
Amortized Large Look-up Table Evaluation with Multivariate

Polynomials for Homomorphic Encryption

Heewon Chung1, Hyojun Kim1, Young-Sik Kim2, and Yongwoo Lee3

1DESILO Inc., Seoul, Republic of Korea
{heewon.chung, hyojun.kim}@desilo.ai

2Daegu Gyeongbuk Institute of Science and Technology, Daegue, Republic of Korea
ysk@dgist.ac.kr

3Inha University, Incheon, Republic of Korea
yongwoo@inha.ac.kr

Abstract

We present a new method for efficient look-up table (LUT) evaluation in homomorphic en-
cryption (HE), based on Ring-LWE-based HE schemes, including both integer-message schemes
such as Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/Fan-Vercauteren (BFV), and
complex-number-message schemes like the Cheon-Kim-Kim-Song (CKKS) scheme. Our ap-
proach encodes bit streams into codewords and translates LUTs into low-degree multivariate
polynomials, allowing for the simultaneous evaluation of multiple independent LUTs with min-
imal overhead. To mitigate noise accumulation in the CKKS scheme, we propose a novel noise-
reduction technique, accompanied by proof demonstrating its effectiveness in asymptotically
decreasing noise levels.

We demonstrate our algorithm’s effectiveness through a proof-of-concept implementation,
showcasing significant efficiency gains, including a 0.029ms per slot evaluation for 8-input, 8-
output LUTs and a 280ms amortized decryption time for AES-128 using CKKS on a single
GPU. This work not only advances LUT evaluation in HE but also introduces a transciphering
method for the CKKS scheme utilizing standard symmetric-key encryption, bridging the gap
between discrete bit strings and numerical data.

Keywords. Homomorphic encryption (HE), look-up table (LUT), multivariate polynomial,
transciphering

1 Introduction

Homomorphic encryption (HE) serves as a crucial tool in secure computation, enabling compu-
tations on encrypted data without revealing sensitive information. Typically, HE schemes are
classified into two categories: word-wise and bit-wise HE. Brakerski-Gentry-Vaikuntanathan (BGV)
[BGV14] / Brakerski-Fan-Vercauteren (BFV) [Bra12, FV12] / Cheon-Kim-Kim-Song (CKKS) [CKKS17]
fall under the word-wise category, supporting addition and multiplication with a notable advantage
in naturally accommodating Single Instruction, Multiple Data (SIMD) operations. Specifically,
BGV and BFV excel in operations within Zt with exact precision, making them suitable for ap-
plications like private information retrieval. On the other hand, CKKS facilitates operations over

1

complex (including real) numbers, making it particularly efficient for various machine learning ap-
plications. However, a limitation common to BGV/BFV/CKKS is their restriction to basic arith-
metic operations, necessitating workarounds such as approximation polynomials for non-arithmetic
operations like min/max.

Ducas and Micciancio [DM15] introduced a groundbreaking HE approach that supports ar-
bitrary binary operations, also known as functional bootstrapping, through blind rotation tech-
niques. Subsequent works [CGGI17, CGGI20] have further enhanced this method. DM-like HE is
advantageous for its small parameter size and the ability to perform arbitrary binary gate opera-
tions, allowing for a wide range of computations within homomorphic encryption. Recent advance-
ments [YXS+21, Zam22, LMP22] aims to extend DM-like HE to support more general operations
and handle multiple bits by utilizing larger parameters.

However, DM-like HE faces two primary limitations. Firstly, unlike BGV-like HE, it does not
inherently support SIMD operations, leading to lower throughput. Secondly, to support multi-bit
plaintext, a quadratic increase in parameter size is required, leading to efficiency loss. According
to Bergerat et al. [BBB+23], performance significantly deteriorates when dealing with LUT larger
than 8 bits. Consequently, circuit design often involves multiple small LUTs, posing challenges in
parameter selection and the tradeoff in the number of gates and performance of HE operations.

This work is motivated by the observation that constructing an efficient algorithm to support
an arbitrary circuit with large input and output and SIMD operation simultaneously is important,
as it can significantly enrich the application of HE. In particular, our focus is on executing LUTs
with large input and output sizes.

1.1 Contribution

The following are two primary contributions of this paper.
Firstly, we propose a novel method for the secure evaluation of LUTs with large inputs and

outputs, leveraging RLWE-based HE schemes. This method is characterized by its use of multi-
variate polynomials to manage substantial input sizes, making it compatible with all RLWE-based
HE schemes such as BGV, BFV, and CKKS. A notable advantage of our approach is its reliance
on low-degree multivariate polynomials, which offers significant benefits compared to existing so-
lutions. These include the ability to process multiple inputs through a single LUT evaluation,
enhancing efficiency; the capability to conduct slot-wise evaluations of distinct LUTs within the
same ciphertext without incurring additional costs; and the facilitation of multiple independent
LUT evaluations on the same ciphertext with minimal additional computational overhead.

Secondly, we introduce a sophisticated noise-reduction technique that effectively mitigates the
inherent noise in the CKKS scheme when applied to our LUT evaluation method. Considering the
inherently noisy nature of the CKKS scheme, attributed to its approximate arithmetic, directly
diminishing the signal-to-noise ratio (SNR) poses a significant challenge. Inspired by Cheon et
al. [CKK20] and Drucker et al. [DMPS22], we address the CKKS scheme’s noise by discretizing
inputs, proposing an effective noise-reduction algorithm. Our noise-reduction approach employs a
low-degree polynomial, requiring less than five multiplications. We also offer proof that this method
can diminish the initial noise, measured by SNR ϵ < 1, to a notably reduced level, expressed as
c · ϵ2, with c being a minor constant.

To empirically validate the performance of our proposed scheme, we implemented AES de-
cryption as a proof-of-concept, achieving a decryption time of 330ms per AES ciphertext. This
implementation marks the first instance of a transciphering framework that employs the AES stan-

2

dard over the CKKS scheme. Besides, our technique effectively avoids the Li-Micciancio attack as
it ensures the absence of noise in the message after decryption and decoding.

1.2 Technical Overview

For a function Tℓ→ℓ : {0, 1}ℓ → {0, 1}ℓ as a LUT, we introduce an encoding algorithm encode to
embed a binary vector of length ℓ into a plaintext space HE scheme. In particular, we define

encode(x⃗) = ζ int(x⃗),

where ζ is a primitive 2ℓ-th root of unity of Zt and C, for BGV/BFV and CKKS, respectively with
int(x⃗) is a bijection from a ℓ-bit string to an integer [0, 2ℓ). Then, there exists a polynomial of
degree 2ℓ − 1 representing Tℓ→ℓ and one can execute it homomorphically.

Our approach is generalized to a LUT with larger input, that is, for Tαℓ→βℓ : {0, 1}αℓ → {0, 1}βℓ.
As a result, we can find out that β multivariate polynomials, each with α inputs, can collectively
represent T with the same encoding function. Our method involves decomposing Tαℓ→βℓ into a set

of LUTs, {T (j)
αℓ→ℓ : {0, 1}

αℓ → {0, 1}ℓ}j∈[0,β−1], where T
(j)
αℓ→ℓ(x) is a j-th ℓ-bit fragment of Tαℓ→βℓ.

Rather than interpolating a polynomial for each T
(j)
αℓ→ℓ, we employ a multivariate polynomial.

We also provide a couple of methods for enhancing the efficiency. At first, our approach enables
the evaluation of distinct LUTs for individual message slots, while maintaining computational cost.
The underlying equation is that, given f(x) =

∑n−1
i=0 aix

i and g(x) =
∑n−1

i=0 bix
i,

(f(m0), g(m1)) =

(
n−1∑
i=0

aim
i
0,

n−1∑
i=0

bim
i
1

)
=

n−1∑
i=0

(ai, bi) ◦ (mi
0,m

i
1)

where ◦ denotes the Hadamard product. Deriving from this equation, we find that

Enc(f(m0), g(m1)) =

n−1∑
i=0

encode(ai, bi) · Enc(m0,m1)
i.

This implies that some distinct LUTs can be executed on each message slot by log n squaring
ciphertext and log n ciphertext multiplications, combined with n scalar multiplications. This cost
is equal to that of a single LUT evaluation. This observation can be generalized to multivariate
polynomials with multiple inputs. Moreover, as a power of ciphertexts can be reused when evalu-
ating other LUTs, it facilitates the efficient evaluation of multiple LUTs with minimal additional
computation overhead. Secondly, we introduce a noise-reduction function f : C→ C, charaterized
by f(t) = t and ∥f(t+ ϵ)− f(t)∥ < ∥ϵ∥ for t ∈ C. This function efficiently mitigates noise in the
ciphertext, enabling the execution of arbitrary unbounded arithmetic circuits. We prove that f(x)
is a noise reduction function if any of its coefficients is zero. Specifically, we demonstrate that for
x = t+ ϵ,

f(t) = − 1

n
tn+1 +

(
1 +

1

n

)
t

serves as one of the concrete constructions for the noise-reduction function. It is proven in this
paper that ∥f(t+ ϵ)∥ ≤ c · ϵ2 for small constant c and ϵ≪ 1.

We apply our method to AES-128 transciphering, breaking down its 10-round process into
LUT-representable operations. The AddKey step, involving XOR with round keys, is modeled

3

as a 4-input/output LUT. SubBytes, executing multiplicative inverses in GF(28), translates into
an 8-input/output LUT. ShiftRows and MixColumns combine into a single 8-input/output LUT,
streamlining the process based on Gentry et al. [GHS12]. This approach demonstrates our method’s
utility in executing AES within a homomorphic encryption framework, optimizing cryptographic
computations.

1.3 Related Work

Multi-bit DM-like HE. Homomorphic operations in DM-like ciphertexts leverage LUTs for gate
evaluations, such as NAND, by mapping a set of 2-bit inputs (from 0, 1, 2, representing the sum of
two binary values) to 1-bit outputs. The original DM-like homomorphic encryption (HE) framework
is optimized for efficiency due to small parameter sizes, yet it is inherently limited by noise sensitivity
and the restriction to binary gates per bootstrapping cycle. This limitation necessitates multiple
bootstrapping for complex circuits, with the count increasing with the number of gates.

