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Abstract. This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly
different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own
public/secret key pair and register it with the system. The key curator is critical to keep the system flowing,
which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows.

– This paper provides the first definition of registered ABS, which has never been defined.

– This paper presents the first generic fully secure registered ABS over the prime-order group from 𝑘-Lin
assumption under the standard model, which supports various classes of predicate.

– This paper gives the first concrete registered ABS scheme for arithmetic branching program (ABP), which
achieves full security in the standard model.

Technically, our registered ABS is inspired by the blueprint of Okamoto and Takashima[PKC’11]. We convert
the prime-order registered attribute-based encryption (registered ABE) scheme of Zhu et al.[ASIACRYPT’23] via
predicate encoding to registered ABS by employing the technique of re-randomization with specialized delegation,
while we employ the different dual-system method considering the property of registration. Prior to our work,
the work of solving the key-escrow issue was presented by Okamoto and Takashima[PKC’13] while their work
considered the weak adversary in the random oracle model.
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1 Introduction

Attribute-Based Signature. Attribute-based signature (ABS) [MPR08,OT11] provides the fine-grained control to
authentication privileges while guaranteeing anonymous authentication of message, which extends the traditional
digital signature [DH76]. In ABS for predicate 𝑃 : 𝑋 ×𝑌 → {0, 1}, the signer employs signing key sk𝑦 , where 𝑦 ∈ 𝑌
is his/her attribute set, to sign message under policy 𝑥 ∈ 𝑋 only when 𝑃(𝑥, 𝑦) = 1. Anyone can verify the signature
by using solely public parameters. The basic security condition of ABS is unforgeability, i.e., an adversary holding
a signing key with 𝑃(𝑥, 𝑦) = 0 cannot generate a valid signature; furthermore, this should be ensured when the
adversary has more than one key.

Decentralized Attribute-Based Signature. To circumvent the key escrow problem in ABS [SAH16a,DOT19a,DDM23],
Okamoto and Takashima introduced the notion of decentralized ABS [OT13] which means that different authori-
ties with attributes can join the system instead of having only one central authority. However, decentralized ABS
just solves the problem that attributes from the single part, but the keys come from different central authorities,
and if a sufficient number of authorities are compromised or corrupted, then the scheme will no longer ensure
unforgeability.



This Work. Recently, the notion of registration-based encryption (RBE) [GHMR18] and registered attribute-based
encryption (registered ABE) [HLWW23,ZZGQ23,FFM+23] has been studied, which allows users in the system to
generate their own public/secret keys and then register their public keys together with the key curator. The key
curator keeps nothing about secrets in contrast to the conventional attribute authority. However, the feasibility of
this strategy in ABS is still unknown and a natural question that arises is

Can we construct a registered attribute-based signature scheme that even supports monotone span program?

More details, in the registered attribute-based signature (registered ABS) scheme, each user can generate his/her
own key pair (pk, sk) locally and register (pk, 𝑦) for some 𝑦 ∈ 𝑌 into the system. Registration is performed by the
key curator in a public and deterministic manner, and will generate a master public keympk for anyone who wants
to verify the signature as a traditional ABS. Besides, during the registration phase, each user can obtain his/her own
helper key hk from the curator, which can be used to generate signature for policy 𝑥 ∈ 𝑋 with sk when 𝑃(𝑥, 𝑦) = 1.
Finally, as the number of user in the system increases, the curator may trigger an update to all users’ helper keys.

1.1 Results

In this work, we have addressed the above question. We propose the first generic registered attribute-based sig-
nature via predicate encoding [Wee14,CGW15]. Our scheme relies on the well-known 𝑘-Lin assumption for 𝑘 ≥ 1
over the prime-order bilinear group in the standard model. Our contribution is as follows.

– This paper introduces the first definition of registered ABS, formalizing the fact that any user can generate
their own public/secret key pair and register it with the system. Furthermore, we formalize a security notion
of registered ABS, i.e., the signature is unforgeable against the adversary with corrupted user information.

– This paper proposes the first generic approach for registered ABS supporting various classes of predicate over
the prime-order group under the standard model, while the previous scheme of decentralized ABS [OT13]
relies on the random oracle model.

– This paper gives the first concrete registered ABS scheme for the expressive predicate arithmetic branching
program(ABP). It is fully secure under the 𝑘-Lin assumption in the standard model.

We present a concrete comparison in Table 1. Although this table only involves [OT11,OT13], we note that other ABS
constructions [AHY15,SAH16b,DOT19b] published recently share similar properties and all of them suffer from key
escrow issue.

Reference Key-escrow Standard Assumption

ABS [OT11] ✗ ✓ DLIN

Decentralized ABS [OT13] † ✗ DLIN

Ours ✓ ✓ 𝑘-Lin

Table 1. Comparison among prior works. Here, the column “Standard" denotes the standard model. “†” means that decentral-
ized ABS is unable to completely eliminate key escrow issue since it still needs nontransparent authorities to store secret values.
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1.2 Related Work

Since Maji et al. [MPR08] put forward the notion of ABS, there exists two research lines on ABS: The first line is to
enhance the expression ability of ABS schemes. Herranz et al. [HLLR12] proposed an ABS scheme with constant-
size signatures supporting threshold predicate. Okamoto et al. [OT11] proposed a fully secure ABS scheme for
non-monotone span program in the standard model. Attrapadung et al. [AHY15] designed an ABS scheme with
constant-size signatures that supports non-monotone span programs. Furthermore, Sakai et al. [SAH16b] built an
ABS scheme supporting circuits via Groth-Sahai proofs over bilinear groups. Datta et al. [DOT19b] designed a fully
secure ABS for ABP with unbounded multi-use of attributes. In these works, a central authority must be set to
store master secret key. To tackle the key escrow problem, another line is to build decentralized ABS. Okamoto et
al. [OT11] proposed the first decentralized multi-authority ABS scheme for non-monotone span programs while
it is only provably secure under the random model. Our registered ABS can seen as an independent work of the
second line.

Organization. We provide the technique overview in section 2. We give the definition of (slotted) registered ABS
in section 3. The details of our slotted registered ABS are presented in section 4. Besides, a generic approach based
on slotted registered ABS is presented in section 5. Finally, we derive a concrete slotted registered ABS scheme
supporting expressive ABP in section 6.

2 Technique Overview

In this work, we construct a registered attribute-based signature (registered ABS) via predicate encoding [Wee14,CGW15],
and the scheme is based on well-known 𝑘-Lin assumption in the standard model. The design core of registered ABS
is similar to [HLWW23,ZZGQ23], we start from slotted registered ABS and then convert it to full-fledged registered
ABS. Before going into the technical descriptions of the designing of primitives in registered setting, we first provide
an overview of the notion of registered ABS.

2.1 Registered Attribute-Based Signature

Definition. We introduce the definition of registered ABS in the simplest setting, which is inspired by the idea
of [HLWW23,ZZGQ23]. A registered ABS scheme for predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} consists of the following six
algorithms (Setup,Gen, Reg, Upd, Sig, Ver):

– Setup provides a common reference string crs for each user to register;
– Gen allows each user to generate their own public/secret key pair (pk, sk);
– Reg is a transparent and deterministic algorithm, which checks the validity of the registered user, and register

user’s pk and attribute 𝑦 ∈ 𝑌 into the master public key mpk; Upd returns helper key hk for the registered
user;

– Sigwith hk and user’s secret key sk returns a signature on (𝑥,m)when 𝑃(𝑥, 𝑦) = 1, where 𝑥 ∈ 𝑋 is the signature
policy; Ver can check the validity of signature with just mpk.

Properties. Assuming 𝐿 ∈ N denotes the user number in registered ABS system, it has some essential efficiency
requirements: the size of crs to be poly(𝜆, 𝐿)where 𝜆 is the security parameter of the system, and the size ofmpk, hk
to be poly(𝜆, 𝑃, log 𝐿) where 𝑃 is the size of predicate.

Furthermore, the security of registered ABS means unforgeability compared with the IND-security of registered
ABE. It ensures that no one is able to forge a signature passing the verification without the knowledge of the sign
secret key. Similar to registered ABE, the security model needs to consider both honest and corrupted users.
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Generic Approach. We state that the “power-of-two” approach in [HLWW23] can be improved to derive a generic
approach to obtaining registered ABS. The approach needs a new primitive, namely slotted registered attribute-
based signature (slotted registered ABS), as the underlying block. Slotted registered ABS has the similar syntax as
registered ABS except that it does not consider the update of public parameters.

Based on the “power-of-two” approach, we replace encryption and decryption algorithms with (Sig, Ver), so
it is necessary to demonstrate the reduction from the unforgeability of registered ABS to the unforgeability of
underlying slotted registered ABS. The proof relies on the fact that the signature and verification text in registered
ABS consist of multiple copies of underlying slotted registered ABS. More details are available in section 5. Next,
we will construct a slotted registered ABS based the techniques of predicate encoding.

2.2 Slotted Registered ABS

Firstly, let us define some notations, which will be used. Our slotted registered ABS relies on an asymmetric bilin-
ear group (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒) of prime-order 𝑝 with pairing 𝑒 : G1 × G2 → G𝑇 . For 𝑠 ∈ {1, 2, 𝑇 } and 𝑎 ∈ Z𝑝, we
define [𝑎]𝑠 = 𝑔𝑎

𝑠 as the implicit representation of 𝑎 in G𝑠. Then, we give preliminary which is an important part of
our slotted registered ABS.

Preliminary. For a predicate 𝑃 : 𝑋 × 𝑌 → {0, 1}, define a (𝑛, 𝑛𝑐, 𝑛𝑘)-predicate encoding: For all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ,
one can efficiently and deterministically find C𝑥 ∈ Z𝑛×𝑛𝑐𝑝 , K𝑦 ∈ Z𝑛×𝑛𝑘𝑝 , a𝑦 ∈ Z1×𝑛𝑘𝑝 and d𝑥, 𝑦 ∈ Z𝑛𝑐+𝑛𝑘𝑝 that forms

M𝑥, 𝑦 =

(
a𝑦 0𝑛𝑐
K𝑦 C𝑥

)
such that

– when 𝑃(𝑥, 𝑦) = 1, we have M𝑥, 𝑦d⊤𝑥, 𝑦 = (1, 0, . . . , 0)⊤;
– when 𝑃(𝑥, 𝑦) = 0, we have {𝑥, 𝑦, 𝛼, (𝛼∥w)M𝑥, 𝑦} ≈𝑠 {𝑥, 𝑦, 𝛼, (0∥w)M𝑥, 𝑦} where w← Z𝑛𝑝.

Initial Idea. Our initial idea is to apply Naor’s paradigm [BF01,BLS01], which has successfully transform some
encryption schemes into signature’s version [OT11,OT13,CLL+14], on existing slotted registered ABE. For such pur-
pose, we choose Zhu et al.’s slotted registered ABE [ZZGQ23] as our start point, because their construction is based
on predicate encoding supporting a large number of expressive predicates, even including arithmetic branching
programs (ABP).

Start From Slotted Registered ABE. In slotted registered ABE, after initializing the common reference string
crs, all users can generate their own key pairs (pk𝑖 , sk𝑖)𝑖∈[𝐿] and submit respective pk𝑖 to the aggregator who sub-
sequently outputs mpk and hk𝑖 for user/slot 𝑖. The ciphertext ct𝑥 is an encryption on (𝑥,m) and can be decrypted
correctly with (sk𝑖 , hk𝑖) if and only if 𝑃(𝑥, 𝑦𝑖) = 1. We recap Zhu et al.’s slotted registered ABE construction based
on predicate encoding as follows:

crs : [𝛼]𝑇 , {[𝑣 𝑗 ,w 𝑗]1} 𝑗∈[𝐿] , {[𝑟𝑖 , 𝑟𝑖𝑣 𝑗 , 𝑟𝑖w 𝑗 , 𝑟𝑖𝑣𝑖 + 𝛼]2}𝑖≠ 𝑗

pk𝑖 : [𝑢𝑖]1, {[𝑢𝑖𝑟 𝑗]2} 𝑗≠𝑖
sk𝑖 : 𝑢𝑖

mpk : [∑ 𝑗 ((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ),
∑

𝑗 w 𝑗]1, [𝛼]𝑇
hk𝑖 : [𝑟𝑖 , 𝑟𝑖𝑣𝑖 + 𝛼, 𝑟𝑖

∑
𝑗≠𝑖 ((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖

∑
𝑗≠𝑖 w 𝑗]2

ct𝑥 : [𝑠, 𝑠
∑

𝑗 ((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠
∑

𝑗 w 𝑗C𝑥]1, [𝑠𝛼]𝑇 ·m

(1)

where for all 𝑗 ∈ [𝐿], 𝑦 𝑗 is the attribute embedded in slot 𝑗; 𝛼, 𝑣 𝑗 , 𝑟 𝑗 , 𝑢 𝑗 ← Z𝑝 and w 𝑗 ∈ Z𝑛𝑝; 𝑠 ← Z𝑝 is the random-
ness in ct𝑥 . As for decryption, it firstly computes the pairing result between hk𝑖 and ct𝑥 to cancel cross items from
other slots 𝑗 ∈ [𝐿] \ {𝑖}, then proceed the decryption of predicate encoding on slot 𝑖. If 𝑃(𝑥, 𝑦𝑖) = 1, just use sk𝑖 = 𝑢𝑖
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to recover [𝛼𝑠]𝑇 and thus obtain the message m.

