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Abstract. Randomized Partial Checking (RPC) [16] was proposed by
Jakobsson, Juels, and Rivest and attracted attention as an e�cient method
of verifying the correctness of the mixing process in numerous applied
scenarios. In fact, RPC is a building block for many electronic voting
schemes, including Prêt à Voter [6], Civitas [9], Scantegrity II [5] as well
as voting-systems used in real-world elections (e.g., in Australia [4]). Mix-
ing is also used in anonymous transfers of cryptocurrencies. It turned out,
however, that a series of works [17, 18] showed subtle issues with analyses
behind RPC. First, that the actual security level of the RPC protocol is
way o� the claimed [16] bounds. The probability of successful manipula-
tion of k votes is ( 3

4
)k instead of the claimed 1

2k
(this di�erence, in turn,

negatively a�ects actual implementations of the notion within existing
election systems. This is so since concrete implemented procedures of
a given length were directly based on this parameter). Further, privacy
guarantees [11] that a constant number of mix-servers is enough turned
out [17] to also not be correct. We can conclude from the above that
these analyses of the processes of mixing are not trivial.
In this paper, we review the relevant attacks, and we present Mirrored-

RPC (mRPC) � a �x to RPC based on �mirrored commitment� which
makes it optimally secure; namely, having a probability of successful
manipulation of k votes 1

2k
.

Then, we present an analysis of the privacy level of both RPC and mRPC.
We show that for n messages, the number of mix-servers (rounds) needed
to be ε-close to the uniform distribution in total variation distance is
lower bounded by:

r(n, ε) ≥ log2

(
n

2

)
/ε.

This proof of privacy, in turn, gives insights into the anonymity of var-
ious cryptocurrencies (e.g., Zerocash [23]) using anonymizing pools. If
a random fraction q of n existing coins is mixed (in each block), then
to achieve full anonymity, the number of blocks one needs to run the
protocol for, is:

rb(n, q, ε) ≥ − logn+ log(n− 1)− log(2ε)

log(1− q2)
.
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1 Introduction

Mix nets, introduced by Chaum [7], constitute an important technique
used in many privacy-preserving technologies. For instance, mix nets are
a crucial part of many voting systems providing assurance that encrypted
ballots posted by voters are correctly decrypted (and tallied). A list of
schemes that use mix nets includes systems deployed in publicly binding
elections: Estonia, Norway, Switzerland, Australia, USA [13, 10, 4, 27, 5].
But applications of mix nets are much wider: anonymous messaging [22],
anonymous routing [8], and oblivious RAM [24]. To �nd a more elaborate
list of applications and techniques for veri�able mix nets the reader is
encouraged to read [15].

This paper focuses on a central prominent technique by Juels, Jakobs-
son, and Rivest called Randomized Partial Checking (RPC) [16]. The orig-
inal Chaumian mix net was designed in the �honest but curious� model, to
guarantee senders' privacy provided that at least one mix server is honest.
But, a single malicious mix server could replace any number of ciphertexts.
In order to decrease the possibility of this happening, RPC was proposed.
In RPC, the more ciphertexts are replaced by a server the higher the prob-
ability of detecting malfeasance is. The main di�erence between RPC and
other proof-of-shu�e techniques (like [12, 26]) is that RPC is much more
e�cient than other techniques, but provides just a strong evidence of cor-
rect operations instead of a proof of correct operations (but luckily, this
con�dence is su�cient for many applications). Due to its e�ciency, the
RPC approach is used in end-to-end voter veri�able systems like Prêt à
Voter [6], Scantegrity II [5], and coercion-resistant Civitas [9]. The above
have been implemented and applied in real elections. Then, as interest
in implementing the technique grew, a series of works [17, 18] scrutinized
it, and showed that the actual security level of the RPC protocol is way
o� the initial claim: the probability of successful manipulation of k votes
is (34)

k instead of 1
2k

as claimed in [16]. These attacks [17] a�ected the
implementations of Scantegrity and Civitas systems. The level of privacy
was a�ected as well [17]. More on attacks on RPC see Section 2.3.

Related work: Recently [14], a new RPC-type protocol was proposed,
where optimal veri�ability tolerance (12)

k is achieved. The protocol as-
sumes that there is a special auditor that becomes the last mix server.
After the auditor/mix server publishes decrypted messages it reveals its
private keys. While such an approach works in theory, the new protocol
role can raise trust-related issues, e.g., now one needs to assume that the
special auditor and the second to last mix server do not cooperate (and
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this con�guration solves one weakness by introducing another!). Aside
from the proposed attacks, the authors of [18] proposed changes to the
protocol that can �x certain attacks, but then they noted that other at-
tacks (which they, in fact, proposed) are �equally harmful.� Then, given
their �nding, they conclude: �This seems to be an inherent problem for
RPC mix nets, without an obvious �x.�

Our contributions:We present Mirrored Randomized Partial Check-
ing (mRPC), a protocol that has exactly the same participants, roles, and
trust assumptions as the original RPC. The only di�erence is that a (mir-
rored) commitment (a commitment to a di�erent value) is published dur-
ing the protocol execution and one additional value is opened and checked
during the audit phase (per message, per server). These changes, in turn,
allow us to achieve optimal veri�ability tolerance (12)

k - compared to (34)
k

in the original RPC. The di�erence between 1/2k and (3/4)k is highly
signi�cant when considering practical parameters (see Figure 1). We also
show how many mix servers r(n, ε) are required to mix n messages so
that the distribution on permutations (mapping senders to decrypted mes-
sages) is ε-close to the uniform distribution on all n-element permutations
(in total variation distance). Our proof works for both versions of RPC:
Scheme One (Independent Random Selections) and Scheme Two (Pairwise
Dependent Selections)6. Analysis (Lemma 6) of Scheme One is applicable
to (un)linkability in blockchains, while analysis (Lemma 7) of Scheme Two
(RPC) is related to anonymity guarantees of election protocols.
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Fig. 1: mRPC guarantees better se-
curity level than original RPC. The
probability of undetected manipu-
lation of k messages is (1/2)k for
mRPC and (3/4)k for RPC. x-axis
corresponds to k-the number of
modi�ed entries; y-axis is the proba-
bility of undetectable manipulation.

