
New Models for the Cryptanalysis of ASCON

Mathieu Degré1, Patrick Derbez1, Lucie Lahaye2, and André Schrottenloher1

1 Univ Rennes, Inria, CNRS, IRISA
firstname.lastname@inria.fr

2 ENS de Lyon
firstname.lastname@ens-lyon.fr

Abstract. This paper focuses on the cryptanalysis of the ASCON fam-
ily using automatic tools. We analyze two different problems with the
goal to obtain new modelings, both simpler and less computationally
heavy than previous works (all our models require only a small amount
of code and run on regular desktop computers).
The first problem is the search for Meet-in-the-middle attacks on reduced-
round ASCON-Hash. Starting from the MILP modeling of Qin et al.
(EUROCRYPT 2023 & ePrint 2023), we rephrase the problem in SAT,
which accelerates significantly the solving time and removes the need
for the “weak diffusion structure” heuristic. This allows us to reduce the
memory complexity of Qin et al.’s attacks and to prove some optimality
results.
The second problem is the search for lower bounds on the probability
of differential characteristics for the ASCON permutation. We introduce
a lossy MILP encoding of the propagation rules based on the Hamming
weight, in order to find quickly lower bounds which are comparable to
the state of the art. We find a small improvement over the existing bound
on 7 rounds.

Keywords: ASCON, Symmetric Cryptanalysis, Meet-in-the-middle Attacks,
Differential Cryptanalysis, Mixed Integer Linear Programming, SAT

1 Introduction

Ascon [8] is a family of permutation-based authenticated encryption and hash
functions, which was selected in 2023 as the winner of the NIST Lightweight
Encryption standardization process [22]. All functions in the Ascon family are
based on the permutation of the same name, and use variants of Duplex [3] and
Sponge [2] modes.

Being a high-profile target, Ascon has been the subject of more than 25
independent third-party cryptanalysis works to date, focusing on different as-
pects of the permutation and its modes, such as distinguishers, key-recovery,
collision and preimage attacks on weakened variants. Our work targets both the
permutation and the Ascon-Hash function.

Automatic Tools for Cryptanalysis. Automatic tools have been widely used
in order to find and optimize attacks on the Ascon family, either reducing the
search of an attack to a SAT, SMT or MILP problem [20] or an ad hoc problem
which is solved automatically [15]. The main issue with Ascon is its large state
size (320 bits) and weakly aligned structure, which essentially requires a model to
define at least 320 variables for each round. The resulting SAT or MILP problems
can be complex, computationally heavy to solve, and often do not terminate.

Contributions and Organization. In this work, we target two cryptanalytic
problems with the aim of simplifying the models and reducing their runtime.
The first problem is the optimization of Meet-in-the-middle preimage attacks
on Ascon-Hash, which currently allow to attack the 3- or 4-round versions.
Following a framework of Qin et al. [19,20], we design a simple SAT modeling
(whereas they used MILP). The results with this new modeling are twofold: first,
we are able to reduce significantly the memory footprint of the attacks (from
254 to 234 for the 4-round attack). Next, the SAT model allows us to prove that,
under some hypotheses on the shape of the MITM attack path, this technique
cannot reach 5 rounds, while the MILP modeling left this question opened.

The second problem is the search for differential characteristics of the per-
mutation. We observe that a simple MILP model, with a lossy approximation of
the differential transition table of the S-Box, allows to recover quite good lower
bounds on the probabilities. This allows us to improve the current best lower
bound on 7 rounds of Ascon.

The code of our models is available at:

https://gitlab.inria.fr/capsule/ascon-new-models

The paper is organized as follows. In Section 2, we recall the specification of
the Ascon permutation and Ascon-Hash. In Section 3 we explain the MITM
preimage attack framework of [19,20]. In Section 4 we explain our SAT modeling
and its results. Finally in Section 5 we give our new model for differential bounds
and results.

Related Work. The use of SAT in automated tools for Ascon is not new.
In [10] a SAT modeling of propagations through the S-Box and linear layers,
combined with cardinality constraints (which reuses ideas from [21]) was used
to find bounds for differential and linear cryptanalysis. Our model is different
since we target MITM attacks, but has some similarities.

In an independent line of work, Li et al. [17] optimized a different algebraic
preimage attack using a SAT modeling as well. This led to small improvements in
time complexity with respect to [20] and reduction of the memory to negligible.
Therefore, the attacks that we present here are not strictly the best preimage
attacks on Ascon-Hash, but the best MITM attack paths. The optimality results
are also specific to the MITM setting.

2

https://gitlab.inria.fr/capsule/ascon-new-models

2 Preliminaries

The primitives of the Ascon family are based on the Ascon permutation, which
operates on a 320-bit state represented as an array of bits with 64 columns and 5
lines. Variants of the permutation are obtained by iterating the round function:

p = pL ◦ pS ◦ pC

where pL is the linear layer, pS the S-Box layer, and pC the addition of a constant.
The n-round Ascon permutation is then simply written as pn. These operations
are defined as follows:

Constant addition – pC XORs x2 with a constant that depends on the round.
This operation is insignificant for the analyses of this paper.

Substitution – pS applies the 5-bit Ascon S-Box column-wise, as

S(y0 y1 y2 y3 y4) = y′0 y′1 y′2 y′3 y′4, where:

y′0 = y4y1 ⊕ y3 ⊕ y2y1 ⊕ y2 ⊕ y1y0 ⊕ y1 ⊕ y0

y′1 = y4 ⊕ y3y2 ⊕ y3y1 ⊕ y3 ⊕ y2y1 ⊕ y2 ⊕ y1 ⊕ y0

y′2 = y4y3 ⊕ y4 ⊕ y2 ⊕ y1 ⊕ 1

y′3 = y4y0 ⊕ y4 ⊕ y3y0 ⊕ y3 ⊕ y2 ⊕ y1 ⊕ y0

y′4 = y4y1 ⊕ y4 ⊕ y3 ⊕ y1y0 ⊕ y1

(1)

