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Abstract. Statistical Fault Attacks (SFA), introduced by Fuhr et al.,
exploit the statistical bias resulting from injected faults. Unlike prior
fault analysis attacks, which require both faulty and correct ciphertexts
under the same key, SFA leverages only faulty ciphertexts. In CHES 2018,
more powerful attacks called Statistical Ineffective Fault Attacks (SIFA)
have been proposed. In contrast to the previous fault attacks that utilize
faulty ciphertexts, SIFA exploits the distribution of the intermediate
values leading to fault-free ciphertexts. As a result, the SIFA attacks were
shown to be effective even in the presence of widely used fault injection
countermeasures based on detection and infection. In this work, we build
upon the core idea of SIFA, and provide two main practical improvements
over the previously proposed analysis methods. Firstly, we show how
to perform SIFA from the input side, which in contrast to the original
SIFA, requires injecting faults in the earlier rounds of an encryption or
decryption operation. If we consider the start of the operation as the
trigger for fault injection, the cumulative jitter in the first few rounds
of a cipher is much lower than the last rounds. Hence, performing the
attack in the first or second round requires a narrower parameter range
for fault injection and hence less fault injection attempts to recover the
secret key. Secondly, in comparison to the straightforward SIFA approach
of guessing 32-bits at a time, we propose a chosen input approach that
reduces the guessing effort to 16-bits at a time. This decreases the key
search space for full key recovery of an AES-128 implementation from
234 to 219.

Keywords: Fault attacks · SIFA · AES · Chosen plaintext attack

1 Introduction

Since the seminal work of Boneh et al. [7], which introduced fault attacks on
RSA, numerous publications highlighted the susceptibility of the implementa-
tions of cryptographic algorithms to such active attacks exploiting their physi-
cal characteristics. Fault attacks involve deliberately injecting faults during the
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execution of a cryptographic algorithm through physical means, followed by
an analysis of the reaction of the device under attack. These faults can be in-
jected through various methods, including voltage/clock glitching [2], temper-
ature manipulation [22], white light [29], electromagnetic waves [16], or laser
injections [21,31,3,23,12,1], as well as software-based faults [30,26].

Since Biham and Shamir [5] have extended Differential Fault Analysis (DFA),
the work of Boneh et al., on symmetric key algorithms, numerous techniques im-
proving DFA have been published [18,6,20,24,25,27,14,4]. In general, DFA-like
analysis techniques retrieve the secret key by utilizing the characteristics of the
induced fault and the faulty ciphertexts, which use the value of the faulty and
the corresponding correct ciphertexts to retrieve the key. In a different vein,
Fuhr et al. [19] introduced Statistical Fault Attacks (SFA), exploiting the sta-
tistical distributions of the targeted intermediate values derived from the faulty
ciphertexts. In contrast to DFA-like attacks, SFA only requires access to the
faulty ciphertexts, and exploits the non-uniform distribution of a state byte
value caused by the fault injection.

DFA and SFA involve modifying the value of an intermediate variable during
the computation, and exploiting the faulty output. However, Ineffective Fault
Analysis (IFA), as introduced by Clavier et al.[13], takes a different approach.
IFA exploits the fault-free ciphertexts by using ineffective faults to probe the in-
termediate value. In other words, IFA exploits the cases where the injected fault
does not affect the output, utilizing only correct ciphertexts. Building upon the
core ideas of SFA and IFA, Dobraunig et al. proposed Statistical Ineffective Fault
Attacks (SIFA)[17] in CHES 2018. SIFA exploits the non-uniform distributions
of the intermediate values targeted by ineffective faults derived from correct ci-
phertexts. SIFA is akin to IFA in that both exploit faults that do not alter the
output. As with SFA, they both exploit the bias in the statistical distribution
of an intermediate value. Notably, SIFA exploiting the correct ciphertexts cir-
cumvents simple redundancy based countermeasures that protect against SFA
and DFA-like attacks. Moreover, it does not require an adversary to know the
injected fault, enhancing its practical applicability. In this regard, SIFA has more
relaxed requirements compared to IFA, and it can utilize various fault models
creating bias in the targeted variable. However, this attack requires analysis of
232 key candidates to perform the analysis on AES, which imposes practical lim-
itations especially when a large number of ciphertexts need to be analyzed per
key candidate. When analyzing an AES-128 implementation for instance, this
leads to a total of 234 analysis steps for full key recovery. In this work, we adopt
the chosen input approach in SIFA as an attempt to decrease the computational
complexity of the SIFA analysis.