6 As most authors we refer to Pairwise Dependent Selection scheme as to original
RPC.
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1.1 Notation

We denote by [n] = {1, . . . , n}. Security analysis uses standard assump-
tions about primitives used by Chaumian RPC mix nets: (1) public key
encryption scheme (E = ⟨KeyGen,Enc,Dec⟩) used for Chaumian RPC to
be IND-CCA2-secure [3], (2) commitment scheme is perfectly hiding and
computationally binding (e.g., Pedersen scheme [21]), (3) the encryption
scheme allows for proof of correct decryption.

2 Chaumian Randomized Partial Checking (RPC) Mix
Net

We try to closely follow [18] when describing the protocol. A decryption
mix net [7] consists of a public, append-only bulletin board, mix servers
M1, . . . ,Mr, message senders S1, . . . , Sn (sometimes we will call them vot-
ers) and auditors.

2.1 Protocol description

The goal of the protocol: mix servers jointly decrypt messages sent by
senders (voters), while auditors verify if the decryption process was per-
formed correctly. The following steps are performed.

Setup phase. Every mix server Mj generates two public/private key
pairs
(pk2j−1, sk2j−1), (pk2j , sk2j) and publishes its public keys pk2j−1, pk2j on
the bulletin board.

Submit phase. Every sender Si chooses her input plaintext mi (some-
times we refer to mi as to a ballot/vote) and submits to the bulletin board
B a ciphertext generated in the following process. She �rst encrypts mi

using pk2r obtaining ci2r = Enc(pk2r,mi). Then, she repeats the following
process for j = 2r − 1, 2r − 2, . . . , 0:

cij = Enc(pkj , c
i
j+1),

and submits ci0 to the bulletin board B.

Mixing phase. The sequence C0 =
〈
c10, . . . , c

n
0

〉
of ciphertexts submitted

by senders to B is the input to the mixing phase. We denote by C0[i] = ci0
and similarly for other sequences.
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C0 is fetched by the �rst server M1 which outputs C2 (each Mj per-
forms two mixing steps C2j−2 ⇝ C2j−1 and then C2j−1 ⇝ C2j) that is an
input to M2, and so on.

The output produced by Mr (the last mix server): C2r should contain
a permuted list of unencrypted input messages m1, . . . ,mn.

The steps performed by each Mj , j < r are following:

1. Duplicate elimination. Mj removes duplicate entries from its input
C2j−2, leaving only a single copy of each entry. Moreover, all messages
that correspond to decryption failures ⊥ are removed. Denote by C ′

2j−2

the resulting sequence, and by l ≤ n the number of messages of C ′
2j−2.

2. First mixing. Mj chooses uniformly at random a permutation π2j−1

of [l] and posts on B the sequence C2j−1: C2j−1[i] = Dec(sk2j−1, C
′
2j−2[π2j−1]).

3. Second mixing. Mj performs the same steps as during the �rst mix-
ing: selects uniformly at random a permutation π2j of [l]. Then it posts
on B the sequence C2j where C2j [i] = Dec(sk2j , C

′
2j−1[π2j ]).

4. Posting commitments. Mj posts two sequences of commitments on
B:
(a) commitments to the values π−1

2j−1(1), . . . , π
−1
2j−1(l),

(b) commitments to the values π2j(1), . . . , π2j(l).

For the clarity of presentation we assume no duplicate elimination took
place, i.e., l = n.

π2j−1 π2j

c12j−2

c22j−2

c32j−2

2

3

1

c12j−1

c22j−1

c32j−1

2

1

3

c12j

c22j

c32j

Fig. 2: Original RPC: commitments to π−1
2j−1(i) and to π2j(i) are in shaded

squares. Dashed edges/arrows remain secret.

2.2 RPC Audit

During the audit phase, each mix server Mj opens half of the commit-
ments. A set Ij ⊂ {1, . . . , n} is computed by e.g., xor-ing random bit
strings provided by the auditors.

AL If i ∈ Ij then the mix server Mj is supposed to:
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1 open the left link for i, i.e., Mj is supposed to open its i-th com-
mitment from its �rst sequence of commitments, which should be a
commitment on the value π−1

2j−1(i).
2 post a (non-interactive zero-knowledge) proof demonstrating that
indeed C2j−1[i] is obtained from decrypting C ′

2j−2[π
−1
2j−1(i)] using

sk2j−1.
AR If i ̸∈ Ij then the mix server Mj is supposed to:
1 open the right link: the commitment to the value π2j(i).
2 post a (non-interactive zero-knowledge) proof that C2j [π2j(i)] is ob-
tained from decrypting C2j−1[i] using sk2j .

Set Ij de�nes a corresponding challenge string (also called audit string)
Bj = bj,1bj,2 . . . bj,n for bj,i ∈ {0, 1}, where bj,i = 0 if and only if i ∈ Ij .

Example 1 (RPC audit). Let us assume that the jth server committed to
the values presented in the Figure 2 and during the audit, an audit string
Bj = 010 was selected (Ij = {1, 3}). Commitments to π−1

2j−1(1), π
−1
2j−1(3)

and to π2j(2) are opened. Corresponding proofs of correct decryptions are

shown (along solid arrows) e.g., that c22j−1 correctly decrypts to c12j under
the public key pk2j . It is visualized on Figure 3.

π2j−1 π2j

c12j−2

c22j−2

c32j−2

2

3

1

c12j−1

c22j−1

c32j−1

2

1

3

c12j

c22j

c32j

Fig. 3: RPC audit example for server Mj and audit string Bj = 010.
Dashed edges and corresponding commitments remain hidden.

2.3 Attacks on RPC

In this section we describe and analyse attacks on RPC. The �rst attack
was presented in [18] and later described in [17].

Attacks by the last mix sever. To ilustrate the attack by the last
mix-server, let us consider the following example with n = l = 3 votes.
Let m1 = m2 = A (2 votes for candidate A) while m3 = B (1 vote for B).
Say, the honest permutation is π2r = (2, 1, 3) (Figure 2), however, Mr is



7

cheating and it publishes commitments to π′
2r = (1, 1, 3) (which is not a

permutation) (Figure 4).