To enhance the efficiency and reduce the number of required bootstrappings, there is a clear
benefit in supporting larger LUTs, albeit at the cost of increased parameter sizes. Modern strategies
aim to balance the LUT size with the overall cost by optimizing the message space for different data
types, considering both the gate count and bootstrapping requirements. Bergerat et al. [BBB+23]
have pinpointed effective parameters for LUTs up to 8 bits within the TFHE framework.

Amortized bootstrapping in DM-like HE. Micciancio and Sorrel [MS18] introduced a ground-
breaking approach for bootstrapping multiple DM-like ciphertexts simultaneously, termed amor-
tized bootstrapping, which significantly reduced the asymptotic complexity per ciphertext. Despite
its theoretical advancements, practical limitations persisted due to exponential noise growth and
the inability to leverage smaller parameters.

Subsequent research, including works by [GPvL23, MKMS23, LW23a, LW23b], has focused on
enhancing the efficiency of amortized bootstrapping. Parallelly, an alternative strand of amortiza-
tion, explored by [CIM19, MKG23], concentrates on applying multiple gates to a single ciphertext,
offering performance improvements in scenarios with numerous gates, despite not operating in a
SIMD manner.

A notable recent development by Liu and Wang [LW23c] reimagines functional bootstrapping
through a high-degree polynomial (t − 1 in Zt, where t is the message modulus, such as 65537)
evaluation on BFV ciphertexts, achieving amortized efficiency. However, the crux of this method’s
runtime lies in the evaluation of this high-degree polynomial, necessitating optimizations such as
finding polynomials with numerous zeros to enhance practicality.

Drucker et al.[DMPS22] introduced BLEACH, a novel technique utilizing the CKKS scheme for
discrete operations, where binary gates are modeled using interpolated polynomials over real num-
bers, with Cheon et al.’s sign function[CKK20] aiding in noise reduction. This method, however,
is confined to binary gates with single-bit inputs. Our approach broadens this concept to support
LUTs handling multi-bit inputs, effectively generalizing the foundational work of Drucker et al.

1.4 Organization

In Section 2, we outline the foundational concepts of LUTs and HE schemes. The core algorithm
for implementing large LUTs within an approximate HE framework, specifically the CKKS scheme,
is detailed in Section 3. Section 4 delves into optimization strategies for managing LUTs of any

4

size. The adaptation of our principal methodology to the BGV and BFV schemes is explored in
Section 5. The efficacy of our approach is evidenced through the evaluation of AES execution
performance in Section 6. The paper concludes with final thoughts and remarks in Section 7.

2 Preliminaries

2.1 Notations

All logarithms are base 2 unless otherwise indicated. For p ∈ Z, Zp denotes the ring of integers

modulo p. For α ∈ N, F
∏α−1

i=0 ni denotes the vector space of dimension n0 × · · · × nα−1 over F. An

element in F
∏α−1

i=0 ni is denoted by capital letters; for example, A ∈ C
∏α−1

i=0 ni , and each entry of A
is represented by A[i0, . . . , iα−1] where i0, . . . , iα−1 ∈ [0, n− 1].

For a power of two N , we denote the 2N -th cyclotomic ring by RN := Z[X]/Φ2N (X) and its
quotient ring by RN,Q := RN/QRN , where Φ2N (X) = XN +1. Ring elements in RN are indicated
in bold, e.g. a = a(X).

We introduce notations for vector operators denoted by bold letters. The i-th element of vector
a⃗ is represented as a[i], and a⃗[i:j] denotes the subvector (a[i], · · · , a[j]). The inner product of two

vectors a⃗ and b⃗ is denoted as ⟨⃗a, b⃗⟩. Additionally, we denote the L2 and infinity norm by ∥·∥2, ∥·∥∞
respectively, for a ring element a in RN and a vector a⃗ ∈ Zn. The norms of polynomials in R are
the norms of its coefficients vector.

We write the floor, ceiling and round functions as ⌊·⌋, ⌈·⌉ and ⌊·⌉, respectively. ⌊x⌉p denotes
the nearest multiple of p to x. For q ∈ Z and q > 1, we identify the ring Zq with [−q/2, q/2) as the
representative interval, and for x ∈ Z we denote the centered remainder of x modulo q by [x]q ∈ Zq.
We extend these notations to elements of RN by applying them coefficient-wise. We use a ← S
to denote uniform sampling from the set S. We denote sampling according to a distribution χ by
a← χ.

2.2 Look-up Table

An LUT is a data structure optimized for quick value retrieval, typically organized as a table or
array where each entry directly maps a specific input to its corresponding output. This structure
is particularly useful for applications necessitating rapid data access, serving as a crucial tool for
efficient information retrieval. An n-to-m LUT, denoted as an n-input, m-output LUT, facilitates
the mapping of n-bit inputs to m-bit outputs. LUTs are fundamental in the operation of Field-
Programmable Gate Arrays (FPGAs), enabling them to be programmable and expedite arbitrary
circuit functions.

Within HE, LUTs play a pivotal role in boosting computational efficiency. Given RLWE-based
HE’s inherent support for only addition and multiplication, the range of directly computable func-
tions is limited. LUTs address this limitation by precalculating the outcomes of diverse functions
for all possible inputs, thus enabling the efficient homomorphic evaluation of complex functions
on encrypted data without engaging in intricate computations. The concept of utilizing LUTs for
evaluating arbitrary binary gates in HE was first introduced by Ducas and Micciancio [DM15].
This idea was further expanded by Chillotti et al. [CGGI20], who integrated LUTs with HE to
facilitate the homomorphic evaluation of a broader spectrum of functions, significantly enhancing
the versatility and efficiency of HE applications.

5

2.3 Basic Lattice-based Encryption

We rewrite basic lattice-based encryptions following to [BGV14]. For positive integers q and n,
basic LWE encryption of m ∈ Z under the secret key s⃗← χkey is defined as

LWEn,q,s⃗(m) = (b, a⃗) = (−⟨⃗a, s⃗⟩+ e+m, a⃗) ∈ Zn+1
q ,

where a⃗ ← Zn
q and error e ← χerr. We will occasionally drop subscripts n, q, and s⃗ in LWE when

they are clear from the context.
For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the

secret key z ← χkey is defined as

RLWEN,Q,z(m) := (b,a) = (−a · z + e+m,a) ∈ R2
N,Q,

where a ← RN,Q and e ← χerr. As in LWE, we will occasionally drop subscripts N , Q, and z in
RLWE, when they are clear from the context.

2.4 Brief Overview of Homomorphic Encryption Schemes

HE allows for computations to be performed directly on ciphertexts without requiring decryption. A
HE scheme can be represented by a quadruple of probabilistic polynomial-time algorithms, denoted
by HE = (KeyGen,Enc,Dec,Eval), which are defined as follows:

• KeyGen(λ)→ (pk, sk, evk): This algorithm takes a security parameter λ and the circuit depth
L, and outputs a public key pk, a secret key sk, and an evaluation key evk.

• Enc(pk,m) → c: This algorithm takes a plaintext m ∈ P and a public key pk as inputs, and
outputs a ciphertext c ∈ C, where P and C denote the plaintext space and the ciphertext
space, respectively.

• Dec(sk, c) → m: This algorithm takes a ciphertext c ∈ C and a secret key sk as inputs, and
outputs a plaintext m ∈ P.

• Eval(evk, c, f) → cf : This algorithm takes a ciphertext c, a circuit f and an evalaution key
evk as inputs, and outputs a ciphertext cf ∈ C. The circuit f can be any fan-in-two arithmetic
circuit consisting of additions and multiplications.

In this paper, we will omit pk, sk, evk if they are clear from the context. Depending on
the support for a circuit in the Eval, HE schemes are broadly classified into bit-wise and word-
wise categories. In bit-wise schemes, such as FHEW [DM15] and TFHE [CGGI17, CGGI20],
the fundamental circuit involves logic gates. On the other hand, word-wise schemes, including
BGV [BGV14], BFV [Bra12, FV12], and CKKS [CKKS17], primarily focus on basic operations like
addition and multiplication. For brevity, we omit to describe Setup and KeyGen and only focus
on basic algorithms. It is worth noting the existence of variants of operations, particularly in the
forms of evk and Mult. Throughout this section, we denote sk, pk as a secret key and a public
key, respectively, with N as the dimension of RLWE. Various distributions are distinguished by the
subscript of χ.

The BGV/BFV scheme. BGV/BFV schemes have a vector of integers in Zt as a message, which
is encoded to the message space Rt for SIMD operations, for message modulus t. BGV and BFV

6

use almost the same mathematical structure, while BGV stores the message in the least significant
bit and BFV stores the message in the most significant bit. The BGV scheme provides the following
operations:

for a plaintext modulus t, and a chain of modulus Q0, . . . , QL,

• Enc(pk,m(X))→ ct: for m(X) ∈ Rt, return ct = v ·pk+(m(X)+t ·e0, t ·e1) where v ← χenc

and e0, e1 ← χerr.

• Dec(sk, ct)→ m′(x): for ct = (b, a) ∈ R2
Qℓ
, return m(X) = [[b− a · sk]Qℓ

]t.

• Add(ct1, ct2)→ ctadd: for ct1, ct2 ∈ R2
Qℓ
, return ctadd = ct1 + ct2 mod Qℓ.

• Mult(evk, ct1, ct2) → ctmult: for ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
Qℓ
, return ctmult =

(d0, d1) + [d2 · evk]Qℓ
where (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) mod Qℓ.

• ModSwitch(ℓ, ℓ′, ct)→ ct′: for ct ∈ R2
Qℓ

at level ℓ, return ct′ = ⌊Qℓ′
Qℓ
· ct⌉ mod Qℓ′ .

The BFV scheme provides the following operations:
for ∆ = ⌊Q/t⌋ with a plaintext modulus t and a ciphertext modulus Q,

• Enc(pk,∆,m(X))→ ct: form(X) ∈ Rt, return ct = v ·pk+(∆m(X)+e0, e1) where v ← χenc

and e0, e1 ← χerr.

• Dec(sk, ct)→ m′(x): for ct = (b, a) ∈ R2
Qℓ
, return m(X) =

[
t
Q [b− a · sk]Q

]
t
.

• Add(ct1, ct2)→ ctadd: for ct1, ct2 ∈ R2
Q, set ctadd = ct1 + ct2 mod Q.