Contributions. First, we show how to perform SIFA from the input side. This in-
volves injecting biased faults early in the encryption or decryption operation, and
analyzing the distribution of the targeted intermediate value computed from the
collected plaintexts corresponding to fault-free ciphertexts, where the injected
fault is ineffective. Performing SIFA from the input side has an advantage in
practice due to less jitter introduced. As the cumulative jitter in the first few
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rounds is expected to be lower than the last few rounds, this attack has the ad-
vantage of narrower fault injection parameter range, thus, less number of fault
injection attempts to recover the secret key.

Secondly, we propose a chosen-input SIFA, which requires only two key bytes
to be guessed, as opposed to the four byte key guesses in the original attack,
decreasing the size of the key search space to 216 from 232. This reduces the total
number of key guesses from 234 to 219 when applied to AES-128.

Outline. In Section 2, we discuss SFA, IFA, and SIFA which our work is based
on. Then, in Section 3, we describe our first contribution, performing SIFA from
the input side. We first present the attack description, then, the results of the
simulations evaluating the presented attack. In Section 4, we present the attack
description of the chosen input SIFA, and the simulation results. Then, we eval-
uate both attacks in practice, and present the practical experiment results in
Section 5. Finally, in Section 6, we discuss the impacts of the proposed tech-
niques that improve SIFA in practice, and pose open questions regarding future
work.

2 Preliminaries

In this section, we recall Statistical Fault Attacks (SFA) and Ineffective Fault
Attacks (IFA). Next, we describe how both these ideas were combined and ex-
tended in Statistical Ineffective Fault Attacks (SIFA).

2.1 Statistical Fault Attacks

SFA was introduced by Fuhr et al. [19] as a technique to recover the secret key in
AES. SFA exploits the bias in the distribution of an intermediate value obtained
from the faulty ciphertexts. For symmetric key algorithms, the intermediate
values computed during the execution are expected to be uniformly distributed.
However, if the distribution of intermediates changes due to the injected faults,
then it is possible to exploit these biases to recover the secret key. To perform
SFA, an attacker needs to collect faulty ciphertexts and follow an appropriate
key recovery strategy depending on the targeted round. The same idea applies
to all key recovery strategies: the attacker is required to decrypt the faulty
ciphertexts back to the intermediate value targeted by the induced fault with
the key hypotheses, and apply a distinguisher to recover the secret key.

The working principle of SFA depends on changing an intermediate value and
obtaining faulty ciphertexts. Therefore, SFA can be prevented with the existing
countermeasures as the output is suppressed (in case of detection) or randomized
(in case of infection) in the presence of a fault.

2.2 Ineffective Fault Attacks

IFA [13] uses fault injection as a probing tool on the targeted intermediate value
by comparing the value of this variable with the expected value (i.e., when no
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fault was injected). These values are equal when the fault has no effect on the
targeted intermediate value. The goal here is to find a fault model that does not
cause a change in the intermediate value and yields the correct output. Therefore,
detection-based countermeasures are not effective against IFA as they work only
with the existence of faulty ciphertexts.

IFA works as follows: the attacker induces a stuck-at-x fault to an inter-
mediate value in one execution where the other execution is fault-free. If the
attacker receives the same output regardless of the induced fault, the targeted
intermediate value must have been x already. The secret key can be recovered by
performing the cipher operations in reverse up to the targeted operation. Cor-
rect guess of the corresponding byte of the key should lead to the value x in the
intermediate value. However, one of the problems of this attack is determining
if the fault was actually successful or not. Moreover, in practice, stuck-at faults
occur less frequently compared to other faults, e.g., bit-flips.

2.3 Statistical Ineffective Fault Attacks

SIFA [17] was proposed as a novel fault attack technique that works under
detection-based and infective countermeasures. It extends the ideas of SFA and
IFA so as to overcome the limitations of both. It exploits the bias in the distri-
bution of an intermediate value that is targeted by fault injection leading to a
fault-free ciphertext.