π2r−1 π′
2r

c12r−2

c22r−2

c32r−2

2

3

1

c12r−1

c22r−1

c32r−1

1

1

3

A

B

B

Fig. 4: Example: attack by the last mix server. A vote for B is copied while
a vote for A is removed.

The audit string is of the form Br = br,1br,2br,3. The value of br,3 is
irrelevant for this attack, we are thus left with four choices for br,1br,2.
All four situations are depicted in Figure 5. If br,1 = br,2 = 1 then Mr is
asked to open π′

2r(1) and π′
2r(2) and the cheating is detected. In all other

cases, the cheating is not detected (since there are two entries pointing
to the same element). In other words, one can detect a single message
manipulation with probability 1/4.

c12r−2

c22r−2

c32r−2

2

3

1

c12r−1

c22r−1

c32r−1

1

1

3

A

B

B

(a) Challenge: 00∗ (Ir = {1, 2}).
Audit passed.

c12r−2

c22r−2

c32r−2

2

3

1

c12r−1

c22r−1

c32r−1

1

1

3

A

B

B

(b) Challenge: 01∗ (Ir = {1}).
Audit passed.

c12r−2

c22r−2

c32r−2

2

3

1

c12r−1

c22r−1

c32r−1

1

1

3

A

B

B

(c) Challenge: 10∗ (Ir = {2}).
Audit passed.

c12r−2

c22r−2

c32r−2

2

3

1

c12r−1

c22r−1

c32r−1

1

1

3

A

B

B

(d) Challenge 11∗ (Ir = ∅).
Audit fails.

Fig. 5: RPC detects a single message manipulation just with probability
1
4 .
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Attacks by any mix server. Here, we present an attack that was pro-
posed in [17]. This attack can be performed by any server. Let l = n = 3
and consider the server Mj with honest inverse permutation π−1

2j−1 =

(2, 3, 1) (Figure 2), however the server publishes commitments to π
′−1
2j−1 =

(1, 3, 1) (Figure 6).

π′
2j−1

π2j

c12j−2

c22j−2

c32j−2

1

3

1

c12j−1

c22j−1

c32j−1

2

1

3

Fig. 6: Example: attack on any layer by serverMj . The result of the attack
can be: a vote for B is copied while a vote for A is removed.

If the audit string bj,1bj,2bj,3 is such that bj,1 = bj,3 = 0, then the server

is asked to open π
′−1
2j−1(1) and π

′−1
2j−1(3) and the manipulation is detected.

Note that in any other case for values of bj,1, bj,3, it is not detected. All
four situations for values of bj,1, bj,3 are depicted in Fig.7.

Summarizing, such a manipulation is detected with probability 1/4
(and thus it is undetected with probability 3/4) in case of one manipula-
tion. In general, when k messages are manipulated, the probability of not
detecting it is (3/4)k (for details see Theorem 1 in [18]).

3 Mirrored Randomized Partial Checking (mRPC)

In this section, we present a �x to RPC which we call Mirrored-RPC
(mRPC) protocol and prove that it guarantees optimal level of manipula-
tion detection i.e., manipulation of k messsages is detected with proba-
bility 1− (1/2)k.

In RPC protocol, each mix server publishes two lists of commitments
to the �middle column� (ciphertexts that are the result of the �rst mixing
phase, see Figure 2), more precisely server Mj for each entry i publishes:

� commitments to π−1
2j−1(i) (where data comes from), and

� commitments to π2j(i) (where data goes to).
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c12j−2

c22j−2

c32j−2

1

3

1

c12j−1

c22j−1

c32j−1

2

1

3

(a) Challenge: 0 ∗ 0 (Ir = {1, 3}).
Audit fails.

c12j−2

c22j−2

c32j−2

2

3

1

c12j−1

c22j−1

c32j−1

2

1

3

(b) Challenge: 0 ∗ 1.
Audit passed.

c12j−2

c22j−2

c32j−2

1

3

1

c12j−1

c22j−1

c32j−1

2

1

3

(c) Challenge: 1 ∗ 0.
Audit passed.

c12j−2

c22j−2

c32j−2

2

3

1

c12j−1

c22j−1

c32j−1

2

1

3

(d) Challenge 1 ∗ 1.
Audit passed.

Fig. 7: RPC detects a single message manipulation just with probability
1
4 .

In mRPC commitments are published on the �outer columns� � see Fig-
ure 8. This change allows for detecting manipulations with higher proba-
bility than the original RPC.

π2j−1 π2j

c12j−1

c22j−1

c32j−1

3

1

2

c
π2j−1(1)

2j

c
π2j−1(2)

2j

c
π2j−1(3)

2j

2

1

3

c12j

c22j

c32j

Fig. 8: mRPC: For each entry of a left column, a commitment to �where
to� is published and a commitment to �where from� for entries of a right
column is published (In the original RPC these commitments are only
published for the entries that are the result of �rst mixing.).

3.1 Protocol description

Setup phase The setup is exactly the same as in the original RPC (Sec-
tion 2.1).
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Submit phase This phase is exactly the same as in the original RPC
(Section 2.1).

Mixing phase The mixing phase stays almost the same as the Mixing

phase of the original RPC (see Section 2.1) the only di�erence is in the
part: Posting commitments.

1. Duplicate elimination the same as in original RPC.

2. First mixing � the same as in original RPC.

3. Second mixing � the same as in original RPC.

4. Posting commitments Mj posts two sequences of commitments on
B:

(a) commitments to the values π2j−1(1), . . . , π2j−1(l),

(b) commitments to the values π−1
2j (1), . . . , π

−1
2j (l).

Note that RPC in Posting commitments phase in step 4a posts:
π−1
2j−1(1), . . . , π

−1
2j−1(l) and in step 4b posts: π2j(1), . . . , π2j(l). Similarly as

in RPC, for clarity of presentation, we assume no duplicate elimination
took place in mRPC, i.e., l = n.

