
Attacking ECDSA with Nonce Leakage by Lattice
Sieving: Bridging the Gap with Fourier

Analysis-based Attacks⋆

Yiming Gao1,⋆⋆, Jinghui Wang1,⋆⋆, Honggang Hu1,2, and Binang He1

1 School of Cyber Science and Technology
University of Science and Technology of China, Hefei 230027, China

{qw1234567,liqing21,hebinang}@mail.ustc.edu.cn
2 Hefei National Laboratory, Hefei 230088, China

hghu2005@ustc.edu.cn

Abstract. The Hidden Number Problem (HNP) has found extensive
applications in side-channel attacks against cryptographic schemes, such
as ECDSA and Diffie-Hellman. There are two primary algorithmic ap-
proaches to solving the HNP: lattice-based attacks and Fourier analysis-
based attacks. Lattice-based attacks exhibit better efficiency and require
fewer samples when sufficiently long substrings of the nonces are known.
However, they face significant challenges when only a small fraction of
the nonce is leaked, such as 1-bit leakage, and their performance degrades
in the presence of errors.

In this paper, we address an open question by introducing an algo-
rithmic tradeoff that significantly bridges the gap between these two ap-
proaches. By introducing a parameter x to modify Albrecht and Heninger’s
lattice, the lattice dimension is reduced by approximately (log2 x)/l,
where l represents the number of leaked bits. We present a series of new
methods, including the interval reduction algorithm, several predicates,
and the pre-screening technique. Furthermore, we extend our algorithms
to solve the HNP with erroneous input. Our attack outperforms existing
state-of-the-art lattice-based attacks against ECDSA. We break several
records including 1-bit and less than 1-bit leakage on a 160-bit curve,
while the best previous lattice-based attack for 1-bit leakage was con-
ducted only on a 112-bit curve.

Keywords: ECDSA · Hidden Number Problem · Lattice Sieving · Lattice-
based Attacks

1 Introduction

The Hidden Number Problem (HNP) was originally proposed by Boneh and
Venkatesan as a number theoretic problem to investigate the bit security of the
⋆ This work was supported by National Natural Science Foundation of China (Grant

No. 61972370) and Innovation Program for Quantum Science and Technology (Grant
No. 2021ZD0302902).

⋆⋆ Yiming Gao and Jinghui Wang are the co-first authors of this work.

2 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Diffie-Hellman key exchange scheme [11]. Their work was subsequently extended
by Nguyen and Shparlinski to analyze the security of ECDSA with partial known
nonce leakage [28].

In the scenario that an attacker can obtain some information about the nonce
used in each signature generation of ECDSA, it is possible to recover the secret
key by solving the corresponding HNP instance. Currently, there are two types
of attacks for solving the HNP: Fourier analysis-based attacks and lattice-based
attacks.

The foundational principles of Fourier analysis-based attacks were initially
introduced by Bleichenbacher [10], providing the basis for subsequent research
[13,5,34,6]. These attacks have been considered to be more tractable to break
HNP instances with limited known bits and even with errors. However, they
demand a substantial number of samples and exhibit a high computational over-
head. The latest advance is obtained by Aranha et al., who successfully broke
192-bit ECDSA with less than 1-bit leakage [6].

In lattice-based attacks, the HNP is transformed into the Bounded Distance
Decoding (BDD) Problem, which is a variant of the Closest Vector Problem
(CVP). Using Kannan’s embedding [22], it can be further transformed into the
Unique Shortest Vector Problem (uSVP). The success of lattice-based attacks
highly depends on whether the target vector corresponding to the secret is suf-
ficiently short in the lattice. It is believed that the lattice-based attacks would
become ineffective when only a small fraction of the nonce is revealed, particu-
larly in the case of 1-bit leakage. Aranha et al. emphasized that exploiting a 1-bit
nonce leakage to attack ECDSA is infeasible due to the underlying structure of
the HNP lattices [5]. Additionally, lattice-based attacks have been considered
to behave very poorly with noisy data, which poses constraints on practical
side-channel attacks.

At EUROCRYPT 2021, Albrecht and Heninger [3] extended the applicability
of lattice-based attacks with their Sieving with Predicate (Sieve-Pred) algorithm
and the state-of-the-art lattice sieving library G6K [2]. The Sieve-Pred algorithm
no longer treats sieving algorithms as black boxes for SVP. Instead, it uses a pred-
icate to check all the vectors in the database output by sieving algorithms. The
predicate they used involves scalar multiplication on the elliptic curve, which is a
nonlinear operation and results in significant overhead. The nonlinear predicate
was improved to a linear predicate by Xu et al. [37].

Lattice-based attacks and Fourier analysis-based attacks have their unique
characteristics. Current lattice-based attacks are known for their minimal sam-
ple requirements and efficient processing. However, they are considered to be
infeasible when dealing with challenging HNP instances. In contrast, Fourier
analysis-based attacks can handle more difficult instances such as 1-bit leakage
on a 192-bit curve [6], but demand a significantly larger sample size and com-
putational time. This leads to an open question [19]: Can lattice-based attacks
be enhanced by utilizing more samples? Is there a smooth tradeoff that can be
characterized between these two types of algorithms?

Attacking ECDSA with Nonce Leakage by Lattice Sieving 3

1.1 Contributions

In this work, we present a solution to this open question. The lattice-based
attacks are enhanced by utilizing more samples, significantly bridging the gap
between lattice-based attacks and Fourier analysis-based attacks. We successfully
address the case of 1-bit leakage on a 160-bit curve, surpassing the best previous
lattice-based attack for 1-bit leakage, which was only conducted on a 112-bit
curve [37]. Moreover, despite the belief that lattice-based attacks are ineffective
for erroneous input [6], we demonstrate the effectiveness of our new attack in
handling erroneous input, and successfully break the 160-bit ECDSA with less
than 1-bit leakage. Our main contributions are as follows.

Improved Algorithms for Solving the HNP. Firstly, we propose a new
lattice construction that introduces a parameter x to trade off the lattice dimen-
sion. Our modification is based on Albrecht and Heninger’s lattice, where the
hidden number α is transformed into k′0 using the elimination method and the
recentering technique. In our construction, k′0 is decomposed as x ·α0+α1, where
|α1| ≤ x/2. The target lattice vector contains the information of α0, which is
expected to be included in the database output by sieving algorithms. Our con-
struction can reduce the lattice dimension by approximately (log2 x)/l, where l
represents the number of leaked bits. The reduction of lattice dimension leads to
a significant efficiency advantage, given that sieving algorithms have exponential
complexity. As a tradeoff, our algorithm needs more samples to construct the
new lattice. Moreover, we prove the existence of a constant c > 0 that serves
as a lower bound for the success probability of our algorithm, which is a new
theoretical finding not reported in the literature.

Secondly, to determine the unique hidden number, we present an improved
linear predicate that utilizes the linear constraints of 2 log2 q HNP samples.
Its efficiency outperforms the non-linear predicate proposed by Albrecht and
Heninger, which involves time-consuming scalar multiplication over the elliptic
curves [3]. Our predicate also outperforms the linear predicate used by Xu et
al. [37]. Their predicate needs the knowledge of all elements of the candidate
vector. On the other hand, our predicate requires the knowledge of the last two
elements of the candidate vector.

Thirdly, a predicate for the decomposition technique is proposed. We de-
sign an interval reduction algorithm with expected time complexity O(log2 x) to
recover the remaining part α1, instead of an exhaustive search over the range
[−x/2, x/2]. Moreover, we also present a pre-screening technique to pre-select
candidates. This technique can effectively eliminate most incorrect candidates
before checking the predicate.

Modified Algorithms for Handling Errors. We define HNP with erroneous
input to handle practical scenarios in side-channel attacks where errors may exist
in the leaked nonce. We demonstrate the effectiveness of our lattice construction
for solving this problem, and provide the estimation for the lattice dimension.
Furthermore, our new algorithms and techniques for solving the HNP are ex-
tended to address the case of erroneous input.

4 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

New Records of Lattice-based Attacks against ECDSA. We carry out
experiments on lattice-based attacks against ECDSA with nonce leakage. Our
attack demonstrates a significant efficiency advantage over previous works [3,37].
The most notable achievement is the successful key recovery for the ECDSA in-
stance with 1-bit leakage on a 160-bit curve, which is considered to be extremely
difficult by previous lattice-based approaches. Moreover, we also successfully
conduct attacks for the case of less than 1-bit leakage on various elliptic curves,
including a 160-bit curve.

Source Code. The source code of our attack will be publicly available via
GitHub upon the publication of this paper.

1.2 Comparison with Related Work

In Table 1, our work is compared with previous records of lattice-based attacks.
Several new records are listed, including 1-bit and less than 1-bit leakage on a
160-bit curve. To the best of our knowledge, we carry out the first lattice-based
attack against ECDSA with less than 1-bit leakage. For the case of 4-bit leakage,
we also make significant progress. While the previous record for 4-bit leakage was
achieved on a 384-bit curve, we successfully extend this attack to a 512-bit curve
[3].

