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Abstract

Traditional STARKs [BSBHR18b, BSCR+19, COS20] require a cyclic group of a smooth order in the
field. This allows efficient interpolation of points using the FFT algorithm, and writing constraints that
involve neighboring rows. ECFFT [BSCKL21, BSCKL22] introduced a way to make efficient STARKs for
any finite field, by using a cyclic group of an elliptic curve. We show a simpler construction in the lines of
ECFFT over the circle curve x2 + y2 = 1. When p+1 is divisible by a large power of 2, this construction
is as efficient as traditional STARKs and ECFFT. Applied to the Mersenne prime p = 231−1, which has
been recently advertised in [HLN23], our preliminary benchmarks indicate a speed-up by a factor of 1.4
compared to a traditional STARK using the Babybear prime p = 231 − 227 + 1 from [BG].
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1 Introduction

Scalable and Transparent Arguments of Knowledge (STARKs) [BSBHR18b] are succinct, general purpose
argument systems which allow for efficient proof composition, and moreover do not require any trust assump-
tions for their setup. While technically, the original definition of a STARK also covers argument systems
with a trustless setup elliptic curve commitment scheme, such as [BGH19] and the entire track of folding
schemes initiated by it, the term has become synonymous to univariate argument systems which rely on the
FRI low-degree test [BSBHR18a, BSCI+20], a proof of proximity for Reed-Solomon codes. STARKs are
widely adopted in practice [Sta23, Pola, Polc, Pold, BG], mainly because of their smaller embedding over-
head in the arithmetization step (they are not bound to cryptographically large fields), and their simplicity
compared to the aforementioned aggregation and folding schemes.

In univariate STARKs witness data is encoded into polynomials over a univariate domain, thereby de-
manding a smooth arithmetization field which supports fast Fourier transform (FFT) techniques; either the
classical multiplicative Fourier transform [CT65], or the additive FFT [LCH14]. This restriction was lifted by
the Elliptic Curve Fourier Transform (ECFFT) [BSCKL21], which uses smooth subgroups of elliptic curves
as the underlying domain for the Fourier transform. Although tightly connected with the group structure
of elliptic curves, the ECFFT is an algebraic transform similar to the additive FFT, and it is constructed
along a chain of curves over the non-smooth field,

C0
π1−→ C1

π2−→ C2
π3−→ . . .

with 2-to-1 maps between them (each of algebraic degree 2), halving the sizes of the domains in each step.
The ECFFT permits efficient interpolation by (certain) low-degree rational functions over the curve. The
basic design principles of STARKs – the interactive oracle proof and the low-degree test – can be carried over
to these rational function spaces and their algebraic geometry codes [BSCKL22]. ECFFT-based STARKs,
which we shall call elliptic curve STARKs, are as efficient as classical STARKs, in the concrete sense and
not just asymptotically, and by dropping the smoothness assumption on the finite field, they uncover an
unprecedented freedom in the choice of the concrete prime for arithmetization.

In a recent note [HLN23], the authors consider a different approach for the Mersenne prime p = 231 − 1,
a non-smooth prime with exceptionally fast arithmetic. They consider the circle curve

x2 + y2 = 1

as a smooth multiplicative subgroup of the “complex extension” of the prime field (i.e. the quadratic extension
with respect to the irreducible polynomial x2+1), and apply well-known optimizations for the classical FFT
of real-valued functions, diminishing the extension field costs to only a small overhead in the number of
additions. Furthermore, they observe that the extrapolated values lie in a linear subspace of the complex
plane, a line which essentially depends only on the target coset, thereby reducing the commitment cost of
Reed-Solomon code words to that of their “rectified” representation of half the size. While the approach
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from [HLN23] is much more elementary than the one from [BSCKL21, BSCKL22], its main drawback is a
limited usefulness for constraint evaluation, when computing the overall quotient polynomial in the STARK.
Similar to polar coordinates, the rectified representation is beneficial for computing products of polynomials.
However, evaluating the overall constraint involves products and sums in quite arbitrary order, and demands
– rather sooner than later – a conversion back to the ordinary complex representation. While this drawback
is not drastic when dealing only with a small number of polynomials, it matters to STARKs with wide traces
(such as [Pola, Polb]), thwarting the advantage of that prime over ordinary two-adic primes of comparable
size.

Motivated by [HLN23], we propose a simpler construction along the lines of [BSCKL21, BSCKL22],
tailored to the Mersenne prime p = 231 − 1 and the circle curve. As every (smooth) quadratic curve, the
circle curve is isomorphic to the projective line over the prime field and thus of size (p + 1) (this is a well-
known fact but we will recapitulate it below). And it is a cyclic group, with its operation inherited from the
action of the rotation group SO(2) over the field. The circle curve has the following benefits over the elliptic
curve approach:

1. Firstly, and contrary to elliptic curves, the group squaring map (in the sense of a multiplicative group
notation) is of quadratic degree and 2-to-1, dropping the need of a chain of curves.

2. Second, because rotation carries polynomials to polynomials in a degree-preserving manner, we may
choose an FFT that is again with respect to a polynomial basis, instead of one comprised of rational
functions. (However, and similar to the additive FFT and elliptic curve FFT, these polynomial basis
is not the standard monomial one, and there is no known efficient conversion between the two).

3. Thirdly, and perhaps most importantly, simplicity : The reader does not need to have any background
in algebraic geometry. Taking advantage of the above mentioned projective line view of the curve (in
algebraic geometry terms, it has genus zero) the proofs are elementary and self-contained, without
assuming knowledge on divisor calculus and the Riemann-Roch theorem. All that is needed is famil-
iarity with the notion of a projective space, and not even that if one does not intend going through
the proofs.

Although many (if not all) of these features are due to the genus of the circle curve, there is one point
where the circle curve causes extra considerations. There is a gap of dimension one, between the image
space of the FFT and the space of all polynomials of corresponding degree bound, the latter of which turns
out the natural space for STARKs over the circle. In other words, FFT domains are one point too small to
uniquely determine a polynomial of that degree bound, and this anomaly needs to be taken into account in
a few places of the protocol: First, when computing the overall quotient, and second, in a preparatory step
for the low-degree test. It turns out that in both cases the dimension gap can be treated cheaply (i.e. the
computational cost is negligible) and without any loss in security.

Overall, circle STARKs are as efficient as classical STARKs over smooth fields (or an ECFFT-based
STARK), and their mathematical foundation is “as close as can be” to the classical case. The entire interactive
oracle proof over the circle uses polynomials (bivariate, though1) and the low-degree test is similar to the
well-known FRI for Reed-Solomon codes. We believe that this helps a wider adoption in practice.

The document is organized as follows. In the first part we provide all relevant preliminaries:

• Section 2 and 3 introduce basic notions and discuss properties of the circle curve, its space of polyno-
mials and Circle Codes, the Reed-Solomon type of code generated by them. In particular, we cover
vanishing polynomials and quotients, the key ingredients for STARKs.

• In Section 4 we describe the FFT over the circle, the circle FFT and its inverse. We investigate the
image space of the circle FFT and the aforementioned dimension gap.

1Although we do not dwell on it, we stress the fact that the projective line view allows the entire circle STARK to be seen
as a univariate one based on generalized Reed-Solomon codes.
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With the complete FFT tool-set ready, we are able to approach our target application, circle STARKs.

• In Section 5 we describe the interactive oracle proof for an elementary system of constraints, a restricted
algebraic intermediate representation yet expressive enough to highlight the general principle. We
discuss the extra measures needed to deal with the aforementioned dimension gap.

• Eventually, in Section 6, we describe the low-degree test for polynomials over the circle curve. That
proof of proximity is similar to FRI, with the folding steps in circle FFT style.

The second part is largely informal, focusing on the protocol steps, the involved polynomial arithmetic,
and the few differences to univariate STARKs. A fully formal treatment, including security notions as well
as their proofs (in the ordinary oracle model) is postponed to the appendix: In Appendix A we cite the
celebrated correlated agreement theorem for Reed-Solomon codes [BSCI+20], and explain how it is taken
over to circle Codes. In Appendix B we prove soundness (in the oracle model) of both circle FRI and the
circle STARK from Section 5. In Appendix C we further sketch a variant of the circle STARK in which the
evaluation domain is a superset of the trace domain. While this variant is not able to support zero-knowledge,
it optimizes the extrapolation effort of the prover for certain parameter settings.

We conclude the paper with a final section on implementation remarks, Appendix D, in which we provide
preliminary benchmarks of the circle FFT over the Mersenne prime p = 231 − 1. Compared to the classical
FFT over the equally sized Babybear prime p = 231−227+1 from [BG], our measurements indicate a speed-
up by a factor of 1.4, and we expect to achieve the same advantage in a fully optimized implementation of
the FFT and the entire STARK.

Although our main target is the Mersenne prime p = 231 − 1, we note that our considerations apply to
arbitrary primes p with (p+ 1) being smooth, and the entire document takes this into account2. We point
out that the FFT for this case is also covered by the recent publication [LX23]. In their work the authors
provide a unified framework for FFTs over finite fields, by taking automorphism groups of rational function
fields as the underlying variety. The automorphism group is rich enough to cover (1) the multiplicative and
(2) the additive case (corresponding to smooth (p − 1) or smooth p, where p is a prime power), as well as
(3) the case when (p + 1) is smooth. In particular for the latter, the chosen subgroup is isomorphic to the
circle group and their FFT is the same as the circle FFT carried over to the univariate parametrization of
the circle curve. We clarify this connection in a line of remarks.

2 Notations and definitions

Let us start with the central property of the primes we consider.

Definition 1 (CFFT-friendly prime). Any prime p for which (p+1) is divisible by 2n+1 for sufficiently large
n ≥ 1, will be called CFFT-friendly, and any such n is a supported order, and N = 2n a supported domain
size.

Remark 1. The reason for demanding 2n+1 instead of 2n being a factor (p + 1) in Definition 1 is due to
the existence of suitable FFT domains and will become clear in Section 4.

Which n ≥ 1 is considered sufficiently large depends on the application. In the context of STARK one
typically wants a small prime p with p+1 being as smooth as possible. A compelling choice is the Mersenne
prime

p = 231 − 1,

called M31 in [HLN23], which for its exceptionally efficient arithmetic is also our main target. However,
other choices of CFFT friendly primes might be useful in practice, and for this reason why we keep our
exposition as general as possible.

2In fact, this approach can be generalized to non-prime finite fields Fq with (q + 1) being smooth as well.
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CFFT-friendly primes are of the form p = 2n+1 · t − 1 for integers n, t ≥ 1. In particular, p − 1 = 2 · t′
with t′ = 2n · t− 1 being odd, or equivalently

p ≡ 3 mod 4,

meaning that −1 does not have a square root modulo p. For any such prime, the polynomial x2 + 1 has no
roots in the prime field Fp.

We shall denote the algebraic closure of Fp by K, and ±i the roots of x2 + 1 in K. Finite extensions of
Fp will be denoted by F , and considered as a subfield of K. In rare cases it will be useful to work with F (i),
the field that results from F by adjoining the root i. If i is contained in F then F (i) = F ; otherwise F (i) is
a quadratic extension of F .

For any finite extension F of Fp we will write F [x] and F [x, y] for the ring of polynomials in one and two
variables, respectively. Likewise, we use the notation F [x]≤d and F [x, y]≤d of all polynomials over F of total
degree at most d. Polynomials from F [x, y] will be often denoted as p(x, y), which will not cause confusion
with the prime p although we override notation. Given a polynomial p(x, y) from F [x, y], the ideal generated
by it is denoted as (p(x, y)).

For certain aspects, mostly within proofs, the one and two-dimensional projective spaces P 1(F ) and
P 2(F ) over a finite extension F of Fp will be useful. We consider them contained in the corresponding
projective space P 1(K) and P 2(K) over the algebraic closure K, and we use the common notation (t : s)
and (x : y : z) for points in P 1(K) and P 2(K), respectively. Points with non-zero last coordinate, s ̸= 0 or
z ̸= 0, are affine points.

3 The circle curve

Although we target CFFT-friendly primes p (cf. Definition 1), most of this section depends only on the
property p ≡ 3 mod 4. Thus, unless stated otherwise, let Fp be the prime field with modulus p ≡ 3 mod 4.

We define the Circle Curve, denoted by C = C(Fp), to be the (smooth) algebraic variety over Fp defined
by the equation

C : x2 + y2 = 1,

or equivalently, in projective coordinates

C : X2 + Y 2 = Z2.

Remark 2. By the condition on the modulus p, there are no Fp-rational points at infinity Z = 0, and the
projective view seems of not much use. However, the complete geometric picture unfolds when considering
the curve over the algebraic closure K of Fp, in which there are two points at infinity, ∞ = (1 : i : 0) and
∞̄ = (1 : −i : 0), with ±i being the square roots of −1. These two points, which are Fp(i)-rational, will play
a prominent role in our construction.

The arithmetization of circle STARK takes place over the circle curve domain. Witnesses are encoded
into low-degree polynomials over that domain, and subjected to certain algebraic relations, the constraints.

Lemma 1. There is an isomorphism between the circle curve C(Fp) and the projective line P 1(Fp) which
extends to arbitrary extensions of Fp, including its algebraic closure K. In particular, for any finite extension
F of Fp, the number of points of the circle curve over F is |F |+ 1.

Proof. The isomorphism is the stereographic projection onto the y-axis with center (−1, 0), defined by the
equations

t =
y

x+ 1
, (x, y) =

(
1− t2

1 + t2
,

2 · t
1 + t2

)
.

Under this isomorphism (−1, 0) is identified with infinity of the projective line, and the two curve points
∞ = (1 : +i : 0), ∞̄ = (1 : −i : 0) from Remark 2 correspond to t = ±i.
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Although we pivot the bivariate representation of the circle curve, the projective line view will be ex-
tremely useful within proofs. The isomorphism from Lemma 1 allows a direct translation of bivariate function
fields into univariate ones, and consequently a much more elementary treatment, avoiding general tools from
algebraic geometry such as the Riemann-Roch theorem. Nevertheless, whenever useful we provide comple-
menting remarks addressed to the reader with background in algebraic geometry.

3.1 The circle curve as a group

The p+ 1 points of C(Fp) form a group with the group operation

(x0, y0) · (x1, y1) := (x0 · x1 − y0 · y1, x0 · y1 + y0 · x1).

(We somewhat override notation here, but as we do not use entry-wise multiplication this will not cause
confusion.) For this reason, we shall call C(Fp) also the circle group. The circle group is cyclic because
the map (x, y) 7→ x+ i · y is a group homomorphism between C(Fp) and a multiplicative subgroup of the
extension Fp(i). The group has (1, 0) as its neutral element, and for any P = (Px, Py) in C(Fp) we shall call

TP (x, y) := P · (x, y) = (Px · x− Py · y, Px · y + Py · x) ,

the rotation, or translation by P . The squaring map with respect to the group operation is the quadratic
map

π(x, y) := (x, y) · (x, y) = (x2 − y2, 2 · x · y) = (2 · x2 − 1, 2 · x · y), (1)

and group inverses are given by the degree-one map

J(x, y) := (x,−y). (2)

Note that, as in any group, the map J is an involution, i.e. J(J(P )) = P for every P ∈ C(Fp), and that J
and π commute, i.e. π(J(P )) = J(π(P )) for every P ∈ C(Fp).

Remark 3. The definition of TP extends to the entire projective variety over K, and it is easily verified
that both ∞ and ∞̄ from Remark 2 are fixed points under the action of the circle group. We stress the fact
that the existence of fixed points is in stark contrast to the elliptic curve case. We will see below that these
fixed points allow a more elegant choice of rotation-invariant Riemann-Roch spaces.

Remark 4. Under the isomorphism from Lemma 1, the circle group law translates to the projective line as
(t1 : s1) ⊕ (t2 : s2) = (t1 · s2 + t2 · s1 : s1 · s2 − t1 · t2), or in affine coordinates t1 ⊕ t2 = t1+t2

1−t1·t2 . In other
words, the circle group is isomorphic to a subgroup of linear automorphisms of the projective line, those
which leave ±i invariant. This explains the connection of the circle FFT with the (p+ 1)-is-smooth case in
[LX23]. (See Remark 13 for details.)

Since C(Fp) is cyclic, for each N ≥ 1 which divides (p + 1) there is a unique cyclic subgroup of size N .
In the case of a two-adic order N = 2n we shall denote that unique subgroup by Gn. The following type of
sets are the suitable domains of the circle FFT described in Section 4.

Definition 2. Let Gn−1 be a (cyclic) subgroup of C(Fp) of size |Gn−1| = 2n−1, n ≥ 1. Any disjoint union
D = Q ·Gn−1 ∪Q−1 ·Gn−1, i.e. with Q ·Gn−1 ∩Q−1 ·Gn−1 = ∅, is called a twin-coset of size N = 2n. In
the exceptional case that such a twin-coset D is again a coset of the subgroup Gn of double the size, we call
D a standard position coset of size N .

