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Abstract. Physical attacks pose a substantial threat to the secure im-
plementation of cryptographic algorithms. While considerable research
efforts are dedicated to protecting against passive physical attacks (e.g.,
side-channel analysis (SCA)), the landscape of protection against other
types of physical attacks remains a challenge. Fault attacks (FA), though
attracting growing attention in research, still lack the prevalence of prov-
ably secure designs when compared to SCA. The realm of combined at-
tacks, which leverage the capabilities of both SCA and FA adversaries, in-
troduces powerful adversarial models, rendering protection against them
challenging. This challenge has consequently led to a relatively unex-
plored area of research, resulting in a notable gap in understanding and
efficiently protecting against combined attacks. The CAPA countermea-
sure, published at CRYPTO 2018, addresses this challenge with a robust
adversarial model that goes beyond conventional SCA and FA adversarial
models. Drawing inspiration from the principles of Multiparty Compu-
tation (MPC), CAPA claims security against higher-order SCA, higher-
order fault attacks, and their combination. In this work, we present a
combined attack that breaks CAPA within the constraints of its assumed
adversarial model. In response, we propose potential fixes to the design of
CAPA that increase the complexity of the proposed attack, although not
provably thwarting it. With this presented combined attack, we highlight
the difficulty of effectively protecting against combined attacks.

Keywords: Fault attacks · Combined attacks · CAPA.

1 Introduction

Cryptographic algorithms are designed to have certain properties to withstand
cryptanalytic attacks. Nevertheless, devices running the implementations of these
cryptographic algorithms in practice are susceptible to physical attacks that ob-
serve or disrupt their physical characteristics. Side-Channel Analysis (SCA),
being a passive physical attack, exploits the observable leakage arising from
physical effects, such as power consumption [17], timing [16], or electromagnetic
emanation [10]. Masking [4, 12,15, 19] stands out as a prominent and widely es-
tablished countermeasure against SCA. The working principle of masking is to
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split the secret variable into a number of statistically independent random shares.
Consequently, observing all but one share does not reveal information related to
the secret variable. Boolean masking [4], being a well-understood countermea-
sure against SCA, replaces each secret variable x ∈ F2 by a vector of s shares
x̄ = (x0, x1, ..., xs−1) such that x =

∑s−1
i=0 xi over F2, where each xi is uniformly

random.

Unlike SCA, fault attacks (FA) are active attacks that deliberately disrupt
computations through physical means, such as clock/voltage glitching [1], elec-
tromagnetic waves [7], and laser injections [14]. Consequently, they extract in-
formation from the device’s response to the induced errors. Since the seminal
work of Boneh et al. [3], introducing Differential Fault Attacks (DFA) on RSA,
numerous fault analysis methods have emerged, focusing on exploiting incorrect
outputs. A commonly employed countermeasure against such attacks involves
introducing redundancy in time, area, or information to detect if a fault is in-
jected into the computation. Upon fault detection, these countermeasures either
suppress or infect the output, rendering it non-exploitable by the adversaries.
Nevertheless, Statistical Ineffective Faults Attacks (SIFA) [9], also referred to
as SIFA-1, exploit the dependency between fault propagation and secret val-
ues, effectively utilizing correct ciphertexts. This characteristic enables SIFA to
circumvent the countermeasures based on straightforward redundancy.

Another prevalent approach combines masking and redundancy to protect
against fault attacks. In addition to protecting implementations against SCA
through masking, these countermeasures offer protection against SIFA-1-like at-
tacks by introducing randomness to the computation. Nevertheless, Dobraunig
et al. [8] exploited SIFA-1 (which is then referred to as SIFA-2), circumventing
most of the masking combined with redundancy based countermeasures. This
underscores the need for more intricate countermeasures, such as fine-grained
error detection [5] or error correction, in the landscape of protecting against
fault attacks.