Table 1: Lattice-based attacks against ECDSA with nonce leakage

Nonce leakage

Modulus 4-bit 3-bit 2-bit 1-bit <1-bit

112-bit - - - [37], ours (faster) Ours
128-bit - - - Ours Ours
160-bit - [28] [3,33] Ours Ours
256-bit [3] [3,33] [37], ours (faster) - -
384-bit [3,33] [37], ours (faster) - - -
512-bit Ours - - - -

Among lattice-based attacks, the currently best one is the Sieve-Pred algo-
rithm in [3]. The efficiency of the predicate is crucial, as it is used to check the
vectors in the database generated by sieving algorithms. Our linear predicate
outperforms both predicates proposed in [3] and [37]. Our attack demonstrates
superior efficiency when targeting various ECDSA instances. For example, we
break the 112-bit ECDSA with 1-bit leakage in 10 minutes which is approxi-
mately 26 times faster than the currently fastest attack in [37].

Our work can also be viewed as a comprehensive extension of the work con-
ducted by Sun et al. [33], who recognized the connection between Fourier-based
attacks and lattice-based attacks, and proposed a general framework to enhance
lattice attacks with more samples. However, they did not consider reducing
the dimension of their lattice, nor did they utilize sieving algorithms to han-
dle more challenging cases, such as 256-bit ECDSA with 2-bit leakage or 1-bit
leakage case. Compared with their work, our algorithm requires significantly

Attacking ECDSA with Nonce Leakage by Lattice Sieving 5

fewer samples and achieves higher success rates. For instance, when targeting
160-bit ECDSA with 2-bit leakage, their algorithm required approximately 227

samples and achieved a success rate of 15%, while our algorithm only needs 411
samples with a success rate of approximately 100%. Moreover, according to their
estimation, the time complexity of their algorithm is 2110 BKZ–30 operations
for 160-bit ECDSA with 1-bit leakage, which is impractical. However, we break
this instance using only 14.3 hours.

Our work shares some similarities with Fourier analysis-based attacks. How-
ever, except for very difficult cases, our attack works more efficiently with far
fewer samples. Another advantage of our approach is the capability to recover
the entire secret key all at once, while Fourier analysis-based attacks can only
recover a few bits of the secret key in a single execution.

2 Preliminaries

Let N+ be the set {1, 2, 3, · · · }. The logarithm with base two is denoted as log(·),
and the Euclidean norm is denoted as ∥ · ∥. For any integer z, the unique integer
x satisfying 0 ≤ x < q and x ≡ z mod q is denoted by |z|q. A function f(k)
is called negl(k) if for every positive polynomial function P(k), there exists an
integer NP > 0 such that for all k > NP, |f(k)| < 1/P(k).

2.1 Lattices and Hard Problems

Given a matrix B = (b0, . . . , bd−1)
T ⊂ Rd×d with linearly independent rows,

the lattice generated by the basis B is defined as L(B) := {
∑d

i xibi : xi ∈ Z}.
We define πi as the projections orthogonal to the span of b0, . . . , bi−1, and the
Gram-Schmidt orthogonalisation as B∗ = (b∗0, . . . , b

∗
d−1), where b∗i := πi(bi).

For any 0 ≤ l < r ≤ d, the projected sublattice L[l:r] is defined as the lattice
with basis B[l:r] := (πl(bl), . . . , πl(br−1)).

Let λi(L) be the radius of the smallest ball centred at the origin containing
at least i linearly independent lattice vectors. Then λ1(L) is the Euclidean norm
of the shortest non-zero vector in lattice L.

The Gaussian heuristic predicts the number of lattice points inside a mea-
surable body B ⊂ Rn, and it tells us that the number |L ∩ B| of lattice points
inside B is approximately equal to Vol(B)/Vol(L). Applying it to the Euclidean
d-ball, the prediction of λ1(L) can be obtained.

Definition 1 (Gaussian Heuristic (GH)). We denote by GH(L) the expected
first minimum of a lattice L. For a full rank lattice L ⊂ Rd, it is given by

GH(L) =
Γ
(
1 + d

2

)1/d
√
π

·Vol(L)1/d ≈
√

d

2πe
·Vol(L)1/d.

The final step above is obtained from Stirling’s formula, and we utilize this
asymptotic estimation in our theoretical analysis. In practical attacks and cal-
culations, we directly compute the value of the Gamma function.

A critical problem on lattices is to find the shortest vector.

6 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice basis B,
find a shortest non-zero vector v ∈ L(B).

Albrecht and Heninger formalized two lattice problems augmented with a
predicate [3], which are defined as follows:

Definition 3 (α-Bounded Distance Decoding with Predicate(BDDα,f(·))).
Given a lattice basis B, a vector t and a parameter α > 0 such that the Euclidean
distance dist(t,B) < α · λ1(L(B)), find the lattice vector v ∈ L(B) satisfying
f(v − t) = 1 that is closest to t.

Definition 4 (unique Shortest Vector Problem with Predicate (uSVPf(·))).
Given a lattice basis B and a predicate f(·), find the shortest non-zero vector
v ∈ L(B) that satisfies f(v) = 1.

BDDα,f(·) can be solved using a uSVPf(·) oracle due to Kannan embedding
technique, by constructing the lattice

C =

[
B 0
t τ

]
,

where τ is the embedding factor. If v is the closest vector to t, then the short
vector (t− v, τ) is contained in the lattice L(C).

2.2 Lattice Algorithms

BKZ. The Block Korkine-Zolotarey (BKZ) algorithm, which can be regarded as
an extended version of the LLL algorithm [25], was first introduced by Schnorr
and Euchner [32]. It uses an oracle that solves the SVP in the lattice with
a block-size of β, spanned by B[0,β−1)]. The short vector is then recursively
inserted into the lattice basis. A BKZ tour is initiated by calling an SVP-solver
on consecutive blocks B[i,min(i+β,d−1)] for i = 0, . . . , d − 2. The algorithm will
proceed with these tours until there are no further changes observed within a
single tour. The algorithm takes a lattice of dimension d as input and outputs a
short vector of length ≈ (β1/2β)d · det(L)1/d in time ββ/(2e).

The root-Hermite factor δ, which is used to analyze the quality of the basis
independent of dimension d, is defined as δ = (||b1||/ vol((L)1/d))1/d.

In order to achieve a better quality basis, it is desirable to minimize the
Hermite factor δ as much as possible. Therefore, the first vector of some reduced
basis has norm ||v|| = δd · vol(L)1/d. In LLL algorithm, δ is approximately equal
to 1.0219, while in BKZ-β, δ is equal to

(
(β/2πe)(πβ)1/β

)1/(2(β−1)
.

Based on Schnorr’s Geometric Series Assumption (GSA) [31], we can an-
alyze the performance of BKZ algorithm and predict the quality of the re-
duced basis. According to GSA, the norms of the Gram-Schmidt vectors satisfy
||b∗i || = αi−1||b∗1||, where i = 1, 2, . . . , d, and 3

4 ≤ α2 < 1.

Lattice Sieving. Sieving algorithms are not only asymptotically superior to
enumeration techniques [22,16,32,18], but also showing better performance in

Attacking ECDSA with Nonce Leakage by Lattice Sieving 7

practice, due to the recent progress in both theory [23,9,8,20] and practice
[17,14,24,2,15].

The first sieving algorithm was proposed by Ajtai et al. [1] in 2001. It starts
with a list of lattice vectors L ⊂ L and searches for shorter sums and differ-
ences of these vectors. The shorter combinations then replace the original longer
vectors in the database. This process iterates until the database contains a sig-
nificant number of short vectors, with the expectation of eventually finding the
shortest vector.

Lattice sieving algorithms can be categorized into provably sieving algorithms
and heuristic sieving algorithms. Heuristic sieving algorithms fall in the practical
regime because of lower time and memory complexities. They are analyzed under
the heuristic that the points in L are independently and uniformly distributed in
a thin spherical shell. Nguyen and Vidick [29] proposed the first practical siev-
ing algorithm, utilizing a database of (4/3)d/2+o(d) = 20.2075d+o(d) vectors and
running in time 20.415d+o(d). The time complexity was subsequently improved to
20.292d+o(d) through nearest neighbor search techniques [8]. Various sieving al-
gorithms have been efficiently implemented in G6K [2] and its GPU-accelerated
version, G6K-GPU [15].

2.3 Hidden Number Problem

In the Hidden Number Problem (HNP) [11], we have an n-bit sized public mod-
ulus q, and there is a secret integer α ∈ Zq, referred to as the hidden number.
For i = 0, 1, . . . ,m− 1, ti are uniformly random integers in Zq, and we are pro-
vided with the corresponding value ai such that |ti · α − ai|q = ki < q/2l. The
problem is to recover the hidden number α when m samples (ti, ai) are given.
For convenience, we denote the above problem as HNP(n, l).