First Try. Now, we make an attempt to transform the slotted registered ABE in (1) into a slotted registered ABS.
Our strategy is to treat (hk𝑖 , sk𝑖) as the sign secret key of user 𝑖, and ct𝑥 as the verification text 𝜈, respectively. Here,
sk𝑖 should be privacy, while hk𝑖 is publicly computed with crs and (pk 𝑗) 𝑗∈[𝐿]\{𝑖} . A signature 𝜎𝑖,𝑥,m is derived from
(sk𝑖 , hk𝑖). Then it uses (mpk, 𝑥,m) to generate a verification text 𝜈𝑖∗ ,𝑥∗ ,m∗ to verify the validity of 𝜎𝑖,𝑥,m. Intuitively,
we have

𝜎𝑖,𝑥,m : [𝑟𝑖 , 𝑢𝑖𝑟𝑖 + 𝑟𝑖𝑣𝑖 + 𝛼, 𝑟𝑖
∑︁
𝑗≠𝑖

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑︁
𝑗≠𝑖

w 𝑗 C𝑥 ]2

𝜈𝑖∗ ,𝑥∗ ,m∗ : [𝑠, 𝑠
∑︁
𝑗

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠
∑︁
𝑗

w 𝑗C𝑥∗ ]1, [𝑠𝛼]𝑇 ·m∗

where crs,mpk, pk𝑖 , sk𝑖 and hk𝑖 are identical to the equality (1). Observe that the verification process is identical to
the decryption process in (1) except that it can directly recover m without 𝑢𝑖 , then checkout if m = m∗.

Actually, the above scheme is insecure, since the information of 𝑢𝑖 is leaked from 𝜎𝑖,𝑥,m. Note that any signature
could be forged readily if sk𝑖 = 𝑢𝑖 is leaked. Besides, 𝜎𝑖,𝑥,m does not involve m and the generation is completely
deterministic.

Second Try. Inspired by the “re-randomization" technique of [OT11], we state that 𝜎𝑖,𝑥,m actually plays a role as a
special decryption key. Concretely, it should remain the decryption ability of (sk𝑖 , hk𝑖), but still preserve the privacy
of sk𝑖 to avoid the forgery. However, such technique cannot be trivially applied to our scheme, since our secret key
is the secret value chosen by user, rather than the well-constructed secret key generated by authority. Therefore,
the problem is how to generate desired signature and ensure security proof in our slotted registered ABS.

Our technique path is as follows: Firstly, to protect the confidentiality of 𝑢𝑖 , we generate extra entropy by ap-
pending a new equality into the signature, which ensures adversary cannot obtain secret information from honest
users. Secondly, the privacy of predicate encoding can ensure that adversary cannot obtain secret information from
corrupted users. Finally, we use (sk𝑖 , hk𝑖) to delegate a new signature 𝜎𝑖,𝑥,m as follows:

pk𝑖 : [𝑢𝑖 , 𝑐𝑖 , 𝑑𝑖 ]1, {[𝑢𝑖𝑟 𝑗]2} 𝑗≠𝑖 ;

sk𝑖 : 𝑢𝑖 , 𝑐𝑖 , 𝑑𝑖

𝜎𝑖,𝑥,m : [ 𝑡 , 𝑟𝑖 , 𝑡(𝑐𝑖 +𝑚 · 𝑑𝑖) + 𝑢𝑖𝑟𝑖 + 𝑟𝑖𝑣𝑖 + 𝛼]2,

[𝑟𝑖
∑︁
𝑗≠𝑖

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑︁
𝑗≠𝑖

w 𝑗C𝑥]2

𝜈𝑖∗ ,𝑥∗ ,m∗ : [𝑠, 𝑠(𝑐𝑖∗ +𝑚∗ · 𝑑𝑖∗ ) , 𝑠
∑︁
𝑗

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠
∑︁
𝑗

w 𝑗C𝑥∗ ]1, [𝑠𝛼]𝑇

Here, we define a collusion-resistant hash function H : {0, 1}∗ → Z𝑝, 𝑚 ← H(𝑖, 𝑥,m) and 𝑚∗ ← H(𝑖∗, 𝑥∗,m∗),
where 𝑖 is more like a pseudo-identity. 𝑡 is the randomness newly sampled in each signature. Observe that 𝑢𝑖 has
been totally hidden in the signature as long as 𝑚 ≠ 𝑚∗ (in the similar sense of [CLL+14]). Thus, we can ensure
that the adversary has no ability to forge a valid signature unless slot 𝑖 is corrupted. Lastly, this construction is
still unreasonable since the generation of 𝜈𝑖∗ ,𝑥∗ ,m∗ needs both mpk and pk𝑖∗ , which contradicts the definition of
verification algorithm, but we can fix it by aggregating pk𝑖 from all users.

Our Slotted Registered ABS. Finally, putting the above together, we obtain a new slotted registered ABS as follows:
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crs : [𝛼]𝑇 , {[𝑣 𝑗 ,w 𝑗]1} 𝑗∈[𝐿] , {[𝑟𝑖 , 𝑟𝑖𝑣 𝑗 , 𝑟𝑖w 𝑗 , 𝑟𝑖𝑣𝑖 + 𝛼]2}𝑖≠ 𝑗 ,H

pk𝑖 : [𝑢𝑖 , 𝑐𝑖 , 𝑑𝑖]1, [𝑐𝑖 , 𝑑𝑖]2, {[𝑢𝑖𝑟 𝑗]2} 𝑗≠𝑖
sk𝑖 : 𝑢𝑖 , 𝑐𝑖 , 𝑑𝑖

mpk : [
∑︁
𝑗

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ),
∑︁
𝑗

w 𝑗 ,
∑︁
𝑗

𝑐 𝑗 ,
∑︁
𝑗

𝑑 𝑗]1, [𝛼]𝑇 ,H

hk𝑖 : [𝑟𝑖 , 𝑟𝑖𝑣𝑖 + 𝛼, 𝑟𝑖
∑︁
𝑗≠𝑖

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑︁
𝑗≠𝑖

w 𝑗 ,
∑︁
𝑗≠𝑖

𝑐 𝑗 ,
∑︁
𝑗≠𝑖

𝑑 𝑗]2,H

𝜎𝑖,𝑥,m : [𝑡, 𝑟𝑖 , 𝑡(𝑐𝑖 +𝑚 · 𝑑𝑖) + 𝑢𝑖𝑟𝑖 + 𝑟𝑖𝑣𝑖 + 𝛼, 𝑡
∑︁
𝑗≠𝑖

(𝑐 𝑗 +𝑚 · 𝑑 𝑗), 𝑟𝑖
∑︁
𝑗≠𝑖

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑︁
𝑗≠𝑖

w 𝑗C𝑥]2

𝜈𝑖∗ ,𝑥∗ ,m∗ : [𝑠, 𝑠
∑︁
𝑗

(𝑐 𝑗 +𝑚∗ · 𝑑 𝑗), 𝑠
∑︁
𝑗

((𝑣 𝑗 + 𝑢 𝑗)𝑎𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠
∑︁
𝑗

w 𝑗C𝑥∗ ]1, [𝑠𝛼]𝑇 .

Then we apply the generic approach [CGW15] from composite-order group to prime-order group to above
construction, and obtain a secure slotted registered ABS based on 𝑘-Lin assumption under the standard model.
We still adopt the dual system encryption as proof strategy, while the proof detail is quite distinct from previous
works [OT11,OT13] since there is no longer authority holding secret keys in the system.

2.3 Discussion and Open Problem

Here, we discuss the future work about registered ABS.

– Our registered ABS achieves various classes of predicate even including span programs, but the concrete
scheme for more expressive predicate (e.g., finite state automata and circuits) is still unknown.

– The signer anonymity of ABS says that the generated signature reveals no information on the signer’s attribute
other than the fact that the signature is valid. However, just as mentioned in [SKAH18], ABS schemes derived
from ABE generally do not provide anonymity property. This argument also works in our registered ABS.
Intuitively, the public and deterministic registration of user attribute in registered ABS also hinders signer
anonymity to a large extent. Thus, we list the realization of signer anonymity in the standard model as one of
future works.

– Our work opens a new and promising path for pairing-based research on registered ABS. An open question,
however, is whether we can propose registered ABS under the LWE assumption. Furthermore, the size of crs
is poly(𝜆, 𝐿) where 𝜆 is the security parameter of the system and 𝐿 is the number of users, it is still an open
problem to reduce the size of crs to poly(𝜆) under standard assumption.

3 Preliminaries

For a finite set 𝑆, we write 𝑠← 𝑆 to denote that 𝑠 is picked uniformly from finite set 𝑆. Then, we use |𝑆 | to denote the
size of 𝑆. Let ≈𝑠 stand for two distributions being statistically indistinguishable, and ≈𝑐 denote two distributions
being computationally indistinguishable. We use lower-case boldface to denote vectors (e.g., a) and upper-case
boldface to denote matrices (e.g. M), and use “∥” to denote vector/matrix concatenation (e.g. A∥B).

3.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter 1𝜆 and outputs a descriptionG := (𝑝,G1,G2,G𝑇 , 𝑒), where 𝑝 is a
prime, G1, G2 and G𝑇 are cyclic groups of order 𝑝, and 𝑒 : G1 ×G2 → G𝑇 is a non-degenerate bilinear map. Group
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operations in G1, G2, G𝑇 and bilinear map 𝑒 are computable in deterministic polynomial time in 𝜆. Let 𝑔1 ∈ G1,
𝑔2 ∈ G2 and 𝑔𝑇 = 𝑒(𝑔1, 𝑔2) ∈ G𝑇 be the respective generators, we employ implicit representation of group elements:
for a matrix M over Z𝑝, we define [M]𝑠 = 𝑔M𝑠 ,∀𝑠 ∈ {1, 2, 𝑇 }, where exponentiation is carried out component-wise.
Given [A]1, [B]2 where A and B have proper sizes, we let 𝑒( [A]1, [B]2) = [AB]𝑇 . We review matrix Diffie-Hellman
(MDDH) assumption, which is implied by 𝑘-Lin [EHK+13].

Assumption 1 ((𝑘, ℓ, 𝑑)-MDDH over G𝑠, 𝑠 ∈ {1, 2}) Let 𝑘, ℓ, 𝑑 ∈ N with 𝑘 < ℓ. We say that the (𝑘, ℓ, 𝑑)-MDDH as-
sumption holds in G𝑠 if for all PPT adversariesA, the following advantage function is negligible in 𝜆.

AdvMDDH
A,𝑠,𝑘,ℓ,𝑑 (𝜆) =

�� Pr[A(G, [M]𝑠, [SM]𝑠) = 1] − Pr[A(G, [M]𝑠, [U]𝑠) = 1]
��

where G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆), M← Z𝑘×ℓ𝑝 , S← Z𝑑×𝑘𝑝 and U← Z𝑑×ℓ𝑝 .

3.2 Slotted Registered Attribute-Based Signature

Algorithm. A slotted registered attribute-based signature (slotted registered ABS) for predicate 𝑃 : 𝑋 ×𝑌 → {0, 1}
consists of the following six efficient algorithms:

– Setup(1𝜆 , 𝑃, 1𝐿) → crs : It takes as input the security parameter 1𝜆 , description of predicate 𝑃 and the upper
bound 1𝐿 of the number of slots, outputs a common reference string crs.

– Gen(crs, 𝑖) → (pk𝑖 , sk𝑖) : It takes as input crs and slot number 𝑖 ∈ [𝐿], outputs key pair (pk𝑖 , sk𝑖).
– IsValid(crs, 𝑖, pk𝑖) → 0/1 : It takes as input crs, 𝑖, pk𝑖 and outputs a bit indicating whether pk𝑖 is valid.
– Agg(crs, {pk𝑖 , 𝑦𝑖}𝑖∈𝐿) → (mpk, (hk 𝑗) 𝑗∈[𝐿]) : It takes as input crs and a series of pk𝑖 with 𝑦𝑖 ∈ 𝑌 for all 𝑖 ∈ [𝐿],

outputs master public key mpk and a series of helper keys hk 𝑗 for all 𝑗 ∈ [𝐿]. This algorithm is deterministic.
– Sig(hk, sk, 𝑥,m) → 𝜎 : It takes as input hk, sk, 𝑥 ∈ 𝑋 and message m, outputs a signature 𝜎.
– Ver(mpk, 𝜎, 𝑥,m) → 0/1 : It takes as input hk, 𝜎, 𝑥 ∈ 𝑋,m and outputs a bit indicating whether 𝜎 is valid.

Completeness. For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], we have

Pr[IsValid(crs, 𝑖, pk𝑖) = 1|crs← Setup(1𝜆 , 𝑃, 1𝐿); (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖)] = 1.

Correctness.For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], all crs ← Setup(1𝜆 , 𝑃, 1𝐿), all (pk𝑖∗ , sk𝑖∗ ) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that IsValid(crs, 𝑖, pk𝑖) = 1, all 𝑥 ∈ 𝑋 and 𝑦1, . . . , 𝑦𝐿 ∈ 𝑌 such that 𝑃(𝑥, 𝑦𝑖∗ ) = 1, and all m, we
have

Pr

[
Ver(mpk, 𝜎, 𝑥,m) = 1

�����(mpk, (hk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk𝑖 , 𝑦𝑖)𝑖∈[𝐿]);

𝜎 ← Sig(hk𝑖∗ , sk𝑖∗ , 𝑥,m)

]
= 1.

Compactness. For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], it holds that |mpk| = poly(𝜆, 𝑃, log 𝐿) and |hk𝑖 | = poly(𝜆, 𝑃, log 𝐿).
Unforgeability. For any group of colluding signers, it is impossible to generate a valid signature on any message
under any signing policy. Concretely, for all 𝜆 ∈ N and all efficient adversariesA, the advantage�����������

Pr


Ver(mpk, 𝜎∗, 𝑥∗,m∗) = 1

�����������
𝐿← A(1𝜆); crs← Setup(1𝜆 , 𝑃, 1𝐿)
{pk∗𝑖 , 𝑦∗𝑖 }𝑖∈[𝐿] ← A

OGen( ·) ,OCor( ·) (crs)
(mpk, {hk 𝑗} 𝑗∈[𝐿]) ← Agg(crs, {pk∗𝑖 , 𝑦∗𝑖 }𝑖∈𝐿)
(𝑖∗, 𝑥∗,m∗, 𝜎∗) ← AOSig( ·) (mpk, {hk 𝑗} 𝑗∈[𝐿])


− 1
2

�����������
is negligible in 𝜆, where oracles OGen,OCor and OSig work with initial setting {D𝑖 = ∅}𝑖∈[𝐿] , C = ∅ and S = ∅ as
follows:

– OGen(𝑖): run (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖), setD𝑖 [pk𝑖] = sk𝑖 and return pk𝑖 .
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– OCor(𝑖, pk): returnD𝑖 [pk] and update C = C ∪ {(𝑖, pk)}.
– OSig(𝑖, 𝑥,m): Return Sig(hk𝑖 ,D𝑖 [pk∗𝑖 ], 𝑥,m) and update S = S ∪ {(𝑖, 𝑥,m)}.

and for all 𝑖 ∈ [𝐿], we require thatD𝑖 [pk∗𝑖 ] ≠⊥. For each query (𝑖, 𝑥,m) to OSig, we have 𝑃(𝑥, 𝑦∗
𝑖
) = 1. Besides, For

the challenge (𝑖∗, 𝑥∗,m∗, 𝜎∗),

– it holds that (𝑖∗, 𝑥∗,m∗) ∉ S;
– if (𝑖∗, pk∗𝑖∗ ) ∈ C, it holds that 𝑃(𝑥∗, 𝑦∗

𝑖
) = 0 for all (𝑖, pk∗𝑖 ) ∈ C.

