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Abstract. The learning parity with noise (LPN) problem has been
widely utilized in classical cryptography to construct cryptographic prim-
itives. Various variants of LPN have been proposed, including LPN over
large fields and LPN with regular noise, depending on the underlying
space and the noise regularity. These LPN variants have proven to be
useful in constructing cryptographic primitives.
We propose an improvement to the Gaussian elimination attack, which
is also known as Prange’s information set decoding algorithm, for solv-
ing the LPN problem. Contrary to prevailing knowledge, we find that
the Gaussian elimination attack is highly competitive and currently the
best method for solving LPN over large fields. Our improvement involves
applying partial Gaussian elimination repeatedly, rather than the whole
Gaussian algorithm, which we have named the “Reduce and Prange’s
algorithm”.
Moreover, we provide two applications of Reduce and Prange algorithms:
One is the hybrid algorithm of ours and Berstein, Lange and Peters’s
algorithm at PQCrypto’08, and the other one is Reduce and Prange
algorithm for LPN with regular noise.
Last, we provide a concrete estimation of the bit-security of LPN variants
using our Reduce and Prange’s frameworks. Our results show that the
bit-security of LPN over Fq is reduced by 5-11 bits when log q = 128
compared to previous analysis by Liu et al. (will appear at Eurocrypt’24).
Furthermore, we show that our algorithm outperforms recent work by
Briaud and Øygard (Eurocrypt’23) and Liu et al. for certain parameters.
It reduces the bit-security of LPN with regular noise by 5-28 bits.

Keywords: LPN (over large fields), LPN with regular noise, Concrete
security

1 Introduction

As the central problem of learning theory and coding theory, the learning parity
with noise (LPN) problem has affected numerous cryptographic primitives such
as secure arithmetic computations [4, 7, 14, 16, 17, 25, 33, 40, 44, 56, 62, 71], zero
knowledge proofs [8, 29,67] and more [1–3,11,22,26,32,45,46,48,50,72,73].



Problem 1 (Learning Parity with Noise (LPN)). Let m,n, t be positive integers
and R be a ring. Let C be a probabilistic code generation algorithm such that
C(m,n,R) returns a matrix A ∈ Rm×n. Let χ(R) = {χm,t}m,t∈N(R) be a
family of distributions over Rm that returns a vector in Rm, where the number
of nonzero coefficients in the vector is t.

The computational learning with parity problem with respect to parameters
m,n and t involves obtaining a secret vector s given instances

(A,b = A · s+ e mod R)

where A ← C(m,n,R), s ← Rn and e ← χm,t(R). We simply say the problem
(m,n, t)-LPN problem over R.1

In particular, for pseudorandom correlation generator (PCG) framework by
[14], three rings have been used: fields F2,Fq and ring Z2λ for some λ > 1. Recent
work [49] claimed that (m,n, t)-LPN over Z2λ can be reduced by (m,n, t/2)-LPN
over F2, which leads to suffice to analyze the security of LPN over both fields F2

and Fq, respectively. If R = F2, then it is called the standard LPN problem or
simply LPN. If R = Fq for some large prime power q, then we call it ‘LPN over
large fields’, where it is a natural variant of the (standard) LPN.

The recent primitives also assume the regularity of the error distribution.
Such a variant of LPN is called, LPN with regular noise (for short regular-LPN)
defined as follows:

Problem 2 (LPN with regular noise, regular-LPN). Let m,n, t, β be positive
integers with m = t · β and R be a ring. Let C be a probabilistic code genera-
tion algorithm such that C(m,n,R) returns a matrix A ∈ Rm×n. Let τ(R) =
{τm,t}m,t∈N(R) be a family of distributions over Rm. Given m, t, a distribution
τm,t returns a vector e = (e1, . . . , et) ∈ Rm such that ei ∈ Rβ is of Hamming
weight |ei| = 1 for 1 ≤ i ≤ t.

The computational LPN with regular noise involves obtaining a secret vector
s given instances

(A,b = A · s+ e mod R)

where A ← C(m,n,R), s ← Rn and e ← τm,t(R). We simply say the problem
(m,n, t)-LPN problem over R.

The use of PCG-like protocols would provide significant improvements in the
design of efficient cryptographic primitives with practical applications [7,8,15,17,
19,25,27,28,30,31,42,47,57,60–62,65–71]. The PCG-like protocols additionally

1 Following the previous work [16,17,49], we adapt the definition for our purpose. We
note that the definition of LPN originally states that the goal is to find s using oracle
access to O, which returns a LPN instance. To be specific, we only consider an LPN
where the number of oracle queries are limited to m. (The problem can be considered
as a variant of decoding linear code.) This constraint is reasonable because most
cryptographic primitives built on LPN use the parameter regime where the number
of oracle queries are bounded.
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employ a low-noise setting that t/m = 1/nε for some constant ε > 0 with
bounded samples.

However, most concretely efficient cryptographic applications built from the
low-noise LPN or its variants have only a few cryptanalysis despite its various ap-
plications. Although Blum-Kalai-Wasserman (BKW) algorithm [12] is currently
the most effective attack, BKW works for unbounded samples. Therefore, it is
not suitable for all scenarios. Consequently, accurately estimating the concrete
security level of the cryptographic primitives employed is crucial for their secure
use. The concrete LPN parameter regime used in most protocols and their real
world applications is originated by Boyle et al. [14], but the following work by
Liu et al. [49] claimed that the analysis of [14] is oversimplified, which implies
the time cost of actual attacks are underestimated. Indeed, the paper by Can-
teaut and Chabaud [20] argues that Gaussian elimination, a step commonly used
in LPN cryptanaysis, is computationally expensive. Thus, Liu et al. initiate to
provide a more accurate analysis for LPN over rings used in the pseudorandom
correlation generator paradigm.

Analysis in [49]. We briefly summarize the results of the recent analysis [49]
to easily introduce our contribution.

– For the parameter regime R = Fq with prime power q = nw(1), t = o(m)
and (1 + β) · n ≤ m = poly(n) for some constant β, the statistical decoding
including its 2.0 variant [23] needs more cost than Prange’s algorithm [59].