2.4 Breaking ECDSA with Nonce Leakage

ECDSA. The global parameters for an ECDSA signature include an elliptic
curve E(Fp) and a generator point G on E(Fp) of a prime order q. The secret
signing key is an integer 0 ≤ sk < q, and the public verifying key is a point [sk]G.
To sign a message hash h, the signer first generates a random integer nonce
0 ≤ k < q, then computes the signature (r, s) = (([k]G)x, |k−1 · (h + sk · r)|q),
where x subscript represents the x coordinate of the point.

ECDSA as a HNP. In a side-channel attack against ECDSA, the adversary
may know l least significant bits of the nonce k. If we write k = kmsb · 2l + klsb,
where 0 ≤ kmsb < q/2l and 0 ≤ klsb < 2l, then we can obtain the following
equation based on s = |k−1 · (h+ r · sk)|q:

2−l(klsb − s−1 · h) + kmsb = 2−l · s−1 · r · sk mod q.

This can be regarded as a HNP instance with (ti, ai) = (|2−l · s−1 · r|q, |2−l ·
(klsb− s−1 ·h)|q) and hidden number α = sk. Below we abbreviate ECDSA(n, l)
as an n-bit ECDSA instance with l-bit leakage.

8 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

2.5 Solving the HNP with Lattices

To solve the HNP, in 1996, Boneh and Venkatesan [11] constructed the (m+1)-
dimensional lattice generated by the rows of the following matrix:

q 0 · · · 0 0
0 q · · · 0 0
...

...
...

...
0 0 · · · q 0
t0 t1 · · · tm−1 1/2l

 .

There exists a lattice vector v = (t0 · α mod q, . . . , tm−1 · α mod q, α/2l). This
lattice vector is close to the target vector t = (a0, . . . , am−1, 0) since the distance
∥v − t∥ can be bounded by

√
m+ 1 · q/2l. If the distance is sufficiently small

compared with other lattice vectors, the lattice vector can be found by solving
the BDD problem using the nearest plane algorithm [7], or Kannan’s embedding
[22]. With Kannan’s embedding, we construct the (m + 2)-dimensional lattice
basis

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
t0 t1 · · · tm−1 1/2l 0
a0 a1 · · · am−1 0 τ

,

where τ is the embedding number which can be the upper bound of ki, i.e.,
τ = q/2l. The target lattice vector becomes v = ±(k0, . . . , km−1, α/2

l,−τ) with
a bounded norm of

√
m+ 2 · q/2l.

Recentering Technique. In the definition of HNP, 0 ≤ ki < q/2l, for i =
0, 1, . . . ,m − 1. Since the lattice can work for any sign of ki, we can make a
variable substitution k′i = ki − w where w = q/2l+1. The target vector becomes
(k′0, k

′
1, . . . , k

′
m−1, α/2

l,−τ) and has a much shorter length. This technique can
bring a significant improvement in practice and is widely used in the lattice
attacks on HNP [28,12,27,3,37].

Elimination Method. Given a set of HNP equations ai+ki = tiα mod q, where
i = 0, 1, · · · ,m − 1, we can eliminate the variable α by substituting α = |(a0 +
k0)t

−1
0 |q. This yields a new set of HNP equations. Incorporating the recentering

technique, we have

ai + w − (a0 + w)t−1
0 ti + k′i = t−1

0 tik
′
0 mod q,

where i = 1, . . . ,m − 1. This produces a transformed HNP instance (t′i, a
′
i) =

(t−1
0 ti, ai + w − (a0 + w)t−1

0 ti) with the transformed hidden number k′0. Then

Attacking ECDSA with Nonce Leakage by Lattice Sieving 9

the new lattice is generated by:

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
t′1 t′2 · · · t′m−1 1 0
a′1 a′2 · · · a′m−1 0 τ

,

referred to as the Albrecht and Heninger’s lattice [3]. The lattice dimension,
denoted as d, is reduced to m + 1. The target lattice vector becomes v =
±(k′1, . . . , k′m−1, k

′
0,−τ), with a bounded norm of

√
mw2 + τ2. To find the target

vector using a black box SVP solver, we expect the target vector to be the short-
est vector, i.e., ∥v∥ ≤

√
mw2 + τ2 ≤ GH(L). Combining this with d = m+1, we

can estimate the minimal lattice dimension. Moreover, instead of using the upper
bound of ∥v∥, Albrecht and Heninger considered the expected squared norm [3],
i.e., E[∥v∥2] = mw2/3 +m/6 + w2. Then the minimal lattice dimension can be
estimated as the minimal integer d satisfying E

[
∥v∥2

]
≤ GH2(L).

Sieving with Predicate. The sieving with predicate (Sieve-Pred) algorithm
checks over the database generated by sieving algorithms using the predicate
[3]. It does not treat the sieving algorithm as a black box SVP solver. This idea
is inspired by Micciancio et al. [26], which suggests that the sieving algorithm
not only outputs the shortest vector, but also provides all vectors with norm less
than

√
4/3GH(L), under specific heuristic assumptions. Algorithm 1 is expected

to find the target vector under Assumption 1 stated below.

Assumption 1 ([14]) When a 2-sieve algorithm terminates, it outputs a database
L containing all vectors with norm ≤

√
4/3GH(L).

Theorem 1 ([3]). Let L ⊂ Rd be a lattice containing a vector v such that
∥v∥ ≤

√
4/3GH(L). Under Assumption 1, Algorithm 1 is expected to find the

minimal v satisfying f(v) = 1 in 20.292d+o(d) steps and (4/3)d/2+o(d) calls to the
predicate f(·).

Algorithm 1: Sieving with Predicate
Input: Lattice L(B), predicate f(·)
Output: v such that ∥v∥ ≤

√
4/3GH(L) and f(v) = 1or ⊥

1 r ←⊥ ;
2 Run the sieving algorithm on L(B) and output list L;
3 for v ∈ L do
4 if f(v) = 1 and (r =⊥ or ∥v∥ < ∥r∥) then
5 r ← v;
6 return r;

Thus, using the Sieve-Pred algorithm, the minimal lattice dimension can be
estimated as the minimal integer d satisfying E

[
∥v∥2

]
≤ 4GH2(L)/3.

10 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

3 Improved Algorithms

In this section, we present several new algorithms for solving the HNP. We
decompose the hidden number k′0 as x · α0 + α1, and introduce a new lattice
construction that utilizes x to trade off the lattice dimension. Through theo-
retical analysis, we demonstrate that the lattice dimension can be reduced by
approximately (log x)/l. While the target vector contains information about α0,
the lack of information about α1 makes it impossible to directly compute the
hidden number α. This makes previous predicates ineffective [3,37]. Due to the
idea of the Sieve-Pred algorithm, we need to search within the exponentially
large database output by the sieving algorithms. Therefore, an efficient process
that excludes the incorrect candidate is crucial. To address this problem, we
propose a prescreening technique, an interval reduction algorithm, and the cor-
responding linear predicate. Moreover, we show that under Assumption 1, there
exists a constant c > 0 such that the success probability of our algorithm is at
least c.

3.1 New Lattice Construction Based on Decomposition Technique

Lattice Construction. Following Albrecht and Heninger’s lattice [3], we con-
struct the lattice generated by

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
x · t′1 x · t′2 · · · x · t′m−1 y 0
a′1 a′2 · · · a′m−1 0 τ

,

where x, y, and τ are undetermined coefficients. This modification increases the
lattice volume by a factor of y.

In [33], Sun et al. decomposed the hidden number α as α = 2c · α0 + α1,
where 0 ≤ α1 < 2c. We propose a more generalized form of decomposition to the
new hidden number: k′0 = x · α0 + α1, where |α1| ≤ x/2. Here, x is an arbitrary
positive integer and |α1| is 1-bit smaller. Then, for i = 1, . . . ,m − 1, we have
x · t′i · α0 − a′i ≡ k′i − α1 · t′i mod q. The target vector becomes

v = ±(k′1 − α1 · t′1, . . . , k′m−1 − α1 · t′m−1, y · α0,−τ).

If an integer random variable k is uniformly distributed over [−w,w), then we
have E

[
k2
]
= k2/3+1/6. In order to control the norm of the new target vector,

we need these samples (t′i, a′i) to satisfy |t′i| < q/(2l+4x). This requirement leads
to more samples, i.e., 2l+3 · x times of the original sample size. Therefore, we

Attacking ECDSA with Nonce Leakage by Lattice Sieving 11

have

E
[
(k′i − α1t

′
i)

2
]
= E

[
(k′i)

2
]
− 2E [α1]E [k′it

′
i] + E

[
α2
1

]
E
[
(t′i)

2
]

=
w2

3
+

1

6
+
(x2

12
+

1

6

)(q2

3 · 22l+8 · x2
+

1

6

)
≈ w2

3

(
1 +

1

768

)
≈ w2

3
.