3.2 mRPC Audit

During the audit phase, each mix server Mj opens half of the commit-
ments. A set Ij ⊂ {1, . . . , n} is computed by e.g., xor-ing random bit
strings provided by the auditors. Set Ij de�nes a corresponding challenge
string (also called audit string) Bj = bj,1bj,2 . . . bj,n for bj,i ∈ {0, 1}, where
bj,x = 0 if and only if x ∈ Ij .

AL If x ∈ Ij i.e., bj,x = 0, then the mix server Mj is supposed to:

1 (bidirectional checking):

(a) publish value y;
(b) then open z = π2j−1(y) and check if z = x;

2 post a non-interactive zero-knowledge proof demonstrating that in-
deed C2j−1[x] is obtained from decrypting C ′

2j−2[y] using sk2j−1.

AR If x ̸∈ Ij i.e., bj,x = 1, then the mix server Mj is supposed to:

1 (bidirectional checking):

(a) publish value y;
(b) open the commitment to z = π−1

2j (y) and check if z = x.

2 post a non-interactive zero-knowledge proof that C2j [y] is obtained
from decrypting C2j−1[x] using sk2j .



11

Example 2 (mRPC Audit). Let us assume that the jth server committed
to the values presented in Figure 8. The audit is presented in Figure 9.
During the audit phase, an audit string b = 010 = b1b2b3 (de�ning the
corresponding Ij = {1, 3}). The jth server needs to publish:

AL for x ∈ {1, 3}:
1. for x = 1, y1 = 2, z = π2j−1(y1) = 1 = x, a non-interactive ZKP

that C2j−1[1] is obtained from decrypting C2j−2[2];

2. for x = 3, y3 = 1, z = π2j−1(y3) = 3 = x, a non-interactive ZKP
that C2j−1[3] is obtained from decrypting C2j−2[1];

AR for x ∈ Ij
c = {2}:

1. for x = 2, y2 = 1, z = π−1
2j (y2) = 2 = x, a non-interactive ZKP that

C2j [1] is obtained from decrypting C2j−1[2].

π2j−1 π2j

c12j−2

c22j−2

c32j−2

3

1

2

2

1

c
π2j−1(1)

2j

c
π2j−1(2)

2j

c
π2j−1(3)

2j

1

2

1

3

c12j

c22j

c32j

Fig. 9: mRPC audit example for server Mj with Bj = 010. Dashed edges
and corresponding commitments remain hidden.

3.3 Attack examples on mRPC

Attack by the last mix server. Let us reconsider the attack described
in Section 2.3. The dishonest �permutation� together with all commit-
ments is depicted in Figure 10.

π1 π2

c11

c21

c31

3

1

2

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1

3

3

A

B

B

Fig. 10: Attack by the last mix server in mRPC.
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For br,1 = br,2 = 1, the cheating is detected (Figure 11 (d)). However,
this is not the only situation when the manipulation is detected.

� Assume that the server commits to π
′−1
2r = (1, ∗, 3). Consider br,1 =

0, br,2 = 1. In RPC serverMr is asked to open π′
2r(2) = y = 1, in mRPC

the server is additionally asked to open π
′−1
2j (y) = π

′−1
2j (1), which is 1

and the cheating is detected � Figure 11(b).

� Assume that the server commits to π
′−1
2r = (2, ∗, 3). Consider br,1 =

1, br,2 = 0. Then Mr is asked to open π′
2r(1) = y = 1 and additionally

π
′−1
2r (1) = 2. This case is presented in Figure 15(c).

In any case (for manipulated permutations), the manipulation will be
caught for 2 audit strings br,1br,2 out of 4, thus with probability 1/2. All
options are depicted in Figure 11.

π1 π2

c11

c21

c31

3

1

2

2

3

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1

3

3

A

B

B

(a) Challenge string: 00∗.
Audit passed.

π1 π2

c11

c21

c31

3

1

2

2 c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1

1

3

3

A

B

B

(b) Challenge string: 01∗. For x = 2 value
y = 1 is published but opened commitment
z = 1 ̸= x. Audit failed.

π1 π2

c11

c21

c31

3

1

2

3

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1 1

3

3

A

B

B

(c) Challenge: 10∗.
Audit passed.

π1 π2

c11

c21

c31

3

1

2

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1

1

1

3

3

A

B

B

(d) Challenge 11∗. For x = 2, y = 1 is
published but opened commitment is for
z = 1 ̸= x. Audit failed.

Fig. 11: A view of a bulletin board after the audit step of mRPC.

Attacks by any mix server. Let us continue with the setup Section 2.3.
The attack, in the presence of additional commitments is presented in
Figure 12.
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π1 π2

c11

c21

c31

3

1

2

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

2

1

3

Fig. 12: Attack on any layer in mRPC.

Again, once bj,1 = bj,3 = 0, the manipulation is detected. Consider the
following cases:

� Assume that server commits to π′
2j−1 = (3, ∗, 2). Consider bj,1 =

0, bj,3 = 1. In RPC server Mj is asked to open π
′−1
2j−1(1) = y = 1,

in mRPC server is additionally asked to open π′
2j−1(1) which is 3 and

the manipulation is detected.

� Assume now that the commitment is π′
2j−1 = (1, ∗, 2). Then in case

bj,1 = 1, bj,3 = 0 the server must open π
′−1
2j−1(3) which commits to 1.

In any case (for manipulated permutations), the manipulation will be de-
tected in two out of four possibilities for bj,1 and bj,3, i.e., with probability
1/2. All the situations (for π′

2j−1 = (3, 1, 2)) are presented in Figure 13,
other cases are �symmetric� (see Figure 15).

The same attack as in Section 2.3 (Attacks by the last mix server) is
presented, except in the �rst row of the last column, commitment is to
row 2 from the middle column. The attack is then detected for di�erent
challenge strings but still with 50% probability.
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Fig. 14: Attack by the last mix server in mRPC.
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(b) Challenge: 0 ∗ 1.
Audit failed.
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(c) Challenge: 1 ∗ 0.
Audit passed.
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(d) Challenge 1 ∗ 1.
Audit passed.

Fig. 13: mRPC ggdetects a single message manipulation with probability
1
2 . For the same settings, RPC succeeds in detecting only with probability
1
4 .
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(a) Challenge: 00∗.
Audit passed.
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(b) Challenge: 01∗.
Audit passed.
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(c) Challenge: 10∗.
Audit fails.