Linear Layer – pL transforms the rows x0, . . . , x4 into x′
0, . . . , x

′
4, defined as

follows, where ≫ denotes a circular shift:
x′
0 = x0 ⊕ (x0 ≫ 19) ⊕ (x0 ≫ 28)

x′
1 = x1 ⊕ (x1 ≫ 61) ⊕ (x1 ≫ 39)

x′
2 = x2 ⊕ (x2 ≫ 1) ⊕ (x2 ≫ 6)

x′
3 = x3 ⊕ (x3 ≫ 10) ⊕ (x3 ≫ 17)

x′
4 = x4 ⊕ (x4 ≫ 7) ⊕ (x4 ≫ 41)

(2)

2.1 The ASCON-Hash Function

The Ascon family defines several hash and extendable output functions (Ascon-
Hash, Ascon-Hasha, Ascon-Xof, Ascon-Xofa). All use the same sponge
construction with different parameters. The 320-bit state is divided into an in-
ner part, of size c (the capacity), and an outer part, of size r (the rate). The input
to the function is first padded and divided into blocks of size r. In the first phase
(absorption) these blocks are XORed into the rate between two applications of
the permutation. In the second phase (extraction) the current value of the rate
is output between two applications of the permutation, until the wanted length
is obtained. This process is illustrated in Figure 13. The variant studied in this
paper is Ascon-Hash, which uses a = b = 12, r = 64, and a hash size of h = 128
bits.
3 This figure, like several in this paper, uses the “TikZ library for crypto” of [9].

3

IV

pa

M1

r

pb

c

M2

r

pb

c

Mn

r

pa

c

H1

r

pb

c

H2

r

pb

c
pb

Hm

r

Fig. 1: Structure of Ascon hashing modes.

The padding scheme always consists in appending a “1” followed by as many
zeroes as required to make the plaintext length a multiple of the rate. For the
attacks on Ascon-Hash, we simply note that the last message block will contain
at least 1 uncontrolled bit “1”.

3 Preliminaries on MITM Attacks

Meet-in-the-middle (MITM) attacks were introduced in the cryptanalysis of
block ciphers by Diffie and Hellman [6], and were later extended to hash func-
tions. Actually, most of the previous cryptanalysis results consider hash functions
based on the Merkle-Damgård domain extension technique, using a compression
function based on a block cipher. The techniques are therefore similar to the
cryptanalysis of block ciphers [1,13].

In both cases, the idea of the MITM is to consider two subsets of internal
states of the cipher (resp. compression function) which can be computed inde-
pendently. The possibilities for these states are exhausted, and matching pairs
of values are found, according to the points in which the two sub-paths meet.

The typical way is to split the computation in a backward chunk and a forward
chunk. This works best when the full state can be known at the beginning of
both chunks, for example when we start forwards from a plaintext and backwards
from a ciphertext. However, this is not the case in a Sponge-based mode.

3.1 Meet-not-in-the-middle

At EUROCRYPT 2023, Qin et al. [19] introduced MITM-based preimage attacks
on Ascon-Hash and Keccak, which were later improved in [20]. We will focus
here on Ascon-Hash. The attack will focus on the second-to-last permutation
call, which is reduced to R rounds instead of 12. The last message block M3 is
absorbed and the first hash block H1 is returned. The goal is to find a block M3

such that H1 matches the target image. Afterwards, the attack is repeated until
H2 also matches. This situation is represented in Figure 2.

The idea of [19] is to separate the inner part at M3 into three sets of bits: red
bits , blue bits and gray bits (the remaining ones). Red and blue bits are
the varying bits of what would have been previously the forward and backward

4

IV

p12

M1

r

p12

c

M2

r

p12

c

M3

r

pR

c

H1

r

p12

c

H2

r

Fig. 2: Representation of the Ascon structure in the context of this attack

paths. Gray bits are fixed constants, including the padding bits which are always
gray.

After fixing an initial red/blue/gray configuration, one analyzes the propa-
gation of red and blue bits. The goal is that several bits of the inner part after
pR (matching bits) can still be expressed as a linear combination of: • a function
of the red and gray bits; • a function of the blue and gray bits:

h = f(xR, xG)⊕ g(xB , xG)⊕ c (3)

where c is some constant and xR, xB , xG are the respective values of red, blue
and gray bits.

Let ht be the target value on the matching bits. Once such a configuration is
found, we can compute a MITM episode. We take arbitrary messages (M1,M2)
which will fix the internal state before pR. For any value xG:

1. Create a hash table U and for all xR, put xR in the table at index f(xR, xG)
2. For all xB , compute g(xB) ⊕ c ⊕ ht and search for matches in the table U .

Any match gives a message block M3 = (xB , xR, xG) such that H1 has the
value ht at the matching bits.

For each such candidate, we need to recompute the entire hash value and check
if it matches the desired image. The time (T) and memory (M) complexities of
this episode can be expressed depending on the number of red bits Dr, of blue
bits Db and matching bits Dm. Counting in Ascon-Hash calls and considering
only the dominating term in the complexity, we obtain a simple formula:{

T = 263−Dr−Db max
(
2Dr , 2Db , 2Dr+Db−Dm

)
M = min

(
2Dr , 2Db

) . (4)

Here, (63 − Dr − Db) is the number of controllable gray bits, since we cannot
control the last padding bit. In this complexity, 2Dr is the size of the red list,
i.e., all entries (xR, f(xR, xG)) of the table U ; 2Db is the size of the blue list, i.e.,
all entries (xB , g(xB , xG)). Finally 2Dr+Db−Dm is the size of the merged list, i.e.,
all matching pairs which require a recomputation of the hash. Notice that the
blue and merged list are never actually stored in memory; furthermore, the roles
of the blue and red list can be swapped.

5

However, this is not the entire attack yet, for two reasons: first, the message
space of the block M3 is of size 263, meaning that we can only match on average
63 bits of the target image, and we need to repeat this process 265 times. Second,
in order to facilitate the propagation of blue and red bits, it is better to enforce
some constraints on the outer part before pR. If there are N bits of constraints
on the outer part, we need to compute it for 2N random choices of M1,M2 before
running the next MITM episode.