For the SIFA attack to be successful, the only requirement is the existence of
a bias in the distribution of the intermediate value. The probability of changing
an intermediate value by a fault is not the same for all possible values of a byte.
Table 1 shows the non-uniformity in the probability distribution when a random-
and fault model, where each bit has a 50% probability of being reset, is applied
to two-bit values. When the fault is injected, the possibility of an intermediate
value 00 staying the same is 1, whereas the value 11 staying the same is 1/4.
The bias in this probability distribution makes a cryptographic implementation
susceptible to SIFA.

Table 1: Fault distribution table for random-and fault model

x′

00 01 10 11

x

00 1 0 0 0

01 1
2

1
2

0 0

10 1
2

0 1
2

0

11 1
4

1
4

1
4

1
4

In the original paper, the faults were injected to one byte before the last
MixColumns operation. Then, the distribution of the targeted byte value ob-
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tained from collected fault-free ciphertexts will be non-uniformly distributed.
This non-uniformity can be exploited by using a key revealing technique similar
to the one used in SFA [19] to recover four bytes of the last round key. To obtain
the partial state S9, the collected ciphertexts need to be partially decrypted:

S9 = MC−1 ◦ SB−1 ◦ SR−1(C ⊕K10) (1)

Next, the distribution of the partial state S9 obtained from the collected
ciphertexts is evaluated by computing χ2 statistic (or SEI) for each key hypoth-
esis (using the formula in Equation 2). If enough successful faults were injected
around the target operation, the key hypothesis leading to the highest χ2 statis-
tic will be the correct key.

χ2(p̂, θ) = N
∑
x∈X

(p̂k(x) − θ(x))2

θ(x)
(2)

Here θ(x) = 1/256 is the probability distribution of the byte values in the
uniform distribution, and p̂k(x) is the probability distribution of the byte values
in the observed distribution using the key hypothesis k.

This attack allows an attacker to exploit any ineffective fault that causes
a non-uniform distribution in the targeted value. The SIFA is robust against
dummy rounds or unsuccessful fault injections and the attacker does not neces-
sarily need to know the distribution of the injected faults.

If the AES implementation is protected with detection-based countermea-
sures, only the fault-free ciphertexts will be collected. In case of infective coun-
termeasures, the fault-free ciphertexts need to be filtered by performing encryp-
tion or decryption operations without injecting fault, comparing the results, and
keeping the ciphertexts that are same as the non-faulty ones.

3 Performing SIFA on the Inputs

In this section, we describe how to perform SIFA from the input side on AES.
Fundamentally, the fault analysis strategy remains the same as the original at-
tack. However, in this approach, faults are injected very early in the AES en-
cryption/decryption. Subsequently, the fault analysis is performed on the inputs
corresponding to the fault-free outputs. Our simulations demonstrate that bias
introduced to the distribution of the targeted intermediate value can be ex-
ploited, which facilitates the key recovery when the attack is executed from the
input side. Moreover, with the increasing cumulative jitter during the encryption
or decryption operation, injecting faults in the early rounds demands fewer fault
injection attempts, thanks to the narrower parameter range. We first outline
the assumptions related to the capabilities of the adversary performing the fault
injection. Subsequently, we describe how the injected fault is exploited. Then,
we present the simulation results of the attack.
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Adversarial Model. The adversary is capable of injecting a biased fault with
precise control on the timing of the injection (i.e., targets a specific operation).
Moreover, the adversary has some control over the location of the injected fault,
i.e., allowing the injection of the fault affecting any set of bits within the target
byte value.

Attack Description. Considering the encryption operation, to perform SIFA on
the plaintexts, an adversary with the described capabilities injects a fault be-
tween the first and second MixColumns operations. This differs from the original
SIFA approach, which requires a fault to be injected before the last MixColumns
operation. We assume an adversary injects a fault after the second SubBytes op-
eration as shown in Figure 1. As a result of the fault injection, the adversary ob-
tains a set of filtered plaintext-ciphertext pairs under the detection-based coun-
termeasures, where the targeted intermediate value after the first MixColumns
exhibits a non-uniform distribution.