In addition to examining the capabilities of SCA and FA adversaries indi-
vidually, combined attacks that leverage both capabilities simultaneously have
attracted attention. However, relying solely on the integration of SCA and FA
countermeasures alone is insufficient to protect against such combined attacks.
Even advanced countermeasures designed with intricate protection mechanisms
may still prove ineffective against these sophisticated attacks [21]. One of the
few countermeasures that is designed to protect against combined attacks is
the CAPA countermeasure by Reparaz et al. [20], published in CRYPTO 2018.
CAPA leverages the principles of the Multiparty Computation (MPC) proto-
col SPDZ [6] that adopts a full threshold setting where all but one party can be
corrupted. It performs computations on shared variables and shared information-
theoretic MAC tags associated with the secret variables, combining masking and
fine-grained redundancy. CAPA claims provable security against higher-order
SCA, higher-order (i.e., multiple shot) FA, and their combination. Unlike com-
mon SCA and FA adversary models that assume the t-probing model [15] and
faulting up to a limited number of gates/registers, CAPA introduces a unique
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adversary model: The Tile-Probe-and-Fault Model. This model assumes that the
chip under attack is partitioned into tiles with their own combinational and
control logic, and PRNGs, connected to each other by wires. The tile-probe-
and-fault model assumes an adversary capable of probing a bounded number
of tiles with all their possessed intermediate values, which is an extension of
the t-probing model. Simultaneously, the adversary is assumed to have the ca-
pability to inject known-value faults to any variable within a bounded number
of tiles, which generalizes the bounded gate/register faulting model, or inject
random-value faults to an unbounded number of tiles.

The design of CAPA consists of two stages: an evaluation stage to compute
the cryptographic algorithms and a preprocessing stage to generate auxiliary
data that is used in the evaluation stage, where the two stages can be inter-
leaved. While the evaluation stage adheres to SPDZ principles, the preprocess-
ing stage diverges by utilizing a passively secure shared multiplier to generate
auxiliary data. This design choice enhances the efficiency of CAPA compared to
SPDZ, where the corresponding offline phase employs somewhat homomorphic
encryption for the generation of auxiliary data.

Contributions. In this work, we introduce the first known attack, a combined at-
tack, targeting the CAPA countermeasure within the assumed adversary model,
the tile-probe-and-fault model. The proposed attack necessitates an ineffective
fault to be injected during the preprocessing stage, resulting in a secret vari-
able in the evaluation stage to be masked by a zero value. Subsequently, this
unmasked value is probed to recover the secret. The proposed attack capitalizes
on the divergence in the preprocessing stage of CAPA from SPDZ, exploiting
an ineffective fault passing to the evaluation stage undetected. This exploita-
tion leads to the breaking of CRYPTO 2018’s work within its own adversarial
model. In response, we propose fixes for the CAPA countermeasure. Although
these fixes do not entirely prevent the proposed attack, they do contribute to an
increase in attack complexity.

2 CAPA

Before delving into the proposed attack, we provide an overview of the CAPA
countermeasure. We first describe its associated adversarial model, the tile-probe-
and-fault model, and then its design.

2.1 The Tile-Probe-and-Fault-Model

In this section, we introduce the adversarial model of the CAPA countermeasure
along with the security guarantees based on this model. The tile-probe-and-fault
model extends the t-probing model as introduced by Ishai et al. [15], where an
adversary is limited to observe at most t predetermined wires of the Boolean
circuit. In the CAPA countermeasure, an integrated circuit is assumed to be
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separated into tiles, each consisting of wires as well as combinational and se-
quential logic. This structural arrangement aligns with the MPC setting, where
each tile can be viewed as an independent party.

Each tile in the partitioned integrated circuit is denoted with Ti, where wires
are running between each pair of tiles as depicted in Figure 1. Each tile encom-
passes its own combinational logic, control logic, and pseudo-random number
generator. The leakage from each tile being local, does not disclose information
about other tiles. An adversary with probing and faulting capabilities can obtain
information about all variables in the probed tile, or inject faults to all variables
within the targeted tile. The CAPA countermeasure employs Boolean masking,
where each secret variable is split into d shares. This implies that the integrated
circuit is partitioned into d tiles, where each tile stores and manipulates at most
one share of each intermediate variable. The wires running between the tiles
carry only the blinded versions of the shares of the secret variables, and faults
happening on these wires are confined to affecting only the receiving tiles.