Therefore, the time and memory complexities of the full attack are computed
as:

T = max
(
265+N , 265 × 263−Dr−Db max

(
2Dr , 2Db , 2Dr+Db−Dm

))
= max

(
265+N , 2128−Dr , 2128−Db , 2128−Dm

)
M = min

(
2Dr , 2Db

)
.

(5)

3.2 Improvement with Cancellations

This first attack framework was improved by Qin et al. [19] using bit cancella-
tions.

The reason a bit in the message block cannot be expressed as a linear com-
bination of red and blue bits is the non-linearity introduced by the S-Box. If a
red bit is multiplied by a blue one (in terms of logical AND) the result cannot
be exploited anymore for the MITM.

To facilitate the propagation, it would be beneficial to have fixed the value
of this blue bit (or the red one). This is the idea of cancellations. First, we select
Ar red bits and Ab blue bits in the path, which we transform into gray bits.
Then, we rewrite the functions f and g in terms of the values yR and yB taken
at these bits:

f(xR, xG, yB) and g(xB , xG, yR) .

Notice that, by assumption, yB is a function of the blue bits: yB = f ′(xB , xG),
and yR a function of the red bits: yR = g′(xR, xG). Therefore, the original system
of equations ht = f(xR, xG)⊕ g(xB , xG)⊕ c is transformed into a more complex
system over the variables xR, xB , xG, yR, yB :

ht = f(xR, xG, yB)⊕ g(xB , xG, yR)⊕ c

yB = f ′(xB , xG)

yR = g′(xR, xG) .

(6)

This amounts to introducing additional variables (yR and yB) to put this
system of algebraic equations into MITM form. This technique can be compared
to the linearization technique of [17], which would rather introduce new variables
to make the system linear. More generally, cancellations can happen on any bit
which is a linear expression of blue and red. We will say that the red part or the
blue part has been cancelled.

The merging complexity must be updated: the blue list is of size 2Db+Ar and
the red list of size 2Dr+Ab , since both depend on the corresponding cancellation

6

Algorithm 1 MITM attack algorithm, following [19,20].
Input: target hash value (H1, H2), configuration of the attack (red bits, blue bits,
cancellation points, matching points, N bit-constraints on the outer part)
Output: three-block message M1,M2,M3 leading to the image H1, H2

1: Determine the constant c and value ht at the matching points
2: for 265 pairs M1,M2 do
3: Compute the inner part after absorbing M1,M2

4: If it does not satisfy the N constraints, continue
5: for All possible values xG for the gray bits of M3 do

▷ Merging starts
6: Initialize a hash table U
7: for All values xR for the red bits of M3 do
8: for All values yB for the blue cancellation points in the path do
9: Compute f(xR, xG, yB) and g′(xR, xG)

10: Store xR in the table U at index (yB , g
′(xR, xG), f(xR, xG, yB))

11: end for
12: end for

▷ Red list constructed
13: for All values xB for the blue bits of M3 do
14: for All values yR for the red cancellation points in the path do
15: Compute g(xB , xG, yR) and f ′(xB , xG)
16: Fetch the data in U at index (f ′(xB , xG), yR, g(xB , xG, yR)⊕ c⊕ ht)

▷ By construction, the matching and cancellation points agree
17: for Any obtained xR do
18: Set M3 = (xB , xR, xG)
19: Recompute the entire hash of M1,M2,M3

20: If it equals H1, H2, Return
21: end for
22: end for
23: end for
24: end for
25: end for

points. However, since each cancellation point is also a matching point, the
merged list size is unchanged. The time and memory complexities of the full
attack are updated to:{

T = max
(
265+N , 2128−Dr+Ar , 2128−Db+Ab , 2128−Dm

)
M = min

(
2Dr+Ab , 2Db+Ar

)
.

(7)

The attack can be summarized as Algorithm 1.
The attacks of [19,20] do not use both blue and red cancellations. We have

tried to authorize both but did not arrive at better results. In fact, it seems that
the optimal strategies are unbalanced: one of the lists will have more degrees of
freedom and no cancellations, and the other one will have less degrees of freedom
and many cancellations. This gives two lists of approximately equal size.

7

3.3 Automatic Search Strategies

The configuration of a MITM preimage attack is given by the coloring pattern
of bits, the choice of cancellation points and conditions on the outer part. The
time and memory complexities are determined by the number of blue and red
bits in M3 (blue and red degree of freedom), and the number of matching and
cancellation bits, as per Equation 7.

Qin et al. show that the problem of finding the best MITM preimage attack
can be reduced to a Mixed-Integer Linear Programming (MILP) problem, i.e.,
optimization under linear inequalities using real, integer and Boolean variables.
Roughly speaking, the configuration is modeled using Boolean variables and the
dominating term of the time and memory complexities (in log2) is optimized:{

T = max (65 +N, 128−Dr +Ar, 128−Db +Ab, 128−Dm)

M = min (Dr +Ab,Db +Ar) .
(8)

Due to the number of colors to represent, the resulting MILP model requires
320 × 3 Boolean variables for each intermediate state, i.e., at least 320 × 6 per
round. In this situation, the model is too large for the MILP solver to achieve
optimal results. Instead, one will leave it running indefinitely, stop after some
time and hope that the current result is close to optimal. This is why the 3-round
attack on Ascon-Hash of [19] could be improved in [20] with a heuristic method
that fixed part of the configuration to accelerate the search of solutions.

4 Using SAT to Improve the MITM Attacks

In this section, we explain our SAT modeling of the MITM attack. Its rep-
resentation of the configuration is quite close to the MILP modeling, but the
objective function is different (since we need to solve a satisfiability problem,
not an optimization one).