Given that |k′0| is bounded by w, we know that |α0| ≤ w/x. Then we have

E
[
∥v∥2

]
= (m− 1)

w2

3
+ y2

w2

3x2
+ τ2.

Our goal is to minimize the ratio E
[
∥v∥2

]
/GH2(L), where

GH2(L) = (m+ 1)

2πe
· q

2(m−1)
m+1 · y

2
m+1 · τ

2
m+1 .

Given x, according to the AM–GM inequality, we have

E
[
∥v∥2

]
=

w2

3
+ · · ·+ w2

3︸ ︷︷ ︸
m−1

+y2
w2

3x2
+ τ2

≥ (m+ 1)

((
w2

3

)m−1

· y2 w2

3x2
· τ2
)1/(m+1)

= (m+ 1)

(
w2

3

)m/(m+1)

· x− 2
m+1 · y

2
m+1 · τ

2
m+1 .

Thus, E
[
∥v∥2

]
/GH2(L) attains its minimum value when y = x and τ = w/

√
3.

Reduction of Lattice Dimension. The new lattice construction can lead to a
reduction in the lattice dimension, which is described in Theorem 2. This signif-
icantly improves the efficiency of lattice-based attacks, as the time complexity
of sieving algorithms increases exponentially with an increase in the lattice di-
mension d.

Theorem 2. For any x ∈ N+, the reduction in lattice dimension is given by

2 log x

2l + 3− log(πe)
≈ log x

l
.

Proof. According to Assumption 1, the lattice dimension is the minimal integer
d satisfying E

[
∥v∥2

]
≤ 4/3 ·GH2(L). In Albrecht and Heninger’s lattice [3], let

τ = w/
√
3, then we have

E
[
∥v∥2

]
= m

(
w2

3
+

1

6

)
+ τ2 ≈ d · w

2

3
,

GH2(L) = d

2πe
· q

2(d−2)
d ·

(
w2

3

) 1
d

.

12 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Substituting w = q/2l+1, and taking the logarithm, we have

d ≥ 2l + 2 + 2 log q + log 3

2l + 3− log(πe)
.

In our lattice, E[∥v∥2] remains approximately the same, but GH2(L) increases
by a factor of x2/d. Thus, the new lattice dimension d′ needs to satisfy

d′ ≥ 2l + 2 + 2 log q + log 3− 2 log x

2l + 3− log(πe)
.

The reduction in lattice dimension is given by

2 log x

2l + 3− log(πe)
≈ log x

l
.

⊓⊔
Figure 1 illustrates the reduction of lattice dimension as x increases. Four

lines are plotted in this figure, representing HNP(160, 1), HNP(192, 1), HNP(224, 1),
and HNP(384, 2), respectively. Solving these instances is believed to be impracti-
cal by previous lattice-based approaches [5,6,3,33,37]. However, our experimental
results in Section 5 demonstrate the feasibility of solving HNP(160, 1) by using
a large x. More computational resources and samples are required for solving
more difficult instances such as HNP(192, 1).

0 5 10 15 20 25 30 35 40
120

140

160

180

200

220

240

la
tti

ce
 d

im
en

sio
n

log x

 HNP(160,1)
 HNP(192,1)
 HNP(224,1)
 HNP(384,2)

Fig. 1: Lattice dimension and x.

Success Probability. Under Assumption 1, the sieving algorithm outputs all
vectors satisfying ∥v∥2 ≤ 4GH2(L)/3. Consequently, the probability that the
sieving algorithm can output the target vector is represented as Pr(∥v∥2 ≤
E
[
∥v∥2

]
), which is the success probability of our algorithm.

Theorem 3. For all d ≥ 3, there exists a constant c > 0 such that Pr(∥v∥2 ≤
E
[
∥v∥2

]
) ≥ c.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 13

Proof. Recall the vector representation

v = (k′1 − α1t
′
1, . . . , k

′
m−1 − α1t

′
m−1, xα0,−w/

√
3)

= (v0, . . . vd−3, vd−2, vd−1).

For k′i, t′i, α0, and α1, they are all uniformly distributed: k′i is over [−w,w), t′i
is over [−w/(8x), w/(8x)), α0 is over [−w/x,w/x), and α1 is over [−x/2, x/2).
It follows that v0, . . . , vd−3 are independent and identically distributed.

Let Pd = Pr
(

1
d−2

∑d−3
i=0 v2i ≤ E

[
v20
])

. Then we have

Pr
(
∥v∥2 ≤ E

[
∥v∥2

])
= Pr

(
d−3∑
i=0

v2i + x2α2
0 ≤ (d− 2)E

[
v20
]
+

w2

3

)

≥ Pr

(
d−3∑
i=0

v2i ≤ (d− 2)E
[
v20
])
· Pr

(
x2α2

0 ≤
w2

3

)

=

√
3

3
Pr

(
1

d− 2

d−3∑
i=0

v2i ≤ E
[
v20
])

=

√
3

3
Pd.

Since Var[v20] < +∞, by the Central Limit Theorem, it holds that

lim
d→+∞

Pr

(
1

d− 2

d−3∑
i=0

v2i ≤ E
[
v20
])

=
1

2
.

Hence, there exists a positive constant c1 > 0 such that Pd ≥ c1 for any d ≥ 3.
Let c = c1/

√
3. Finally, we get

Pr
(
∥v∥2 ≤ E

[
∥v∥2

])
≥
√
3

3
Pd ≥ c.

⊓⊔

3.2 Improved Linear Predicate

In Albrecht and Heninger’s approach, they employ non-linear constraints as a
predicate to determine the unique hidden number [3,4]. Their predicate initially
checks whether the absolute value of the last element of the candidate vector is
τ . Subsequently, it determines the target vector by checking whether r is equal to
([k]G)x, where G is the generator point on the curve, r is a specific signature, and
k is the corresponding nonce that can be computed from the candidate vector.
The predicate involves time-consuming scalar multiplication on the curve.

In this section, we propose an improved linear predicate that utilizes linear
constraints from 2 log q HNP samples. Moreover, we present a modified version of
the Sieve-Pred algorithm to integrate our predicate, and achieve higher efficiency.

Linear Predicate. Our linear predicate is described in Algorithm 2. It oper-
ates on a 2-dimensional vector v = (v0, v1), representing the last two elements

14 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

of a candidate vector in the database. This predicate determines whether the
candidate vector satisfies a set of linear conditions. If these conditions are met,
the predicate reveals the hidden number; otherwise, it returns ⊥. The algorithm
follows these steps:

(1) Check if 0 < |v0| ≤ w and whether |v1| equals ±τ . If this condition is met,
proceed to the next step; otherwise, return ⊥.

(2) Calculate the candidate α′ from v and the HNP sample (t0, a0).
(3) For N HNP samples (ti, ai), check whether |ti · α′ − ai|q < q/2l for i =

0, . . . , N − 1. If this condition holds, return the candidate α′ as the correct
hidden number; otherwise, return ⊥.

According to the definition of HNP, the correct candidate α′ should satisfy
all these constraints in the last step of the algorithm. However, for an incor-
rect candidate, there still exists a small chance of meeting all the constraints.
The probability is computed as follows. Assume that |ti · α′ − ai|q is uniformly
distributed in [0, q − 1]. Then for i = 0, 1, . . . , N − 1, we have

Pr
(
|ti · α′ − ai|q < q/2l

)
= 2−l.

Let N = 2 log q. Then an incorrect candidate α′ satisfies all the constraints with
probability 2−2l log q = q−2l. Since there are q − 1 incorrect candidate α′, the
probability that the algorithm can find the candidate in the interval [0, q − 1] is
given by

(1− q−2l)q−1 ≥ 1− (q − 1)q−2l ≥ 1− q − 1

q2
= 1− negl(log q).

Thus, the predicate has an overwhelming success probability.

Algorithm 2: Improved Linear Predicate
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , N = 2 log q HNP samples (ti, ai)
Output: The hidden number α or ⊥

1 if v0 = 0 or |v0| > q/2l+1 or |v1| ≠ τ then
2 return ⊥;
3 k0 ← − sign(v1) · v0 + q/2l+1 ;
4 α′ ← t−1

0 · (a0 + k0) mod q ;
5 for i = 0 to N − 1 do
6 if |ti · α′ − ai|q ≥ q/2l then
7 return ⊥;
8 return α′;

In [37], Xu et al. also introduced a linear predicate. However, the key dif-
ference is that their predicate requires the entire d-dimensional vector. In the

Attacking ECDSA with Nonce Leakage by Lattice Sieving 15

sieving implementation G6K [2], the vectors in the output database are rep-
resented as coordinates under the lattice basis. To obtain all positions of the
candidate vector, one needs to perform d vector inner products, i.e., multiply
the d-dimensional coordinate vector by the d× d lattice basis matrix. While our
predicate only involves two vector inner products, which provides a significant
efficiency advantage in practice.

