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Abstract. Homomorphic encryption has been an active area of research
since Gentry's breakthrough results on fully homomorphic encryption.
We present secret key somewhat homomorphic schemes where client pri-
vacy is information-theoretic (server can be computationally unbounded).
As the group order in our schemes gets larger, entropy approaches max-
imal entropy (perfect security). Our basic scheme is additive somewhat
homomorphic. In one scheme, the server handles circuit multiplication
gates by returning the mulitiplicands to the client which does the mul-
tiplication and sends back the encrypted product. We give a 2-party
protocol that also incorporates server inputs where the client privacy
is information-theoretic. Server privacy is not information-theoretic, but
rather depends on hardness of the subset sum problem. Correctness for
the server in the malicious model can be veri�ed by a 3rd party where
the client and server privacy are information-theoretically protected from
the veri�er. Scaling the 2PC protocol via separate encryption parameters
for smaller subcircuits allows the ciphertext size to grow logarithmically
as circuit size grows.

Keywords: Somewhat homomorphic encryption · information-theoretic.

1 Introduction

Homomorphic encryption schemes with respect a single operation (addition or
multiplication) include Goldwasser-Micali, Paillier [22],and textbook RSA [24].
Rivest posed the question of homomorphic encryption [23] in 1978. Gentry's
breakthrough work [15] presented a fully homomorphic scheme and accelerated
the study of homomorphic schemes that can compute arbitrary functions in a
model with circuits that have both addition and multiplication gates.

Gentry's scheme along with follow-up work [13], [6], [7], [10], [9], [2], [14]
features schemes where security depends on computationally hard problems in
lattices or number theory (e.g. lattice SVP, approximate GCD problem). The
security of these schemes may be a�ected by advances in algorithms to more
e�ciently solve these problems.

In this work, we present somewhat homomorphic schemes (any circuit can be
handled by setting scheme parameters to be large enough for the circuit). Our
schemes are secret key based and provide security against a computationally
unbounded attacker.



Our basic scheme includes a modulus m, base b where gcd(b,m) = 1, and
random exponents ei corresponding to each client ciphertext input for the cir-
cuit. The ciphertext tuple consists of the vector (be1 mod m, . . . , bec mod m).
For encrypting bits, the parity of each ei determines the plaintext bit. The size
of the e′is is bounded using either the max norm or L1 norm so that the client
can decrypt the returned result by multiiplying by b−1 mod m. This scheme has
two interesting properties:

1. it's additive homomorphic
2. as illustrated in Figure 1, it allows distinct (plaintext key) pairs to map to

the same ciphertext. (The key is the pair (b,m).)

The 2nd property gives the information-theoretic security.

Key1, plaintext1

Key2, plaintext2

KeyN, plaintextN

.

.

.

ciphertext1

Fig. 1. Distinct Plaintext Key Pairs Map to Same Ciphertext

Supporting multiplication gates is more challenging. If we shrink the expo-
nents further to support multiplication then security is no longer information-
theoretic since there are not a su�cient number of vectors.

In our �rst multiplication scheme, the server returns the multiplicands to the
client which decrypts and performs the multiplication. The client sends a new
ciphertext element back to the server encrypting the product of the plaintexts.
All additions and multiplications are mod 2. (In the general case we replace 2
with N which is power of 2 so addition and multiplication are mod N.)

A second scheme with multiplication includes additional client elements with
both odd and even parities. The server computes 2g results where g is number of
multiplication gates. The server assigns one of the additional client elements as
the output of each multiplication gate. Thus this scheme can only be practical
for a circuit with a small number of multiplication gates.

We also give a 2-party MPC (2PC) scheme where client privacy is information-
theoretic (also called statistical or unconditional security) and server privacy is
based on the hardness of the subset sum problem. Initially, in a preprocessing
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step, the client sends two additional sets of elements to the server; one set has
odd parity exponent elements and the other set has even parity exponent ele-
ments. When the server has two multiplicands to return to the client, it actually
returns four elements where the additional two elements have opposite parity
exponents which are obtained by adding odd parity elements to the original
multiplicands. Then the client will compute all four products and return four
new ciphertext elements to the server. The server discards the three incorrect
elements and keeps the fourth element. Thus the server evaluates the circuit
obliviously except for knowledge of addition gates, multiplication gates, and its
own inputs. Our security argument requires that the client is semi-honest.