T1 T2

Td
...

Fig. 1: Tile architecture of an integrated circuit

Probing capabilities. The CAPA countermeasure assumes an adversary with dp-
probing capabilities, where they are given information about all intermediate
variables within the specified dp tiles from the beginning to the end of the com-
putation with a probability of one. This contrasts with the commonly assumed
t-probing model, where an adversary can access only t intermediate values.
CAPA’s assumption of a more potent probing adversary aligns with real-world
scenarios, accommodating, for instance, EM probes that enable the observation
of multiple intermediate values in the target area.

Faulting capabilities. CAPA assumes two types of fault capabilities under the
tile-probe-and-fault model: df -faulting and ϵ-faulting. In df -faulting, an adver-
sary can inject chosen-value faults to any number of precisely chosen intermedi-
ate variables within the specified df tiles. On the other hand, ϵ-faulting allows
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an adversary to inject random-value faults following some distribution to any
variable within any tile, for example, flipping each bit with a certain probability.
However, the adversary cannot set all variables to a chosen fixed value.

Adversarial Models. CAPA assumes two adversarial models: A1 with both dp-
probing and df -faulting capabilities, and A2 with both dp-probing and ϵ-faulting
capabilities. Let P1 denote the set of up to dp tiles that can be probed, and F1

denote the set of up to df tiles that can be faulted by A1, ensuring that at least
one share/tile remains unaccessed with the following constraint:

(F1 ∪ P1) ⊆ ∪d−1
j=1Tij .

Furthermore, a chosen-value fault injected by the adversary A1 cannot be
preceded by a probe within the same clock cycle; it can only depend on the
probes from previous clock cycles.

Let P2 denote the set of up to dp tiles that can be probed and F2 denote the
set of tiles that can be faulted by A2. Then, the number of probed tiles remains
limited to d− 1:

P2 ⊆ ∪d−1
j=1Tij .

However, for A2 injecting random-value faults, the limitation on the number of
tiles that can be faulted no longer applies, as the injected faults do not set the
unshared values to chosen fixed values:

F2 ⊆ T .

It is important to note that the tiles probed or faulted by both adversaries
are predetermined, and cannot be adapted during the computation.

2.2 The CAPA Design

The CAPA design consists of two stages: the preprocessing step and the evalu-
ation step. During the preprocessing step, auxiliary data is generated, which is
subsequently used in the evaluation step to blind the sensitive variables.

All computations in the design are performed over F2k . The preprocessing
stage variables are denoted by a, b, c, and the evaluation stage variables (i.e.,
secret variables) are denoted by lowercase letters x, y, z. The bold versions of
these letters indicate that the variables are shared (e.g., a = (a0, ..., ad−1) where∑d−1

i=0 ai = a). The MAC key is denoted by α, which is also shared among the
tiles such that α = (α0, ..., αd−1). Then, a value a ∈ F2k is represented as a pair
⟨a⟩ = (a, τa) consisting of the data and the associated tag shares in the masked
domain, where τa = αa. In the CAPA design, there can be multiple independent
MAC keys, associating multiple tags with each variable. However, for the sake
of simplicity, we assume that the design employs only a single MAC key in this
work. The Kronecker delta function is denoted by δi,j , returning 1 if i = j, and
0 otherwise.
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We first describe the multiplication as a building block in the evaluation
stage, which is the focal point of interest in the proposed attack. Subsequently,
we delve into the preprocessing components.

Evaluation Stage

Each tile Ti stores the ith share of each sensitive and auxiliary variable, along
with the ith share of the associated MAC tags and the MAC key. Linear opera-
tions, such as addition, do not necessitate communication between tiles, unlike
nonlinear operations like multiplication which also require auxiliary data.

Multiplication. To compute the multiplication of (x, τx) and (y, τy), a Beaver
triple (⟨a⟩, ⟨b⟩, ⟨c⟩) satisfying c = ab, generated during the preprocessing stage,
is utilized. The multiplication then proceeds as follows:

Step 1: blinding. Each tile Ti locally randomizes its share of the secrets x
and y: εi = xi+ai and ηi = yi+bi. Likewise, the associated MAC tag shares
are computed: τεi = τxi

+ τai
and τηi

= τyi
+ τbi .