– For the parameter setup, the information set decoding and its variants out-
perform other algorithms.

– For R = Z2λ for some λ > 1, (m,n, t)-LPN over R can be solved through

(m,n, 2λ−1

2λ−1
· t)-LPN over F2.

Analysis in [18, 37]. The work proposed by [18] describes a novel algebraic
attack that exploits regular noise distributions on R = Fq for any q ≥ 2. Specifi-
cally, the regular noise distribution is used to generate multivariate polynomials,
which can reduce the concrete security of LPN with regular noise. Subsequently,
[37] modified the well-known algorithms for solving LPN into specified algo-
rithms for solving LPN with regular noise on R = F2. They mainly exploit the
specific structure derived from the regular structure of the error vector. These
results highlight the importance of addressing the regular noise distribution in
LPN.

According to the [18,37,49,53], it is observed that when the field size is suffi-
ciently large, Prange’s algorithm has a comparable cost to other algorithms. [21]
observes that when t is sublinear of n, then Prange’s algorithm provides simi-
lar performance to improved ISD algorithms. In a nutshell, Prange’s algorithm
repeatedly conducts the Gaussian elimination algorithm until getting error-free
samples.

Consequently, it implies that to get better LPN analysis over a large field,
two approaches are necessary: 1) reduce the number of iterations and 2) reduce
the cost of the Gaussian elimination algorithm.
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1.1 Our Contribution

In this paper, we revisit Prange’s ISD algorithm to improve its performance
by reducing the cost of the Gaussian elimination part. We named the modified
Prange’s algorithm as Reduce and Prange algorithm (RP). The algorithm is quite
effective for several LPN and its variants. As applications of RP algorithm, we
further provide three algorithms:

• hybrid-RP: Hybrid algorithm that combines RP and the algorithm by Bern-
stein, Lange, and Peters [10].

• regular-RP: RP for specifying regular-LPN.

We implement a SageMath [64] script to search for near-optimal parameter-
ization for our attacks. Although our approach may appear straightforward, our
experimental results indicate that it can surpass existing methods for solving the
LPN problem over large fields in PCG parameter settings. The estimated results
for various parameters and rings are given by Table 1 and Table 2. Indeed, the
bit-security of LPN over F2128 is reduced by 5-11 bits when log q = 128 compared
to [49].

For regular-LPN, the results show that our algorithm outperforms the recent
work proposed in [18, 37] for some parameter settings with relatively small n.
Specifically, the bit-security is reduced by 5-28 bits for small (m,n) and log q =
128. However, when t/n is sufficiently small, the approach presented in [18]
outperforms regular-RP. For detailed numerical results on solving LPN with
regular noise, please refer to Table 3.

1.2 Attack Idea

The RP algorithm starts from a simple observation: The concrete time complex-
ity of the Gaussian elimination cannot be disregarded for a specific parameter
regime although it asymptotically takes a polynomial time in n. It might seem
counter-intuitive, but it underscores the importance of considering the practical
aspects of the algorithm.

To be more specific, while the Gaussian elimination operation takes a time
complexity of only O(nω) for the linear algebra constant ω, which is typically
ignored in the context of asymptotic analysis, its concrete time complexity
plays a significant role in estimating bit-security. For instance, we consider the
(1024, 652, 57)-LPN over Fq. According to [49], the bit-size of the total cost as-
sociated with this problem is reported to be 111, with the Gaussian elimination
accounting for a bit-size of 23. This highlights that the Gaussian elimination con-
tributes to approximately one-fifth of the total complexity involved in solving
the problem.

The main idea for RP is to reduce the cost of the Gaussian elimination by
combining the reduction strategy with Prange’s algorithm. To be precise, the
basic concept of RP is to convert (m,n, t)-LPN instances into (m1, n1, t1)-LPN
instances with m ≥ m1, n ≥ n1 and t ≥ t1 and solve the (m1, n1, t1)-LPN
problem. As a natural extension, this technique can be iteratively applied for
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multiple rounds, further improving the overall efficiency of the algorithm. For
the detailed algorithm, we refer Section 2.

Hybrid-RP: Combine ours with [10]. RP and [10] are motivated by heavy
computational costs derived from the Gaussian elimination, so focusing on re-
ducing the cost of the Gaussian elimination. The main idea of [10] is to reuse
existing pivots to efficiently deploy the Gaussian elimination for (large) matrix.

On the other hand, RP algorithm begins by guessing positions of the zero
value in the error vector. To illustrate, suppose that we guess N1 positions, and
the algorithm works if we can accurately guess all these N1 positions. In case
of incorrect guessing, we again attempt to guess the whole N1 positions. By
applying the reuse technique in [10], we then only guess N ′

1 < N1 positions.
This adaptation, leveraging the reusable property, can decrease the cost of our
algorithm.

Consequently, by combining two algorithms, we propose a new algorithm
such that 1) guessing N1 positions, and 2) reusing some pivots, and 3) running
the Gaussian elimination on a small matrix until the guess is correct. This hy-
brid algorithm is expected to outperform the individual methods. The detailed
description of the hybrid algorithm is given by Section 2.4

Regular-RP: RP for regular-LPN. Using the regularity of the error vector
e, we modify the guessing probability in RP. Then, the other steps are identical
to the original RP. The detailed algorithm is given by Section 3. It can also be
optimized by combining [10] and regular-RP as in hybrid-RP, called the hybrid-
regular-RP.

Notations. We represent vectors and matrices using boldface type. For any
integer q, let Fq be a finite field of elements q. Let χ be a probability distribution
defined on some finite set. Accordingly, the notation s← χ denotes an element
s sampled from the distribution χ. For a finite set S, s← S denotes an element
s sample from the uniform distribution defined over S. Furthermore, we denote
0n as an n-dimensional zero vector for any positive integer n. The inner product
between the two vectors a and b is denoted by ⟨a,b⟩. In certain cases, we use
the shorthand notation a · b for simplicity.

2 Reduce and Prange Technique

This section introduces a new approach for solving LPN over large fields, simply
called the Reduce and Prange. For the algorithm description, we suppose that
LPN instances of the form (A,b = A · s+ e mod q) with A ∈ Fm×n

q , s ∈ Fn
q and

e← χt,m are given.

