
Fault Attacks on UOV and Rainbow

Juliane Krämer and Mirjam Loiero

TU Darmstadt, Germany
jkraemer@cdc.informatik.tu-darmstadt.de

Abstract. Multivariate cryptography is one of the main candidates for
creating post-quantum public key cryptosystems. Especially in the area
of digital signatures, there exist many practical and secure multivariate
schemes. The signature schemes UOV and Rainbow are two of the most
promising and best studied multivariate schemes which have proven se-
cure for more than a decade. However, so far the security of multivariate
signature schemes towards physical attacks has not been appropriately
assessed. Towards a better understanding of the physical security of mul-
tivariate signature schemes, this paper presents fault attacks against Sin-
gleField schemes, especially UOV and Rainbow. Our analysis shows that
although promising attack vectors exist, multivariate signature schemes
inherently offer a good protection against fault attacks.

Keywords: Multivariate cryptography · Rainbow · UOV · Fault Attacks

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Until recently, the security of nearly all crypto-
graphic schemes used in practice was based on number theoretic problems such
as factoring large integers and solving discrete logarithms, e.g., RSA and ECC.
However, schemes like these will become insecure once large enough quantum
computers are built. This is due to Shor’s algorithm [21], which solves the integer
factorization problem and discrete logarithms in polynomial time on a quantum
computer. Therefore, we need alternative public key schemes which are based
on hard mathematical problems that remain hard in the presence of quantum
computers: post-quantum cryptosystems.

Besides cryptography based on lattices, hash functions, codes, and isogenies,
multivariate cryptography is one of the main candidates for this. The security
of multivariate schemes is based on the hardness of the MQ-problem - solving a
randomly generated system of multivariate quadratic polynomial equations over
finite fields - which is NP-hard [13]. Depending on the size of the finite field, a
distinction is made between SingleField schemes and BigField schemes [20]. The
public key of multivariate schemes is a set of multivariate polynomials and the
private key is mainly the trapdoor that allows to invert the public key. Unfortu-
nately, most of the proposed multivariate encryption schemes have been broken.
This is due to the fact that the construction in this case must be based on an in-
jective trapdoor function. As a consequence, the multivariate system of the public

key is not a hard instance of the MQ-problem. On the other hand, constructions
of multivariate signature schemes allow to add some randomness to the secret
trapdoor which leads to a harder public key. Multivariate signature schemes are
in general very fast and require only modest computational ressources, which
makes them attractive for the use on low cost devices like smart cards and
RFID chips [4, 8]. Therefore, developing fast and light-weight implementations
of multivariate signature schemes became an active field of research [9, 23, 25].
Among many practical alternatives, UOV [16] and Rainbow1 [11] are two of the
oldest, most efficient, and most promising multivariate signature schemes.

When it comes to implementing post-quantum cryptography and using it
in practical applications, however, relying only on the mathematical security of
the schemes is not sufficient, but the physical security of the schemes and their
implementations has to be ensured as well. Since post-quantum cryptography is
only rarely used in practice as of 2019, and especially not in widespread use on
smart cards and in embedded systems so far, research about side channel attacks
and fault attacks on these schemes is still in the early stages of development.
For multivariate schemes in particular, only few publications exist, most of which
target (passive) side channel attacks rather than (active) fault attacks: Already in
2001, it was theoretically shown how the signature schemes FLASH and SFLASH
can be attacked with differential power analysis (DPA) [22]. Steinwaldt et al.
reveal the secret 80-bit seed ∆ for SHA-1 and subsequently the affine bijections
S and T by analyzing the power consumption of involved ⊕ operations. Okeya et
al. propose another side channel attack on SFLASH in 2004 [18]. They also learn
∆ through a DPA and then break SFLASH by reducing its security to the C∗

problem, which is broken. They verify their results experimentally. Many years
later, Yi and Li present a DPA against the enTTS signature scheme [24]. The
DPA attack is facilitated by a fault attack which fixes certain unknown values to
known ones. The DPA part of the attack is verified experimentally against a naive
ASIC implementation of enTTS. Only recently, Park et al. presented side channel
attacks on the Rainbow and UOV signature schemes [19]. They use correlation
power analysis together with algebraic key recovery attacks and demonstrate the
practical feasibility of their attack on an 8-bit AVR microcontroller. Regarding
fault attacks on multivariate cryptography, only a single work exists: Hashimoto
et al. describe general methods how to attack multivariate cryptography with
fault attacks [14]2. These methods provide the basis for our work.

Our Contribution. The authors of [14] focus on BigField schemes and STS-type
schemes, which form a specific subclass of SingleField schemes. We complement
their work by comprehensively analyzing how the attacks can be applied to
SingleField schemes in general. In particular, we apply the attacks to UOV and
Rainbow. We find that several special cases exist where the attacks do not work.

1 Rainbow has been submitted to the call for post-quantum cryptography standard-
ization by the US American National Institute of Standards and Technology (NIST)
in November 2017 [10] and was selected Round 2 Candidate in January 2019 [1].

2 The same authors published their work additionally in [15].

2

From these findings we deduce countermeasures to protect multivariate signature
schemes against fault attacks. With this, we pave the way for future fault attack
resistant (implementations of) multivariate signature schemes.

Our analysis shows that although promising attack vectors exist, the ran-
domness induced by the vinegar variables - and in case of Rainbow also by the
different layers - proves to be an inherent protection against fault attacks.

Organization. In Section 2, we introduce the mathematics of multivariate cryp-
tosystems and summarize the work [14]. In the subsequent Sections 3 and 4, we
discuss the applicability of the attacks from [14] to SingleField schemes and in
particular to UOV and Rainbow. We provide success probabilities for the attacks
and detect cases where the attacks do not work. We present countermeasures to
protect multivariate signature schemes against such attacks in Section 5.

2 Background

First, we provide an introduction to multivariate cryptosystems in Section 2.1.
Then, in Section 2.2 we give an overview about the ideas of the attacks in [14].

2.1 Multivariate Cryptosystems

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials, see Equation 1.

p(1)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

...

p(m)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 (1)

The security of multivariate schemes is based on the MQ problem: Given m
quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn as shown in
Equation 1, find a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.
The MQ problem (for m ≈ n) is proven to be NP-hard [13].

To build a public key cryptosystem on the basis of the MQ problem, one
starts with an easily invertible quadratic map F : Fn → Fm, the central map,
where F is a finite field. To hide the structure of F in the public key, one composes
it with two invertible affine maps T : Fm → Fm and S : Fn → Fn. These affine
maps can be written as T (y) = Ty + t and S(x) = Sx + s, where T ∈ Fm×m
and S ∈ Fn×n are linear transformations and t ∈ Fm and s ∈ Fn are constant
vectors. The public key of the scheme is given by P = T ◦ F ◦ S : Fn → Fm. The
private key consists of T , F , and S and thereby allows to invert the public key. 3

3 Due to the above construction, the security of multivariate public key schemes is not
only based on the MQ-Problem, but also on the EIP-Problem (Extended Isomor-
phism of Polynomials) of finding the composition of P [20].

