
IDEA-DAC: Integrity-Driven Editing for Accountable
Decentralized Anonymous Credentials via ZK-JSON
Shuhao Zheng

∗

McGill University & Nullus Labs

Montreal, Canada

shuhao.zheng@mail.mcgill.ca

Zonglun Li
∗

McGill University & Nullus Labs

Montreal, Canada

zonglun.li@mail.mcgill.ca

Junliang Luo

McGill University

Montreal, Canada

junliang.luo@mail.mcgill.ca

Ziyue Xin

McGill University

Montreal, Canada

ziyue.xin@mail.mcgill.ca

Xue Liu

McGill University

Montreal, Canada

xueliu@cs.mcgill.ca

ABSTRACT
Decentralized Anonymous Credential (DAC) systems are increas-

ingly relevant, especially when enhancing revocation mechanisms

in the face of complex traceability challenges. This paper introduces

IDEA-DAC, a paradigm shift from the conventional revoke-and-

reissue methods, promoting direct and Integrity-Driven Editing
(IDE) for Accountable DACs, which results in better integrity ac-

countability, traceability, and system simplicity. We further incor-

porate an Edit-bound Conformity Check that ensures tailored in-

tegrity standards during credential amendments using R1CS-based

ZK-SNARKs. Delving deeper, we propose ZK-JSON, a unique R1CS
circuit design tailored for IDE over generic JSON documents. This

design imposes strictly𝑂 (𝑁) rank-1 constraints for variable-length
JSON documents of up to 𝑁 bytes in length, encompassing serializa-

tion, encryption, and edit-bound conformity checks. Additionally,

our circuits only necessitate a one-time compilation, setup, and

smart contract deployment for homogeneous JSON documents up

to a specified size. While preserving core DAC features such as

selective disclosure, anonymity, and predicate provability, IDEA-

DAC achieves precise data modification checks without revealing

private content, ensuring only authorized edits are permitted. In

summary, IDEA-DAC offers an enhanced methodology for large-

scale JSON-formatted credential systems, setting a new standard in

decentralized identity management efficiency and precision.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • Ap-
plied computing→ Version control; • Theory of computation
→ Circuit complexity.

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00

https://doi.org/10.1145/3589334.3645658

KEYWORDS
ZK-JSON, integrity-driven editing, decentralized anonymous cre-

dential, edit-bound conformity check

ACM Reference Format:
Shuhao Zheng, Zonglun Li, Junliang Luo, Ziyue Xin, and Xue Liu. 2024.

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anony-

mous Credentials via ZK-JSON. In Proceedings of the ACM Web Conference
2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3589334.3645658

1 INTRODUCTION
Credentials serve as attestations, confirming an individual’s identity

or qualifications. Anonymous credentials emerged to fuse this veri-

fication process with user privacy preservation [6]. Decentralized

anonymous credentials (DACs) [13] advance this concept, allowing

users to verify specific attributes without revealing their complete

identity, while operating independently of any central governing

entity. Within a DAC framework, there are several pivotal algo-

rithms, such as request, issue, prove, verify, and revoke [11].
The emergence of DACs and Decentralized Identifiers (DIDs)

proffers a shift towards self-sovereign, privacy-centric authentica-

tion, standing in contrast to the predominant centralized models

[4]. This paradigmatic transition towards Self-Sovereign Identity

(SSI) through DAC is gaining momentum, especially with the ad-

vancements in blockchain technology [14, 20, 26]. Recognizing

this evolution, the World Wide Web Consortium (W3C) is mak-

ing strides towards standardizing DID documents [30] and the

data model for verifiable credentials [31]. These standards seek to

establish foundational metadata for identifiers and enhance the

robustness of the verification mechanisms in digital transactions.

Crucially, W3C endorses the expression of verifiable credentials in

JSON-structured formats [31]. Such a credential can encapsulate

facets ranging from issuer identity and subject attributes to specific

conditions like validity periods. Leveraging embedded digital signa-

tures, this JSON-oriented approach ensures data authenticity and

resistance against tampering. To illustrate, W3C furnishes an exem-

plar
1
where an entire JSON document serves as a credential. This

document comprises components like the issuer’s details, issuance

timestamp, and subject information, all enveloped using the JSON

Web Signature to vouchsafe the data’s integrity and authenticity.

1
https://www.w3.org/TR/vc-data-model/

https://orcid.org/0009-0000-4420-8995
https://doi.org/10.1145/3589334.3645658
https://doi.org/10.1145/3589334.3645658

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

Figure 1: Edit-bound Conformity Check Framework
Traditionally, updates to credentials necessitate a revoke-and-

reissue approach to ensure system integrity and prevent unau-

thorized modifications [11, 23, 24]. This two-step approach not

only introduces computational redundancy but also necessitates

an additional revocation check during every credential verification,

amplifying the overhead. Further compounding the inefficiency,

these prevailing revoke-and-reissue paradigms frequently neglect

the criticality of editing integrity. Without an integrity mechanism,

systems cannot ensure that each data field consistently adheres to

its established norms or criteria. Such oversight undermines system

resilience and exacerbates risks, especially when data fields are

adjusted to accommodate real-world scenarios.

Given the identified limitations in existing systems, it becomes

beneficial to refine the credential update mechanism and enhance

its integrity. To this end, we introduce IDEA-DAC, a novel method-

ology that facilitates Integrity-Driven Editing (IDE) designed for

Accountable Decentralized Anonymous Credentials. Contrary to

traditional systems, IDEA-DAC enables edit directly to a JSON

credential document, ensuring that security and trustworthiness

remain intact. Central to our approach is the application of zero-

knowledge proofs that rigorously assess each edit against robust

integrity standards, thereby presenting an optimized and holistic

framework for the management of JSON credentials.

Furthermore, we introduced an edit-bound conformity check

to ensure the integrity of credentials during modifications, utiliz-

ing ZK-SNARKs built upon Rank-1-Constraint-System (R1CS). The

edit-bound conformity check introduces a framework that empha-

sizes integrity checks in the logic space rather than directly on

the data space, which allows for fine-grained control over human-

readable data, as illustrated in Figure 1. Subsequently, data from this

logic space undergoes serialization into the data space, followed

by encryption into ciphertext. This encrypted form is then suit-

able for publication. We formulated ZK-JSON, a distinctive R1CS
circuit designed for IDE. This design mandates 𝑂 (𝑁) rank-1 con-
straints for JSON documents with variable lengths, up to a maxi-

mum of 𝑁 bytes, covering serialization, encryption, and edit-bound

conformity checks. Crucially, our circuits requires only a singular

compilation, setup, and smart contract deployment, catering to

homogeneous JSON documents up to a predefined size.

In our experimental assessment, we implemented IDEA-DAC

and evaluated its performance using a real-world scenario: aca-

demic profiles of Ph.D. students, which demonstrates the potential

data types and associated integrity rules in a JSON credential. We

primarily gauged our algorithm’s efficiency using three metrics:

number of rank-1 constraints, proving time, and verification time.

Our results suggest a linear correlation between the credential file

size and number of constraints. Additionally, the proving time stays

pragmatically efficient, and the verification time remains constant.

While preserving DAC security and privacy properties, such as

selective disclosure, anonymity, and predicate provability, IDEA-

DAC ensures precise data modification checks. These checks oper-

ate without exposing sensitive data during credential edits, thereby

strengthening the system against any unauthorized changes. The

main contributions of IDEA-DAC can be delineated as:

• Integrity-Driven Editing (IDE): IDEA-DAC introduces a new

mechanism to a DAC system named Integrity-Driven Editing

(IDE). It strengthens editing integrity and traceability, harness-

ing the power of ZK-SNARKs built upon R1CS circuits. More-

over, IDEA-DAC introduces edit-bound conformity checks as

specialized sub-circuits. These checks impose concrete integrity

standards during credential amendments. As opposed to generic

methods, our approach ensures that all credential adjustments

strictly comply with established rules. Via our circuit design,

these integrity checks seamlessly operate within the logic struc-

ture of the data, all the while upholding the privacy of credentials.

• Advanced ZK-JSON Circuit: IDEA-DAC introduces ZK-JSON, a
pioneering R1CS circuit design specifically tailored for JSON seri-

alization, achieving𝑂 (𝑁) rank-1 constraint complexity for JSON

documents up to 𝑁 bytes in size. This innovative design not only

lays the groundwork for deeper investigations into R1CS circuit

architectures and JSON-compatible systems but also ensures a

one-time setup with inherent scalability. By adeptly avoiding po-

tential exponential complexities, it proves particularly robust for

handling expansive JSON datasets, such as repositories detailing

an academic’s comprehensive publication history.

2 RELATEDWORK
Decentralized identity research has had a multitude of projects from

both academia and industry. Many Decentralized Identity (DID)

initiatives commonly feature Predicate Provability, enabling users

to demonstrate compliance without exposing personal data. The

W3C DID standard acts as a key reference; systems are typically

classified as compliant or non-compliant. Compliant systems such

as Candid [21], SpruceID [28], and Verite [8] exist, but only Candid

prioritizes privacy-preserving, granting data access solely upon

user approval. Contrastingly, non-W3C compliant systems like zk-

creds [24] and Coconut [27] also emphasize user privacy. However,

a consistent challenge for these systems is the accurate tracking

of Precise Data Modification Checks. Distinctly, IDEA-DAC, show-

cased in Table 1, amalgamates features such as Privacy-preserving,

Predicate Probability, W3C Conformity, and precise data change

monitoring. Notably, while Coconut deploys a decentralized strat-

egy against malicious issuers, IDEA-DAC utilizes edit-bound con-

formity checks, optimizing the oversight of issuer activities.