2.1 Prange’s Information Set Decoding

We first provide a brief overview of Prange’s information set decoding for solving
the LPN problem. The algorithm can be informally divided into two main parts:
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collecting linear polynomials with a common root and solving the resulting linear
system to recover the secret vector s.

More precisely, we denote the n-dimensional vector as x. For each LPN in-
stance (ai, bi), where bi = ⟨ai, s⟩+ ei mod R and ai is an n-dimensional vector,
we define fi as an n-variate linear polynomial of the form

fi(x) = bi − ⟨ai,x⟩ mod R.

If ei = 0, then s is a root of fi. We call such polynomials error-free polynomials.
In summary, Prange’s algorithm collects n error-free polynomials and recovers
the secret s with high probability through the Gaussian elimination.

It is important to note that the probability of collecting n error-free polyno-

mials is
(m−n

t )
(mt )

. Therefore, the algorithm ensures that the desired secret vector

can be recovered with
(mt )
(m−n

t )
iterations.

Therefore, the time complexity of Prange’s ISD algorithm is estimated by

O

( (
m
t

)(
m−n

t

) · nω

)

where nω is a cost of the Gaussian elimination with the linear algebra constant
2 ≤ ω ≤ 3.

2.2 Reduce and Prange’s ISD

In terms of concrete security estimation, the time complexity of the Gaussian
Elimination, O(nω), has a big portion in Prange’s ISD algorithm. For exam-
ple, finite regime estimate of security level in [49] for solving (m,n, t)-LPN over
F2128 with (m,n, t) = (1024, 652, 106) is estimated by 194. To be more precise,
the logarithmic scale of the number of iterations required to gather n error-free
polynomials is approximately 171, while that of performing Gaussian elimina-
tion is approximately 23. Hence, the cost of Gaussian elimination should not
be ignored in concrete estimations. If one can reduce the Gaussian elimination
costs, then it implicitly yields to decrease in the total cost of the algorithm.

The intuition of the attack is that we first guess N1 error-free samples to
obtain LPN samples themselves of less dimension. We then apply Prange’s al-
gorithm to the LPN of n−N1 dimensions.

Suppose that LPN instances of the form (A,b = A · s + e mod q) with
A ∈ Fm×n

q , s ∈ Fn
q and e ← χt,m. We let ai (Resp. bi and ei) denote the i-th

vector of A (Resp. b and e).

Step 1. Guess the N1(< n) zero positions in e. For easy explanation, we will
assume that the last N1 positions in e are zero. Let Atop and Abot be a subma-
trix of A which consists of the first m − N1 rows of A and the last N1 rows,
respectively. Analogously to the notation, we define btop, bbot, etop, and ebot.
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The above assumption then says that ebot = 0. Under the notation, it holds that(
btop

bbot

)
=

(
Atop

Abot

)
· s+

(
etop
0

)
mod q

We then apply the Gaussian elimination algorithm to obtain LPN of less di-
mension. For this purpose, We parse s to (s1∥s2) such that s1 ∈ Fn−N1

q and

s2 ∈ FN1
q . Similarly to the s, we split Atop (Resp. Abot) into (Aleft

top ∥A
right
top )

(Resp. (Aleft
bot ∥A

right
bot )) as well. Assuming that the matrix Aright

bot is invertible

over Fq, (If not, we change the order of columns until Aright
bot is invertible), one

can get the following LPN samples:(
Im−N1∥ −A

right
top · (Aright

bot )
−1
)
·
(
btop

bbot

)
=
(
Im−N1

∥ −Aright
top · (Aright

bot )
−1
)
·
((

Atop

Abot

)
· s+

(
etop
0

))
mod q

= (Aleft
top −Aright

top · (Aright
bot )

−1
·Aleft

bot )︸ ︷︷ ︸
=:A′

·s1 + etop mod q.

Complexity. In each guessing, this algorithm computes the matrix A′, which
consists of one matrix inversion and two matrix multiplications so it takes in
time Cm,N1

:= O(Nω
1 +N2

1 · (m−N1)+N1 · (m−N1) · (n−N1)), where ω is the
linear algebra constant. The probability that attackers can correctly guess N1

positions is Pm,t,N1 :=
(m−t

N1
)

(m
N1
)
, which directly implies that the time complexity

to get LPN samples of dimension n−N1 is 1
Pm,t,N1

· Cm,N1
.

Step 2. For ease of representation, we assume that LPN instances (A,b) such

that b = A · s+ e mod q are given, where b ∈ Fm−N1
q ,A ∈ F(m−N1)×(n−N1)

q , s ∈
Fn−N1
q and e ∈ χt,m−N1

.

The second step just runs Prange’s algorithm. That is, one first collects n−N1

error-free polynomials from given m−N1 LPN instances. Then, one can recover
the secret s via the Gaussian elimination algorithm.

Complexity. It is obvious to compute the complexity of Prange’s algorithm for
solving LPN over with dimension n−N1, samples m−N1 and t nonzero:

Sm−N1,n−N1,t
def
=

(
m−N1

n−N1

)(
m−N1−t
n−N1

) · (n−N1)
ω =

1

Pm−N1,t,n−N1

· (n−N1)
ω,

where the linear algebra constant ω. Putting it together, the LPN problem is
solved within

1

Pm,t,N1

· (Cm,N1
+ Sm−N1,n−N1,t)
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In the complexity, the term 1
Pm,t,N1

· Sm−N1,n−N1,t =
(mn)
(m−t

n )
· (n − N1)

ω is

a dominating term. Compared to the original Prange algorithm
(m−t

n )
(mn)

· nω, the

fractional part is shared but one can see that the multiplier factor, (n − N1)
ω,

is smaller for the Reduce and Prange algorithm. This can be expected to lower
the overall complexity of the algorithm.

2.3 Iterative Reduce and Prange Technique

‘Step 1’ in Section 2 can be interpreted as a self-reduction of LPN. As a natural
extension, one can run Step 1 reduction repeatedly to get LPN samples of less
dimension. Thereafter, one can solve the reduced LPN problems by Step 2. With
respect to the number of reductions, we call this algorithm the level-k Reduce
and Prange algorithm.