9 ‥ 13 ⸫ 1 ⸬

10 ․ 14 ‥ 2 ⸫ 6 ⸬

7 ⸫ 11 ⸬15 ․ 3 ‥

8 ⸫ 12 ⸬0 ․ 4 ‥

5 ․

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

AK
SB SR

MC

AK SB
INJECT
FAULT

5 ․ 9 ‥ 13 ⸫

6 ⸬ 10 ․ 14 ‥

7 ⸫ 11 ⸬ 15 ․

4 ‥ 8 ⸫ 12 ⸬

1 ⸬

2 ⸫

3 ‥

0 ․

5 ․ 9 ‥ 13 ⸫

6 ⸬ 10 ․ 14 ‥

7 ⸫ 11 ⸬ 15 ․

4 ‥ 8 ⸫ 12 ⸬

1 ⸬

2 ⸫

3 ‥

0 ․

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ․ ✱ ‥ ✱ ⸫ ✱ ⸬

⚡ ✱ ‥ ✱ ⸫ ✱ ⸬

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

✱ ⸫ ✱ ⸬✱ ․ ✱ ‥

5 ․ 9 ‥ 13 ⸫

6 ⸬ 10 ․ 14 ‥

7 ⸫ 11 ⸬ 15 ․

4 ‥ 8 ⸫ 12 ⸬

1 ⸬

2 ⸫

3 ‥

0 ․

5 ․ 9 ‥ 13 ⸫

6 ⸬ 10 ․ 14 ‥

7 ⸫ 11 ⸬ 15 ․

4 ‥ 8 ⸫ 12 ⸬

1 ⸬

2 ⸫

3 ‥

0 ․

Column 1 =  ․ 
Column 2 =  ‥
Column 3 =  ⸫
Column 4 =  ⸬

Fig. 1: Sketch of the attack on round 2 using a fault injection after the second
SubBytes operation.

The key recovery also follows the same strategy as the original attack. Specif-
ically, the adversary guesses four bytes of the first round key, aligning with the
bytes of the plaintext that influence the distribution of the targeted interme-
diate value (i.e., bytes in Column 1 in Figure 1). Subsequently, the adversary
partially computes the first and second round operations of AES encryption for
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each plaintext corresponding to a correct ciphertext, resulting in the derivation
of the partial state denoted as S1:

S1 = ((PT ⊕K0) ◦ SB ◦ SR ◦MC (3)

Then, for each key guess, the adversary analyzes the distribution of the targeted
byte within the state S1, and computes an χ2 statistic. The highest χ2 statistic
value serves as the indicator of the correct key guess.

Practical Benefits. For AES implementations with clock-jitter, clock randomiza-
tion countermeasures, or random delays, it is beneficial to target an operation
that is performed early in the encryption/decryption operation. This is because
the cumulative jitter during the encryption or decryption operation is smaller,
which improves the precision of the fault injection. Moreover, the number of
fault injection attempts needed to inject a fault repeatedly at the same location
is reduced.

For instance, consider the clock randomization countermeasure proposed in
[8], where the randomized clock implementation can generate pulses of at least
403 different frequencies (n = 403) with one fixed base frequency (m = 1).
When attacking the 2nd round (r = 2) rather than the 9th round (r = 9), of an
AES encryption operation that takes 10 clock cycles to complete, the number of
different times to complete the operation gets reduced from r+n−1Cr·m =9+403−1
C9 · 1 ≈ 8.44 · 1017 to r+n−1Cr ·m =2+403−1 C2 · 1 = 81.4 · 103. This substantial
reduction minimizes the number of fault injection attempts needed to repeatedly
inject a fault that targets the same operation.

Simulations. To simulate the attack from the input side, a four-bit random-
AND fault model is used. In this model, each of the four least significant bits
in the targeted byte has a probability of 50% to be reset. In the simulations,
an AES implementation protected with a detection countermeasure was used
which implements various degrees of dummy rounds; namely no dummy rounds,
10 dummy rounds and 40 dummy rounds.

When attacking an implementation with no dummy rounds, four key bytes
can be recovered by collecting approximately 325 plaintexts corresponding to cor-
rect ciphertexts (i.e., ineffective faults), as shown in Figure 2a. When 10 dummy
rounds are used, four key bytes can be recovered by collecting approximately
13,500 plaintexts corresponding to correct ciphertexts, as shown in Figure 2b.
When 40 dummy rounds are used, four key bytes can be recovered by collecting
approximately 212,500 plaintexts corresponding to correct ciphertexts, as shown
in Figure 2c.