Another modification is that we utilize linear constraints from new HNP
samples, instead of samples used in lattice construction. The reason is that the
vector v in sieving database is inherently shorter. If we use the HNP samples
(ti, ai) that construct the lattice, the probability Pr(|ti ·α′−ai| < q/2l+1) (which
is equal to Pr(|vi| < q/2l+1)) will be higher. So more linear constraints need to
be verified to identify a false candidate. With new HNP samples, the expected
number of verifying operations for each candidate can be calculated: if we assume
that there are M candidates, then the expected number of candidates meeting
the first constraint is M/2l, the expected number of candidates meeting the sec-
ond constraint is M/22l, and so on. Thus, the total expected number of verifying
operations needed for M candidates is

M +
M

2l
+

M

22l
+ · · · = M

1− 2−l
.

Therefore, on average, only 1/(1− 2−l) verifying operations are needed for each
candidate, and the parameter 2 log q does not affect the efficiency of our predi-
cate.

As we have made modifications to both the input and output of the predicate,
a modified version of the Sieve-Pred algorithm is proposed to ensure compati-
bility with the new predicate. The algorithm is outlined in Algorithm 3. It no
longer takes the entire lattice vector as input but only the last two elements.
Moreover, the algorithm immediately outputs the solution when our linear pred-
icate returns true, instead of searching the entire database.

Algorithm 3: Modified Sieving with Predicate
Input: Lattice L(B) with dimension d, predicate f(·)
Output: The hidden number α or ⊥

1 Run the sieving algorithm on L(B) and output list L;
2 for v ∈ L do
3 α← f(vd−2, vd−1);
4 if α ̸=⊥ then
5 return α;
6 return ⊥;

3.3 Predicate for Decomposition Technique

In Section 3.1, the transformed hidden number k′0 is decomposed as α0x +
α1 where |α1| ≤ x/2, and the target vector is v = ±(k′1 − α1t

′
1, . . . , k

′
m−1 −

α1t
′
m−1, xα0,−τ). This vector contains information about α0, which is a part

16 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

of k′0. However, due to the absence of information about α1, it is impossible to
directly compute the entire k′0. Consequently, previous predicates are ineffective
in this scenario [3,37].

The straightforward approach to recover k′0 is to perform an exhaustive search
over all possible values of α1, which has time complexity O(x). For each candidate
value of α0, we need to check the predicate for x candidate values of the hidden
number. An exhaustive search will result in a substantial time overhead and
becomes impractical when x is large. To address this issue, we introduce an
interval reduction algorithm that reduces the complexity from O(x) to O(log2 x).
Based on this algorithm, a predicate for the decomposition technique is also
proposed.

There are two necessary notations. Assume that R is the union of a set of
intervals. Let |R| be the number of intervals in R, and ||R|| be the number of
integers within the intervals in R. For example, if R = {[1, 4]}, then |R| = 1
which means that there is one interval in R, and ||R|| = 4 which means that
there are four integers within the interval [1, 4].

Interval Reduction Algorithm. The interval reduction algorithm takes an
interval of length M and logM transformed HNP samples as input, and produces
a set of smaller intervals as output. We denote the input interval as [low,high],
where M = high− low+1. Let R be the set of intervals output by this algorithm.
The interval reduction algorithm guarantee that if the hidden number is in the
input interval [low, high], then the hidden number must be in one interval of R.
This algorithm is described in Algorithm 4, and it contains two steps as follows.

Algorithm 4: Interval Reduction Algorithm
Input: interval [low, high] that may contain the hidden number k′0,

modulus q, parameter l, N = logM transformed samples (t′i, a
′
i)

satisfying t′i = O(q/M)
Output: set R of intervals that may contain k′0

1 R← {[low, high]};
2 for i = 0 to N − 1 do
3 Generate a new interval set Rnew based on i-th sample (t′i, a

′
i);

4 R← IntervalSetIntersection(R,Rnew);
5 return R;

Firstly, we generate the intervals based on logM transformed samples (t′i, a′i).
These intervals are computed using the HNP equations and the interval [low, high].
It holds that

t′i · low ≤ t′ik
′
0 = a′i + k′i + nq ≤ t′i · high,

for i = 1, . . . , logM . Since −w ≤ k′i ≤ w − 1, we get a set S that contains all
possible values of n. For a specific n1 in S, we have

t′ik
′

0 = a′i + k′i + n1q ∈ [a′i + n1q − w, a′i + n1q + w − 1].

Attacking ECDSA with Nonce Leakage by Lattice Sieving 17

Therefore,
t′ik

′

0 ∈
⋃
n∈S

[a′i + nq − w, a′i + nq + w − 1].

This process yields a set of intervals that are sorted in ascending order, and one
of these intervals may contain k′0. To limit the number of intervals in this set,
we require that t′i = O(q/M). For the rationale of this requirement, the reader
is referred to the proof of Theorem 4.

Secondly, we intersect all the sets of intervals generated from the logM sam-
ples. For this operation, we present an interval set intersection algorithm in
Algorithm 5. It takes two sets of intervals that are in ascending order as input
and outputs their intersection. The time complexity of Algorithm 5 is O(m+n),
where m and n are the numbers of intervals in two sets respectively.
Predicate for decomposition technique. Our predicate for the decomposi-
tion technique is described in Algorithm 6. Firstly, this algorithm verifies whether
|v0| < q/2l+1 and whether |v1| equals ±τ . Secondly, it computes the interval
[low, high] that may contain k′0. Thirdly, the interval reduction algorithm is em-
ployed to generate a set R. Finally, an exhaustive search is carried out to check
the linear predicate for each integer in the intervals of R. The expected time
complexity of this algorithm is O(log2 x), as shown in Theorem 4.

Algorithm 5: Interval Set Intersection Algorithm
Input: Two sets of intervals in ascending order: A, B
Output: Intersection of A and B

1 i, j ← 0;
2 R← {} ;
3 while i < |A| and j < |B| do
4 Let [a0, a1] and [b0, b1] be the i-th and j-th intervals in A and B,

respectively;
5 if a1 < b0 then
6 i← i+ 1;
7 Continue;
8 if b1 < a0 then
9 j ← j + 1;

10 Continue;
11 if a1 ≥ b1 then
12 j ← j + 1;
13 Add the interval [max(a0, b0), b1] to R;
14 Continue;
15 i← i+ 1;
16 Add the interval [max(a0, b0), a1] to R;
17 return R;

Theorem 4. The expected time complexity of Algorithm 6 is O(log2 x).

Proof. There are two parts in Algorithm 6. The first part is the interval reduction
algorithm, and the second part is an exhaustive search.

18 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Algorithm 6: Predicate for Decomposition Technique
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , predicate f(·)
Output: hidden number α or ⊥

1 if v0 = 0 or |v0| > q/2l+1 or |v1| ≠ τ then
2 return ⊥;
3 low← − sign(v1) · v0 − x/2 , high← − sign(v1) · v0 + x/2;
4 R← IntervalReduction([low, high]);
5 for [a, b] ∈ R do
6 for h = a to b do
7 α← f(h,−τ);
8 if α ̸=⊥ then
9 return α;

10 return ⊥ ;

(1) Let us study the time complexity of the first part. We need to bound
|Rnew|, where Rnew is given in Algorithm 4. For any transformed sample (t′i, a

′
i),

we have both nq + a′i + w − 1 ≥ t′i · low and nq + a′i − w ≤ t′i · high. Hence, the
number of possible values of n is not bigger than

t′i · (high− low) + 2w − 1

q
+ 1 =

t′i · x− t′i + 2w − 1

q
+ 1.

Since t′i = O(q/x), there exists a constant C such that |Rnew| ≤ C.
For i = 0, 1, . . . , N − 1, let Ri be the set returned by the interval set inter-

section algorithm in Algorithm 4 just after i-th sample. Then we have |Ri| ≤
(i + 1)C. Thus, for any 0 ≤ i ≤ N − 1, the time complexity of i-th step in
Algorithm 4 is at most O((i + 2)C). It follows that the time complexity of the
first part is O(N2) = O(log2 x).

(2) For the time complexity of the second part, let R−1 = [low, high]. Then
∥R−1∥ = x. For an incorrect hidden number candidate, the probability that this
candidate satisfies the constraint given by each HNP sample is only 1/2l. Thus,
for 0 ≤ i ≤ N − 1, we have

E(∥Ri∥)
E(∥Ri−1∥)

=
1

2l
.

Finally, we get

E(∥RN−1∥) = E(∥R−1∥) ·
(

1

2l

)N

≤ x

2N
= 1.