• Mult(evk, ct1, ct2) → ctmult: for ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
Qℓ
, return ctmult =

(d0, d1) + [d2 · evk]Q where (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) mod Q.

The CKKS scheme. The CKKS scheme has a vector of C as a message, and using the canonical
embedding, it is mapped to the plaintext space as R. The CKKS scheme provides the following
operations:

for a factor ∆, a chain of modulus Q0, · · · , QL, and an auxiliary modulus P ,

• Enc(pk,m(X)) → ct: for m(X) ∈ R, return ct = v · pk + (m(X) + e0, e1) where v ← χenc

and e0, e1 ← χ.

• Dec(sk, ct)→ m′(x): for ct = (b, a) ∈ R2
Qℓ
, return m(X) = b− a · sk mod Qℓ.

• Add(ct1, ct2)→ ctadd: for ct1, ct2 ∈ R2
Qℓ
, set ctadd = ct1 + ct2 mod Qℓ.

• Mult(evk, ct1, ct2) → ctmult: for ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
Qℓ
, return ctmult =

(d0, d1) + ⌊P−1 · d2 · evk⌉ mod Qℓ where (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) mod Qℓ.

• RS(ℓ, ℓ′, ct)→ ct′: for ct ∈ R2
Qℓ

at level ℓ, set ct′ = ⌊P ℓ′−ℓ · ct⌉ mod Qℓ′ .

The DM-like HE schemes. DM-like HE scheme performs LUTs on every operation, so-called a
functional bootstrapping. The DM-like scheme provides the following operations:

for LWE dimension n and LWE and RLWE ciphertext modulus q and Q,

7

• KeyGen(λ) → (sk, evk): return a secret key, public key, and evaluation keys that consists of
the bootstrapping key brk and key switching key ksk. The constants d and B are associated
with performance. The bootstrapping key brk generation varies across different bootstrapping
methods.

– return s, z ← χkey, where s ∈ Zn and z ∈ R.
– return brk = {brki = ({RLWEz(gk · si)}k, {RLWEz(gk · zsi)}k)}i ∈ R2dn

Q .

– return ksk = {LWEs

(
Bjzi

)
}i,j .

• Enc(pk,m)→ ct: for m ∈ {0, 1}t, return ct = LWEz(m · q/t).

• Dec(sk, ct)→ m′: for ct ∈ Zn+1
q , return m = ⌊(b− ⟨a, s⟩) · t/q⌉.

• Boot(ct, evk) → ct′: find RLWEz

(
f ·XDec(sk,ct)

)
using evk, extract its free coefficient, and

key switch to s. In this algorithm, f is a polynomial in RQ representing a LUT.

3 Look-up Table Evaluation with Approximate HE

Our goal is to execute LUT operations effectively through homomorphic encryption. We initially
concentrate on the CKKS scheme [CKKS17], chosen for its straightforward matrix operations
within the complex domain. Subsequently, we extend our approach to the BGV [BGV14] and
BFV [Bra12, FV12] schemes, detailed in Section 5.

3.1 Basic Instance: an ℓ-to-ℓ LUT over CKKS

We denote a ℓ-to-ℓ LUT as a function Tℓ→ℓ : {0, 1}ℓ → {0, 1}ℓ. We introduce the encoding algorithm
encode to map binary strings to complex numbers, and conversely, the decoding algorithm decode
to revert a complex number to a binary string. The encoding function encode is a bijection that
correlates each binary sequence of length ℓ with a distinct codeword in C, a subset of C with
cardinality 2ℓ. However, due to CKKS’s inherent noise, the output may not precisely fall within C.
Therefore, decode aims to identify the nearest codeword, effectively inverting encode:

encode : {0, 1}ℓ → C
decode : C→ {0, 1}ℓ

Importantly, C can be chosen such that decoding is feasible in O(1) time, enhancing efficiency.

Concrete construction of codes. We choose the code as a set of primitive n-th roots of unity,
where n = 2ℓ. In particular, we choose C = {ζj}n−1

j=0 , ζ = exp(−2πi
n). Thus, the encoding is defined

by
encode(x⃗) = ζ int(x⃗),

where int(·) maps ℓ-bit string to an integer in [0, n). The decoding algorithm simply finds the
nearest point in C and performs the inverse of the exponent.

It is important to highlight that the applicability of the proposed construction is not confined
to the particular choice of the code presented herein; it can applied to any arbitrary fixed-size
set. Nevertheless, the adoption of the above code C in our scheme notably enhances computational
efficiency for reasons that will be detailed in Section 3.4.

8

For the sake of brevity, this discussion is limited to cases where T = {0, 1}ℓ, meaning that |T | is
a power of two, and thus, T corresponds to a sequence of bits. It is important to note, however, that
the proposed scheme is versatile and can be adapted to any finite T , eliminating the requirement
for a power-of-two computational setting.

LUT as an interpolation polynomial. Considering that both the input and output are con-
strained to a specific code, it is feasible to construct an interpolating polynomial of degree 2ℓ − 1,
which accurately represents the input-output relationship of the transformation Tℓ→ℓ. Conse-
quently, this transformation can be implemented within the CKKS framework via the aforemen-
tioned polynomial. The merit of maintaining identical domains and ranges for the LUT lies in the
facilitation of consecutive LUT operations, thereby obviating the need for auxiliary functions.

The interpolation polynomial in the complex domain is expressed as a polynomial of degree
n− 1:

f(u) =
n−1∑
i=0

aiu
i,

where the coefficients ai are elements of the complex numbers C. Although various methods exist
for interpolation, in this context, the polynomial can be efficiently determined by solving a system
of linear equations: [

a0 . . . an−1

]
· U =

[
d0 . . . dn−1

]
, (1)

where the basis matrix U , corresponding to code C = {c0, . . . , cn−1}, is defined as:

U =

c00 c01 . . . c0n−1

c10 c11 c1n−1
. . .

cn−1
0 cn−1

1 . . . cn−1
n−1

 , (2)

with each di = f(ci) representing the polynomial evaluated at ci. Notably, each di also constitutes a
codeword in C, and decode(di) yields the result of LUT operation Tℓ→ℓ(decode(ci)), correlating the
input ci to its encoded output di. Once the coefficients are determined, the interpolation polynomial
can be efficiently evaluated within the CKKS domain. Consequently, this facilitates the execution
of LUT operations using CKKS schemes.

The inherent noise within the CKKS scheme leads to an accumulation of noise when evaluating
the interpolation polynomial. Nonetheless, we demonstrate in a subsequent section that the increase
in noise, consequent to the evaluation of LUT polynomials, is confined within a reasonably small
bound. Furthermore, we introduce a noise reduction technique that effectively diminishes the noise
present in the plaintext, leveraging the discrete characteristics of the code. A comprehensive proof,
establishing that the proposed noise reduction polynomial eliminates the dominant noise term, is
presented in Section 4.1.

Our approach can be naturally extended to the case where Tℓ→βℓ : {0, 1}ℓ → {0, 1}βℓ by splitting

into the number of β small LUTs, denoted as {T (j)
ℓ→ℓ : {0, 1}

ℓ → {0, 1}ℓ}j∈[0,β−1]. Each T
(j)
ℓ→ℓ denotes

the j-th ℓ-bit segment of Tℓ→βℓ, i.e., T
(j)
ℓ→ℓ(x⃗) = Tℓ→βℓ(x⃗)[jℓ,(j+1)ℓ−1], that is, each covers a subset of

the overall computation and has the same domain and range. Then, for each j ∈ [0, β − 1], there

is a distinct polynomial representing T
(j)
ℓ→ℓ and one can obtain a set of polynomials representing

Tℓ→βℓ. By evaluating each polynomial individually, Tℓ→βℓ can be computed.

9

αℓ bits

βℓ bits

Tαℓ→βℓ

ℓ ℓ · · · ℓ

ℓ ℓ · · · ℓ

T
(0)
αℓ→ℓ T

(1)
αℓ→ℓ T

(β−1)
αℓ→ℓ

Figure 1: Brief overview of our idea

In contrast to DM-like HE schemes as outlined in [DM15, CGGI17, LMK+23], our proposed
approach eliminates the need for costly blind rotations. Furthermore, when compared to the recent
contributions by Liu and Wang [LW23c], our method employs polynomials of significantly lower
degree, enhancing efficiency.

However, the scenario at hand is not without its drawbacks. The polynomial degree’s de-
pendency on 2ℓ poses a significant scalability challenge. Additionally, the scheme’s capability is
confined to single-input operations, requiring precomputational integration of multiple input bit
strings into one for small LUT. Those are typical characteristics of LUT-based HE schemes. The
next section will address these challenges by employing multivariate polynomials, which reduces
the polynomial degree to α2ℓ for αℓ-bit input LUTs, thus offering a resolution to the scalability
issue. Furthermore, this approach also introduces segmenting bit strings in HE ciphertexts, which
enhances the efficiency of input assembly for LUT evaluations.

3.2 Extension to an αℓ-to-βℓ LUT

This section expands the look-up table (LUT) framework to include operations with multiple pre-
cision inputs and outputs. It covers both fundamental LUT functionalities and those involving
multiple inputs. This broader scope is crucial for scenarios demanding high precision across various
inputs and outputs, significantly enhancing the framework’s versatility and application range.

As opposed to the previous work, we employ a multivariate polynomial in C. Due to multivariate
polynomials, We can use multiple inputs with small disadvantage in noise only. Consider Tαℓ→βℓ :
{0, 1}αℓ → {0, 1}βℓ for α, β ∈ N as a LUT. Our proposal starts by partitioning Tαℓ→βℓ into a set

of LUT
{
T
(j)
αℓ→ℓ : {0, 1}

αℓ → {0, 1}ℓ
}
j∈[0,β)

such that T
(j)
αℓ→ℓ(x⃗) = Tαℓ→βℓ(x⃗)[jℓ,(j+1)ℓ−1]. To handle

large input efficiently, we employ a multivariate polynomial fj : Cα → C such that

fj(u0, . . . , uα−1) = vj ,

where (x⃗, T
(j)
αℓ→ℓ(x⃗)) ∈ {0, 1}

αℓ × {0, 1}ℓ, uk = encode(x⃗[kℓ,(k+1)ℓ−1]), and vj = encode(T
(j)
αℓ→ℓ(x⃗))

for k ∈ [0, α − 1]. A set of polynomials collectively represents Tαℓ→βℓ, enabling its computation
using CKKS scheme. The remaining step involves demonstrating the existence and algorithm to
deteremine a set of multivariate polynomials for any Tαℓ→βℓ.