Notice that, in the unforgeability model of slotted registered ABS, we consider both honest and corrupt case.
On the other hand, the notion of our unforgeability is somewhat different from that in classical ABS, since the
adversary is allowed to query signature for (𝑥∗,m∗) on all slots except for challenge slot 𝑖∗ in honest case. Also,
if we consider the anonymity of registered ABS, 𝑖∗ should be removed and then our unforgeability model would
follow the unforgeability of classical ABS in similar sense.

3.3 Registered Attribute-Based Signature

Algorithms. A registered attribute-based signature for predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} consists of six algorithms:

– Setup(1𝜆 , 𝑃) → crs: It takes as input the security parameter 1𝜆 , description of predicate 𝑃, outputs a common
reference string crs.

– Gen(crs, aux) → (pk, sk): It takes as input crs and the public state aux, outputs key pair (pk, sk).
– Reg(crs, aux, pk, 𝑦) → (mpk, aux′): It takes as input crs, aux, and pk along with 𝑦 ∈ 𝑌 , outputs master public

key mpk and updated state aux′.
– Upd(crs, aux, pk) → hk: It takes as input crs, aux, pk, outputs a helper key hk.
– Sig(mpk, hk, sk, 𝑥,m) → 𝜎/getupd: It takes as input mpk, hk, sk, 𝑥 ∈ 𝑋 and message m, outputs a signature 𝜎

or a special symbol getupd to indicate that an updated helper key is need to generate the signature.
– Ver(mpk, 𝜎, 𝑥,m) → 0/1: It takes as input mpk, 𝜎, 𝑥,m and outputs 1 if 𝜎 is valid; otherwise, output 0.

Correctness. For all stateful adversaryA, the following advantage function is negligible in 𝜆:

Pr[𝑏 = 1|crs← Setup(1𝜆 , 𝑃); 𝑏 = 0;AORegNT( ·,· ) ,ORegT( ·) ,OSig( ·,· ) ,OVer( ·,· ) (crs)]

where the oracles work as follows with initial setting aux = ⊥, S = ∅, R = ∅ and 𝑡 = ⊥:

– ORegNT(pk, 𝑦): run (mpk, aux′) ← Reg(crs, aux, pk, 𝑦), update aux = aux′, append (mpk, aux) to R and return
( |R|,mpk, aux);

– ORegT( 𝑦∗): run (pk∗, sk∗) ← Gen(crs, aux) , (mpk, aux′) ← Reg(crs, aux, pk∗, 𝑦∗), update aux = aux′, compute
hk∗ ← Upd(crs, aux, pk∗), append (mpk, aux) to R, return (𝑡 = |R |,mpk, aux, pk∗, sk∗, hk∗);

– OSig(𝑖, 𝑥,m): letR[𝑖] = (mpk𝑖 , ·) and run𝜎 ← Sig(mpk𝑖 , hk
∗,sk∗, 𝑥,m); If𝜎 = getupd, runhk∗ ← Upd(crs, aux, pk∗)

and recompute 𝜎 ← Sig(mpk𝑖 , hk
∗, sk∗, 𝑥, m). Then append (𝑥,m, 𝜎) to S and return ( |S|, 𝜎);

– OVer(𝑖, 𝑗): let R[𝑖] = (mpk𝑖 , ·) and S[ 𝑗] = (𝑥 𝑗 ,m 𝑗 , 𝜎 𝑗), compute 𝑏 𝑗 ← Ver(mpk𝑖 , 𝜎 𝑗 , 𝑥 𝑗 ,m 𝑗). If 𝑏 𝑗 = 0, set 𝑏 = 0.

with the following restrictions:

– there exists one query to ORegT;
– for query (𝑖, 𝑥, ·) to OSig, it holds that R[𝑖] ≠ ⊥ and 𝑃(𝑥, 𝑦∗) = 1;
– for query (𝑖, 𝑗) to OVer, it holds that 𝑡 ≤ 𝑖,R[𝑖] ≠ ⊥ and S[ 𝑗] ≠ ⊥.
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Compactness. Let R be defined as before. Compactness means that

|mpk𝑖 | = poly(𝜆, 𝑃, log 𝑖), |hk∗ | = poly(𝜆, 𝑃, log |R |);

where we let R[𝑖] = (mpk𝑖 , ·) for all 𝑖 ∈ [|R|].
Update Efficiency. It means that the number of invocations ofUpd inOSig is at most𝑂(log |R |) and each invocation
runs in poly(log |R |) time (in RAM model).
Unforgeability. For all stateful adversaryA, the advantage�����Pr

[
Ver(mpk, 𝜎∗, 𝑥∗,m∗) = 1

����� crs← Setup(1𝜆 , 𝑃);
(𝑖∗, 𝑥∗,m∗, 𝜎∗) ← A(crs);

]
− 1
2

�����
is negligible in 𝜆, where A has access to oracles ORegHK(·),OCorHK(·) and OSig(·, ·, ·). These oracles work with
initially setting aux,mpk = ⊥, R = ∅, C = ∅, S = ∅ and a dictionaryK withK[pk] = for all possible pk:

– ORegHK( 𝑦): run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk, 𝑦), update mpk = mpk′, aux =

aux′,K[pk] = K[pk] ∪ { 𝑦}, append (pk, sk) to R and return ( |R|,mpk, aux, pk);
– OCor(𝑖): let R[𝑖] = (pk, sk), append pk to C and return sk;
– OSig(𝑖, 𝑥,m): let R[𝑖] = (pk, sk), compute hk ← Upd(crs, aux, pk) and run 𝜎 ← Sig(mpk, hk, sk, 𝑥,m). Append
(𝑖, 𝑥, 𝑚) to S and return 𝜎.

with the following restrictions:

– for query (𝑖) to OCor or (𝑖, 𝑥,m) to OSig, it holds that R[𝑖] ≠ ⊥. Besides, R[𝑖∗] ≠ ⊥;
– Let R[𝑖] = (pk, sk) andK[pk] = 𝑦, then it holds that 𝑃( 𝑦, 𝑥) = 1;
– Let R[𝑖∗] = (pk∗, sk∗),
• it holds that (𝑖∗, 𝑥∗,m∗) ∉ S;
• if pk∗ ∈ C, it holds that 𝑃(𝑥∗,K[pk𝑖]) = 0 for all (pk𝑖 , sk𝑖) ∈ R such that pk𝑖 ∈ C;

3.4 Predicate Encodings

We review the notion of predicate encoding [Wee14,CGW15,ZZGQ23]; for simplicity, we use the formulation in
[ABS17,ACGU20]. A predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} has a (𝑛, 𝑛𝑐, 𝑛𝑘)-predicate encoding if: For all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , there
exist C𝑥 ∈ Z𝑛×𝑛𝑐𝑝 , K𝑦 ∈ Z𝑛×𝑛𝑘𝑝 , a𝑦 ∈ Z1×𝑛𝑘𝑝 , d𝑥, 𝑦 ∈ Z1×(𝑛𝑘+𝑛𝑐 )𝑝 such that, letting

M𝑥, 𝑦 =

(
a𝑦 0𝑛𝑐
K𝑦 C𝑥

)
∈ Z(1+𝑛)×(𝑛𝑘+𝑛𝑐 )𝑝

we have

– correctness: for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑃(𝑥, 𝑦) = 1:

M𝑥, 𝑦d⊤𝑥, 𝑦 = e⊤1;

– security: for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑃(𝑥, 𝑦) = 0 and for all 𝛼 ∈ Z𝑝:

{𝑥, 𝑦, 𝛼, (𝛼∥w)M𝑥, 𝑦} ≈𝑠 {𝑥, 𝑦, 𝛼, (0∥w)M𝑥, 𝑦}, w← Z𝑛𝑝.

Also, we require that (1) given 𝑃, one can efficiently determine 𝑛, 𝑛𝑐, 𝑛𝑘 ; (2) given 𝑥, one can efficiently compute
C𝑥 ; (3) given 𝑦, one can efficiently compute K𝑦 and a𝑦; (4) given both 𝑥 and 𝑦, one can efficiently compute d𝑥, 𝑦 .
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4 Slotted Registered ABS

In this section, we will propose a slotted registered ABS via predicate encoding under the matrix decisional Diffie-
Hellman (MDDH) assumption.

4.1 Scheme

Our slotted registered ABS scheme from predicate encoding over prime-order bilinear group works as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆) and select a collusion-resistant hash function H :
{0, 1}∗ → Z𝑝. Sample

A← Z𝑘×(𝑘+1)𝑝 ,B← Z(𝑘+1)×𝑘𝑝 , k← Z1×(𝑘+1)𝑝

and compute parameter (𝑛, 𝑛𝑐, 𝑛𝑘) from 𝑃. For all 𝑖 ∈ [𝐿], sample

D𝑖 ← Z𝑘×𝑘𝑝 ,V𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 ,W𝑖 ← Z(𝑘+1)×(𝑘+1)𝑛𝑝 , r𝑖 ← Z1×𝑘𝑝 .

Set B𝑖 = BD𝑖 for each 𝑖 ∈ [𝐿] and output

crs =

(
[A]1, {[AV𝑖 ,AW𝑖]1, [Br⊤𝑖 ,V𝑖Br⊤𝑖 + k

⊤,B𝑖]2}𝑖∈[𝐿] ,

{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [Ak
⊤]𝑇 ,H

)
.

– Gen(crs, 𝑖) : Sample U𝑖 ,Q𝑖 ,T𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 . Output

pk𝑖 = ( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖})

and sk𝑖 = (U𝑖 ,Q𝑖 ,T𝑖).
– IsValid(crs, 𝑖, pk𝑖) : Parse the public key pk𝑖 as follows ( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖}). For

each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [A]1, [U𝑖Br⊤𝑗]2)

?
= 𝑒( [AU𝑖]1, [Br⊤𝑗]2),

𝑒( [A]1, [Q𝑖B 𝑗]2)
?
= 𝑒( [AQ𝑖]1, [B 𝑗]2),

𝑒( [A]1, [T𝑖B 𝑗]2)
?
= 𝑒( [AT𝑖]1, [B 𝑗]2).

If the above checks pass, output 1; otherwise, output 0.
– Agg(crs, {pk𝑖 , 𝑦𝑖}𝑖∈𝐿) : For all 𝑖 ∈ [𝐿], parse pk𝑖 = ( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖}) and com-

pute K𝑦𝑖 from 𝑦𝑖 . Output

mpk =

©­­­­­­«
[A]1, [Ak⊤]𝑇 ,H,

[ ∑︁
𝑗∈[𝐿]

AQ 𝑗

]
1

,

[ ∑︁
𝑗∈[𝐿]

AT 𝑗

]
1

,

[ ∑︁
𝑗∈[𝐿]

AW 𝑗

]
1

,[ ∑︁
𝑗∈[𝐿]

(
(AV 𝑗 + AU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + AW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

) ]
1

ª®®®®®®¬
and for all 𝑖 ∈ [𝐿], the hk𝑖 is that

©­­­­­­«
H, [B𝑖]2, [Br⊤𝑖 ]2, [V𝑖Br⊤𝑖 + k

⊤]2,
[ ∑︁
𝑗∈[𝐿]\{𝑖}

Q 𝑗B𝑖

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

T 𝑗B𝑖

]
2

,[ ∑︁
𝑗∈[𝐿]\{𝑖}

W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )
]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

(V 𝑗Br⊤𝑖 + U 𝑗Br⊤𝑖 ) (I𝑘 ⊗ a𝑦 𝑗 ) +W 𝑗 (I𝑛 ⊗ Br⊤𝑖 ) (I𝑘 ⊗ K𝑦 𝑗 )
]
2

ª®®®®®®¬
.
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– Sig(hk𝑖 , sk𝑖 , 𝑥,m) : Sample t ← Z1×𝑘𝑝 , and compute C𝑥 . Compute [k⊤0]2 = [B𝑖t⊤]2, [k⊤1]2 = [Br⊤
𝑖
]2. Run 𝑚 ←

H(𝑖,m, 𝑥) and generate

©­­­­­­­­­­­­­­­­­­­«

[V𝑖Br⊤𝑖 + k
⊤ + U𝑖Br⊤𝑖 + (Q𝑖B𝑖t⊤ +𝑚 · T𝑖B𝑖t⊤)︸                                                  ︷︷                                                  ︸

k⊤2

]2,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

(V 𝑗Br⊤𝑖 + U 𝑗Br⊤𝑖 )a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )K𝑦 𝑗︸                                                          ︷︷                                                          ︸
K3

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )C𝑥︸                          ︷︷                          ︸
K4

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

(Q 𝑗B𝑖t⊤ +𝑚 · T 𝑗B𝑖t⊤)︸                                ︷︷                                ︸
k⊤5

]

ª®®®®®®®®®®®®®®®®®®®¬
Output signature 𝜎𝑖,𝑥,m = ( [k⊤0]2, [k⊤1]2, [k⊤2]2, [K3]2, [K4]2, [k⊤5]2).