Another branch of research that aligns with our work delves

into secure data modifications and privacy-preserving verification,

especially when multiple parties are involved. For instance, in the

area of image editing, Naveh et al. presented PhotoProof [22]. Their

solution allows certain image alterations while ensuring the edited

image remains traceable and authentic. Meanwhile, zkDocs [1] em-

phasizes the secure verification of documents in contexts like mort-

gage applications. While these approaches have demonstrated feasi-

bility on real-world data, they pose implementation challenges. The

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON WWW ’24, May 13–17, 2024, Singapore, Singapore

Candid [21] SpruceID [28] Verite [8] zk-creds [24] Coconut [27] IDEA-DAC PhotoProof [22] ZKDocs [1]

DAC Security & Privacy Properties

Privacy-preserving

Predicate Provability

W3C Conformity

Precise Data Editing Checks

Multi-party Privacy-preserving Infor-

mation Sharing & Verification

Verifiable Information Editing

Fine-grained Editing Check

One-time Setup ZK Circuit

Programmable Editing Bound

Table 1: Comparison between IDEA-DAC and other related systems in terms of DAC Security & Privacy Properties and Multi-
party Privacy-preserving Information Sharing & Verification

underlying ZK circuits demand frequent adjustments: any change

in the underlying data requires recompilation, setup, and redeploy-

ment of the circuit. To illustrate, even a minor image adjustment,

such as cropping from 512 × 512 to 384 × 384, would require a

brand new circuit specific to the modified size. Additionally, while

PhotoProof can track pixel-wise transformations, zkDocs lacks the

ability to examine fine-grained edits within the circuit, largely due

to its representation of data that isn’t interpretable by humans. Our

proposed IDEA-DAC addresses these challenges. It features a circuit

design that requires setup only once, suitable for variable-length

JSON documents, and is adept at ensuring detailed edit integrity

checks, leveraging an advanced R1CS circuit framework.

3 PRELIMINRIES
In this section, we delve into the foundational concepts necessary

for constructing the IDEA-DAC system. Specifically, we introduce

ZK-SNARKs, detail the structure and significance of R1CS, and

explore the Hint strategy and its implications.

3.1 ZK-SNARKs
Zero-Knowledge Proofs (ZKPs) [15, 16] are a cryptographic method

by which one party (the prover) can prove to another party (the

verifier) that they know a value 𝑥 , without conveying any infor-

mation apart from the fact that they know the value 𝑥 . A formal

definition of ZKP can be found in Appendix B.

Zero-Knowledge Succinct Non-Interactive Argument of Knowl-

edge (ZK-SNARKs) [5, 12, 17, 33, 35] are a special form of ZKPs

that have the properties of being non-interactive and succinct. Non-

interactivity means that the proof consists of a single message from

the prover to the verifier. Succinctness means that the size of the

proof is small (polylogarithmic in the size of the statement being

proven), and verification of the proof is fast (also polylogarithmic).

3.2 Rank-1 Constraint System (R1CS)
A Rank-1 Constraint System (R1CS) over a field F serves as a foun-
dational arithmetic representation in the construction of ZKP pro-

tocols. Its structure provides a systematic way to express and verify

computational statements without revealing any information about

the inputs, other than the fact that they satisfy the given statement.

Formally, an R1CS over a field F is described as a triple (𝐴, 𝐵,𝐶),
where each of 𝐴, 𝐵, and 𝐶 are 𝑛 ×𝑚 matrices. Here, 𝑛 denotes the

number of constraints, while 𝑚 represents the number of wires.

An assignment x ∈ F𝑚 is said to satisfy the R1CS if and only if

the following equation is true for all 𝑖: ⟨a𝑖 , x⟩ · ⟨b𝑖 , x⟩ = ⟨c𝑖 , x⟩,
where a𝑖 , b𝑖 , and c𝑖 represent the 𝑖-th rows of matrices 𝐴, 𝐵, and

𝐶 respectively, and ⟨·, ·⟩ denotes the dot product. In the realm of

ZKP protocols, R1CS plays a pivotal role in constructions such as

ZK-SNARKs (e.g., Groth16 [17], Marlin [7], Aurora [3], Orion [34])

and recent folding schemes (e.g., Nova [19], SuperNova [18]). These

protocols exploit the succinctness and efficiency of R1CS to provide

proofs that are both compact and quick to verify, thereby enabling

a myriad of applications in privacy-preserving transactions, secure

computations, and blockchain scalability solutions.

3.3 Hint
R1CS, inherently designed to verify constraints for inputs, extends

its capabilities beyond mere value computations within a circuit. It

introduces two primary methods for calculating values designated

for other circuit sections. The first is a direct approach that uti-

lizes circuit arithmetic for computation. However, when this direct

method becomes inefficient or cumbersome, an alternative strategy,

termed Hint, is preferred. The "Hint" method allows the value to

be computed off-circuit, and validated in-circuit. This implies that

the prover can input the value directly into the circuit, with con-

straints in place to ensure its accurate computation. To illustrate,

consider the computation of 𝑦 = 𝑓 (𝑥). If constructing 𝑓 (·) within
the circuit is challenging, an alternative is to use a function 𝑔(𝑥,𝑦)
that verifies the correctness of this computation in a more efficient

manner. For instance, to compute the inverse of 𝑥 ∈ Z𝑝 , one might

directly compute 𝑦 = 𝑥𝑝−2 in-circuit with ⌈log𝑝⌉ multiplications.

However, with the "Hint" approach, by directly inputting 𝑦, only a

single rank-1 constraint is needed to ensure 𝑥 · 𝑦 = 1. Effectively

deploying the "Hint" strategy in cases where direct computation is

onerous can result in significant in-circuit computational savings,

leading to enhanced proving and verification times.

Figure 2: IDEA-DAC Functionalities

4 IDEA-DAC
Decentralized anonymous credentials (DACs) [13] are essential for

decentralized identity systems. DACs allow users to get verified

without showing their actual identities, balancing privacy with

trust. In simple terms, DACs let users hold multiple credentials, each

approved by the issuer’s private key, eliminating intermediaries

during the verification process.

In a DAC system, three main players exist: issuers, users, and ver-

ifiers. Users ask for credentials by sharing their data and any other

needed information. Issuers, using their private key, grant these

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

credentials and remain the rights to revoke them. Users can then

show these credentials to verifiers, who can check their authenticity

without contacting the issuer directly.

However, existing DAC systems overlook the integrity of editing.

Within the current DAC’s method of revoking and reissuing as

a form of editing, maintaining the integrity of edits is challeng-

ing. Furthermore, editing goes beyond mere content alterations; it

necessitates setting distinct integrity rules for different editors in

different use cases. In response to this challenge, we present IDEA-

DAC: a system that guarantees editing integrity in JSON-formatted

DACs through edit-bound conformity checks, as depicted in Figure

2. This section delves into the formal definitions of JSON credentials

and the associated edit-bound conformity checks.

4.1 JSON Credentials
A credential 𝑃 is represented as a JSON document, comprised of

various fundamental items. These items include strings, numbers,

arrays, and dictionaries. For the purpose of subsequent definitions,

we introduce a universal object set, O. It is formally defined as

O := S ∪ N ∪ A ∪ D, where S,N ,A, and D stand for the sets

of all strings, numbers, arrays, and dictionaries, respectively. This

definition of O will be utilized in the ensuing sections.

Definition 4.1 (String). A String item is denoted by 𝑟 ∈ Σ∗, where
Σ is the set of all the possible characters.

To encompass most practical scenarios, we assume all characters

to be represented as ASCII-encoded byte values; thus, Σ = [0, 255].
Definition 4.2 (Number). Define aNumber item 𝑟 as 𝑟 ∈ {0, 1, 2, 3,
4, 5, 6, 7, 8, 9}∗.

The definition for numbers can be generalized to encompass

positive integers. Furthermore, it can be extended to accommodate

various numerical representations, including negative integers (de-

noted by −𝑟), floating-point numbers (denoted by (−)𝑟1 .𝑟2), and
scientific notations (denoted by (−)𝑟1 .𝑟2𝑒 (−)𝑟3).
Definition 4.3 (Array). An array is 𝑎 ∈ O∗, which means 𝑎 is an

ordered tuple whose elements are all elements in O.
In an array, an element can be of types such as a string, integer,

dictionary, or even another array. The length of the array can be

adjusted by adding or removing items within it.

Definition 4.4 (Dictionary). A dictionary 𝑑 is a set of key-value

pairs with the following properties:

𝑑 ∈ D ⇐⇒ ∃𝑛 ∈ Z+, 𝑑 = {(𝑘1, 𝑣1), (𝑘2, 𝑣2), . . . , (𝑘𝑛, 𝑣𝑛)},
𝑘𝑖 ∈ S, 𝑣𝑖 ∈ O for each 𝑖 ∈ [𝑛],

A dictionary within a credential comprises multiple key-value

pairs; the key must always be a string, whereas the value can be a

string, integer, array, or even another dictionary. Conventionally, a

JSON credential 𝑃 is represented as a dictionary, i.e., 𝑃 ∈ D.

4.2 Edit-bound Conformity Check
Every legitimate editing activity must adhere to several integrity
rules, each represented as a function 𝜎 . These rules ensure that the

editor follows the appropriate rules to undertake such edits. The

integrity verification comes in two variants: the target-only check

and the source-target differential check.

Definition 4.5 (Target-only check). A target-only check is a

function 𝜎\ (𝑟) → {0, 1}, where 𝑟 is the edited credential item and

\ is some pre-defined parameters.

The combination of 𝜎 and \ defines an integrity rule specific
to an editor. As an example, an editor might be constrained to an

integrity rule for a String credential item, termed as “One of the Set".