There exist 2-party schemes [20], [3] where one party enjoys statistical privacy
and the other party is protected from a computationally bounded adversary. To
the best of our knowledge, our 2-party scheme is the �rst one to allow the party
receiving output to have statistical privacy (from a computationally unbounded
sender) where the sending party has computationally bounded security in a
protocol where only one party receives output. The schemes in [20] are in the
malicious security model where our 2PC protocol client is assumed to be semi-
honest. Receiver privacy is protected unconditionally including if the sender is
malicious and sender correctness can be established by a veri�er. The client and
server privacy is protected unconditionally from the veri�er, provided that the
veri�er does not have access to the client secret key, client plaintext inputs, or
server plaintext inputs.

1.1 An Example

Consider an example with parameters m = 31, b = 17, and c = 2. We set N = 2
(bit encryption) and e1 = 12, e2 = 15.

The client sends the pair be1 mod m, be2 mod m to the server. This pair en-
crypts the client input pair (0, 1). This bit input pair is obtained from the parity
of e1 and e2.

be1 mod m = 18, be2 mod m = 7.
Table 1 shows the full set of multiples for m = 31, c = 2, e1 = 12, e2 = 15.
Given the pair (18, 7), the server cannot deduce the client input pair. For

example, if we take d = 16, f1 = 5, f2 = 14, then df1 = 18, df2 = 7. Let
d = 7, f1 = 7, f2 = 1. Again df1 = 18, df2 = 7. Thus the pair (18, 7) is consistent
with multiple di�erent input exponent pairs; in this case both (1, 0) and (1, 1).

For this example, these exponent pairs all satisfy the relation that the sum
of the exponents is less than m. Thus these inputs to the server can be used to
evaluate a circuit with one addition gate. The client can decrypt the returned
value from the server by multiplying by b−1 mod m and computing the parity
of the result.

Table 2 shows the various possible exponent pairs that are consistent with
each bit input pair where the sum of the exponents is less thanm. Thus there is a
small amount of leakage since the di�erent input pairs have di�erent frequencies
given the ciphertext pair. The entropy for this example is −

∑
pi log(pi) ≈ 1.89

which is 0.11 bits less than perfect security (2 bits). We will show in the next
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Table 1. Multiples Table for m = 31, c = 2, e1 = 12, e2 = 15.

Multiple Pair Multiple Pair

1 (12, 15) 16 (6, 23)
2 (24, 30) 17 (18, 7)
3 (5, 14) 18 (30, 22)
4 (17, 29) 19 (11, 6)
5 (29. 13) 20 (23, 21)
6 (10, 28) 21 (4, 5)
7 (22, 12) 22 (16, 20)
8 (3, 27) 23 (28, 4)
9 (15, 11) 24 (9, 19)
10 (27, 26) 25 (21, 3)
11 (8, 10) 26 (2, 18)
12 (20, 25) 27 (14,2)
13 (1, 9) 28 (26, 17)
14 (13, 24) 29 (7, 1)
15 (25, 28) 30 (19, 16)

section the entropy goes to c log(N) where log(N) is the number of plaintext
bits for each client input element as m→∞.

Table 2. Client Exponent Pairs Consistent with Server Received Pair (18, 7) for m =
31, c = 2.

Bit input pair (0.1) Pair (1, 0) Pair (1, 1) Pair (0, 0)

(12, 15) (5, 14) (3, 27) (8, 10)
(6, 23) (11, 6)) (15, 11) (2, 18)
(18, 7) (1, 9) (14, 2)
(4, 5) (9, 19)

(21, 3)
(7, 1)

1.2 Our Contributions

We have the following results:

1. We give an additive homomorphic encryption algorithm that provides sta-
tistical client privacy with small leakage, and extend this to include mul-
tiplication both via a non-interactive protocol and also a more scaleable
protocol that relies on client assistance for multiplication operations. The
resulting protocols are secret key somewhat homomorphic that protect the
client privacy from a computationally unbounded server.
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2. We quantify the client's privacy leakage in Theorem 2 and show that leakage
goes to 0 as we increase m (the modulus and ciphertext size).