For instance, suppose k = 2, the level-2 Reduce and Prange algorithm corre-
sponds as follows: First one can get LPN samples of dimension n−N1−N2 from
the n−N1 dimensional LPN samples, and then it can be solved via the Prange
algorithm on the less dimension. The interesting fact is that since this auxiliary
step proceeds after the first step occurs, the overall time complexity for level-2
Reduce and Prange algorithm is given as

1

Pm,t,N1

·
(
Cm,N1

+
1

Pm−N1,t,N2

(Cm−N1,N2
+ Sm−N1−N2,n−N1−N2,t)

)
.

As a generalization, the time complexity for level-k Reduce and Prange al-
gorithm is then obviously computed. For ease of exposition, we define notations
P(j), C(j),S as follows:

P(j) = P(m−
∑j−1

i=1 Ni),t,Nj

C(j) = C(m−
∑j−1

i=1 Ni),Nj

S =
1

P(m−
∑k

i=1 Ni),t,(n−
∑k

i=1 Ni
)
·

(
n−

k∑
i=1

Ni

)ω

Then, under the notation, the total cost of our algorithm is

T =
1

P(1)

(
C(1) + 1

P(2)

(
C(2) + · · ·+ 1

P(k)
(C(k) + S)

))
To simplify it, we also define P ′(j) as P ′(j) =

∏j
i=1 P(i). We then denote the

total cost as

T =

k∑
j=1

C(j)
P ′(j)

+
S
P ′(k)

.
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To (approximately) optimize the cost, we investigate the T in two parts. On

the one hand, we point out that the P ′(j) equals to
(

m−t∑j
i=1

Ni
)

( m∑j
i=1

Ni
)
. It means that

the first term C(1)
P′(1) is only determined by the N1. Inductively, if the

∑j−1
i=1 Ni is

fixed once, the term C(j)
P′(j) is only determined by the Nj .

On the other hand, the last term S
P′(k) is identical to (n−

∑j
i=1 Ni)

ω · (mn)
(m−t

n )
,

of which the fraction is an invariant factor with respect to k. This means that

the cost of the last term is written as
(m−t

n )
(mn)

·c for some c. The term c gets smaller

as
∑j

i=1 Ni gets larger.

Since the overall cost of a positive addition will be optimized when all values

are similar, we let the threshold be
(m−t

n )
(mn)

·∆ for some integer ∆ ∈ Z and choose

the largest integerNi such that each C(i)
P′(i) term is less than the threshold, starting

at i = 1. If there is no integer Nj for an index j, we let Nj = n−
∑j−1

i=1 Ni and
operate the Prange’s algorithm of LPN of dimension Nj . Then the total cost is

given as
∑j−1

i=1
C(j)
P′(j) +

(mn)
(m−t

n )
Nω

j .

We try it for all∆ smaller than n2.8, and we give the most optimized cost. The
full algorithm for estimating the Reduce and Prange will be given by Algorithm 1.

Algorithm 1 Reduce and Prange Estimation

1: Input: LPN parameters (m,n, t)
2: Output: The total cost of the Reduce and Prange algorithm.

3: Set Threshold =
(mn)
(m−t

n )
4: Set Cost = Threshold · n2.8

5: for ∆ = 1 up to n2.8 do
6: Set idx = 1
7: while ∃Nidx such that C(idx)

P′(idx) < ∆ · Threshold do

8: Set largest Nidx such that C(idx)
P′(idx) < ∆ · Threshold

9: Set idx = idx+ 1
10: end while
11: Set Nidx = n−

∑idx−1
i=1 Ni

12: Cost = min
{
Cost,

∑idx−1
i=1

C(i)
P′(i) + Threshold ·N2.8

idx

}
13: end for
14: Return Cost and {Ni}idxi=1

2.4 Hybrid-RP: Combine [BLP08] with Reduce and Prange

Bernstein, Lange and Peters [10] proposed a method for solving the McEliece
cryptosystem, refining the Stern’s attack algorithm [63]. Similar to our approach,
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their algorithm includes a step that iteratively searches for certain non-zero
coordinates. A key strategy they employed involves the technique of reusing
existing pivots, which, as the name suggests, means re-applying some coordinates
from the previous iteration.

On the other hand, RP first guesses N1 zero positions in the vector e. If
one correctly guesses, then go to the next step. Otherwise, it attempts to re-
guess “the whole N1 zero positions” in the noise vector e. Each iteration step
requires a considerable computation cost, denoted as Cm,N1

. We propose a hybrid
algorithm, called a hybrid-RP, which incorporates the reusing technique to lessen
this cost.

Specifically, we define ebot ∈ ZN1 as the vector replaced in the first iteration.
While ebot is not entirely zero, it would contain several zero coordinates. We
assume ebot has N

′
1 zero coordinates with probability

P ′
N1,N ′

1,m,t =

(
m−t
N ′

1

)(
t

N1−N ′
1

)(
m
N1

) .

We divide ebot into two parts: e1 ∈ ZN1−N ′
1 and e2 ∈ ZN ′

1 , where ebot = (e1|e2)
and e2 = 0.

Under the notations, after the first step, LPN instances can be expressed as:

b′ = A′ · s1 +A′′ · e1 + etop,

where A′′ ∈ Z(m−N1)×(N1−N ′
1). As in [10], our strategy is also to guess only

N1−N−1′ zero positions in the updated noise vector to eliminate the e1 vector.
Consequently, the complexity for this updated iteration step is Cm−N1,N1−N ′

1
.

On the other hand, we note that since e1 is non-zero and e has t non-zero
coordinates, etop consists of t′ = t− (N1−N ′

1) non-zero entries. This means the
step’s success probability is Pm−N1,t′,N1−N ′

1
. Therefore, by incorporating the

reuse of coordinates, the algorithm for reducing N1 coordinates concludes with
a cost of:

1

P ′
N1,N ′

1,m,t

·
(
Cm,N1 +

Cm−N1,N1−N ′
1

Pm−N1,t′,N1−N ′
1

)
. (1)

For simplicity, we denote

C′m,N1,t′ = Cm,N1
· Pm−N1,t′,N1−N ′

1
+ Cm−N1,N1−N ′

1
.