This rule restricts the editor to only modify the item to a new string

𝑟 ′ such that 𝑟 ′ ∈ \ . Here, \ denotes a pre-defined set of strings

allowable for this particular editor. Thus, the pairing of 𝜎 with \

characterizes a distinct integrity rule for that editor.
At times, merely examining the target credential is inadequate

for regulating an editing activity. A source-target differential check
assesses the disparity between the pre- and post-edited credentials.

Definition 4.6 (Source-target differential check). A source-

target differential check is a function 𝜎′
\
(𝑟, 𝑟 ′) → {0, 1}, where 𝑟

and 𝑟 ′ stand for pre- and post-edited credential items.

Just as with target-only checks, an integrity rule is defined by the
combination of 𝜎′ and \ . For instance, an editor might be subject to

an integrity rule for an array item, termed "Append Only". This rule

dictates that the editor is only permitted to append elements to the

array item 𝑟 . If the augmented array is denoted as 𝑟 ′, 𝜎′
\
(𝑟, 𝑟 ′) =

𝑇𝑟𝑢𝑒 ⇐⇒ 𝑟𝑖 = 𝑟 ′
𝑖
, ∀0 ≤ 𝑖 < |𝑟 |, where |𝑟 | is the length of the

array item 𝑟 . In such a situation, \ is always ⊥, meaning that this

rule does not need additional parameters.

These two checks solely verify if the editing activity adheres

to the appropriate integrity rules. However, if an editor intends

to publish the edited credential item as a public record, additional

checks must be passed. We denote the checks that need to be con-

ducted prior to publishing content as the encoding and encryption
check 𝜔 , which assesses the correctness of the serialization and

encryption procedures. It will grant approval if and only if both the

serialization and encryption processes are executed correctly.

Definition 4.7 (Encoding and Encryption check). An encod-

ing and encryption check is a function: 𝜔 (𝑟, 𝑐, 𝑘) → {0, 1} that
verifies if 𝑐 = 𝐸𝑛𝑐𝑘 (𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑟)), where 𝑟 is the credential and

𝐸𝑛𝑐, 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 is the symmetric encryption algorithm and the seri-

alization algorithm respectively.

Finally, we define the edit-bound conformity check, which encom-

passes all the checks above.

Definition 4.8 (Edit-bound Conformity Check). Denote _ as

the security parameter. The edit-bound conformity check is repre-

sented by the function 𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′) → {0, 1}, where 𝑟 and
𝑟 ′ denote the pre- and post-edited items, respectively, and 𝑐 and

𝑐′ are their corresponding ciphertexts. Additionally, 𝑘 is the en-

cryption key, known to both the user and editors, and Σ, Σ′ stands
for set of all the applied target-only checks and the source-target

differential checks. Note that both 𝑐 and 𝑐′ are encrypted using the

same key 𝑘 . The function 𝜙 satisfies completeness, soundness, and

privacy-preserving properties, formally defined in Appendix C.

5 INTEGRITY-DRIVEN EDITING VIA ZK-JSON
In this section, we delve into ZK-JSON, the intricate R1CS circuit
design behind Integrity-Driven Editing (IDE) for IDEA-DAC. With

a focus on modularity and efficiency, the IDE circuit is crafted to

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON WWW ’24, May 13–17, 2024, Singapore, Singapore

validate every edit made to a JSON document against strict integrity

rules, all while requiring setup only once. Through advanced se-

rialization, encryption, and efficient batch merging, it guarantees

secure and optimal in-circuit document processing. Coupled with

stringent conformity checks, this design assures both the accuracy

and integrity of document edits, making it a cornerstone for the

security of large-scale JSON credentials in real-world scenarios.

5.1 R1CS Primitives
The Rank-1 Constraint System (R1CS) is essential for converting

certain logic structures. To effectively harness the power of R1CS,

we introduce several foundational primitives. A critical element

in this process is the linear combination, which underpins the

necessary composability for circuit logic.

Definition 5.1 (Linear combination). A linear combination, de-

noted as 𝑙 = [(𝑐𝑖 , 𝑥𝑖) | 𝑖 = 1, 2, . . . , 𝑛], comprises an array of 2-tuples

(𝑐𝑖 , 𝑥𝑖) with arbitrary length 𝑛 ∈ Z+. Here, 𝑐𝑖 ∈ F represents the
coefficient, while 𝑥𝑖 ∈ Z≥0 is the wire ID in R1CS, denoting the

𝑥𝑖 -th element in the assignment vector x.

Notably, the variable ID 0 signifies the constant 1. Following

this definition, the conversion of a linear combination into rows

within the matrices𝐴, 𝐵, and𝐶 is intuitive. To streamline our discus-

sions, we’ll use linear combination and variable interchangeably
henceforth. Based on the foundation of linear combinations, we

present the subsequent R1CS primitives:

• 𝑎 [𝑁] ← NewArray(𝑁): Initializes an array of size 𝑁 .

• 𝑐 ← Add(𝑎, 𝑏): Combines the terms of 𝑎 and 𝑏 to produce a new

linear combination. No new wires or constraints are added.

• 𝑐 ← Sub(𝑎, 𝑏): Produces a linear combination by subtracting 𝑏

from 𝑎. To achieve this, all coefficients in 𝑏 are negated in F. No
additional wires or constraints are introduced.

• 𝑐 ← Mul(𝑎, 𝑏): Represents the product of two variables. If ei-

ther variable is constant, the coefficients of the other are scaled.

Otherwise, it creates 𝑐 = [(1, newID)] and a constraint 𝑎 · 𝑏 = 𝑐 .

• 𝑐 ← Or(𝑎, 𝑏): Computes the logical OR between two Boolean-

constrained variables. If both are Boolean-constrained, it results

in the constraint 𝑎 · 𝑏 = 𝑎 + 𝑏 − 𝑐 .
• 𝑐 ← And(𝑎, 𝑏): Computes the logical AND for two Boolean

variables, which is synonymous with Mul(𝑎, 𝑏).
• 𝑏 ← IsZero(𝑎): Determines if variable 𝑎 is zero. Instead of using

⌈log |F|⌉ constraints for direct computation, it uses three con-

straints based on hint. Specifically, the constraints are:𝑏 · (1−𝑏) =
0, 𝑎 · 𝑏 = 0, and, given the inverse 𝑐 of 𝑎 + 𝑏, (𝑎 + 𝑏) · 𝑐 = 1.

• 𝑏 ← IsNotZero(𝑎): Checks if variable 𝑎 is non-zero. This is de-

rived from IsZero(𝑎) using the operation𝑏 ← Sub(1, IsZero(𝑎)).
• 𝑐 ← IsEqual(𝑎, 𝑏): Checks if 𝑎 and 𝑏 are equal, implemented

using IsZero(Sub(𝑎, 𝑏)) with three constraints.

• 𝑐 ← Select(𝑠 , 𝑟0, 𝑟1): Outputs 𝑟0 if 𝑠 = 1 and 𝑟1 otherwise. It

introduces 𝑐 = [(1, newID)] and the constraint 𝑠 · (𝑟0−𝑟1) = 𝑐−𝑟1.
• Assert(𝑎 == 𝑏): Ensures 𝑎 and 𝑏 are equal in the constraint

system using the constraint 𝑎 · 1 = 𝑏.

• 𝑏 ←WithinBinary(𝑎, 𝑁): Verifies if variable 𝑎 has a bit-size of

at most 𝑁 . It inputs the bit decomposition 𝑏𝑖𝑡 [𝑁] of 𝑎 and uses

𝑁 + 3 constraints, specifically: 𝑏𝑖𝑡 [𝑖] · (1 − 𝑏𝑖𝑡 [𝑖]) = 0, ∀𝑖 ∈ [𝑁],
and checks the decomposition with IsEqual((∑𝑛−1

𝑖=0 2
𝑖𝑏𝑖𝑡 [𝑖]), 𝑎).

• 𝑟 ← RO(. . .): Utilizes an in-circuit random oracle to generate a

pseudo-random variable derived from existing circuit variables.

This is enforced using collision-resistant ZK-friendly hash func-

tions like MiMC, resulting in efficient R1CS construction.

5.2 Length-prepadded String (LPS)
To standardize a one-time setup for homogeneous documents, the

circuit must accommodate variable-length inputs up to a maximal

threshold. This flexibility allows for efficient version control when

documents of the same kind undergo changes, such as increased

string lengths or added array items. By introducing redundancy

into the circuit structure, we can mitigate the need for frequent

re-compilations, setups, and deployments whenever data undergoes

modifications. Thus, we present a length-prepadded representation

for strings. This encoding embeds the actual string length directly

into the circuit, facilitating efficient string processing. Given that

ASCII characters are byte-encodable, each byte is treated as an

individual variable for easier string operations.

Definition 5.2 (Length-prepadded String (LPS)). An LPS, 𝑠 ,

with a maximum byte-length 𝑁 , is an array of size 𝑁 + 1 described
as 𝑠 = [𝑙, 𝑠0, 𝑠1, . . . , 𝑠𝑙−1, 𝐷, . . . , 𝐷]. Here, 𝑙, 𝑠𝑖 ∈ F with 𝑠𝑖 ∈ [0, 255]
and 𝑙 < 𝑁 . The symbol 𝐷 signifies a dummy constant excluded

from valid string characters, such that 𝐷 ∈ F and 𝐷 ∉ [0, 255]. For
notation simplicity, we use 𝑙 | |𝑠 [𝑁] to represent the string.

To further streamline string operations, we introduce two primi-

tives for handling dummy values:

• 𝑏 ← IsDummy(𝑎): Determines if variable 𝑎 represents a dummy

character in a string, achieved using IsEqual(𝑎, 𝐷).
• 𝑏 ← IsNotDummy(IND)(𝑎): Verifies if variable𝑎 is not a dummy

character, computed via Sub(1, IsDummy(a)).