3. Based on the somewhat homomorphic protocol, we construct a 2-party pro-
tocol (2PC) where both the client and server provide inputs and the server
processes the encrypted inputs through the circuit returning the output to
the client. We show that this protocol protects the client privacy, with mini-
mal leakage via a similar bound as in Theorem 2, from the unbounded server.
The server is in the malicious model.

4. We show the 2PC protocol protects server privacy assuming hardness of the
subset sum assumption given a semi-honest client.

5. The 2PC protocol malicious server's correctness can be veri�ed in the pro-
tocol by a veri�er entity with access to the protocol transcript, the server
computations, and the circuit speci�cation. The client and server privacy is
statistically secure from the veri�er provided the veri�er does not have access
to the client secret key, client plaintext inputs, or server plaintext inputs.

6. The 2PC protocol can be scaled by dividing the circuit into smaller sub-
circuits each with separate encryption parameters. This scaling allows the
ciphertext size to grow logarithmically as circuit size grows.

1.3 Related Work

There has been extensive work in homomorphic encryption since the break-
through work of Gentry [15] (e.g., [16], [8], [5], [17], [13], [6], [7], [10], [9], [2],
[14]. These schemes require less rounds than our main scheme with requires
interaction with the client for every multiplication gate. Our schemes provide
statistical privacy for the client.

Foundational work in multiparty computation includes [25], [18], [4], [12].

It is not possible to protect both parties with statistical security in a 2-party
secure computation protocol.

Dakshita and Mughees [20] give 2-party secure protocols where one party is
statistically secure and the other party is computationally secure. Their proto-
cols use garbled circuits [25]. Thus our protocol may be more communication
bandwidth e�cient if the number of multiplication gates is not too large relative
to the size of the circuit. Their protocols are secure against a malicious adversary
whereas we assume our client, or receiving party, is in the semi honest model
(but our receiving party's privacy is protected even if the sender is malicious).

[3] allows the results of [20] to be based on additional assumptions such as
CDH. [1] generalizes [20] from 2 parties to n parties; one party can be protected
with statistical security and their fallback security provides computational secu-
rity for the other parties.

Koleskinov [21] gives a 2-party secure protocol where the secrets are assigned
to wires. It has information theoretic security if the underlying oblivious trans-
fer (OT) protocol does. OT protocols exist that provide information theoretic
security for either the sender or the receiver, but not both [11].
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1.4 Terminology and Background

A vector x of elements in Zm (the integers modulo m) will be denoted in boldface.
Elements in Zm will be taken to be integers between 0 and m− 1, inclusive.

We will leverage the subset sum problem: given integers a = (a1. . . . , an) ∈
Zn and a uniform random vector s where si ∈ {0, 1}. The adversary is given
(T = a · s,a) and must �nd s, where "·" denotes the inner product. The subset
sum problem is considered hard for a computationally bounded adversary. The
best known algorithms are exponential in the smaller of n and T.

For circuits, we let the parameter a be the number of addition gates and g is
the number of multiplication gates. For boolean circuits, the multiplication gates
could be either AND or NAND gates, and the addition gates are XOR gates.

The notation s ← S is used when s is randomly selected from S via the
uniform distribution.

We follow [19] for our de�nition of simulation privacy in the semi-honest
model, assuming a deterministic functionality f. Our 2PC protocol has server
privacy if there is a probabilistic polynomial-time algorithm S such that

{S(x, f1(x, y))}x,y∈{0,1}∗ ≡c {V IEWΠ
c (x, y)}x,y∈{0,1}∗

where V IEWc is the client's view of our protocol Π's execution including it's
input, randomness and messages received, f1(x, y) is the client output, and x, y
are the client and server inputs respectively.

2 Somewhat Homomorphic Encryption Schemes

We �rst present an additive somewhat homomorphic scheme and then schemes
with both addition and multiplication. Our schemes are secret key rather than
public key.

2.1 Additive Homomorphic Scheme

De�nition 1. Given a server circuit with a addition gates. m, b, ei, and N are
integers where N is a power of 2. A client input instance is

I = (m, b,N, e1, . . . , ec),

where ei <
m
a+1 , 1 ≤ i ≤ c. We assume gcd(b,m) = 1. More precisely, the ei

satisfy the following:

1. the ei are distinct

2. for every pair (ei, ej) where i 6= j, then if xei = (m − 1)/2 (in Zm) then
xej 6= 1.