Existence of multivariate polynomials. For any j ∈ [0, β − 1], fj can be expressed as a
combination of powers of ui’s and coefficients. Since determining fj is equivalent to determine a
coefficient along with a set of exponents, define Cj ∈ Cnα

whose entries represent the coefficients

10

of fj and a matrix Dj ∈ Cβ whose entries correspond to evaluation points of fj(u0, . . . , uα−1) for
all possible inputs. It leads to the following equation:

fj(u0, . . . , uα−1) =
n−1∑
i0=0

· · ·
n−1∑

iα−1=0

Cj [i0, · · · , iα−1] · ui00 · · ·u
iα−1

α−1 .

To describe the process of determining Cj , we introduce some helpful operations.

Definition 1. For k, α ∈ N with k < α, let C ∈ C
∏α−1

i=0 ni be a multi-dimensional matrix and a
vector u⃗ ∈ Cnk . A function

⊡k : C
∏α−1

i=0 ni × Cnk −→ C
∏α−1

i=0 ni/nk

is defined by C ⊡k u⃗ = B, where

B[i0, · · · , ik−1, ik+1, · · · , iα−1] =

n−1∑
j=0

C[i0, · · · , ik−1, j, ik+1, · · · iα−1] · u[j] (3)

We call ⊡k is said to be a vector multiplication in k-axis.

Definition 1 can be extended to define a new operator for the matrix multiplication between a
multi-dimensional matrix and a matrix.

Definition 2. For k, α ∈ N with k < α, let U ∈ Cnk×nk . A function

⊠k : C
∏α−1

i=0 ni × Cnk×nk −→ C
∏α−1

i=0 ni

is defined by C ⊠k U = D, where

D[i0, · · · , iα−1] =
n−1∑
j=0

C[i0, · · · , ik−1, j, ik+1, · · · , iα−1] · U [j, ik] (4)

We call ⊠k is said to be a matrix multiplication in k-axis.

In similar to matrix multiplication, performing a matrix multiplication in the k-axis between A
and its inverse matrix results in an identity matrix for all k.

Lemma 1. For k, α ∈ N with k < α, let C ∈ C
∏α−1

i=0 ni and U ∈ Cnk×nk C nonsingular matrix. We
have C ⊠k U ⊠k U

−1 = A, where U−1 is an inverse matrix of U .

Proof. By Definition 2, we have

C ⊠k U ⊠k U
−1 =

n−1∑
j=0

C[i0, . . . , ik−1, j, ik+1, · · · , ib−1] · U [j, ik]

⊠k U
−1

=

n−1∑
r=0

n−1∑
j=0

C[i0, . . . , ik−1, j, ik+1, · · · , ib−1] · U [j, r] · U−1[r, ik]

11

Since

U [j, r] · U−1[r, ik] =

{
1 if j = ik

0 otherwise

due to the definition of U−1, it is clear that C ⊠k U ⊠k U
−1 = C.

We denote u⃗i = (1, ui, u
2
i , . . . , u

n−1
i). The evaluation of multivariate polynomial fj can be

represented using a vector multiplication in all axis defined in Equation (4):

fj(u0, u1, . . . , uα−1) = Cj ⊡0 u⃗0 ⊡1 u⃗1 · · ·⊡α−1 u⃗α−1

Note that |C|= n and (u0, u1, . . . , uα−1) has nα possible combinations. As in Equation (2), we
define a basis matrix for code C = {c0, . . . , cn−1}. In the general context, we denote an element
of C as cj and define a matrix U employing these elements cj . Specifically, cj corresponds to the
j-th power of ζ = exp

(
−2πi

n

)
throughout this paper. The output matrix D can be represented by

consecutive matrix multiplication in all axis of U to C. In other words,

D = C ⊠0 U ⊠1 U · · ·⊠α−1 U. (5)

By ?? 1, we can have

C = D ⊠α−1 U
−1 ⊠α−2 U

−1 · · ·⊠0 U
−1. (6)

Therefore, it takes O(αn2) time to find C for any given LUT. There are β such polynomials, so the
total time complexity to find is O(αβn2), which is exactly the size of the given table.

We can see that in Equation (5), we set the maximum degree of each ui to n, rather than set the
maximum degree of the multivariate polynomial f . To reduce the multiplicative depth, it would be
better to fix the maximum degree of the multivariate polynomial in general. However, it is worth
noting that in our choice of the code C, there exists an overlap in high-order and low-order basis,
i.e., un = 1, so we set the maximum degree of ui for each i to n− 1. Moreover, we can reduce the
degree by half using conjugate as will be mentioned later (in Section 3.4), and thus, we can reduce
the depth.

3.3 Error Analysis

The goal of this section is analyzing error for our proposed approach.

Proposition 1. Given k ∈ [0, α − 1] and a multi-dimensional matrix D ∈ Cnα
, each element of

C = D ⊠k U
−1, where U ∈ Cn×n is defined as above, satisfies

∥C∥∞ ≤ ∥D∥∞
Proof. Remark that for ζ = exp(−2πi/2ℓ), a matrix U is a discrete Fourier transform matrix and
thus there always exists an inverse matrix of U . By Definition 2, we can derive that

∥C∥∞ =

∥∥∥∥∥∥
nk−1∑
j=0

D[i0, · · · , ik−1, j, ik+1, · · · , iα−1] · U−1[j, ik]

∥∥∥∥∥∥
∞

≤ ∥D∥∞ ·

∥∥∥∥∥∥
nk−1∑
j=0

U−1[j, ik]

∥∥∥∥∥∥ ≤ ∥D∥∞ .

12

The last inequality is derived from the fact that U−1[j, ik] ∈ C, and since any norm of an element
in C is one.

By iteratively applying Proposition 1 to Equation (6) for all potential values of k, we establish
that the magnitude of each element in C is smaller than that of D. This also implies that the
noise associated with any multivariate polynomial remains manageable. As a result, by selecting
a suitable scaling factor, it becomes feasible to compute the multivariate interpolation polynomial
corresponding to a LUT. Additionally, this framework allows for the evaluation of multiple con-
secutive LUTs, provided that noise within the ciphertext can be effectively minimized, a concept
further elaborated in Section 4.2.

Theorem 1. Let f : Cα → C be a mutlivariate polynomial whose coefficient multi-dimensional
matrix is C = D ⊠α−1 U

−1 ⊠α−2 U
−1 · · ·⊠0 U

−1 ∈ Cnα
. If ∥ϵi∥ ≪ 1, it satisfies that

∥f (u0 + ϵ0, . . . , uα−1 + ϵα−1)− f (u0, . . . , uα−1)∥ ≈ O (ϵ ∥D∥∞ nα)

for some constant c where ϵ = ∥(ϵ0, . . . , ϵα−1)∥∞.

Proof. By definition of a multivariate polynomial and Proposition 1,

∥f (u0 + ϵ0, · · · , uα−1 + ϵα−1)− f (u0, . . . , uα−1)∥

=

∥∥∥∥∥∥
n0−1∑
i0=0

· · ·
nα−1−1∑
iα−1=0

C[i0, · · · , iα−1] ·
(
(u0 + ϵ0)

i0 · · · (uα−1 + ϵα−1)
iα−1 − ui00 · · ·u

iα−1

α−1

)∥∥∥∥∥∥
≤ ∥D∥∞ ·

n0−1∑
i0=0

· · ·
nα−1−1∑
iα−1=0

∥∥∥((u0 + ϵ0)
i0 · · · (uα−1 + ϵα−1)

iα−1 − ui00 · · ·u
iα−1

α−1

)∥∥∥.
By Proposition 1, we can derive the inequality such that∥∥∥∥∥∥

n0−1∑
i0=0

· · ·
nα−1−1∑
iα−1=0

C[i0, · · · , iα−1] ·
(
(u0 + ϵ0)

i0 · · · (uα−1 + ϵα−1)
iα−1 − ui00 · · ·u

iα−1

α−1

)∥∥∥∥∥∥
≤ ∥D∥∞ ·

n0−1∑
i0=0

· · ·
nα−1−1∑
iα−1=0

∥∥∥((u0 + ϵ0)
i0 · · · (uα−1 + ϵα−1)

iα−1 − ui00 · · ·u
iα−1

α−1

)∥∥∥.
Since ui ∈ C, we also have∥∥∥((u0 + ϵ0)

i0 · · · (uα−1 + ϵα−1)
iα−1 − ui00 · · ·u

iα−1

α−1

)∥∥∥
=
∥∥∥ui00 · · ·uiα−1

α−1

(
(1 + ϵ0/u0)

i0 · · · (1 + ϵα−1/uα−1)
iα−1 − 1

)∥∥∥
≤
∥∥∥ui00 · · ·uiα−1

α−1

∥∥∥ · ∥∥((1 + ϵ0/u0)
i0 · · · (1 + ϵα−1/uα−1)

iα−1 − 1
)∥∥

=
∥∥(1 + ϵ0/u0)

i0 · · · (1 + ϵα−1/uα−1)
iα−1 − 1

∥∥
Substituting ϵi/ui by ti, there exists a set of constant cj such that∥∥((1 + t0)

i0 · · · (1 + tα−1)
iα−1 − 1

)∥∥ ≤ ∑
j0,...,jα−1

∥∥∥cj0,···,jα−1t
j0
0 · · · t

jα−1

α−1

∥∥∥
13

due to triangle inequality. As ∥ti∥ ≤ ∥ϵi∥ and ∥ϵi∥ ≪ 1,∑
j0,...,jα−1

∥∥∥cj0,···,jα−1t
j0
0 · · · t

jα−1

α−1

∥∥∥ ≤ max
j0,...,jα−1

(
∥∥cj0,···,jα−1

∥∥) ∑
j0,...,jα−1

∥t0∥j0 · · · ∥tα−1∥jα−1

≤ max
j0,...,jα−1

(
∥∥cj0,···,jα−1

∥∥) ∑
j0,...,jα−1

ϵj0+···+jα−1

≤ c · ϵ

for some constant c and ϵ = ∥(ϵ0, . . . , ϵα−1)∥∞. Finally, we can derive that

∥f (u0 + ϵ0, . . . , uα−1 + ϵα−1)− f (u0, . . . , uα−1)∥ ≈ O

(
ϵ ∥D∥∞

α−1∏
i=0

ni

)

3.4 Choice of Code

The following are the reasons why we employ the code C = {ζj}n−1
j=0 , where ζ = exp(−2πi/2ℓ), in

the CKKS scheme.