5.3 LPS Operations
5.3.1 Range Check. To ensure that string inputs to the circuit are

valid, every string variable must either be a byte or the dummy

value𝐷 . Specifically, 𝑠 [𝑖] < 256 or 𝑠 [𝑖] = 𝐷 for all 𝑖 = 0, 1, . . . , 𝑁 −1.
For this purpose, we propose an 𝑂 (𝑁)-sized range check circuit:

Assert
(∑𝑁−1

𝑖=0 (WithinBinary(𝑠 [𝑖], 8)+IsDummy(𝑠 [𝑖])) == 𝑁
)
,

which necessitates 14𝑁 + 1 constraints. The correctness of this

construction is evident when observing that bothWithinBinary
and IsDummy cannot simultaneously be true. If any 𝑠 [𝑖] falsifies
both, the sumwill be less than 𝑁 . Therefore, the assertion mandates

that at least one of these values be true for each 𝑠 [𝑖].
5.3.2 Legitimacy Check. For operations to be correctly executed

later, strings input to the circuit must adhere to the LPS format.

To verify this for all strings up to a maximum length 𝑁 , we pro-

pose an 𝑂 (𝑁) legitimacy check. Given an LPS 𝑙 | |𝑠 [𝑁] , the legiti-
macy check validates three aspects: 1) 𝑠 [𝑖] ≠ 𝐷 for 0 ≤ 𝑖 < 𝑙 ; 2)

𝑠 [𝑖] = 𝐷 for 𝑙 ≤ 𝑖 < 𝑁 ; 3) 𝑙 < 𝑁 . While this may seem straight-

forward, accounting for variable 𝑙 that might assume any value in

F complicates matters. A naive approach involves 𝑂 (𝑁) in-circuit
variable comparisons, resulting in 𝑂 (𝑁 log𝑁) constraints, which
is sub-optimal. We present an optimized legitimacy check that

needs only 𝑂 (𝑁) constraints. The circuit computes a tag 𝑐 [𝑖] for
each variable: 𝑐 [𝑖] = 𝑙 − 𝑖 − 1 if 𝑠 [𝑖] ≠ 𝐷 , and 𝑖 + 1 − 𝑙 otherwise.
This requires 4𝑁 constraints. Then, we establish the following con-

straints based on 𝑐 [𝑖], also taking into account if the end of the

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

actual string has been reached: 𝑐 [𝑖] == 𝑐 [𝑖 − 1] − 1 if the end

hasn’t been reached, and 𝑐 [𝑖] == 𝑐 [𝑖 − 1] + 1 otherwise. This im-

plementation requires 7𝑁 − 6 constraints. The string ends when

the first index 𝑖 has 𝑐 [𝑖] as a dummy variable. This is tracked us-

ing a Boolean variable, requiring 𝑁 constraints. Then, considering:

0 < 𝑙 < 𝑁 ⇐⇒ ∃0 ≤ 𝑖 < 𝑁, 𝑐 [𝑖] = 0. We need to ensure either: 1)

only one 0 exists in 𝑐 [𝑖]; or 2) 𝑙 = 0. This demands 3𝑁 +4 constraints.
An optimized legitimacy check algorithm is shown in Algorithm 2.

5.3.3 Merge Check. During JSON credential serialization, two LPS

strings must be concatenated while retaining format integrity. Con-

structing a generic circuit capable of merging strings of various

lengths poses challenges. It’s essential to design a multipurpose

circuit that merges any two strings efficiently and correctly.

The naive approach requires𝑂 ((𝑁𝑎+𝑁𝑏)2) constraints to merge

two LPS strings of maximal lengths 𝑁𝑎 and 𝑁𝑏 , as shown in Al-

gorithm 6. We propose a hint-based optimization that needs only

𝑂 (𝑁𝑎 + 𝑁𝑏) constraints. Instead of using a multiplexer, the prover

inputs the merged LPS directly. The circuit then verifies its cor-

rectness via various constraints. Given two LPS structures, 𝑠𝑎 =

aLen| |a[𝑁𝑎] and 𝑠𝑏 = bLen| |b[𝑁𝑏] , the prover inputs the result LPS
𝑠𝑐 = cLen| |c[𝑁𝑎+𝑁𝑏] directly into the circuit. We validate 𝑠𝑐 by

ensuring it’s correctly formatted and is the exact merged LPS of 𝑠𝑎
and 𝑠𝑏 through the following checks:

(1) Assert that the length of the merged string is the sum of the

lengths of both strings: Assert(cLen == Add(aLen, bLen)).
(2) Ensure the range check of the merged string: RangeCheck

(
c[𝑁𝑎+𝑁𝑏]

)
, referencing the same circuit as in Section 5.3.1.

(3) Invoke an in-circuit random oracle to produce a pseudo-random

value 𝑟 and validate the equation:∏𝑁𝑎−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + a[𝑖])IND(a[𝑖])]

×
∏𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1 + aLen) + b[𝑖])IND(b[𝑖])]

=
∏𝑁𝑎+𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1) + c[𝑖])IND(c[𝑖])],

(1)

Define sets 𝑆1 = {(256(𝑖 + 1) + a[𝑖])IND(a[𝑖])} ∪ {(256(𝑖 + 1 +
aLen)+b[𝑖])IND(b[𝑖])} and 𝑆2 = {(256(𝑖+1)+c[𝑖])IND(c[𝑖])}.
Each variable in a[𝑁𝑎] and b[𝑁𝑏] is coupled with its target in-

dex in the merged string. The lowest 8 bits store the byte value,

while the subsequent bits indicate the target index starting

from 1. This ensures the uniqueness and non-zero nature of

each non-dummy element in sets 𝑆1 and 𝑆2. Due to the range

check constraints and unique index bits of the variables, we

ensure that the first aLen + bLen variables in 𝑆2 match those in

𝑆1. Given 𝑠𝑎 and 𝑠𝑏 are both legitimate LPS as checked initially,

and there are exactly aLen+bLen non-zero terms in 𝑆1, we infer

that all the other variables in 𝑆2 are dummy variables, ensur-

ing the legitimacy of 𝑠𝑐 . Finally, according to Schwartz–Zippel

lemma [25], this check passes with a negligible soundness er-

ror of
𝑁𝑎+𝑁𝑏

|F | . This final check utilizes |RO| + 10(𝑁𝑎 + 𝑁𝑏) − 2
constraints, a great improvement over the naive method when

employing ZK-friendly hash functions as the random oracle.

5.4 Serialization
Drawing from the foundational LPS operations, we design a JSON

serialization circuit, aligning with the definition in Section 4.1. By

predetermining maximal length parameters for Number, String,

and Array, we eliminate repetitive re-compilations, setups, and

deployments.While changing value types within a Dictionary poses

challenges, we address this by presuming fixed value types given

the typical static nature of JSON document structures. This strategy

allows flexibility with arbitrary keys and values, ensuring a one-

time setup for homogeneous documents. We subsequently detail

the serialization circuit Encode for each JSON data type.

5.4.1 Encoding Number. The process of encoding a number man-

dates its decimal decomposition within the circuit. This operation,

when approached traditionally, can be computationally costly. To

ameliorate this, we employ a strategy similar to the one inWithin-
Binary for bit-decomposition using hints. This strategy involves

computing the decomposition outside the circuit and subsequently

verifying its accuracy within the circuit. For a given number 𝑥

with a maximum of 𝑁 digits, the prover inputs a length-prepadded

decimal decomposition, represented as len| |dec[𝑁] in big-endian

format, with trailing 0s serving as dummy digits. The decomposi-

tion’s accuracy is confirmed using three dedicated sub-circuits:

(1) RangeCheckDecimal(dec[𝑁]): This validates that each dec[𝑖]
lies in [0, 9] for all 𝑖 ∈ [𝑁]: Assert

(∑𝑁−1
𝑖=0 (IsEqual(𝑠 [𝑖], 8) +

IsEqual(𝑠 [𝑖], 9) +WithinBinary(𝑠 [𝑖], 3)) == 𝑁
)
, necessitat-

ing 12𝑁 + 1 constraints. The correctness of this method resem-

bles that for the LPS range check in Section 5.3.1.

(2) Decomposition Check: Utilizing a remLen variable to track

the residual length, and an isEnd variable to signify the ter-

mination of the current digit sequence, we reconstruct the

digits in big-endian format to match the original number us-

ing: 1) sum = Select(isEnd[𝑖], sum,Mul(sum, 10)); 2) sum =

Add(sum, dec[𝑖]). Then, we use an assertion, Assert(sum = 𝑥),

to validate the correctness of the decomposition. It’s notewor-

thy that this mechanism inherently ensures 𝑥 < 10
𝑁
, given the

nonexistence of an 𝑁 -digit decomposition for 𝑥 when 𝑥 ≥ 10
𝑁
.

(3) LegitimacyCheck: This ascertains that the decomposition is in

valid format, ensuring all trailing digits are zeroes, represented

by: Assert(And(isEnd[𝑖], IsNotZero(dec[𝑖])) == 0) .
The final step involves translating the digits into an ASCII-

encoded LPS as: out[𝑖] = Select(isEnd[𝑖], 𝐷,Add(dec[𝑖], 48)) . Col-
lectively, these checks and conversions demand 𝑂 (𝑁) rank-1 con-
straints. A complete algorithm is provided in Algorithm 1.

5.4.2 Encoding String. Before we initiate the encoding of strings,
it’s essential to validate that the strings adhere to the expected LPS

format. This validation is achieved through the range and legitimacy

checks as described in Sections 5.3.1 and 5.3.2. After ensuring they

are in the correct LPS format, we then merge a double quotation

mark at both the beginning and the end of the LPS.