Step 2: partial unmasking. Each tile Ti broadcasts εi and ηi computed in
Step 1 to the other tiles. Then, each tile locally computes and stores the
values ε =

∑d−1
i=0 εi and η =

∑d−1
i=0 ηi. ε and η (i.e., blinded versions of the

secrets) are partially unmasked as their MAC tags τε and τη remain shared
among the tiles.

Step 3: checking the MAC tags of the partially unmasked values. The tiles
check whether the tags τε and τη are consistent with the unmasked public
values ε and η using a method described below.

Step 4: Beaver computation. Each tile locally computes the following:

zi = ci + εbi + ηai + εηδi,1,

τzi = τci + ετbi + ητai + αiεη.
(1)

One can verify that the shared output (z, τz) of the above protocol corresponds
to z = xy given that no faults are present.

Checking the MAC tags of partially unmasked values. The CAPA multiplication
continues its computation only if both of the partially unmasked values are
consistent with their associated MAC tags. Consider a partially unmasked value
ε = x + a, then, each tile has its own share of the corresponding MAC tag
which is computed in the first step of the multiplication as τεi = τxi

+ τai
.

Then, to verify the correctness of the MAC tag, each tile locally computes and
broadcasts the value αiε+ τεi to the other tiles. Ensuring the correctness of the

tag, where
∑d−1

i=0 τεi = αε holds, involves each tile computing
∑d−1

i=0 (αiε + τεi)
and proceeding only if the result is zero.
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Preprocessing Stage

The Beaver triples (⟨a⟩, ⟨b⟩, ⟨c⟩), satisfying c = ab, used in the multiplication,
are generated in the preprocessing stage of the CAPA design.

Auxiliary data generation. The Beaver triple (⟨a⟩, ⟨b⟩, ⟨c⟩) is generated through
a process where each tile Ti independently draws random shares ai and bi such
that a = (a0, ..., ad−1) and b = (b0, ..., bd−1), where a =

∑d−1
i=0 ai and b =∑d−1

i=0 bi. Subsequently, a passively secure multiplier (e.g., [18], [2], [11], [13], [19])

is employed to compute c = (c0, ..., cd−1), where c =
∑d−1

i=0 ci such that c =
ab. Simultaneously, shared MAC tags τa, τb, τc are computed using a passively
secure multiplier and the shared MAC key α.

Relation verification of auxiliary data. The faults injected during the evaluation
stage in CAPA are detected through the MAC tag check performed in Step 3
of the CAPA multiplication. In contrast, similar to SPDZ, to detect the faults
injected during the preprocessing stage, a relation verification is executed for
each Beaver triple transitioning from the preprocessing stage to the evaluation
stage. This verification ensures the correctness of the triple, specifically validat-
ing that c = ab. The verification of the correctness of (⟨a⟩, ⟨b⟩, ⟨c⟩) is executed
by employing another Beaver triple (⟨d⟩, ⟨e⟩, ⟨f⟩):

1. A random r1 ∈ F2k is drawn.
2. Utilizing the second triple (⟨d⟩, ⟨e⟩, ⟨f⟩), the multiplication of r1⟨a⟩ and

⟨b⟩, and the associated MAC tag are computed. This involves a constant
multiplication with r1, which is performed locally as it is a linear operation,
and an actively secure multiplication executed as described in Equation 1.
Then, the outcome ⟨c̃⟩ is a shared representation of c̃ = r1ab.

3. Each tile Ti locally computes and broadcasts the differences of the shares of
r1c and c̃, and their corresponding tags: Θi = r1ci+ c̃i and τΘi = r1τci + τc̃i .