4.1 Variables

A bit in the path can have the following colors: • blue ; • red ; • gray ; • green
, which means a linear combination of a blue and a red component (= +);

• white , which is a nonlinear combination of blue and red, which cannot
be used. Like [19,20], the color of each bit xi is determined by three Boolean
variables (xb

i , x
r
i , x

w
i); however our correspondence is different. The variable xb

i

indicates whether the bit has a “blue part”, xr
i whether it has a “red part”, xw

i

whether it is white (xw
i dominates). The correspondence between variables and

colors is given in Table 1.
In addition, for each bit in the path, Boolean variables indicate if the red or

blue component are cancelled at this bit. Because they ultimately serve to avoid
nonlinear effects, cancellations occur only in the state before pS . We denote
A(i) and S(i) as two intermediate states of round i, with the convention that

8

Table 1: Correspondence between Boolean variables and colors for a single bit.
xb
i xr

i xw
i Color xb

i xr
i xw

i Color

0 0 0 Gray 1 0 0 Blue
0 0 1 White 1 0 1 White
0 1 0 Red 1 1 0 Green
0 1 1 White 1 1 1 White

pS ◦ pC corresponds to the transition from A(i) to S(i) and pL corresponds to
the transition from S(i) to A(i+1). For 3 rounds, this gives:

A(0) −→
pS◦pC

S(0) −→
pL

A(1) −→
pS◦pC

S(1) −→
pL

A(2) −→
pS◦pC

S(2) −→
pL

A(3)

Next, we reuse two optimizations from Qin et al.:

– The state A(0) can be omitted. Indeed, consider a column y in A(0) and the
corresponding column y′ in S(0), we have:

y′1 = y4 ⊕ y3y2 ⊕ y3y1 ⊕ y3 ⊕ y2y1 ⊕ y2 ⊕ y1 ⊕ y0 .

Since the inner part is fixed, y1, y2, y3, y4 are all gray. Therefore y′1 and
y0 have the same color. Instead of starting from the first line of A(0) and
deducing the colors of all bits, we can therefore start from the second line of
S(0).

– The last pL can be omitted. Indeed, it applies on the rows, and the output
block H1 is extracted from the outer part of the state, which is the first row.
Therefore we can remove pL and seek to obtain p−1

L (H1) instead of H1 as
the first half of the desired hash.

4.2 Propagation of Colors

The colors of all bits are deduced from the coloring scheme of M3 (and therefore,
the colors of line 1 in S(0)), the cancellations, and the N initial constraints on
the outer part.

Initial State. We start with the constraints on the outer part which determine
the colors in S(0). The goal is to fix some bits or linear combinations of bits in
order to obtain some gray bits after the first S-Box layer. Following [19], we can
use one or two constraints for each column (y′0, . . . , y

′
4). Therefore we introduce

two Boolean variables p1 and p2 for each column.

– In all cases, y′2 is gray (y0 does not intervene in its expression)
– By paying one bit of constraint (p1 true), we can make either y′0 or y′4 gray

(but not both). Indeed, by the ANF of the S-Box and the fact that y1, . . . , y4
are gray, we have:

y′0 = ⊕ y1y0 ⊕ y1 ⊕ y0, y′4 = ⊕ y1y0 ⊕ y1

9

We can force y1 to be 1, which results in y′0 to be gray (and y′4 to be colored),
or y1 to be 0, which results in y′4 to be gray (and y′0 to be colored)

– By paying one bit of constraint (p2 true), we can make y′3 gray. Indeed, we
have:

y′3 = (y4 ⊕ y3)y0 ⊕ ⊕ y0

We can force (y4 ⊕ y3) = 1, which results in y′3 to be gray. Otherwise it will
have the same color as y′1.

Therefore, the clauses which constrain the initial state S(0) can be summa-
rized as follows, for each column x:
1: ¬xb

1 ∨ ¬xr
1 ▷ Cannot be red and blue

2: p1 ∨ ¬xb
1 ∨ xb

3 ▷ Cancel color in x3 (blue version)
3: p1 ∨ ¬xr

1 ∨ xr
3 ▷ Cancel color in x3 (red version)

4: p2 ∨ xb
0 ∨ ¬xb

1 ▷ p2 can cancel color in x0

5: p2 ∨ xb
4 ∨ ¬xb

1 ▷ p2 can cancel color in x4

6: xb
4 ∨ xb

0 ∨ ¬xb
1 ▷ Either x0 or x4 need to be colored

7: p2 ∨ xr
0 ∨ ¬xr

1

8: p2 ∨ xr
4 ∨ ¬xr

1

9: xr
4 ∨ xr

0 ∨ ¬xr
1

Propagation through pL. Each bit after pL is the XOR of three bits located at
different columns. If x1, x2, x3 are the previous bits, the color of y = x1⊕x2⊕x3

is determined as follows:

– If one of the xi is white, then y is white
– If one of the xi is blue, then y is blue
– If one of the xi is red, then y is red unless we cancel red at this position

Blue cancellations were not mentioned at all in [19], but we did not find any
advantage from them (they also make the problem significantly harder to solve).
Therefore we focus on red cancellations. We introduce a Boolean variable cr

indicating a red cancellation at this position. We have the following constraints:
1: (xw

1 ∨ xw
2 ∨ xw

3) =⇒ yw ▷ Propagation of white
2: (xb

1 ∨ xb
2 ∨ xb

3) =⇒ yb ▷ Propagation of blue
3: (xr

1 ∨ xr
2 ∨ xr

3) =⇒ (yr ∨ cr) ▷ Propagation of red, unless cancellation

Propagation through pS. The propagation through pS is studied column-wise. As
there are no cancellations here, we simply look at the expression of each output
bit of the S-Box from the input bits:

– If one of the inputs is blue (resp. red, resp. white), the output is blue (resp.
red, resp. white)

– For any pair xi, xi such that the term xixj appears in the ANF, if xi is blue
(resp. red) and xj is red (resp. blue), then the output is white

It is here that white bits (resulting from an AND between red and blue expres-
sions) start to appear and ultimately contaminate the entire state.

10

4.3 Objective

A SAT modeling does not support integer variables, and furthermore, it does
not optimize. Therefore the implementation of the objective function differs from
the MILP.