5.4.3 Encoding Array. When encoding an array that contains var-

ious objects, it’s crucial to exclude any empty elements from the

serialized LPS. To this end, we implement the IsEmpty function to

ascertain the status of each object within the array. For a Number

𝑥 , we designate a value 𝐷′, such that 𝐷′ > 10
maxDigit

, to repre-

sent its emptiness, with a slight modification of the number en-

coding circuit. For an LPS structure, 𝑙 | |𝑠 [𝑛] , the emptiness is de-

termined by the condition 𝑙 = 0. Both Arrays and Dictionaries

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON WWW ’24, May 13–17, 2024, Singapore, Singapore

are assessed recursively to determine their emptiness. Given these

mechanisms, the encoding process for an Array 𝑎 [𝑛] can be out-

lined as: 1) tmpLPS = Merge(oldLPS, Encode(a[i])); 2) newLPS =

SelectArray(IsEmpty(a[i]), oldLPS, tmpLPS), where SelectArray
is Select over each individual variable.

5.4.4 Encoding Dictionary. Encoding a Dictionary closely mirrors

the Array encoding process, but there’s a key distinction to note:

Dictionary values are typified from the beginning. Therefore, when

invoking the Encode function, both the key and its paired value

are encoded. This approach offers flexibility, allowing documents

to omit certain predefined Dictionary fields, while still adhering to

a one-time setup. To sum up, given every JSON document inher-

ently represents a Dictionary, the serialization process begins with

this primary Dictionary, and then recursively proceeds to ensure

accurate serialization of the entire JSON document.

5.5 Encryption
Upon obtaining the serialized JSON string 𝑙 | |𝑠𝑁 as an LPS, we pro-

ceed to encrypt it within the circuit using an encryption key. This

encryption conceals the internal data before it is published. Al-

though ZK-friendly encryption algorithms like MiMC can adeptly

encrypt field elements using minimal rank-1 constraints, encrypt-

ing the LPS byte-by-byte could result in a vast ciphertext. This

arises since every byte is encrypted into a separate field element,

potentially consuming up to 254 bits in the BN254 elliptic curve

which is supported by native EVM pre-compiles. To address this, we

emphasize compressing the LPS bytes before encryption. Each byte

occupies a maximum of 8 bits, making it efficient to merge every

⌊ 254
8
⌋ = 31 bytes into a single variable, achieving lossless compres-

sion. Additionally, it’s crucial to encrypt only the actual length bytes,

which necessitates additional constraints to manage the dummy

values. The Compress procedure constructs compressed variables

𝑚 [𝑀] , where𝑀 = ⌈𝑁
31
⌉, and a dummy indicator isDummy[𝑀] as: 1)

𝑚[𝑖] = ∑
min(𝑁,31(𝑖+1))
𝑗=31𝑖

2
8(𝑗−31𝑖)𝑠 [𝑗] ·IND(𝑠 [𝑗]); 2) isDummy[𝑖] =

IsZero
(∑

min(𝑁,31(𝑖+1))
𝑗=31𝑖

IND(𝑠 [𝑗])
)
. Then, the Encrypt operation

generates the ciphertext 𝑐 [𝑀] using the secret key 𝑘 ∈ F: 𝑐 [𝑖] =
Select(isDummy[𝑖], 0, MiMC(𝑘 ,𝑚[𝑖])).Weassign 0 to dummy vari-

ables to simplify the array comparison process in Section 5.8.

5.6 Edit-bound Conformity Check Circuit
Once all the data in the JSON document is logically represented in

the circuit inputs, incorporating checks on this data becomes rela-

tively straightforward, requiring only a modest number of rank-1

constraints. For instance, to ascertain whether a Number lies within

a specific range, merely two in-circuit variable comparisons suffice.

Verifying the correctness of a string’s format can be accomplished

via character-by-character comparison or a range check.

Nonetheless, each edit-bound check circuit is intrinsically tai-

lored to its specific use cases. Attempting to design a universal

circuit capable of managing every conceivable check isn’t prag-

matic. To retain the one-time setup characteristic of the circuit, we

define two sets of sub-circuits: C𝑡 and C𝑠𝑡 . These sets include all
feasible target-only checks 𝜎\,𝑠 (𝑟) and source-target differential

checks 𝜎′
\,𝑠
(𝑟, 𝑟 ′) relevant to the particular use case. Here, \ is also

variables fed into the circuit to ensure utmost flexibility, while 𝑠

acts as a selection bit, indicating the applicability of this edit-bound

check. Consequently, the final edit-bound check circuit, denoted

EditCheck(𝑟, 𝑟 ′, \, 𝑠), operating on an old credential 𝑟 and its new

counterpart 𝑟 ′, is formulated as: Assert
(∑

𝜎\,𝑠 ∈C𝑡 (1 − 𝜎\,𝑠 (𝑟)) · 𝑠+∑
𝜎 ′
\,𝑠
∈C𝑠𝑡 (1−𝜎

′
\,𝑠
(𝑟, 𝑟 ′)) · 𝑠 == 0

)
. Note that both the parameters \

and the selection bits 𝑠 should be accessible to the verifier, ensuring

the edit-bound check adheres to the correct protocol.

5.7 Achieving Strictly Linear Circuit Size
While the Merge technique delineated in Section 5.3.3 produces

constraints linear in relation to the input size, consecutively merg-

ing LPS in a serial manner could culminate in a complexity of

𝑂 (𝑁 2) constraints for documents with a maximum length of 𝑁

bytes. To enhance circuit efficiency, we introduce the BatchMerge
strategy. This approach guarantees a strictly linear𝑂 (𝑁) constraint
complexity for documents that span up to 𝑁 bytes in length. The

main idea behind BatchMerge is to first gather all the LPSs that
need to be merged in sequence. After collecting them, we then

merge them all together using an enhanced version of the merge

check process, detailed in Algorithm 4.

The transition from a 2-LPS merge check to a more comprehen-

sive 𝑛-LPS merge check is similar to what we discussed in Section

5.3.3. We combine the target index with the byte value for each byte

in the input LPS. Afterwards, we ensure the two batch multiplica-

tions are equal using randomness generated by an in-circuit random

oracle. With minor alterations to the serialization procedure pre-

sented in Section 5.4, the entire IDE circuit can attain a linear circuit

complexity in relation to the maximal document size. This optimiza-

tion proves pivotal, especially when contemplating the scaling of

JSON documents to vast dimensions, such as cataloging a scholar’s

complete publications within a singular document.

5.8 Put Everything Together
Using the modules we’ve described earlier, we now present a com-

prehensive circuit for Integrity-driven Editing (IDE) of JSON docu-

ments. The circuit begins with legitimacy and range checks for all

inputted strings. Next, both the old and new credentials are serial-

ized and encrypted. The circuit then compares these two versions

to ensure they adhere to specified editing integrity rules. It’s impor-

tant to emphasize that the IDE circuit is designed to intrinsically

encrypt both the old and new credentials using the same key to

ensure that editors cannot modify the encryption key.

An essential step in finalizing the circuit is to validate that the

in-circuit ciphertext matches the one computed externally. This

ensures both serialization and encryption processes are accurate.

Given the presence of dummy variables in our ciphertext variable

array, we introduce a circuit, AssertArray(𝑎𝑁𝑎
, 𝑏𝑁𝑏

), to validate

the equality of two arrays, even if their lengths differ. It achieves

this by padding the shorter array with zeros until both arrays reach

a common length, 𝑁 = max(𝑁𝑎, 𝑁𝑏). The equality of the arrays

is then verified using: Assert
(∑𝑁−1

𝑖=0 IsEqual(𝑎[𝑖], 𝑏 [𝑖]) == 𝑁

)
.

This wraps up our discussion on the IDE circuit design. Each com-

ponent has been meticulously refined for optimal performance,

ensuring advanced capabilities with a reasonable constraint count.

The complete IDE circuit can be found in Algorithm 5.

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

6 USE CASE
IDEA-DAC transforms credential management by emphasizing

integrity-driven verification. It offers a more efficient approach

than the traditional revoke-and-reissue method, guaranteeing that

credential alterations uphold system integrity. DACs have diverse

applications, from employment to government services and medical

records, underlining their practical significance.

According to the W3C’s production rule [29] and verifiable cre-

dentials data model [31], credentials are serialized into JSON format.

EXAMPLE 33 [32] displays a verifiable credential in a DID docu-

ment linked to a resident card. Organizations can validate this by

examining its JSONWeb Signature and the issuer’s public key. Tech-

nically aligned with the W3C standard, IDEA-DAC explores JSON

serialization through a provable circuit, supporting multi-party

edits. Specific entities, like past employers, can add details about

job titles, employment spans, and roles. Professional organizations

can input data on memberships, certifications, or accolades. Edu-

cational bodies can list degrees, grades, and academic milestones,

while peers or clients might contribute testimonials or skill endorse-

ments. Though individuals can’t modify these entries in their DAC,

they can control their disclosure, like showcasing recent testimo-

nials while withholding older ones. This offers a balance: while

individuals control their data’s visibility, their reputation also relies

on externally verified, immutable inputs.

IDEA-DAC, as elaborated in Appendix ??, illustrates a multi-

party editable credential system for DID. This protocol delineates

the creation, reading, and updating of a credential document, akin

to the ethr-did method on Ethereum [10]. While authorized parties

can modify designated fields in the document, the permissions

vary amongst different entities within these parties. In a university

scenario, imagine the following Ph.D. profile acting both as a verifier

of student status within educational institutions and as evidence of

the educational level for job contexts:

{" program_status ":" Ongoing"," program_years ":5,

"publications ":[{" title ":" XXX","year ":2022}] ,

"student_id ":" UNI421",

"duration ":{" start ":"08/01/18" ," end ":"05/31/23"}}

The program_status field uses a specified set of strings to de-

note the student’s current stage, and the program_years reflects
the research duration. New articles can be added to the append-

only publications without altering previous entries. Meanwhile,

student_id provides a uniquely formatted identifier, and duration
denotes the program’s duration in a timeframe format.

