral
red dominate the memory complexity with 2× 28×16 = 2129.

For 8.5-round Streebog-512 hash function, same to the choice in [22], k =
16.25, so the time complexity is about 216.25 · 2481 + 512× 2256 + 3× 2512−16.25 +
2256 ≈ 2498.25 and the memory complexity is bounded by 2256.
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