Better signal-to-noise ratio in polynomial basis. There are two types of noise. First one the
noise propagates along with operations, which proportional to the norm of message. The second one
is the rescaling error, the fundamental additive noise. A power basis is not suitable for polynomial
evaluation unless the degree is very small, as it exponentially diverges or converges to zero. When
it diverges, the first kind of noise overhelms lower degree terms, and when it converges to zero, the
noise overwhelms the message. In case of bootstrapping, a high degree approximate polynomial is
used, and thus we use Chebyshev basis instaed of power basis and various techniques to control the
polynomial basis not to diverge or converge [CCS19, LLK+22].

Reducing depth and runtime using conjugation. When we use C = {ζj}n−1
j=0 , it is always

true that xn−j = xj for all x ∈ C. Thus, we can find higher degree term simply by conjugation of
lower degree therm. It is noteworthy that a multiplication consumes level of ciphertext, but the
conjugation does not. Also, as the conjugtation is done by Galois operation, it only has additive
key switching noise unlike ciphertext-ciphertext multiplication. It also has less computational
complexity as it does not involves computation among ciphertexts.

Fast polynomial finding algorithm using fast Fourier transform. It is noticed that the
matrix U is a transposed Vandermonde matrix. Especially, when ck = ζk , it is a discrete Fourier
transform (DFT) matrix. Obviously its inverse is inverse DFT matrix U−1 = 1

nU
∗. Hence, when we

find the coefficients in Equation (6), the multiplications ⊠kU
−1 can be done by inverse fast Fourier

transform (FFT) in k-axis by definition. Hence it takes O(αn log n) times, to find C, rather than
O(αn2).

Application to the BGV/BFV scehems. As noted in previous paragraph, by selecting the
proper code, we can let U be a DFT matrix. Interesting fact here is that we now can extend the
proposed algorithm to the BGV/BFV schemes. Let t be a message modulus in BGV/BFV schemes,
where the n-th root of unity ζ exists in Zt. We extend the definitions of vector multiplication in

14

(a) Naive code (b) Proposed code

Figure 2: Comparing naive code (left) and proposed code (right) for the same noise.

k-axis and matrix multiplication in k-axis in Definition 1 and Definition 2, respectively, to Zt.
Then, the matrix

U =

1 ζ1·0 . . . ζ(n−1)·0

1 ζ1·1 ζ(n−1)·1

. . .

1 ζ1·(n−1) . . . ζ(n−1)·(n−1)

 ∈ Zn×n
t

is an transposed number theoretic transform (NTT) matrix, and its inverse is inverse NTT matrix.

Noise bound in LUT polynomial evaluation. While polynomial evaluation in CKKS, the
noise in message is multiplied to the noise, and thus a polynomial with small coefficient is preferred
in terms of noise growth [LLK+22]. It is noted that finding polynomial in Equation (6) is done
by inverse Fourier transform, which is a norm-preserving operation. Each element of D is also
codeword, and thus its absolute value is one. Hence, each coefficient in C is small, and the noise
after the polynomial evaluation just proportional to number of elements.

Less decoding failure probability. Our code is chosen n equally distanced points in unit circle
in C. A naive solution can be put n real numbers in [−1, 1], as noted in above paragraph, increasing
the range to larger domain [−A,A], A > 1 do not help in SNR. Now calculate the failure probability,
i.e., encode(i) is decoded to other numbers due to the noise. Figure 2 shows a naive selection of
the code and the proposed method for Gaussian noise of same variance.

Let the failure probability for each case Pnaive and Pproposed, and the random variable e
represents noise in CKKS message, which can be considered as a additive complex Gaussian
noise. In the first case, the noise in imaginary part do not affect the decoding failure, thus we

have Pnaive = Pr
[
|Real(e)|> 1

(n−1)

]
. As in [DM15], the failure probability can be estimated as

Pnaive = 1− erf
(

1
(n−1)·

√
2σ

)
, where σ is the standard deviation of e. In our case, the noise happens

when the noise is outsize the circular sector of central angle 2π/n. We can find a loose upper
bound of the noise Pproposed < Pr

[
|e|> sin(πn)

]
= exp(− sin2(πn)/(2σ

2)), as CDF of the Rayleigh
distribution is 1 − exp(−x2/(2σ2)). For example, when we have noise of σ = 1

128 and n = 16, we
have Pnaive = 2−56.0 and Pproposed < 2−449.8.

Simple and fast noise-reduction polynomials. As described later in Section 4.1, our code has
simple noise-reduction polynomial of form − 1

nx
n+1+ n+1

n x. It can be evaluated only using log n+1
ciphertext-ciphertext multiplications.

15

4 Advanced Operations for Efficiency

4.1 Noise Reduction Algorithm

The core concept of our approach lies in utilizing a polynomial function, f : C→ C, specifically de-
signed to play a pivotal role in noise mitigation. This becomes especially critical when dealing with
operations within an unbounded arithmetic circuit over complex numbers, where errors inherently
tend to accumulate with each gate operation in ciphertext processing. We refer to such a function
f as an error-reduction function. Formally, we can define an error-reduction function as follows.

Definition 3. Let f : C→ C be a function and C = {ζj}n−1
j=0 , where ζ = exp(−2πi/2ℓ). We say f

is a noise-reduction function if the following two properties are hold: for t ∈ C and ∥ϵ∥ ≤ δ ∈ R,

• f(t) = t

• ∥f(t+ ϵ)− f(t)∥ < ∥ϵ∥

The first condition asserts that a message without error remains unchanged after applying the
function f . The second condition indicates, for a small error ϵ, the function f should alleviate
the error. This dual criterion characterizes the essential features of a noise-reduction function,
emphasizing both the preservation of the original message and the mitigation of errors through the
function f .

We propose a valuable proposition to facilitate the construction of such a function. This propo-
sition signifies that when one can ascertain a function f that meets the condition f(t) = t for t ∈ X
and concurrently satisfies a coefficient of ϵ in f(t+ ϵ) is zero, then this function f can be considered
as a valid error-reduction function.

Theorem 2. For t ∈ C, let f be a polynomial of ϵ, and f(t+ ϵ) =
∑d−1

i=0 ciϵ
i. If c1 = 0, then

∥f(t+ ϵ)− f(t)∥ < ∥ϵ∥

where ∥ϵ∥ ≤ 1/(1 + C) and C = max{∥c2∥ , . . . , ∥cn−1∥}.

Proof. Note that a constant term of f(t+ ϵ) is c0 = f(t). Suppose c1 = 0. Then,

∥f(t+ ϵ)− f(t)∥ =

∥∥∥∥∥
n−1∑
i=2

ciϵ
i

∥∥∥∥∥ ≤ C
n−1∑
i=2

∥ϵ∥i < C · ∥ϵ∥
2

1− ∥ϵ∥

Since ∥ϵ∥ ≤ 1
1+C ,

C · ∥ϵ∥
2

1− ∥ϵ∥
≤ C · 1 + C

C
· ∥ϵ∥2 ≤ ∥ϵ∥

This theorem implies that there exists a function polynomial f that makes the noise asymp-
totically smaller. Given ϵ, we know that ∥f(t+ ϵ)− f(t)∥ = poly(ϵ). When ϵ ≪ 1, the first-order
term dominates. It has been shown that we can eliminate the first order term and make the noise
asumptotically less than or equal to ϵ2.

16

We can identify a specific degree d that not only guarantees the existence of function f but
also allows us to establish its uniqueness. Denote f(x) =

∑d−1
i=0 aix

i and c1 = a1 + 2a2x+ · · · (d−
1)ad−1x

d−2. To satisfy both f(t) = t and c1 = 0, we formulate a comprehensive system of equations:

1 t1 t21 · · · td−1
1

...
1 tn t2n · · · td−1

n

0 1 2t1 · · · (d− 1)td−2
1

...
0 1 2tn · · · (d− 1)td−2

n

a0

...

ad−1

 =

t1
...
tn
0
...
0

.

Let A be a leftmost matrix with dimensions 2n×d. It is evident that we can ascertain the coefficients
of f(x) whenver d is equal to the rank of A. Fortunately, A is non-singular, ensuring the existence
of f when d = 2n. Moreover, the matrix has an inverse, implying that f(x) can be uniquely
determined through this system of equations. As we mentioned above, we assume that c1 = 0, but
it can be also generalized to arbitrary index. Specifically, in our implementation, we demonstrate
that for x = t+ ϵ,

f(t) = − 1

n
tn+1 +

(
1 +

1

n

)
t

serves as one of the concrete constructions for the noise-reduction function.

4.2 High Precision Look-up Table in Batched Manner

Interstingly, our approach allows the concurrent evaluation of distinct LUTs for individual message
slots, all while maintaining computational cost. For instance, consider a ciphertext Enc(m0,m1)
underlying message is (m0,m1) and sets of multivariate polynomials {fj}j∈[0,β−1] and {hj}j∈[0,β−1]

representing LUT H and T , respectively. Applying our approach, one can obtain a ciphertext of
{(fj(m0), hj(m1))}j∈[0,β−1], thereby representing a set of ciphertexts indicating H(m0) and T (m1).

The näıve approach is that independently executing ct1,j = fj(Enc(m0,m1)) and ct2,j =
hj(Enc(m0,m1)) for all j. The desired result can be obtained by computing (1, 0)·ct1,j+(0, 1)·ct2,j .
However, its cost totally depends on the number of executed LUTs, leading to inefficiency when
the number of LUTs is large.