Then, Θ =
∑d−1

i=0 Θi and τΘ =
∑d−1

i=0 τΘi are unmasked.
4. If at least one of the unmasked differences,Θ and τΘ, is nonzero, (⟨a⟩, ⟨b⟩, ⟨c⟩)

is rejected as a valid triple.
5. Else, another r2 ∈ F2k is drawn such that r1 ̸= r2, and the described proce-

dure is repeated for a second time.

While this stage corresponds to the offline phase of the MPC protocol, SPDZ,
there are notable distinctions rendering the CAPA preprocessing stage more
lightweight. In CAPA, Beaver triples are generated on the fly, as needed, re-
sulting in reduced storage requirements. Moreover, these triples are generated
using a passively secure multiplier, in contrast to SPDZ’s use of a somewhat
homomorphic encryption scheme. This choice is motivated by somewhat ho-
momorphic encryption exceeding any efficiency requirements for deployment in
hardware devices. Unlike SPDZ, where each party proves the correctness of the
generated randoms (ai, bi) that are shares of the Beaver triple elements (a, b),
CAPA does not error check the generated Beaver triple elements which are then
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fed into a passively secure multiplier. The proposed attack leverages this dis-
tinction in CAPA’s design from SPDZ, specifically the absence of error checks of
the generated Beaver triples. CAPA solely verifies c = ab, overlooking ineffective
faults.

3 The Combined Attack Description

In this section, we describe the proposed combined attack targeting CAPA. The
attack assumes an adversarial model that stays within the adversarial model of
CAPA, namely, the tile-probe-and-fault model. The adversary in the proposed
attack is assumed to have both faulting and probing capabilities. Importantly,
the attack does not rely on any strong assumptions inherent in the tile-and-
probe-fault model, such as probing or faulting all variables within a tile. Specif-
ically, the attack demonstrates effectiveness by faulting a single variable and
probing another one, which retains the feasibility even under conventional ad-
versarial models like t-probing and a bounded number of gate/register faulting.
The attack necessitates only a single fault injected during the preprocessing step,
which may take the form of a random fault (i.e., randomly chosen set, reset, or
bit flip fault). This fault is complemented by a probing event during the evalua-
tion stage, where the probed value is subsequently unmasked due to the injected
fault becoming ineffective.

For readability, we consider the attack scenario where the CAPA countermea-
sure is instantiated with d = 2 (i.e., 2 shares/tiles). It is important to highlight
that the attack scenario is independent of the number of shares, and can be gen-
eralized for any arbitrary order d as it only requires faulting a single share/tile.
Additionally, the adversary can probe the same faulted tile, where the probed
variable is unmasked, making it adaptable for different values of d.

3.1 The Attack Scenario

The combined attack scenario consists of two steps: the fault injection step,
and the subsequent probing step that exploits the manifestation of the injected
fault. We first describe the assumptions regarding the faulting and probing ca-
pabilities of the adversary, then, describe the fault injection step targeting the
preprocessing stage. Following the fault injection step, we describe the prob-
ing step exploiting the injected fault, and outline the success conditions for the
attack.

Capabilities

We describe the faulting capabilities of the assumed adversary performing the
fault injection step as follows:

– The adversary injects a single-shot fault to a variable in F2k , potentially
affecting a random number of bits within the targeted variable.
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– The fault location is loose, allowing the injection of a fault affecting any set
of bits within any share of the target secret variable.

– Precise timing is crucial for the injected fault, necessitating its occurrence
before the tag computation of the targeted secret variable.

– The effectiveness period of the fault is transient.

– The fault is required to be injected to a registered value, and can be of a
random type.

Additionally, the adversary is assumed to be capable of probing a variable of
their choosing.

Fault Injection Step

The fault injection in the preprocessing stage is formalized as follows:

(1) Each tile draws randoms T0 → a0, b0 ∈ F2k , T1 → a1, b1 ∈ F2k , such that
a = (a0, a1) where a = a0 + a1 and b = (b0, b1) where b = b0 + b1.

(2) The tiles compute c = (c0, c1) where c = c0 + c1 such that c = ab using a
passively secure shared multiplier.

(3) The tiles compute the corresponding MAC tags τa, τb, τc using a passively
secure shared multiplier (i.e., τx = αx).