Twin-cosets are composed of those pairs in the quotient group C(Fp)/Gn−1 which are mapped to one
another under the inverse map J . This particularly excludes fixed points of J , which are those elements
Q ·Gn−1 with Q−1 ·Gn−1 = Q ·Gn−1, or Q2 ∈ Gn−1. In other words, fixed points of J in the quotient group
are either the trivial element or an element of order two, if it exists. In the latter case, the union of the two
fixed points form the subgroup Gn of size 2n. See Figure 1 for an illustration of standard position cosets
and twin-cosets.
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Proposition 1. Let p be a prime such that p ≡ 3 mod 4, and let n ≥ 1. The existence of standard position
cosets of size 2n is equivalent to that p is CFFT-friendly supporting the order n. In this case, standard
position cosets are unique and of the form

D = Q ·Gn = Q ·Gn−1 ∪Q−1 ·Gn−1,

with Q ∈ C(Fp) being an element of order 2n+1.

Proof. Since C(Fp)/Gn−1 is cyclic, and excluding fixed points of J , there is at most one J-invariant pair
{Q ·Gn−1, Q

−1 ·Gn−1}, with Q ·Gn−1 ̸= Q−1 ·Gn−1, which forms a coset in C(Fp)/Gn−1. In fact, since the
two elements of the pair are different, we must have Q2 /∈ Gn−1, and since it is a coset of order two, their
difference Q ·Gn−1 · (Q−1 ·Gn−1)

−1 = Q2 ·Gn−1 must be of order two, meaning that Q ·Gn−1 has order four.
The existence of order four elements in C(Fp)/Gn−1 is equivalent to that 2n+1 divides (p + 1), completing
the proof of the proposition.

Although breaking with the group structure, twin-cosets are natural evaluation domains for the FFT.
They are used to work around the non-smooth behaviour of the circle FFT under rotation, and are the typical
extrapolation target in our application. Similar to the decomposition of univariate evaluation domains into
cosets of smaller size, twin-coset domains, and in particular standard position cosets, can be decomposed
into twin-cosets of smaller size.

Lemma 2. Let p be a CFFT-friendly prime supporting the order m ≥ 1, and Gk denote the subgroup of
order 2k for k ≤ m. Then any subset of D ⊆ C(Fp) \ Gm which is invariant under Gm−1 and J can be
decomposed into twin-cosets of size N = 2n, for any n ≤ m. In particular for a standard position coset D of
size M = 2m,

D = Q ·Gm =

M/N−1⋃
k=0

(Q4·k+1 ·Gn−1 ∪Q−4·k−1 ·Gn−1),

where Q is an element from C(Fp) of order 2m+1.

Proof. Since n ≤ m the subset D is also invariant under Gn−1 and disjoint from Gn. Thus, as a J-
invariant subset of C(Fp)/Gn−1 which does not contain fixed points of J , it is a union of J-invariant pairs
in C(Fp)/Gn−1. This proves the first assertion. The second claim follows from D = Q ·Gm−1 ∪Q−1 ·Gm−1,
where Q is an element of order 2m+1, and the decomposition

Gm−1 =

M/N−1⋃
k=0

Q4·k ·Gn−1 =

M/N−1⋃
k=0

Q−4·k ·Gn−1,

taking Q4 as a generator of Gm−1.

Lemma 3. If D is a twin-coset of size N = 2n, n ≥ 2, then its image π(D) under the squaring map π is a
twin-coset of size N/2. More specifically, if D is a standard position coset, so is π(D).

Proof. Since π is a group endomorphism which maps Gn−1 onto the subgroup Gn−2, the image of a twin-coset
D = Q ·Gn−1 ∪Q−1 ·Gn−1 is

π(D) = π(Q) ·Gn−2 ∪ π(Q)−1 ·Gn−2.

Moreover, as π(Q)2 = π(Q2), and Q2 /∈ Gn−1, also π(Q)2 /∈ Gn−2, showing that the two cosets of Gn−2 are
disjoint. Hence π(D) is a twin-coset, and its size is N/2. Finally, if D is invariant under Gn, then π(D) is
invariant under π(Gn) = Gn−1. Together with the first assertion, this proves that standard position cosets
are mapped onto standard position cosets.
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Figure 1: A schematic illustration of the three smallest standard position cosets in the affine plane over Fp,
and general twin-cosets of the same size.

3.2 The space of polynomials and Circle Codes

Let F be an extension field of Fp. Over the circle curve, for any even integer N ≥ 0 we define LN (F ) as the
space of all bivariate polynomials with coefficients in F , and of total degree at most N/2,

LN (F ) =

{
p(x, y) ∈ F [x, y]/(x2 + y2 − 1) : deg p ≤ N

2

}
, (3)

where deg p in (3) means the smallest total degree of a representative within the class p(x, y)+(x2+y2−1).
(Recall that (x2 + y2 − 1) denotes the ideal in F [x, y] generated by x2 + y2 − 1). Even though the functions
in LN (F ) are polynomials, we shall often use f and g for elements from LN (F ).

Remark 5. In terms of algebraic geometry, LN (F ) equals the Riemann-Roch space over C(F ) for the Fp-
rational divisor3 N

2 · ∞+ N
2 · ∞̄. In other words, LN (F ) consists of all F -rational functions with poles only

at ∞ and ∞̄, each at most of order N/2. It is due to the specific structure of the circle curve (in hand-wavy
geometric terms, its projective closure is the Riemann sphere and not a group) that unlike in the elliptic
curve case, the relevant function space can be again chosen as a space of polynomials instead of rational
functions (under the bivariate view). However, we emphasize that this is not an essential feature.

For a circle STARK the bivariate polynomials from LN (F ) are what low-degree extensions are for classical
univariate proofs. The crucial properties of LN (F ), as shown by the following proposition, are (1) rotation
invariance, which is needed for the next-neighbour relation and efficient encoding, and (2) good separability,
leading to maximum distance separable codes.

Proposition 2. For even integer N ≥ 0 the space of polynomials LN (F ) has the following properties.

1. It is invariant under rotation, i.e. for each f ∈ LN (F ) and P ∈ C(Fp), also f ◦ TP ∈ LN (F ). (Here
and in the sequel, ◦ denotes functional composition.)

2. Its dimension is N + 1, and every non-trivial f ∈ LN (F ), i.e. f /∈ (x2 + y2 − 1), has at most N zeros
over C(F ).

3We consider a divisor D =
∑

nP · P to be Fp-rational, if it is invariant under every automorphism of the Galois group of
K over Fp, where K is the algebraic closure of Fp. That is, if α is such an automorphism, then nα(P ) = nP .
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Proof. Property 1 is trivial, since TP is linear and hence does not change the total degree of a polynomial.
To prove Property 2, we make use of the fact that under the isomorphism from Lemma 1 the space

LN (F ) is carried over to

LN (F ) =

{
p(t)

(1 + t2)
N
2

: p ∈ F [t], deg p(t) ≤ N

}
. (4)

As this representation will be useful in other proofs, we elaborate it in detail: The univariate representation
of a bivariate monomial xj · yk of degree j + k ≤ N/2, where j, k ≥ 0, is

(1− t2)j · (2 · t)k

(1 + t2)j+k
=

(1− t2)j · (2 · t)k · (1 + t2)N/2−j−k

(1 + t2)N/2
,

which is of the claimed form. Conversely, let us compute the bivariate representation of a function tk/(1+t2)N/2

with 0 ≤ k ≤ N . Writing k = 2 · j + ε, with 0 ≤ j ≤ N/2 and ε ∈ {0, 1} (where in the edge case k = N/2
we have ε = 0), the function corresponds to

y2·j+ε

(1 + x)2·j+ε
· (1 + x)2·N/2

((1 + x)2 + y2)N/2
,

which over the circle x2 + y2 = 1 is equal to

yε · (1 + x)j · (1− x)j

(1 + x)2·j+ε
· (1 + x)N/2

2N/2
,= 2−N/2 · yε · (1− x)j · (1 + x)N/2−j−ε,

which is a polynomial of total degree at most N/2.
From the univariate representation (4) of LN (F ), we eventually conclude that dimLN (F ) = N + 1.

Moreover, every fractional function p(t)/(1 + t2)N/2 with p(t) of degree ≤ N and N + 1 zeros (possibly
including infinity) must be trivial. This completes the proof of the Proposition.

Remark 6. The above proof reduces to a three-liner when using results from algebraic geometry: The
Fp-rational divisor N

2 ·∞+ N
2 · ∞̄ is invariant under the group action, and so is its Riemann-Roch space. As

the degree of the divisor is equal to N , the Riemann-Roch theorem tells us that dimLN (F ) = N + 1 − g,
where g = 0 is the genus of the circle curve. (This is in fact the most notable difference from elliptic curves,
where g = 1 and the dimension of space equals the degree of the divisor.) In regards of the number of zeros,
any non-trivial function over the circle curve has the same number of zeros as poles in the algebraic closure
K, with multiplicities taken into account.

Note that by repeatedly substituting y2 = 1 − x2 every polynomial p(x, y) from LN (F ) can be reduced
to the form

p(x, y) = p0(x) + y · p1(x), (5)

with p0 ∈ F [x]≤N/2 and p1 ∈ F [x]≤
N
2 −1. We shall call the representation (5) the canonical form of a

polynomial from LN (F ). The canonical form shows that the collection of monomials

1, x, . . . , x
N
2 , y, y · x, . . . , y · xN

2 −1 (6)

spans the space LN (F ), and by the dimension of LN (F ), it must be a basis. We call it the monomial basis
of LN .

For subsets D of the circle curve, typically a standard position coset or a twin-coset, we eventually define
circle codes as the linear codes which stem from the space of polynomials of degree at most N/2.
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Definition 3 (Circle Code). Let p be a prime satisfying p = 3 mod 4, and N be an even integer, 2 ≤ N <
p+ 1. Take D any proper subset of the circle curve C(Fp) of size |D| > N , and F be an (arbitrary, possibly
infinite) extension field of Fp. The circle code with values in F and evaluation domain D, is linear code with
code words from the space

CN (F,D) =
{
f(P )

∣∣
P∈D

: f ∈ LN (F )
}
.

Remark 7. The circle code is the algebraic geometry code generated by the Riemann-Roch space of the
divisor N

2 · ∞+ N
2 · ∞̄, with an evaluation domain of Fp-rational points. In particular, due to the genus of

the circle curve (Lemma 1) it is a generalized Reed-Solomon code. See also Theorem 1 below.

The block length of the circle code is equal to the size of the evaluation domain D. By Proposition 2 the
code is invariant under every rotation by Q ∈ C(Fp) which maps D onto itself, and the same holds for the
involution J whenever J(D) = D. Moreover, Proposition 2 tells us that functions from LN (F ) with more
than N zeros are trivial, and hence the domain evaluation map LN (F )→ FD, which takes a polynomial f
to f(P )|P∈D, is a linear and injective map. Consequently

k = dim CN (F,D) = N + 1,

and the minimum distance of the code is

d = min
f∈LN (F ),f ̸=0

|{P ∈ D : f(P ) ̸= 0}| ≥ |D| −N = |D| − k + 1.

This means that the code hits the Singleton bound, i.e. d+ k− 1 = |D|, and we have d = |D| −N . In other
words CN (F,D) is maximum distance separable.

The following theorem is an immediate consequence of Lemma 1 but nevertheless important for our
purposes, as it allows for ordinary Reed-Solomon techniques.

Theorem 1. Given a circle code C = CN (F,D) as in Definition 3, where F is an arbitrary (possibly infinite)
field. Then C is isomorphic to a Reed-Solomon code RSN+1[F, S] over a set S ⊆ Fp of size |S| = |D| and rate
ρ = (N+1)/|S|. The isomorphism and its inverse is distance-preserving and computable within O(|D|·logN)
field operations over Fp.

Proof. Choose Q be from C(Fp) so that TQ(D) = Q · D does not contain the point (−1, 0). (Since D
is a proper subset of the circle such a Q exists.) Then ϕ ◦ TQ, where ϕ is as in Lemma 1, is also an
isomorphism between the circle curve and the projective line, which maps the set D one-to-one onto the
affine set S = ϕ(Q · D). Under this isomorphism the space of polynomials LN (F ) is again carried over to
the univariate space LN (F ) as described by Equation (4). Overall, the map which takes a word w from FD

to the word (1 + t2)N/2 · (w ◦ (ϕ ◦ TQ)
−1) over S is the claimed isomorphism between the linear codes.

Corollary 1. Let C = CN (F,D) be a circle code as in Definition 3, with values over a (possibly infinite)
extension field of Fp, and rate ρ = (N +1)/|D|. Then for given proximity parameter θ = 1−

(
1 + 1

2·m
)
· √ρ,

where m ≥ 1 is an arbitrary integer, and f ∈ FD with d(f, C) ≤ θ, there are at most

ℓ(θ) ≤

√
m · (m+ 1)

ρ
<

m+ 1
2√

ρ

code words θ-close to f . There is a deterministic algorithm which outputs all θ-close code words within
O
(
|D|15

)
field operations.

Proof. The bound is the list size bound assured by the Guruswami-Sudan decoder for the isomorphic Reed-
Solomon code, run with multiplicity parameter m ≥ 1. Using the discriminant method for finding factors
of the form Y − p(X) for the Guruswami-Sudan polynomial Q(X,Y ) consumes O

(
|D|15

)
field operations.

(See [GS99] for details.) Since the isomorphism costs only O(|D| · log |D|) field operations, the asymptotic
bound does not change.

9



In the application of circle STARKs, we will consider purely two-adic N = 2n, n ≥ 1, and encoding will
be done by FFT-based extrapolation, extending the set of values given over a standard position coset of size
N (or more generally, a twin-coset), to those over the evaluation domain D, a union of other twin-cosets.
Since the dimension of the code is N + 1, such an encoder necessarily addresses only a subspace of the
entire code, having codimension one. This dimension gap is the most notable difference to both the classical
univariate as well as the elliptic curve case. Luckily, it turns out that this tiny gap is “tame” and will lead
to only a few changes in the way computations are done, with no significant impact to both soundness and
performance.

3.3 Vanishing polynomials and quotients

Let D be a subset of C(Fp) of even size N , where 2 ≤ N < p + 1. We call any non-zero4polynomial from
LN = LN (Fp), which evaluates to zero over D a vanishing polynomial of the set D. Decomposing D into
pairs of points {Pk, Qk}, 1 ≤ k ≤ N/2, and taking the product of linear functions going through these pairs,

vD(x, y) =

N/2∏
k=1

(
(x− Pk,x) · (Qk,y − Pk,y)− (y − Pk,y) · (Qk,x − Pk,x)

)
,

shows that vanishing polynomials do exist. With respect to the degree bound of LN , vanishing polynomials
are essentially unique, as shown by the following lemma.

Lemma 4. Let D be a subset of C(Fp) of even size N , where 2 ≤ N < p+ 1, and let LN = LN (Fp). Then
the set of polynomials from LN , which vanish over D, V(D) = {v ∈ LN : v|D = 0} , is a one-dimensional
subspace of LN . Every non-zero v ∈ V(D) takes a non-zero value outside D.

Proof. The statements are an immediate consequence of Proposition 2 saying that every non-zero f ∈ LN (Fp)
has at most N zeros. Thus any non-zero v ∈ V must be non-zero outside D. Second, if v and v′ are non-zero
polynomials from V(D), take a point P ∈ C(Fp) outside D and λ ∈ Fp so that v′ − λ · v vanishes also at P .
Again, by the number of zeros v′ − λ · v must be throughout zero over the circle curve.

Remark 8. We point out that Lemma 4 does not hold for odd set sizes N , since Fp-rational vanishing
polynomials of odd degree do not exist. In the context of single-point quotients as needed in the DEEP
algebraic linking step of the STARK, we will work around this issue by moving to the complex extension.
See Proposition 4 below.

We are mostly interested in vanishing polynomials of FFT domains, which are standard position cosets,
or more generally twin-cosets. Given a twin-coset D = Q · Gn−1 ∪ Q−1 · Gn−1, where n ≥ 1, we know
from Lemma 3 that its image under the power map πn−1 is a twin-coset of size two, and thus of the form
πn−1(D) = {(xD,±yD)}. We therefore may take

vD(x, y) := vn(x, y)− xD, (7)

with
vn(x, y) := πx ◦ πn−1(x, y), (8)

where πx is the projection onto the x-axis, as vanishing polynomial of D.
Note that since π commutes with J , the x-coordinate of πn−1(x, y) does not depend on y, and both vn

and vD polynomials are from Fp[x],

vn(x, y) = vn(x) ∈ Fp[x]
≤N/2, (9)

vD(x, y) = vD(x) ∈ Fp[x]
≤N/2, (10)

4By non-zero we mean that the polynomial is not contained in (x2 + y2 − 1).

10



since their degree is equal to 2n−1 = N/2. By construction vD evaluates to zero over D. We shall call it
the vanishing polynomial of D. Notice that whenever D is a standard position coset, its image πn−1(D) is
again a standard position coset and thus xD = 0. In this case the vanishing polynomial vD is vn itself. The
vanishing polynomial vD can be evaluated succinctly, i.e. by only O(n) field operations: Keeping track of
the x-coordinates only, each application of the squaring map costs 1 multiplication and 2 additions. The
first few polynomials are

v1(x) = x,

v2(x) = 2 · x2 − 1,

v3(x) = 2 · (2 · x2 − 1)2 − 1 = 8 · x4 − 8 · x2 + 1.

v4(x) = 8 · (2 · x2 − 1)4 − 8 · (2 · x2 − 1)2 + 1 = 128 · x8 − 256 · x6 + 160 · x4 − 32 · x2 + 1.