π1 π2

c11

c21

c31

3

1

2

2

3

1

c
π1(1)
2

c
π1(2)
2

c
π1(3)
2

1

1

3

2

3

3

A

B

B

(d) Challenge 11∗.
Audit fails.

Fig. 15: The same attack as in Section 3.4 is presented but with attacker
committing to di�erent values.
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3.4 Security of mRPC

Lemma 1. For mRPC, the probability of undetectable modi�cation of k
entries by any mix server Mj, during one mixing step is upper bounded by
1
2k
.

Proof. We will show the proof for an odd (2j − 1) mixing step, the rea-
soning for an even (2j) mixing step is similar. The input to the mix server

Mj is a list of ciphertexts C2j−1 =
〈
c12j−1, . . . , c

n
2j−1

〉
published by the

server Mj−1 (or the users/voters for j = 1).
During the Mixing phase, Mj posts:

� the result of the First mixing, ciphertexts: C2j =
〈
c12j , . . . , c

n
2j

〉
,

� commitments t1, . . . , tn.

If Mj is honest then for some π2j−1 ∈ Sn and y = π2j−1(x) for all
x ∈ [n] the following equations hold:

tx = Comm(y), (1)

cy2j = Decsk2j−1
(cx2j−1). (2)

During the audit step if bj,y = 0 (y ∈ Ij) the following steps are
performed:

AL.1 (bidirectional checking):
1. Mj publishes z,
2. Mj opens commitment tz = Comm(y′) to y′,
3. auditor checks if y = y′.
AL.2 (proof of correct decryption):
1. Mj publishes the proof that Equation 2 holds for y and z,
2. auditor veri�es the proof.

If Mj is dishonest and decides to manipulate k entries from positions
in a set A ⊂ {1, . . . , n} (|A| = k) it means that Mj will not be able to
pass AL.2 part of the audit for x ∈ A.

Mj may try to post commitments to di�erent positions but since the
commitment check AL.1 is bidirectional, a single entry from C2j−1 can
be mapped only to a single entry in C2j . And since C2j lacks entries
corresponding to ciphertexts from positions in A it will be detected in the
AL.2 part of the check whenever for such an entry a challenge bit 0 will
be chosen.

Since there are k positions with that property, the probability of not
detecting that k entries were dropped (replaced) is equal to 1/2k.
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The main theorem is a direct conclusion from Lemma 1.

Theorem 1 (mRPC security). For mRPC, the probability of undetectable

modi�cation of k entries by any mix server is upper bounded by 1
2k
.

4 Privacy guarantees of RPC and mRPC

4.1 Constant number of mix-servers

In [11] it was shown that for a scenario when votes are cast only for one
of the two candidates, a constant number of mix servers is enough.

Here we show that for arbitrary messages (e.g., for Australian-type
ballots), a constant number of mix-servers is not enough!

Example 3 (Bulletin board leaks information). RPC auditing process may
reveal a lot of information about voters' preferences. Figure 16 presents an
extreme example. There are two candidates A,B and 8 voters v1, . . . , v8.
With only r = 2 mixing servers, a lot of information may be available to
an adversary, even when he just observes publicly accessible information.

π1 π2 π3 π4

v1

v2

v3

v4

v5

v6

v7

v8

A

A

B

A

B

B

A

A

A

B

B

A

B

A

A

B

A

B

B

A

A

A

B

B

B

A

B

A

Fig. 16: RPC for small number of mix servers may reveal a lot of infor-
mation. Just by observing bulletin board, an adversary may say that vot-
ers {v1, v4, v7, v8} cast votes {A,B,B,B} while voters {v2, v3, v5, v6} cast
votes: {A,A,A,B}.

The situation becomes much worse if an adversary knows exactly how
some voters voted. For the example at Figure 16, knowledge that v4 voted
for A reveals that v1, v7, v8 voted for B.
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Example 4 (Anonymity for arbitrary messages.). For a general case, when
there are more types of messages (e.g., ballots in Australia), senders' pri-
vacy is still at risk. In the most general case, every message is unique.
The insight behind the privacy de�nition is achieved in the following way:
for an adversary, every permutation should be possible with almost the
same probability � i.e., distribution on permutations generated by the
RPC process should be close to the uniform distribution.

By π we denote a permutation obtained by applying permutations
π1, . . . , π4, and revealing parts of them during the audit phase (see Fig-
ure 17). It is easy to see that P [π = (∗, ∗, 5, ∗, ∗, 7, ∗, ∗)] = 0
= P [π = (∗, ∗, 7, ∗, ∗, 5, ∗, ∗)] (it is impossible that message 5 was sent by
v3 at the same time when message 7 was sent by v6, and vice versa). There
are many other permutations that are impossible to achieve.

π1 π2 π3 π4

v1

v2

v3

v4

v5

v6

v7

v8

2

6

1

8

1

2

3

4

5

6

7

8

Fig. 17: RPC for a small number of mix servers may reveal a lot of infor-
mation. The probability that senders v2, v3 sent messages 5, 7 respectively
is equal 0. One can exclude a lot of other combinations. A similar analysis
can be applied to linkability of many crypto-currencies, e.g., Zerocash [23].

De�nition 1. For mix-server entries xi, xj, we denote by Mat(xi, xj) = t
if Mt was the �rst mix-server for which entries were both audited during

the same step. By audited by server Mk we mean that both xi and xj were
assigned the same audit bits.

Note that if entries xi, xj were audited in Mt then the entries were mixed

� someone observing only revealed links does not know their relative or-
dering.
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Lemma 2. For any entries xi, xj the probability that they will be mixed

for the �rst time in the k-th mix-server is equal to 1
2k
, i.e., P (Mat(xi, xj) = k)

= 1
2k
.

Lemma 3. Let r be the number of mix-servers, and n be the number of

processed entries. If
(
n
2

)
≥ 2r then with high probability there exists a pair

of entries i, j ∈ {1, . . . , n} such that Mat(xi, xj) > r.