These simulations show that it is possible to perform SIFA from the input side
on AES. The number of traces required to recover the secret key is comparable
to the number of traces required to perform SIFA from the output side. Note
that the actual benefit of our approach is seen in practical evaluation, when
there is clock jitter during the execution as explained above.
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Fig. 2: Comparison of χ2 score for actual key and wrong keys with detection
countermeasure

4 Chosen Input SIFA

In this section, we describe the working principle of the chosen input SIFA.
Essentially, the attack follows the process described in Section 3, except with
a notable difference that, in this attack, the inputs are explicitly chosen by the
adversary. In addition to the adversarial capabilities detailed in Section 3, the
adversary has the capability to feed the encryption or decryption algorithm with
inputs of their choosing.

Attack Description. We consider the encryption operation to describe the attack.
Similar to the described attack from the input side, the adversary injects a
fault between the first and second MixColumns operations, where we assume a
byte after the second SubBytes is targeted as depicted in Figure 1. However, in
this attack, two out of the four bytes of the plaintext inputs that influence the
distribution of the targeted byte are held constant, while the other two bytes are
generated randomly. Then, instead of attempting to guess four bytes of the key
corresponding to these four bytes of the plaintext at a time, the adversary guesses
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only two bytes of the key corresponding to the random bytes of the plaintext.
Subsequently, the adversary applies the first round operations for the chosen
plaintexts corresponding to a correct ciphertext, resulting in the partial state
S1 as described in Equation 3. Then, the same key recovery strategy described
in Section 3 is followed to determine the correct key. This improvement reduces
the key search space to 216 (i.e., two bytes) from 232 (i.e., four bytes) for a
single guess, utilizing an equal or fewer number of traces depending on the fault
capabilities of the fault injection adversary.

It’s essential to note that utilizing a statistical test-based distinguisher (e.g.,
SEI) does not allow reducing the search space for a single guess to 28. Achieving
a size of 28 may be possible by holding only one of the four bytes influencing the
distribution of the targeted byte as random, and only guessing the correspond-
ing key byte, while keeping the others constant. Among the operations shown
in Equation 3 that the adversary applies to obtain the partial state S1, only the
MixColumns operation changes the probability distribution of the targeted byte.
That is, until the MixColumns operation, the random plaintext byte retains a
random value, while the other constant bytes retain constant values across a
number of chosen plaintexts. Let r denote this random byte value. Then, the
MixColumn operation applied to this state results in a state where r becomes
r + c with c being a constant. The operations applied after MixColumns, like-
wise, do not change the probability distribution of the targeted byte, making
the distribution obtained by the key guesses indistinguishable. Hence, it is not
possible to reduce the search space further.

Attack method. By using a methodical approach, the above described analy-
sis can be performed on all columns simultaneously. This is desirable in practice
since the specific column targeted by the fault injection is often unknown before-
hand. To achieve simultaneous analysis of all columns, we generate the crafted
plaintext inputs in two steps as follows:

1. Attack the key bytes with even indices (Figure 3).
2. Attack the key bytes with odd indices (Figure 4).

First, every odd byte of plaintext input is set to a fixed value, e.g., zero,
while keeping the other bytes random. Then, a fault is injected after the sec-
ond SubBytes operation during the encryption operation. The crafted plaintexts
corresponding to correct ciphertexts are collected (i.e., when the injected fault
is ineffective). As shown in Figure 3, for the key recovery, if a key hypothesis
for the first column outranks the other key guesses by a large margin, it indi-
cates the correct guess for the key bytes with the indices 0 and 10. Then, if a
key hypothesis for the second, third, and the last column, outranks the other
guesses by a large margin, it also indicates the correct guess for the key bytes
with indices 4 and 14, 2 and 8, and 6 and 12, respectively.

This process is then repeated for the second step where every even byte of
the plaintext input is set to a fixed value. As shown in Figure 4, for the key
recovery, if a key hypothesis for the first column outranks the other key guesses
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Fig. 3: Sketch of the chosen plaintext attack on round 1 using a fault injection
after the second substitute bytes operation and every odd byte set to zero

by a large margin, it indicates the correct guess for the key bytes with the indices
5 and 15. Then, if a key hypothesis for the second, third, and the last column,
outranks the other guesses by a large margin, it indicates the correct guess for
the key bytes with indices 3 and 9, 7 and 13, and 1 and 11, respectively.

If no key hypothesis significantly outranks the other key guesses, it indicates
that key recovery is not possible. This can be attributed to factors such as
insufficient fault injection attempts, the fault model not being effective enough,
or unsuccessful fault injection.