3

Signature Generation To generate a signature for a message d, the signer uses a
hash function H : {0,1}? → Fm to compute the hash value w = H(d) ∈ Fm and
computes recursively x = T −1(w) ∈ Fm, y = F−1(x) ∈ Fn, and z = S−1(y).
The signature of the message d is z ∈ Fn. Here, F−1(x) means finding one (of
possibly many) preimages of x under the central map F .

Verification To check if z ∈ Fn is indeed a valid signature for a message d, one
computes w = H(d) and w′ = P(z) ∈ Fm. If w′ = w holds, the signature is
accepted, otherwise it is rejected.

In Appendix A, we describe the signature schemes Rainbow and UOV.

2.2 General Fault Attacks on Multivariate Public Key
Cryptosystems

In [14] the authors propose two approaches for fault attacks on multivariate
signature schemes. In both attacks, the goal of the attackers is to reveal the affine
maps T and S , respectively, via a linear algebra attack [16]. By a preceding fault
attack, they decrease the complexity of the linear algebra attack considerably.

The goal of the first attack, which we analyze in Section 3, is to gain partial
information about the affine map T via fault injection on the central map F . It is
assumed that the fault changes a single coefficient during signature generation.
By changing an additional coefficient in each following signature generation and
using message-signature pairs for random messages, the attacker deduces infor-
mation about the affine map T .

The second attack aims at the random values which are used during signa-
ture generation. If an attacker manages to fix (some of) those values for several
signature generations, he can transform the affine map S by using several pairs
of random messages and corresponding signatures to facilitate the subsequent
linear algebra attack. We analyze this attack in Section 4.

3 Fault Attack on the Central Map

In this section we analyze the fault attack on the central map. We introduce
the attacker model in Section 3.1 and give a detailed description how the attack
is intended to work for SingleField schemes in Section 3.2. In Section 3.3, we
show that UOV schemes - contrary to what is claimed in [14] - are immune to
this attack. In Section 3.4 we explain how the attack can be applied to Rainbow
schemes and in Section 3.5 we analyze special cases of the attack.

3.1 Attacker Model

We assume in this attack that the attacker targets the signature generation
process and randomly changes a coefficient in the central map F . He either
modifies F directly or he attacks the public key P to modify F . (For a discussion
about the distinguishability of the faulty place in the latter case, we refer to [14,

4

Section 3.2.3].) The fault that the attacker induces is permanent. He then receives
the signature of a random message, i.e., this signature is generated with a faulty
central map, and applies the correct public key to it. Afterwards, he again induces
a fault into the central map - hence, the central map used in the next step to
generate a signature on another random message includes two faults, and so
on. By comparing the random messages with the messages yielded by signing
the random messages with the faulty central map and then applying the correct
public key to them, the attacker gains information about the affine map T .

In a successful attack, all faults would affect pairwise different equations of
the central map F . The attacker would need m− 1 faults, see Section 3.2. As of
2018, we have m = 28 in the Rainbow scheme for F = GF (256) [20, Table 6.13].

3.2 Detailed Description of the Attack for SingleField Schemes

In [14], the authors describe the attack for Stepwise Triangular System (STS)
schemes. Schemes of this type form a subset of the SingleField family. However,
our findings show that the applicability and the success of this attack highly
depend on the concrete scheme it is targeting. Therefore, we first generalize
the attack to SingleField schemes, and then approach the schemes UOV and
Rainbow in a more concrete way.

For each message that is to be signed, i.e., for each iteration of the attack, in
case of SingleField schemes four steps have to be performed4. They are displayed

in Algorithm 1. Since we do not know which kind of coefficient α
(k)
ij ,β

(k)
ij , γ

(k)
i or

η(k) - the coefficients of the quadratic and linear variables and the constant part
of the central map F , see Appendices A.2 and A.3 - is changed, we write ξ(k)

for any of those. We denote faulty values with an apostrophe, e.g., ξ′
(k)

.

Algorithm 1 One iteration of the attack on the central map

1: Change a coefficient ξ(k) into ξ′
(k)

to get a faulty central map F ′ out of F . Then
∆F = F ′ − F .

2: Sign a randomly chosen message h(l) = (h
(l)
1 , . . . ,h

(l)
m) via the faulty central map

F ′ by z′(l) := S−1(F ′−1(T −1(h(l)))), where z′(l) = (z′
(l)
1 , . . . ,z′

(l)
n).

3: Verify z′(l) by using the correct public key P as h′
(l)

:= P(z′(l)).
4: Set δ(l) := h′(l) − h(l).

We denote with l ∈ N the iteration of the attack, i.e., in iteration l the lth

fault is induced and the lth message is signed. Thus, δ(l) is the difference between

4 To clarify Step 2. of [14, page 9]: It is essential to cause a new fault on the central
map for each message (i.e., for each iteration over Steps 1 - 4) and not use the same
faulty map for all messages. Using the same faulty map for more than one message
will not reveal new information about T , as for two messages h(l1) and h(l2) - signed
with the same faulty central map - δ(l1) and δ(l2) will be multiples component-wise,
since the attack would both times target the same column of T .

5

the lth message and the message obtained from signing this message with the
faulty central map F ′ and then applying the correct public key P to it. Hence,
δ(l) contains information about the difference between the correct and the faulty
central map.

First, we show that during the whole attack it suffices to consider T , the
linear part of T , cf. Section 2.1. This is due to the fact that the constant part t
cancels out, see Equation 2. For z′(l), the faulty signature in iteration l, correct
public key P = T ◦ F ◦ S , and faulty public key P ′ = T ◦ F ′ ◦ S , we have

δ(l) = h(l) − h′(l) = P ′(z′(l))− P (z′(l)) = (T ◦ F ′ ◦ S)(z′(l))− (T ◦ F ◦ S)(z′(l))

= (T ◦ F ′ ◦ S(z′(l)))− (T ◦ F ◦ S(z′(l)))

= [T (F ′((S(z′(l)) + s))) + t]− [T (F ((S(z′(l)) + s))) + t]

= T (F ′ − F)((S(z′(l))) + s)

= (T ◦ (F ′ − F) ◦ S)(z′(l)).

(2)

Note that in the last three rows of Equation 2, we do not use T and S , but T
and S. Now we show how T is transformed: We assume that in the first iteration
(l = 1), a coefficient ξ(k1) in F is changed to ξ(k1)

′
. In the resulting difference

between the correct and the faulty central map, there will be only one nonzero en-

try, exactly at position k1: (F ′−F)(x) = (0, . . . ,0,(ξ(k1)
′−ξ(k1))xixj ,0, . . . ,0)T 5.