Therefore, the expected time complexity of the second step is O(1).
By (1) and (2), the expected time complexity of Algorithm 6 is O(log2 x). ⊓⊔

Pre-screening Technique. Before the interval reduction algorithm in Algo-
rithm 6, we could use a pre-screening technique to eliminate the majority of

Attacking ECDSA with Nonce Leakage by Lattice Sieving 19

incorrect candidates. This technique involves only some linear operations, and
can enhance the efficiency of Algorithm 6 notably.

The pre-screening technique makes use of a small number of transformed
HNP samples (t′i, a

′
i), where |t′i| ≤ q/(2l+3x). For an incorrect candidate α′

0, it
will be rejected if the following condition is satisfied:

||x · t′i · α′
0 − a′i + q/2|q − q/2| > w + q/2l+4.

Let us explain the reason. For any correct candidate α0, we have x · t′iα0 − a′i ≡
k′i − α1t

′
i mod q. Therefore, we get

|k′i − α1t
′
i| ≤ |k′i|+ |α1| · |t′i| ≤ w +

x

2
· q

2l+3x
= w +

q

2l+4
.

Note that this technique does not increase the sampling cost, as we can use
the samples that satisfy q/(2l+4x) ≤ |t′i| ≤ q/(2l+3x) for pre-screening. These
samples are already available during the pre-selection of the samples used to
construct the new lattice in Section 3.1.

To illustrate the efficiency improvements brought by the interval reduction
algorithm and pre-screening technique, we conduct experiments on HNP(256, 2)
with x = 215. The experimental data demonstrates that, compared with the
exhaustive search, the interval reduction algorithm provides a 2590-fold speedup.
Furthermore, when combined with the pre-screening technique, we could get a
3895-fold speedup.

4 Hidden Number Problem with Erroneous Input

In practical side-channel attacks, errors often appear in the data. This means
that attackers may obtain incorrect nonces, resulting in erroneous HNP sam-
ples. Lattice-based attacks are believed to perform poorly when dealing with
erroneous input [30,6]. A common strategy to tackle this issue is to run the
HNP solver on subsets of the samples until a correct solution is found [21]. How-
ever, this method does not fundamentally improve the lattice’s ability to handle
errors. Consequently, some works assume that the input is error-free [21,33,37].
In [3], Albrecht and Heninger discussed the solution for handling errors, but did
not provide a detailed analysis. With the increase of error rate, the dimension
of their lattice would increase rapidly. The restricted efficiency of their non-
linear predicate would result in a high cost for searching the sieving database,
thereby constraining the ability to handle erroreous HNP instances. On the other
hand, Fourier analysis-based attacks demonstrated stronger robustness to errors
[13,5,6], highlighting a gap between these two approaches.

In this section, we define HNP with erroneous input based on the ECDSA
nonce leakage model. The effectiveness of our new lattice construction in solving
this problem is demonstrated through theoretical analysis. An estimation for
the minimum lattice dimension is also provided. Furthermore, we extend our
algorithms in Section 3, and significantly enhance the lattice’s ability to handle
errors. This narrows the gap between lattice-based attacks and Fourier analysis-
based attacks.

20 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

4.1 Theoretical Analysis

Definition 5 (Hidden Number Problem with Erroneous Input). Given
a modulus q, an error rate 0 < p < 1/2, and both the hidden number α and the
coefficients ti being random numbers in Zq, the elements ai satisfy the condition
that with probability 1− p, |tiα− ai|q < q/2l, while with probability p, |tiα− ai|q
is a random number in Zq. The problem is to recover the hidden number α when
m samples (ti, ai) are given.

Let us show the rationality of this definition in more details. In the ECDSA
signature, let k = 2lkmsb + klsb, where 0 ≤ kmsb < q/2l, and 0 ≤ klsb < 2l. Then
we have

2−l(klsb − s−1 · h) + kmsb ≡ 2−ls−1r · sk mod q.

Assume that we have probability 1 − p to obtain the correct value of klsb, and
probability p to obtain a random integer k′lsb in [0, 2l − 1].

Let α = sk, ai = |2−l(klsb − s−1 · h(m))|q, ki = kmsb, and ti = |2−ls−1r|q. If
we obtain a random integer k′lsb, then ai = |2−l(k′lsb − s−1 · h)|q, and we have

|tiα− ai|q = |kmsb + 2−l(klsb − k′lsb)|q = |2−l(k − k′lsb)|q.

Since k is randomly chosen from Zq and q is a prime number, |2−l(k − k′lsb)|q is
also a random number in Zq. Thus, we obtain a HNP instance with erroneous
input.

New Minimum Lattice Dimension. In this section, the lattice constructed
by us is the same as that in Section 3.1:

q 0 · · · 0 0 0
0 q · · · 0 0 0
...

...
...

...
...

0 0 · · · q 0 0
x · t′1 x · t′2 · · · x · t′m−1 x 0
a′1 a′2 · · · a′m−1 0 τ

.

The target vector is v = ±(k′1 − α1t
′
1, . . . , k

′
m−1 − α1t

′
m−1, xα0, τ). From the

definition above, for i = 0, . . . ,m − 1, ki is randomly distributed in [0, q) with
probability p. Thus, xα0 ≡ k′0 −α1 ≡ k0 −w−α1 and k′i −α1t

′
i ≡ ki −w−α1t

′
i

also have probability p of being randomly distributed in [−q/2, q/2). So we have

E
[
∥v∥2

]
= (d− 1)(1− p)

w2

3
+ (d− 1)

pq2

12
+ τ2

= (d− 1)
w2

3

(
1 + p(22l − 1)

)
+ τ2.

Similar to the analysis in Section 3.1, when τ2 = w2(1 + p(22l − 1))/3, the
ratio E

[
∥v∥2

]
/GH2(L) obtains its minimum. Substituting this into E

[
∥v∥2

]
≤

4GH2(L)/3, we get

d ≥
2l + 2 + 2 log q + log 3− 2 log x− log

(
1 + p · (22l − 1)

)
2l + 3− log(πe)− log (1 + p · (22l − 1))

.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 21

The reduction of dimension is 2 log x/(2l+3−log πe−log(1+p·(22l−1))), which is
more than log x/l. This discovery reveals that the new lattice construction can
achieve a greater reduction (compared to Albrecht and Heninger’s lattice) in
lattice dimension in the presence of erroneous samples compared to error-free
samples.

From a different perspective, the parameter x can be viewed as a balance to
the error rate p. Given the lattice dimension d, p amplifies the target vector’s
squared magnitude by 1 + p(22l − 1), while x amplifies GH2(L) by x2/d. To
maintain this ratio, we can set 1 + p(22l − 1) = x2/d, which leads to x = (1 +
p(22l−1))d/2. Thus, for a higher error rate, we can increase x to keep the lattice
dimension unchanged.

4.2 Modified Algorithms

Linear Predicate for Erroneous Input. Using the linear predicate in Section
3.2, we compute |tiα′ − ai|q for each sample (ti, ai). If this value is in [0, q/2l),
then α′ passes the test; otherwise, it fails.

For error-free samples, if a single test fails, the hidden number candidate is
incorrect. However, if there are potential errors in the samples, this is not true.
To address this problem, we test samples using the hidden number candidate α′,
and count the number of samples that pass the test. Table 2 lists the passing
probability for error-free and erroneous samples. We denote the probability of
passing a single sample as p1 when α′ = α, and as p2 when α′ ̸= α. Then
p1 = 1− p+ p · 2−l, p2 = 2−l, and p1 > p2.

Table 2: Passing probability for error-free and erroneous samples

Error-free sample Erroneous sample

α′ = α 1 2−l

α′ ̸= α 2−l 2−l

We collect N = 2 log q samples, and calculate the number M of samples that α′

passes. If M > N(p1 + p2)/2, α′ is believed to be the correct hidden number α.
Otherwise, we discard it. This procedure is detailed in Algorithm 7.

Theorem 5. Algorithm 7 has overwhelming success probability 1− negl(log q).

Proof. Let P1 be the probability that Algorithm 7 rejects a correct hidden num-
ber, and P2 be the probability that Algorithm 7 accepts an incorrect candidate.
We prove both P1 and P2 are negligible. Define

Xi =

{
1, if α′ passes the i-th sample;
0, if α′ fails the i-th sample.

22 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

Algorithm 7: Predicate for erroneous input
Input: A 2-dimensional vector v = (v0, v1), modulus q, number of nonce

leakage l, embedding number τ , N = 2 log q erroneous samples (ti, ai)
Output: The hidden number α or ⊥

1 if v0 = 0 or v0 > q/2l+1 or |v1| ̸= τ then
2 return 0;
3 k0 ← − sign(v1)v0 + q/2l+1 ;
4 α′ ← t−1

0 (a0 + k0) mod q ;
5 M ← 0;
6 for i = 0 to N − 1 do
7 if |tiα′ − ai|q < q/2l then
8 M ←M + 1;
9 if M > N(1− p+ (1 + p)2−l)/2 then

10 return α′;
11 else
12 return ⊥;

When α′ = α, Xi follows the Bernoulli distribution with probability p1, and
when α′ ̸= α, Xi follows the Bernoulli distribution with probability p2. Let
SN =

∑N
i=1 Xi.