– Ver(mpk, 𝜎𝑖∗ ,𝑥,m, 𝑥,m) : Parse mpk as

©­­­­­­«
[A]1, [Ak⊤]𝑇 ,H,

[ ∑︁
𝑗∈[𝐿]

AQ 𝑗

]
1

,

[ ∑︁
𝑗∈[𝐿]

AT 𝑗

]
1

,

[ ∑︁
𝑗∈[𝐿]

AW 𝑗

]
1

,[ ∑︁
𝑗∈[𝐿]
(AV 𝑗 + AU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + AW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

]
1

ª®®®®®®¬
and signature 𝜎𝑖∗ ,𝑥,m = ( [k⊤0]2, [k⊤1]2, [k⊤2]2, [K3]2, [K4]2, [k⊤5]2). Then compute C𝑥 and d𝑥, 𝑦𝑖∗ from 𝑥 and 𝑦𝑖∗ . Run
𝑚← H(𝑖∗,m, 𝑥) and compute

©­­­­­­­­­­­­«

[ sA︸︷︷︸
v0

]1,
[ ∑︁
𝑗∈[𝐿]
(sAQ 𝑗 +𝑚 · sAT 𝑗)︸                        ︷︷                        ︸

v1

]
1

,

[ ∑︁
𝑗∈[𝐿]

sAW 𝑗 (C𝑥 ⊗ I𝑘+1)︸                       ︷︷                       ︸
v2

]
1

[ ∑︁
𝑗∈[𝐿]
(sAV 𝑗 + sAU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + sAW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)︸                                                                 ︷︷                                                                 ︸

v3

]
1

, [ sAk⊤︸︷︷︸
𝑣4

]𝑇

ª®®®®®®®®®®®®¬
where s← Z1×𝑘𝑝 . Set the verification text 𝜈𝑖∗ ,𝑥,m = ( [v0]1, [v1]1, [v2]1, [v3]1, [𝑣4]𝑇 ). Recover

[z]𝑇 = 𝑒( [v3∥v2]1, [I𝑛𝑘+𝑛𝑐 ⊗ k⊤1]2), [z2]𝑇 = 𝑒( [v0]1, [K3∥K4]2)

[𝑧3]𝑇 = 𝑒( [v0]1, [k⊤2]2), [𝑧4]𝑇 = 𝑒( [v1]1, [k⊤0]2), [𝑧5]𝑇 = 𝑒( [v0]1, [k⊤5]2),

[𝑧6]𝑇 = [𝑧3 − 𝑧4 + 𝑧5]𝑇 , [z7]𝑇 = [(z1 − z2)d⊤𝑥, 𝑦𝑖∗ − 𝑧6]𝑇

and check [𝑧7]−1𝑇
?
= [𝑣4]𝑇 . If the above check passes, output 1; otherwise, output 0.

Correctness. For all 𝜆, 𝐿 ∈ N, all 𝑃, all 𝑖∗ ∈ [𝐿], all crs ← Setup(1𝜆 , 𝑃, 1𝐿), all (pk𝑖∗ , sk𝑖∗ ) ← Gen(crs, 𝑖∗), all
{pk𝑖}𝑖∈[𝐿]\{𝑖∗ } such that IsValid(crs, 𝑖, pk𝑖) = 1, for all 𝑦1, . . . , 𝑦𝐿 ∈ 𝑌 and 𝑥 ∈ 𝑋 with 𝑃(𝑥, 𝑦𝑖∗ ) = 1 and all m, we
have: 𝜎𝑖∗ ,𝑥,m = ( [k⊤0]2, [k⊤1]2, [k⊤2]2, [K3]2, [K4]2, [k⊤5]2) and 𝜈𝑖∗ ,𝑥,m = ( [v0]1, [v1]1, [v2]1, [v3]1, [𝑣4]1). We employ the
predicate encoding as defined in section 3.4, namely

M𝑥, 𝑦𝑖 =

(
a𝑦𝑖 0𝑛𝑐
K𝑦𝑖 C𝑥

)
, ∀𝑖 ∈ [𝐿] .
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We obtain
z1 =

∑︁
𝑖∈[𝐿]
(sAV𝑖 + sAU𝑖 ∥sAW𝑖) (M𝑥, 𝑦𝑖 ⊗ I𝑘+1) (I𝑛𝑘+𝑛𝑐 ⊗ Br⊤𝑖∗ )

=
∑︁
𝑖∈[𝐿]
(sAV𝑖 + sAU𝑖 ∥sAW𝑖) (I1+𝑛 ⊗ Br⊤𝑖∗ )M𝑥, 𝑦𝑖

=
∑︁
𝑖∈[𝐿]
(sAV𝑖Br⊤𝑖∗ + sAU𝑖Br⊤𝑖∗ ∥sAW𝑖 (I𝑛 ⊗ Br⊤𝑖∗ ))M𝑥, 𝑦𝑖

z2 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(sAV𝑖Br⊤𝑖∗ + sAU𝑖Br⊤𝑖∗ ∥sAW𝑖 (I𝑛 ⊗ Br⊤𝑖∗ ))M𝑥, 𝑦𝑖

𝑧3 = sAV𝑖∗Br⊤𝑖∗ + sAk
⊤ + sAU𝑖∗Br⊤𝑖∗ + (sAQ𝑖∗B𝑖∗t⊤ +𝑚 · sAT𝑖∗B𝑖∗t⊤)

𝑧4 =
∑︁
𝑗∈[𝐿]
(sAQ 𝑗B𝑖∗t⊤ +𝑚 · sAT 𝑗B𝑖∗t⊤)

𝑧5 =
∑︁

𝑗∈[𝐿]\{𝑖∗ }
(sAQ 𝑗B𝑖∗t⊤ +𝑚 · sAT 𝑗B𝑖∗t⊤)

(2)

and then

𝑧6 = 𝑧3 − (𝑧4 − 𝑧5) = sAV𝑖∗Br⊤𝑖∗ + sAk
⊤ + sAU𝑖∗Br⊤𝑖∗

𝑧7 = (z1 − z2)d⊤𝑥, 𝑦𝑖∗ − 𝑧6 = −sAk⊤

where
𝑧4 − 𝑧5 = sAQ𝑖∗B𝑖∗t⊤ +𝑚 · sAT𝑖∗B𝑖∗t⊤.

Finally, we have [𝑧7]−1𝑇 = [𝑣4]𝑇 . Notice that equality (2) follows from the property of tensor product: (M⊗ I) (I⊗
a⊤) = M⊗a⊤ = (I⊗a⊤)M for matrices of proper size; the computation of 𝑧7 follows from the correctness of predicate
encoding. This proves the correctness.

4.2 Security

Theorem 1. The proposed slotted registered ABS scheme is unforgeable under MDDH assumption and collision-
resistant hash functions.

Game Sequence. We prove Theorem 1 via the following game sequences. Let 𝐿 be the number of slots and 𝑖∗

be the challenge slot, (𝑥∗,m∗) be the challenge attribute and message pair; (pk∗𝑖 , 𝑦∗𝑖 )𝑖∈[𝐿] be the challenge public
keys and challenge “policy” to be registered. For all 𝑖 ∈ [𝐿], D𝑖 = {pk𝑖 : D𝑖 [pk𝑖] = sk𝑖 ≠⊥} stores the response to
OGen(𝑖); C𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C} stores the response toOCor(𝑖, ·). Define𝑄 =

∑
𝑖∈[𝐿] 𝑄𝑖 and 𝜎𝑖,𝜅 as the 𝜅-th(𝜅 ∈ [𝑄𝑖])

signature query’s result in slot 𝑖, where 𝑄𝑖 denotes the number of signature queries in slot 𝑖.

– G0 : Real Game. Recall that:
• the common reference string is that

crs =

(
[A]1, {[AV𝑖 ,AW𝑖]1, [Br⊤𝑖 ,V𝑖Br⊤𝑖 + k

⊤,B𝑖]2}𝑖∈[𝐿] ,

{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [Ak
⊤]𝑇 ,H

)
.

• For each 𝑖 ∈ [𝐿], each public key pk𝑖 ∈ D𝑖 is that

pk𝑖 = ( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖}).

where the corresponding secret key is that sk𝑖 = (U𝑖 ,Q𝑖 ,T𝑖).
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• For each 𝑖 ∈ [𝐿] and each 𝜅 ∈ [𝑄𝑖], the 𝜅-th query to OSig(𝑖, 𝑥,m) will output the result 𝜎𝑖,𝜅 as

©­­­­­­­­­­­­­­­­­­­«

[ B𝑖t⊤︸︷︷︸
k⊤0

]2, [ Br⊤𝑖︸︷︷︸
k⊤1

]2, [V𝑖Br⊤𝑖 + k
⊤ + U𝑖Br⊤𝑖 + (Q𝑖B𝑖t⊤ +𝑚 · T𝑖B𝑖t⊤)︸                                                  ︷︷                                                  ︸

k⊤2

]2

[ ∑︁
𝑗∈[𝐿]\{𝑖∗ }

(V 𝑗Br⊤𝑖 + U 𝑗Br⊤𝑖 )a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )K𝑦 𝑗︸                                                           ︷︷                                                           ︸
K3

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )C𝑥︸                          ︷︷                          ︸
K4

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

(Q 𝑗B𝑖t⊤ +𝑚 · T 𝑗B𝑖t⊤)︸                                ︷︷                                ︸
k⊤5

]
2

ª®®®®®®®®®®®®®®®®®®®¬
where t← Z1×𝑘𝑝 and 𝑚𝑖,𝜅 ← H(𝑖,m, 𝑥).
• The challenge verification text is 𝜈∗

𝑖∗ ,𝑥∗ ,m∗ = ( [v0]1, [v1]1, [v2]1, [v3]1, [𝑣4]𝑇 ) where

©­­­­­­­­­­­­«

[ sA︸︷︷︸
v0

]1,
[ ∑︁
𝑗∈[𝐿]
(sAQ 𝑗 +𝑚 · sAT 𝑗)︸                        ︷︷                        ︸

v1

]
1

,

[ ∑︁
𝑗∈[𝐿]

sAW 𝑗 (C𝑥 ⊗ I𝑘+1)︸                       ︷︷                       ︸
v2

]
1

[ ∑︁
𝑗∈[𝐿]
(sAV 𝑗 + sAU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + sAW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)︸                                                                 ︷︷                                                                 ︸

v3

]
1

, [ sAk⊤︸︷︷︸
𝑣4

]𝑇

ª®®®®®®®®®®®®¬
notice that s← Z1×𝑘𝑝 and 𝑚∗ ← H(𝑖∗,m∗, 𝑥∗).

– G1 : Identical to G0 except that we replace sA in challenge verification text with c ← Z1×(𝑘+1)𝑝 . Then the chal-
lenge verification text is that

©­­­­­­­­­­­­«

[ c︸︷︷︸
v0

]1,
[ ∑︁
𝑗∈[𝐿]
( c Q 𝑗 +𝑚 · c T 𝑗)︸                       ︷︷                       ︸

v1

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)︸                      ︷︷                      ︸
v2

]
1

[ ∑︁
𝑗∈[𝐿]
( c V 𝑗 + c U 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)︸                                                               ︷︷                                                               ︸

v3

]
1

, [ c k⊤︸︷︷︸
𝑣4

]𝑇

ª®®®®®®®®®®®®¬
.

Observe that we haveG0 ≈𝑐 G1, which follows theMDDH assumption, ensuring that ( [A]1, [sA]1) ≈𝑐 ( [A]1, [c]1)
where A← Z𝑘×(𝑘+1)𝑝 , s← Z1×𝑘𝑝 and c← Z1×(𝑘+1)𝑝 . See Lemma 1 for more details.

– G2,ℓ (ℓ ∈ [𝐿]) : Identical to G2,ℓ−1 except that we change crs into the following form:

crs =

(
[A]1, {[AV𝑖 ,AW𝑖]1, [Br⊤𝑖 ,V𝑖Br⊤𝑖 + 𝛼c⊥ + k⊤,B𝑖]2}𝑖∈[𝐿] ,

{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ B 𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [Ak⊤]𝑇 ,H

)
.

where 𝛼ℓ ← Z𝑝 and c⊥ ← Z2𝑘+1𝑝 such that Ac⊥ = 0, cc⊥ = 1. Note that G2,0 is identical to G1; we have G2,ℓ−1 ≈𝑐
G2,ℓ, see section 4.3 for more details.
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– G3 : Identical to G2,𝑄𝐿 except that we replace the verification text into the following form:

©­­­­­­­­­­­­«

[ c︸︷︷︸
v0

]1,
[ ∑︁
𝑗∈[𝐿]
(cQ 𝑗 +𝑚 · cT 𝑗)︸                    ︷︷                    ︸

v1

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)︸                     ︷︷                     ︸
v2

]
1

[ ∑︁
𝑗∈[𝐿]
(cV 𝑗 + cU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)︸                                                           ︷︷                                                           ︸

v3

]
1

, 𝑔∗𝑇︸︷︷︸
𝑣4

ª®®®®®®®®®®®®¬
where 𝑔∗𝑇 is sampled uniformly over 𝐺𝑇 . We claim that G2,𝐿 ≈𝑠 G3 which follows the following the statistical
argument:

(Ak⊤, k⊤ + 𝛼c⊥, ck⊤) ≈𝑠 (Ak⊤, k⊤, ck⊤ − 𝛼)

where [ck⊤ − 𝛼]𝑇 is uniform, namely, 𝑔∗𝑇 . See Lemma 4 for more details.

Observe that the advantage ofA to forge a valid signature is negligible in G3.

4.3 From G2,ℓ−1 to G2,ℓ

In this section, we prove G2,ℓ−1 ≈𝑐 G2,ℓ. Similar to [ZZGQ23], we consider the honest case and the corrupted case,
respectively. For these two cases, we apply the following different strategies.

Honest Case. In this case, our proof must deal with both crs and signatures queried fromA. Here, only the chal-
lenger knows the secret key skℓ = (Uℓ,Qℓ,Tℓ) which is hidden fromA. Let 𝑄ℓ be the number of signatures queried
byA on each slot ℓ ∈ Dℓ \ Cℓ, we use the following sub-sequence of games.