For the faulty signature z′(1) of the first message h(1), with Equation 2 we have:

δ(1) = (δ
(1)
1 , . . . , δ(1)m) = T ◦ (F ′ − F) ◦ S(z′(1)) = T (0, . . . ,0, c1,0, . . . ,0)T , (3)

where c1 at position k1 is an unknown constant resulting from S(z′(1)) plugged
into F ′ − F . All other entries are zero, since the central map consists of m
quadratic equations f (1), . . . ,f (m) and in the faulty central map only in the kth1
equation one coefficient was changed by the fault. δ(1) has length m and as we can
see from Equation 3, it coincides with a constant multiple of the kth1 column vec-

tor of them×mmatrix T . Hence, T can be written as T =


∗ . . . ∗ δ(1)1 /c1 ∗ . . . ∗

...
...

...

∗ . . . ∗ δ(1)m /c1 ∗ . . . ∗

 ,

where (δ
(1)
1 /c1, . . . , δ

(1)
m /c1)T is its kth1 column. The idea is now to stepwise trans-

form T into a triangular matrix. To do so, in each iteration l a matrix T (l) is
multiplied to T , which by construction annihilates all entries in the kthi column
except for the lth. For the construction of this matrix, we define the vector

δ(l) := (−δ(l)l+1/δ
(l)
l , . . . ,−δ(l)m /δ

(l)
l)T , (4)

which has length m − l in each step. Each matrix T (l) consists of four blocks,
the sizes and structure of which change in each step depending on the value

5 Note that this does not imply that one of the quadratic coefficients is changed. This
representation only serves as an illustration.

6

l of the iteration. The upper left block is the l × l identity matrix, the upper
right block consists of zeroes of dimension l × (m − l), the lower right block
contains the (m − l) × (m − l) identity matrix and the lower left block, which
has the size (m − l) × l, includes the vector defined in Equation 4 in column l
and a number of l − 1 zero vectors of length m − l in columns 1 to l − 1, i.e.,

T (l) =


[I]l×l [0]l×(m−l)

δ(l)1

[I](m−l)×(m−l)[0](m−l)×(l−1)
...

δ(l)m−l


. Hence, for l = 1 the matrix is

T (1) =


1 0 · · · 0

−δ(1)2 /δ
(1)
1

... [Im−1]

−δ(1)m /δ
(1)
1

 and T (1)T =


∗ · · · ∗ δ(1)1 /c1 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗

 ,

where (δ
(1)
1 /c1, 0, · · · , 0)T is the kth1 column.

This calculation is performed at least m−1 times 6, until in the last step we have

T (m−1) =

 [Im−1]

0
...
0

1 0 · · · − δ
(m−1)
m

δ
(m−1)
m−1

1

 and T (m−1)T =


∗ · · · ∗ δ(m−1)1 /cm−1 ∗ · · · ∗

...
...

...

∗ · · · ∗ δ(m−1)m−1 /cm−1 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗

 ,

where (δ
(m−1)
1 /cm−1, . . . , δ

(m−1)
m−1 /cm−1, 0)T is the km−1

th column. If we put to-

gether T from the m − 1 transformed matrices T (1)T, . . . , T (m−1)T , we obtain

a permutation of a triangular matrix with at most m(m+1)
2 nonzero entries. All

other entries are expressed as quotients of some entry of δl and constants cl.
By using the MinRank attack [16] we can now recover T by using the rank

of the central equations f (k). The MinRank attack uses the fact that the rank
of F (k) is invariant under S (the transformation of variables), but changed by T
(the transformation of equations). Since the entries of T have been reduced by
this attack, the complexity of the MinRank attack is reduced as well [14].

3.3 UOV Schemes are Immune to this Attack

The authors of [14] state that the attack can be applied to UOV. However, in
UOV the second affine map T can be omitted since using it does not increase the
overall security of the scheme while increasing the key sizes and complexity [6].

6 In Table 1 of [14] the authors state that the number of faults for STS type schemes
- they erroneously consider UOV and Rainbow to be STS schemes - is exactly n−1.
This is incorrect in two different ways: 1) According to the dimension of T , the
number of faults does not depend on n, but on m. 2) The number of faults is not
exactly m − 1, but at least m − 1. In Section 3.5, we describe a special case where
more faults need to be injected .

7

This leaves us with a UOV public key of F ◦ S . Thus, applying the proposed
attack on a UOV scheme does not work, as the goal was to restore parts of the
affine map T . Interestingly, because of the different roles of the dimensions n
and m and since S is computed before the central map in the public key, the
attack can not be transferred to S .

3.4 Applying the Attack to Rainbow Schemes

In this section we adapt the attack on the central map to a Rainbow scheme
with parameters vi for the vinegar variables and oi for the oil variables with
i = 1, . . . , u, a central map F : Fn → Fm with m = n− v1, and two affine maps
T : Fm → Fm and S : Fn → Fn, see Appendix A.3.

First, we consider the case that the attacker does not know which map is
affected by the fault and is only able to randomize values. Therefore, we compute
the success probability for hitting a coefficient in the central map F .

Success Probability The attack on the central map is only successful if ac-
tually an element in F is changed by the fault. However, we assume that the
attacker can only randomly alter elements of either S , F , or T without knowing
anything about the changed values. In order to estimate the success probability
for hitting an element of the central map F we need to determine the number
of all entries of the three matrices representing the maps S , F , and T . We revise
and detail the information hereof given in [14].

The affine map T : Fm → Fm consists of a quadratic m ×m matrix and a
linear vector of length m. This gives a total of m ·m+m = m(m+ 1) elements.
Analogously, the affine map S : Fn → Fn has a total of n(n + 1) elements.
The central map F : Fn → Fn−v1 contains m equations each theoretically in n
variables. All variables that are not assigned in an equation, e.g., all terms of
the form oil-oil, have the coefficient 0. The number of assigned variables depends
on the layer. First, we provide the formula for the number of nonzero variables

summed up over all layers:
u∑
i=1

oi(vi+1)(vi+2)
2 − (n − vi). This formula describes

the actual combination of n variables quadratically, linearly, and constantly,
considering that there are no oil-oil variables and the number of vinegar-vinegar
variables depends on the layer.