For the case of P1, let µ1 be the expected value of SN . Then µ1 = p1N . Let
δ1 = (p1 − p2)/(2p1) ≥ 1/(8p1). By the Chernoff inequality, we have

P1 = Pr

(
SN ≤

N(p1 + p2)

2

)
< e−µ1

δ21
2 ≤ e

− p1N

128p21 ≤ e−
log q
64 .

For the case of P2, let µ2 be the expected value of SN . Then µ2 = p2N . Let
δ2 = (p1 − p2)/(2p2) = (1− p)(2l − 1)/2 ≥ 2l−3. By the Chernoff inequality, we
have

P2 = Pr

(
SN >

N(p1 + p2)

2

)
< e−µ2

δ22
2 ≤ e−p2N

22l−6

2 ≤ e−2l−6 log q ≤ e−
log q
32 .

⊓⊔

Pre-screening Technique for Erroneous Input. The idea above can also
be applied to extend the pre-screening technique. To achieve efficient screening,
we use log q samples that satisfy |t′i| < q/(2l+3x). For each sample (t′i, a

′
i), we

compute
∣∣∣|xt′iα0 − a′i + q/2|q − q/2

∣∣∣. A sample (ti, ai) is called non-compliant if∣∣∣|xt′iα0 − a′i + q/2|q − q/2
∣∣∣ > w + q/2l+4.

During the pre-screening, we cannot make any decision based only on a single
non-compliant sample. Our strategy is to collect a set of samples, and make the
decision when the number of non-compliant samples reaches a certain threshold.
Different from Algorithm 7, the goal of pre-screening is to retain the correct
hidden numbers, rather than to eliminate all incorrect candidates. The number of

Attacking ECDSA with Nonce Leakage by Lattice Sieving 23

erroneous samples is at most 3p log q with overwhelming probability. If more than
3p log q samples are non-compliant, the hidden number candidate is removed.

Sub-sampling Technique. In Section 3.3, we introduce an interval reduction
algorithm for lattices constructed from the decomposition technique. This algo-
rithm can efficiently perform an exhaustive search over an interval. However, it
requires error-free samples. Otherwise, it may exclude correct hidden number.
To overcome this limitation, we propose a sub-sampling technique. The specific
steps are as follows.

(1) Select 3 log x/2 samples to form a pool.
(2) Draw log x samples from this pool, and apply Algorithm 6 to the candidate

α′
0, but replace the linear predicate in Algorithm 6 with the predicate for

erroneous input in Algorithm 7. Return upon success.
(3) Repeat the second step for γ times. If the hidden number is not found, the

candidate is rejected.

Let P1 be the probability that this algorithm rejects a correct hidden number
candidate, and P2 be the probability that this algorithm accepts an incorrect
hidden number candidate. For any correct hidden number α, it has probability
p1 = 1−p+p ·2−l to pass a single sample. Hence, the second step has probability
plog x
1 to return α. Therefore, P1 = (1−plog x

1)γ . For any incorrect hidden number
α, if α is returned, α must be returned by Algorithm 7. By Theorem 5, we have
P2 = negl(log q).

In practice, for given p, x and l, we can adjust γ to minimize P1. For example,
for the case of p = 0.02, x = 225, l = 1, let γ = 10, then we get P1 < 3× 10−7.

5 Key Recovery of ECDSA with Nonce Leakage

In this section, experimental results are provided to demonstrate the performance
of our algorithms. Assume that the least significant bits of the nonce used for
each signature are leaked. Our goal is to recover the secret signing key by solving
the corresponding HNP instance. The experimental machine is equipped with
two Intel Xeon Gold 6154 CPUs, 2TB memory, and three GeForce RTX 2080Ti
GPUs.

Before applying Algorithm 3 to the lattice basis constructed from HNP sam-
ples, we preprocess the basis with BKZ-20, which can randomize the lattice basis
and increase the success rate. In [3], Albrecht et al. used BKZ-(d-20) in their pre-
processing step. However, the experimental results show that our preprocessing
step is much more efficient and achieves a success rate close to [3]. Moreover, the
integration of the progressive sieving technique plays a pivotal role in enhancing
the quality of the basis [24,14].

To introduce the strategy of our attack on instances of varying difficulty,
we categorize ECDSA instances into three classes. Specifically, this classification
relies on the minimum lattice dimension d estimated via Albrecht and Heninger’s
lattice. These three classes are denoted as Easy (d ≤ 100), Medium (100 < d ≤

24 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

140), and Hard (d > 140). In practical applications, we may adjust the parameter
x. This allows us to obtain an optimal balance between time consumption and
the number of available samples.

5.1 Compared with Other Lattice-based Attacks

Solving Easy Instances. Table 3a lists our attack results for several easy in-
stances. These experiments are conducted with a single thread and G6K library
[2]. For each instance, the average CPU-seconds and the success rate (s/r) are
calculated from 100 experiments. Figure 2 illustrates the efficiency comparison
between our algorithm and recent works [3,33,37]. It is evident that our algo-
rithm exhibits a significant efficiency advantage. For example, when dealing with
ECDSA(384, 4), Albrecht and Heninger [3] successfully conducted an attack in
49200 seconds, and Xu et al. [37] improved the time to 11153 seconds, whereas
we only require 5583 seconds. When targeting ECDSA(192, 2), our attack also
demonstrates a speedup of 31 times compared with the work by Albrecht and
Heninger [3]. When x = 1, the key difference between our work and other works
[3,37] lies in the predicate used in the attack. We substitute our predicate with
those in [3] and [37] separately, and record the time of searching the database
on the same machine. We denote the time taken by our predicate as t1, and
the time taken by the predicates in [3] and [37] as t2 and t3, respectively. The
speed-up ratio brought by our predicate is shown in Figure 3.

(256,4) (160,2) (256,3) (384,4) (192,2)
21

24

27

210

213

216

 [3]
 [37]
 [33]
 Ours

CP
U
-s
ec
on
ds

(bitsize, leakage)

Fig. 2: Comparison of CPU-seconds with previous works.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 25

Table 3: Performance of our lattice-based attacks

Curve Leakage d x CPU-seconds s/r Previous records

secp160r1 2 82 1 206s 52% 259s in [37]77 210 71s 58%

secp192r1 2 99 1 10360s 60% 87500s in [3]94 210 2829s 69%

secp256r1
4 66 1 7s 65% 15s in [37]64 210 5s 79%

3 87 1 634s 53% 924s in [37]84 210 359s 57%

secp384r1 4 98 1 8154s 62% 11153s in [37]96 210 5583s 56%

(a) Easy instances

Curve Leakage d x Wall time Mem GiB Previous records

secp112r1 1 116 1 10min 35 260min in [37]

secp256r1 2 129 1 232min 219 466min in [37]125 210 74min 124

secp384r1 3 130 1 248min 252 156min in [37]126 215 98min 144

(b) Medium instances

The success rate of our attack can be further improved by increasing the
lattice dimension. Taking ECDSA(160, 2) as an example, Figure 4 illustrates how
the success rate notably increases as the lattice dimension grows. We conduct
experiments on 500 randomly generated instances. When the lattice dimension
reaches 92, the success rate approaches 100%. This observation can be attributed
to the fact that the majority of the ∥v∥/GH ratios are below

√
4/3, which

enables us to find the target vectors through sieving algorithms with high success
rates. The experimental results also indicate that our algorithm can still handle
instances with ∥v∥/GH ratios greater than

√
4/3 with a lower success rate,

rather than failing 100%.

Solving Medium Instances. Our attack results for medium instances are
presented in Table 3b. We employ G6K-GPU [15] to achieve high-performance
sieving algorithms. The process of searching the database is parallelized. Our
attacks demonstrate high efficiency. Taking ECDSA(256,2) as an example, when
x is set to 1, we complete the attack in 232 minutes by constructing a 129-
dimensional lattice. The time can be further reduced to 74 minutes by setting

26 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

(256,4) (160,2) (256,3) (384,4) (192,2)
0

5

10

15

20

25

30

35

40

45

sp
ee

d-
up

 ra
tio

(bitsize,leakage)

 t2 / t1
 t3 / t1

Fig. 3: Searching the sieving database using different predicates.

Table 4: New records of lattice-based attack against ECDSA

Curve Leakage d x Wall time Mem GiB

brainpoolp512r1 4 130 1 268min 254

(a) 4-bit leakage

Curve Leakage d x Wall time Mem GiB

secp128r1 1 131 1 178min 294
118 215 18min 53

secp160r1 1 138 225 855min 781

(b) 1-bit leakage

Curve Error rate d x Wall time Mem GiB

secp128r1 0.01 126 210 60min 143
0.1 140 220 983min 927

secp160r1 0.01 141 225 1575min 1215

(c) Less than 1-bit leakage

x = 210. On the other hand, the attack in [37] required 466 minutes with four
GeForce RTX 3090 GPUs.