Recall that our goal is to optimize the time and memory complexities given
as Equation 8:{

T = max (65 +N, 128−Dr +Ar, 128−Db, 128−Dm)

M = min (Dr,Db +Ar) .
(9)

where we have taken Ab = 0 (no cancellation of blue). Fortunately, all the
variables of these formulas can be expressed as the sums of Boolean variables: N
is the sum of all (p1, p2) that determine the amount of constraints on the initial
state, Dr is the number of red bits in the initial state, Db the number of blue
bits, Ar the number of cancellation variables set to “true”, Dm the number of
matching bits, i.e., the number of bits which are not white in line 0 in the last
state.

Constraints on a number of Boolean variables which can be set to “true” are
known as cardinality constraints, and a number of implementations are available
in state-of-the-art SAT solvers. A k-cardinality constraint translates into a set
of clauses an inequality of the form:

n∑
i=1

xi ≤ k

where xi are Boolean variables and k is a constant.

Minimizing the Time. To simulate the minimization of the time, we manually
impose an upper bound on T and let the solver find a solution (or declare the
problem “unsat”). having fixed the value of T , Equation 8 can be transformed
into the system of inequalities:

N ≤ T − 65

−Db +Ab ≤ T − 128

−Dr +Ar ≤ T − 128

−Dm ≤ T − 128

Next, we eliminate subtractions from the inequalities above by replacing
variables with their negations. For example, we let Db be the sum of the negations
of all Boolean variables xb

i over the 64 controlled bits xi of the initial state. We
have −Db = Db − 64. Finally, the obtained constraints are:

N ≤ T − 65

Db +Ab ≤ T − 64

Dr +Ar ≤ T − 64

Dm ≤ T − 64

11

4.4 Optimizations

In order to reduce the solving time down to a couple of minutes, we included
the following optimizations.

Removing the Last S-Box. In practice, we are not interested in the entire state
at the last round, but only in the outer part (i.e., the first line). The expression
of this bit y′0 after the final S-Box is the following:

y′0 = y4y1 ⊕ y3 ⊕ y2y1 ⊕ y2 ⊕ y1y0 ⊕ y1 ⊕ y0

= y1 (y4 ⊕ y2 ⊕ y0 ⊕ 1)⊕ y3 ⊕ y2 ⊕ y0 .

If we want this bit not to be white, we can cancel the red part of y1 and the
red part of y4 ⊕ y2 ⊕ y0 ⊕ 1 (blue cancellations are not allowed according to the
previous point).

This technique has several advantages: first, we no longer need to consider
the application of the last S-Box. Detection of matching bits is done by test-
ing whether a column at the input of the last S-Box is completely non-white.
Furthermore, we will only need to pay for two cancellations per matching bit in
the worst case, as opposed to 4 if we did not perform this refined analysis. In
practice, we observed that this technique simplifies the search for the 4-rounds
attack. It is not required in other cases.

Symmetry. We noticed that all solutions generated by the solver for Ascon re-
duced to 4 rounds were circularly symmetric, meaning that the diffusion pattern
repeated 32 positions later. Concerning the reduction to 3 rounds, the solutions
also exhibited some symmetry.

We believe that the prevalence of symmetries in the solutions found is due to
the heuristics of the automated tools used (SAT, MILP). However, such circularly
symmetric solutions exist only because the design of Ascon allows for their
existence. Ascon consists of two main parts: pS ◦ pC , which act locally on each
column, and pL, which acts laterally by mixing the rows. By construction of
the model, the solver seeks to produce as few green bits as possible after the
application of pL, as green bits have a high probability of becoming white after
passing through the S-box. Thus, the presence of pL encourages the model to
have the same color at relative positions: before the application of pL, if the
model decides that a bit will be of a given color, it will propagate this color to
relative positions on the same row, creating repeated patterns. Since the offsets
of this repetition are uniform along a given line, we expect the width of a pattern
to divide the total length of the line (64).

Surely, there are non-symmetric solutions, as nothing in Ascon forces the
appearance of this symmetry. However, it seems that restricting to symmetric
solutions still allows to find the best complexities. It reduces significantly the
number of variables and clauses.

12

Solver Choice. We compared several solvers available through the Python library
PySAT [16]. The best results (fastest solving time) were obtained with Glucose4
combined with the cardinality constraints encoded by kmtotalizer. We kept this
combination afterwards.

4.5 Results

Improved Solutions. The symmetric model runs in the order of minutes on a
desktop computer to find both 3- and 4-round attacks. While we did not im-
prove the time complexities reported in [19] for 4-round Ascon (around 2124,
using 4 bits of matching) and in [20] for 3-round Ascon (around 2114, using 14
bits of matching), we could reduce the memory complexity using the following
parameters:

– 3 rounds: Db = 14, Dr = 24, Dm = 14, Ar = 10 (Figure 3)
– 4 rounds: Db = 4, Dr = 34, Dm = 4, Ar = 30 (Figure 4)

which give respective memory complexities of 224 and 234.

Optimality of Results. By running the SAT solver with stronger constraints, we
can determine whether the problem has solutions. In particular, the formula for
the time complexity (Equation 8) shows that to achieve a complexity 2128−α,
we need Dm ≥ α. Therefore, the strategy to prove the optimality of a time
complexity is to impose a cardinality constraint on the matching bits. To speed
up the search, we can note that the diffusion pattern of Ascon is invariant under
circular permutation; therefore we can always impose a matching bit at a fixed
position.

For Ascon with 3 rounds, the SAT solver did not manage to conclude, i.e.,
to prove unsatisfiability or find a solution. This might be because the number of
matching bits for 3 rounds is quite large compared to the other cases.

For Ascon with 4 rounds, we search for a valid configuration with Dm ≥ 5.
By symmetry, we first impose bit 0 as a matching bit. Then, we cut the problem
into 16 easier SAT problems by imposing a second matching bit at position 1,
then 2, and so on (by circular permutation invariance of Ascon and symmetry,
it is not necessary to check pairs beyond 16). The entire computation takes about
3 hours. This proves that there is no better 4-round MITM attack of this type,
assuming symmetry and cancellation of only one color. Finally, fixing the time
complexity of the 4-round attack at 2124, we find that it is impossible to increase
the number of gray bits further, proving that our memory complexity is also
optimal.