The fundamental equation involves that, given f(x) =
∑n−1

i=0 aix
i and g(x) =

∑n−1
i=0 bix

i,

(f(m0), g(m1)) =

(
n−1∑
i=0

aim
i
0,

n−1∑
i=0

bim
i
1

)
=

n−1∑
i=0

(ai, bi) ◦ (mi
0,m

i
1) (7)

where ◦ denotes the Hadamard product. Applying HE to Equation (7), we straightforwardly obtain
that

Enc(f(m0), g(m1)) =
n−1∑
i=0

encode(ai, bi) · Enc(m0,m1)
i (8)

The computation cost is that it takes only O(log n) squaring ciphertext and O(log n) ciphertext
multiplications, together with O(n) scalar multiplications, which is comparable to that of a single
LUT evaluation. Moreover, Equation (8) can be generalized to support multiple message slots and
extended to multivariate polynomials.

17

The brief construction of our apporach is described as follows. For the simplicity, we assume
that all LUTs have the consistent input and output dimensions. Let m denote the number of
LUTs, each associated with distinct a set of multivariate polynomials of degree n. Let ct represent
a ciphertext with an underlying message serving as an input. Depending on the application,
there could be multiple ciphertexts involved. The operation cti is executed leveraging the square-
and-multiply technique. To facilitate the desired output, a fresh vector v⃗i0,...,iα−1 of length n is
generated for i0, . . . , iα−1 ∈ [0, n− 1]. Each entry of v⃗i0,...,iα−1 is derived from the coefficients of the

corresponding multivariate polynomial at the degree of ui00 · · ·u
α−1
α−1. The methodology for selecting

these coefficients depends on the targeted LUTs. Then, a new multivariate polynomial hj can be
generated through encode(v⃗i0,...,iα−1), that is,

hj(u0, . . . , uα−1) =

n−1∑
i0=0

· · ·
n−1∑

iα−1=0

encode(v⃗i0,...,iα−1) · u
i0
0 · · ·u

iα−1

α−1 .

Consequently, the desired outcome is achieved by evaluating hj with precomputed cti. To establish
the comparability of noise upper bounds for this approach, we introduce an useful proposition.

Proposition 2. Let m represent the number of LUTs, each associated with a distinct multivariate
polynomial set {fi,j}i∈[0,m−1],j∈[0,α−1]. Let {hj} be a set of multivarate polynomials generated by the
our proposal. Then, for all j, there exists cj ∈ C such that

hj(u0, . . . , uα−1) =

m−1∑
i=0

cjfi,j(u0, . . . , uα−1)

where ui ∈ C.

Proof. By the construction of hj , each coefficient is encode(v⃗i0,...,iα−1), where each entry of v⃗i0,...,iα−1

represents a coefficient of ui00 · · ·u
α−1
α−1 in fi,j . It is entirely deteremined by fixed target evaluation

function. Consequently, there exists a binary vector b⃗j of length n that indicates a target and then

v⃗i0,...,iα−1 can be represented as a Hadamard product of a coefficient vector of fi,j and b⃗j for all j.

Since C is closed under multiplication, cj = encode(⃗bj).

Due to Proposition 2, it is evident that the norm of hj is equivalent to that of fi,j since the
absolute value of cj is one. This implies that the noise upper bound of the evaluation of hj is
comparable to that of the evaluation of fi,j and, consequently, similar to that of a single LUT.

Theorem 1 implies that a noise upper bound of any given multivariate polynomial is not huge.
Therefore, we can find and set the corresponding scaling factor to evaluate the multivariate in-
terpolation polynomial for a LUT. Furthermore, we can evaluate more than one LUTs if we can
reduce reduce noise in ciphertext, which is to be described in the following subsection.

5 Look-up Table Evaluation with BGV and BFV

Building on the foundational discussion, it’s important to note that our proposed technique is not
confined to the CKKS scheme but is also compatible with BGV and BFV schemes. In the following,
we demonstrate the implementation of the proposed method within the BGV and BFV contexts,
as initially described in Section 3.

18

Our approach begins by decomposing a αℓ-toβℓ LUT, Tαℓ→βℓ into smaller αℓ-toβ LUTs denoted

as
{
T
(j)
αℓ→ℓ : {0, 1}

αℓ → {0, 1}ℓ
}
j∈[0,β)

, where T
(j)
αℓ→ℓ(x⃗) extracts the jth ℓ-bit segment from Tαℓ→βℓ.

To process inputs effectively, we introduce a multivariate polynomial fj : Cα → C such that

fj(u0, . . . , uα−1) = vj ,

where for each k ∈ [0, α − 1], uk = encode(x⃗[kℓ,(k+1)ℓ−1]) corresponds to the encoded input seg-

ments and vj = encode(T
(j)
αℓ→ℓ(x⃗)) represents the encoded output of T (j). These polynomials, in

aggregation, represent Tαℓ→βℓ, facilitating its execution within the BGV/BFV framework. A key
adaptation in our scheme is that the code C is a subset of Zt, not C, and the function encode is
now a bijection from ℓ-bit strings to C ⊂ Zt.

Especially, we propose the use of code C = {ζj}nj=0 ⊂ Zt, where ζ here is a n-th primitive
root of unity within Zt. This particular choice of code seamlessly facilitates the adaptation of the
techniques outlined in Section 3 to the BGV and BFV schemes, making the process straightforward.
Then the encoding and decoding are defined as follows

encode(x⃗) = ζ int(x⃗)

decode(u) = int−1(logζ(u)),

where int−1 is an inverse mapping of
∫
and logζ is a discrete logarithm1.

The definition of vector multiplication in k-axis and matrix multiplication in k-axis are extended
to Zt, where t denotes the plaintext modulus of BGV or BFV scheme. process for identifying the
multivariate interpolation polynomial, as delineated in Equation (6), involves the construction of
the Vandermonde matrix U and its inverse U−1, expressed as:

U =

1 1 . . . 1

1 ζ1·1 ζ(n−1)·1

. . .

1 ζ1·(n−1) . . . ζ(n−1)·(n−1)

 , U−1 = n−1 ·

1 1 . . . 1

1 ζ−1·1 ζ−(n−1)·1

. . .

1 ζ−1·(n−1) . . . ζ−(n−1)·(n−1)

 ∈ Zn×n
t ,

where n−1 is the multiplicative inverse of n in Zt. Importantly, applying U−1 through matrix
multiplication in the k-axis, ⊠kU

−1, is equal to applying inverse NTT on k-axis rows, and thus can
be done efficiently as in CKKS using FFT.

Subsequently, the components of the multi-dimensional matrices C, as determined by Equa-
tion (6), serve as the coefficients for the interpolation polynomial, which in turn is represented by
the multi-dimensional matrix D. Say,

fj(u0, . . . , uα−1) =

n−1∑
i0=0

· · ·
n−1∑

iα−1=0

Cj [i0, · · · , iα−1] · ui00 · · ·u
iα−1

α−1 .

is homomorphically evaluated.
In contrast to the CKKS scheme, which inherently incorporates noise within its plaintexts, the

BGV/BFV schemes ensure that plaintexts remain devoid of noise. This obviates the necessity
for additional noise analysis or reduction algorithms beyond what is standardly provided. The
proposed scheme allows for the efficient utilization of LUTs based on BGV and BFV with low-
degree polynomials, without necessitating modifications to the underlying HE schemes, thereby
enhancing usability.

1As the search space is very small, solving the discrete logarithm can be done very efficiently

19

6 Experimental Results

In this section, we demonstrate the effectiveness of the proposed method through implementation.
We employ AES-128 decryption as a benchmark operation within the CKKS scheme.

AES serves as a valuable metric for evaluating performance and is practically indispensable.
Transciphering is a technique aimed at reducing communication/computation overhead on the
client side. Numerous works in the literature have focused on transciphering. One line of research
advocates for HE-friendly symmetric key cryptosystems. Considering the substantial challenges
in migrating cryptosystems (even the transition from DES to AES required considerable time and
effort following the discovery of DES vulnerabilities, and migrating to Post-Quantum Cryptography
is a government-scale endeavor), it remains uncertain whether such HE-friendly cryptosystems can
be feasibly adapted for real product use in transciphering applications.

It is worth noting that due to its approximate computation nature, achieving the original AES
over CKKS has been considered challenging, and the performance of its homomorphic evaluation
was not satisfactory [HKL+22].

Another line of work involves implementing existing trustworthy cryptosystems, the AES, effi-
ciently on top of HE schemes [GHS12, TCBS23] (and other references from TCBS23). However,
the TFHE/FHEW-based implementation [TCBS23] exhibits low throughput since FHEW/TFHE
lacks support for SIMD. The well-known implementation by Gentry, Halevi, and Smart (GHS)
[GHS12] demonstrates good performance, considering advancements in HE algorithms/libraries
and computing speed over the years (although it was published more than a decade ago). However,
it serves more as a benchmark than as an AES transciphering solution, as in their setting, the
BGV encryption is configured to support operations on a Galois field, which is not frequently used
in general computations. Moreover, it is designed without allowing further operations of the final
ciphertext. Therefore, we believe that the proposed improvement serves as a robust benchmark to
showcase performance and represents a practical transciphering proposal.

6.1 A Brief Overview

The AES-128 consists of 10 rounds of the same operations with different round keys. Each round
is operated on 4 × 4 matrix of bytes, where each bytes are considered as an element of a Galois
field GF(28). We use n = 24 as the fact that 4 divides 8 makes the algorithm easier to understand
and implement.

Each round function of AES consists of four operations: AddKey ,SubBytes, ShiftRows, and
MixColumns. AddKey is simply XOR of the 16-byte round key and current state, as XOR is a
bit-wise operation, we can evaluate this with simple 4-to-4 LUT. Besides, it is observed that LUT
for XOR is sparse, i.e., the LUT polynomial has many zeros in its coefficients, and thus we can
skip some ciphertext-ciphertext multiplications. SubBytes is S-box look up which is finding α−1 for
α ∈ GF(28), considering each byte in the state as element of GF(28). This is naturally done by the
proposed method using 8-to-8 LUT evaluation. In ShiftRows step, we consider the state as 4 × 4
matrix and shift each row by some amount. It can be done by rotation operation and inner product
with indicator plaintext vectors, which have only one and zeros as elements. MixCol multiplies the
state 4×4 matrix by a fixed 4×4 matrix in GF(28)4×4. The multiplication in GF(28) is done by an
8-to-8 LUT evaluation, where we find the LUT evaluation polynomial for multiplication by given

20

amount2. As in [GHS12], we merge ShiftRows and MixColumns steps and reduce the computation.