Moreover, it is also observed that

P ′
N1,N ′

1,m,t · Pm−N1,t′,N1−N ′
1
= Pm,t,N1

.

Therefore, under the notation, Equation (1) can be written as
C′
m,N1,t′

Pm,t,N1
. Compared

to the original computational cost of
Cm,N1

Pm,t,N1
, the factor of 1/Pm,t,N1 shifts from

Cm,N1
to Cm−N1,N1−N ′

1
, indicating a potential reduction in the overall cost.
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We remind that the main purpose of the hybrid-RP is only to replace the
first step. It implies that by plugging this hybrid algorithm, the total cost can
be computed by

THyb =
1

P(1)

(
C′m,N1,t′ +

1

P(2)

(
C(2) + · · ·+ 1

P(k)
(C(k) + S)

))
=
C′m,N1,t′

P(1)
+

k∑
j=2

C(j)
P ′(j)

+
S
P ′(k)

.

The full algorithm corresponding to the hybrid-RP is then given by Algorithm 2.

THyb =
1

P(1)

(
C′m,N1,t′ +

1

P(2)

(
C(2) + · · ·+ 1

P(k)
(C(k) + S)

))
=
C′m,N1,t′

P(1)
+

k∑
j=2

C(j)
P ′(j)

+
S
P ′(k)

.

The full algorithm corresponding to the hybrid-RP is then given by Algorithm 2.

Algorithm 2 Hybrid Reduce and Prange Estimation

1: Input: LPN parameters (m,n, t)
2: Output: The total cost of the Hybrid Reduce and Prange algorithm.
3: for t1 = 1 up to t do

4: Set Threshold =
(mn)
(m−t

n )
5: Set Cost = Threshold · n2.8

6: for ∆ = 1 up to n2.8 do

7: Compute N1 such that
C′
m,N1,t′

P′(1) < ∆ · Threshold
8: Set idx = 2
9: while ∃Nidx such that C(idx)

P′(idx) < ∆ · Threshold do

10: Set largest Nidx such that C(idx)
P′(idx) < ∆ · Threshold

11: Set idx = idx+ 1
12: end while
13: Set Nidx = n−

∑idx−1
i=1 Ni

14: Cost = min

{
Cost,

C′
m,N1,t′

P′(1) +
∑idx−1

i=2
C(i)
P′(i) + Threshold ·N2.8

idx

}
15: end for
16: end for
17: Return Cost and {Ni}idxi=1

By implementing this hybrid algorithm, a more accurate estimation of secu-
rity level can be achieved. For detailed implementation results, please refer to
the Section 4.
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Remark 1. The hybrid-RP could be further optimized by applying the re-using
technique from [10] at each iterative step. However, the improvement is expected
to be marginal according to our estimations, since the values of Ni for i ≥
2 are relatively small. Consequently, reducing the size of such Ni would not
substantially improve the estimated results.

3 Regular-RP: Application to regular-LPN

This section provides how to apply the RP to the LPN with regular noise, which
is equivalent to the regular syndrome decoding problem. Throughout this section,
we set R = Fq with q ≥ 2.

We first introduce a new problem, called the regular syndrome decoding
(RSD). RSD was originated [5], and it has a lot of applications in PGC-like
protocols [7, 15,17,19,25,28,39,60–62,67,71].

Problem 3 (Regular Syndrome Decoding over Fq). Let m,n, t, β be positive in-
tegers with m = t · β and Fq be a finite field. Sample a full rank matrix

H ← F(m−n)×m
q and a column vector e := (e1∥e2∥ . . . ∥et) ← Fm

q such that

ei ∈ Fβ
2 is of Hamming weight |ei| = 1 for 1 ≤ i ≤ t. Given (H,y = H · e),

recover the error e.

Note that LPN instances of the form (A,b) = (A,A · s + e) can be easily
transformed into a problem of finding e when there exists a matrix H such that
H · e = H · b, and vice versa, as demonstrated in [55, Lemma 4.9]. Therefore,
we restrict our attention to the regular-LPN problem.

3.1 Algorithm for regular-LPN over Large Fields

Esser and Satini [37] proposed an algorithm for solving regular-LPN. Among
the algorithms, the permutation-based regular ISD algorithm exploits the reg-
ular structure to guess the error-free instances. We adopt the technique to our
algorithm to tightly estimate the security of regular-LPN over large fields.

To effectively solve regular-LPN over large fields, our strategy focuses on
modifying the guessing probability in the RP algorithm. We call it regular-RP.

Regular-RP. Specifically, in the initial step, we guess N1-error free instances
to set ebot = 0 ∈ ZN1

q . By definition of regular-LPN, it holds that each ei
has exactly one nonzero element. It immediately implies that the probability of
guessing a zero coordinate of e1 equals to

β−1
β . To guess the second zero position,

one considers two cases:

– E1: Find the zero coordinate in e1.

– E2: Find the zero coordinate in ei for i ̸= 1.

12



The probability of event E1 is β−2
β−1 , whereas the probability of event E2 is β−1

β .

Thus, the best strategy is to guess N1/t-zero coordinates in each ei. Conse-
quently, the probability of selecting N1 zero positions is

PR
m,t,N1

=

(
1− N1/t

β

)t

=

(
1− N1

m

)t

.

Similar to in Section 2.3, we can also calculate the time costs of an iterative
version. To this end, we define PR(j), C(j) and SR as follows:

PR(j) = PR
(m−

∑j−1
i=1 Ni),t,Nj

C(j) = C(m−
∑j−1

i=1 Ni),Nj

SR =
1

PR
(m−

∑k
i=1 Ni),t,(n−

∑k
i=1 Ni

)
·

(
n−

k∑
i=1

Ni

)ω

Then, under the notation, the total cost of level-k regular-RP algorithm, denoted
by T R, can be expressed as

1

PR(1)

(
C(1) + 1

PR(2)

(
C(2) + · · ·+ 1

PR(k)

(
C(k) + SR

)))
To simplify it, we also define P ′R(j) as P ′R(j) =

∏j
i=1 PR(i). We then denote

the total cost as

T R =

k∑
j=1

C(j)
P ′R(j)

+
SR

P ′R(k)
.