It follows directly from the defining Equation (7) and (8) that the vanishing polyomial of a twin-coset D
of size 2n is invariant under both Gn−1 and the involution J . In the particular case of (standard position)
cosets, vanishing polynomials do alternate under the action of Gn.

Lemma 5. Let D = Q · Gn be a standard position coset of Gn, the subgroup of size |Gn| = 2n. Then its
vanishing polynomial vD = vn alternates under the action of Gn, i.e. vn ◦TP = −vn, where P is a generator
of Gn.

Proof. Observe that under πn−1 the subgroup Gn is mapped onto the two-element subgroup G1 = {(±1, 0)},
and a generator P of Gn is mapped onto the generator (−1, 0) of G1. Thus

vn ◦ TP = πx ◦ πn−1 ◦ TP = πx ◦ T(−1,0) ◦ πn−1 = −πx ◦ πn−1 = −vn,

since πx changes the sign under rotation by (−1, 0).

Remark 9. The alternating behaviour naturally extends to vanishing polynomials of arbitrary rotations of
standard position cosets.

We eventually show the existence of domain quotient polynomials.

Proposition 3 (Domain quotients). Let D be a subset of C(Fp) of even size N , where 2 ≤ N < p+1. Take
F any extension field of Fp, and any even integer M , N ≤ M < p+ 1. Then every polynomial f ∈ LM (F )
which vanishes over D is of the form f = q · v with q from LM−N (F ) and v from V(D).

Proof. The property follows from the univariate representation (4) of the function spaces as used in the proof
of Proposition 2. In univariate coordinates, the polynomial v(t) ∈ LN (F ) is a rational function with simple
zeros over D, poles at ±i of order N/2 each, and no other zeros and poles in the algebraic closure K of Fp.
Likewise, f has only poles at ±i at order at most M/2 each, and no other poles in K. Altogether, the pole
set of the unviariate quotient q(t) = f(t)/vD(t) is contained in ±i, each of order at most M/2 − N/2. This
shows that q(t) ∈ LM−N (F ), and so its bivariate representation is contained in LM−N (F ).

For the single-point quotients as needed in the context of DEEP algebraic linking, we move over to Fp(i)-
rational polynomials. (However, we stress the fact that there are alternative and equally efficient approaches,
see Remark 19.) As building block we take the linear function

v(x, y) = 1− (x+ i · y)

and
vP (x, y) = v (Px · x+ Py · y, −Py · x+ Px · y) (11)

for an arbitrary F -rational affine point P = (Px, Py) on the circle curve. (This function has only one zero
on the curve over F , a simple zero at P , and only one pole, a simple pole at ∞̄.)
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Proposition 4 (DEEP quotients). Let F be an extension field of Fp, and take an even N < (p+ 1). Then
for every f ∈ LN (F ), and every F -rational point P = (Px, Py) on the circle curve, the single-point quotient
q = (f−f(P ))/vP , with vP as defined above, is in LN (F (i)). Consequently both “real” and “imaginary” parts
in the decomposition into F -rational functions

f − f(P )

vP
= Re

(
f − f(P )

vP

)
+ i · Im

(
f − f(P )

vP

)
,

where in the case F (i) = F we take Re
(

f−f(P )
vP

)
:= f−f(P )

vP
and Im

(
f−f(P )

vP

)
:= 0, are polynomials from

LN (F ).

Proof. The proof goes along the lines of that of Proposition 3, with the difference that by definition the
univariate representation vP (t) = c · (t−tP )/(t+i) has a simple zero at the univariate parameter tP of P , and a
simple pole at −i corresponding to ∞̄. (In the case that P = (−1, 0), we have vP (t) = c · 1/(t+i), which has
a simple zero at tP =∞.) It has no other zeros and poles in the algebraic closure K of Fp. The univariate
representation of f has only poles at ±i of order at most N

2 each, and no other poles in K. The quotient
(f(t)−f(tP ))/vP (t) has only poles at ±i, each of order at most N

2 . Thus (f(t)−f(tP ))/vP (t) is the univariate
representation of a polynomial q from LN (F (i)), satisfying that f − f(P ) = q · vP over the circle curve.

4 The circle FFT

From now on we throughout assume that p is a CFFT-friendly prime supporting the domain size 2n, where
n ≥ 1, and that Gn is the unique proper subgroup of the circle curve C(Fp), of size |Gn| = N = 2n.
Furthermore, F denotes an arbitrary extension field of Fp. The circle FFT for a twin-coset

D = Q ·Gn−1 ∪Q−1 ·Gn−1,

with Q ∈ C(Fp) \Gn, interpolates functions from FD by polynomials from the space LN (F ), via computing
the coefficients with respect to a specific basis, the FFT-basis Bn of the circle, an N -dimensional basis of
polynomials which only depends on the size of the domain.

Definition 4. For any integer j from the interval 0 ≤ j ≤ 2n − 1, let (j0, . . . , jn−1) ∈ {0, 1}n denote its bit
representation, satisfying j = j0 + j1 · 2 + . . . + jn−1 · 2n−1. The FFT-basis of order n is the family Bn of
polynomials

b
(n)
j (x, y) := yj0 · v1(x)j1 · . . . vjn−1

n−1 (x), 0 ≤ j ≤ 2n − 1,

where vk(x), 1 ≤ k ≤ n− 1, is the vanishing polynomial of the standard position coset of size 2k defined in
Section 3.3. (In cases where n is obvious from the context, we shall omit the superscript.)

Since deg vk(x) = 2k−1 the total degree of the polynomials from Bn is bounded by ≤ 2n−1, and thus in
fact Bn ⊆ LN (F ). That they are linearly independent will be a consequence of the FFT itself. (See Corollary
2.)

Let us gather the main result in a single statement.

Theorem (Summary of Theorem 2 and 3). Let p be a CFFT-friendly prime supporting the order n ≥ 1, and
F be a finite extension field of Fp. Take D, a twin-coset of the cyclic subgroup Gn−1 of the circle curve over
Fp, of size |D| = 2n. There exists an algorithm, which given a function from FD computes the coefficients
with respect to the basis Bn, consumes N · n additions over F and N · n2 multiplications with precomputed
elements of Fp. Its inverse, which given the coefficients with respect to Bn computes the values over D, or
any other twin-coset of the same size, has the same computational cost.
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Similar to the ECFFT, the circle FFT is an algebraic FFT, although the group structure of the domain
place a central role. Its construction is inherently related to two group endomorphims of the circle curve,
the group squaring map π and the inversion map J . The need for two endomorphisms, one of quadratic
degree and another one which is linear, is intertwined with the goal of obtaining interpolants from a space
of low-degree functions (in algebraic geometry terms, a Gn-invariant Riemann-Roch space) the dimension
of which fits as tight as possible the size of the domain. Whereas in the elliptic curve case this fit is met
perfectly, the circle FFT faces a tiny dimension gap between the image of the FFT and the full space of
polynomials of given degree bound. By Proposition 2

dimLN (F ) = N + 1,

and L′
N (F ) = ⟨Bn⟩ the image space of the transform, has

dimL′
N (F ) = dim ⟨Bn⟩ = N,

and thus is a subspace of LN (F ) of co-dimension one. We devote an extra Section 4.3 for investigating this
gap. The findings in that section will provide the necessary tools for treating it in a circle STARK.

4.1 The sequence of domains

Although everything in this section applies in full generality to twin-coset domains, we recommend to think
of it as standard position cosets during a first read.

By definition, a twin-coset D = Q ·Gn−1 ∪Q−1 ·Gn−1 is invariant under the involution J , and moreover
each J-orbit in D has exactly two points. Thus the quotient map

ϕJ : D → D/J, P 7→ {P, J(P )},

is 2–to–1. By Lemma 3, with Dn = D being a twin-coset of size 2n, the recursively obtained images
Dj = π(Dj+1), for j = n− 1 down to 1, are twin-cosets with respect to the decreasing chain of subgroups

Gn−1 ⊃ Gn−2 ⊃ . . . ⊃ G0.

That is, each Dj is of size |Dj | = 2j and a twin-coset of the subgroup Gj−1. Since J and π commute, we
obtain the following commutative diagram, in which each of the maps is 2-to-1 and onto, and thus halves
the set sizes.

Dn Dn−1 Dn−2 D1

Dn/J Dn−1/J Dn−2/J D1/J

π π π

π π π

ϕJ ϕJ ϕJ ϕJ

π

π

(12)

The final twin-coset D1 consists of exactly two points (it is a twin-coset of the trivial subgroup G0), forming
a single J-orbit, and thus |D1/ϕJ | = 1.

Note that the involution J has orbits of the form {(x,±y)}, and thus we may regard the quotients
Sj = Dj/J as subsets of the x-axis, and ϕJ = πx as the projection onto it, as illustrated by the following
diagram.

C(Fp) ⊆ F2
p Dn Dn−1 Dn−2 D1

C(Fp)/J ⊆ Fp Sn Sn−1 Sn−2 S1

π π π π

ϕJ=πx
πx πx πx πx

π π π π

(13)

In this diagram, the squaring endomorphism π : Sj −→ Sj−1 is the 2-to-1 map x 7→ 2 ·x2−1. This univariate
view on the quotients Dj/J will be particularly convenient in the description of the circle FFT.
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4.2 The circle FFT and its inverse

Given a twin-coset D of a subgroup Gn−1, of size |D| = 2n, the FFT is a divide-and-conquer algorithm
which recursively reduces the interpolation problem for f ∈ FD along the chain of projections

D = Dn
ϕJ=πx−→ Sn

π−→ Sn−1
π−→ . . .

π−→ S1,

as in (13), considering Sj = Dj/J as subsets of the x-axis, 1 ≤ j ≤ n.
In the first step, we decompose the given function f over Dn into “even” and “odd” part with respect to

the involution J , using
t0(x, y) = y

as our “reference odd function”. (This terminology is justified by t0 ◦J = −t0.) Concretely, we split f ∈ FDn

into the unique functions f0, f1 ∈ FSn over the univariate domain Sn, defined by

f0(x) =
f(x, y) + f(x,−y)

2
, (14)

f1(x) =
f(x, y)− f(x,−y)

2 · y
, (15)

and satisfying
f(x, y) = f0(x) + y · f1(x). (16)

(Note that the right hand sides of (14) and (15) do not depend on which of the two preimages of x are
taken.) We then proceed with f0 and f1 separately and as follows.

In the other steps, we receive a function fk0,...,kn−j ∈ FSj from a previous step, where 2 ≤ j ≤ n. We
choose

t1(x, y) = x

as the “reference odd function” (in the sense that it is odd along the fibres of π, which are parametrized by
action of T (x) = −x). Overriding notation and writing again f for fk0,...,kn−j

, we split it into f0 = fk0,...,kn−j ,0

and f1 = fk0,...,kn−j ,1 from FSj−1 over the projected domain Sj−1 = π(Sj), defined by

f0(π(x)) =
f(x) + f(−x)

2
, (17)

f1(π(x)) =
f(x)− f(−x)

2 · x
, (18)

and hence
f(x) = f0(π(x)) + x · f1(π(x)), (19)

where π(x) = 2 · x2 − 1. (The right hand sides (17) and (18) are independent on the choice ±x from the
same preimage, thus f0 and f1 are well-defined.) These two functions f0 = fk0,...,kn−j ,0, f1 = fk0,...,kn−j ,1

are then processed separately and in the same manner, until one ends up with constant functions

fk0,...,kn−1
∈ FS1

over the single-point domain S1. The output of the algorithm are the constants ck = fk0,...,kn−1
∈ F , for each

k in the interval 0 ≤ k ≤ 2n−1, where (k0, . . . , kn−1) ∈ {0, 1}n are the bits of k = k0+k1 ·2+. . .+kn−1 ·2n−1.

Theorem 2 (Circle FFT). Let p be a CFFT-friendly prime supporting the order n ≥ 1, take D ⊂ C(Fp) a
twin-coset of size |D| = 2n. Given f ∈ FD a function over D with values in an extension field F of Fp, the
above described algorithm outputs the coefficients ck ∈ F , 0 ≤ k ≤ 2n− 1, with respect to the FFT basis from
Definition 4, so that

∑2n−1
k=0 ck · bk evaluates to f over D.
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Proof. We first show, by induction on 1 ≤ j ≤ n, that for every function over Sj = Dj/J , the algorithm
outputs its coefficients with respect to

B(0)j =
{
b
(j)
2·k : 0 ≤ k ≤ 2j−1 − 1

}
,

that are those polynomials from Bj , which only depend on x. For j = 1, the quotient S1 consists of a single
point and the claim is trivial. Assume that the claim holds for some j ≥ 1, and let f be a function over
Sj+1, and decompose it into f0, f1 ∈ FSj defined by (17) and (18) such that (19) holds. By the induction
hypothesis the algorithm outputs their coefficients with respect to the basis B(0)j ,

fi =

2j−1−1∑
k=0

c
(i)
k · b

(j)
2·k,

over Sj , for both i = 0, 1. Therefore,

f(x) =

2j−1−1∑
k=0

c
(0)
k · b

(j)
2·k(π(x)) + c

(1)
k · x · b

(j)
2·k(π(x)) =

2j−1∑
k′=0

ck′ · b(j+1)
2·k′ (x),

with ck′ = ci+2·k = c
(i)
k , since by the definition of the vanishing polynomials, we have that xi · b(j)2k (π(x)) =

b
(j+1)
2·(i+2·k) for i ∈ {0, 1} and 0 ≤ k ≤ 2j−1 − 1.

The final step, corresponding to the projection from Dn to Sn = Dn/J , is proven in the same manner,
using the even-odd decomposition into (14) and (15) satisfying (16). We leave the details to the reader.

Remark 10. In practice one omits the factor 2 in the denominator of odd and even parts, both with respect
to J and T . This scaled FFT yields the coefficients with respect to the scaled basis 1

2n · bk, 0 ≤ k < 2n.
It consumes n · 2n−1 multiplications of elements from F with precomputed elements from the base field Fp,
and n · 2n additions of elements from F .

The inverse FFT is obtained along the lines of the proof of Theorem 2. At the “bottom level” of the
recursion, one starts with given coefficients ck = ck0,...,kn−1

∈ F , where (k0, . . . , kn−1) ∈ {0, 1}n are the bits
of k, all regarded as constant functions fk0,...,kn−1

over the single-point domain S1, and recursively combines
their values into the ones over the domain of double the size using Equation (19) Leveraging anti-symmetry
of the odd parts along the fibers of the projection, each level of the tree consumes in total 2n additions,
but only the half number of multiplications. We leave the details to the reader, and only cite the following
theorem.

Theorem 3 (inverse circle FFT). Let p be a CFFT-friendly prime supporting the domain size N = 2n,
n ≥ 1, and take D a twin-coset of size |D| = N . Given (ck) ∈ FN a coefficient vector with values in an
extension field F of Fp, the inverse transform as sketched above computes the values of f =

∑2n−1
k=0 ck · bk

over the domain D.

Remark 11. The cost of the inverse FFT is the same as for the scaled FFT described in Remark 10: It
consumes n · 2n−1 multiplications of elements from F with (precomputed) elements from Fp, and n · 2n
additions of elements from F .

Remark 12. The inverse FFT can be generalized to D = Gn, the exceptional set of size N which is invariant
under J and Gn−1 but not a twin-coset. The only difference is that ϕJ is only almost 2-to-1, leading to
quotients of size |Gk/J | = |Gk|

2 +1 being one point larger than in the ordinary FFT. However, these slightly
larger domains do not cause any additional computational cost, as there is always one point of the domain
at which the twiddle is zero, and thus combining odd and even parts is for free. In terms of field operations,
this variant is as efficient as the ordinary FFT.
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As the Cooley-Tukey FFT, both the circle FFT and its inverse can be implemented as a butterfly network,
with a similar layout as in a classical FFT. An explicit description is given in Appendix D.

Let us discuss an immediate consquence of Theorem 2.

Corollary 2 (FFT basis). Under the assumption of Theorem 2, the polynomials from Bn (Definition 4)
form the basis of an N -dimensional subspace L′

N (F ) of LN (F ), where N = 2n.

Proof. We have already seen that total degree of each bk(x, y) = yk0 ·v1(x)k1 · . . . vn−1(x)
kn−1 , 0 ≤ k ≤ 2n−1,

is bounded by 2n−1. By Theorem 2 their values over D form a basis of FD, where D is a twin-coset of size 2n,
proving that their span is at least N -dimensional. Since there are only N such polynomials, the dimension
is thus equal to N .

We call the image space L′
N (F ) spanned by the basis Bn the FFT-space of order n, or of dimension

N = 2n. Its description with respect to the standard monomial basis is as follows.

Lemma 6. Let p be a CFFT-friendly prime supporting the domain size N = 2n, n ≥ 1, and F be a finite
extension field of Fp. Then

L′
N (F ) =

{
p0(x) + y · p1(x) : pi(x) ∈ F [x], deg pi(x) ≤

N

2
− 1, i = 0, 1

}
. (20)

Proof. By the definition of bk, each function from L′
N (F ) is of the claimed form p0(x) + y · p1(x) with

deg pi ≤ N
2 − 1. In particular, L′

N (F ) is contained in the span of the N monomials 1, x, . . . , x
N
2 −1 and

y, y · x, . . . , y · xN
2 −1. Since L′

N (F ) is N -dimensional, the span of the monomials cannot be larger than
L′
N (F ), proving the claim of the lemma.