In the general case, however, we assume that the attacker can change any
of the coefficients stored in a coefficient matrix as depicted in [9, Figure 3],
e.g., he he could “create” an oil-oil variable that does not exist (i.e., is zero) by
changing the corresponding coefficient from 0 to another value. In the general
case, for a single equation we have n(n + 1)/2 quadratic terms, n linear terms,
and one constant term. For m equations this sums up to a total of at most

mn(n+1)+2n+2
2 = m (n+1)(n+2)

2 . Hence, we obtain the success probability7

p =
m(n+ 1)(n+ 2)

m(n+ 1)(n+ 2) + 2m(m+ 1) + 2n(n+ 1)
. (5)

7 The same formula holds for UOV schemes.

8

Since the parameter q does not appear in this formula, the success probability
for this attack does not depend on the field F8. It rather depends on the ratio
between the number of equations m and the number of variables n.

To learn the concrete success probability of the attack against the Rain-
bow scheme, we computed examples for different reasonable parameters. In [2],
lower bounds for n, depending on the value of m, are given for finite fields with
q ∈ {16, 31, 256}. For these fields, we selected four values for (m,n) from the
literature [11, 20]9 and computed the success probability for the attack against
schemes instantiated with theses parameters. The results are given in Table 1.

Rainbow parameters success probability

F16,m = 42, n = 61 p ∼ 0.936

F31,m = 35, n = 52 p ∼ 0.926

F256,m = 28, n = 48 p ∼ 0.916

F256,m = 33, n = 27 p ∼ 0.895

Table 1: Success probability of hitting the central map in Rainbow schemes.

We conclude with the result that for Rainbow schemes in common fields and
with up-to-date parameter choices, the success probability for hitting a coefficient
in the central map F is more than 90%.

Assuming a Stronger Attacker On the one hand, a stronger attacker can
target F (instead of only P) or even specific coefficients in F directly. This allows
him to perform the attack in a more structured way and to avoid unwanted
scenarios. On the other hand, a stronger attacker can not only randomize values,
but zero them or even set them to a chosen value. In case an attacker is more
powerful in both ways, he can directly find values of F : He chooses a random
message and successively assigns all values from the underlying field to a certain
entry of F before signing the message with that modified F . As soon as a δ(l)

consists of only zeroes, the right entry of F is found.

3.5 Special Cases

During anaylzing how the attack can be applied to a Rainbow scheme, we
detected some special cases that can occur and which are not covered by the
descriptions in [14].

Specific Vinegar Variable Assigned 0 In each signature generation process there
are a number of values randomly assigned to the vinegar variables over the field F.

8 Actually the parameters q and n are indirectly connected, since in fields with small
q the parameter n has to be chosen larger in order to ensure security.

9 The first three tuples of parameters are taken from [20] for the year 2018, the last
one is the original suggestion from [11].

9

Let us assume vi to be the number of vinegar variables. If the coefficient changed
by the fault attack belongs to a variable that contains a vinegar-monomial (i.e.,
vinegar-vinegar or vinegar-oil) and furthermore exactly this vinegar variable
takes the value 0 during the step in the inversion of the central map where
random values are assigned to the vinegar variables, then this term with the
faulty coefficient drops out during signature generation. As a consequence, there
is no difference in a signature generated with the correct central map and one
generated with the faulty central map, resulting in δ(k) = 0 in all entries. When
the attacker computes δ(k) = 0, he realizes that this case occurred10 but gains
no information in the sense of the attack.

We computed the probability for this special case to occur for an example
Rainbow scheme. In the original paper of Ding and Schmidt [11], a set of param-
eters for practical implementation is proposed. For these parameters, we derived
a probability of approximately 1.1%, as explained in Appendix B.

lth Entry of δ(l) Equals 0 The second special case concerns that in each iteration

l of the attack δ(l) = h′(l) − h(l) is computed, with δ(l) = (δ
(l)
1 , . . . , δ

(l)
m). These

entries are a constant multiple of the kthl column of the matrix T . This implies
that if the kthl entry of a column in T equals 0, then for the lth entry of δ(l) it

holds δ
(l)
l = 0. In this case it is not possible to construct the vector in Equation 4

in order to perform the transformation since all other entries of δ(l) would have

to be divided by δ
(l)
l = 0. An attacker would detect this occurrence by computing

δ(l), but could discard the values and start over.

The probability for this special case to occur depends on m, the number of
multivariate quadratic polynomials, and on the size of the finite field. For each
column separately, the probability is 1

|F| , since the values in T were assigned

randomly from F. Performing this step at least m− 1 times, the probability p2
for this special case to occur can be computed via the complementary event:

p2 ≥ 1 −
(
|F|−1
|F|

)m−1
. For the example schemes from Table 1, this yields p2 ≥

0.928 (q = 16, m = 42), p2 ≥ 0.672 (q = 31,m = 35), and p2 ≥ 0.100 (q =
256,m = 28). With increasing field size, the probability decreases drastically.

Coefficients in Same Equation Targeted More Than Once The third special
case concerns redundant faults: It can happen that an attacker injects faults
that affect an equation that had already been altered with a previous fault, i.e.,
the same column of T is affected several times. The attacker would detect this
situation if a newly computed δ(k) is linearly dependent to any of the already
computed ones. Since the goal is to transform T into a triangular matrix where
the kthl column vector contains information about the kthl column of T , it is
necessary to target each equation (at least) once. Hence, an attacker would
abort this step and try to target another equation which is yet untouched.

10 The same situation would occur if an entire column of T was equal zero. However,
this cannot happen since the maps are expected to have full rank.

10

4 Fault Attack on the Random Values

In this section we show how the attack on the random values can be applied
to the SingleField schemes UOV and Rainbow. First, we introduce the attacker
model in Section 4.1. Then, we explain how the attack can be applied to Sin-
gleField signature schemes. The explanation of the attack method is similar to
the description in [14, Section 3.3.2] with a slightly different notation and more
details. In Section 4.3, we discuss a special case of the attack that has not been
covered in [14], and from this deduce the success probability of the attack.

4.1 Attacker Model

In each signature generation the vinegar variables are instantiated with random
values. In this attack, which targets the signature generation process, we as-
sume that the attacker fixes some (or all) of these random values with a single
permanent fault. He does not know how many variables he fixed, and he does
not know the value of these variables. Afterwards, he receives several message-
signature pairs where each signature has been computed with the fixed variables
and, in case he did not fix all of the variables, additional random ones. The more
variables he fixes, the less message-signature pairs he needs. By analyzing these
pairs, the attacker gains partial information of S .

4.2 Detailed Description of the Attack for SingleField Schemes

We denote the random values with r1, . . . ,ru1 ∈ F, u1 ∈ N and assume that the
attacker fixes the first u2 variables r1, . . . ,ru2 for u2 ≤ u1.

Algorithm 2 Attack on the random values

1: Cause a fault that fixes r1, . . . ,ru2 and suppose that r̄1, . . . ,r̄u2 ∈ F are exactly
these unknown fixed values.