7 EXPERIMENTS
We implemented the IDEA-DAC circuit for the PhD Profile use case

described in Section 6 as our benchmark, and conducted experi-

ments to assess our circuit’s performance. Our algorithmic design

is encapsulated within a comprehensive circuit, developed using

the Gnark [9] framework. All experiments were conducted on a

standard AWS EC2 r5a.8xlarge instance, equipped with 32 vCPUs
and 256GB of memory. To evaluate the scalability of our circuit, we

varied the document size by incrementing the maximum number

of publications and then measured three key metrics across these

sizes: the number of rank-1 constraints, the proving time, and ver-

ification time. Beyond the Encoding and Encryption checks, we

incorporates five distinct integrity rules:

(1) One of the Set: Suitable for various data types, this rule lim-

its modifications to a well-defined set of values. For example,

within the program_status field, the permissible values are lim-

ited to "Approved", "Ongoing", "Graduated", and "Withdrawn".

(2) NumberWithin Range: Tailored for numeric entries, this rule

ensures that a number remains within a specified interval. For

example, the program_year should lie between 3 and 8.

(3) Append Only: This rule, apt for list or dictionary, facilitates
the addition of new entries while disallowing the removal of ex-

isting ones. In a scholar’s publication history context, while new

publications can be appended, previous ones are immutable.

(4) Meet Certain Format: Targeted at strings, this rule mandates

edits to align with certain format. For example, the student ID

may necessitate an "AAA111" pattern for a specified institution.

(5) Time Sensitive:Time can be encoded by Unix timestamps. This

rule ensures, for example, that a project’s start date precedes

its end date, and the end date precedes the current date.

Figure 3: Experimental results
of IDEA-DAC, showcasing key
metrics across varying creden-
tial document sizes.

As depicted in Figure 3, the re-

sults highlight the algorithm’s

performance across document

sizes ranging from 1KB to 33KB.

We observe a clear linear correla-

tion between the document size

and the number of rank-1 con-

straints. Specifically, a document

size of 1KB requires around 3 ×
10

5
constraints, and there is an

increase of around 5 × 105 con-
straints for every 2KB increment

in the document size. Conversely, the proving time, which encom-

passes both constraint solving and proof generation, does not scale

linearly. This non-linear behavior can be attributed to the use of ZK-

friendly random oracles, such as MiMC [2], that are not amenable

to parallel constraint solving. However, the time required for proof

generation remains reasonable; for instance, a 32KB document takes

just about 80 seconds. We underscore that our evaluations utilized

the Groth16 [17] protocol over BN254 curve on a 32-vCPU ma-

chine—a basic configuration. Employing servers with enhanced

CPU capabilities and leveraging advanced ZKP protocols will fur-

ther optimize proving times, especially for large-scale applications.

For example, a R1CS with 2
22

constraints only requires 15𝑠 to prove

using Orion [34] with a single CPU core. In terms of verification,

Groth16 performs well, with the time lying between 1ms and 2ms.

8 CONCLUSION
In the field of decentralized anonymous credentials (DACs) and De-

centralized Identifiers (DIDs), updating credentials efficiently and

with integrity is challenging. We present IDEA-DAC, a method for

managing JSON credentials differently. IDEA-DACutilizes Integrity-

Driven Editing (IDE) with ZK-SNARKs and R1CS circuits for the

editing process. Our R1CS design for JSON serialization, ZK-JSON,
optimizes efficiency. Tests indicate a linear connection between

credential file size and constraint count. Overall, IDEA-DAC ad-

vances editing integrity in DACs, addressing large JSON dataset

complexities. Future work can further build on these insights.

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON WWW ’24, May 13–17, 2024, Singapore, Singapore

ACKNOWLEDGMENTS
We sincerely thank Yongzheng Jia for participating in the discussion

of the initial idea.

REFERENCES
[1] a16z crypto. 2023. ZkDocs: Zero-knowledge Information Sharing.

https://a16zcrypto.com/posts/article/zkdocs-zero-knowledge-information-

sharing/.

[2] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. In Advances in Cryptology – ASIACRYPT
2016 (Lecture Notes in Computer Science), Jung Hee Cheon and Tsuyoshi Takagi

(Eds.). Springer, Berlin, Heidelberg, 191–219. https://doi.org/10.1007/978-3-662-

53887-6_7

[3] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments for

R1CS. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19–23, 2019, Proceedings, Part I 38. Springer, 103–128.

[4] Clemens Brunner, Ulrich Gallersdörfer, Fabian Knirsch, Dominik Engel, and

Florian Matthes. 2021. DID and VC:Untangling Decentralized Identifiers and

Verifiable Credentials for the Web of Trust. In Proceedings of the 2020 3rd Inter-
national Conference on Blockchain Technology and Applications (Xi’an, China)
(ICBTA ’20). Association for Computing Machinery, New York, NY, USA, 61–66.

https://doi.org/10.1145/3446983.3446992

[5] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bul-

letproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,

CA, USA, 315–334. https://doi.org/10.1109/SP.2018.00020

[6] David Chaum. 1985. Security without identification: Transaction systems to

make big brother obsolete. Commun. ACM 28, 10 (1985), 1030–1044.

[7] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In Advances in Cryptology – EUROCRYPT 2020 (Lecture Notes in
Computer Science), Anne Canteaut and Yuval Ishai (Eds.). Springer International

Publishing, Cham, 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[8] Circle. 2023. Verite. https://www.circle.com/en/verite.

[9] Consensys. 2023. Gnark. https://docs.gnark.consensys.net/overview.

[10] Veramo core development. 2023. Ethr-DID Library. https://github.com/uport-

project/ethr-did.

[11] Jens Ernstberger, Jan Lauinger, Fatima Elsheimy, Liyi Zhou, Sebastian Steinhorst,

Ran Canetti, Andrew Miller, Arthur Gervais, and Dawn Song. 2023. SoK: Data

Sovereignty. In 2023 IEEE 8th European Symposium on Security and Privacy (Eu-
roS&P). IEEE Computer Society, 122–143. https://doi.org/10.1109/EuroSP57164.

2023.00017

[12] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Permu-

tations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowl-

edge. Cryptology ePrint Archive, Paper 2019/953. https://eprint.iacr.org/2019/953

[13] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In 21st Annual Network and Distributed System Security Sym-
posium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society. https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-

credentials

[14] Sandro Rodriguez Garzon, Hakan Yildiz, and Axel Küpper. 2022. Decentralized

Identifiers and Self-sovereign Identity in 6G. IEEE Network 36, 4 (2022), 142–148.

[15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegat-

ing Computation: Interactive Proofs for Muggles. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing (STOC ’08). Association for

Computing Machinery, New York, NY, USA, 113–122. https://doi.org/10.1145/

1374376.1374396

[16] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity of Inter-

active Proof-Systems. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing (STOC ’85). Association for Computing Machinery, New

York, NY, USA, 291–304. https://doi.org/10.1145/22145.22178

[17] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology – EUROCRYPT 2016, Marc Fischlin and Jean-Sébastien

Coron (Eds.). Vol. 9666. Springer Berlin Heidelberg, Berlin, Heidelberg, 305–326.

https://doi.org/10.1007/978-3-662-49896-5_11

[18] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal

machine executions without universal circuits. Cryptology ePrint Archive, Paper

2022/1758. https://eprint.iacr.org/2022/1758

[19] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive zero-

knowledge arguments from folding schemes. In Annual International Cryptology
Conference. Springer, 359–388.

[20] Shu Yun Lim, Omar Bin Musa, Bander Ali Saleh Al-Rimy, and Abdullah Almasri.

2022. Trust models for blockchain-based self-sovereign identity management:

A survey and research directions. Advances in Blockchain Technology for Cyber
Physical Systems (2022), 277–302.

[21] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander

Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller.

2021. Candid: Can-do decentralized identity with legacy compatibility, sybil-

resistance, and accountability. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1348–1366.

[22] Assa Naveh and Eran Tromer. 2016. Photoproof: Cryptographic image authen-

tication for any set of permissible transformations. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 255–271.

[23] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and

Dawn Song. 2022. Zebra: Anonymous credentials with practical on-chain verifi-

cation and applications to kyc in defi. Cryptology ePrint Archive (2022).
[24] M. Rosenberg, J. White, C. Garman, and I. Miers. 2023. zk-creds: Flexible Anony-

mous Credentials from zkSNARKs and Existing Identity Infrastructure. In 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alami-

tos, CA, USA, 790–808. https://doi.org/10.1109/SP46215.2023.10179430

[25] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. J. ACM 27, 4 (Oct. 1980), 701–717. https://doi.org/10.1145/322217.

322225

[26] Mohammed Shuaib, Noor Hafizah Hassan, Sahnius Usman, Shadab Alam, Surbhi

Bhatia, Parul Agarwal, and Sheikh Mohammad Idrees. 2022. Land registry

framework based on self-sovereign identity (SSI) for environmental sustainability.

Sustainability 14, 9 (2022), 5400.

[27] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and G. Danezis. 2019. Coconut:

threshold issuance selective disclosure credentials with applications to distributed

ledgers. Proceedings 2019 Network and Distributed System Security Symposium
(2019). https://doi.org/10.14722/ndss.2019.23272

[28] SpruceID. 2023. SpruceID. https://spruceid.com/.