The proof of Lemma 3 follows from a birthday paradox argument.
By RPCr,n we mean a random permutation obtained by processing n

messages through an RPC cascade of r mix-servers having the knowledge
on so far opened links. By L(RPCk,n) we denote the distribution of the
scheme at step k ≤ r and by U(Sn) we denote the uniform distribution,
both on Sn � a set of permutations of n elements. We will use a total

variation distance between two distributions µ, ν on a common �nite state
space E as

TVD[µ, ν] =
1

2

∑
e∈E

|µ(e)− ν(e)|.

The conclusion of Lemma 4 is that a constant number of mix-servers
is not enough to privately process arbitrary messages.

20 40 60 80 100

0.25

0.3

0.35

0.4

0.45

0.5

y(n) = 1
2 − 1

2(n−1)

Fig. 18: Lower bound on
TVD [U(Sn),L(RPCr,n)] ≥ 1

2
− 1

2(n−1)
.

Lemma 4. Let r be the number of mix-servers, and n be the number of

processed entries. If
(
n
2

)
≥ 2r and in the last server m left links are open,

then

TVD

[
U(Sn),L(RPCr,

√
2r)

]
> 1− 2m(n−m)

n(n− 1)

(∗)
≥ 1

2
− 1

2(n− 1)
,

where equality in (∗) is achieved for m = n/2 (say n is even).
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The proof of Lemma 4 is in Appendix A.1, the bound is depicted in Figure
18.

4.2 Mixing time

In this section, we show the required number of mix-servers to achieve
high level of privacy. The main result concerning the privacy of RPC and
mRPC is the following.

Lemma 5. Let n be the number of processed entries by a r-server RPC
mix or mRPC. If

r = r(n, ε) ≥ log2

[(
n

2

)
/ε

]
then

TVD [U(Sn),L(RPCr,n)] ≤ ε.

We start � Lemma 6 � with the RPC/mRPC Scheme One, i.e., the case
when each server is asked to open left/right connections independently.
Moreover, we assume that each entry is opened with some prede�ned
probability p ∈ (0, 1). Note that it is equivalent to actually considering
2r servers, each performing a single permutation � we consider however r
servers, each performing two permutations, to be consistent with lemmas
related to Scheme Two.

Afterwards, in Lemma 7 we show the result for Scheme Two. Lemma
5 is a direct consequence of the latter (substitute p = 1/2).

Lemma 6. Let n be the number of processed entries by a r-server RPC
or mRPC mix Scheme One. Each server is asked to open any connection

independently with probability p ∈ (0, 1). If

r = r(n, ε) ≥ 1

2
log 1

1−(1−p)2

[(
n

2

)
/ε

]
then

TVD [U(Sn),L(RPCr,n)] ≤ ε.

The proof of Lemma 6 is in Appendix A.2, it is based on strong stationary
times (SST, introduced in [1, 2]), a tool from a Markov chain theory.

Remark. It is worth mentioning that SST T from Lemma 6 (see its
proof) resembles SST constructed in [19] for ri�e shu�e scheme. Note that
the RPC and the ri�e shu�e are quite di�erent � in RPC full permutation
is applied in each step and each connection is revealed with probability
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p, whereas in ri�e shu�e of only the speci�c type of permutation in each
step is performed and p corresponds to revealing some bits used to perform
it. Note also that it takes 1

2 log 1
1−(1−p)2

[(
n
2

)
/ε
]
for RPC to mix, whereas it

takes log 2
1−(1−p)2

[(
n
2

)
/ε
]
for ri�e shu�e to mix.

Let us consider the following example.

Example 5. Consider n = 6 an assume that B1 = 001010, B2 = 010011,
i.e., in �rst steps outgoing connections from nodes 1, 2, 4 and 6 are revealed
and in the second step the outgoing connections from nodes 1, 3, and 4.
With this knowledge, the adversary knows that with equal probability one
of the permutations is possible:

(4, 1, 6, 3, 2, 5), (4, 1, 2, 3, 6, 5), (4, 6, 1, 3, 2, 5), (4, 2, 1, 3, 6, 5),

(4, 6, 2, 3, 1, 5), (4, 2, 6, 3, 1, 5), (4, 1, 6, 5, 2, 3), (4, 1, 2, 5, 6, 3),

(4, 6, 1, 5, 2, 3), (4, 2, 1, 5, 6, 3), (4, 6, 2, 5, 1, 3), (4, 2, 6, 5, 1, 3).

All possible situations are depicted in Figure 19. In Figure 20, one real-
ization of this example is depicted � then all the pairs are mixed, thus the
resulting permutation is random. (Note that for n = 6 such a situation
happens on average after processing by 1

2 log 4
3

(
6
2

)
= 4.7 servers).
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Fig. 19: 3 steps of execution of RPC for n = 6. All options for unrevealed
nodes shown. Revealed connections depicted as solid lines (correspond-
ing nodes are red), unrevealed ones as dashed lines (corresponding nodes
are gray). After these three steps Y3 has the uniform distribution on 12
permutations emphasized by gray regions.
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Fig. 20: Sample execution of mixing of n = 6 elements. Newly mixed pairs
are in bold. In this example after 6 steps an adversay has no knowledge
on the �nal permutation (all

(
6
2

)
= 15 pairs are mixed). After three steps

his knowledge is depicted in Fig. 19

In the following Lemma 7 we show the result for Scheme Two.

Lemma 7. Let n be the number of processed entries by a r-server RPC
or mRPC mix Scheme Two. Each server is asked to open any left link

independently with probability p ∈ (0, 1), then the right links corresponding

to non-opened left ones, are open.

r = r(n, ε) ≥ log 1
2p(1−p)

[(
n

2

)
/ε

]
then

TVD [U(Sn),L(RPCr,n)] ≤ ε.

The proof of Lemma 7 is in Appendix A.3. Note that for p close to 0 or 1
there will be many pairs mixed in step 2k − 1 or 2k. The worst situation
i.e., the smallest number of mixed pairs (on average) will be for p = 1/2.
For cases n ∈ {100, 10 000, 1 000 000} the average number of steps, as a
function of p is depicted in Figure 21.
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Fig. 21: Average number of
RPC servers needed to mix
n ∈ {100, 10 000, 1 000 000}
entries (for ε = 1

100). In the
worst case p = 1/2 we need
19 servers on average.