2: Generate signatures z(1), . . . ,z(n−u2+1) for randomly chosen messages
h(1), . . . ,h(n−u2+1) with r = (r̄1, . . . ,r̄u2 ,ru2+1, . . . ,rn) .

3: Recover parts of S by using the pairs (z(k), h(k)).

Consider a UOV scheme over a finite field F with v vinegar and o oil variables
satisfying v > o or a Rainbow scheme with vi vinegar and oi oil variables per layer
i = 1, . . . , u. Since the attack works analogously for both schemes, we simply
write v. Let h(1), . . . , h(n−u2+1) ∈ Fm be the messages and z(1), . . . , z(n−u2+1) ∈
Fn the corresponding signatures with u2 ≤ v variables that have been fixed by

the attacker. Let x(k) = (x
(k)
1 , . . . , x

(k)
v) ∈ Fv be the vinegar variables in step

k. W.l.o.g. we assume that the first u2 variables (x1, . . . , xu2
) are fixed to the

values (x̄1 . . . , x̄u2
), yielding the vector x(k) = (x̄1 . . . , x̄u2

,x
(k)
u2+1, . . . , x

(k)
v)T for

each step k. We write x(k) = (x̄,r(k))T , where x̄ denotes the fixed part and
r(k) ∈ Fv−u2 denotes the random values that differ in each step.

11

Below we will show that a total of n − u2 + 1 message-signature pairs are
needed to perform the attack.

Reducing the Number of Nonzero Elements in a Specific Representation of S
Signatures in UOV and Rainbow are computed by z = S−1(F −1(y)) and z =
S−1(F −1(T −1(y))), respectively. In both cases we can write

z = S−1
(
x
w

)
for some x ∈ Fv and w ∈ Fn−v. With the above notation we can rewrite

Sz(k) + s =

 x̄
r(k)

w(k)

 . (6)

We want to see how the fixed values x̄ can be used to express S, so we split up
S, z(k), and s into

S =

(
A B

C D

)
and z(k) =

(
z(k,1)

z(k,2)

)
and s =

(
s1
s2

)
,

where z(k,1), s1 ∈ Fu2 and z(k,2), s2 ∈ Fn−u2 and A ∈ Fu2×u2 , B ∈ Fu2×(n−u2),
C ∈ F(n−u2)×u2 , and D ∈ F(n−u2)×(n−u2). We now use Equation 6 to write

Sz(k) + s =

(
A B
C D

)
·
(
z(k,1)

z(k,2)

)
+

(
s1
s2

)
=

(
Az(k,1) +Bz(k,2) + s1
Cz(k,1) +Dz(k,2) + s2

)
=

 x̄
r(k)

w(k)

 .

From the dimensions of A,B,C, and D we deduce Az(k,1) + Bz(k,2) + s1 = x̄.
As s1 and x̄ are fixed from the beginning, we write Az(k,1) + Bz(k,2) = x̄ − s1
and with setting z̄(k,1) := z(k,1) − z(1,1) and z̄(k,2) := z(k,2) − z(1,2) for 2 ≤ k ≤
n− u+ 1, we obtain Az̄(k,1) +Bz̄(k,2) = A(z(k,1) − z(1,1)) +B(z(k,2) − z(1,2)) =
Ax(k,1) − Bz(k,2) − (Az(1,1) + Bz(1,2)) = x̄ − s1 − (x̄ − s1) = 0. Based on this
we are able to express A−1B with the aid of the signatures z(k) by using z̄(k,1),
k ∈ {2, . . . , n − u2 + 1}, as column k − 1 of the u2 × (n − u2)-matrix Z1 and
accordingly z̄(k,2) as column k−1 of the (n−u2)× (n−u2)-matrix Z2. It follows

AZ1 +BZ2 = 0⇔ AZ1 = −BZ2 ⇔ Z1 = −A−1BZ2 ⇔ −Z1Z2
−1 = A−1B (7)

if A and Z2 are invertible. The facilitated representation of S is then given

by

(
A B
C D

)
·
(
Iu2
−A−1B

0 In−u2

)
=

(
A 0
C −CA−1B +D

)
. Hence, the attack on the

random values can be used to reduce the number of nonzero elements in the
facilitated representation of S. Subsequently, the MinRank attack [16] can be
used to compute S [12].

4.3 Special Case and Success Probability of the Attack

The attack does not work if A is a singular matrix, as can be seen in Equation 7.
To discuss the probability of this special case, we determine the probability that

12

an (n × n)-matrix with random entries from F is invertible, i.e., not singular.
Following [7], we estimate this probability under the assumption that the entries
are uniformly distributed in F as

n−1∏
i=0

(qn − qi)
qn2 =

n∏
i=1

(1− 1

qi
).

In the attack, matrix A has dimension u2 × u2, where u2 is the number
of random variables that the attacker fixed. For common parameters for UOV
and Rainbow schemes, we get high success probabilities that A is invertible, see
Table 2. With u2 increasing, the probability decreases only slightly.

finite field number of fixed vinegar variables success probability

F16 u2 ∈ {1, . . . , 16} p ≥ 0.933

F31 u2 ∈ {1, . . . , 31} p ≥ 0.966

F256 u2 ∈ {1, . . . , 256} p ≥ 0.996

Table 2: Success probability that the matrix A ∈ Fu2×u2 is invertible, depending
on different sizes of the finite field F, as suggested for UOV and Rainbow [20],
and different numbers u2 of fixed vinegar variables.

On the other hand, the number of fixed values u2 affects how many mes-
sages need to be signed, cf. Section 4.2. This is related to the complexity of
the MinRank attack (which is used to learn S completely) which initially is
O(qv−o−1o4) = O(qn−2o−1o4) [5] with n = v + o For each fixed vinegar vari-
able the complexity is reduced by the factor q, i.e., in total by qu2 . Hence, if
an attacker fixes a number u2 of vinegar variables, the complexity decreases to
O(q(v−u2)−o−1o4) = O(qn−2o−u2−1o4).

Consequently, an attacker should fix as many vinegar variables as possible.

5 Countermeasures

Derived from the fault attacks explained in the previous sections, we present al-
gorithmic countermeasures to protect multivariate SingleField signature schemes
against these attacks.

5.1 Securing the Central Map

Check for a Faulty Central Map An approach that has already been proposed
in [14] is to test the central map for modifications before starting signature
generation. The idea is to store a checksum cF of the coefficients in F and
compare it at the beginning of each signature generation with a checksum cF ′

13

of the coefficients of the central map used during that signature generation. In
case the checksums differ, the message is not signed. This countermeasure can
be applied to all SingleField schemes. However, the checking procedure has to
be carefully implemented, i.e., protected, so that it cannot be skipped by an
experienced attacker [3].