[29] W3C. 2023. Decentralized Identifiers v1.0, Production and Consumption. https:

//www.w3.org/TR/did-core/#dfn-production.

[30] W3C. 2023. Decentralized Identifiers v1.0, Terminology. https://www.w3.org/

TR/did-core/{#}dfn-did-documents.

[31] W3C. 2023. Verifiable Credentials Data Model v1.1. https://www.w3.org/TR/vc-

data-model/#example-a-simple-example-of-a-verifiable-credential.

[32] W3C. 2023. W3C DID. https://www.w3.org/TR/did-core/.

[33] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology – CRYPTO 2019 (Lecture Notes in Com-
puter Science), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer

International Publishing, Cham, 733–764. https://doi.org/10.1007/978-3-030-

26954-8_24

[34] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowl-

edge Proof with Linear Prover Time. In Advances in Cryptology – CRYPTO
2022, Yevgeniy Dodis and Thomas Shrimpton (Eds.). Vol. 13510. Springer Nature

Switzerland, Cham, 299–328. https://doi.org/10.1007/978-3-031-15985-5_11

[35] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent

Polynomial Delegation and Its Applications to Zero Knowledge Proof. In 2020
IEEE Symposium on Security and Privacy (SP). 859–876. https://doi.org/10.1109/

SP40000.2020.00052

A CIRCUIT PSEUDOCODES
Additionally define the following two R1CS primitives for the naive

Merge algorithm:

• 𝑐 ← Lookup2(𝑠0, 𝑠1, 𝑟0, 𝑟1, 𝑟2, 𝑟3): 2-bit lookup table. Output

𝑟0, 𝑟1, 𝑟2, 𝑟3 if (𝑠0, 𝑠1) = (0, 0), (1, 0), (0, 1), (1, 1), separately. This
functionality can be achieved via a low-degree extension of the

binary function, i.e., 𝑓 (𝑠0, 𝑠1) = (1−𝑠0) (1−𝑠1)𝑟0+𝑠0 (1−𝑠1)𝑟1+(1−
𝑠0)𝑠1𝑟2 + 𝑠0𝑠1𝑟3. Simplifying the polynomial gives us a solution

of using only 3 constraints: 1) (𝑟3 − 𝑟2 − 𝑟1 + 𝑟0) · 𝑠1 = 𝑡1 − 𝑟1 + 𝑟0;
2) 𝑡1 · 𝑠0 = 𝑡2; 3) (𝑟2 − 𝑟0) · 𝑠1 = 𝑐 − 𝑡2 − 𝑟0, where 𝑡1 and 𝑡2 are
newly-added wires.

• 𝑐 ←M(𝑎 [𝑁] , 𝑏): A multiplexer that selects the 𝑏-th element in

𝑎 [𝑁] where 𝑏 is also an in-circuit variable. We show a linear

multiplexer implementation in Algorithm 7.

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1145/3446983.3446992
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_26
https://github.com/uport-project/ethr-did
https://github.com/uport-project/ethr-did
https://doi.org/10.1109/EuroSP57164.2023.00017
https://doi.org/10.1109/EuroSP57164.2023.00017
https://eprint.iacr.org/2019/953
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2022/1758
https://doi.org/10.1109/SP46215.2023.10179430
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.14722/ndss.2019.23272
https://www.w3.org/TR/did-core/#dfn-production
https://www.w3.org/TR/did-core/#dfn-production
https://www.w3.org/TR/did-core/{#}dfn-did-documents
https://www.w3.org/TR/did-core/{#}dfn-did-documents
https://www.w3.org/TR/vc-data-model/#example-a-simple-example-of-a-verifiable-credential
https://www.w3.org/TR/vc-data-model/#example-a-simple-example-of-a-verifiable-credential
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

Algorithm 1 Encoding a Number in ASCII String Format

1: function encodeNumber(x, maxDigit)

⊲ Input the decomposed decimals computed off-circuit

2: len||dec[maxDigit] ← GetDecimal(x,maxDigit)

3: RangeCheckDecimal
(
dec[maxDigit]

)
⊲ Check 1

⊲ Check the correctness of decomposition

4: sum← 0, remLen← len

5: isEnd[𝑚𝑎𝑥𝐷𝑖𝑔𝑖𝑡] ← NewArray(maxDigit)

6: for i = 0; i < maxDigit; i++ do
7: isEnd[i]← IsZero(remLen)

8: sum← Select(isEnd, sum,Mul(sum, 10))

9: Assert(And(isEnd, IsNotZero(dec[i])) == 0) ⊲ Check 2

10: sum← Add(sum, dec[i]) ⊲ No effect on dummy 0s

11: remLen← Select(isEnd, 0, Sub(remLen, 1))

12: Assert(sum == x) ⊲ Check 3

⊲ Get the ASCII-encoded LPS Representation

13: res[maxDigit] ← NewArray(maxDigit)

14: for i = 0; i < maxDigit; i++ do
15: res[i]← Select(isEnd[i], 𝐷 , Add(dec[i], 48))
16: return len||res[maxDigit]

Algorithm 2 LPS Legitimacy Check

1: function legitimacyCheck(aLen||a[𝑁])
2: isEnd← 0, numZero← 0, numValid← 0

3: c[𝑁] ← NewArray(𝑁)

4: for i = 0; i < 𝑁 ; i++ do
5: d← IsDummy(a[i])
6: isEnd← Or(isEnd, d)
7: c[i]← Select(d, Sub(i+1, aLen), Sub(aLen, i+1))
8: numZero← Add(numZero, IsZero(c[i]))
9: if i > 0 then
10: v1← IsEqual(c[i], Add(c[i-1], 1))
11: v2← IsEqual(c[i], Sub(c[i-1], 1))
12: valid← Select(isEnd, v1, v2)
13: numValid← Add(numValid, valid)

14: Assert(numValid == 𝑁 − 1)
15: Assert(IsEqual(numZero, 1)+IsZero(aLen) == 1)

Algorithm 3 Hint-based Linear LPS Merge

1: function merge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
⊲ Input the merged string computed off-circuit

2: cLen||c[𝑁𝑎+𝑁𝑏] ←Merge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
3: Assert(cLen == Add(aLen, bLen)) ⊲ Check 1

4: RangeCheck
(
c[𝑁𝑎+𝑁𝑏]

)
⊲ Check 2

⊲ Check3: the correctness of LPS merge

5: 𝑟 ← RO(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏] , cLen||c[𝑁𝑎+𝑁𝑏])
⊲ IND stands for IsNotDummy

6: aMul←∏𝑁𝑎−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + a[𝑖])IND(a[𝑖])]
7: bMul←∏𝑁𝑏−1

𝑖=0
[𝑟 − (256(𝑖 + 1 + 𝑎𝐿𝑒𝑛) + b[𝑖])IND(b[𝑖])]

8: cMul←∏𝑁𝑎+𝑁𝑏−1
𝑖=0

[𝑟 − (256(𝑖 + 1) + c[𝑖])IND(c[𝑖])]
9: Assert(Mul(aMul, bMul) == cMul)

10: return cLen||c[𝑁𝑎+𝑁𝑏]

Algorithm 4 Hint-based Linear Batch LPS Merge

1: function batchMerge(𝑙 (0) | |𝑠 (0)[𝑁0] , . . . , 𝑙
(𝑛−1) | |𝑠 (𝑛−1)[𝑁𝑛−1])

⊲ Input the merged string computed off-circuit

2: MaxLen← ∑𝑛−1
𝑖=0 𝑁𝑖

3: oLen||o[MaxLen] ←Merge(𝑙 (0) | |𝑠 (0)
𝑁0

, . . . , 𝑙 (𝑛−1) | |𝑠 (𝑛−1)
𝑁𝑛−1

)

4: Assert
(
oLen == Add(𝑙 (0) , 𝑙 (1) , . . . , 𝑙 (𝑛−1))

)
⊲ Check 1

5: RangeCheck
(
o[MaxLen]

)
⊲ Check 2

⊲ Check3: the correctness of LPS merge

6: 𝑟 ← RO(𝑙 (0) | |𝑠 (0)[𝑁0] , . . . , 𝑙
(𝑛−1) | |𝑠 (𝑛−1)[𝑁𝑛−1] , oLen||o[MaxLen])

⊲ IND stands for IsNotDummy
7: cumLen𝑖 ←

∑𝑖−1
𝑗=0 𝑙

(𝑗)

8: sMul𝑖←
∏𝑁𝑖−1

𝑗=0
[𝑟−(256(𝑗+1+cumLen𝑖)+𝑠 [𝑗])IND(𝑠 [𝑗])]

9: oMul←∏
MaxLen−1
𝑖=0 [𝑟 − (256(𝑖 + 1) + o[𝑖])IND(o[𝑖])]

10: Assert(Mul(sMul0, sMul1, . . . , sMul𝑛−1) == oMul)

11: return oLen||o[MaxLen]

Algorithm 5 Integrity-driven Editing Circuit

1: function IDE(𝑟𝑜𝑙𝑑 , 𝑟𝑛𝑒𝑤 : D, 𝑘 : F, 𝑐𝑜𝑙𝑑 , 𝑐𝑛𝑒𝑤 : [F], \, 𝑠 : [F])
2: 𝑐′

𝑜𝑙𝑑
← Encrypt(𝑘 , Compress(Encode(𝑟𝑜𝑙𝑑)))

3: 𝑐′𝑛𝑒𝑤 ← Encrypt(𝑘 , Compress(Encode(𝑟𝑛𝑒𝑤)))
⊲ Assert the equivalence of two arrays with unequal length

4: AssertArray(𝑐′
𝑜𝑙𝑑

== 𝑐𝑜𝑙𝑑)