Recall that dimLN (F ) = N+1 and thus the FFT space L′
N (F ) is a subspace of LN (F ) with co-dimension

one. In terms of the monomial basis, LN (F ) misses the highest order monomial in x, i.e.

LN (F ) = L′
N (F ) + ⟨xN/2⟩.

Since vanishing polynomial vn(x) is of degree deg vn(x) = N/2, we may also decompose the full space of
polynomials as

LN (F ) = L′
N (F ) + ⟨vn⟩,

which turns out the more useful view for our purposes. See Section 4.3 for details on this decomposition.
We conclude the section with a remark on related work.

Remark 13. Carrying over the circle FFT to the projective line P 1(Fp) gives the (p+ 1)-is-smooth case of
[LX23], in the two-adic sense and generalized to twin-cosets as evaluation domains. In univariate coordinates
the involution is expressed as J(t) = −t, the doubling map is π(t) = 2·t

1−t2 , and the generator T of its kernel
group (i.e. the translation by (−1, 0)) is T (t) = − 1

t . Twin-cosets are carried over to twin-cosets with respect
to group law on the projective line (cf. Remark 4), invariant under J and without fixed points. The FFT
basis with respect to such a coset D of size N = 2n is now composed from the twiddles

t0 =
2 · t
1 + t2

and t1 =
1− t2

1 + t2
,

yielding a basis of an N -dimensional subspace of LN (F ) as described in the proof of Proposition 2, i.e.
the space of all functions having poles only at ±i and of order at most N

2 . Under the linear projection
f 7→ f − f(−1, 0) (in univariate coordinates f(−1, 0) is the value at infinity of the projective line) the FFT
space is mapped injectively onto the space of rational functions with numerator degree strictly less than N ,
yielding the space {

p(t)

(1 + t2)
N
2

: p(t) ∈ F [t],deg p(t) < N

}
,

as an equivalent space of functions for the FFT, which computes the coefficients with respect to the projected
basis, being the one used in [LX23].

16



4.3 Properties of the FFT space

As before, p is a CFFT-friendly prime supporting the order n ≥ 1, and N = 2n. In this section we shall
investigate the decomposition

LN (F ) = L′
N (F ) + ⟨vn⟩,

and provide a characterization of L′
N (F ) in terms of its behaviour at infinity which will be useful for the

analysis of the various quotients involved in the IOP of the circle STARK.
The most remarkable property is that, although the circle FFT is a non-harmonic transform, the FFT

space is invariant under rotation.

Proposition 5. The FFT space L′
N (F ) is invariant under the action of Gn, the cyclic subgroup of order

N = 2n.

Proof. Recall that by Lemma 6, L′
N (F ) is the span of the monomials 1, x, . . . , xN/2−1 and y, y · x, . . . , y ·

xN/2−1. Consider following vanishing polynomial of G = Gn the cyclic subgroup of order 2n,

vG(x, y) = y ·
N
2 −1∏
i=1

(x− xk),

where xk runs through the x-coordinates of half of the powers P k of a generator P of Gn, except the two
outermost ones on the x-axis. By the degree in x, the polynomial vG belongs to L′

N (F ), and its only term of
maximum degree, belonging to y · xN

2 −1, is non-zero. Hence vG is linearly independent from the monomials
of lower total degree, altogether forming a basis of L′

N (F ),

L′
N (F ) =

〈
xk · yj : deg(xk · yj) < N/2

〉
+ ⟨vG⟩.

By degree, a rotation of a monomial of degree < N/2 is again of degree < N/2, and by Remark 9, v ◦ TP is
a scalar multiple of v. This proves the claim of the lemma.

Proposition 5 together with Lemma 5 shows that LN (F ) = L′
N (F ) + ⟨vn⟩ is a decomposition into Gn-

invariant subspaces (which moreover are J-invariant). The following orthogonality result will be useful for
determining the decomposition of polynomials from LN (F ).

Lemma 7. Over every Gn-invariant and J-invariant domain D ⊆ C(Fp), the vanishing polynomial vn is
orthogonal to the FFT space L′

N (F ), i.e.
⟨vn, f⟩D = 0,

for every f from L′
N (F ), where the inner product is taken over D.

Proof. We keep track of the inner product ⟨vn, f⟩D while repeatedly decomposing f into even and odd parts
as in the FFT. In the first step, we write f = f0(x) + y · f1(x), where f0, f1 are polynomials of degree
≤ N/2 − 1. By the discussion preceding Lemma 5 the vanishing polynomial vn is invariant under the
involution J , thus

⟨vn, f0(x) + y · f1(x)⟩D = ⟨vn, f0(x)⟩D,

as the product y · f1(x) · vn(x) alternates under J , and hence its sum over D vanishes. (Note that this holds
also if D includes fixed points of J , since there y = 0.)

In the next step we decompose f0 = (f0,0 ◦ π) + x · (f0,1 ◦ π) with f0,0, f0,1 being polynomials of degree
≤ N/4− 1. If n ≥ 2, then vn = vn−1 ◦ π, and thus

⟨vn, (f0,0 ◦ π) + x · (f0,1 ◦ π)⟩D = ⟨vn−1 ◦ π, (f0,0 ◦ π)⟩D,
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since x · (f0,1 ◦π) · (vn−1 ◦π) alternates under the action of T = T(−1,0) and thus its sum over D is zero. The
latter inner product can be written as one over the projected domain π(D),

⟨vn−1 ◦ π, f0,0 ◦ π⟩D = 2 · ⟨vn−1, f0,0⟩π(D),

thereby reducing the orthogonality claim to that of vn−1 with the polynomial f0,0 of degree ≤ N/4− 1, over
the Gn−1-invariant domain π(D).

Continuing in this manner, we eventually end up with an inner product of the vanishing polynomial v1
with the constant function f0,...,0, taken over the G1-invariant set πn−1(D). As v1 alternates under G1, that
inner product must be zero, proving the claim of the Lemma.

Let us investigate the behaviour of polynomials from LN (F ) at infinity. For that we consider the limits
of their quotients with the monomial xN/2 at the two Fp(i)-rational points at infinity, i.e. ∞ = (1 : +i : 0)
and ∞̄ = (1 : −i : 0). However, in order to avoid explicitly referring to these projective points, we use the
following formula as definition for these limits. Given a polynomial f in LN (F ), we set

f

xN/2
(∞) := f (N/2)(1, i), (21)

and
f

xN/2
(∞̄) := f (N/2)(1,−i), (22)

where f (N/2) is the homogeneous part of degree N/2. These limits pick out the coefficients of the two terms
of degree N/2, and combines their coefficients by taking (x, y) = (1, i) and (x, y) = (1,−i), respectively.
Their value is in F (i), which depending on F might be an extension, or not.

Lemma 8. Take f ∈ L′
N (F ), and let cN−1 ∈ F be its coefficient with respect to the highest-order basis

function bN−1 of the FFT basis. Then

f

xN/2
(∞̄) = − f

xN/2
(∞) = −i · 2

N
2

N
· cN−1. (23)

On the other hand, the vanishing polynomial vn of the standard position coset of size N = 2n, satisfies

vn
xN/2

(∞̄) = +
vn

xN/2
(∞) = 2

N
2 −1, (24)

and the same limits hold for the vanishing polynomial of a twin-coset of size N .

Proof. The coefficient c = cN−1 of a polynomial f ∈ L′
N (F ) belongs to the basis function bN−1(x, y) =

y · v1(x) · v2(x) · . . . · vn−1(x), which is the only basis function with a term of total degree equal to N/2.
Concretely,

bN−1(x, y) = y ·
(
2N/2

N
· xN

2 −1 + p(x)

)
,

where p(x) is a polynomial of degree < N/2 − 1. Evaluating the quotient with xN/2 at ∞ = (1 : i : 0) and
∞̄ = (1 : −i : 0) yields Equation (23). The limits of the vanishing polynomial are proven similarly, using
that

vn(x) = 2
N
2 −1 · xN

2 + p(x),

for some polynomial p(x) of degree deg p(x) ≤ N/2− 1.
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Remark 14. As circle STARKs typically uses transitional constraints, the explicit limit of a function under
rotation are useful. For arbitrary g from the full space of polynomials LN (F ), and P = (Px, Py) ∈ C(Fp),
we have

g ◦ TP

xN/2
(∞) = (Px + i · Py)

−N/2 · g

xN/2
(∞), (25)

and likewise at ∞̄, with i replaced by −i. These limits are a consequence of that ∞ and ∞̄ are fixed points
under TP , and the monomial h(x, y) = xN/2 satisfies that

h

h ◦ T−1
P

=
xN/2

(Px · x+ Py · y)N/2
,

which evaluates to (Px + i · Py)
−N/2 at ∞, and to the conjugate expression at ∞̄. In particular if P is a

generator of Gn the cyclic subgroup of order N , then (Px+i ·Py)
−N/2 = −1, which together with Proposition

6 from below yields an alternative proof of rotation invariance of L′
N (F ).

Motivated by Lemma 8 we define the linear subspaces

L−
N (F ) =

{
f ∈ LN (F ) :

f

xN/2
(∞) = − f

xN/2
(∞̄)

}
, (26)

and
L+
N (F ) =

{
f ∈ LN (F ) :

f

xN/2
(∞) = +

f

xN/2
(∞̄)

}
. (27)

These are the spaces of polynomials having alternating or non-alternating limits at infinity, both with respect
to the action of the involution J on {∞, ∞̄}.

Lemma 9. Suppose that N,M ≥ 2 are even integers. If f ∈ L−
N (F ) and g ∈ L+

M (F ), or vice-versa, then
f · g ∈ L−

N+M (F ). For all other combinations of f and g, having either alternating or non-alternating limits
at infinity, their product f · g ∈ L+

N+M (F ).

Proof. The claim follows from the degree of the product, and that it has alternating limits at infinity if and
only if exactly one of the two functions has alternating limits at infinity.

Proposition 6. The FFT space is characterized by having alternating limits at infinity, L−
N (F ) = L′

N (F ).

Proof. Write g ∈ LN (F ) as g = f + λ · vn, with f ∈ L′
N (F ) and vn the vanishing polynomial of a standard

position coset of size N , and λ ∈ F . By Lemma 8 f ∈ L−
N (F ) and vn ∈ L+

N (F ), and we obtain that

g

xN/2
(∞) +

g

xN/2
(∞̄) = 2 · λ · vn

xN/2
(∞),

which is zero if and only if λ ̸= 0, or equivalently g ∈ L′
N (F ).

5 STARK over the circle

Circle STARKs are similar to univariate STARKs, with the only difference that the underlying algebraic
function space is the space of bivariate polynomials over the circle curve, i.e. Fp[x, y]/(x

2 + y2 − 1), rather
than univariate polynomials over the “line”. Circle STARKs address arithmetic circuits over prime fields Fp

where (p − 1) is not acceptably smooth but (p + 1) is, meaning that it is CFFT-friendly (recall Definition
1) for sufficiently large order. Witness data is encoded into bivariate polynomials, by means of the circle
FFT from Section 4, and constraint satisfaction is carried over to algebraic relations imposed on these
polynomials. The interactive oracle proof is essentially the same as in the univariate case, with just a
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few changes which are related to the dimension gap between the output space of the circle FFT and the
full space of polynomials. For the sake of simplicity we restrict our exposition to algebraic intermediate
representations (AIR) with constraints between neighbouring rows only. Generalizations like arbitrary row
offset, non-periodic constraints, permutation and lookup arguments are done in the usual manner, and are
shortly discussed in Section 5.4. The protocol of the STARK is described in an informal style, but this does
not mean that we neglect rigor. A formal treatment, including a fully-fledged security analysis is moved to
Appendix B.

Let p be CFFT-friendly prime, supporting sufficiently large orders so that each of the domains below are
supported by p. In circle STARK, the trace domain is the standard position coset

H ⊂ C(Fp)

of a cyclic and proper subgroup G = Gn of the circle curve C(Fp), of size N = 2n, with n ≥ 1, and the trace
is organised column-wise t1, . . . , tw ∈ FN

p , each placed over the domain H in the usual manner, using the
group translation T by a generator of G for the timeline. The trace columns are interpolated by polynomials

p1, . . . , pw ∈ Fp[x, y]/(x
2 + y2 − 1)

of total degree at most N/2, meaning that pi ∈ LN (Fp) (actually, they are from the FFT-space L′
N (Fp)),

and these polynomials are subject to a set of constraints, say

Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0, (28)

for i = 1, . . . , C, holding over the entire domain H, and where si ∈ LN (Fp) is a predefined selector polynomial.
Each constraint is a polynomial

Pi ∈ Fp[S,X1, . . . , Xw, Y1, . . . , Yw],

of total degree5at most the maximum number of twin-cosets of size N ,

degPi ≤
p2 + 1

N
− 1,

and the degree in the selector variable S is at most degS Ci ≤ 1. Algebraic intermediate representations
allow for periodic constraints only, meaning that each constraint Ci is enforced on a subdomain Hi ⊆ H, a
coset of a subgroup of G, with optionally one point removed for boundary conditions, and will be described
in detail in Section 5.1. Their selector polynomials si ∈ LN (Fp) are built from domain vanishing polynomials
and are succinctly evaluable. (It turns out that these are again from the FFT space L′

N (Fp).) Consequently
there is no need to provide and verify them in a precomputation phase.

The polynomials p1, . . . , pM , as well as further ones provided in the course of the protocol, are committed
by their values over a larger evaluation domain D ⊆ C(Fp), a standard position coset of at least double the
size of H. In other words, the prover commits to code words of the circle code CN (D) with values in the
prime field Fp, or some finite extension F of it. Being again in standard position, D is disjoint from H, and
we assume that

|D|
|H|

= 2B

for some B ≥ 1. The degree of the algebraic intermediate representation is

d = max
i=1,...,C

degPi,

which by the above assumptions is bounded by d ≤ |C(Fp)/G| − 1. In high-performance instances, one
typically chooses a parameter setup which limits the extrapolation effort to that of the evaluation domain.
There, the maximum constraint degree is bounded by d ≤ |D|/|H|+ 1.

5The degree bound stems from the size of the maximum extrapolation target for the circle FFT, which is C(Fp) \G. It can
be relaxed to degCi ≤ |C(Fp)/G| if one uses the modified domain evaluation from Remark 12.
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5.1 Constraint selectors

Let us discuss the selector polynomials for subdomains H ′ ⊂ H, which are an arbitrary position coset of a
proper subgroup G′ ⊂ G, the group of the trace domain H. Recall the definition of V(S) of any even-sized
set S, as given in Lemma 4.

Lemma 10. Let H be a standard position coset of size N = 2n and H ′ ⊂ H an arbitrary position coset of
a subgroup G′ of size N ′ = 2n

′
, where 1 ≤ n′ < n. Then for any two non-zero vH ∈ V(H), vH′ ∈ V(H ′) the

quotient
sH′ =

vH
vH′

is a polynomial from V(H \H ′) which alternates under the action of G′. In particular, since V(H \H ′) ⊆
LN−N ′(Fp) the polynomial sH′ belongs to the FFT space L′

N (Fp).

Proof. Proposition 3 already implies that the quotient sH′ is equal to a polynomial q from LN−N ′(Fp)
satifying vH = q · vH′ over the circle curve. Since vH is a non-zero polynomial, so must be q. By Lemma 4
vH′ is non-zero outside H ′, hence every point from H \H ′ is a zero of q. This shows that q ∈ V(H \H ′) and
thus is throughout non-zero outside H \H ′.

To see the alternating behaviour under G′, let P ′ be a generator of G′. Since n′ < n, that generator is an
even power of a generator of G, and hence by Lemma 5 the vanishing polynomial vH is invariant under P ′.
For the vanishing polynomial of H ′ itself, we have alternating behaviour under TP ′ , i.e. vH′ ◦ TP ′ = −vH′ .
(Cf. Remark 9.) Therefore sH′ ◦ TP ′ = −sH′ on its set of definition C(Fp) \H ′, in other words

q ◦ TP ′(P ) + q(P ) = 0

for every P ∈ C(Fp) \ H ′. Since q ◦ TP ′ + q ∈ LN−N ′(Fp) and there are more than N points outside H ′,
Proposition 2 yields that q ◦ TP ′ + q = 0 everywhere on the circle curve, proving the claimed alternating
behaviour of q.

Remark 15. By their degree, domain selectors have trivial limits at infinity,

sH′

xN/2
(∞̄) =

sH′

xN/2
(∞) = 0.

If one takes vn as the vanishing polynomial of H and a suitable rotation vH′ = vm◦T−1
Q , m = n′, as vanishing

polynomial of H ′, then one can show that the concrete value for P = (Px, Py) ∈ H ′ is

sH′(P ) =
v′n(Px)

v′m(Px ·Qx + Py ·Qy)
· Py

Py ·Qx − Px ·Qy
,

where v′n and v′m are the (formal) derivatives of vn and vm. That is, v′1(x) = 1, and for k ≥ 2, we have
v′k(x) = 4k−1 ·

∏k−1
j=1 vj(x).

As DEEP quotients, selectors of singleton domains need a separate treatment.