Hybrid-regular-RP. As in Section 2.4, we can more optimize the attack via
hybrid approach. We recall that, in the hybrid-RP, the ebot contains N ′

1 zero
coordinates with probability P ′

N1,N ′
1,m,t for the standard LPN problem after the

first replacement. It suffices to compute such a probability depending on regular-
LPN.

In the case of regular-LPN, we first remark that ebot is still a regular noise
because of our guessing strategy E2. Let ebot = (e′1∥e′2∥ . . . ∥e′t) ∈ FN1

q , where

e′i ∈ FN1/t
q is a sub-vector of ei. Similar to the analysis in Section 2.4, we assume

that ebot has N ′
1 zero coordinates. Since e′i has precisely one nonzero entry for

each i ∈ [t] and ebot contains exactly N1 − N ′
1 nonzero coordinates, it satisfies

that there is a subset S ⊂ {1, 2, . . . , t} of size t− (N1 −N ′
1) such that e′j is the

zero vector for every j ∈ S. We further note that the probability of each e′i has
nonzero coordinates with probability N1

β .

Combining all the facts together, ebot contains N ′
1 zero coordinates with

probability

P ′R
N1,N ′

1,m,t =

(
t

N1 −N ′
1

)
·
(
N1

β

)N1−N ′
1

·
(
1− N1

β

)t−(N1−N ′
1)

.
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By plugging it into the Equation (1), one can compute the time complexity of
the hybrid regular-RP:

T R
Hyb =

C′m,N1,t′

PR(1)
+

k∑
j=2

C(j)
P ′R(j)

+
SR

P ′R(k)
.

3.2 Algorithm for regular-LPN over binary field

According to [18], the regularity of an error distribution τ provides an extra
relations: For any 1 ≤ i ≤ t, we observe that

1−
β∑

j=1

ei,j = 0,

where ei,j is the j-th entry of a vector ei. Consequently, the attack can easily
get t linear equations from the regularity of τm,t.

We can parse b = (b1∥ · · · ∥bt) where bi ∈ Fβ
2 , and our attack exploits this

fact as follows: For every 1 ≤ i ≤ t,

β∑
j=1

bi,j = (

β∑
j=1

aTj ) · s+
β∑

j=1

ei,j mod 2

= (

β∑
j=1

aTj ) · s+ 1 mod 2

Here, bi,j is the j-th entry of bi, and aTj is the j-th row vector of A. Thus, we
automatically obtain an error-free polynomial gi of the form

gi(x) =

β∑
j=1

bi,j − 1− (

β∑
j=1

aTj ) · x.

This exploitation can significantly enhance our attack. Specifically, the purpose
of RP is to collect error-free polynomials, and the t error-free polynomials ob-
tained from the regularity of τm,t reduce the number of error-free polynomials
that we need to obtain. Consequently, we need only n− t error-free polynomials
to solve regular-LPN.

The remaining part is to obtain n − t error-free polynomial through RP in
Section 3.1.

4 Concrete Estimation of LPN via Reduce and Prange
algorithm

In this section, we provide the estimated results of our algorithms for solving
the LPN over R. The results are given by
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– Table 1: Numerical results of RP and hybrid-RP for solving LPN over F2128

– Table 2: Numerical results of RP for solving LPN over various rings
– Table 3: Numerical results of regular-RP for solving regular-LPN

We further compare the results with recent attacks [18,37,49] depending on prob-
lems in each tables. Throughout this section, time complexity means the number
of arithmetic operations in R. For this purpose, we first recall the parameters of
RP and its variants for LPN over finite fields.

– q: the size of fields ≈ 2128.
– m: the number of LPN instances.
– n: the dimension of LPN secret s.
– t: the number of nonzero entries in e.

Our focus is mainly on the parameter regime (m, q, t) = (poly(n), nw(1), o(m)),
which has been widely used in several cryptographic applications including those
presented in [7,8,14,16,17,25,29,62,67,71], and which is affected by our analysis
of the cost of solving LPN over finite fields. Specifically, our comparison is lim-
ited to ISD and its variants, which were highlighted for their substantial impact
in the recent work by Liu et al. [49]. Therefore, these serve as the most relevant
benchmarks for evaluating our results. 2

For fair comparisons, we adopt the cost models of prior attacks, using the
notations in earlier sections. The majority of these cost models are in the recent
analysis conducted by Liu et al. [49]. We remind comments in [49]:

– For the parameter regime R = Fq with prime power q = nw(1), t = o(m)
and (1 + β) · n ≤ m = poly(n) for some constant β, the statistical decoding
including the 2.0 variant [23] needs more cost than Prange’s algorithm [59].

– For the parameter setup, information set decoding and its variants outper-
forms than other algorithms.

It is important to note that many algorithms, including ours, utilize Gaussian
elimination as a subroutine algorithm, which has an asymptotic runtime of O(kω)
for a matrix rank k and linear algebra constant ω. Therefore, it is necessary to
eliminate the hidden constant in the big-O notation to accurately measure the
concrete security estimation for LPN over large fields.

Our estimations are based on the same cost model of the time complexity of
the Gaussian elimination algorithm on a k × k matrix. We utilize a cost model
of k2.8 as in the previous works [14,49].3

Prange’s Algorithm. As described in Section 2.1, the basic idea behind our
algorithm is to collect several error-free LPN instances (i.e., ei = 0) and use
Gaussian elimination to solve the corresponding linear system. Specifically, given
an n×n matrix A′ and b′ such that A′ · s = b′, we can recover the secret vector
s by computing the inverse matrix of A′.

2 Other algorithms for solving LPN are given in Appendix A.
3 The exponent is inspired by the Strassen matrix multiplication algorithm.
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The probability of obtaining such a matrix A′ is
(m−n

t )
(mt )

, and the cost of

computing the inverse of A′ is n2.8. Consequently, the cost is n2.8 ·
(

(mt )
(m−n

t )

)
.