(3.1) Before the computation of τa, a fault is injected to a share of a. Assuming
a0 is the targeted share, T0 now stores the faulty value a′0 = a0+∆, and
uses it in the subsequent computations.

(3.2) Then, the incorrect MAC tag τa′ consistent with a′ is computed, where
τa′ = αa′ and a′ = a + ∆, while τb, τc are correct and consistent with
b, c, respectively.

(4) Relation verification for the triple (⟨a′⟩, ⟨b⟩, ⟨c⟩) is performed utilizing an-
other triple (⟨d⟩, ⟨e⟩, ⟨f⟩) that is assumed to be correct:

(4.1) A random r1 ∈ F2k is drawn.

(4.2) (⟨d⟩, ⟨e⟩, ⟨f⟩) is used to compute ⟨c̃⟩ where c̃ = r1a
′b. As τa′ and τb are

consistent with the values a′ and b, the actively secure multiplication is
executed with a successful MAC tag check step.

(4.3) Each tile locally computes and broadcasts T0 → Θ0 = r1c0 + c̃0, τΘ0 =
r1τc0 + τc̃0 , T1 → Θ1 = r1c1 + c̃1, τΘ1 = r1τc1 + τc̃1 . Θ = Θ0 + Θ1 and
τΘ = τΘ0

+ τΘ1
are then unmasked.

(4.4) Then, the relation verification checks whether at least one of unmasked
Θ and τΘ is non-zero. If one of them is non-zero, then the triple is
rejected as it is not valid. That is, if b is non-zero, the faulty triple
(⟨a′⟩, ⟨b⟩, ⟨c⟩) will not pass the check as the fault injected to a is effective
(i.e., a′b = c + ∆b ̸= c), making the triple invalid. However, the faulty
triple will pass the check if b = 0 as the injected fault is ineffective due
to b nullifying it (i.e., a′b = c+∆0 = c), maintaining the validity of the
triple.
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Probing Step

In this step of the attack, the adversary exploits the injected fault by probing
to deduce information about the secrets. Considering that b = 0 and c = 0, the
triple (⟨a′⟩, ⟨b⟩, ⟨c⟩) successfully passes the relation verification for a′ = a +∆.
This triple is then employed in the multiplication (Equation 1) to blind the shares
of the secret inputs. As a result, one of the secret variables (consider y in our
example) in the multiplication z = xy is blinded by a zero value: η = y + b = y.
Subsequently, the adversary probes the unmasked variable η = y to reveal the
secret value y.

This described attack involves a single fault injection in one of the randoms
(i.e., a) of a Beaver triple, coupled with a single probe. The attack is successful
if and only if the injected fault to a (where any of the shares can be faulted)
is ineffective due to the value of b = 0, occurring with a probability of 2−k.
Consequently, the leakage results from an unmasked byte value, which is not
directly targeted by the fault. In essence, as long as the fault injection step is
successful, i.e., the injected fault is ineffective, an unmasked variable occurs in
the subsequent multiplication some cycles after the fault injection event. It is
crucial to note that the fault does not need to be repeatable for a successful
attack. The ineffectiveness of the fault injected into a is solely contingent on the
value of b, and the fault can take any random fault type.

It is essential to highlight that, in the CAPA countermeasure, faults are
undetected only if both the value and its corresponding MAC tag are altered
such that they are consistent, which requires two faults to be injected. For an A1

adversary to successfully obtain a pair of a faulty value and a consistent MAC
tag, knowledge of the MAC key (α) is required. Due to the MAC key being
secret, the adversary is limited to probabilistic guessing, which is successful with
a probability of 2−k. For an A2 adversary, the faults go undetected only when
the value and the corresponding tag happen to be consistent, occurring with
a probability of 2−k. In this context, the success probability of the proposed
attack, conditioned on b = 0, remains the same at 2−k. Nevertheless, it exploits
a specific vulnerability that arises in the preprocessing stage, requiring a single
fault and a subsequent probe, in contrast to the need for two faults. Moreover,
employing multiple MAC tags for each variable reduces the success probability of
obtaining consistent variable and MAC tags to 2−lk, where l denotes the number
of tags. However, this does not impact the success probability of the proposed
attack, as the tags are computed based on the faulty value.