Increase the Chances for Vinegar Variables to be 0 As shown in Section 3.5, a
situation can occur where the faulty coefficient in the central map coincides with
the choice of a vinegar variable to be 0 during the signature generation process.
In this case the whole expression with the faulty coefficient and the vinegar
variable evaluates to 0. We learned that each time this happens, the attacker
has to start over again since this step does not yield new information. The idea
of this countermeasure is to increase the probability of the vinegar variables to
be assigned 0 in order to increase the overall probability for it to coincide with
the exact faulty coefficient. (This of course requires the faulty coefficient to be of
vinegar-type.) The vinegar variables are assigned with random values from the
underlying finite field F. Hence, signature schemes that use smaller finite fields
are better protected against the attack on the central map.

Increase the Number of 0-entries in T As discussed in Section 3.5, it can happen
that in the lth iteration the lth entry of δ(l) equals 0. Then the attacker cannot
proceed with the attack, since in order to reduce the elements of T it is necessary

to divide all other entries of δ(l) by δ
(l)
l . To make the attack less likely to work,

we can thus increase the number of 0-entries in T , so that it gets more probable
to have such a 0-entry at the according position. However, there are several
problems involved: Too many 0-entries result in sparseness of the matrix and
while a sparse matrix might impede this attack, it simultaneously facilitates
rank attacks. Also, when the attacker learns which entries are 0 he might use
this knowledge to adjust the attack accordingly. We leave for future work to
analyze if indeed it is reasonable to increase the number of 0-entries in T .

Change the Ratio of m and n In Section 3.4 we showed that the success prob-
ability for changing an entry in F is around 90% for Rainbow schemes. This
high probability comes from the fact that the size of F is relatively large in
comparison to T and S . This depends on the ratio of n and m. So it seems to be
a reasonable idea to make the attack less successful by changing the ratio of the
variables m and n and thus increase the probability that an attacker targets pa-
rameters of T or S instead of F . This can be achieved by minimizing Equation 5.
However, if an attacker is able to distinguish the faulty place (c.f. Scenario 2 in
Section 3.4), he realizes if the fault injection was successful and can repeat the
attack in case it was not. Again, we leave for future work to determine how this
countermeasure impairs the security of the scheme. This countermeasure is also
applicable for other schemes of SingleField type.

14

5.2 Securing the Random Values

Saving the Values The first idea to prevent the attack on the random values
has already been roughed out in [14]. This countermeasure consists in saving the
randomly chosen values for each step and compare them with the variables of ev-
ery current signature. If a certain threshold of coincidences between old and new
values occurs, the signature generation has to be aborted. The countermeasure
can be applied to all SingleField schemes which use random values.

This threshold has to be chosen carefully, since, as we show in Appendix C,
also without fault injection coincidences are frequent. The choice of this threshold
depends, among others, on the underlying field: the smaller the field, the more
likely a coincidence in the random variables occurs. Considering the specifics of
the attack, it might moreover be reasonable to count coincidences column-wise
and abort further signature generations once the threshold is reached in one of
the columns.

Matrix A not Invertible In Equation 7 we showed that the matrix A is required to
be invertible, otherwise the transformation of S to reduce the number of nonzero
elements does not work. A is the upper left part of the matrix S with dimension
u2 × u2, with 0 ≤ u2 ≤ v, where u2 is the number of fixed variables. A powerful
attacker would try to fix as many variables as possible. Since we do not know
the value of u2, but u2 is bounded above by v, this countermeasure consists in
filling the upper v entries of the first column of S with zeroes and thereby force
A to be singular without necessarily making S singular (as v < n). Although
this countermeasure completely prevents the attack against the random values,
we leave for future work to analyze any security implications this might entail.

6 Conclusion

With this paper, we complement the research on the physical attack security
of multivariate signature schemes. We presented to fault attacks on SingleField
schemes with an emphasis on UOV and Rainbow. We showed that the success
probability of both attacks is rather high. Nevertheless, since both attacks do not
lead to complete key recovery, we conclude that multivariate signature schemes
inherently offer a good protection against fault attacks.

Acknowledgments

This work has been co-funded by the DFG as part of project P1 within the
CRC 1119 CROSSING. We thank Mohamed Saied Emam Mohamed for his
contribution to a preliminary version of this work and Albrecht Petzold for his
diligent proofreading of this paper.

15

References

1. Round 2 submissions - post-quantum cryptography — CSRC (2019), https://

csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions,
visited on February 14, 2019

2. Albrecht, Bulygin, S., Buchmann, J.A.: Selecting parameters for the rainbow sig-
nature scheme - extended version -. IACR Cryptology ePrint Archive 2010, 437
(2010)

3. Blömer, J., da Silva, R.G., Günther, P., Krämer, J., Seifert, J.P.: A practical
second-order fault attack against a real-world pairing implementation. 2014 Work-
shop on Fault Diagnosis and Tolerance in Cryptography pp. 123–136 (2014)

4. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key
engines: MQ-cryptosystems as replacement for elliptic curves? In: Cryptographic
Hardware and Embedded Systems – CHES 2008. pp. 45–61. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008)

5. Braeken, A., Wolf, C., Preneel, B.: A study of the security of unbalanced oil
and vinegar signature schemes. In: CT-RSA. Lecture Notes in Computer Science,
vol. 3376, pp. 29–43. Springer (2005)

6. Bulygin, S., Petzoldt, A., Buchmann, J.A.: Towards provable security of the un-
balanced oil and vinegar signature scheme under direct attacks. In: Progress in
Cryptology - INDOCRYPT 2010 - 11th International Conference on Cryptology
in India, Hyderabad, India, December 12-15, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6498, pp. 17–32. Springer (2010)

7. Charlap, L.S., Rees, H.D., Robbins, D.P.: The asymptotic probability that a ran-
dom biased matrix is invertible. Discrete Mathematics 82(2), 153–163 (1990)

8. Chen, A.I.T., Chen, M.S., Chen, T.R., Cheng, C.M., Ding, J., Kuo, E.L.H., Lee,
F.Y.S., Yang, B.Y.: SSE Implementation of Multivariate PKCs on Modern x86
CPUs. In: Cryptographic Hardware and Embedded Systems - CHES 2009. pp.
33–48. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

9. Czypek, P., Heyse, S., Thomae, E.: Efficient Implementations of MQPKS on Con-
strained Devices. In: Cryptographic Hardware and Embedded Systems – CHES
2012. pp. 374–389. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

10. Ding, J., Chen, M., Petzoldt, A., Schmidt, D., Yang, B.: Rainbow - algo-
rithm specification and documentation (November 2017), https://csrc.nist.

gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

11. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Applied Cryptography and Network Security, Third International Conference,
ACNS 2005, New York, NY, USA, June 7-10, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3531, pp. 164–175 (2005)