Attacking ECDSA with Nonce Leakage by Lattice Sieving 27

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
0

10

20

30

40

50

60

70

80

Co
un

t

|| v || / GH

 Success
 Failure

(4/3)1/2

(a) d = 77

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
0

10

20

30

40

50

Co
un

t

|| v || / GH

 Success
 Failure

(4/3)1/2

(b) d = 82

0.90 0.95 1.00 1.05 1.10 1.15 1.20
0

10

20

30

40

50

60

70

80

Co
un

t

|| v || / GH

 Success
 Failure

(4/3)1/2

(c) d = 87

0.85 0.90 0.95 1.00 1.05 1.10 1.15
0

10

20

30

40

50

60

70

80

90

Co
un

t

|| v || / GH

 Success
 Failure

(4/3)1/2

(d) d = 92

Fig. 4: Breaking ECDSA(160, 2) via lattices with different dimensions.

5.2 New Records of Lattice-based Attack against ECDSA

4-bit Leakage. The previous record for 4-bit leakage is only achieved on a 384-
bit curve. As depicted in Table 4a, our algorithm is able to break ECDSA(512, 4)
by a 130-dimensional lattice, which takes 268 minutes and consumes 254 GiB of
memory.

1-bit Leakage. Breaking ECDSA with 1-bit leakage using lattice algorithms
has been considered to be very difficult. In 2023, Xu et al. reported a success-
ful key recovery for 1-bit leakage on a 112-bit curve [37]. However, breaking
ECDSA(160, 1) was regarded as exceptionally challenging by previous lattice
approaches [5,6,3,33,37]. Xu et al. required a lattice dimension of approximately
165, which would make the time and space complexities of sieving algorithms
unacceptable [37]. Besides, Sun et al. estimated the time complexity of their
guessing bits algorithm is 2110 BKZ-30 operations [33].

We present the first implementation of lattice attacks against ECDSA with
1-bit leakage on both 160-bit and 128-bit curves. The experimental results are
presented in Table 4b. When targeting ECDSA(160, 1), it is essential to reduce
the lattice dimension to a manageable size for sieving algorithms. We set x to 225,
and obtain a lattice dimension of 138. Thus, from a probabilistic perspective, 235

28 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

samples are required to obtain 137 transformed HNP samples (t′i, a
′
i) satisfying

|t′i| < q/229. Then the attack succeeds in approximately 855 minutes, using 781
GiB of memory.

Less than 1-bit Leakage. Before this work, only Fourier analysis-based at-
tacks [6] could break ECDSA with less than 1-bit nonce leakage. We provide the
first lattice-based attack results in Table 4c. Our attacks successfully handle an
ECDSA instance with an error rate of at most 0.1 on a 128-bit curve and an
ECDSA instance with an error rate of 0.01 on a 160-bit curve.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: 33rd ACM STOC. pp. 601–610. (2021). https://doi.org/10.
1145/380752.380857

2. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

3. Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate:
Breaking the “lattice barrier” for the hidden number problem In: Canteaut,
A., Standaert, FX. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 528–558.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_19

4. Albrecht, M.R., Heninger, N.: Bounded distance decoding with predicate source
code (2020). https://github.com/malb/bdd-predicate

5. Aranha, D.F., Fouque, PA., Gérard, B., Kammerer, JG., Tibouchi, M., Zapalow-
icz, JC.: GLV/GLS decomposition, power analysis, and attacks on ECDSA sig-
natures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 262-281. Springer, Berlin, Heidelberg (2014). https:
//doi.org/10.1007/978-3-662-45611-8_14

6. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
Breaking ECDSA with less than one bit of nonce leakage. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 225-242. ACM Press (2020).
https://doi.org/10.1145/3372297.3417268

7. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–13 (1986). https://doi.org/10.1007/BF02579403

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10–24. ACM-SIAM (2016). https://doi.org/10.1137/1.9781611974331.
ch2

9. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522 (2015). http://eprint.iacr.org/2015/522

10. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
In: Presentation at IEEE P1363 working group meeting. p. 81 (2000).

11. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
96. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5_11

https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-77870-5_19
https://doi.org/10.1007/978-3-030-77870-5_19
https://github.com/malb/bdd-predicate
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/BF02579403
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
http://eprint.iacr.org/2015/522
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11

Attacking ECDSA with Nonce Leakage by Lattice Sieving 29

12. Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 3–20. Springer, Heidelberg (2019). https://doi.org/
10.1007/978-3-030-32101-7_1

13. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In: Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_25

14. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for
free. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 125–145. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-319-78381-9_5

15. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs,
with tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12697, pp. 249–279. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77886-6_9

16. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of Computation 44(170),
463–471 (1985).

17. Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mari-
ano, A., Yang, B.-Y.: Tuning GaussSieve for speed. In: LATINCRYPT 2014.
LCNS, vol. 8895, pp. 288–305. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-16295-9_16

18. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.257-278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13

19. Heninger, N.: Using Lattices for Cryptanalysis. (2020). https://simons.berkeley.
edu/-talks/using-lattices-cryptanalysis

20. Herold, G., Kirshanova, E., Laarhoven, T. : Speed-ups and time-memory trade-
offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol 10769, pp.407-436. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76578-5_14

21. Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: The curse of ECDSA
nonces. IACR TCHES 2020(4), 281–308 (2020). https://doi.org/10.13154/tches.
v2020.i4.281-308

22. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

23. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6_1

24. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-79063-3_14

25. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen 261, 366–389 (1982). https://infoscience.
epfl.ch/record/164484/files/nscan4.PDF

26. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Charika, M. (ed.) 21st SODA. pp. 1468–1480. ACM-SIAM
(2010). https://doi.org/10.1137/1.9781611973075.119

https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-642-40349-1_25
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://simons.berkeley.edu/-talks/using-lattices-cryptanalysis
https://simons.berkeley.edu/-talks/using-lattices-cryptanalysis
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-319-79063-3_14
https://infoscience.epfl.ch/record/164484/files/nscan4.PDF
https://infoscience.epfl.ch/record/164484/files/nscan4.PDF
https://doi.org/10.1137/1.9781611973075.119
https://doi.org/10.1137/1.9781611973075.119

30 Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He

27. Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N.: TPM-FAIL: TPM
meets timing and lattice attacks. In: Capkun, S., Roesner, F. (eds.): USENIX
Security 2020. pp. 2057-2073. (2020). https://www.usenix.org/system/files/
sec20-moghimi-tpm.pdf

28. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm
with partially known nonces. Journal of Cryptology 15(3), 151–176 (2002). https:
//doi.org/10.1007/s00145-002-0021-3

29. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. of Mathematical Cryptology 2(2), 181-207 (2008). https://doi.org/
10.1515/JMC.2008.009

30. Ryan, K.: Return of the hidden number problem. IACR TCHES 2019(1), 146–168
(2018). https://tches.iacr.org/index.php/TCHES/article/view/7337

31. Schnorr, C.P. : Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145-156. Springer,
Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14

32. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994). https:
//doi.org/10.1007/BF01581144

33. Sun, C., Espitau, T., Tibouchi, M., Abe, M.: Guessing bits: Improved lattice
attacks on (EC)DSA with nonce leakage. IACR TCHES 2022(1), 391–413 (2022).
https://tches.iacr.org/index.php/TCHES/article/view/9302

34. Takahashi, A., Tibouchi, M., Abe, M.: New Bleichenbacher records: Fault attacks
on qDSA signatures. IACR TCHES 2018(3), 331–371 (2018). https://tches.iacr.
org/index.php/TCHES/article/view/7278

35. The G6K development team: G6K (2020). https://github.com/fplll/g6k
36. The G6k-GPU-Tensor development team: G6k-GPU-Tensor (2021). https://

github.com/WvanWoerden/G6K-GPU-Tensor
37. Xu, L., Dai, Z., Wu, B., Lin, D.: Improved attacks on (EC)DSA with nonce

leakage by lattice sieving with predicate. IACR TCHES 2023(2), 568–586 (2023).
https://doi.org/10.46586/tches.v2023.i2.568-586

https://www.usenix.org/system/files/sec20-moghimi-tpm.pdf
https://www.usenix.org/system/files/sec20-moghimi-tpm.pdf
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1007/s00145-002-0021-3
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://tches.iacr.org/index.php/TCHES/article/view/7337
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://tches.iacr.org/index.php/TCHES/article/view/9302
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://tches.iacr.org/index.php/TCHES/article/view/7278
https://github.com/fplll/g6k
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://doi.org/10.46586/tches.v2023.i2.568-586

	Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging the Gap with Fourier Analysis-based Attacks