4 Fixes Against the Proposed Attack

In this section, we propose a few fixes against the aforementioned attack. It is im-
portant to emphasize that while the proposed fixes do not completely eliminate
the vulnerability, they do increase the complexity of the attack.
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Computing the Tags of a and b Prior to Forming the Triple

In response to this attack, one proposed fix involves precomputing the tags
of a and b before forming the triple in the preprocessing stage, prior to the
computation of c such that c = ab. As the proposed attack requires the fault
to be injected after c is computed, this fix aims to prevent faults injected to a
and b from going undetected by computing the associated MAC tags based on
their non-faulty values. Then, the faults injected to a and b will be detected
in the MAC tag check step of the actively secure multiplication of the relation
verification step, thus circumventing the proposed attack.

However, it is crucial to note that an adversary can still execute the described
attack, albeit with multiple faults. Specifically, the adversary needs to inject
three faults. First, the adversary injects a fault to a to obtain a′ = a+∆ before
computing τa to get a faulty tag associated with a′. Then, they inject the same
fault to a′ to revert it to a, allowing c to be computed using the correct a and
b. Lastly, they inject one more fault to a after computing c as in the original
attack. We formalize this fault injection step as follows:

(1) Each tile draws randoms T0 → a0, b0 ∈ F2k , T1 → a1, b1 ∈ F2k , such that
a = (a0, a1) where a = a0 + a1 and b = (b0, b1) where b = b0 + b1.

(2) The tiles compute the corresponding MAC tags τa, τb.

(2.1) Before the computation of τa, a fault is injected to a share of a. Assuming
a0 is the targeted share, T0 now stores the faulty value a′0 = a0+∆, and
uses it in subsequent computations.

(2.2) Then, the incorrect MAC tag τa′ consistent with a′ is computed, where
τa′ = αa′ and a′ = a+∆, while τb is correct and consistent with b.

(2.3) After the computation of τ ′
a, the same fault ∆ is injected to a share of

a′ to obtain the initial value a (i.e. a = a′ +∆).

(3) The tiles compute c = (c0, c1) where c = c0 + c1 such that c = ab, and the
corresponding MAC tag τc.

(4) The same fault ∆ is injected to any share of a once more, obtaining a′ =
a+∆.

(5) Relation verification for the triple (⟨a′⟩, ⟨b⟩, ⟨c⟩) is executed utilizing another
triple (⟨d⟩, ⟨e⟩, ⟨f⟩) that is assumed to be correct:

(5.1) A random r1 ∈ F2k is drawn.
(5.2) (⟨d⟩, ⟨e⟩, ⟨f⟩) is used to compute ⟨c̃⟩ where c̃ = r1a

′b. As τa′ and τb are
consistent with the values a′ and b, the actively secure multiplication is
executed with a successful MAC tag check step.

(5.3) Each tile locally computes and broadcasts T0 → Θ0 = r1c0 + c̃0, τΘ0
=

r1τc0 + τc̃0 , T1 → Θ1 = r1c1 + c̃1, τΘ1 = r1τc1 + τc̃1 . Θ = Θ0 + Θ1 and
τΘ = τΘ0 + τΘ1 are then unmasked.

(5.4) Then, the relation verification checks whether at least one of unmasked Θ
and τΘ is non-zero. If one of them is non-zero, then the triple is rejected
as it is not valid. That is, the triple is rejected if b is non-zero, and the
triple is used for blinding if b = 0.



12 D. Toprakhisar et al.

We note that, in certain cases, a copy of a rather than the value itself may
be used to compute c (step 3). In such instances, step 4 becomes unnecessary,
given that a′ is already stored and utilized in subsequent computations.

The probing step follows the same process described in the original attack
which is conditioned on the injected fault to a being ineffective (i.e., b = 0),
occurring with a probability of 2−k. In both adversarial models, A1 and A2, the
adversary is able to inject the same additive fault (∆) repeatedly, as it is inde-
pendent of the value a. Although this attack maintains the success probability
of the original attack, the proposed fix increases the complexity by necessitating
three faults to be injected.