12. Faugère, J., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of minrank. In: Advances
in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings. Lecture Notes
in Computer Science, vol. 5157, pp. 280–296. Springer (2008)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

14. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. In: Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 7071, pp. 1–18. Springer (2011)

16

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

15. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. IEICE Transactions 96-A(1), 196–205 (2013)

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Advances in Cryptology - EUROCRYPT ’99, International Conference on the
Theory and Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding. Lecture Notes in Computer Science, vol. 1592, pp.
206–222. Springer (1999)

17. Kipnis, A., Shamir, A.: Cryptanalysis of the oil & vinegar signature scheme. In:
Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1462, pp. 257–266. Springer (1998)

18. Okeya, K., Takagi, T., Vuillaume, C.: On the importance of protecting ∆ in
SFLASH against side channel attacks. International Conference on Information
Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. 2, 560–568
Vol.2 (2004)

19. Park, A., Shim, K.A., Koo, N., Han, D.G.: Side-channel attacks on post-quantum
signature schemes based on multivariate quadratic equations. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018(3), 500–523 (Aug 2018)

20. Petzoldt, A.: Selecting and reducing key sizes for multivariate cryptography. Ph.D.
thesis, Darmstadt University of Technology, Germany (2013)

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

22. Steinwandt, R., Geiselmann, W., Beth, T.: A theoretical dpa-based cryptanalysis of
the NESSIE candidates FLASH and SFLASH. In: ISC. Lecture Notes in Computer
Science, vol. 2200, pp. 280–293. Springer (2001)

23. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-Speed Hardware Implemen-
tation of Rainbow Signature on FPGAs. In: Post-Quantum Cryptography. pp.
228–243. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

24. Yi, H., Li, W.: On the Importance of Checking Multivariate Public Key Cryp-
tography for Side-Channel Attacks: The Case of enTTS Scheme. The Computer
Journal 60(8), 1197–1209 (2017)

25. Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multi-
variate signature generations on FPGAs. EURASIP Journal on Wireless Commu-
nications and Networking 2018(1), 93 (May 2018)

17

A The Signature Schemes UOV and Rainbow

A.1 Signature Generation and Verification of Multivariate Schemes

The standard signature generation and verification process of a multivariate
signature scheme works as shown in Figure 1.

Signature Generation

w ∈ Fm -T −1

x ∈ Fm -F−1

y ∈ Fn -S−1

z ∈ Fn

6

P

Signature Verification

Fig. 1: General workflow of multivariate signature schemes.

A.2 Unbalanced Oil and Vinegar Signature Scheme

The Unbalanced Oil and Vinegar signature scheme (UOV) is a modified version
of the Oil and Vinegar scheme. It was designed by Kipnis and Patarin and pre-
sented at EUROCRYPT’99 [16] after the original scheme was broken by Kipnis
and Shamir in 1998 [17] via linear algebra attacks.

Unlike in the Oil and Vinegar scheme, where the number of vinegar and
oil variables are equal, the advantage of UOV consists in choosing the number
of vinegar variables to be greater than the number of oil variables in order to
guarantee better security against known attacks. The formal notation, the choice
of variables, and the structure of the scheme is described in the following.

Notation All computations are performed in a finite field F with q elements.
Let o := m ∈ N be the number of oil variables and v ∈ N the number of vinegar
variables, hence n = o + v. The corresponding index sets for the variables be
V = {1,...,v} and O = {v + 1,...,n}. xi(i ∈ V) are called vinegar variables and
xj(j ∈ O) oil variables. The message (or its hash) to be signed is denoted by
h = (h1,...,hm) ∈ Fm and the signature itself by z = (z1,...,zn) ∈ Fn.

Central Map and Affine Maps The central map F : Fn → Fo of the UOV-
scheme consists of m quadratic polynomials f (1),...,f (m) ∈ F[x1,...,xn] of the

18

form

f (k)(x) =
∑
i,j∈V
i≤j

αij
(k)xixj +

∑
i∈V
j∈O

βij
(k)xixj +

∑
i∈V ∪O

γi
(k)xi + η(k)

where k ∈ {1,...,m} and the α
(k)
ij are the coefficients of the quadratic vinegar-

vinegar, the β
(k)
ij of the quadratic oil-vinegar, the γ

(k)
i of the linear oil and vinegar

variables and η(k) is the constant part. All coefficients are chosen randomly from
the underlying field F and stored in a matrix, see, e.g., [9, Figure 2].

In order to hide the structure of the central map F , it is composed with an
affine bijective map S : Fn → Fn, which can be written as S(x) = Sx+ s, where
S ∈ Fn×n is a linear transformation and s ∈ Fn is a vector.

Note that unlike in other multivariate signature schemes of SingleField type
like Rainbow (cf. Section A.3), in UOV the second affine map T : Fm → Fm can
be omitted (or similarly treated like the identity map T = id) since applying it
to the polynomials would not change the structure of the central map F at all
and thus would not increase the overall security.

Public Key and Private Key The public key of the UOV scheme is given

by P = F ◦ S with P : Fn S→ Fn F→ Fm, consisting of m public quadratic
polynomials in n variables. The private key is the tuple (F , S). As both F and
S can be inverted efficiently, knowledge of the private key allows for inversion of
the public key and therefore signature generation.

Inversion of the Central Map In order to create a valid signature, inversion
of the central map is required (compare Equation 8 below), which is done by
performing the following steps:
1. Assign random values to the vinegar variables x1,...,xv.
2. Substitute them into the polynomials f (1),...,f (m), resulting in a system of
m linear equations in the oil variables xv+1,...,xn.

3. Solve the system of linear equations, e.g., by using Gaussian elimination.
4. If the system does not have a solution, go back to Step 1 and try again with

different random values.

Signature Generation and Verification To sign a document h = (h1, . . . ,hm) ∈
Fm, solve the equation

F ◦ Sz = h

for z ∈ Fn. First, find a pre-image of h under the central map F with the method
described above to get

Sz = F −1h =: y (8)

with y ∈ Fn. Then invert S to obtain the signature

z = S−1y.

19

For signature verification it has to be checked whether P (z) = h holds. If this is
the case, the signature is accepted, if not, rejected.

A.3 Rainbow

In 2005, Ding and Schmidt published a new signature scheme named Rainbow,
which is a generalization of the Unbalanced Oil and Vinegar scheme [11]. The
basic idea is to combine several layers of Oil and Vinegar in one scheme in order
to improve the security and efficiency of the scheme. Compared to UOV, in
Rainbow key and signature sizes can be reduced.