5 Application: CryptoCurrency Unlinkability

In most popular cryptocurrencies, payments are performed between pseudonyms.
Since transactions are published on a public ledger, payment transactions
remain traceable. There were a couple of approaches that introduce un-
traceability to blockchain cryptocurrencies: Zerocoin [20], Zerocash [23]
(used in ZCash), CryptoNote [25] (used in Monero).

In this section, we want to show a link between Lemma 6 and the
anonymity guarantees of various cryptocurrencies. We assume that the
anonymization protocol is similar to the one that is used in Zerocash.
If one wants to measure the anonymity level of a given system in total
variation distance then it corresponds to the mixing time of RPC Scheme
One which is expressed in Lemma 6. Instead of applying the following
equation:

r(n, p, ε) ≥ 1

2
log 1

1−(1−p)2

[(
n

2

)
/ε

]
= − log n+ log (n− 1)− log(2ε)

2 log(1− (1− p)2)

it seems simpler to think about the function of q = 1 − p, here q cor-
responds to the fraction of entries being in a mix. Then let rb(n, q, ε) =
r(n, p, ε):

rb(n, q, ε) ≥ 1

2
log 1

1−q2

[(
n

2

)
/ε

]
= − log n+ log (n− 1)− log(2ε)

2 log(1− q2)

One needs to approximate n, e.g., by applying the simpli�cations (1) and
(2) below; then nq = n(1−p) would be the average number of transactions
(or from/to addresses) in a single block. The number rb(n, q, ε) denotes
the required number of mix-servers so the resulting permutation is ε close
in total variation distance to the uniform distribution on n elements. Since



24

0 0.1 0.2 0.3 0.4 0.5

102

103

104

105

n = 100
n = 10 000
n = 1 000 000

Fig. 22: Number of rounds
(for cryptocurrencies
the number of blocks)
2rb(n, q, ε) needed to be
processed for a system with
n entries to be close to the
uniform distribution, as a
function of q, ε. The x-axis
of the plot is q � the proba-
bility of selecting an element
to the mix ε = 1/100.

each server performs two independent permutations, the required number
of steps is equal to 2rb(n, q, ε).

To give insights, we make a series of further simpli�cations:

(1) each transaction is of a nominal value (e.g., 1 BTC/1 ETH/...),
(2) each pseudonym (public key) is linked with a single nominal value,
(3) each coin is selected to be used in a payment transaction indepen-

dently, uniformly at random with probability 1 − p (in the Lemma 6
p corresponds to the opened links).

Then, assuming that all transactions are �shielded�, with the data of
5/1/2022
(source: https://bitinfocharts.com) the results are as following:

� for Ethereum 1.63 ·1013 blocks (For n = 120 606 657, p = 186
n , ε = 1

10)
would be needed (2.56 · 109 days),

� for Bitcoin 6.03 · 109 blocks (3.54 · 107 days).

6 Conclusions

We presented Mirrored Randomized Partial Checking (mRPC) which elim-
inates attacks on Randomized Partial Checking while making minimal
changes to the original protocol, but allowing for upper bounding proba-
bility of successful attack by an adversary to (12)

k - compared to (34)
k in

the original RPC. The presented approach can be applied to �x Civitas
and Scantegrity II voting systems. We also provided an analysis of privacy
guarantees o�ered by RPC. Our analysis also gives insights into the level
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of anonymity of cryptocurrencies. We concluded that due to the need for
many steps (high value of rb(n, q, ε) for small values of q) and the need
for speedy transactions (that enforce low values of q), de-anonymization
will be open to some attacks due to insu�cient mixing.
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A Proofs

A.1 Proof of Lemma 4

Proof. Recall that Ij is a subset of [n] for which left link is revelead (chal-
lenge bit is set to 0). Let us denote Sj,0 = Ij and Sj,1 = [n] \ Ij , i.e., those
messages for which right link is revealed (challenge bit 1). In terms of an
audit string Bj = bj,1bj,2 . . . bj,n, we may rewrite Sj,b = {i : bj,i = b}.

If two elements x, y are not mixed in theMj mix, it means that x ∈ Sj,b

and y ∈ Sj,1−b for b ∈ {0, 1}.
Let us compare distance between the uniform distribution U(Sn) on

n-element permutations to the distribution L(RPCr,n) when n ≥
√
2r.
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From Lemma 3 there exists two mix entries x, y that are not yet mixed
after r steps, with high probability. It means that x ∈ S1,b1 , S2,b2 , . . . , Sr,br

and y ∈ S1,1−b1 , S2,1−b2 , . . . , Sr,1−br for b1, . . . , bc ∈ {0, 1}.

Let S0
n be the set of all permutations for which x ∈ Sr,b and y ∈

Sr,1−b for b = 0, 1. From the assumptions we have that |Sr,0| = m. From
Lemma 3, with high probability, only permutations from S0

n have nonzero
probabilities in distribution L(RPCr,

√
2r). In other words, we can write

that the probability of σ under L(RPCr,
√
2r) is f(σ) such that

f(σ)


> 0 if σ ∈ S0

n,

= 0 otherwise,

for some distribution f on S0.

π1 π2 π3 π4
C0 C1

A1
C2 C3

A2
C4

v1

v2

v3

v4

v5

v6

v7

v8
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1

1

1
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1

0

0

0

1

1

0

1

0
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1

Fig. 23: Representation of sets S1,0, S1,1 for M1 and sets S2,0, S2,1 for M2.
Audit/challenge bits A1, A2 for M1,M2 are presented next to columns
C1, C3. Sets Sj,0 are denoted by ■ and sets Sj,1 are denoted by •.

Now, let us compute the distance between uniform distribution and
the distribution L(RPCr,n) for a set of permutations S0

n such that m left
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links were opened, i.e., |Ir| = |Sr,0| = m.

TVD
[
U(Sn),L(RPCr,n)

∣∣ |Sr,0| = m
]
=

=
1

2

 ∑
σ∈S0

n
|Sr,0|=m

∣∣∣∣f(σ)− 1

n!