Lemma 11. Let H be a standard position coset of size N = 2n, and P be an arbitrary point from H. Taking
v0(x, y) =

y
1+x , the quotient

sP =
vn

v0 ◦ T−1
P

,

is a polynomial from LN (Fp), which has a non-zero value at P and is zero elsewhere on H. Furthermore,
sP is contained in the FFT-space L′

N (Fp).
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Proof. In univariate coordinates vn(t) ∈ LN (Fp) has throughout simple zeros, in particular at tP correspond-
ing to the point P ∈ H. The reference function v0 translates to v0(t) = t, which has a simple zero at t = 0
and a simple pole infinity. Its rotation v0 ◦ T−1

P thus has a simple zero at tP and a simple pole at −1/tP .
Altogether, we conclude that the quotient vH(t)/v(t) ∈ LN (Fp) and it has a non-zero value at tP . This
proves the first assertion.

To see that sP belongs to the FFT space, we investigate its limit with respect to xN/2 at infinity. Consider

vn
xN/2

=
sP
xN/2

· (v ◦ T−1
P ).

By Lemma 8 the vanishing polynomial vn belongs to L+
N (Fp), whereas v0(∞) = −v0(∞̄) which by Remark

14 also holds for the rotated function vP . Therefore sP ∈ L−
N (Fp), which by Proposition 6 is the FFT

space.

Remark 16. It follows from the proof of Lemma 11 that

sP
xN/2

(∞̄) = − sP
xN/2

(∞) = −i · vn
xN/2

(∞),

which by Lemma 8 is non-zero. It can be shown that the concrete value at P = (Px, Py) is

sP (P ) = −2 · v′n(Px) · Py,

with v′n as the derivative of vn as described in Remark 15, and the statement of Lemma 11 extends to
twin-coset domains H with vanishing function vH = vn − xH . The normalized single-point quotient

ℓP (Q) = − 1

2 · v′n(Px) · Py
· sP (Q)

is the “Lagrangian” for the FFT space L′
N (F ) and may be taken for evaluating any f ∈ L′

N (F ) at arbitrary
outside points Q via the inner product formula

f(Q) = ⟨f(P ), ℓP (Q)⟩P∈H .

With precomputed normalizing factors, the values of ℓP (Q) for P ∈ H can be computed efficiently by
decomposing the twin-coset H into twin-cosets of size four, over each of which the same four products
Qx · Px, Qy · Px, Qx · Py, Qy · Py are involved in the formula for Q · P−1, and taking Montgomery batch
inversion for the values of 1/v0 over Q ·H.

5.2 The interactive oracle proof for AIR

The interactive oracle proof for the satisfiability of the AIR, i.e. the existence of low-degree polynomials
p1, . . . , pw ∈ Fp[X,Y ]/(X2 + Y 2 − 1) which satisfy each of the constraints (28) over the trace domain H,
i = 1, . . . , C, goes as follows.

In the first round, the prover computes the values of its trace polynomials p1, . . . pw ∈ LN (Fp) over
the evaluation domain D using its decomposition into twin-cosets from Lemma 2, and shares their oracles,
denoted by [

p1
]
, . . . ,

[
pw
]
,

with the verifier. (That is, it gives the verifier access to the oracles.)
In the second round the verifier sends a random challenge β ←$ F , drawn uniformly from a suitably large

extension field F of Fp, which is used to reduce the C domain identities into a single one,

C∑
i=1

βi−1 · Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0
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to hold over the trace domain H. (The soundness error of this step is a usual, and depends on the size of
the extension field F and L.) In order to prove this identity, the prover uses Proposition 3 and computes
the quotient polynomial q ∈ L(d−1)·N (F ) subject to the overall identity

C∑
i=1

βi−1 · Ci(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = q · vH , (29)

where vH is the vanishing polynomial of H. To keep with one and the same degree bound imposed by the size
of H, the quotient q ∈ L(d−1)·N (F ) is split into polynomials q1, . . . , qd−1 ∈ LN (F ), and a further parameter
λ ∈ F , by taking a decomposition of unity for a disjoint union H̄ =

⋃d−1
k=1 Hk of twin-cosets of size |Hk| = N

built from their vanishing polynomials,

q = λ · vH̄ +

d−1∑
k=1

vH̄
vHk

· qk. (30)

This extra parameter λ attributes the aforementioned dimension gap, and is the main difference to the
classical univariate as well as the elliptic curve case. We will describe the details of the decomposition, and
how to compute it, in Section 5.3 below. The prover sets up the oracles[

q1
]
, . . . ,

[
qd−1

]
for their values over the evaluation domain D, and sends them, together with λ, to the verifier.

Having all the oracles in place, the next step is the DEEP algebraic linking, which reduces satisfiability
of the overall identity (29) to a low-degree test on single-point quotients. (In lose terms, this step turns the
low-degree test into a polynomial commitment scheme.) The verifier responds with a random point

γ ←$ C(F ) \ (D ∪H)

from the circle curve over the extension field F , which is the DEEP query at which the overall identity (29)
is checked. In return, the prover claims the values vi,0, vi,1 of pi at the points γ and T (γ) respectively, for
each i = 1, . . . , w, as well as the values v1, . . . , vd−1 of q1, . . . , qd−1 at γ. Eventually, both prover and
verifier then engage in a low-degree test for the real and imaginary parts of the DEEP quotients defined in
Proposition 4,

Re/Im
(
pi − vi,0

vγ

)
,Re/Im

(
pi − vi,1
vT (γ)

)
for each i = 1, . . . , w, and

Re/Im
(
q1 − v1

vγ

)
, . . . ,Re/Im

(
qd−1 − vd−1

vγ

)
which is a joint proximity test to the circle code CN (F,D). The proximity test is explained in Section 6.
If the proximity test passes, and if the claimed values satisfy the overall identity (29) at γ, using (30), and
computing the values of the selectors si(γ) by itself, then the verifier accepts.

Remark 17. Taking real and imaginary parts reduces the low degree test for F (i)-rational functions to
a low-degree test for F -rational functions, and is done to avoid larger fields than demanded by soundness.
Although this doubles the number of functions subject to the test, we shall see that it does not cause
significant computational overhead, for both the prover and the verifier. (Cf. Remark 21.)

The formal treatment of the protocol, including a clarification of security notions is given in Appendix
B. We simply state its soundness error in the (ordinary) oracle model.
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Theorem (Summary of Theorem 7 and 8, Appendix B). Let n,w,C, d,B ≥ 1, and let p be a CFFT-friendly
prime supporting the order n+B, and so that d ·2n < p+1, and select F any finite extension of Fp. Consider
the simple AIR from above, with trace length N = 2n and w columns, subject to the given C constraints of
maximum degree d. Then the above described interactive oracle proof for the satisfiability of the AIR has
soundness and knowledge-soundness error

εAIR = ℓ+ ·
(
C − 1

|F |
+

d · (N + 2)

|F |+ 1− 2n+B

)
+ εPROX ,

where εPROX := ε(|D|, n,m,L) is the soundness error of the joint proximity test for real and imaginary
parts of the DEEP quotients to CN (F,D), Theorem 6, run with agreement parameter α = α(m), where
3 ≤ m ≤ N/2, and ℓ+ is the list size bound of the slightly larger circle code CN+2(F,D) for an agreement set
density ≥ α.

Remark 18. The above IOP follows the common design principle being a chain of probabilistic reductions,
and hence the proofs in Appendix B elaborate the soundness errors of the separate protocol rounds. By
means of the [BSCS16] transform, the interactive oracle proof can be turned into a SNARK in the random
oracle model. We postpone an explicit treatment, similar to that in the most recent update of [Sta23], to a
future version of the paper.

Theorem 7 asserts that, if a (possibly computationally unbounded) algorithm P ∗ succeeds the verifier with
a probability larger than εAIR, then there exist low-degree polynomials p1, . . . , pw ∈ Fp[X,Y ]/(X2+Y 2−1)
which satisfy each of the C constraints (28) over the trace domain H. Furthermore, P ∗ can be turned into
an algorithm which extracts such a solution, and which has comparable running-time: Once sampled a first
round message [f1], . . . , [fw] on which P ∗ is able to succeed with that probability, then this solution is one of
the at most ℓ+ many collections of degree ≤ N/2+1 polynomials, which jointly agree with f1, . . . , fw over a
set A ⊆ D of density ≥ α. The at most ℓ+ many candidate collections are obtained by the Guruswami-Sudan
list decoder over a suitable finite extension of Fp. See Appendix B for details.

Let us quickly explain the ingredients of Equation (47) to the advanced reader. The part in the brackets
is the soundness error of the protocol in the polynomial oracle model. Its first term is subject to the batching
step of the C constraints, which amounts to zero-testing an ordinary univariate polynomial of degree C − 1
over the extension field F . The second term is the soundness error bound of the DEEP algebraic linking step,
which is a zero test for a polynomial from Ld·(N+2)(F ) at a random point γ ∈ C(F )\D. The slightly increased
degree bound in Ld·(N+2)(F ) attributes the step of passing from DEEP quotients to the non-quotients, which
also responsible for the slightly different list size bound ℓ+.

Remark 19. As in the construction of singleton selectors (Lemma 11) one may alternatively choose the
rational function

ṽP (x, y) = v0(Px · x− Py · y, Py · x+ Px · y)
where v0(x, y) = y/(1 + x), for DEEP quotients. These quotients stay in the field F , but to assure that
the non-quotients have no (affine) pole, one needs to run the low-degree test on both the quotients and the
non-quotients. This approach leads again to a batch of double the size and hence comparable computational
cost. Without proof we state that the soundness error of this variant is the same as in Theorem 7.

5.3 Computing the overall quotient

The quotient q ∈ L(d−1)·N (F ) is computed by value from those of f1, . . . , fw over a union of twin-cosets Hk

of size N ,

H̄ =

d−1⋃
k=1

Hk,

disjoint to the trace domain and of overall |H̄| = (d−1) ·N . (Typically H̄ is chosen a subset of the evaluation
domain D.) Recall that by Proposition 2 dimL(d−1)·N = (d− 1) ·N + 1, and thus the union H̄ is one point
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too small to uniquely determine a polynomial from L(d−1)·N . In our decomposition, this missing point is
characterized by an additional scalar multiple of the vanishing polynomial of H̄, as the following lemma
shows. It is a generalization of the decomposition LN (F ) = L′

N (F ) + ⟨vn⟩ from Section 4.3 to a union of
twin-cosets. Recall that the vanishing polynomial of the twin-coset Hk is of the form

vHk
(x) = vn(x)− ck

for some ck ∈ Fp.

Lemma 12 (Decomposition Lemma). Consider disjoint twin-cosets Hk, k = 1, . . . , d − 1, of size N = 2n,
and take vH̄ =

∏d−1
k=1 vHk

as a vanishing polynomial of the union H̄ =
⋃d−1

k=1 Hk. Then every q ∈ L(d−1)·N (F )
is uniquely decomposed into

q = λ · vH̄ +

d−1∑
k=1

vH̄
vHk

· qk, (31)

with λ ∈ F and qk ∈ L′
N (F ), for each k = 1, . . . , d− 1.

Proof. Since each vH̄
vHk

is non-zero over Hk and vanishes over the other twin-cosets, the functions from
qk ∈ L′

N (F ) are uniquely determined by the values of q over H̄. Hence the interpolation map for the union
H̄, which maps given values over H̄ to the combined interpolant

∑d−1
k=1

vH̄

vHk
· qk, with each qk ∈ L′

N (F ),

is a linear map from F H̄ into L(d−1)·N (F ) which has a trivial kernel. Consequently the dimension of its
range is equal to |H̄| = d · N . Since vH̄ is obviously not contained in that range, they together span a
(d · N + 1)-dimensional subspace of L(d−1)·N (F ), which by the dimension of the latter must be the entire
space L(d−1)·N (F ). This proves the claim of the lemma.

Remark 20. Recall that by Lemma 5, and the discussion preceding it, the selector vH̄
vHk

=
∏

j ̸=k vHj is
invariant under J and Gn−1, and hence constant over twin-cosets of size N . In practice one chooses a
normalized variant of the selector, which evaluates to 1 over Hk. With such a choice no extra multiplications
are needed to obtain the values of qk over Hk from those of q.

To uniquely determine q we additionally consider its limit at infinity, as introduced in Section 4.3. This
leads to a limit-at-infinity calculus for deriving the scalar λ in the decomposition (31). Dividing the overall
identity (29) by the monomial of maximum degree, i.e. xd·N/2 where d is the degree of the algebraic
intermediate representation, we get∑

i β
i−1 · Pi (si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T )

xd·N/2
=

λ ·
d−1∏
k=1

vHj

xN/2
+

d−1∑
k=1

qk
xN/2

·
∏
j ̸=k

vHj

xN/2

 · vH
xN/2

,

and evaluating it at ∞ yields
L∑

i=1

βi−1 · P (d)
i

( si
xN/2

(∞),
p1

xN/2
(∞), . . . ,

pw
xN/2

(∞),
p1 ◦ T
xN/2

(∞), . . . ,
pw ◦ T
xN/2

(∞)
)

=

λ ·
d−1∏
k=1

vHk

xN/2
(∞) +

d−1∑
k=1

qk
xN/2

(∞) ·
∏
j ̸=k

vHj

xN/2
(∞)

 · vH
xN/2

(∞),

(32)
and likewise at ∞̄, where P

(d)
i denotes the homogeneous part of degree d of the constraint Pi. Using Lemma

8 the values at ∞ are easily determined:

• The values of vH
xN/2 (∞), vH̄

xN/2·(d−1) (∞) and si
xN/2 (∞), are determined using Lemma 8 and Remark 15

and 16, and may be precomputed. Since si
h (∞) = 0 whenever the constraint selection domain Hi is a

proper non-singleton subgroup of H, we only need to take into account those terms of degree d, which
correspond to global or single-point constraints.
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• The values pi

h (∞), i = 1, . . . , w, as well as qk
h (∞), k = 1, . . . , d − 1, are computed from the highest-

order coefficients of their Fourier transforms using Lemma 8. (Recall that the transform of qk is needed
anyway to compute its values over the entire evaluation domain D.)

• The values pi◦T
xN/2 (∞), 1 ≤ i ≤M , are also determined from the limits of the non-rotated functions using

Equation 25. In particular, since T = TP for a generator P of the subgroup G, we have that

pi ◦ T
xN/2

(∞) = (Px + i · Py)
−N/2 · pi

xN/2
(∞) = − pi

xN/2
(∞),

and the same holds at ∞̄.

Since vH
xN/2 (∞) and vH̄

x(d−1)·N/2 (∞) ̸= 0 we can always extract λ from (32).
A closer inspection of the overall identity at infinity shows that the limit-at-infinity calculus can be

simplified or even omitted. The polynomials si, pi, pi ◦ T belong to the FFT space L′
N (Fp) and hence have

alternating limits at infinity,
si, pi, pi ◦ T ∈ L−

N (Fp),

whereas the vanishing polynomial vH belongs to L+
N (F ). Since the limits of q at infinity are only determined

by the terms of order d, we obtain that

q ∈

{
L−
(d−1)·N (F ) if d is odd,
L+
(d−1)·N (F ) if d is even.

(A product of an odd number of polynomials which are odd at infinity is again odd at infinity, and likewise
a product of an even number of such polynomials is even at infinity.) On the other hand, each vHk

belongs
to L+

N (F ) (they are polynomials in x only) and every qk ∈ L−
N (F ) (as they belong to L′

N (F ), showing that
in the decomposition

q = λ ·
d−1∏
k=1

vHj +

d−1∑
k=1

qk ·
∏
j ̸=k

vHj

the term belonging to λ is from L−
(d−1)·N (F ), whereas the sum involving the qk belongs to L+

(d−1)·N (F ).
Since F {∞,∞̄} is a direct sum of the space of odd and even functions (under the action of J), and since the
limits of

∏d−1
k=1 vHj are non-zero, we conclude that in the case d is odd we must have λ = 0, and in the case

d is even, it holds that
d−1∑
k=1

qk
xN/2

(∞) ·
∏
j ̸=k

vHj

xN/2
(∞) = 0.

Therefore, if d is odd one can omit the limit-at-infinity calculus. In the other case when d is even, no limits
of qk are needed.

5.4 A note on generalizations

Our restrictive notion of AIR can be generalized to transitional constraints of arbitrary offset, involving
arbitrary powers T k of the shift. The limit-at-infinity calculus from Section 5.3, and in particular its analysis
how it can be simplified or dropped, remains unchanged. The same holds when moving to a “plonkish”
arithmetization taking non-succinct precomputed selector polynomials which are naturally from the FFT
space.

Univariate sumcheck techniques ([BSCR+19, CHM+20] or the one that uses running sums [HGdB21,
GK22]) as well as the grand product argument from Plonk [GWC19] can be carried over to an IOP over the
circle curve, with a negligible change of the soundness error. The same is true for lookup arguments such as
[GW20] or [Hab22a], and the recent improvement [PH23].
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Zero-knowledge is obtained in the usual manner, by inserting sufficient randomness in the encoding of
the trace polynomials. For AIRs this comes at the cost of doubling the domain sizes, unless one works with
non-succinct selector polynomials as in the case of a plonkish arithmetization.