– G2,ℓ−1,0 : Identical to G2,ℓ−1. Recall the crs is in the form

crs =

©­­­­­­«
[Ak⊤]𝑇 ,H, [A]1, {[AV𝑖 ,AW𝑖]1, [B𝑖]2}𝑖∈[𝐿] ,
{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} ,
{[Br⊤

𝑖
,V𝑖Br⊤𝑖 + k

⊤ + 𝛼c⊥]2}𝑖<ℓ, [ Br⊤ℓ,VℓBr⊤ℓ + k
⊤ ]2,

{[Br⊤
𝑖
,V𝑖Br⊤𝑖 + k

⊤]2}𝑖>ℓ

ª®®®®®®¬
,

and the challenge verification text 𝜈∗ is that

©­­­­­­«
[c]1,

[ ∑︁
𝑗∈[𝐿]
(cQ 𝑗 +𝑚∗ · cT 𝑗)

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)
]
1

,[ ∑︁
𝑗∈[𝐿]
(cV 𝑗 + cU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

]
1

, [ck⊤]𝑇

ª®®®®®®¬
.

Finally, for each 𝜅 ∈ [𝑄ℓ], the corresponding signature 𝜎ℓ,𝜅 is in the form:

©­­­­­­­­­­«

[Bℓt⊤]2, [Br⊤ℓ]2, [ VℓBr⊤ℓ + k
⊤ + UℓBr⊤ℓ + (QℓBℓt⊤ +𝑚ℓ,𝜅 · TℓBℓt⊤)]2,[ ∑︁

𝑗∈[𝐿]\{ℓ}
(V 𝑗Br⊤ℓ + U 𝑗Br⊤ℓ)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤ℓ)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ Br⊤ℓ)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚ℓ,𝜅 · T 𝑗Bℓt⊤)
]

ª®®®®®®®®®®¬
where t← Z1×𝑘𝑝 and 𝑚ℓ,𝜅 ← H(ℓ,m, 𝑥).
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– G2,ℓ−1,𝜅(𝜅 ∈ [𝑄ℓ]) : Identical to G2,ℓ−1,𝜅−1 except that the signature 𝜎ℓ,𝜅 is that

©­­­­­­­­­­­­«

[Bℓt⊤]2, [Br⊤ℓ]2,

[VℓBr⊤ℓ + k
⊤ + UℓBr⊤ℓ + 𝛽ℓ,𝜅c⊥ + (QℓBℓt⊤ +𝑚ℓ,𝜅 · TℓBℓt⊤)]2,[ ∑︁

𝑗∈[𝐿]\{ℓ}
(V 𝑗Br⊤ℓ + U 𝑗Br⊤ℓ)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤ℓ)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ Br⊤ℓ)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚ℓ,𝜅 · T 𝑗Bℓt⊤)
]

ª®®®®®®®®®®®®¬
where G2,ℓ−1,𝜅−1 ≈𝑐 G2,ℓ−1,𝜅 for all 𝜅 ∈ [𝑄ℓ]; see Lemma 2 for more details.

– G2,ℓ−1,𝑄ℓ+1 : Identical to G2,ℓ−1,𝑄ℓ except that the item marked with dashed box in crs is that

[ d⊤ℓ ,Vℓ d⊤ℓ + k
⊤]2

where dℓ ← Z1×(𝑘+1)𝑝 ; correspondingly, for all 𝜅 ∈ [𝑄ℓ], the item marked with dashed box in 𝜎ℓ,𝜅 is that

[Vℓ d⊤ℓ + k
⊤ + Uℓ d⊤ℓ + 𝛽ℓ,𝜅c

⊥]2.

We have G2,ℓ−1,𝑄ℓ+1 ≈𝑐 G2,ℓ−1,𝑄ℓ , which follows the MDDH assumption:

( [B]2, [Br⊤ℓ]2) ≈𝑐 ( [B]2, [d
⊤
ℓ]2)

notice that B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×(𝑘+1)𝑝 and dℓ ← Z1×𝑘𝑝 . See Lemma 3 for more details.
– G2,ℓ−1,𝑄ℓ+2 : Identical to G2,ℓ−1,𝑄ℓ+1 except that the item marked with dashed box in crs is that

[d⊤ℓ,Vℓd⊤ℓ + k
⊤ + 𝛼c⊥ ]2.

We have G2,ℓ−1,𝑄ℓ+1 ≈𝑠 G2,ℓ−1,𝑄ℓ+2 which follows the following argument:{
A,Bℓ, c⊥, d⊤ℓ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c

⊥𝛼; AUℓ //crs; pk𝑖 ;

c, cVℓ + cUℓ; d⊤ℓ,Uℓd⊤ℓ + 𝛽ℓ,𝜅c
⊥ //𝜈∗; 𝜎𝑖,𝜅

≈𝑠

{
A,Bℓ, c⊥, d⊤ℓ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑣ℓc⊥ + 𝑏c⊥𝛼; AUℓ

c, cVℓ + cUℓ + 𝑣ℓc⊥ + 𝑢ℓc⊥ ; d⊤ℓ,Uℓd⊤ℓ + 𝑢ℓc⊥ + 𝛽ℓ,𝜅c⊥

≈𝑠

{
A,Bℓ, c⊥, d⊤ℓ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑣ℓc

⊥ +���𝑏c⊥𝛼; AUℓ

c, cVℓ + cUℓ + 𝑣ℓc⊥ + 𝑢ℓc⊥; d⊤ℓ,Uℓd⊤ℓ +���𝑢ℓc⊥ + 𝛽ℓ,𝜅c⊥

where 𝑏 ∈ {0, 1}.
• The first ≈𝑠 follows that:

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and Uℓ ↦→ Uℓ + c⊥𝑢ℓd⊥

where c⊥ ∈ Z𝑘+1𝑝 and d⊥ ∈ Z1×(𝑘+1)𝑝 such that Ac⊥ = 0, cc⊥ = 1, d⊥B = 0, d⊥dℓ = 1.
• The second ≈𝑠 holds since 𝛽ℓ,𝜅 is sampled randomly and hence preserve the privacy of 𝑢ℓ. Then 𝑣ℓ in crs

also seems to be sampled randomly because 𝑢ℓ hides 𝑣ℓ in challenge verification text.
– G2,ℓ−1,𝑄ℓ+3 : Identical to G2,ℓ−1,𝑄ℓ+2 except that the item marked with dashed box in crs is that

[ Br⊤ℓ ,Vℓ Br⊤ℓ + k
⊤ + 𝛼c⊥]2

where B ← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×(𝑘+1)𝑝 and dℓ ← Z1×𝑘𝑝 ; correspondingly, for all 𝜅 ∈ [𝑄ℓ], the item marked with
dashed box in the [k⊤2]2 of 𝜎ℓ,𝜅 is that

[Vℓ Br⊤ℓ + k
⊤ + Uℓ Br⊤ℓ + 𝛽ℓ,𝜅c

⊥]2.

We have G2,ℓ−1,𝑄ℓ+2 ≈𝑐 G2,ℓ−1,𝑄ℓ+3 which is symmetrical to G2,ℓ−1,𝑄ℓ ≈𝑐 G2,ℓ−1,𝑄ℓ+1.
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– G2,ℓ−1,𝑄ℓ+4 : Identical to G2,ℓ−1,𝑄ℓ+3 except that the signature 𝜎ℓ,𝜅 is that

©­­­­­­­­­­­­«

[Bℓt⊤]2, [Br⊤ℓ]2,

[VℓBr⊤ℓ + k
⊤ + 𝛼c⊥ + UℓBr⊤ℓ +���𝛽ℓ,𝜅c⊥ + (QℓBℓt⊤ +𝑚ℓ,𝜅 · TℓBℓt⊤)]2,[ ∑︁

𝑗∈[𝐿]\{ℓ}
(V 𝑗Br⊤ℓ + U 𝑗Br⊤ℓ)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤ℓ)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ Br⊤ℓ)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚ℓ,𝜅 · T 𝑗Bℓt⊤)
]

ª®®®®®®®®®®®®¬
.

We say G2,ℓ−1,𝑄ℓ+3 ≈𝑐 G2,ℓ−1,𝑄ℓ+4 for all 𝜅 ∈ [𝑄ℓ]. The proof is symmetrical to G2,ℓ−1,0 ≈𝑐 G2,ℓ−1,𝑄ℓ . Notice that
G2,ℓ−1,𝑄ℓ+4 ≡ G2,ℓ.

So far, we have finished dealing with the honest case.

Corrupted Case. In the corrupted case,A makes no query for signature oracle, so our proof just deals with crs in
the similar sense to [ZZGQ23]. For each ℓ ∈ Cℓ, the secret key skℓ = (Uℓ,Qℓ,Tℓ) been known to the adversary, but
it is required that 𝑃(𝑥, 𝑦ℓ) = 0 for for the challenge (𝑥∗,m∗). We start with the following sub-games:

– G′2,ℓ−1,0 : Identical to G2,ℓ−1. Recall the crs is in the form

crs =

©­­­­­­«
[Ak⊤]𝑇 ,H, [A]1, {[AV𝑖 ,AW𝑖]1, [B𝑖]2}𝑖∈[𝐿] ,
{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} ,
{[Br⊤

𝑖
,V𝑖Br⊤𝑖 + k

⊤ + 𝛼c⊥]2}𝑖<ℓ, [ Br⊤ℓ,VℓBr⊤ℓ + k
⊤ ]2,

{[Br⊤
𝑖
,V𝑖Br⊤𝑖 + k

⊤]2}𝑖>ℓ

ª®®®®®®¬
,

and the challenge verification text is that

𝜈∗ =

©­­­­­­«
[c]1,

[ ∑︁
𝑗∈[𝐿]
(cQ 𝑗 +𝑚∗ · cT 𝑗)

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)
]
1

,[ ∑︁
𝑗∈[𝐿]
(cV 𝑗 + cU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

]
1

, [ck⊤]𝑇

ª®®®®®®¬
.

– G′2,ℓ−1,1: Identical to G2,ℓ−1,0 except that the item marked with dashed box in crs is that

[ d⊤ℓ ,Vℓ d⊤ℓ + k
⊤]2.

We have G′2,ℓ−1,0 ≈𝑐 G
′
2,ℓ−1,1, which follows the MDDH assumption:

( [B]2, [Br⊤ℓ]2) ≈𝑐 ( [B]2, [d
⊤
ℓ]2)

notice that B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×(𝑘+1)𝑝 and dℓ ← Z1×𝑘𝑝 . The proof is analogous to G2,ℓ−1,𝜅 ≈𝑐 G2,ℓ−1,𝑄ℓ+1 in the
honest case and can be followed via the Lemma 2.

– G′2,ℓ−1,2: Identical to G′2,ℓ−1,1 except that the item marked with dashed box in crs is that

[d⊤ℓ,Vℓd⊤ℓ + k
⊤ + 𝛼c⊥ ]2.
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We claim G′2,ℓ−1,2 ≈𝑠 G
′
2,ℓ−1,1 via the following argument (𝑏 ∈ {0, 1}):
A,Bℓ, c⊥, d⊤ℓ,AVℓ,AWℓ,VℓB,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑏c

⊥𝛼 //crs

c, cVℓ (a𝑦ℓ ⊗ I𝑘+1) + cWℓ (K𝑦ℓ ⊗ I𝑘+1)

cWℓ (C𝑥∗ ⊗ I𝑘+1)
//𝜈∗

≈𝑠


A,Bℓ, c⊥, d⊤ℓ,AVℓ,AWℓ,VℓB,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑣ℓc⊥ + 𝑏c⊥𝛼

c, cVℓ (a𝑦ℓ ⊗ I𝑘+1) + cWℓ (K𝑦ℓ ⊗ I𝑘+1) + 𝑣ℓa𝑦ℓ ⊗ d⊥ +w⊤ℓK𝑦ℓ ⊗ d⊥ ,

cWℓ (C𝑥∗ ⊗ I𝑘+1) + w⊤ℓC𝑥∗ ⊗ d⊥

≈𝑠


A,Bℓ, c⊥, d⊤ℓ,AVℓ,AWℓ,VℓB,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑣ℓc

⊥ + 𝑏c⊥𝛼

c, cVℓ (a𝑦ℓ ⊗ I𝑘+1) + cWℓ (K𝑦ℓ ⊗ I𝑘+1) +�����𝑣ℓa𝑦ℓ ⊗ d⊥ +w⊤ℓK𝑦ℓ ⊗ d⊥,

cWℓ (C𝑥∗ ⊗ I𝑘+1) +w⊤ℓC𝑥∗ ⊗ d⊥

≈𝑠


A,Bℓ, c⊥, d⊤ℓ,AVℓ,AWℓ,VℓB,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑣ℓc

⊥ +���𝑏c⊥𝛼

c, cVℓ (a𝑦ℓ ⊗ I𝑘+1) + cWℓ (K𝑦ℓ ⊗ I𝑘+1) +w⊤ℓK𝑦ℓ ⊗ d⊥,

cWℓ (C𝑥∗ ⊗ I𝑘+1) +w⊤ℓC𝑥∗ ⊗ d⊥

Observe that:
• The first ≈𝑠 follows that:

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and Wℓ ↦→Wℓ + c⊥ (w⊤ℓ ⊗ d
⊥)

where 𝑣ℓ ← Z𝑝 and wℓ ← Z𝑛𝑝.
• The second ≈𝑠 follows the 𝛼-privacy of predicate encoding since 𝑃(𝑥∗, 𝑦ℓ) = 0.
• The last ≈𝑠 holds since 𝑣ℓ is sampled randomly and only appears in crs.

– G′2,ℓ−1,3: Identical to G′2,ℓ−1,2 except that that the item marked with dashed box in crs is that

[ Br⊤ℓ ,Vℓ Br⊤ℓ + k
⊤ + 𝛼c⊥]2

where B ← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×(𝑘+1)𝑝 and dℓ ← Z1×𝑘𝑝 . We have G′2,ℓ−1,2 ≈𝑐 G′2,ℓ−1,3, which follows the MDDH
assumption:

( [B]2, [Br⊤ℓ]2) ≈𝑐 ( [B]2, [d
⊤
ℓ]2).