Parameter selection and implementation details. To meet 128-bit security, we use N = 216,
Q = 21658, and scaling factor ∼ 259. For ease of implementation, we do bootstrapping after each
LUT evaluation, and each LUT has depth 5. There are 10 rounds in AES-128, and we do noise
reduction every round for easy implementation. We use Liberate.FHE library [DES23] on a single
NVIDIA A100 GPU for implementation. Hence, it might be hard to do a fair comparison with
previous works considering the difference in environment.

6.2 Homomorphic Evaluation of Basic Operations

Representation of AES state. We divide a byte into two 4-bit numbers, the left half and the
right half. A half byte is encoded into C = {ζj}15j=0, where ζ = exp(−2πi

16) thus each slot has a
codeword c ∈ C. For ease of understanding and implementation, we use separate ciphertexts for
left half bytes and right half bytes. We choose a CKKS parameter with ring dimension N = 216,
whose maximum number of slots is 215. As the state requires 16 bytes, we put 215/16 = 2048
ciphertext batched in two ciphertexts (each slot in the same position represents the left and right
half of the same bits). Following Gentry-Halevi-Smart [GHS12], we place the 16 bytes of the AES
state in plaintext slots using column-first ordering, namely, we have

α = [α00, α10, α20, α30, α01, α11, α21, α31, α02, α12, α22, α32, α03, α13, α23, α33,],

representing the input plaintext matrix

A = (αij)i,j =

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

The batching is done by placing elements of α by the gap of 215/16 = 2048. For example, let β and
γ are other AES states we are batching. Then the coefficient slot will look like the following array

216︷ ︸︸ ︷
[α00, β00, γ00, . . .︸ ︷︷ ︸

2048

, α10, β10, γ10, . . .︸ ︷︷ ︸
2048

, α20, β20, γ20, . . .︸ ︷︷ ︸
2048

, . . . α33, β33, γ33, . . .︸ ︷︷ ︸
2048

]

By doing this, we can rotate each state by r independently by applying a rotation of 2048r. Finally,
we encode each element with encode and encrypt it.

AddKey. Here, we assume the AES round key is given as a CKKS ciphertext3. AddKey is simply
an XOR with AES state and encryption key, it can be done by 8-to-4 LUT. In our experiment, we
used two ciphertexts, which require two executions of 8-to-4 LUTs, and it took 1.63s. Note that

2In encryption of AES, we only multiply by two or three, which can also be done by XORs, and cheaper. However,
in this paper, we did not apply such optimization as the goal of this section is to provide a reference usage of the
proposed method.

3The proposed method supports arbitrary LUT operations, the key expansion can also be done when the 128-bit
secret key is given as encrypted form in HE.

21

the polynomials for XOR have many zeros in them and only a quarter of them are non-zeros, thus,
the homomorphic evaluation of the polynomial can be done very fast.

SubBytes. SubBytes and its inverse InvSubBytes can be implemented as 8-to-8 LUT. An 8-to-8
LUT is done by two 8-to-4 LUTs. As those two LUTs share the inputs, we can calculate the power
basis and reuse it. Thus, it took 0.94s in our experiment, which is almost half of AddKey. We do
the same LUTs on each slot.

ShiftRows and MixColumns. As in [GHS12], we can merge the ShiftRows and MixColumns steps.
We explain the AES decryptions in detail, but the encryption can also be done similarly. In
InvMixColumns, we calculate the following matrix multiplication in GF(28)

A′ =

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

×A,

where A and A′ ∈ GF(28)4×4 represents the input and output AES states of InvMixColumns,
respectively. For given input state A, the output of InvShiftRows is A′ as given below

A =

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 , A′ =

α00 α01 α02 α03

α13 α10 α11 α12

α22 α23 α20 α21

α31 α32 α33 α30

 .

To merge those steps, we first do a Hadamard multiplication of the input state A, and each
following matrix

X0 =

14 11 13 9
14 11 13 9
14 11 13 9
14 11 13 9

 , X1 =

9 14 11 13
9 14 11 13
9 14 11 13
9 14 11 13

 , X2 =

13 9 14 11
13 9 14 11
13 9 14 11
13 9 14 11

 , X3 =

11 13 9 14
11 13 9 14
11 13 9 14
11 13 9 14

 .

This step requires an 8-to-32 LUT, this can be done easily as the proposed scheme supports
independent LUTs on each slot. Then, we XOR each row put the value in the first column and
the other three columns become zeros, we call these matrices B0, B1, B2, and B3. In this step,
we rotate the ciphertext to the left by two and then do XOR with the ciphertext before rotation.
Then rotate again by one, and then do XOR again. In the final XOR, to make the columns except
the first to zero, we do independent LUTs. For the 0-th, 4-th, 8-th, and 12-nd slots, we apply
coefficients of polynomials for XOR, but for the other slots, we put zeros on all coefficients. By
doing this, we can save a multiplication by (1, 0, 0, 0, 1, . . .) without additional cost. Finally, we
find B0 + B1 ≫ 5 + B2 ≫ 10 + B3 ≫ 15 which gives us the final result of InvMixColumns and
InvShiftRows. This step takes 41.1s, the major amount of runtime.

6.3 Homomorphic AES Evaluation Performance

Our AES decryption experiment on a single NVIDIA A100 GPU was completed in 573.83 seconds,
as shown in Table 1 alongside previous studies. Unlike most prior work that utilized DM/CGGI
HE schemes due to their inherent LUT support, our method and [GHS12] utilizes amortized HE.
DM/CGGI relies on functional bootstrapping for LUT evaluation, a necessity in these schemes. The

22

Table 1: Transciphering Comparison with Previous Work: While the values in this table are
borrowed from their manuscript and thus may not facilitate a fair comparison due to distinct
operational environments, our analysis on a single NVIDIA A100 GPU is believed to be the most
advantageous. Despite these considerations, our approach demonstrates substantial amortization
and enhanced performance.

GHS12[GHS12] TCBS23[TCBS23] WWL+23[WWL+23] ours

Symm. ciphier AES-128 AES-128 AES-128 AES-128

Total Runtime (sec) 245.1/394.3 28.73 9 573.83

of ciphertext amortized 120 1 1 2048

Amortized runtime (sec) 2.04/3.29 28.73 9 0.28

Base scheme BGV CGGI CGGI CKKS*

Further operation No (Yes) Yes Yes Yes

Requires bootstrapping No Yes Yes Yes

*Also supports BGV/BFV but not implemented.

approach in [GHS12] wasn’t tailored for transciphering, as it does not consider the levels after AES
evaluation. However, recent advancements, such as those by Lee-Min-Song [LMS24], leverage BGV
bootstrapping to enable further computations after bootstrapping, and thus we can use [GHS12]
as transciphering.

As a proof of concept, this implementation opens the door to further optimizations. Adjusting
parameters could yield improvements; our current scaling factor, 259 (normalized by scaling fac-
tor), is overly precise for the code |C|= 24, leading to noise after AES decryption has a standard
deviation of 2−37.4, which is superfluous. Refining parameter choices may cut down on the frequent
bootstrapping after every LUT, a process that dominates runtime. There are a series of ongoing
efforts in improving CKKS bootstrapping [CHK+18, CCS19, HK20, BMTH21, LLL+21, JKA+21,
LLK+22, BCC+22], and the improvement of CKKS bootstrapping will improve the performance
of the proposed method. Using a CKKS-encrypted AES state instead of conventional plaintext
extends the duration of the first AddRoundKey step. Combining invSubBytes with AddKey into a
LUT presents additional optimization opportunities. This list is not exhaustive; other optimization
avenues remain unexplored.

6.4 Runtime Results of LUT Evaluation

Tables 2 and 3 present the runtime results for evaluating a single LUT, including comparative
analyses with prior studies. In the CKKS case, we adopted identical parameters to those in the
AES experiment, with |C|= 24 = 16 utilized. We use Liberate.FHE library [DES23] on a single
NVIDIA A100 GPU. In Table 2, we have the runtime result for the proposed scheme based on
BFV and BGV schemes. Those are tested with parameter t = 65537, q = 2842, and N = 215. The
running environment is equal to Liu-Wang [LW23c], Google Compute Cloud e2-standard-4, 16GB,
implemented using OpenFHE v1.1.2 [Ope22].

Our scheme’s inherent adaptability is highlighted by the wide range of parameter choices avail-
able, including the CKKS scaling factor and code size. For example, a configuration space of
|C|= 26 = 64 might be beneficial for a 12-to-12 LUT. Nevertheless, given the extensive possible
outcomes, this paper limits its focus to the more general implementation aspects of our scheme,
rather than detailing every potential result.

23

Table 2: Comparison with previous work for smaller than 10-Input LUTs: This table integrates
findings from [LW23c], the recognized state-of-the-art, with our results. It’s important to clarify
that discrepancies in testing environments The comparison may not be entirely equitable due to
differences in computational environments. Despite these variations, our method shows significant
speed advantages.

LUT space 3-to-3 7-to-7 8-to-8 9-to-9 8-to-8 8-to-12

Scheme [LMP22] [GPvL23] [KS21] [GBA21] [LMP22] [LHH+21] [LW23c]
Ours-BFV
(BGV)

Ours-CKKS*

Amortized time
per LUT(ms)

1192 1205 35169 2203 1793 3476 6.7 1.01(0.996)
0.029
(0.15)

0.042
(0.17)

Total time (sec) 1.192 1234 35.169 2.203 1.793 3.476 220 33.26(32.64)
0.94
(4.94)

1.37
(5.43)

of LUTs
per amortized

1 1024 1 1 1 1 32768 32768 32768 32768

Input
assumption

No No No Yes Yes Yes No No No No

*values in parenthesis is runtime including a CKKS bootstrapping.