Notation Let F be a finite field with q elements. Let S be the set {1,...,n} and
v1,...,vu+1 integers with the property

0 < v1 < v2 < ... < vu+1 = n,

where u stands for the number of layers. Define the sets of integers Si = {1,...,vi}
for each i = 1,...,u. The number of elements in set Si is vi and by construction
we have

S1 ⊂ S2 ⊂ ... ⊂ Su+1 = S.

We set oi := vi+1 − vi and Oi := Si+1 − Si = {vi + 1,...,vi+1} for i = 1,...,u.
Then we have |Oi| = oi.

Central Map and Affine Maps The central map F : Fn → Fn−v1 , which
is an easily invertible quadratic map, consists of m := n − v1 polynomials
(f (v1+1),...,f (n)), each of the form

f (k)(x1,...,xn) =
∑
i,j∈Sl
i≤j

αij
(k)xixj +

∑
i∈Ol
j∈Sl

βij
(k)xixj +

∑
i∈Ol∪Sl

γi
(k)xi + η(k)

with k = v1 + 1,...,n and where l denotes the layer. For i ∈ Ol we call xi an
lth-layer oil variable and for i ∈ Sl an lth-layer vinegar variable. The central map
of a Rainbow scheme consists of u different layers, the ith layer of which consists
of the polynomials f (j) for j ∈ Oi.

The name Rainbow refers to the fact that the number of variables increases
with each layer and can be arranged like the layers of a rainbow:

[x1,...,xv1]{xv1+1,...,xv2}
[x1,...,xv1 ,xv1+1,...,xv2]{xv2+1,...,xv3}

...
...

[x1,...,...,...,...,...,...,...,...,...,...,...,...,...,xvu−1
]{xvu−1+1,...,xn}.

Each row represents a layer of the Rainbow scheme with the vinegar variables
in squared and the oil variables in curly brackets.

20

In order to hide the structure of the central map, two invertible affine maps
are composed to F from both sides:

S : Fn → Fn with S(x) = Sx+ s for x ∈ Fn

T : Fm → Fm with T (y) = Ty + t for y ∈ Fm, (9)

where T ∈ Fm×m and S ∈ Fn×n are linear transformations and t ∈ Fm and
s ∈ Fn are constant vectors.

Public Key and Private Key The public key is given by P = T ◦ F ◦ S
with P : Fn S→ Fn F→ Fm T→ Fm. The field F and its additive and multiplicative
structure are also publicly known. The private key consists of (T ,F , S).

Inversion of the Central Map In order to generate a signature, one needs
to be able to invert F . This can be done by the following steps, similar to the
method for UOV, cf. Section A.2.

1. Assign values to the vinegar variables x1, . . . ,xv1 at random and substitute
them into the equations given by f (v1+1), . . . ,f (n).

2. Solve the system of o1 linear equations in the o1 unknowns xv1+1, . . . ,xv2 ,
e.g., via Gaussian elimination. This gives all the values xi with i ∈ S2.

3. Insert these values into the second layer of polynomials (i.e., f (k) with k > v2)
to obtain a system of o2 linear equations in the o2 unknowns xi, i ∈ O2.
Solving the systems yields the xi with i ∈ S3.

4. Repeat this process until a solution for all variables is found. If in any step
no solution for the systems of equations can be found, again random values
for the variables x1, . . . ,xv1 are chosen.

Signature Generation and Verification To sign a document h = (h1, . . . ,hm) ∈
Fm, the equation

T ◦ F ◦ S(z1, . . . ,zn) = h

needs to be solved for z = (z1, . . . ,zn). To do this, first the inverse T −1 is applied

F ◦ Sz = T −1h =: x.

Next invert the central map F via the method described above to get

Sz = F −1x =: y.

Finally apply the inverse S−1 to obtain a signature z

z = S−1y.

To verify a signature one simply checks whether P (z) = h holds. In this case the
signature is accepted, otherwise rejected.

21

B Probability for the Special Case of Section 3.5

We are interested in the following case: A fault is caused on a coefficient of the
multivariate system. Coincidentally, during the signature generation process, a
vinegar variable belonging to this coefficient is assigned 0.

The probability of a certain vinegar variable xi to be assigned 0 is 1
q , where

q = |F|. So the probability that at least one variable is chosen 0 is 1− (1− 1
q)vl ,

where l is a layer in the Rainbow scheme. In the system of equations we have
quadratic and linear terms with vinegar variables. The number of terms in the
central map including a certain vinegar variable is n + 1 for one equation or
m(n + 1) for the whole system of equations. The total number of terms in the
system consisting of S , T and F thereby is given by n(n + 1), m(m + 1) and
m(n+1)(n+2)

2 , respectively.

The probability p for all u layers is then computed by

p =

(
u∑
l=1

(1− (1− 1

q
)vl)

)
· m(n+ 1)

m(m+ 1) + n(n+ 1) + m(n+1)(n+2)
2

To get an idea of the concrete probability, we apply the considerations above
to an example Rainbow scheme. Ding and Schmidt proposed in the original
paper [11] a set of parameters for practical implementation. The finite field has
q = 28 elements and n = 33, S = {1,2,...,33}. The number of layers is given
by u = 4, the number of vinegar variables by v1 = 6, v2 = 12, v3 = 17, v4 =
22, v5 = 33, and the number of oil variables by o1 = 6, o2 = 5, o3 = 5, o4 = 11,
m = n− v1 = 27. This yields:

p =

(
4∑
l=1

(1− (1− 1

256
)vl)

)
· 27 · 34

27 · 28 + 33 · 34 + 27·34·35
2

≈ 0.011.

Hence, with the parameter choice given above, this special case approximately
occurs in 1.1% of signature generations.

parameters p1 ≈ i ≥ 2→ p2 ≥
UOV(F16, v = 128) 0.99 0.99

UOV(F31, v = 104) 0.97 0.99

UOV(F256, v = 90) 0.30 0.50

Rainbow(F16, v1 = 19) 0.71 0.92

Rainbow(F31, v1 = 17) 0.43 0.68

Rainbow(F256, v1 = 20) 0.075 0.14

Table 3: Probability for coincidences in random variables for different fields for
UOV and Rainbow.

22

C Probability for Equal Random Variables

For a field with q elements and a number of v1 vinegar variables, the event that
two randomly generated sets of v1 vinegar variables have at least one coincidence
is the complementary event of no coincidences at all. The probability for this

is p1 = 1 −
(
q−1
q

)v1
. If we compute this for a number of i ≤ k sets of random

values, then we get the probability that at least in one comparison at least one
coincidence occurs by p2 = 1− (1− p1)i. If we use common parameters for UOV
and Rainbow schemes, we see that such occurrences are quite frequent.

As we can see in Table 3, it is quite probable that one or more variables
have a value in common with older sets of variables. So one should not deny any
signature where a coincidence occurs, but define a threshold value.

23

	Fault Attacks on UOV and Rainbow