Note that using the tweaked inverse FFT from Remark 12 allows to efficiently evaluate a representation
with respect to the FFT basis over a domain in “group position”, the only target not covered by twin-cosets.
In Appendix C we make use of this exception, and describe an optimized variant of the STARK in which the
evaluation domain D is a superset of the trace domain. In this context, we point out that arbitrary cosets
can be handled by means of the “Mersenne FFT” from [HLN23], which is a regular FFT over the complex
extension Fp(i) optimized for “real” functions. By the rotation invariance of the FFT space, Proposition 5,
the extrapolation map from a standard position coset H to any other coset of the same size is of convolutional
(i.e. circulant) form, and thus can be evaluated by the Mersenne FFT. Compared to a regular FFT, the
Mersenne FFT costs the same number of multiplication but causes a significant overhead in the number
of additions, essentially thwarting the advantage of Mersenne arithmetics. It is for this reason why we do
not advertise this approach, although a coset-centric view would bring circle STARKs even closer to the
univariate case.

We further point out that circle codes (and variants of it) may be used in the construction of efficient
diffusion layers in arithmetic hash functions such as Poseidon [GKR+21], Rescue [AAB+20], Rescue Prime
[SAD20] and Monolith [GKL+23]. We shall elaborate on this in an upcoming writeup [HS24].

6 Low-degree test over the Circle

As in the previous section we assume a prime p which is CFFT-friendly for a sufficiently large order, so that
the evaluation domain of the following circle code is supported. Given a degree parameter N = 2n, n ≥ 1,
a blow-up factor 2B , B ≥ 1, let D ⊂ C(Fp) be a standard position coset of size |D| = 2B+n, and consider
C = CN (F,D) the circle code with values in a finite extension F of Fp.

Given a proximity parameter θ ∈ (0, 1), the interactive oracle proof of proximity (IOPP) to C is an
interactive oracle protocol that proves a given word f ∈ FD being θ-close to a word from the circle code, i.e.

d(f, C) = min
w∈C

d(f, w) < θ,

where d denotes the relative Hamming distance over D. In other words, the IOPP proves the existence of a
polynomial q from LN (F ) which agrees with f on a set of density at least 1− θ,

|{P ∈ D : f(P ) = q(P )}|
|D|

≥ 1− θ.

Circle codes are closely related to Reed-Solomon codes. In fact, due to the projective line representation of
the circle curve they essentially are Reed-Solomon codes (cf. Theorem 1) although their rate

ρ = 2−B ·
(
1 +

1

2n

)
,

is slightly off the common use case of ρ = 2−B . The Circle Proof of Proximity is an adaption of FRI
[BSBHR18a] to this generalized code, and its soundness analysis will be taken, in large parts verbatim, from
that for Reed-Solomon codes [BSCI+20] in the list decoding regime. That is, the proximity parameter will
be bounded by

θ < 1−√ρ,

the Johnson-Guruswami-Sudan list decoding radius.
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In the bivariate representation of the circle, the circle proof of proximity with r rounds, where 0 ≤ r ≤ n,
carries over the folding procedure of FRI to the chain of 2-to-1 projections

C(Fp) ⊆ F2
p Dm Dm−1 Dm−2 Dm−r+1

C(Fp)/J ⊆ Fp Dm/J Dm−1/J Dm−2/J Dm−r+1/J

π π π π

ϕJ=πx
πx πx πx πx

π π π π

(33)

which starts with the standard position coset Dm of size 2m, where m = B + n, then takes the quotient
with respect to the involution J , i.e. the projection onto the x-axis, and subsequently continues by (r − 1)
repeated application of the π(x) = 2 · x2 − 1, until ending up with quotient of the standard position coset
Dm−r+1, consisting of 2m−r elements. (Choosing the maximum number of rounds r = n, the chain would
end with the quotient DB+1/J of size 2B .) However, before applying the folding steps, the prover uses
Lemma 7 from Section 4.3 to decompose f ∈ LN (F ) into

f = g + λ · vn,

where g is from the FFT space L′
N (F ), λ ∈ F , and vn is the vanishing polynomial of the standard position

coset of size N = 2n. This decomposition is crucial, as the function spaces need to halve under folding to
eventually end up with the trivial space of constant functions. Taking function spaces synonymous for their
domain evaluations, the proximity claim of f to LN (F ) reduces to that of g to the FFT space L(0) := L′

N (F ),
which under repeated folding of “even” and “odd” parts as in the circle FFT, is step-wise reduced to proximity
claims to the spaces

L(j) :=
{
p(x) ∈ F [x] : deg p(x) < 2n−j

}
,

for j = 1, . . . , r, until one ends up with the space L(r) of polynomials in x of degree ≤ 2n−r.
For notational convenience we will write

C(Fp) ⊆ F2
p S0

C(Fp)/J ⊆ Fp S1 S2 S3 Sr+1

ϕJ=π1
π1

π2 π3 π4 πr

for the chain in (33), even though this conflicts the notation used in Section 4, and we set T1 = J and
Tj(x) = −x otherwise. Likewise, we use the unified notation ti for the twiddle used in each step, which is
t1 = y in the first step, and tj = x in the other cases.

Protocol 1 (Circle FRI). Let D be a standard position coset of size |D| = 2B+n, where B ≥ 1 and n ≥ 1,
and let C = CN (F,D) be the circle code with evaluation domain D and rate ρ = N+1

|D| , where N = 2n. For
given proximity parameter θ ∈ (0, 1−√ρ), the interactive oracle proof of a function f ∈ FD being θ-close to
the circle code C, consists of a commit phase and a subsequent query phase, which are as follows.

1. Commit phase:

(a) (Decomposition.) The prover uses Lemma 7 to compute the decomposition of f ∈ LN (F ) into
f = g + λ · vn with g ∈ L′

N (F ) and λ ∈ F . It sends λ to the verifier.
(b) (Folding.) For each j = 1, . . . , r, corresponding to πj : Sj−1 −→ Sj as above, the prover holds a

function gj−1 ∈ FSj−1 from the previous round. (In the first round g0 = g.) It receives a random
challenge λj ←$ F from the verifier, and uses it to build the random linear combination

gj = gj−1,0 + λj · gj−1,1 (34)
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of gj−1,0, gj−1,1 ∈ FSj from the “even-odd” decomposition with respect to Tj, i.e.

gj−1,0 ◦ πj =
gj−1 + (gj−1 ◦ Tj)

2
, (35)

gj−1,1 ◦ πj =
gj−1 − (gj−1 ◦ Tj)

2 · tj
, (36)

using the corresponding twiddle tj as defined above. The prover sets up the oracle for gj, and
sends it to the verifier. (In the last round, the prover sends gr+1 ∈ L(r), in plain.)

2. Query phase:

(a) The verifier samples s ≥ 1 queries uniformly from D. For each query Q, we write Q0 = Q and
consider its trace Qj ∈ Sj, j = 1 . . . , n, under the chain of projections πj : Sj−1 −→ Sj. The
verifier asks the oracle for the values of f at Q0 and T1(Q0), and of gj at Qj and Tj(Qj), for
j = 1, . . . , r. It takes the answers to check whether each gj was properly formed from gj−1 via the
folding (34), using g0 = f − λ · vn and the equations (35), (36) for j = 1, . . . , r.

If the oracle answers satisfy these checks for each of the s queries, then the verifier accepts. (Otherwise,
it rejects.)

For STARKs, where one faces a batch of DEEP quotients, proximity alone is not good enough (unless
one works in the unique decoding regime) and the stronger notion of correlated agreement is crucial. We
say that a batch of functions f1, . . . , fL ∈ FD has (1 − θ)-correlated agreement with a codeword from C, if
the set of joint agreement has density at least 1− θ, i.e.∣∣∣∣∣

L⋂
k=1

{P ∈ D : fk(P ) = p(P )}

∣∣∣∣∣ ≥ (1− θ) · |D|.

As for FRI, correlated agreement already plays a central role in the soundness analysis of Protocol 1, and
its generalization to several functions comes without additional difficulties.

Protocol 2 (batch Circle FRI). Under the same assumptions as Protocol 1, the interactive oracle proof for
a batch of functions f1, . . . , fL ∈ FD having correlated (1 − θ)-agreement to a codeword from CN (F,D), is
as follows. In the first step, given a random challenge λ0 ←$ F from the verifier, the prover computes the
values of the linear combination

f =

L∑
k=1

λk−1
0 · fi (37)

over D. Now, both prover and verifier run Protocol 1 on f , with its query phase extended by a check of (37)
at each of the s queries Q.

Remark 21. In our STARK we need to batch both real and imaginary parts of DEEP quotients for a
typically large collection of code words gk ∈ FD, k = 1, . . . , L, overall doubling the batch size. (Actually,
most of the words are over Fp, but this does not play a role for what follows.) Leveraging linearity one can
essentially halve the batching effort, resulting in comparable costs as if the quotients where over F instead of
F (i). Let us illustrate this for a single point γ ∈ C(F ), a generalization to several points is straight-forward.
Both real and imaginary part of the quotienting map, which sends g to (g − g(γ))/vγ , are linear maps from
LN (F ) to LN (F ), and hence for any batching randomness µ ∈ F ,

g =

L−1∑
k=0

µk · Reγ(gk) +
L−1∑
k=0

µL+k · Imγ(gk) = Reγ

(
L−1∑
k=0

µk · gk

)
+ µL · Imγ

(
L−1∑
k=0

µk · gk

)
.

29



For this type of linear combination the prover only needs to compute the values of ḡ =
∑L−1

k=0 µk · gk over D,
the linear combination of the claims v̄γ =

∑L−1
k=0 µk · gk(γ), and computes the values of g over D according

to

g =

(
Re

(
1

vγ

)
+ µL · Im

(
1

vγ

))
· (ḡ − v̄γ) =

Re(vγ)− µL · Im(vγ)

Re(vγ)2 + Im(vγ)2
· (ḡ − v̄γ).

Hence for large batches, the computational overhead introduced by the extension F (i) is negligible, essentially
reducing the batching cost to that of computing ḡ. For the same reason the effort of the verifier is reduced
to essentially that of computing ḡ at the sample points from the query phase of the proximity test.

We eventually are able to state the soundness error of the batch IOP of proximity. Its proof, which relies
on the correlated agreement theorem for Reed-Solomon codes, is postponed to Appendix B.

Theorem (Summary Theorem 6, Appendix B). If an adversary passes the batch IOP of proximity (Protocol
2) for f1, . . . , fL ∈ FD and agreement parameter α =

√
ρ ·
(
1 + 1

2m

)
, for some m ≥ 3, with a probability

larger than

εPROX =

(
L− 2

3

)
·
(
m+ 1

2

)7
3 ·
√

ρ−
3 ·
|D|2

|F |
+

(2 ·m+ 1) · (|D|+ 1) · r√
ρ− · |F |

+ αs, (38)

where ρ− = N
|D| , then f1, . . . , fL have correlated agreement to CN (F,D) on a set of density of at least

α >
(
1 + 1

2m

)
· √ρ.

Remark 22. One would expect to see the rate ρ = (N + 1)/|D| in Equation (38). In fact, the soundness
analysis in Appendix B.1 combines the correlated agreement theorem with respect to codes of different rates:
The circle code with rate ρ for the batching step, coming from the space LN (F ), and the subcodes which
stem from the FFT spaces L(j) as above, having slightly smaller rate ρ−. For the sake of readability, we
dominate 1/

√
ρ by 1/

√
ρ−.

As for standard FRI, we note that the protocol can be generalized to reduction steps of higher two-adic
size, and the round-by-round soundness analysis from Appendix B is adapted accordingly.
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A Correlated agreement

In this section we resume the correlated agreement theorem from [BSCI+20]. Although tighter statements
hold in the unique decoding regime, we restrict ourselves to proximity parameters θ from the interval(
1−ρ
2 , 1−√ρ

)
as we aspire largest possible distances in our application. Given a Reed-Solomon code RSk[F, S]

of rate ρ = k/|S| over a finite field F with defining set S, the correlated agreement theorem states that, if
a random linear combination of words from FS happens to be close to the code just for a small fraction of
randomnesses, then this is the case for all the involved words, since then they coincide with a respective
code word over a joint agreement set of sufficiently large size. The theorem is of fundamental importance in
the design of code-based proofs, since taking random linear combinations is a standard reduction technique.

To simplify notation, we shall call any polynomial p ∈ F [X] of deg p ≤ k − 1 to belong to the code
RSk[F,D], and we will not distinguish between the polynomial itself and the code word generated from it.

Theorem 4. (Correlated agreement theorem, full version of [BSCI+20], Theorem 6.2) Let RSk = RSk[F, S]
be the Reed-Solomon code over a a finite field F with defining set S ⊆ F and rate ρ = k/|S|. Given a
proximity parameter θ = 1−√ρ ·

(
1 + 1

2m

)
, with m ≥ 3, and words f1,f1,...,fL ∈ FS for which∣∣∣{λ ∈ F : d

(
f1 + λ · f2 + . . .+ λL−1 · fL,RSk

)
≤ θ
}∣∣∣

|F |
> ε,

where

ε = (L− 1) ·
(
m+ 1

2

)7
3 · ρ 3

2

· |S|
2

|F |
. (39)

Then there exist polynomials p1(X), p2(X),...,pL(X) belonging to RSk, and a set A ⊆ S of density |A|/|S| ≥
1− θ on which f1, . . . , fL jointly coincide with p1, . . . , pL, respectively.

The proof of the correlated agreement theorem is an algebraic analysis of the Guruswami-Sudan list
decoder over the rational function field K = F (Z). It uses the Polichuk-Spielmann lemma to “glue together”
the outputs of the decoder for f1 + λ · f2 + . . .+ λN−1 · fN over the “small” field F by means of the decoder
result for the word

f1 + Z · f2 + . . .+ ZN−1 · fN ∈ KD

over the infinite field K: If for a noticeable fraction of λ’s the distance to the Reed-Solomon code is ≤ θ,
then the same holds over F (Z).

In FRI the oracles are tested jointly across the rounds, and one wishes to control the fraction of “good
points” (where a query would succeed) under each further folding step. For this purpose [BSCI+20] prove
a refinement of the correlated agreement theorem, which works with weighted Hamming distances. Given a
sub-probability measure µ on D, a function f ∈ FD is said to have µ-agreement of at least α with another
function g ∈ FD,

agreeµ(f, g) > α,

if there is a set A ⊆ D of measure µ(A) > α on which both functions agree. Likewise we say that

agreeµ(f,RSk) > α,

if there exists a p ∈ RSk[F,D] for which agreeµ(f, p) > α.

Theorem 5. (Weighted correlated agreement theorem, full version of [BSCI+20], Theorem 7.2) Let θ ∈(
1−ρ
2 , 1−√ρ

)
, where θ = 1−√ρ ·

(
1 + 1

2m

)
, for some integer m ≥ 3, and assume that µ is a sub-probability

measure on S with common denominator M ≥ 1, i.e. for all x in S

µ({x}) = mx

M
,
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for an integer value mx ∈ [0,M ] . Suppose that for f1, f2, . . . , fL ∈ FS,∣∣{λ : agreeµ(f1 + λ · f2 + . . .+ λL−1 · fL,RSk) > α
}∣∣

|F |
> max

(
ε, (L− 1) · M · |D|+ 1

|F |
· 2m+ 1
√
ρ

)
, (40)

with ε as in (39). Then there exist polynomials p0(X), p1(X), . . . , pL−1(X) from RSk[F, S], and a set A of
density µ(A) > α on which fi coincides with pi for all i = 0, . . . , L− 1.

Both Theorem 4 and Theorem 5 do not make any assumptions on the form of the evaluation domain S
and hence, by Theorem 1, they also apply to circle codes (Definition 3).

B Soundness in the oracle model

Let Fp be a CFFT-friendly prime. An interactive oracle proof over the circle curve C(Fp) (in short, a
circle IOP) is an interactive protocol, in which one party, the prover, wants to convince a second party, the
verifier, upon that given words f1, . . . , fw ∈ FD

p over some domain D ⊆ C(Fp) satisfy certain properties.
These properties are of the form

Rα =
{
f⃗ = (f1, . . . , fw) ∈ (FD

p )w : ∃p⃗ = (p1, . . . , pw) ∈ LR ∧ agree(f⃗ , p⃗) > α
}
,

where α ∈ [0, 1] is an agreement parameter, and LR ⊆
(
F [X,Y ]≤d

)w is a set of low-degree polynomials
defined by certain algebraic relations. (That is, LR is an algebraic set.) In each round of the oracle proof,
the verifier sends a public random coin (a challenge) and the prover responds with a new set of words, over
D or another specified domain of the circle, having values in Fp, or in a specified finite extension of it. As an
information theoretic model for an ideal vector commitment scheme, the words from the prover are not sent
in plain but provided to the verifier via a secure and trusted channel, the oracle. Upon receiving, the verifier
is merely given oracle access to the words for a specified (and typically small) number of queries, asking for
the word entry at an arbitrary (typically random) position, immediately or at any later step of the protocol.
After a certain number of rounds, the verifier accepts or rejects, based on the answers of the oracle queries
and the random challenge. In our IOPs the queries to the oracle are deferred to a separate query stage at
the end of the protocol.