Furthermore, it is worth noting that LPN instances (A,b) = (A,A · s + e)
can be easily converted into a problem of finding e when H · e = H · b for some
matrix H, and vice versa, as shown in [55, Lemma 4.9]. In this case, the cost is

(m− n)2.8 ·
(

(mt )
(m−n

t )

)
.

Consequently, the Prange’s cost model is defined as follows:

Prange cost model = log

(
min{n2.8, (m− n)2.8} ·

( (
m
t

)(
m−n

t

)))

Information Set Decoding. In accordance with the findings reported in [49],
the cost of information set decoding (ISD) attacks is shown to be comparable
to that of Prange’s algorithm, provided that q is sufficiently large. With this
in mind, we provide a summary of the computational costs associated with ISD
and its variants in this section. We take into account several remarks provided in
[49] to ensure a fair comparison. Furthermore, we also consider the estimations
presented in [49] on the hardness of LPN over Fq.

Moreover, the work in [49] is primarily concerned with the hardness of LPN
over Fq for q ≥ 256, as the authors argue that other cases are less relevant
to applications such as PCG, MPC, and ZK. The estimator for low-noise LPN
presented in [49] is a generalization of the SD-ISD algorithm by Peters [58].
However, the paper does not cover other LPN-solving algorithms, such as those
in [6, 13, 34–36,41, 43, 52, 54, 63], which have a hidden polynomial overhead that
makes them less efficient to analyze in terms of concrete cost or space con-
sumption. Furthermore, it is currently unclear how the techniques proposed in
[9,51] can be extended to solve LPN over Fq for large values of q. For a detailed
discussion of this issue, we refer the reader to the original paper [49].

In summary, [49] estimates the hardness of LPN over Fq through SD-ISD
attack.

Lemma 4.1 (Cost of SD-ISD attack [49]) The (m,n, t)-LPN problem over
Fq can be solved by the SD-ISD variant in expected time

TSD(m,n, t) = min
p,ℓ

1

P(p, ℓ)

(
TGauss + 2L ·m

(
1 +

L

qℓ

))

where TGauss =
(m−n−ℓ)·m2

log(m−n−ℓ) , L =
(n+ℓ

2

p/2

)
·(q−1)p/2 and P(p, ℓ) = (m−n−ℓ

t−p )
(mt )

· L2

(q−1)p .
4

4 As the paper [49] only presents an estimation of LPN over F2, we rely on the formu-
lation provided by their Python script to describe our approach.
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4.1 Numerical Results of LPN (over large fields)

This section presents the numerical results obtained from our attack estimation
for different parameter settings, especially PCG-like protocol setting. We devel-
oped a SageMath [64] script to search for near-optimal parameterization for our
attack. The original algorithm would have examined the attack complexity that
is minimized for all ∆ values, but we examined the values via the binary search
with depth ≤ 12 to find an approximate minimum quickly with a constraint
∆ ≤ n2.8. The cost we found also provides a sufficiently small value compared
to the original cost.

Our analysis indicates that for the parameters used in [49], the bit-security
of LPN over large fields is reduced by 5-11 bits when log q = 128. Note that
in the case of LPN over F2, the SD-ISD attack proposed in [49] outperforms
our algorithm. Similarly, for solving LPN over Z2128 and Z4, the SD-ISD attack
proposed in [49] outperforms our algorithm. This is because LPN over these
rings can be reduced to LPN over F2 with fewer Hamming weights, as reported
in [49]. Indeed, as noted in [49], we estimate the bit-security of (m,n, t)-LPN

over Z2λ with λ ≥ 2 as that of (m,n, 2λ−1

2λ−1
· t)-LPN over F2.

We also provide comparison results between [49] and ours for a few parame-
ters. The results are given by Table 1, Table 2.

Table 1. Comparison results with previous results [49] and ours. All values are log-
arithmic scale of arithmetic operations over Fq with the field size log q = 128. In our
works, ‘RP’ column presents the estimated result of Reduce and Prange algorithm.
The last column displays the numerical results of a hybrid-RP. For the dash(-) in the
hybrid column, we terminated the experiment because it was taking too much time.

Parameters [49]5 This work

m n t Gauss ISD RP Hybrid

210 652 57 111 111 102 101

212 1589 98 100 100 91 89

214 3482 198 101 101 94 93

216 7391 389 103 103 96 95

218 15536 760 105 105 101 105

220 32771 1419 107 107 102 -

222 67440 2735 108 108 104 -

212 3072 44 117 117 109 106

214 12288 39 111 111 105 101

216 49152 34 107 107 102 -

218 196608 32 108 108 105 -
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Table 2. Comparison results with previous results [49] for various rings. The numerical
results presented in this table indicate the result of RP, not the hybrid-RP. All values
are logarithmic scale of the number of arithmetic operations over R.7

Parameters [49] This work

m n t F2128 F28 Z2128 Z4 F2 F2128 F28 Z2128 Z4 F2

210 652 106 194 186 89 116 176 183 183 95 124 183

212 1589 172 155 146 76 95 131 144 144 83 103 144

214 3482 338 150 144 78 95 132 141 141 84 103 141

216 7391 667 151 148 82 99 135 143 143 87 106 143

218 15336 1312 153 153 87 104 139 145 145 90 108 145

220 32771 2467 155 157 92 108 143 147 147 94 111 147

222 67440 4788 156 160 97 113 147 150 150 97 114 150

Remark 2. Some readers might be curious about the configuration of the sub-
dimension sets {Ni}idxi=1. Given our findings, with idx typically ranging from
over 20 to as high as 2000, accurately defining the set can be challenging. Con-
currently, it has been noted that the size of N1 often exceeds N/3. Similar
occurrences are also observed in the context of the regular-LPN.

4.2 Numerical Results of regular-LPN

This section provides numerical results for solving regular-LPN for various pa-
rameters, and gives comparison results with [18,37,49]. Here, as in the previous
section, we mainly cover regular-LPN parameters mainly used in the PCG set-
ting. Thus, we do not cover parameters in [22].