Simulations. To simulate the chosen input SIFA, a four-bit random-AND fault
model is used. In this model, each of the four least significant bits of the tar-
geted byte has a probability of 50% to be reset. Similar to the simulations of
SIFA from the input side, an AES implementation protected with a detection
countermeasure was used which implements various degrees of dummy rounds;
namely no dummy rounds, 10 dummy rounds, and 40 dummy rounds.

When attacking an implementation with no dummy rounds, two key bytes
can be recovered by collecting approximately 235 chosen plaintexts correspond-
ing to correct ciphertexts, as shown in Figure 5a. When 10 dummy rounds are
used, two key bytes can be recovered by collecting approximately 25,750 chosen
plaintexts corresponding to correct ciphertexts, as shown in Figure 5b. When 40
dummy rounds are used, two key bytes can be recovered by collecting approxi-
mately 240,000 chosen plaintexts corresponding to correct ciphertexts, as shown
in Figure 5c.
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Fig. 4: Sketch of the chosen plaintext attack on round 1 using a fault injection
after the second substitute bytes operation and every even byte set to zero

These simulations show that it is possible to perform the chosen input SIFA
on AES. The number of traces required to recover the secret key is comparable to
the number of traces required to perform SIFA from the input side. However the
search space to recover four key bytes is decreased by a factor of 215 = 32 768,
therefore the brute force attack takes significantly less time.

5 Practical Evaluation

SIFA from the input side and the chosen input SIFA were evaluated using an 8-bit
software AES implementation (as described in Section 4.1 of [15]) and a 32-bit t-
table software AES implementation (as described in Section 4.2 of [15]) running
on an STM32F407IG Arm Cortex-M4 core. For this, a Piñata development board
[10] was used, which has been physically modified by removing the decoupling
capacitors to make it more susceptible to voltage glitches. The board is shown
in Figure 6.
Fault Setup. To inject faults into the target device, voltage glitches were used.
For this, a device called Spider [11] was used to control the glitch timing and
the glitch voltage, and a device called Glitch Amplifier [9] was used to amplify
the glitches and inject the fault into the target device. Communication with the
target device was realized through the use of an FTDI FT232RL USB to serial
UART interface. To determine a range for the parameters, side channel profiling
was performed. The parameters used for the voltage glitching experiments are
shown in Table 2.
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Fig. 5: Comparison of χ2 score for actual key and wrong keys with detection
countermeasure

Four different experiments were carried out evaluating the SIFA from the
input side and the chosen input SIFA on both a textbook software AES and
a t-table software AES implementation. For the experiments performing SIFA
from the input side, the χ2 distributions of the correct key and 100,000 wrong
keys were compared. For the experiments performing chosen input SIFA, the
χ2 distributions of the correct key and all possible 216 − 1 wrong keys were
compared. Analysis was performed on a Debian system with an AMD Ryzen
Threadripper 3970X 32-Core processor and 256GB RAM. Using a pure python
implementation we can iterate over 135 key candidates per second. This leads
to an estimated running time of about a year for SIFA from the input side and
about 16 minutes for chosen input SIFA to recover 32 bits of the secret key.

In the experiment evaluating SIFA from the input side on a textbook AES
implementation, 76% of the glitches were successful. After 8278 glitches, 1150
ineffective faults were observed, and the χ2 score of the correct key exceeded the
χ2 score of the wrong keys, as shown in Figure 7a. Similarly, when attacking the
t-table implementation with SIFA from the input side, 73% of the glitches were
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Fig. 6: Piñata board

Table 2: Parameters used in the experiments

Input side SIFA Chosen Input SIFA

Parameters Textbook T-Table Textbook T-Table

Normal voltage 3.3 V 3.3 V 3.3 V 3.3 V

Glitch voltage 1.0 V 1.0 V 1.0 V 1.0 V

Glitch length 123 ns 123 ns 123 ns 123 ns

Glitch delay 32500 ns 5550 ns 32500 ns 5550 ns

successful. After 4366 glitches, 865 ineffective faults were observed, and the χ2

score of the correct key exceeded the χ2 score of the wrong keys, as shown in
Figure 7b. Even though these results are quite similar to the results obtained
from the simulations, the number of fault injection attempts needed to recover
the key is higher than the number of attempts needed in the simulations. This
is due to the jitter that occurs when performing fault injection in practice.