The proof is analogous to G2,ℓ−1,𝑄ℓ+2 ≈𝑐 G2,ℓ−1,𝑄ℓ+3 in the honest case and can be followed via the Lemma 2.

Notice that G′2,ℓ−1,3 ≡ G
′
2,ℓ. So far, we have finished dealing with the corrupted case. Finally, we prove G2,ℓ−1 ≈𝑐

G2,ℓ for each honest/corrupted slot ℓ ∈ Dℓ by the above strategies.

4.4 Lemmata

In the following, we use Adv𝑖A (𝜆) to denote the advantage ofA in G𝑖 .

Lemma 1 (G0 ≈𝑐 G1). For any adversaryA, there exists algorithm B1 with close running time toA such that

|Adv0A (𝜆) − Adv
1
A (𝜆) | ≤ AdvMDDH

B1 (𝜆) + negl(𝜆).

Proof. Recall that the difference between the two games is that we replace [sA]1 in G0 with [c]1, where A ←
Z
𝑘×(𝑘+1)
𝑝 , s← Z1×𝑘𝑝 and c← Z1×(𝑘+1)𝑝 . This follows from (𝑘, 𝑘 + 1, 1)-MDDH assumption, which ensures that:

( [A]1, [sA]1) ≈𝑐 ( [A]1, [c]1).

On input ( [A]1, [t̂]1) where t̂ = sA or t̂ = c, algorithm B1 works as follows:
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Setup. Sample

B← Z(𝑘+1)×𝑘𝑝 , k← Z1×(𝑘+1)𝑝 , {D𝑖 ← Z𝑘×𝑘𝑝 ,V𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 ,W𝑖 ← Z(𝑘+1)×(𝑘+1)𝑛𝑝 , r𝑖 ← Z1×𝑘𝑝 }𝑖∈[𝐿] .

Set B𝑖 = BD𝑖 for each 𝑖 ∈ [𝐿] and output

crs =

(
[A]1, {[AV𝑖 ,AW𝑖]1, [Br⊤𝑖 ,V𝑖Br⊤𝑖 + k

⊤,B𝑖]2}𝑖∈[𝐿] ,

{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [Ak
⊤]𝑇 ,H

)
.

Query. Here, we deal with the query fromA.

– For all 𝑖 ∈ [𝐿] and each (pk𝑖 , sk𝑖) ∈ D𝑖 is generated honestly as :

pk𝑖 = ( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖})

and sk𝑖 = (U𝑖 ,Q𝑖 ,T𝑖) where U𝑖 ,Q𝑖 ,T𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 .
– For OSig(𝑖, 𝑥,m), sample t← Z1×𝑘𝑝 and compute C𝑥 , output signature 𝜎𝑖,𝑥,m as

©­­­­­­­­­­­­­­­­­­­«

[ B𝑖t⊤︸︷︷︸
k⊤0

]2, [ Br⊤𝑖︸︷︷︸
k⊤1

]2, [V𝑖Br⊤𝑖 + k
⊤ + U𝑖Br⊤𝑖 + (Q𝑖B𝑖t⊤ +𝑚 · T𝑖B𝑖t⊤)︸                                                  ︷︷                                                  ︸

k⊤2

]2

[ ∑︁
𝑗∈[𝐿]\{𝑖∗ }

(V 𝑗Br⊤𝑖 + U 𝑗Br⊤𝑖 )a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )K𝑦 𝑗︸                                                           ︷︷                                                           ︸
K3

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

W 𝑗 (I𝑛 ⊗ Br⊤𝑖 )C𝑥︸                          ︷︷                          ︸
K4

]
2

,

[ ∑︁
𝑗∈[𝐿]\{𝑖}

(Q 𝑗B𝑖t⊤ +𝑚 · T 𝑗B𝑖t⊤)︸                                ︷︷                                ︸
k⊤5

]
2

ª®®®®®®®®®®®®®®®®®®®¬
Challenge. On input challenge (𝑖∗, 𝑥∗,m∗), output 𝜈𝑖∗ ,𝑥,m as

©­­­­­­­­­­­­«

[ t̂︸︷︷︸
v0

]1,
[ ∑︁
𝑗∈[𝐿]
(t̂Q 𝑗 +𝑚 · t̂T 𝑗)︸                   ︷︷                   ︸

v1

]
1

,

[ ∑︁
𝑗∈[𝐿]

t̂W 𝑗 (C𝑥 ⊗ I𝑘+1)︸                     ︷︷                     ︸
v2

]
1

[ ∑︁
𝑗∈[𝐿]
(t̂V 𝑗 + t̂U 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + t̂W 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)︸                                                         ︷︷                                                         ︸

v3

]
1

, [ t̂k⊤︸︷︷︸
𝑣4

]𝑇

ª®®®®®®®®®®®®¬
.

Observe that when t̂ = sA, the simulation is identical to G0; when t̂ = c, the simulation is identical to G1. This
readily proves the lemma. ⊓⊔

Lemma 2 (G2,ℓ−1,𝜅−1 ≈𝑐 G2,ℓ−1,𝜅). For any adversaryA, there exists algorithm B2 with close running time toA such
that

|Adv2,ℓ−1,𝜅−1A (𝜆) − Adv2,ℓ−1,𝜅A (𝜆) | ≤ 2 · AdvMDDH
B2 (𝜆) + negl(𝜆).

Proof. The transition between G2,ℓ−1,𝜅−1 and G2,ℓ−1,𝜅 is similar to the secret key transition of IBE in [CGW15]. Recall
that in G2,ℓ−1,𝜅−1, we have
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– For all 𝑖 < 𝜅, the signature 𝜎ℓ,𝑖 is that

©­­­­­­­­­­­­«

[Bℓt⊤]2, [Br⊤ℓ]2,

[VℓBr⊤ℓ + k
⊤ + UℓBr⊤ℓ + 𝛽ℓ,𝑖c⊥ + (QℓBℓt⊤ +𝑚ℓ,𝑖 · TℓBℓt⊤)]2,[ ∑︁

𝑗∈[𝐿]\{ℓ}
(V 𝑗Br⊤ℓ + U 𝑗Br⊤ℓ)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤ℓ)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ Br⊤ℓ)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚ℓ,𝜅 · T 𝑗Bℓt⊤)
]

ª®®®®®®®®®®®®¬
where 𝛽ℓ,𝑖 ← Z𝑝 and Bℓ = BDℓ.

– For all 𝑖 ≥ 𝜅, the signature 𝜎ℓ,𝑖 is that

©­­­­­­­­­«

[Bℓt⊤]2, [Br⊤ℓ]2, [VℓBr⊤ℓ + k
⊤ + UℓBr⊤ℓ + (QℓBℓt⊤ +𝑚ℓ,𝑖 · TℓBℓt⊤)]2,[ ∑︁

𝑗∈[𝐿]\{ℓ}
(V 𝑗Br⊤ℓ + U 𝑗Br⊤ℓ)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ Br⊤ℓ)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ Br⊤ℓ)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚ℓ,𝑖 · T 𝑗Bℓt⊤)
]

ª®®®®®®®®®¬
.

The verification text 𝜈∗ is that

©­­­­­­«
[c]1,

[ ∑︁
𝑗∈[𝐿]
(cQ 𝑗 +𝑚∗ · cT 𝑗)

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)
]
1

,[ ∑︁
𝑗∈[𝐿]
(cV 𝑗 + cU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

]
1

, [ck⊤]𝑇

ª®®®®®®¬
.

The only difference between G2,ℓ−1,𝜅−1 and G2,ℓ−1,𝜅 is the item [𝛽ℓ,𝜅]2 in 𝜎ℓ,𝜅. Since Bℓ = BDℓ, we argue that for all

𝑖 ∈ [𝐿], there exist d
⊥
ℓ such that d

⊥
ℓ B𝑖 = 0 and d

⊥
ℓ d
⊤
ℓ,𝜅 = 1, where dℓ,𝜅 ← Z1×(𝑘+1)𝑝 . We prove G2,ℓ−1,𝜅−1 ≈𝑐 G2,ℓ−1,𝜅 by

the following argument (𝛽 ∈ {0, 1}):
A,Bℓ, c⊥; AQℓ,ATℓ,QℓB,TℓB; //crs; pkℓ;

c, cQℓ +𝑚∗ · cTℓ; //𝜈∗

Bℓt⊤,QℓBℓt⊤ +𝑚ℓ,𝜅 · TℓBℓt⊤ + 𝑏c⊥𝛽; //𝜎ℓ,𝜅

≈𝑐


A,Bℓ, c⊥; AQℓ,ATℓ,QℓB,TℓB

c, cQℓ +𝑚∗ · cTℓ;

d
⊤
ℓ,𝜅 ,Qℓ d

⊤
ℓ,𝜅 +𝑚ℓ,𝜅 · Tℓ d

⊤
ℓ,𝜅 + 𝑏c⊥𝛽;

≈𝑠


A,Bℓ, c⊥; AQℓ,ATℓ,QℓB,TℓB

c, cQℓ +𝑚∗ · cTℓ + (𝑞ℓ,𝜅 +𝑚∗ · 𝑡ℓ,𝜅)d
⊥
ℓ ;

d⊤ℓ,𝜅,Qℓd
⊤
ℓ,𝜅 +𝑚ℓ,𝜅 · Tℓd

⊤
ℓ,𝜅 + 𝑏c⊥𝛽 + (𝑞ℓ,𝜅 +𝑚ℓ,𝜅 · 𝑡ℓ,𝜅)c⊥ ;

≈𝑠


A,Bℓ, c⊥; AQℓ,ATℓ,QℓB,TℓB

c, cQℓ +𝑚∗ · cTℓ + (𝑞ℓ,𝜅 +𝑚∗ · 𝑡ℓ,𝜅)d⊥ℓ ;

d
⊤
ℓ,𝜅,Qℓd

⊤
ℓ,𝜅 +𝑚ℓ,𝜅 · Tℓd

⊤
ℓ,𝜅 +���𝑏c⊥𝛽 + (𝑞ℓ,𝜅 +𝑚ℓ,𝜅 · 𝑡ℓ,𝜅)c⊥;

We justify each step as follows:
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– The first ≈𝑐 follows from the MDDH assumption:

( [Bℓ]2, [Bℓt⊤]2) ≈𝑐 ( [Bℓ]2, [d
⊤
ℓ,𝜅]2)

where Bℓ ← Z(𝑘+1)×𝑘𝑝 , t← Z1×𝑘𝑝 and dℓ,𝜅 ← Z1×(𝑘+1)𝑝 .
– The second ≈𝑠 follows tha fact that:

Qℓ ↦→ Qℓ + c⊥𝑞ℓ,𝜅d
⊥
ℓ,𝜅 and Tℓ ↦→ Tℓ + c⊥𝑡ℓ,𝜅d

⊥
ℓ,𝜅

where c⊥ ∈ Z𝑘+1𝑝 and d
⊥
ℓ,𝜅 ∈ Z

1×(𝑘+1)
𝑝 such that Ac⊥ = 0, cc⊥ = 1, d

⊥
ℓ,𝜅B = 0, d

⊥
ℓ,𝜅dℓ = 1.

– The last ≈𝑠 follows the fact that item (𝑞ℓ,𝜅 +𝑚ℓ,𝜅 · 𝑡ℓ,𝜅)c⊥ hides the item 𝑏c⊥𝛽 since 𝑚∗ ≠ 𝑚ℓ,𝜅.

This readily proves the lemma. ⊓⊔

Lemma 3 (G2,ℓ−1,𝑄ℓ ≈𝑐 G2,ℓ−1,𝑄ℓ+1). For any adversary A, there exists algorithm B3 with close running time to A
such that

|Adv2,ℓ−1,𝑄ℓ

A (𝜆) − Adv2,ℓ−1,𝑄ℓ+1
A (𝜆) | ≤ AdvMDDH

B3 (𝜆) + negl(𝜆).

Proof. This follows from the (𝑘, 𝑘 + 1, 1)-MDDH assumption:

[B]2, [Br⊤ℓ]2 ≈𝑐 [B]2, [d
⊤
ℓ]2

where B← Z(𝑘+1)×𝑘𝑝 , rℓ ← Z1×𝑘𝑝 and dℓ ← Z1×(𝑘+1)𝑝 . On input [B]2, [t̂⊤]2 where t̂⊤ = Br⊤ℓ or t̂⊤ = d⊤ℓ, the algorithm B3
works as follow:

Setup. Sample

A← Z𝑘×(𝑘+1)𝑝 , k← Z1×(𝑘+1)𝑝 , c← Z1×(𝑘+1)𝑝 , 𝛼← Z𝑝
{D𝑖 ← Z𝑘×𝑘𝑝 , V𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 , W𝑖 ← Z(𝑘+1)×(𝑘+1)𝑛𝑝 , r𝑖 ← Z1×𝑘𝑝 }𝑖∈[𝐿]

Set [B𝑖]2 = [BD𝑖]2 for each 𝑖 ∈ [𝐿] and output

crs =

©­­­­­­«
[Ak⊤]𝑇 ,H, [A]1, {[AV𝑖 ,AW𝑖]1, [B𝑖]2}𝑖∈[𝐿] ,
{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} ,
{[Br⊤

𝑖
,V𝑖Br⊤𝑖 + k

⊤ + 𝛼c⊥]2}𝑖<ℓ, [t̂ℓ,Vℓ t̂ℓ + k⊤]2,
{[Br⊤

𝑖
,V𝑖Br⊤𝑖 + k

⊤]2}𝑖>ℓ

ª®®®®®®¬
,

Query. Here, we deal with the query fromA.