We first note that [18, 49] provides numerical results of the bit-security of
regular-LPN over Fq with log q = 128 since both algorithms rarely depend on
the field size. Conversely, [37] solely provides the bit-security of regular-LPN
over F2. Thus, we revisit the algorithms in [37] and re-estimate the bit-security
of regular-LPN over F2128 .

[37] proposes three types of algorithms: permutation-based regular-ISD (P-
ISD), enumeration-based regular-ISD (E-ISD), and representation-based regular-
ISD (R-ISD), each adapting well-known algorithms [9, 51, 59] for the specific
task of solving regular-LPN. Among these, we specifically focus on the P-ISD
algorithm. This is because the other algorithms require the collection of a large
number of collision vectors over Zq, which significantly increase the concrete

5 [49] also presents numerical results for the statistical decoding 2.0 attack [24]. How-
ever, we did not take these results into account because they showed lower perfor-
mance compared to than Gauss and ISD results in these parameters in the table.

7 The latest version of [49] at ePrint is 20231008:131837. The results these parameters
of parameters are in 20230218:110851 of [49].
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complexity. Indeed, numerical results from [49, Tab 3. Tab. 4] indicate that the
Gauss costs are always comparable to ISD costs for (regular-)LPN over F2128

for all PCG parameter setting, although ISD consistently surpasses the Gauss
in terms of cost for (regular-)LPN over F2.

Revisiting P-ISD for regular-LPN over Fq with q ≫ 2. As discussed in
Section 3.1 and [37, Sec. 4.1], we can just compute the time cost as follows(

1−
(nt )

(mt )

)−t

·min{n2.8, (m− n)2.8} =
(
1− n

m

)−t

·min{n2.8, (m− n)2.8}

for solving (m,n, t)-regular-LPN. We further note that in [37, Sec. 4.1], they
computed the time complexity(

1− n− t

m

)−t

·min{n2.8, (m− n)2.8}

because one can directly obtain extra t error-free polynomials as in Section 3.2.
However, in case of regular-LPN over Fq, it does not occur. Hence, we re-estimate
the bit-security of regular LPN over F2128 as follows:(

1− n

m

)−t

·min{n2.8, (m− n)2.8}.

For a binary case, we wrote down the best performance used in [37].

To measure the cost of the regular-LPN over F2128 , we use an algorithm in
Section 3.1. For the regular-LPN with binary fields, we can employ a technique
in Section 3.2. Thus, the regular noise with binary fields additionally provides t
error-free polynomials. By augmenting the extra error-free instances, the regular-
LPN can be interpreted as (m+ t, n, t)-regular-LPN samples. We then apply the
algorithm Section 3.1 to get (m,n−t, t)-regular-LPN samples for the augmented
error-free equations. Next, by applying the whole algorithm in Section 3.1 on the
(m,n− t, t)-regular-LPN samples, one can solve the regular-LPN over F2.

The numerical results are reported in Table 3, which demonstrates that our
attack outperforms several parameter settings. To estimate the cost, we use a
hybrid-regular-RP algorithm that combines a regular-RP with [10] as in the
hybrid-RP.
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A Other algorithms for Solving LPN over Large Fields

In this section, we provide a brief overview of prior works, such as the Blum-
Kalai-Wasserman (BKW) algorithm and statistical decoding algorithms, that
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are commonly used for solving a standard LPN problem. We then proceed to
show that these algorithms are not competitive when applied to LPN over large
fields.

BKW framework. Blum et al. [12] proposed an algorithm for a standard LPN.
This approach (intuitively) aims at finding LPN instances (ai,bi) such that the
first-k coordinates of ai are identical. This case happens with 2O(k)-samples.

From the set, one can have new LPN instances, (ai−aj ,bi−bj), of dimension
n − k. Iterating the above process, adversary eventually intends to get a LPN
instance of small dimension and it (may) gives a corresponding coordinate of
secret s.

From the high-level description, it can be inferred that qO(k) samples are
required to get LPN pairs of k coordinates colliding. That is the whole complexity
of BKW heavily depends on the size of underlying space q.

Statistical Decoding framework. While the BKW and ISD algorithms aims
at recover the secret element s directly, this low weight parity check (LPC)
algorithm intends to distinguish between random instances and LPN instances.
In other words, this algorithm can determine b equals to A · s + e mod 2 or a
random element.

For the purpose, the main task of this algorithm is to find a low-hamming
weight matrix H, which holds that H ·A = 0. It then leads to give a new term
H · b mod 2. While the term has a uniform distribution for a random vector,
it has bias for a LPN sample b = A · s + e since this term is identical to a
product of two low hamming weight terms H · e. Repeating this algorithm, one
can deduce the distribution b.

On the other hand, Blum et al. offered a search to decision reduction [11,38].
The reduction outline consists of two steps: The first step is to sample a random
vector s′ and reconstruct a new sample (A,b+A · s′) for the given LPN sample
(A,b = A · s+ e mod 2). The last one is to replace the i-th column vector of A
with a random vector. Suppose that the i-th entry of s + s′ is identical to the
zero, it is still a LPN sample as well, if not it becomes a random pair. Hence, an
oracle for decision LPN problems can recover the i-th entry by trying the above
process for all underlying space. The last part makes this algorithm ineffective
to the LPN over large fields. this search to decision algorithm should be repeated
q-times. In particular, for q ≥ 4t, [49] proposes that adapted SD 2.0 algorithm.

Lemma A.1 ([23,49]) The adapted SD 2.0 algorithm can solve the decisional
(m,n, t)-LPN over Fq in time T with constant advantage, where w = w(s) ∈ N
and q ≥ 4t. The formula for T is given by

T = min
s

T1 ·

( (
m
t

)(
m−w

t

) · q

q − 1

)2

+ s · log q · qs
 .
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Here, T1 represents the time it takes to find one parity check vector. Following
[14,49], we also set w = n− s+ 1 and T1 = n+ 1. As a result, we have

T = min
s

(n+ 1) ·

( (
m
t

)(
m−n+s−1

t

) · q

q − 1

)2

+ s · log q · qs
 .

In summary, the prior approaches including BKW, ISD, and LPC algorithms
heavily relies on the size of q and it is not competitive when q has an exponential
size in the security parameter λ.
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