The discussed circle IOPs follow the common design principle of probabilistic proofs: They form a chain
of probabilistic reductions stepwise simplifying the assertion to be proven,

Rα = R(0)
α

ρ1−→ R(1)
α

ρ2−→ . . .
ρr−→ R(r)

α ,

where ρ1, . . . , ρr are the verifier challenges, and each round relation R
(k)
α = R

(k)
α (tr|≤k) is a relation on the

transcript tr|≤k of previous prover and verifier messages, being of a similar form as above. (That is, the
transcript is proximate to a specified algebraic set of low-degree polynomials, in the correlated agreement
sense and with the same agreement parameter α.) Each reduction R

(k−1)
α −→ R

(k)
α has its own soundness

error ε(k) ∈ (0, 1), meaning that whenever the “current” transcript from a prover P ∗ does not belong to the
relation R

(k−1)
α then, except for a set of “bad” randomnesses ρk of probability at most ε(k), that prover is

not able to respond with a next round message so that the extended transcript is in R
(k)
α . The soundness

error of the entire protocol is then dominated by the sum of the round-wise soundness errors.
We omit a discussion of asymptotic security and restrict our results to the concrete soundness errors.

This is justified by that in our application, it is natural not to step beyond a fixed CFFT-friendly field Fp

(such as the Mersenne field M31), making an asymptotic analysis with respect to the relation to be proven
useless.
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B.1 Soundness of the IOP of proximity to circle codes

The soundness analysis of circle FRI (Protocol 1 and more generally Protocol 2) is essentially a translation
of the one of standard FRI (Section 8.2.1. in the full version of [BSCI+20]) to the folding cascade of the
circle FFT. Recall that, in the low-degree test for a single word f ∈ FD over a domain of size |D| = 2B ·N ,
where N = 2n, the prover provides the correction-factor λ ∈ F so that f − λ · vD is in the FFT-space

L(0) :=
{
p0(X) + p1(X) · Y ∈ F [X,Y ] : deg pi(X) < 2n−1

}
,

which under repeated folding along the chain of projections

S0
π1−→ S1

π2−→ S2
π3−→ . . .

πr−→ Sr,

is turned into polynomials from

L(j) := {p(X) ∈ F [X] : deg p(X) < 2n−j}, (41)

for 1 ≤ j ≤ r, where the number of rounds r ≤ n. We consider the quotient map π1 = ϕJ as the projection
onto the x-axis, π1 = πx, and hence S1, . . . , Sr as univariate domains. The codes corresponding to the
function spaces L(j), except for j = 0, are therefore ordinary Reed-Solomon codes

C(j) := RS2n−j (F, Sj), (42)

for 1 ≤ j ≤ r, having throughout the same rate ρ− := 2n−j/|Sj | = 2−B .
Fix an agreement parameter α ∈ (0, 1). Given g0 ∈ FS0 , we say that a prover P ∗ succeeds the commitment

phase, if it is able to respond with round oracles g1, g2, . . . , gr on the respective verifier challenges λ1, . . . , λr,
so that gr ∈ C(r) and the fraction of “good” x ∈ S0, for which all folding checks verify, is bounded from below
by α,

|{x ∈ S0 : all folding checks hold }|
|S0|

> α.

Any such transcript tr = (g0, λ1, g1 . . . , λr, gr) will be called α-good for the code C(r).
The soundness error of the commitment phase goes along the following lines. Starting with the relation

R(0)
α := {g0 : ∃p0 ∈ CN (F,D) ∧ agree(g0, p0) > α},

each round of the commit phase, 1 ≤ j ≤ r, is a randomized reduction from a transcript tr|≤j−1 =

(g0, λ1, g1, . . . , λj−1, gj−1) being member of the relation R
(j−1)
α to that its continuation tr|≤j = (tr|≤j−1, λj , gj)

being a member of

R(j)
α :=

{
(g0, λ1, g1, . . . , λj , gj) : (g0, λ1, g1, . . . , λj , gj) is α-good for C(j)

}
.

The error of such a reduction step will be given by the weighted correlated agreement theorem (Theorem 5),
and overall error is dominated by the sum of the round-wise errors.

Lemma 13 (Soundness commit phase). Take an agreement parameter α =
(
1 + 1

2·m
)
· √ρ, where m ≥ 3.

Suppose that a (possibly computationally unbounded) algorithm P ∗ succeeds the commitment phase of r ≥ 1
rounds with probability larger than

εC = ε1 + . . .+ εr,

where εj := ε(|Sj |,Mj , ρ
−,m) is the soundness error in Theorem 5 for a Reed-Solomon code with rate

ρ− = 2−B and evaluation domain size |Sj |, Mj = |S1|/|Sj | = 2j−1 is the common weight denominator M ,
and m is the multiplicity parameter. Then g0 coincides with a polynomial from L(0) over a set of density
strictly larger than α.
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Proof. We prove the Lemma by induction in r the number of rounds, 1 ≤ r ≤ n. We first prove the base
case r = 1. If with probability greater than ε1 = ε(S1,M1, ρ,m), with M1, ρ and m as above, the random
linear combination g0,0 + λ1 · g0,1 is α-good for the Reed-Solomon code C(1), then by Theorem 5 both g0,0
and g0,1 jointly agree with corresponding polynomials p0(X), p1(X) of degree < 2n−1, over a set A ⊆ S1 of
density > α. The preimage π−1

1 (A) has density > α, and over this set the word g0 agrees with the polynomial
p0(X) + y · p1(X), which is from the FFT space L2n(F ).

Assume that the Lemma holds for r, where 1 ≤ r < n, and that a prover P ∗ succeeds the commitment
phase for (r + 1) rounds with probability greater than (ε1 + . . .+ εr) + εr+1. Then the set T of transcripts
tr|r = (λ1, g1, . . . , λr, gr) for which the conditional success probability of P ∗ being greater than εr+1, i.e.

Pr
[
λr+1 : (λ1, g1, . . . , λr, gr, λr+1, gr,0 + λr+1 · gr,1) is α-good for C(r+1)

]
> εr+1,

has probability Pr[T] > ε1 + . . . + εr. Since consistency of a folding step is a property of the fiber of the
projection (the even and odd functions are constant over fibers), the conditional success probability is equal
to ∣∣{λj+1 : agreeν

(
gr,0 + λj+1 · gr,1, C(r+1)

)
> α

}∣∣
|F |

,

with ν = ν(tr|r) being the “average consistency” of the transcript tr(r) over a fiber of πr+1, defined by

ν({y}) :=
∣∣{x ∈ (πr+1 ◦ . . . ◦ π1)

−1(y) : all folding checks hold for tr(r)
}∣∣

|(πr+1 ◦ . . . ◦ π1)−1(y)|
,

for y ∈ Sr+1. Notice that since the numerator of ν is constant over fibers of π1, the weights have common
denominator Mr+1 = 2r. By our assumption the conditional success probability is greater than εr+1 =
ε(Sr+1,Mr+1, ρ,m), and we conclude from Theorem 5 that both gr,0 and gr,1 jointly agree with the values
of respective polynomials p0, p1 ∈ L(r+1) over a set A of weight ν(A) > α. (Recall that L(r+1) is the space
of polynomial in x of degree < 2n−(r+1).) Over the preimage π−1

r+1(A), the word gr coincides with the values
of p0(X2) + X · p1(X2) ∈ L(r) and hence the restricted trace (λ1, g1, . . . , λr, gr) is α-good for C(r). Since
the probability of P ∗ producing such a trace is greater than ε1 + . . . + εr, we conclude from the induction
hypothesis that g0 has α-agreement with C(0). This completes the proof of the Lemma.

The batch proof of proximity has an additional preceding batching step, and we define a successful pass
of the commit phase in a similar manner, taking into account the folding check of the batching round.

Lemma 14 (Soundness error commit phase, batch FRI). Take an agreement parameter α =
(
1 + 1

2·m
)
·√ρ,

where m ≥ 3. Suppose that a (possibly computationally unbounded) algorithm P ∗ succeeds the commitment
phase of batch circle FRI (Protocol 2) with r ≥ 1 rounds, with probability larger than εC = ε0 + ε1 + . . .+ εr,
where

– ε0 := ε(|S0|, L, ρ,m) is the soundness error in Theorem 4 for a Reed-Solomon code with rate ρ =
2−B + 1/|S0| and evaluation domain size |S0|, batch size L, and m as the multiplicity parameter.

– εj := ε(|Sj |, Lj ,Mj , ρ
−,m), for 1 ≤ j ≤ r, is the soundness error in Theorem 5 for a Reed-Solomon

code with rate ρ− = 2−B and evaluation domain size |Sj |, batch size Lj = 2, Mj = |S0|/|Sj | = 2−j as
the common weight denominator M , and m as the multiplicity parameter.

Then (f1, . . . , fL) has joint α-agreement with the circle code CN (F, S0). That is, there exist polynomials
p1(X,Y ), . . . , pL(X,Y ) of total degree ≤ N/2, which coincide with the respective words f1, . . . , fL on a set
A of density |A|/|S0| > α.

Proof. Including round j = 0 for the batching step into the notion of α-goodness of a transcript tr =
(λ0, g0, λ1, g1, . . . , λr, gr), the proof is almost identical to that of Lemma 13. We hence only point out the
key differences.
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The base case r = 0 corresponds to doing the batching step only, and uses the correlated agreement
theorem with respect to the full circle code CN (F,D) of rate ρ = (N +1)/|S0| = 2−B +1/|S0|. For the other
cases 1 ≤ r < n, the folding step over Sr+1 refers to the Reed-Solomon of two-adic rate ρ− = 2−B , but
the consistency measure ν of the transcript tr|≤r = (λ0, g0, λ1, g1, . . . , λr, gr) now has common denominator
Mr = 2−r, since no invariance of the numerator is present.

The soundness error of the query phase is the probability that s ≥ 1 queries fail to detect a transcript
(λ0, g0, λ1, g1, . . . , λr · gr) with a consistency set A ⊆ S0 of only at most density α. Since the samples are
uniformly and independently drawn from S0, that soundness error is

εQ = αs.

Combining the soundness error of the commitment phase with the soundness error of the query phase
eventually leads the soundness error as stated in Section 5.

Theorem 6 (Soundness batch FRI). Given oracles for f1, . . . , fL from FD over a standard position coset
D of size |D| = 2B+n, where B,n ≥ 1, and suppose a prover P ∗ passes batch circle FRI (Protocol 2) with
0 ≤ r ≤ n rounds, s ≥ 1 queries, and agreement parameter α =

(
1 + 1

2·m
)
· √ρ, where m ≥ 3, with a

probability larger than
ε = εC + εQ,

where εC is as in Lemma 14 and εQ as above. Then there are polynomials p1(X,Y ), . . . , pL(X,Y ) of total
degree ≤ N/2 which agree with f1, . . . , fL on a joint set A of density |A|/|D| > α.

Remark 23. Taking the correlated agreement decoder from Proposition 7 yields such claimed polynomials
within strictly bounded polynomial time.

Proof. Suppose that a prover P ∗ passes batch circle FRI (Protocol 2) for agreement parameter α = (1 + 1/(2m))·√
ρ with a probability greater than εC +εQ as above. Then T the set of transcripts tr|C = (λ0, g0, . . . , λr, gr)

of the commitment phase, for which the conditional success probability of P ∗ is greater than εQ, must be of
probability Pr[T] > εC . Since that conditional probability is greater than εQ = αs, we know that tr|C must
be α-good, and from Pr[T] > εC we conclude by Lemma 14 that (f1, . . . , fL) has joint α-agreement with the
circle code CN (F, S0). This proves that the soundness error ε of batch circle FRI is bounded by εC + εQ.

Remark 24. The soundness error bound as stated in Section 6 is derived from Theorem 6 as follows. Taking
the sum as upper bound for the max in Equation 40, we obtain

εC ≤ (L− 1) ·
(
m+ 1

2

)7
3 · ρ3/2

· |S0|2

|F |
+

r∑
j=1

(
m+ 1

2

)7
3 · (ρ−)3/2

· |Sj |2

|F |
+ (Lj − 1) · Mj · |Sj |+ 1

|F |
· 2 ·m+ 1√

ρ−

<

(
m+ 1

2

)7
3 · (ρ−)3/2

· |D|
2

|F |
·

L− 1 +

r∑
j=1

1

22j

+ r · 2 ·m+ 1√
ρ−

· |D|+ 1

|F |

<

(
L− 2

3

)
·
(
m+ 1

2

)7
3 · (ρ−)3/2

· |D|
2

|F |
+

2 ·m+ 1√
ρ−

· r · (|D|+ 1)

|F |
.

Together with εQ = αs and taking θ = 1− α, we arrive at the claimed soundness error bound.

B.2 Soundness of the IOP for AIR

The entire section takes the same assumptions as used in Section 5. That is, p is CFFT-friendly for sufficiently
large orders so that the circle curve C(Fp) is large enough to host the trace domain H and the evaluation
domain D, both standard position cosets of size N = 2n and M = 2B · N , where B ≥ 1. We say that a
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collection of low-degree polynomials p1, . . . , pw ∈ Fp[X,Y ]/(X2 + Y 2 − 1) a solution of the AIR (with w
columns of length N = 2n) if each of the C ≥ 1 polynomial constraints

Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0, (43)

for 1 ≤ i ≤ C, is satisfied over the trace domain H. (Here, T is the rotation by a generator of H.) The selector
polynomials si ∈ LN (Fp) are combinations of the ones described in Section 5.1, expressive enough to cover
periodic constraints and their boundary conditions. The degree of the algebraic intermediate representation,

d = max
i

degPi,

is such that there exist sufficiently many twin-cosets of the size of H to determine the polynomial in (43) by
means of the circle FFT.

The parameter setup of the circle STARK for the specific AIR over Fp is as follows. Given the security
parameter l ∈ N, one chooses the wished multiplicity parameter m for the proximity test to C = CN (F,D),

3 ≤ m ≤ N/2,

and determines the number of samples s ≥ 1 and the degree of the finite extension F of Fp, so that the
expression on the right hand side in Equation (47) (i.e. the soundness error) is bounded by 2−l. (The
concrete choice of the multiplicity parameter m is a trade off between proof size and efficiency.) The upper
bound on m is to assure that the guaranteed agreement to the circle code C of rate ρ = (N + 1)/|D| is not
too close to its list-decodability bound √ρ, that is

α =

(
1 +

1

2m

)
· √ρ >

√
ρ+, (44)

with ρ+ = (N + 3)/|D|. In particular there is an integer m+ so that

α ≥
(
1 +

1

2m+

)
·
√

ρ+, (45)

the smallest such is the one to be used in Equation (47). This slightly larger agreement set size is needed
in the soundness proof to assure that the non-quotiented words are within list-decodable distance to the
slightly larger code CN+(F,D), with N+ = N + 2.

Protocol 3 (Circle IOP for AIR). Let p1(X,Y ), . . . , pw(X,Y ) ∈ Fp[X,Y ]≤N/2 be polynomials of degree
deg pi ≤ N/2 satisfying the AIR constraints (43) over the trace domain H, for every i = 1, . . . , C.

0. The prover sets up the domain evaluation oracles [p1], . . . , [pw] for the values of p1(X,Y ), . . . , pw(X,Y )
over D, and sends them to the verifier.

1. Upon receiving a randomness β ←$ F from the verifier, the prover computes the domain quotient
qβ(X,Y ) ∈ F [X,Y ] of degree ≤ (d− 1) · |H|/2 satisfying the identity

C∑
i=1

βi−1 · Pi(si, p1, . . . , pw, (p1 ◦ T ), . . . , (pw ◦ T )) = qβ · vH ,

and decomposes it into segment polynomials qβ,j(X,Y ) ∈ F [X,Y ], j = 1, . . . , d − 1, each of degree
≤ |H|/2, and the dimension-gap scalar λ ∈ F , with respect to a union of twin-cosets H̄ =

⋃d−1
j=1 Hj

having overall size (d−1) · |H|. (See Section 5.3 for details on this decomposition). It sends the oracles

[qβ,1], . . . , [qβ,d−1]

for their values over D, and λ to the verifier. The overall identity to be proven is therefore

C∑
i=1

βi−1 · Pi(si, p1, . . . , pw, (p1 ◦ T ), . . . , (pw ◦ T )) = vH ·

λ · vH̄ +

d−1∑
j=1

vH̄
vHj

· qβ,j

 . (46)
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2. The verifier samples a random DEEP query, i.e. a random point γ ←$ C(F )\(D∪H) drawn uniformly
from the circle curve over the extension field F , and sends it to the prover. The prover answers with the
evaluation claims (γ, vi,1), (T (γ), vi,2), i = 1, ..., w, for the witness polynomials pi(X,Y ), and (γ, vj),
j = 1, ..., d− 1, for the segment polynomials qβ,j(X,Y ).

3. Both prover and verifier engage in the batch circle FRI (Protocol 2) for the real and imaginary parts
of the DEEP quotients defined in Proposition 4,

Re/Im
(
pi − vi,0

vγ

)
,Re/Im

(
pi − vi,1
vT (γ)

)
for each i = 1, . . . , w, and

Re/Im
(
qβ,1 − v1

vγ

)
, . . . ,Re/Im

(
qβ,d−1 − vd−1

vγ

)
which is a joint proximity test to the circle code CN (F,D), where N = |H|. (Recall Remark 21 on
efficient batching of the DEEP quotients.)