For Ascon with 5 rounds, we search for a valid configuration with Dm ≥ 1.
Imposing that bit 0 is a matching bit leads the SAT solver to conclude unsatis-
fiability after a few minutes. This proves that there is no 5-round MITM attack
of this type, assuming symmetry and cancellation of only one color. Our results
are summarized in Table 2.

The optimality, indicated by ⋆, is subject to the aforementioned two con-
straints and is for this Meet-in-the-Middle attack.

13

p
S
↓

p
L
↓

p
S
↓

p
L
↓

p
S
↓

F
ig.3:

3-round
attack

found
w

ith
our

SA
T

-based
approach,im

proving
the

one
of

[20].
C

ancellations
of

red
bits

are
represented

by
yellow

squares.T
here

are
4
4

bits
of

additionalconstraints
w

hich
are

im
posed

on
the

inner
part

of
the

first
state

to
guarantee

the
first

transition
through

p
S .

14

F
ig.4:

O
ptim

al4-round
attack

found
w

ith
our

SA
T

-based
approach,im

proving
the

one
of

[20].
C

ancellations
of

red
bits

are
represented

by
yellow

squares.T
here

are
5
2

bits
of

additionalconstraints
w

hich
are

im
posed

on
the

inner
part

of
the

first
state

to
guarantee

the
first

transition
through

p
S .

T
he

first
26

are
the

follow
ing,w

here
A

i,j
is

the
bit

at
line

j
and

colum
n
i

in
the

first
state:

A
0
,3 ⊕

A
0
,4
=

1,
A

0
,1
=

1,
A

2
,1
=

1,
A

4
,1
=

1,
A

5
,1
=

1,
A

6
,3 ⊕

A
6
,4
=

1,
A

6
,1
=

1,
A

7
,3 ⊕

A
7
,4
=

1,
A

9
,1
=

0,
A

1
0
,1
=

0,
A

1
2
,1
=

A
1
4
,1
=

A
1
6
,1
=

A
1
9
,1
=

1,
A

2
0
,3 ⊕

A
2
0
,4
=

1,
A

2
0
,1
=

1,
A

2
2
,3 ⊕

A
2
2
,4
=

1,
A

2
2
,1
=

1,
A

2
4
,1
=

1,
A

2
5
,3 ⊕

A
2
5
,4
=

1,
A

2
5
,1
=

1,
A

2
8
,3 ⊕

A
2
8
,4
=

1,
A

2
8
,1
=

1,
A

2
9
,1
=

1

15

Table 2: Summary of results obtained. ⋆: optimal among MITM attacks of this
form, under the symmetry constraint. ⋆⋆: optimal when the time complexity is
at 2124. We consider only the dominating term in the complexity.

Number of Rounds Authors Time Complexity Memory Complexity

3 rounds
[20] 2114 230

Ours 2114 224

4 rounds
[19] 2124 254

Ours 2124 (⋆) 234 (⋆⋆)
5 rounds Ours 2128 (⋆) —–

While we did not improve the time complexities reported in [19] for 4-round
Ascon (around 2124, using 4 bits of matching) and in [20] for 3-round Ascon
(around 2114, using 14 bits of matching), we reduced the memory complexities
as seen in Table 2. The path for the 4-round attack is shown in Figure 4, with
Db = 4, Dr = 34, Dm = 4, Ar = 30.

5 New MILP Model for Differential Bounds

Our second simple model aims at obtaining lower bounds on the probability of
differential characteristics for the Ascon permutation. The bounds proven so
far are only tight up to 3 rounds despite years of investigation as summarized
in Table 3, with different methods such as MILP [18], SAT and SMT [11]. The
state of the art for lower bounds is given by a tree extension model from [15].

Table 3: Currently known differential bounds of the Ascon permutation re-
stricted to R rounds.

Upper bound Lower Bound
R Bound Method Ref. Bound Method Ref.
1 2−2 DDT 2−2 DDT
2 2−8 DDT + β 2−8 DDT + β
3 2−40 ndltool [7] 2−40 MILP [18]
4 2−107 ndltool 2−86 Tree extension

[15]

5 2−190 CP [7],[12] 2−100 Tree extension
6 2−305 CP [12] 2−129 Tree extension
7 2−131 Tree extension
8 2−172 Tree extension
9 2−186 Tree extension
10 2−215 Tree extension
11 2−229 Tree extension
12 2−258 Tree extension

16

One interesting remark is that many of the lower bounds on the probability
are computed from the lower bounds of a lower number of rounds. For example,
the current lower bound on 12 rounds is computed from the bound on 4 rounds:
2−258 = 2−86×3. As such, improving the lower bounds give us immediate results
for higher rounds. This also means that the results for higher rounds are most
likely far to be tight, which is especially visible for the bound on 7 rounds:
2−131 = 2−129 × 2−2.

The method used to calculate these bounds varies notably, with SAT and
SMT models giving great results [11], before being outclassed by a tree extension
model [15] that is the current state of the art for lower bounds. We will focus
here on the MILP models, an approach used by [18] to close the gap for 3 rounds.

Our main objective was to reduce the gap between the lower and upper
bounds. For now, the bounds for 4 rounds are [86, 107] (or to be more exact,
since the bounds are probabilities, [2−107, 2−86]). However, [18] showed that there
exists a 4 round trail with 43 active S-boxes. This mean that, if we want to reduce
the gap by improving the lower bound on the weight, we cannot take the number
of active S-boxes as objective, since we know that the minimum number of active
S-boxes will be ≤ 43 and as such we will not be able to tell a better precision
than 43× 2 = 86 but have to model the transition weights.

5.1 A new MILP Approach: using the Hamming Weight

Our idea to improve the existing bounds is to consider a lossy model, as it was
done in [5] regarding division property related problems. This would allow us
to get calculations done much quicker, but at the cost of getting less accurate
results. The main difficulty is to find a right balance between accuracy and time
complexity. As such, we tried to model the internal state of Ascon using the
Hamming weight of columns.