∣∣∣∣+ ∑
σ/∈S0

n
|Sr,0|=m

1

n!

 ≥ 1

2

 ∑
σ∈S0

n
|Sr,0|=m

(
f(σ)− 1

n!

)
+

∑
σ/∈S0

n
|Sr,0|=m

1

n!


=

1

2
+

1

2

 ∑
σ/∈S0

n
|Sr,0|=m

1

n!
−

∑
σ∈S0

n
|Sr,0|=m

1

n!

 =
1

2
+

1

2n!

(
n!− 2|{σ ∈ S0

n : |Sr,0| = m}|
)

= 1− |{σ ∈ S0
n : |Sr,0| = m}

n!

Noting that

|{σ ∈ S0
n : |Sr,0| = m}| = 2m(n−m)(n− 2)!

we have

TVD
[
U(Sn),L(RPCr,n)

∣∣ |Sr,0| = m
]
≥ 1− 2m(n−m)

n(n− 1)
.

The worst-case is exactly half left links are open (say n is even), i.e.,

m = n/2, then

TVD
[
U(Sn),L(RPCr,n)

∣∣ |Sr,0| = m
]
≥ TVD

[
U(Sn),L(RPCr,n)

∣∣ |Sr,0| = n/2
]

≥ 1− 2n
2
n
2

n(n− 1)
=

1

2
− 1

2(n− 1)
.

A.2 Proof of Lemma 6

Proof. We will use some tools from Markov chain theory. We will consider
two chains {Xt}t≥0, {Yt}t≥0 on Sn. We set X0 = Y0 to be the identity
permutation (note that RPC0,n is the identity permutation).

Recall that server j performs permutations π2j−1 and π2j , in total 2r
permutations are performed.

Concerning Xt+1: it is Xt to which we apply a uniformly random
permutation πt = (πt(1), . . . , πt(n)) (note that then Xt ∼ U(Sn) for any
t ≥ 1).

Note that in Scheme One each server performs independently identical
(in distribuion) steps. That is why we will look at the distribution after
each application of πt.
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Concerning Yt, this is Xt with the following extra knowledge. Let
Bt = bt,1, . . . , bt,n be the n random bits chosen independently from the
distribution P (bt,i = 0) = p = 1− P (bt,i = 1).

Now assume that the entries Sj,0 = {j : bt,j = 0} from the permutation
πt are opened. Yt has distribution of Xt provided we have a knowledge
of B1, . . . , Bt. This corresponds to RPCt,n. Since {Yt}t≥0 is ergodic and
aperiodic, the uniform distribution is the stationary distribution. By L(Yt)
we denote the distribution of Yt.

We will use the strong stationary times (SST) approach (introduced in
[1, 2]). We say that T is an SST for {Yk} if for any permutation σ we have
P (Yt = σ|T = t) = 1/n!. For such SST we have TVD [L(Yk),U(Sn)] ≤
P (T > t) (see, e.g., Theorem 6 in [1]).

Let us de�ne
Tij = min{t : bt,i = bt,j = 1},

i.e., this is the �rst time that both elements i and j were not opened. At
this time the relative ordering of i and j is random (since πk is uniformly
random). Note that the probability that this will not happen in one step
is 1 − (1 − p)2 (at least one entry was opened), thus P (Tij > t) = (1 −
(1− p)2)t.

Now, let T be the �rst time when all the pairs of elements were not
opened in at least one step. It means that all

(
n
2

)
pairs are in random

relative order � and that means that the permutation itself is random
(since πt's are uniformly random). In other words, T is an SST for {Yt}.
We may compute

TVD [L(Yk),U(Sn)] ≤ P (T > t) = P
(⋃

1≤i<j≤n{Tij > t}
)

≤
∑

1≤i<j≤n

P (Tij > t) =
∑

1≤i<j≤n

(
1− (1− p)2

)t
=

(
n

2

)(
1− (1− p)2

)t
.

Taking t = log 1
1−(1−p)2

[(
n
2

)
/ε
]
, we have TVD [L(Yk),U(Sn)] ≤ ε. In total

there are t = 2r permutations, thus the proof is completed.

A.3 Proof of Lemma 7

Proof. The proof is similar to the proof of Lemma 6. The t-th server
applies two permutations π2t−1 and π2t, then each left link is opened
independently with probability p, i.e., B2t−1 = b2t−1,1, . . . , b2t−1,n with
i.i.d. P (b2t−1,j = 0) = p = P (b2t−1,j = 1), j = 1, . . . , n. However the
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audit string B2t is uniquely determined: B2t = (b2t,1, . . . , b2t,n) = (1 −
b2t−1,1, . . . , 1 − b2t−1,n).The situation is depicted in Figure 24. Again, let
Tij = min{t : bt,i = bt,j = 1},i.e., this is the �rst moment that elements
i and j were not opened in the same permutation. Consider steps 2t − 1
and 2t: the elements i and j will be both opened in the same step if i)
they are both revealed in step 2t− 1; ii) they are both not opened in step
2t−1 (since then they surely will be in next step). Thus, the pair will not
be mixed in steps 2t− 1 and 2t with probability 2p(1− p). We have

P (Tij > 2t) = (2p(1− p))t .

Again, since all permutations πt's are random, the �rst moment T when
all the pairs are mixed is an SST, and we have (consider t even)

TVD [L(Yt),U(Sn)]

≤ P (T > t) = P

 ⋃
1≤i<j≤n

{Tij > t}


≤

∑
1≤i<j≤n

P (Tij > 2t/2) =
∑

1≤i<j≤n

(2p(1− p))
t
2

=

(
n

2

)
(2p(1− p))

t
2 .

Taking the last step, i.e., t = 2r we have that r = log 1
2p(1−p)

[(
n
2

)
/ε
]
what

completes the proof.

1

2

3

4

5

6

3

1

4

5

6

2

4

1

6

3

2

5

Fig. 24: Situation similar to Figure 20: π1 and π2 and B1 = 001010 are
the same as there, but now B2 is determined by B1, namely b2i = 1 − b1i
� opened connections depicted in red.