– For all 𝑖 ∈ [𝐿] and each (pk𝑖 , sk𝑖) ∈ D𝑖 is generated honestly as:

• if 𝑖 ≠ ℓ, the pk𝑖 is that

( [AU𝑖 ,AQ𝑖 ,AT𝑖]1, {[U𝑖Br⊤𝑗 ,Q𝑖B 𝑗 ,T𝑖B 𝑗]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [U𝑖 t̂⊤]2);

• if 𝑖 = ℓ, the pkℓ is that

( [AUℓ,AQℓ,ATℓ]1, {[UℓBr⊤𝑗 ,QℓB 𝑗 ,TℓB 𝑗]2} 𝑗∈[𝐿]\{ℓ});

where U𝑖 ,Q𝑖 ,T𝑖 ← Z(𝑘+1)×(𝑘+1)𝑝 .
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– For OSig(ℓ, 𝑥,m), sample t← Z1×𝑘𝑝 and compute C𝑥 , output 𝜎ℓ,𝑥,m as

©­­­­­­­­­«

[Bℓt⊤]2, [t̂⊤]2, [Vℓ t̂⊤ + k⊤ + Uℓ t̂⊤ + (QℓBℓt⊤ +𝑚 · TℓBℓt⊤)]2,[ ∑︁
𝑗∈[𝐿]\{ℓ}

(V 𝑗 t̂⊤ + U 𝑗 t̂⊤)a𝑦 𝑗 +W 𝑗 (I𝑛 ⊗ t̂⊤)K𝑦 𝑗

]
2

,[ ∑︁
𝑗∈[𝐿]\{ℓ}

W 𝑗 (I𝑛 ⊗ t̂⊤)C𝑥

]
2

,

[ ∑︁
𝑗∈[𝐿]\{ℓ}

(Q 𝑗Bℓt⊤ +𝑚 · T 𝑗Bℓt⊤)
]
ª®®®®®®®®®¬
.

where 𝑚← H(𝑖,m, 𝑥).
Challenge. On input challenge (𝑖∗, 𝑥∗,m∗), output 𝜈𝑖∗ ,𝑥∗ ,m∗ as

©­­­­­­«
[c]1,

[ ∑︁
𝑗∈[𝐿]
(cQ 𝑗 +𝑚 · cT 𝑗)

]
1

,

[ ∑︁
𝑗∈[𝐿]

cW 𝑗 (C𝑥 ⊗ I𝑘+1)
]
1[ ∑︁

𝑗∈[𝐿]
(cV 𝑗 + cU 𝑗) (a𝑦 𝑗 ⊗ I𝑘+1) + cW 𝑗 (K𝑦 𝑗 ⊗ I𝑘+1)

]
1

, [ck⊤]𝑇

ª®®®®®®¬
.

Observe that when t̂⊤ = Br⊤ℓ, the simulation is identical to G2,ℓ−1,𝑄ℓ ; when t̂⊤ = d⊤ℓ, the simulation is identical to
G2,ℓ−1,𝑄ℓ+1. ⊓⊔

Lemma 4 (G2,𝐿 ≈𝑠 G3). For any adversaryA, we have

|Adv2,𝐿A (𝜆) − Adv
3
A (𝜆) | = 0

Proof. First, in the process of simulating crs, we program k⊤ in both G2,𝐿 and G3 as follow:

k⊤ ↦→ k⊤ − c⊥𝛼

where k← Z1×(𝑘+1)𝑝 , 𝛼← Z𝑝. Under the fact that Ac⊥ = 0, crs works as follow:

crs =

(
[A]1, {[AV𝑖 ,AW𝑖]1, [Br⊤𝑖 ,V𝑖Br⊤𝑖 + k

⊤,B𝑖]2}𝑖∈[𝐿] ,

{[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗)]2} 𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [Ak
⊤]𝑇 ,H

)
.

Then, 𝛼 in the challenge verification text is that [ck⊤ − 𝛼]𝑇 , where this follows from the fact that cc⊥ = 1. Further-
more, 𝛼 only correlate to [ck⊤ −𝛼]𝑇 in the challenge verification text. [𝛼]𝑇 is uniformly distributed over G𝑇 which
implies that the distribution of [ck⊤ − 𝛼]𝑇 is identical to a random coin in G𝑇 , just like in G3. This readily proves
the lemma. ⊓⊔

5 From Slotted Registered ABS to Full-fledged Registered ABS

We exploit the “power-of-two” approach from [HLWW23] to convert a slotted registered ABS to a full-fledged reg-
istered ABS.

Construction. Suppose a full-fledged registered ABS mostly supports 𝐿 = 2ℓ users, this approach needs ℓ+1 copies
of slotted registered ABS with 1, 2, 4, · · · , 2ℓ slots. And the public state aux = (D1,D2,mpk) consists of the following
terms:

– D1 [𝑘, 𝑖] = (pk, 𝑦): where 𝑘 ∈ [0, ℓ] and 𝑖 ∈ [2𝑘]. This dictionary assigns a user’s (pk, 𝑦) to the slot 𝑖 of the
2𝑘-slotted registered ABS scheme.
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– D2 [𝑘, 𝑛] = hk: where 𝑘 ∈ [0, ℓ] and 𝑛 ∈ [𝐿]. This dictionary assigns a hk of slotted registered ABS to the
2𝑘-slotted registered ABS scheme and the user index 𝑛.

– mpk = (ctr,mpk0, · · · ,mpkℓ) denotes the current master public key. Where (mpk𝑘)𝑘∈[0,ℓ] denote the master
public keys of ℓ + 1 copies of slotted registered ABS, and ctr denotes the number of currently registered users.
When no registered user, we initially set mpk = (0,⊥, · · · ⊥).

When no registered user, we initially set aux = (∅, ∅,⊥). Assuming a slotted registered ABSΠ𝑠 = (𝑠.Setup, 𝑠.Gen, 𝑠.IsValid,
𝑠.Agg, 𝑠.Sig, 𝑠.Ver), a full-fledged registered ABS Π = (Setup,Gen, Reg,Upd, Sig, Ver) can be constructed as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Compute ℓ = log 𝐿. For all 𝑘 ∈ [0, ℓ], run crs𝑘 ← 𝑠.Setup(1𝜆 , 𝑃, 12𝑘 ). Output

crs = (crs0, · · · , crsℓ)

– Gen(crs, aux) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] and aux = (D1,D2,mpk), where mpk =
(
ctr, (mpk𝑘)𝑘∈[0,ℓ]

)
. For all

𝑘 ∈ [0, ℓ], compute
𝑖𝑘 = (ctr mod 2𝑘) + 1

and run (pk𝑘 , sk𝑘) ← 𝑠.Gen(crs𝑘 , 𝑖𝑘). Set ctr′ = ctr and output

pk = (ctr′, pk0, · · · , pkℓ) and sk = (ctr′, sk0, · · · , skℓ)

– Reg(crs, aux, pk, 𝑦) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] , aux = (D1,D2,mpk), and pk =
(
ctr′, (pk𝑘)𝑘∈[0.ℓ]

)
, where mpk =

(ctr, (mpk𝑘)𝑘∈[0,ℓ]). For all 𝑘 ∈ [0, ℓ], do the following operates:
• Compute 𝑖𝑘 = (ctr mod 2𝑘) + 1;
• Check if 𝑠.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘) = 1 and ctr′ = ctr. If the check passes, set ctr = ctr + 1, if the check fails,the

algorithm halts and output (mpk, aux);
• UpdateD1 [𝑘, 𝑖𝑘] = (pk, 𝑦);
• If 𝑖𝑘 = 2𝑘 : compute (mpk′𝑘 , (hk𝑘, 𝑗) 𝑗∈[2𝑘 ]) ← 𝑠.Agg(crs𝑘 , (D1 [𝑘, 𝑖])𝑖∈[2𝑘 ]). Update mpk𝑘 = mpk′𝑘 , and for all

𝑗 ∈ [2𝑘], updateD2 [𝑘, ctr − 2𝑘 + 𝑗] = hk𝑘, 𝑗 .
Update the master public key mpk = (ctr, (mpk0, · · · ,mpkℓ)) and aux = (D1,D2,mpk), output (mpk, aux).

– Upd(crs, aux, pk) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] , aux = (D1,D2,mpk), and pk =
(
ctr′, (pk𝑘)𝑘∈[0.ℓ]

)
, where mpk =

(ctr, (mpk𝑘)𝑘∈[0,ℓ]). Output

hk =


(D2 [0, ctr′ + 1]︸            ︷︷            ︸

hk0

, · · · ,D2 [ℓ, ctr′ + 1]︸            ︷︷            ︸
hkℓ

) if ctr′ < ctr

⊥ otherwise

(3)

– Sig(mpk, hk, sk, 𝑥,m) : Fetch mpk = (ctr, (mpk𝑘)𝑘∈[0,ℓ]), sk = (ctr′, (sk𝑘)𝑘∈[0,ℓ]) and hk = (hk𝑘)𝑘∈[0,ℓ] . For all
𝑘 ∈ [0, ℓ], if exists 𝑑 ∈ [0, ℓ] such that mpk𝑑 ≠ ⊥ and hk𝑑 = ⊥, output getupd; otherwise, compute:

𝜎𝑘 =


𝑠.Sig(hk𝑘 , sk𝑘 , 𝑥,m) if mpk𝑘 ≠ ⊥

⊥ otherwise
(4)

Output 𝜎 = (ctr′, 𝜎0, · · · , 𝜎ℓ).
– Ver(mpk, 𝜎, 𝑥,m) : Fetch mpk = (ctr, (mpk𝑘)𝑘∈[0,ℓ]) and 𝜎 = (ctr′, (𝜎𝑘)𝑘∈[0,ℓ]). Proceed as follows:
• If ctr′ ≥ ctr: output ⊥.
• Otherwise, compute ctr = (𝑎ℓ, · · · , 𝑎0)2 and ctr′ = (𝑏ℓ, · · · , 𝑏0)2. We denote 𝑘𝑑 as the maximum 𝑘 ∈ [0, ℓ]

such that 𝑎𝑘 ≠ 𝑏𝑘 .
• Otherwise, output 𝑠.Ver(mpk𝑘𝑑 , 𝜎𝑘𝑑 , 𝑥,m).
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Analysis. We would demonstrate the correctness, compactness, efficiency and unforgeability of the above con-
struction via a series of theorems.

Theorem 2 (Correctness). Suppose construction Π𝑠 is complete and perfectly correct. Then construction Π is per-
fectly correct.

Proof. After querying 𝑦∗ to ORegT and obtaining the output (𝑡,mpk, aux, pk∗, sk∗, hk∗), let (𝑖𝜅, 𝑥𝜅,m𝜅) be the 𝜅-th
query to OSig which returns (𝑡𝜅, 𝜎𝜅). Then compute 𝑏← Ver(mpk𝑖𝜅 , 𝜎𝜅, 𝑥𝜅,m𝜅):

– Parse sk∗ = (ctr∗, (sk∗𝑘)𝑘∈[0,ℓ]), pk
∗ = (ctr∗, (pk∗𝑘)𝑘∈[0,ℓ]), hk

∗ = (hk∗𝑘)𝑘∈[0,ℓ] , 𝜎𝜅 = (ctr𝜅, (𝜎𝜅,𝑘)𝑘∈[0,ℓ]) and aux =

(ctraux,D1,D2,mpk), and the master public key is that mpk = (ctraux, (mpk𝑘)𝑘∈[0,ℓ]);
– Let 𝑘∗ denote the max bit on which ctr∗ and ctraux differ.
– The challenger computes 𝑏← 𝑠.Ver(mpk𝑘∗ , 𝜎𝜅,𝑘∗ , 𝑥𝜅,m𝜅).

Similarly, we can show that D2 [ctr∗ + 1, 𝑘∗] = hk𝑘∗ ,ctr∗ will never be updated after making a query to ORegT by
following the lemma 6.3 in [HLWW23]. Thus, the signature 𝜎𝜅 is well-formed and follows the correctness of Π𝑠, i.e.,
𝑏 = 1. ⊓⊔

Theorem 3 (Compactness). Suppose construction Π𝑠 is compact. Then construction Π is compact.

Proof. Observe that |mpk| = |ctr| +∑𝑖∈[0,ℓ] |mpk𝑖 | and |hk| = ∑
𝑖∈[0,ℓ] |hk𝑖 | in Π, where ctr is a ℓ-bit number. Accord-

ing to the compactness of Π𝑠, we have |mpk𝑖 | = poly(𝜆, 𝑃, log 𝐿) and |hk𝑖 | = poly(𝜆, 𝑃, log 𝐿) for all 𝑖 ∈ [0, ℓ]. Then
it holds that |mpk| = poly(𝜆, 𝑃, log 𝑖) and |hk| = poly(𝜆, 𝑃, log |R |). ⊓⊔

Theorem 4 (Update Efficiency). Suppose construction Π𝑠 is compact. Then construction Π meets update efficiency.

Proof. Observe that the number of invocations of Upd is at most ℓ + 1 = 𝑂(log |R |) and Upd is only invoked when
one of (hk𝑘)𝑘∈[0,ℓ] is ⊥. Thus, the number of invocations of Upd in OSig is at most 𝑂(log |R |).

On the other hand, |hk𝑘 | = poly(𝜆, 𝑃, log |R |) for 𝑘 ∈ [0, ℓ] according to the compactness of Π𝑠. Since aux
maintains a dictionaryD2 mapping each index slot index 𝑘 to its set of helper decryption keys, each invocation of
Upd runs in poly(log |R |) time (in RAM model). ⊓⊔

Theorem 5 (Unforgeability). Suppose construction Π𝑠 meets unforgeability. Then construction Π meets unforge-
ability.

Proof. Analogous to [HLWW23], suppose that there exists an adversary A who breaks the unforgeability of Π

with non-negligible advantage, then an algorithm B can be constructed to break the unforgeability of Π𝑠 with
non-negligible advantage. Concretely, B works as follows:

Setup. In the query phase, B makes as follows:
– guess a number 𝛿 ∈ [0, ℓ] and send 12𝛿 to the challenger who returns a common reference string crs𝛿;
– initialize aux = (D1,D2,mpk), whereD1 = ∅,D2 = ∅ and mpk = (0,⊥, . . . ,⊥); Set R = ∅, C = ∅, S = ∅ and

a dictionaryK withK[pk] = for all possible pk;
– it runs crs𝑘 ← 𝑠.Setup(1𝜆 , 𝑃, 12𝑘 ) for each 𝑘 ∈ [0, ℓ] \ {𝛿};
– Finally, B sends crs = (crs0, · · · , crsℓ) toA.