5: AssertArray(𝑐′𝑛𝑒𝑤 == 𝑐𝑛𝑒𝑤)

6: EditCheck(𝑟𝑜𝑙𝑑 , 𝑟𝑛𝑒𝑤 , \, 𝑠)

Algorithm 6 Naive LPS Merge

1: function naiveMerge(aLen||a[𝑁𝑎] , bLen||b[𝑁𝑏])
2: 𝑙1← aLen, 𝑙2← bLen, outLen← Add(𝑙1, 𝑙2)
3: out[𝑁𝑎+𝑁𝑏] ← NewArray(𝑁𝑎 + 𝑁𝑏)

4: a[𝑁𝑎+𝑁𝑏] ← pad(a[𝑁𝑎] , 0[𝑁𝑏])
5: b[𝑁𝑎+𝑁𝑏] ← pad(0[𝑁𝑎] , b[𝑁𝑏]) ⊲ Avoid index overflow

⊲ Extract the output array

6: for i = 0; i < 𝑁𝑎 + 𝑁𝑏 ; i++ do
7: 𝛼 ← IsZero(𝑙1), 𝛽 ← IsZero(𝑙2)
8: out[i]← Lookup2(𝛼 ,𝛽 ,a[i],b[i+𝑵𝒂-aLen],a[i],0)

⊲ b[i+𝑵𝒂-aLen] computed by a linear multiplexer

9: 𝑙1← Select(𝛼 , 0, Sub(𝑙1, 1))
10: 𝑙2← Lookup2(𝛼 , 𝛽 , 𝑙2, Sub(𝑙2, 1), 𝑙2, 0)
11: return outLen||out[𝑁𝑎+𝑁𝑏]

Algorithm 7 Linear Multiplexer

1: functionM(x[𝑁] , idx: |F|)
2: logN← logCeil(𝑁) ⊲ ⌈log

2
𝑁 ⌉

3: res[2logN] ← pad(x[𝑁] , 0[2logN−𝑁])
4: idxBin[logN] ← ToBinary(idx, logN)
5: for i = 0; i < logN; i++ do
6: for j = 0; j < 2

(logN−𝑖−1)
; j++ do

7: res[j]← Select(idxBin[i], res[2j+1], res[2j])
8: return res[0]

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON WWW ’24, May 13–17, 2024, Singapore, Singapore

B FORMAL DEFINITION OF ZERO
KNOWLEDGE PROOF (ZKP)

Formally, a ZKP consists of three algorithms (𝑃,𝑉 , 𝑆), where 𝑃 is

the prover, 𝑉 is the verifier, and 𝑆 is the simulator. A ZKP has the

following properties:

• Completeness: If the statement is true, the honest verifier (that

is, one following the protocol properly) will be convinced of this

fact by an honest prover. Formally, for any 𝑥,𝑤 such that 𝑥 ∈ 𝐿𝑤
and any verifier strategy 𝑉 ∗,

Pr[(𝑃 (𝑥,𝑤),𝑉 ∗ (𝑥)) = 1] = 1.

• Soundness: If the statement is false, no cheating prover can

convince the honest verifier that it is true, except with some

small probability. Formally, for any 𝑥 ∉ 𝐿𝑤 , any prover strategy

𝑃∗, and any𝑤 ′,

Pr[(𝑃∗ (𝑥,𝑤 ′),𝑉 (𝑥)) = 1] ≤ 𝑛𝑒𝑔𝑙 (_),

where 𝑛𝑒𝑔𝑙 (_) is a negligible function.
• Zero-knowledge: If the statement is true, no verifier learns any-

thing other than this fact. This is formalized by showing that

every verifier has some simulator that, given only the statement

to be proved (and no access to the prover), can produce a tran-

script that "looks like" an interaction between the honest prover

and the verifier in question. Formally, for any 𝑥,𝑤 such that

𝑥 ∈ 𝐿𝑤 , any verifier strategy 𝑉 ∗, and any𝑤 ′,

{(𝑃 (𝑥,𝑤),𝑉 ∗ (𝑥))} ≈ {(𝑆 (𝑥,𝑤 ′),𝑉 ∗ (𝑥))},

where the approximation symbol ≈ denotes computational indis-

tinguishability.

C FORMAL DEFINITION OF PROPERTIES IN
EDIT-BOUND CONFORMITY CHECK

In this section, we show a formal definition of completeness, sound-

ness, and privacy-preserving properties in edit-bound conformity

check. Given the notations defined in Section 4.2, the three proper-

ties are defined as

• Completeness: If (∀𝜎\ , 𝜎′\ ∈ Σ, Σ′, 𝜎\ (𝑟 ′) = 1, 𝜎′
\
(𝑟, 𝑟 ′) = 1) ∧

(𝜔 (𝑟, 𝑐, 𝑘) = 𝜔 (𝑟 ′, 𝑐′, 𝑘) = 1) : Pr{𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′) = 1} = 1

• Soundness: If (∃𝜎\ ∈ Σ, 𝜎\ (𝑟 ′) = 0)∨(∃𝜎′
\
∈ Σ′, 𝜎′

\
(𝑟, 𝑟 ′) = 0)∨

(𝜔 (𝑟, 𝑐, 𝑘) = 0) ∨ (𝜔 (𝑟 ′, 𝑐′, 𝑘) = 0) : Pr{𝜙 (𝑟, 𝑟 ′, 𝑐, 𝑐′, 𝑘, Σ, Σ′} =
1) ≤ 𝑛𝑒𝑔𝑙 (_)
• Privacy-preserving: for any Probabilistic Polynomial Time (PPT)

distinguisherD, the probability thatD can correctly distinguish

which of the two credentials has been randomly sampled, without

knowledge of the key 𝑘 , is bounded as: Pr{D(𝑟, 𝑟) = 1 | 𝑐, 𝑟 $←
𝑅} = 1

2
+ 𝑛𝑒𝑔𝑙 (_), where 𝑅 is the set of all possible credentials.

This property applies to both the pre- and post-edited credentials.

D SUPPLEMENTARY EXPLANATION OF
EXPERIMENTS

We tested our algorithms by proving changes from

{" Status ":" Approved"," ProgramYear ":5,

"student_id ":" UNI42",

"publications ":[{" Title": "ZK-Profile","Year": 2023},

{"Title": "ZK-Cred","Year": 2022}] ,

"Duration ": {

"Start": 1561016554 ,

"End": 1687275819

}}

to:

{" Status ":" Approved"," ProgramYear ":5,

"student_id ":" UNI42",

"publications ":[{" Title": "ZK-Profile","Year": 2023},

{"Title": "ZK-Cred","Year": 2022}

{"Title": "ZK-Auth","Year": 2023}] ,

"Duration ": {

"Start": 1561016554 ,

"End": 1781941354

}}

in our experiment.

To better define the minimum specifications for all users, we

conducted an additional experiment using a standard personal lap-

top, specifically a MacBook Pro with an M1 Pro (10-core) processor

and 32GB of RAM. The results, including circuit size, number of

gates, and proving and verifying times, are detailed in Fig4.

Figure 4: Experimental results of IDEA-DAC, showcasing key
metrics across varying credential document sizes on the local
machine.

Our findings indicate that 32GB of RAM is adequate for process-

ing JSON certificates up to 24KB, a size that comfortably meets

the requirements of most DAC use cases. Regarding proving times,

they are not significantly longer than those reported in our paper.

For instance, processing a certificate of around 10KB takes less than

half a minute, which is approximately 1.3 times longer than the

times achieved using more powerful machines, as documented in

our research.

E LIMITATIONS
IDEA-DAC encompasses primarily two limitations. The first limita-

tion pertains to the need for pre-determining the types of values

in dictionaries to leverage the one-time setup property of IDEA-

DAC. This requirement can indeed pose constraints. However, a

feasible workaround involves allowing for empty values in the dic-

tionaries. By doing so, we can effectively cover all potential value

types that might occur in real-world applications. This approach

WWW ’24, May 13–17, 2024, Singapore, Singapore Zheng and Li, et al.

provides a level of flexibility within the predefined structure, par-

tially mitigating the limitation. The second limitation concerns

the circuit design of IDEA-DAC, which is currently optimized for

R1CS arithmetization, favoring linear operations. While IDEA-DAC

is currently tailored for R1CS arithmetization, its adaptability to

other arithmetization forms, such as the Plonkish representation,

is straightforward in principle. The adaptation primarily involves

constructing all the necessary primitives, a process that is relatively

simple and direct. However, it’s important to note that while adap-

tation for functional compatibility is straightforward, optimizing

the circuit for Plonkish representation to enhance performance

and minimize circuit size is a more involved process. This opti-

mization would ensure that IDEA-DAC fully leverages the specific

efficiencies of the Plonkish system, thereby delivering improved

performance metrics.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminries
	3.1 ZK-SNARKs
	3.2 Rank-1 Constraint System (R1CS)
	3.3 Hint

	4 IDEA-DAC
	4.1 JSON Credentials
	4.2 Edit-bound Conformity Check

	5 Integrity-Driven Editing via ZK-JSON
	5.1 R1CS Primitives
	5.2 Length-prepadded String (LPS)
	5.3 LPS Operations
	5.4 Serialization
	5.5 Encryption
	5.6 Edit-bound Conformity Check Circuit
	5.7 Achieving Strictly Linear Circuit Size
	5.8 Put Everything Together

	6 Use case
	7 Experiments
	8 Conclusion
	Acknowledgments
	References
	A Circuit Pseudocodes
	B Formal Definition of Zero Knowledge Proof (ZKP)
	C Formal Definition of Properties in Edit-Bound Conformity Check
	D Supplementary Explanation of Experiments
	E Limitations