Randomly Choosing the Beaver Triple To Be Used in the Multiplica-
tion

In a manner similar to SPDZ, the CAPA countermeasure can exert control over
the selection of the Beaver triple used for blinding secrets in the multiplication
(Equation 1). That is, the CAPA countermeasure can choose between the two
Beaver triples (⟨a⟩, ⟨b⟩, ⟨c⟩), (⟨d⟩, ⟨e⟩, ⟨f⟩) to be used for blinding in the mul-
tiplication (Equation 1) or to be sacrificed. Consequently, for an adversary to
execute the same attack with equivalent success probability 2−k, faults must be
injected to both Beaver triples (1/2 · 2−k +1/2 · 2−k = 2−k). The injected faults
do not need to be identical, as achieving an ineffective fault hinges solely on
the value of b (i.e., the fault-free variable of the Beaver triple inputs). There-
fore, akin to the first proposed fix, this one also increases the complexity of the
attack, requiring a total of two fault injections, albeit maintaining the same suc-
cess probability. It is essential to highlight that an alternative attack strategy
still incorporates a single fault injection, as assumed in the proposed attack. In
this scenario, the adversary can still be successful, albeit with half of the initial
success rate (2−k−1), when the faulty Beaver triple is chosen with a probability
of 2−1.

Another fix involves the generalization of the above described fix. During the
preprocessing stage, the countermeasure can generate multiple Beaver triples. To
be used in the evaluation phase, two of the triples can be randomly selected for
the relation verification, and consequently, for blinding the secrets. This further
increases the complexity of the attack, meaning that more faults (i.e., the number
of Beaver triples) must be injected to execute the same attack with the same
success rate. Alternatively, the adversary can still execute the attack with a single
fault, albeit with a probability of (1/m · 2−k), where m is the number of Beaver
triples available to be selected for blinding in the multiplication (Equation 1).
If the number of used Beaver triples for the selection is less than 2(l−1)k, this
alternative attack still proves more efficient than the straightforward attack of
injecting two faults to achieve a consistent value and a tag, when more than one
MAC tag is employed.
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Zero-check on c

The CAPA countermeasure can implement a zero-check on c, indirectly checking
whether either a or b is zero, as c = ab, constituting the condition for the
ineffectiveness of the injected fault. In this way, the countermeasure selectively
forms the Beaver triple (a, b, c) only for non-zero inputs. While implementing
a zero-check on masked values is not inherently efficient, this fix does serve
as a preventive measure against the proposed attack, assuming the zero-check
protocol and its result remain unaffected by the faults.

Nevertheless, it is important to note that excluding zero inputs from the
Beaver triple generation process will compromise the uniformity of the partially
unmasked multiplication inputs. The potential impact of this strategy on the
susceptibility of the non-uniformly blinded values to exploitation by a probing
adversary should be carefully considered.

5 Conclusion

Our work presents the first known attack, CAPABARA, targeting the CAPA
countermeasure within its own adversarial model, the tile-probe-and-fault model.
We highlight the distinct preprocessing stage of CAPA that differs from the
offline phase of SPDZ, as discussed in Section 2.2. While these distinctions render
the CAPA preprocessing stage more lightweight, it sacrifices certain security
properties provided by somewhat homomorphic encryption utilized in SPDZ.

Our proposed attack exploits the lack of error checks of the generated ran-
doms (ai, bi) forming the Beaver triples after they are fed to the passively secure
multiplier. Despite CAPA’s assumption of a robust adversary model, CAPA-
BARA exploits only a single fault injected during the preprocessing stage and
a probe performed during the evaluation stage, where the probed value is un-
masked due to the ineffective fault.

In response to the proposed attack, we also propose a few fixes to the CAPA
design. While these fixes do not fully eliminate the exploited vulnerability, they
enhance the attack complexity. The task of eliminating this vulnerability while
meeting efficiency requirements for deployment is left as a future work that
merits further investigation.
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