Query. In the query phase, B simulates the queriesA makes as follows:
– ORegHK( 𝑦): Fetch mpk =

(
ctr, (mpk𝑘)𝑘∈[0,ℓ]

)
. For all 𝑘 ∈ [0, ℓ], compute 𝑖𝑘 = (ctr mod 2𝑘) + 1. Run

(pk𝑘 , sk𝑘) ← 𝑠.Gen(crs𝑘 , 𝑖𝑘) if 𝑘 ≠ 𝛿; otherwise, query pk𝑘 ← 𝑠.OGen(𝑖𝑘) and set sk𝑘 = ⊥. Set ctr′ = ctr,
pk = (ctr′, pk0, · · · , pkℓ) and sk = (ctr′, sk0, · · · , skℓ). Then run (mpk′, aux′) ← Reg(crs, aux, pk, 𝑦), where
if 𝑖𝑘 = 2𝛿 in the last step, B submits (D1 [𝛿, 𝑖])𝑖∈[2𝛿 ] to the challenger who returns (mpk𝛿, (hk𝛿, 𝑗) 𝑗∈[2𝛿 ]).
Update mpk = mpk′, aux = aux′,D[pk] = D[pk] ∪ { 𝑦}, append (pk, sk) to R and return ( |R|,mpk, aux, pk);
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– OCor(𝑖): Let R[𝑖] = (pk, sk). Parse pk = (ctr′, pk0, · · · , pkℓ) and secret key sk = (ctr′, sk0, · · · , skℓ), and
query sk′𝛿 ← 𝑠.OCor(ctr′, pk𝛿). Then update sk𝛿 = sk′𝛿 along with the secret keys in R and sk. Append pk to
C and return sk;

– OSig(𝑖, 𝑥,m): let R[𝑖] = (pk, sk), parse pk =
(
ctr′, (pk𝑘)𝑘∈[0.ℓ]

)
and mpk = (ctr, (mpk𝑘)𝑘∈[0,ℓ]). Set hk =

(hk𝑘)𝑘∈[0,ℓ] as in equality (3). For each 𝑘 ∈ [0, ℓ], compute 𝜎𝑘 as in equality (4) if 𝑘 ≠ 𝛿; otherwise, query
𝜎𝑘 ← 𝑠.OSig(ctr, 𝑥,m). Finally, append (𝑖, 𝑥, 𝑚) to S and output 𝜎 = (ctr′, 𝜎0, · · · , 𝜎ℓ).

Challenge. In the challenge phase, parse mpk = (ctr, (mpk𝑘)𝑘∈[0,ℓ]). After receiving the challenge (𝑖∗, 𝑥∗,m∗, 𝜎∗)
where 𝜎∗ = (ctr∗, (𝜎∗

𝑘
)𝑘∈[0,ℓ]), the algorithm B proceeds as follows:

– Compute ctr = (𝑎ℓ, · · · , 𝑎0)2 and ctr∗ = (𝑏ℓ, · · · , 𝑏0)2. We denote 𝑘𝑑 as the maximum 𝑘 ∈ [0, ℓ] such that
𝑎𝑘 ≠ 𝑏𝑘 . If 𝛿 ≠ 𝑘𝑑 , the experiment aborts;

– If (𝑖∗, 𝑥∗,m∗) ∉ S and pk𝛿 ∉ C, submit (𝑖∗, 𝑥∗,m∗, 𝜎∗
𝛿
) to the challenger.

Since 𝛿 is completely independent of A, the above experiment aborts with 1/(ℓ + 1) probability, where ℓ =

log 𝐿. Thus, if A can break the unforgeability of Π with advantage 𝜖, then B can break the unforgeability of Π𝑠

with advantage 𝜖/(ℓ + 1). Since we have demonstrated that 𝜖 is negligible in section 4, the construction Π meets
unforgeability. ⊓⊔

6 Concrete Slotted Registered ABS

In this section, we will present a concrete slotted registered ABS for ABP, which derives from the generic scheme
in section 4. Note that other classes of predicate (e.g., inner-product, monotone span programs, and so on) can also
be achieved in our slotted registered ABS using encodings in [CGW15]. Then we can employ the generic approach
in section 5 to obtain the first registered ABS for ABP.

Preliminaries. An arithmetic span program [IW14], denoted by 𝑉 , is defined by (Y,Z) ∈ Z𝑚×ℓ𝑝 × Z𝑚×ℓ𝑝 where

𝑉 (x) = 1 ⇐⇒ x ∈ Z1×𝑚𝑝 satisfies 𝑉 ⇐⇒ e1 ∈ span⟨diag(x) · Y + Z⟩.

Here we use notation: diag(x) :=
©­­­­«
𝑥1

. . .

𝑥𝑚

ª®®®®¬
∈ Z𝑚×𝑚𝑝 for x = (𝑥1, . . . , 𝑥𝑚) and note that diag(x) = diag(x)⊤. And

e1 ∈ span⟨diag(x) · Y + Z⟩ means that there exists some 𝝎 ∈ Z1×𝑚𝑝 such that e1 = 𝝎(diag(x) · Y + Z)
Recall the predicate encoding for ASP predicate (ciphertext-policy variant) in [CGW15]: let 𝑛 = 2𝑚 + ℓ, 𝑛𝑐 = 2𝑚

and 𝑛𝑘 = 𝑚 + 1, define

CY,Z =

©­­­«
I𝑚 0𝑚×𝑚

0𝑚×𝑚 I𝑚
Y⊤ Z⊤

ª®®®¬ , Kx =

©­­­«
0⊤𝑚 diag(x)
0⊤𝑚 I𝑚
e⊤1 0ℓ×𝑚

ª®®®¬ , ax = (1∥0𝑚),

dx,Y,Z = (1∥𝝎∥ − 𝝎 · diag(x)∥ − 𝝎)

(5)

where 0𝑚 is a row zero vector of size 𝑚. Note that we work with read-once ASP as in [CGW15].

Scheme. Our concrete slotted registered ABS for read-once ASP from SXDH assumption works as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆) and select a collusion-resistant hash function H :
{0, 1}∗ → Z𝑝. Sample

a← Z1×2𝑝 , b⊤ ← Z2𝑝, k← Z1×2𝑝 .
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For all 𝑖 ∈ [𝐿], sample

𝑑𝑖 , 𝑟𝑖 ← Z𝑝, V𝑖 ← Z2×2𝑝 , W𝑖 ← Z2×2(2𝑚+ℓ)𝑝 .

For all 𝑖 ∈ [𝐿], write b⊤
𝑖
= 𝑑𝑖b⊤ and output

crs = ©­«
[a]1,

{
[aV𝑖 , aW𝑖]1, [b⊤𝑟𝑖 ,V𝑖b⊤𝑟𝑖 + k⊤, b⊤𝑖 ]2

}
𝑖∈[𝐿] ,{

[V𝑖b⊤𝑟 𝑗 ,W𝑖 (I2𝑚+ℓ ⊗ b⊤𝑟 𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗} , [ak

⊤]𝑇 ,H
ª®¬

– Gen(crs, 𝑖) : Sample U𝑖 ,Q𝑖 ,T𝑖 ← Z2×2𝑝 . Fetch {b⊤
𝑖
}𝑖∈[𝐿] and {[b⊤𝑟 𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 = ( [aU𝑖 , aQ𝑖 , aT𝑖]1, {[U𝑖b⊤𝑟 𝑗 ,Q𝑖b⊤𝑗 ,T𝑖b⊤𝑗]2} 𝑗∈[𝐿]\{𝑖})

and sk𝑖 = (U𝑖 ,Q𝑖 ,T𝑖).
– IsValid(crs, 𝑖, pk𝑖) :Fetch {[b⊤𝑟 𝑗 , b⊤𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and parsepk𝑖 = ( [aU𝑖 , aQ𝑖 , aT𝑖]1, {[U𝑖b⊤𝑟 𝑗 ,Q𝑖b⊤𝑗 ,T𝑖b⊤𝑗]2} 𝑗∈[𝐿]\{𝑖}).

For each 𝑗 ∈ [𝐿] \ {𝑖}, check

𝑒( [a]1, [U𝑖b⊤𝑟 𝑗]2)
?
= 𝑒( [aU𝑖]1, [b⊤𝑟 𝑗]2),

𝑒( [a]1, [Q𝑖b⊤𝑗]2)
?
= 𝑒( [aQ𝑖]1, [b⊤𝑗]2),

𝑒( [a]1, [T𝑖b⊤𝑗]2)
?
= 𝑒( [aT𝑖]1, [b⊤𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , x𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], compute K𝑥𝑖 as in equality (5) and output:

mpk =
©­­­­«
[a]1, [ak⊤]𝑇 ,H,

[ ∑
𝑗∈[𝐿] aQ 𝑗

]
1
,

[ ∑
𝑗∈[𝐿] aT 𝑗

]
1
,

[ ∑
𝑗∈[𝐿] aW 𝑗

]
1
,[ ∑

𝑗∈[𝐿] (aV 𝑗 + aU 𝑗) ((1∥0𝑚) ⊗ I2) + aW 𝑗

(
Kx 𝑗
⊗ I2

) ]
1

ª®®®®¬
and for all 𝑖 ∈ [𝐿], compute hk𝑖 as

©­­­­­­­«

H, [b⊤
𝑖
]2, [b⊤𝑟𝑖]2, [V𝑖b⊤𝑟𝑖 + k⊤]2,

[ ∑
𝑗∈[𝐿]\{𝑖} Q 𝑗b⊤𝑖

]
2
,[ ∑

𝑗∈[𝐿]\{𝑖} T 𝑗b⊤𝑖

]
2
,

[ ∑
𝑗∈[𝐿]\{𝑖}W 𝑗 (I2𝑚+ℓ ⊗ b⊤𝑟𝑖)

]
2
,[ ∑

𝑗∈[𝐿]\{𝑖} (V 𝑗b⊤𝑟𝑖 + U 𝑗b⊤r𝑖) (1∥0𝑚) +W 𝑗 (I2𝑚+ℓ ⊗ b⊤𝑟𝑖)Kx 𝑗

]
2

ª®®®®®®®¬
.

– Sig(hk𝑖 , sk𝑖 , (Y,Z),m): Sample 𝑡 ← Z𝑝, run ℎ ← H(𝑖,m, (Y,Z)) and compute CY,Z as in equality (5). Parse
sk𝑖 = (U𝑖 ,Q𝑖 ,T𝑖), then compute [k⊤0]2 = [b⊤𝑖 𝑡]2, [k

⊤
1]2 = [b⊤𝑟𝑖]2 and

[k⊤2]2 = [V𝑖b⊤𝑟𝑖 + k⊤ + U𝑖b⊤𝑟𝑖 + (Q𝑖b⊤𝑖 𝑡 + ℎ · T𝑖b⊤𝑖 𝑡)]2,

[K3]2 =
[ ∑︁
𝑗∈[𝐿]\{𝑖}

(V 𝑗b⊤𝑟𝑖 + U 𝑗b⊤r𝑖) (1∥0𝑚) +W 𝑗 (I2𝑚+ℓ ⊗ b⊤𝑟𝑖)Kx 𝑗

]
2

,

[K4]2 =
[ ∑︁
𝑗∈[𝐿]\{𝑖}

W 𝑗 (I2𝑚+ℓ ⊗ b⊤𝑟𝑖)CY,Z

]
2

,

[k⊤5]2 =
[ ∑︁
𝑗∈[𝐿]\{𝑖}

(Q 𝑗b⊤𝑖 𝑡 + ℎ · T 𝑗b⊤𝑖 𝑡)
]
.

Output 𝜎𝑖,(Y,Z) ,m = ( [k⊤0]2, [k⊤1]2, [k⊤2]2, [K3]2, [K4]2, [k⊤5]2).
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– Ver(mpk, 𝜎𝑖∗ ,(Y,Z) ,m, (Y,Z),m): Sample 𝑠← Z𝑝 and run ℎ∗ ← H(𝑖∗,m∗, (Y,Z)). Compute

[v0]1 = [𝑠a]1, [v1]1 =
[ ∑︁
𝑗∈[𝐿]
(𝑠aQ 𝑗 + ℎ∗ · 𝑠aT 𝑗)

]
1

,

[v2]1 =
[ ∑︁
𝑗∈[𝐿]

𝑠aW 𝑗

(
CY,Z ⊗ I2

)]
1

[v3]1 =
[ ∑︁
𝑗∈[𝐿]
(𝑠aV 𝑗 + 𝑠aU 𝑗) ((1∥0𝑚) ⊗ I2) + 𝑠aW 𝑗 (Kx 𝑗

⊗ I2)
]
1

,

and [𝑣4]𝑇 = [sAk⊤]𝑇 . Parse 𝜎𝑖∗ ,(Y,Z) ,m = ( [k⊤0]2, [k⊤1]2, [k⊤2]2, [K3]2, [K4]2, [k⊤5]2) and compute 𝝎 such that e1 =

𝝎(diag(x𝑖∗ ) · Y + Z). Then recover

[z]𝑇 = 𝑒( [v3∥v2]1, [I3𝑚+1 ⊗ k⊤1]2), [z2]𝑇 = 𝑒( [v0]1, [K3∥K4]2)

[𝑧3]𝑇 = 𝑒( [v0]1, [k⊤2]2), [𝑧4]𝑇 = 𝑒( [v1]1, [k⊤0]2), [𝑧5]𝑇 = 𝑒( [v0]1, [k⊤5]2),

[𝑧6]𝑇 = [𝑧3 − 𝑧4 + 𝑧5]𝑇 , [𝑧7]𝑇 = [(z1 − z2) (1∥𝝎∥ − 𝝎 · diag(x)∥ − 𝝎)⊤ − 𝑧6]𝑇

and check [𝑧7]−1𝑇
?
= [𝑣4]𝑇 . If the above check passes, output 1; otherwise, output 0.
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