If circle FRI passes, and if the evaluation claims satisfy the overall identity (46) at (X,Y ) = γ, the verifier
accepts. (Otherwise, it rejects.)

Remark 25. In regards to query phase of batch circle FRI, it is assumed that the verifier aborts if one of
the values responded by the oracle is not from the specified field. This is necessary to conclude a solution
over Fp and not only the extension field F .

We finally show the concrete soundness error of Protocol 3 in the oracle model. The proof is almost
identical to that for the univariate case in [Hab22b], with minor adaptions to the circle setting. Round 1
reduces the initial relation, i.e.

R(0)
α =

{
f⃗ = (f1, . . . , fw) ∈ (FD

p )w : ∃p⃗ = (p1, . . . , pw) ∈ LN+(Fp)
w ∧ agree(f⃗ , p⃗) > α

C∧
i=1

Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0 over H
}

by means of the verifier challenge β to

R(1)
α =

{
f⃗ = (f1, . . . , fw+d−1) ∈ (FD

p )w × (FD)d−1 :

∃p⃗ = (p1, . . . , pw, q1, . . . , qd−1) ∈ LN+(Fp)
w × LN+(F )d−1

∧ agree(f⃗ , p⃗) > α ∧ identity (46) holds
}
,

and its soundness error is shown to be ε1 := ℓ+ · C−1
|F | . Round 2 is the DEEP algebraic linking step and uses

the random point γ for reducing R
(1)
α to

R(2)
α =

{
f⃗ = (f1, . . . , fw+d−1) ∈ (FD

p )w × (FD)d−1 :

∃p⃗ = (p1, . . . , pw, q1, . . . , qd−1) ∈ LN+(Fp)
w × LN+(F )d−1

∧ agree(f⃗ , p⃗) > α ∧ p⃗ evaluates to the claims at γ and T (γ)
}
,

and its soundness error will be seen to be ε2 := ℓ+ · d·N+

|C(F )\(D∪H)| . Finally, membership to R
(2)
α is assured

whenever their DEEP quotients are proximate to a vector of polynomials with components from LN (F ), in
the correlated agreement sense and with agreement parameter α >

√
ρ.
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Theorem 7 (Soundness). Suppose that a (possibly computationally unbounded) algorithm P ∗ provides a
first message [f1], . . . , [fw] on which it is able to succeed Protocol 3 with a probability greater than

εAIR = ℓ+ ·
(
C − 1

|F |
+

d ·N+

|F |+ 1− 2n+B

)
+ εPROX , (47)

where ℓ+ =
m++ 1

2√
ρ+

, and N+, ρ+, m+ as above, and εPROX := ε(|D|, n,m,L) is the soundness error of the

joint proximity test for real and imaginary parts of the DEEP quotients, run with agreement parameter α =
α(m). Then there exist polynomials p1(X,Y ), . . . , pw(X,Y ) ∈ Fp[X,Y ]≤N/2+1 which agree with f1, . . . , fw
on a joint set of density > α, and which satisfy all AIR constraints (43) over the trace domain H, 1 ≤ i ≤ C.

Proof. Without loss of generality, we assume that the prover P ∗ oracles are over the specified field, and in
particular first round oracles are from FD

p . Otherwise, modify P ∗ to take arbitrary values wherever it does
not comply. Since the verifier rejects values outside the non-specified field anyway, the success probability
of this modified algorithm does not decrease.

Let us denote ε1 = ℓ · C−1
|F | , ε2 = ℓ · d·(N+2)

|F |+1−2n+B , and ε3 = εPROX as above. Suppose that f1, . . . , fw ∈ FD
p

are a first message, on which P ∗ succeeds with a probability greater than ε = ε1+ε2+ε3 . Then the fraction
of “good” challenges α, on which P ∗ is able to continue with a success probability larger than ε2 + ε3 is
bounded from below by

Pr
[
β : Pr (P ∗ succeeds |β) > ε2 + ε3

]
> ε1.

Likewise, for every such “good” β (by the definition of ε1, there are more than ℓ+ · (C−1) many) there exists
a second message of P ∗, i.e. words qβ,0, . . . , qβ,d−1 ∈ FD such that

Pr
[
γ ∈ C(F ) \ (D ∪H) : Pr(P ∗ succeeds |γ) > ε3

]
> ε2.

For each such “good” γ ∈ C(F ) \ (D ∪H) (by the definition of ε2, there are more than ℓ · d · (N + 2) such)
the evaluation claims pass the verifier checks, and moreover the soundness of circle FRI enforces the DEEP
quotients(

f1(x)− v1,0
vγ(x)

,
f1(x)− v1,1
vT (γ)(x)

, . . . ,
fw(x)− vw,0

vγ(x)
,
fw(x)− vw,1

vT (γ)(x)
,
qβ,1(x)− v0

vγ(x)
, . . . ,

qβ,d−1(x)− vd−1

vγ(x)

)
to agree with a collection of bivariate polynomials of degree ≤ |H|/2 with coefficients in Fi = F (i), on a
joint set A of density at least α >

√
ρ+. Cancelling out the denominators, we see that the non-quotients

(f1, . . . , fw, qβ,0, . . . , qβ,d−1)

have correlated agreement on a set of density ≥ α with a collection of polynomials from Fi[X,Y ], each of
degree ≤ |H|/2 + 2, and which satisfies the evaluation claims.

In what follows we shall call an element (h1(X,Y ), . . . , hl(X,Y )) from F [X,Y ]l, with component poly-
nomials of degree ≤ N+/2, having correlated agreement with a vector of functions (ϕ1, . . . , ϕl) on a set of
density ≥ α, an α-configuration for that vector of functions. Note that since α >

(
1 + 1

2m+

)
·
√
ρ+, the

Guruswami-Sudan list size bound (for the correlated agreement code, c.f. Proposition 7) tells us there are
at most

ℓ+ =
m+ + 1

2√
ρ+

α-configurations for (ϕ0(x), . . . , ϕl−1(x)).
Let us keep a combination of “good” first and second messages (f1, . . . , fw), (qβ,1, . . . , qβ,d−1) fixed. We

have seen above that the existence of a single “good” γ implies the existence of an α-configuration for
(f1, . . . , fw, qβ,0, . . ., qβ,d−1). By the Guruswami-Sudan list size bound for CN+(K,D) there are at most ℓ+

such α-configurations. However, since there are more than ℓ+ ·d ·N+ many “good” γ, and each establishes an
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α-configuration which moreover evaluates to the claimed values, we conclude from the pigeon-hole principle
that there is at least one α-configuration,

(p1, . . . , pw, qβ,0, . . . , qβ,d−1) ∈ F [X,Y ]w+d−1,

for which the overall identity (46) holds at more than d ·N+ many γ. By the maximum number of zeros of
a polynomial from F [X,Y ]≤d·N+/2 (Proposition 2) this configuration is a solution of it, hence (p1, . . . , pw) ∈
F [X,Y ]w is an α-configuration for (f1, . . . , fw) which satisfies

C∑
i=1

αi−1 · Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0 (48)

over the trace domain H.
We have seen that for each “good” α there exists an α-configuration for (f1, . . . , fw) which is a solution

of (48). Again, by the Guruswami-Sudan list size bound for CN+ [K,D], there can be at most ℓ+ many w-
configurations. Since there are more than ℓ+ ·(C−1) many “good” α, we conclude again from the pigeon-hole
principle that there is at least one α-configuration, which we again denote by (p1, . . . , pw), for which there
are at least C many “good” α for which (48) holds. By linear algebra (the Vandermonde matrix is invertible)
we conclude that this configuration satisfies

Pi(si, p1, . . . , pw, p1 ◦ T, . . . , pw ◦ T ) = 0

over H, for every i = 1, . . . , C. This completes the proof.

B.3 Witness extraction

Witness extraction is based on the correlated agreement decoder, which essentially is the Guruswami-Sudan
list decoder on the isomorphic generalized Reed-Solomon code, over a suitably extended alphabet.

Proposition 7 (Correlated agreement decoder). Let C = CN (F,D) be a circle code of rate ρ = (N +1)/|D|
with values in a finite extension field F of Fp, generated by the space of polynomials LN (F ). Assume that
f⃗ = (f1, . . . , fL) ∈ (FD)L jointly agree with p⃗ = (p1, . . . , pL) ∈ LN (F )L over a set of density > α, denoted
by agree(f⃗ , p⃗) > α, where α =

(
1 + 1

2m

)
· √ρ. Then there at most

ℓ =
m+ 1

2√
ρ

such p⃗ = (p1, . . . , pL) ∈ LN (F )L so that agree(f⃗ , p⃗) > α, and a deterministic polynomial-time algorithm that
outputs all such p⃗. The run time of that algorithm is O(L2 · |D|15) operations over F .

Proof. Take FL a finite extension of F of degree dim(FL/F ) ≥ L, and ζ1, . . . , ζL ∈ FL any choice of
elements which are linearly independent over F . Then f⃗ = (f1, . . . , fL) ∈ (FD)L jointly agree with a
p⃗ = (p1, . . . , pL) ∈ LN (F )L on a set A of density > α, if and only if the word f =

∑L
j=1 ζj · fj ∈ FD

L agrees
with a word from the circle code CN (FL, D), over the same set A. Corollary 1) applied to the circle code
over the extended alphabet yields the assertion of the proposition.

With the correlated agreement decoder one is able to extract witnesses from any prover that succeeds
the circle IOP for AIR with a probability beyond the soundness error.

Theorem 8 (Knowledge Soundness). Assume that a prover P ∗ passes Protocol 3 with a probability ε∗ greater
than the soundness error εAIR from Theorem 7. Then there is probabilistic algorithm E = EP∗

(aux) with
oracle access to the first round function of P ∗, that outputs a solution (p1, . . . , pw) ∈ LN+(Fp)

w of the AIR,
within an expected number of O(1/(ε∗ − ε)) calls to P ∗.
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Proof. The extractor E samples a first round message [f1], . . . , [fw] of P ∗, reads out f1, . . . , fw ∈ FD
p in

full length, applies the correlated agreement decoder from Proposition 7, and eventually tests each of its
outputs p⃗ ∈ LN+(Fp)

w on being a solution to the AIR. The set of “good” first round messages [f1], . . . , [fw]
on which P ∗ is able to succeed with a probability greater than εAIR, is at least of probability ε∗ − εAIR.
Thus the extractor E needs to sample on average 1/(ε∗ − εAIR) first round messages to obtain such a good
first round message. On such a message, the correlated agreement decoder ouputs (at least) one solution of
the AIR.

C An optimized circle STARK for non-zk

The circle STARK in Section 5 assumes that both the trace domain H and evaluation domain D are disjoint
standard position cosets. In practice one typically chooses d the degree of the AIR so that d − 1 ≤ |D| so
that no additional extrapolation effort is needed for evaluating the overall quotient q.

In case when zero-knowledge is not a target, one can minimize the extrapolation effort even further by
selecting the evaluation domain as a superset of the trace domain. In this case, H ⊂ D and the degree of the
algebraic intermediate representation is equal to d ≤ m with m = |D|/|H| = 2B , where B ≥ 1. We again
assume that H a coset of Gn is in standard position, and consequently D must be in “group position”, i.e.
D = Gn+B . (Note that D is a coset of Gn+B which contains a generator of Gn+1, hence it must be equal
to Gn+B .) It is for this reason the extrapolation target D \H (as D itself) cannot be written as a disjoint
union of standard position twin-cosets alone. If Q is a generator of Gn+B , then D \H is the union of the
twin-cosets

Hk = Qk ·Gn−1 ∪Q−k ·Gn−1,

for 1 ≤ k ≤ m− 1, except for k = m/2 which corresponds to H itself, and the exceptional case Gn,

D \H = Gn ∪
⋃

k ̸=m/2

Hk.

However, the exception H0 = Gn is no drawback for efficiency. For computing the values of fi ∈ L′
N (Fp)

over H0 one takes the variant of the inverse FFT from Remark 12, and for extrapolating values over H0 to
the full domain D one uses rotated coordinates under which H0 is in standard position. This yields words
which stem from the function space

L′(F,H0) := L′
N (F ) ◦ Tm/2

Q ,

since Qm/2 ·H0 is in standard position. According to this mixed-type decomposition of D \H, the overall
quotient q splits into

q = λ ·
∏
k

vHk
+
∑
k

qk ·
∏
j ̸=k

vHj , (49)

with q0 ∈ L′
N (F,H0) and all other qk ∈ L′

N (F ), and λ ∈ F . (Here, k ranges from 0 ≤ k ≤ m − 1, except
k = m/2.) The analysis of the overall identity at infinity is as before, with the following differences. Recall
that by Equation (25) we have

g ◦ Tm/2
Q

xN/2
(∞) = (Qx + i ·Qy)

−m/2·N/2 · g

xN/2
(∞) = i · g

xN/2
(∞),

g ◦ Tm/2
Q

xN/2
(∞̄) = (Qx − i ·Qy)

−m/2·N/2 · g

xN/2
(∞̄) = −i · g

xN/2
(∞̄).

Therefore q0 as a function from L′
N (F ) ◦ Tm/2

Q belongs to L+
N (F ), and the vanishing polynomial vH0 =

vH ◦Tm/2
Q belongs to L−

N (F ). All other component polynomials qk belong to L−
N (F ), and all other vanishing
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Table 1: FFT algorithm runtime comparison7 between Babybear and M31, for a batch FFT of 128 poly-
nomials. Measured 100 iterations on Intel i7-1165G7, at a fixed 1.5 Ghz frequency, single threaded, using
AVX2 vectorization. Our current multi-threaded implementation becomes memory bottlenecked at domain
sizes ≥ 216 (emphasized by a gray background), but this will be optimized in future.

FFT size Threads M31 CFFT (ms) BabyBear FFT (ms) Ratio
214 1 11.0 17.6 1.6
216 1 86.8 121 1.4
218 1 387 542 1.4
220 1 1700 2384 1.4
222 1 7400 10345 1.4
214 8 5.57 7.04 1.3
216 8 67.0 67.7 1.0
218 8 321 319 1.0
220 8 1410 1400 1.0
222 8 6170 6110 1.0

polynomials vHk
belong to L+

N (F ). Thus the product of all vanishing polynomials
∏

k vHk
is odd at infinity,

whereas each product qk ·
∏

j ̸=k vHj
in the sum is even at infinity. From this we conclude that in the case d

is even, where q ∈ L+
(d−1)·N , we must have λ = 0, and in the case d is odd, where q ∈ L−

(d−1)·N ,∑
k

qk
xN/2

·
∏
j ̸=k

vHj

xN/2
= 0.

For the final low-degree test over D one again uses rotated coordinates, this time using an element of order
2n+B+1 which moves D into standard position.

D Implementation remarks

At the time of writing, a full implementation of the circle STARK is not yet ready. As a preview of what
to expect in terms of performance, we provide preliminary benchmarks of the circle FFT over the Mersenne
prime field M31, compared to the regular FFT over the equally sized Babybear field, see Table 1. The
advantage of vectorized M31 arithmetics (AVX2 multiplications are about 40% faster than with BabyBear,
see also [HLN23]) directly translates to the single-threaded FFT cost. With high thread count, our current
implementation becomes memory-bound, and thus, M31 CFFT and BabyBear performance is similar. Take
note that the current implementation does not apply memory optimizations (such as Radix 2k FFT or 4-
step). With such optimizations, memory bandwidth is expected to be much less of a bottleneck on personal
hardware.

Let us discuss some details of the circle FFT implementation. When ordered correctly, the circle FFT
algorithm matches the Radix-2 FFT algorithm, only with different twiddle factors. For a twin coset D =
Q ·Gn−1 ∪Q−1 ·Gn−1, define this ordering as P : {0, . . . , 2n − 1} −→ D:

P (i) :=

{
Q ·Gi, i < 2n−1,

Q−1 ·G−i, i ≥ 2n−1,

where G is a generator of order 2n−1. An evaluation of a function f : D → F is f ◦ P . Algorithm 1 takes
such an evaluation and computes coefficients of the interpolating function in the FFT space. For a small

7Babybear code used for the benchmarks:
https://github.com/Plonky3/Plonky3/commit/86d13ddf269427c4788cdd41f413308a6050f9f3
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number of columns, we recommend the CFFT interpolation to use precomputed inverse twiddles. Unlike for
the regular FFT, it is unclear how to efficiently compute these on the fly without doing an expensive inverse
operation. However, for batched CFFT, this is less of an issue. For the evaluation implementation (inverse
of interpolation), computing the twiddles can be done on the fly, though it is more expansive than a regular
FFT, since it involves operations in the complex extension Fp(i) of Fp.

Algorithm 1 Circle FFT (interpolation)
1: procedure CFFT(a)
2: # First layer
3: step← N/2
4: for k in range(step) do
5: twiddle← (QGk).y
6: butterfly(a[k], a[k + step], twiddle)

7:
8: # Rest of the layers
9: for l in range(log(N) - 2) do

10: step← 2log(N)−2−l

11: for i in range(0, N, 2 * step) do
12: for k in range(step) do
13: twiddle← ((QGk)2

l

).x
14: butterfly(a[i+ k], a[i+ k + step], twiddle)

15: procedure butterfly(a, b, t)
16: a, b← a+ b, (a− b)/t
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