The Hamming weight of a column is defined by the total number of active
bits in this column. As such, instead of modeling 320 bits, we can manipulate
64 integers between 0 and 5. This approach works particularly well with MILP
models, as they deal natively with integer variables.

5.2 Modeling pS

To model the non linear layer, we need a way to represent the weight of each
transition through the Ascon S-Box. Each transition has a weight of 2, 3, 4
or 0 (for the trivial 0 → 0 differential transition), and thus for each of them
we create binary variables w2, w3, w4 and w0 with the constraint that w2[i] +
w3[i] + w4[i] + w0[i] = 1.

Now that we have a way to represent the weights of the transition, we then
have to find a way to model the DDT, then link both of them together. The
classical way of modelling the DDT into inequalities is to use the convex hull
operator. This operator takes a cloud of points in n dimensions and returns
the convex hull associated with this cloud of points, which can take the form
of inequalities, which is what we want. In our case, we want to know what is

17

Table 4: hwDDT of Ascon’s S-box: maximum number of solutions as a function
of the Hamming weight of the input and output.

hw 0 1 2 3 4 5
0 32 0 0 0 0 0
1 0 0 8 8 8 4
2 0 8 8 8 8 4
3 0 8 8 4 4 4
4 0 4 4 4 4 2
5 0 4 4 4 0 0

the minimum weight (the worst case) of a differential transition where the input
difference has a Hamming weight of HW (i) and the output has a Hamming
weight of HW (j). As such, our HWDDT can be expressed (i, j) ∈ {0, ..., 5} as:

hwDDT (i, j) = max(DDT (a, b) | hw(a) = i, hw(b) = j),

and is given in Table 4.
More precisely, this new DDT contains the best transitions between an input

and an output of given Hamming weight. Hopefully, it is quite straightforward
to describe a transition a → b through this DDT:

a ≥ 2w4

a ≤ 5− w4

b ≥ w4

a ≥ w3

b ≥ w3

a ≤ 5− 5w0

b ≤ 5− 5w0

b ≤ 5− w2

a ≤ 5− 2w2

a+ b ≥ 3w2

a ≥ w2

b ≥ w2

2a+ b ≤ 15− 7w2

Note that for the first and last non-linear layers, the constraints are simpler
since we can assume that the best input or output will be selected. Furthermore,
we only model Ascon from the output of the first non-linear layer to the input
of the last one.

5.3 Modeling pL

To model the linear layer, we need to express the relation between the bits of
the state before and after this step. If we denote respectively by y and x these
states, we have for all (i, j) ∈ {0, ..., 5} × {0, ..., 64}:

x[i][j] = y[i][j]⊕ y[i][(j − d1) mod 64]⊕ y[i][(j − d2) mod 64],

where d1 and d2 depend on the row index. In [18], the authors proposed to use an
extra binary variable per state bit to model the equation in a MILP-compliant
form:

y[i][j] + y[i][(j − d1) mod 64] + y[i][(j − d2) mod 64] + x[i][j] = 2z[i][j].

18

However this modeling seems to be quite inefficient, making the model very
slow to solve. Our idea is to describe as accurately as possible the possible
transitions through the linear layer without going down to the bit level. To do
so we introduce the variables xrow, xcol, yrow and ycol corresponding to the
Hamming weight of the rows and columns of both states x and y (note that xcol

and ycol are not new since they respectively correspond to the Hamming weight
of the input and output of the S-boxes which are used in the modelization of the
non-linear part).

First there are many straightforward relations between those states. For in-
stance,

∑4
i=0 xrow[i] =

∑6
i=0 3xcol[i] and the same equality holds for y. It is also

easy to add a constraint ensuring that an active column of y should at least
activate the same column on x or one of the 10 associated columns of y. We also
add the following constraint on rows:

3yrow[i] = xrow[i] + 2z,

where z is an extra integer variable, representing the number of cancellations
occurring on the row.

5.4 Callbacks

Our model is very fast compared to previous ones, and in particular compared
to [18]. However, the results are far from being accurate as many false trails are
solutions of the model. To strengthen the model we use the callback functionality
of the Gurobi MILP solver [14]. It allows to add an extra verification each time a
solution of the model is found. First, for each linear layer, we check whether the
pattern of active columns is possible using Gaussian elimination as it was done
in [4]. If not we add an extra constraint to remove the pattern and the model
continues to search for another solution. Finally, the whole trail is checked using
an exact model. Note that the inequalities added to the model during the callback
only involve the weight of the transitions as they all are binary variables.

5.5 Results

Our model is fast enough to retrieve the lower bound of the weight of differential
characteristics up to 3 rounds. We also improve the lower bound for 7-round,
showing that the minimal weight is at least 135 while the previous bound was 131.
However, note that we included into the model the known differential bounds
for rounds from 1 to 6, as it improves a lot the solving process. All these results
are obtained on a regular desktop computer using at most days of computation.

6 Conclusion

In this work we proposed several improvements for the modelization of impor-
tant cryptanalysis problems related to the security of Ascon. We successfully

19

decrease the running times required to search for some instances of both Meet-
in-the-middle preimage attacks on Ascon-Hash and lower bounds on the weight
of differential characteristics on Ascon inner permutation, and obtained new
results as well. The techniques we described show that it is sometimes more ef-
ficient to rely on simple modelizations, even though they are not exact, and we
believe they could be used to improve models dedicated to other primitives.