In the experiment evaluating the chosen plaintext attack on a textbook AES
implementation, the successful fault rate was 89%. After 17706 glitches, 1085
ineffective faults were observed, and the χ2 score of the correct key exceeded the
χ2 score of the wrong keys, as shown in Figure 8a. Similarly, when attacking
the t-table implementation with the chosen plaintext attack, 65% of the glitches
were successful. After 5390 glitches, 1310 ineffective faults were observed, and
the χ2 score of the correct key exceeded the χ2 score of the wrong keys, as shown
in Figure 8b. Similar to the experiments evaluating SIFA from the input side,
the number of attempts needed to recover the key was higher than the number
of attempts needed in the simulations due to the jitter occurring in practice.

6 Discussion & Conclusion

In this work, we provided techniques to improve SIFA in practice. First, we
showed with the help of both simulations as well as practical experiments that
the SIFA attack can also be performed in the first rounds of a cipher. A successful
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Fig. 7: Evaluation of SIFA from input side
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Fig. 8: Evaluation of chosen plaintext SIFA

fault injection attack greatly depends on choosing the right parameters among
which the exact time to inject fault is very critical. This is typically measured
from the time of the trigger (e.g., start of a cryptographic operation) and is
chosen randomly from a range around the target operation. The range of values
to be chosen from greatly impacts the number of fault injection attempts required
to get a successful fault. The bigger the range, the higher the number of required
attempts. This range depends on the time jitter from the trigger point to the
target operation. This jitter could be natural or artificially induced, e.g., due
to a countermeasure. Naturally, the farther the operation is from the trigger,
the higher is the jitter and hence the range for glitch offset is also higher. As a
result, the ability to inject faults in the first few rounds of a cipher operation
leads to a better success rate in practice than injecting in the last few rounds as
we discussed in the paper.
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Secondly, the SIFA attack requires brute force on a part of the key, which is
32 bits in case of AES. For recovering a full AES-128 key, we needed to perform
this 4 times which leads to brute force complexity of 234. We showed that by
using chosen inputs we can reduce the key search space to 16-bits a time. This is
only possible because, as we showed in this paper, the SIFA works also when we
inject faults in the first round. As a result, it requires 216 key guess for a 16-bit
subkey and improves the overall complexity to 219 for full key recovery of AES-
128. Using this technique, we could reduce the estimated attack time to recover
32 bits of the secret key from around a year to about 16 minutes. Note that this
implementation was not fully optimized for performance but gives an indication
of the speed up that can be achieved even for optimized implementations.

One promising avenue for future research involves investigating the appli-
cability of the Statistical Ineffective Fault Injection (SIFA) methods to other
symmetric cryptographic implementations. While our current work has primar-
ily focused on AES, it is crucial to assess the effectiveness and adaptability of
SIFA across a broader spectrum of symmetric ciphers. This could involve exam-
ining different algorithms with varying design principles, key sizes, or modes of
operation.

While our current study has shown that SIFA can be performed using voltage
glitching on certain software implementations of AES, an important direction for
future work is to reproduce the practical results with AES hardware implementa-
tions. By extending our investigation to AES hardware implementations, we can
deepen our understanding of the robustness of SIFA across different platforms.

Furthermore, a valuable area for future investigation lies in enhancing the
input-side and chosen plaintext attack methods through the utilization of ad-
vanced statistical fault analysis techniques, such as Fault Intensity Map Analysis
(FIMA) [28], instead of SIFA. This approach holds the potential to further di-
minish the number of required traces for key retrieval, thereby enhancing the
efficiency and practicality of the proposed attacks.
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6. Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the ad-
vanced encryption standard (AES). In Rebecca N. Wright, editor, Financial Cryp-
tography, 7th International Conference, FC 2003, Guadeloupe, French West Indies,
January 27-30, 2003, Revised Papers, volume 2742 of Lecture Notes in Computer
Science, pages 162–181. Springer, 2003.

7. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on
the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages
37–51. Springer, 1997.

8. Martin Brisfors, Michail Moraitis, and Elena Dubrova. Do not rely on clock ran-
domization: A side-channel attack on a protected hardware implementation of aes.
In Guy-Vincent Jourdan, Laurent Mounier, Carlisle Adams, Florence Sèdes, and
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