In Tables Table 2 and Table 3, we apply AES s-box for the 8-to-8 Look-Up Table (LUT)
and deploy arbitrary dense LUTs in other contexts. The performance remains largely unaffected
by the specific entries in the LUTs, owing to the absence of optimization techniques for sparse
LUT polynomials. Despite the advantage of operating in a superior computational setting in the
CKKS case, our scheme exhibits enhanced performance when compared with the leading method
introduced by Liu and Wang [LW23c]. Under identical environments and parameter settings, our
approach outperforms that of [LW23c] by a factor of six. In our framework, it is possible to process
four consecutive LUTs, followed by a necessary bootstrapping for further computation. On the other
hand, the method in [LW23c] permits only a single LUT execution, which inherently fulfills the role
of bootstrapping, thereby negating the need for an additional bootstrapping phase. This implies
that our method maintains its superior speed advantage as long as the BFV bootstrapping time
remains below 752 seconds. This performance improvement stems from our approach’s utilization
of low-degree multivariate polynomials—with degrees set at 16 or 24—and our methodical reuse
of polynomial bases for producing larger outputs, as opposed to the reliance on high-degree sparse
polynomials (e.g., degrees of 65536) in the methodology proposed in [LW23b].

7 Conclusion

In this work, we introduce an efficient method for evaluating look-up tables (LUTs) within homo-
morphic encryption (HE) frameworks, specifically targeting Ring-LWE-based schemes like BGV,
BFV, and CKKS. Our approach, which encodes bit streams into codewords and transforms LUTs
into low-degree multivariate polynomials, allows for the simultaneous evaluation of multiple LUTs
on a single encrypted message, significantly reducing computational overhead in the context of
amortization. To alleviate noise accumulation in the CKKS scheme, we also propose a novel noise-
reduction polynomial, accompanied by proof demonstrating its effectiveness in asymptotically de-
creasing noise levels. The practicality of our method is demonstrated through a proof-of-concept
implementation, showcasing notable improvements in the efficiency of LUT operations and AES-
128 decryption times. Moreover, we put forward a novel transciphering technique within the CKKS
scheme, leveraging the strength of symmetric encryption to bridge discrete and numerical data in

24

Table 3: Comparison with prior arts for larger than 10-input LUTs. The same environment and
the same parameter as in Table 2 is used. Hence, we exploit polynomials with three variables for
LUT evaluation.

LUT space 10-to-10 12-to-12 12-to-16

Scheme [GBA21] [LMP22] [GBA21] [LW23c] Ours*

Amortized time
per LUT(ms)

23667 3998 51085 39.1
0.58
(0.77)

0.78
(0.96)

Total time (sec) 23.667 3.998 51.085 1280
19.1

(25.13)
25.4

(31.45)

of LUTs
per amortized

1 1 1 32768 32768 32768

Input
assumption

Yes Yes Yes No No No

*values in parenthesis is runtime including a CKKS bootstrapping.

encrypted formats.
The proposed scheme’s adaptability paves the way for numerous intriguing future research di-

rections. In this work, we adopted a consistent codeword set, C, throughout the computations.
However, the use of interpolation polynomials offers the flexibility to transition between different
codeword sets, enabling a ciphertext encoding a bitstream in C to be seamlessly converted to an-
other set C′, even when |C|̸= |C′|. This capability extends to the conversion between codewords
and complex numbers, enhancing the versatility of our approach. For the CKKS scheme, there’s
a promising opportunity to optimize by integrating the error reduction function directly with the
polynomials used for LUT evaluation. Such an integration could significantly reduce the compu-
tational requirements and execution time for LUT operations. Our current AES implementation,
while serving as a solid reference, presents numerous possibilities for optimization. Future efforts
could focus on refining the AES algorithm, potentially by merging LUTs used in consecutive rounds
or by adjusting the size of C to optimize performance, taking full advantage of our scheme’s ability
to accommodate arbitrary LUTs in HE. These potential enhancements stand to streamline en-
crypted computations further, broadening the scope of our method’s application in ensuring secure
and efficient data processing.

References

[BBB+23] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-
Baptiste Orfila, and Samuel Tap. Parameter optimization and larger precision for
(t)fhe. Journal of Cryptology, 36, 2023.

[BCC+22] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.
Meta-bts: Bootstrapping precision beyond the limit. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 223–234, 2022.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014.

25

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Efficient bootstrapping for approximate homomorphic encryption with non-
sparse keys. In Advances in Cryptology – EUROCRYPT 2021. Springer, 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Advances in Cryptology – CRYPTO 2012, pages 868–886. Springer,
2012.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for approximate
homomorphic encryption. In Advances in Cryptology – EUROCRYPT 2019, pages 34–
54. Springer, 2019.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster
packed homomorphic operations and efficient circuit bootstrapping for TFHE. In Ad-
vances in Cryptology – ASIACRYPT 2017, pages 377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
fully homomorphic encryption over the torus. Journal of Cryptology, pages 34–91,
2020.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Boot-
strapping for approximate homomorphic encryption. In Advances in Cryptology – EU-
ROCRYPT 2018, pages 360–384. Springer, 2018.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques for multi-
value input homomorphic evaluation and applications. In Mitsuru Matsui, editor, Top-
ics in Cryptology – CT-RSA 2019, pages 106–126, Cham, 2019. Springer International
Publishing.

[CKK20] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic com-
parison methods with optimal complexity. In Advances in Cryptology - ASIACRYPT
2020, pages 221–256. Springer, 2020.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers. In Advances in Cryptology – ASIACRYPT
2017, pages 409–437. Springer, 2017.

[DES23] DESILO. Liberate.FHE: A New FHE Library for Bridging the Gap between Theory
and Practice with a Focus on Performance and Accuracy, 2023. https://github.

com/Desilo/liberate-fhe.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT 2015, pages 617–640. Springer, 2015.

[DMPS22] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. Bleach: Cleaning
errors in discrete computations over ckks. Cryptology ePrint Archive, Paper 2022/1298,
2022. https://eprint.iacr.org/2022/1298.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. IACR Cryptol. ePrint Arch., page 144, 2012.

26

[GBA21] Antonio Guimarães, Edson Borin, and Diego F Aranha. Revisiting the functional
bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 229–253, 2021.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the AES
circuit. In Advances in Cryptology – CRYPTO 2012, pages 850–867. Springer, 2012.

[GPvL23] Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen. Amortized boot-
strapping revisited: Simpler, asymptotically-faster, implemented. Cryptology ePrint
Archive, Paper 2023/014, 2023.

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homomor-
phic encryption. In Topics in Cryptology – CT-RSA 2020, pages 364–390. Springer,
2020.

[HKL+22] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol Son.
Rubato: Noisy ciphers for approximate homomorphic encryption. In Advances in
Cryptology - EUROCRYPT 2022, pages 581–610. Springer, 2022.

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee.
Over 100x faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021:114–148, 2021.

[KS21] Kamil Kluczniak and Leonard Schild. FDFB: Full domain functional bootstrapping
towards practical fully homomorphic encryption. arXiv preprint arXiv:2109.02731,
2021.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGASUS:
Bridging polynomial and non-polynomial evaluations in homomorphic encryption. In
2021 IEEE symposium on Security and Privacy (S&P), pages 1057–1073. IEEE, 2021.

[LLK+22] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and
HyungChul Kang. High-precision bootstrapping for approximate homomorphic en-
cryption by error variance minimization. In Advances in Cryptology - EUROCRYPT
2022, pages 551–580. Springer, 2022.

[LLL+21] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-
precision bootstrapping of RNS-CKKS homomorphic encryption using optimal mini-
max polynomial approximation and inverse sine function. In Advances in Cryptology
– EUROCRYPT 2021. Springer, 2021.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin, Jieun
Eom, and Donghoon Yoo. Efficient fhew bootstrapping with small evaluation keys,
and applications to threshold homomorphic encryption. In Advances in Cryptology –
EUROCRYPT 2023, pages 227–256. Springer, 2023.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign
evaluation using fhew/tfhe bootstrapping. In Advances in Cryptology–ASIACRYPT
2022, pages 130–160. Springer, 2022.

27

[LMS24] Dongwon Lee, Seonhong Min, and Yongsoo Song. Functional bootstrapping for fv-style
cryptosystems. Cryptology ePrint Archive, Paper 2024/181, 2024. https://eprint.

iacr.org/2024/181.

[LW23a] Feng-Hao Liu and Han Wang. Batch bootstrapping i: A new framework for simd
bootstrapping in polynomial modulus. In Advances in Cryptology – EUROCRYPT
2023, page 321–352. Springer-Verlag, 2023.

[LW23b] Feng-Hao Liu and Han Wang. Batch bootstrapping ii: Bootstrapping in polynomial
modulus only requires o(1) FHE multiplications in amortization. In Advances in Cryp-
tology – EUROCRYPT 2023, page 353–384. Springer-Verlag, 2023.

[LW23c] Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less than 7 ms,
with õ(1) polynomial multiplications. In Advances in Cryptology - ASIACRYPT 2023,
pages 101–132. Springer, 2023.

[MKG23] Johannes Mono, Kamil Kluczniak, and Tim Güneysu. Improved circuit synthesis with
amortized bootstrapping for fhew-like schemes. Cryptology ePrint Archive, Paper
2023/1223, 2023. https://eprint.iacr.org/2023/1223.

[MKMS23] Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl. Faster
amortized fhew bootstrapping using ring automorphisms. Cryptology ePrint Archive,
Paper 2023/112, 2023. https://eprint.iacr.org/2023/112.

[MS18] Daniele Miccianco and Jessica Sorrell. Ring packing and amortized FHEW bootstrap-
ping. In 45th International Colloquium on Automata, Languages, and Programming.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[Ope22] OpenFHE. Open-Source Fully Homomorphic Encryption Library. https://github.

com/openfheorg/openfhe-development, 2022.

[TCBS23] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey. A ho-
momorphic AES evaluation in less than 30 seconds by means of TFHE. In Proceedings
of the 11th Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 79–90. ACM, 2023.

[WWL+23] Benqiang Wei, Ruida Wang, Zhihao Li, Qinju Liu, and Xianhui Lu. Fregata: Faster
homomorphic evaluation of aes via tfhe. In Elias Athanasopoulos and Bart Mennink,
editors, Information Security, pages 392–412, Cham, 2023. Springer Nature Switzer-
land.

[YXS+21] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. TOTA: fully
homomorphic encryption with smaller parameters and stronger security. IACR Cryptol.
ePrint Arch., page 1347, 2021.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data, 2022. https://github.com/zama-ai/
tfhe-rs.

28