Acknowledgments. This work has been partially supported by the French
Agence Nationale de la Recherche through the OREO project under Contract
ANR-22-CE39-0015, and through the France 2030 program under grant agree-
ment No. ANR-22-PECY-0010.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Selected Areas in Cryptography. LNCS, vol. 5381, pp. 103–119. Springer

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Selected Areas in Cryp-
tography. Lecture Notes in Computer Science, vol. 7118, pp. 320–337. Springer
(2011)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions (2011), https://keccak.team/files/CSF-0.1.pdf

4. Boura, C., Derbez, P., Funk, M.: Related-key differential analysis of the AES.
IACR Trans. Symmetric Cryptol. 2023(4), 215–243 (2023). https://doi.org/
10.46586/TOSC.V2023.I4.215-243

5. Derbez, P., Lambin, B.: Fast MILP models for division property. IACR Trans.
Symmetric Cryptol. 2022(2), 289–321 (2022). https://doi.org/10.46586/
TOSC.V2022.I2.289-321

6. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

7. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of ascon.
In: Nyberg, K. (ed.) Topics in Cryptology - CT-RSA 2015, The Cryptographer’s
Track at the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 9048, pp. 371–387. Springer
(2015). https://doi.org/10.1007/978-3-319-16715-2_20

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021). https://
doi.org/10.1007/s00145-021-09398-9

9. Eichlseder, M.: TikZ libraries for crypto, https://extgit.iaik.tugraz.at/
meichlseder/tikz

10. Erlacher, J., Mendel, F., Eichlseder, M.: Bounds for the security of ascon against
differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1),
64–87 (2022). https://doi.org/10.46586/TOSC.V2022.I1.64-87

11. Erlacher, J., Mendel, F., Eichlseder, M.: Bounds for the security of ascon against
differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2022(1),
64–87 (2022). https://doi.org/10.46586/TOSC.V2022.I1.64-87

12. Gérault, D., Peyrin, T., Tan, Q.Q.: Exploring differential-based distinguishers and
forgeries for ASCON. IACR Trans. Symmetric Cryptol. 2021(3), 102–136 (2021).
https://doi.org/10.46586/TOSC.V2021.I3.102-136

20

https://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.46586/TOSC.V2023.I4.215-243
https://doi.org/10.46586/TOSC.V2023.I4.215-243
https://doi.org/10.46586/TOSC.V2023.I4.215-243
https://doi.org/10.46586/TOSC.V2023.I4.215-243
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.46586/TOSC.V2022.I2.289-321
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://extgit.iaik.tugraz.at/meichlseder/tikz
https://extgit.iaik.tugraz.at/meichlseder/tikz
https://doi.org/10.46586/TOSC.V2022.I1.64-87
https://doi.org/10.46586/TOSC.V2022.I1.64-87
https://doi.org/10.46586/TOSC.V2022.I1.64-87
https://doi.org/10.46586/TOSC.V2022.I1.64-87
https://doi.org/10.46586/TOSC.V2021.I3.102-136
https://doi.org/10.46586/TOSC.V2021.I3.102-136

13. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: First results on full tiger, and improved results on MD4 and SHA-2.
In: ASIACRYPT. LNCS, vol. 6477, pp. 56–75. Springer (2010). https://doi.
org/10.1007/978-3-642-17373-8_4

14. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
//www.gurobi.com

15. Hirch, S.E., Mella, S., Mehrdad, A., Daemen, J.: Improved differential and lin-
ear trail bounds for ASCON. IACR Trans. Symmetric Cryptol. 2022(4), 145–178
(2022). https://doi.org/10.46586/TOSC.V2022.I4.145-178

16. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit
for prototyping with SAT oracles. In: SAT. pp. 428–437 (2018). https:
//doi.org/10.1007/978-3-319-94144-8_26, https://doi.org/10.
1007/978-3-319-94144-8_26

17. Li, H., He, L., Chen, S., Guo, J., Qiu, W.: Automatic preimage attack framework
on ascon using a linearize-and-guess approach. IACR Transactions on Symmetric
Cryptology 2023(3), 74–100 (Sep 2023). https://doi.org/10.46586/tosc.
v2023.i3.74-100, https://tosc.iacr.org/index.php/ToSC/article/
view/11185

18. Makarim, R.H., Rohit, R.: Towards tight differential bounds of ascon A hybrid
usage of SMT and MILP. IACR Trans. Symmetric Cryptol. 2022(3), 303–340
(2022). https://doi.org/10.46586/TOSC.V2022.I3.303-340

19. Qin, L., Hua, J., Dong, X., Yan, H., Wang, X.: Meet-in-the-middle preimage at-
tacks on sponge-based hashing. In: EUROCRYPT (4). Lecture Notes in Computer
Science, vol. 14007, pp. 158–188. Springer (2023). https://doi.org/10.1007/
978-3-031-30634-1_6

20. Qin, L., Zhao, B., Hua, J., Dong, X., Wang, X.: Weak-diffusion structure: Meet-in-
the-middle attacks on sponge-based hashing revisited. IACR Cryptol. ePrint Arch.
p. 518 (2023), https://eprint.iacr.org/2023/518

21. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the sat method. IACR Transactions on Symmetric Cryptology
2021(1), 269–315 (Mar 2021). https://doi.org/10.46586/tosc.v2021.
i1.269-315, https://tosc.iacr.org/index.php/ToSC/article/view/
8840

22. Turan, M.S., McKay, K., Chang, D., Kang, J., Waller, N., Kelsey, J.M., Bassham,
L.E., Hong, D.: Status report on the final round of the nist lightweight cryptography
standardization process (2023)

21

https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1007/978-3-642-17373-8_4
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.46586/TOSC.V2022.I4.145-178
https://doi.org/10.46586/TOSC.V2022.I4.145-178
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://doi.org/10.46586/tosc.v2023.i3.74-100
https://tosc.iacr.org/index.php/ToSC/article/view/11185
https://tosc.iacr.org/index.php/ToSC/article/view/11185
https://doi.org/10.46586/TOSC.V2022.I3.303-340
https://doi.org/10.46586/TOSC.V2022.I3.303-340
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/978-3-031-30634-1_6
https://doi.org/10.1007/978-3-031-30634-1_6
https://eprint.iacr.org/2023/518
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://tosc.iacr.org/index.php/ToSC/article/view/8840
https://tosc.iacr.org/index.php/ToSC/article/view/8840

	New Models for the Cryptanalysis of ASCON