3. for all i,, ei = aiN + ri where ai is random uniform and ri is the client's
plaintext input. ri < N.

6



The client ciphertext is obtained by selecting an integer representative vi, 1 ≤
i ≤ c, where vi ≡ bei mod m. Then Q(I) = (v1, . . . , vc) is the client ciphertext
request corresponding to the instance.

The client sends the client ciphertext request to the server which uses the
input elements as inputs to the circuit. The server returns the output elements
to the client.

2.2 Proof of Security

We will make use of the max norm: ‖x‖∞ = maxi{|xi|}.
In the following theorem, we assume m is prime, but the theorem can be

generalized to composite m.

Theorem 1. Given a client ciphertext request Q(I) = (v1, . . . , vc) with N, m,
and b as de�ned above, where ei ≤ m/(a+1), 1 ≤ i ≤ c. Let m be prime. Suppose
r1, . . . , rc are the client's plaintext values; in other words, ei mod N = ri, 1 ≤
i ≤ c. Given s = (s1, . . . , sc) as plaintext values corresponding to an arbitrary
client ciphertext request.

1. Let µ = 1/(a+1)c. Let Tm−1 be the number of vectors in the cyclic submodule
L of Zcm generated by (e1, . . . ec) that have max norm bounded by m/(a+ 1).
Let k be a positive integer. With probability

P ≥ 1− k2(a+ 1)c

m− 1

we have ∣∣∣∣ Tm−1m− 1
− µ

∣∣∣∣ ≤ ε
where ε = 1/(k(a+1)c). The Tm−1 vectors correspond to other client cipher-
text request instances Ī such that Q(I) = Q(Ī).

2. Let µ2 = 1/((a + 1)N)c. Let Ssm−1 be the number of vectors x in the cyclic
submodule L of Zcm generated by (e1, . . . ec) that have max norm bounded by
m/(a+ 1) and satisfy xi mod N = si, 1 ≤ i ≤ c. Let k be a positive integer.
With probability

P2 ≥ 1− k2((a+ 1)N)c

m− 1

we have ∣∣∣∣ Ssm−1m− 1
− µ2

∣∣∣∣ ≤ ε2
where ε2 = 1/(k(N(a + 1))c). We call two client ciphertext requests com-
patible if they satisfy ei mod N = fi mod N, 1 ≤ i ≤ c, where the cor-
responding client input instances are I = (m, b,N, e1, . . . , ec), and J =
(m, d,N, f1, . . . , fc).

We will make use of the following corollary to Chebyshev's inequality:
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Lemma 1. Let Xi be independent, identically distributed random variables with
mean µ and variance σ2. Let Sn = X1 + . . .+Xn. For any ε > 0, we have

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) ≤ σ2

nε2
.

We now give the proof of the theorem:

Proof. (1) The vector e = (e1, . . . , ec) generates a cyclic submodule L of Zcm
over the ring Zm.We may view tei as t varies over Z∗m as a random permutation
of Z∗m. Thus te is a random permutation over the cross product of the individual
coordinate subsets. Thus we may assume that

Pr[‖x‖∞ < m/(a+ 1) given x ∈ L] = Pr[‖x‖∞ < m/(a+ 1)]

Also,

Pr[‖x‖∞ < m/(a+ 1)] =
1

(a+ 1)c

Let ε = 1/(k(a+ 1)c). By the lemma above, we have

Pr[|Tm−1/(m− 1)− µ| ≥ ε] < σ2

(m− 1)ε2

where Xi = 1 if the ith vector in L satis�es

‖x‖∞ < m/(a+ 1),

Ti = X1 + X2 + . . . + Xi, with µ as the mean of Xi, and σ2 is the variance.
σ2 = µ(1− µ) < µ since the Xi are Bernoulli random variables.

µ = Pr[X1 = 1] = 1/(a+ 1)c. Thus

σ2

(m− 1)ε2
<

µ

(m− 1)ε2
=
k2(a+ 1)c

m− 1

Thus with probability P where

P ≥ 1− k2(a+ 1)c

m− 1

we have ∣∣∣∣ Tm−1m− 1
− µ

∣∣∣∣ ≤ ε
It remains to show that the Tm−1 short vectors in L correspond to other client
ciphertext request instances. For each such vector s, we have tsei ≡ si mod m,
1 ≤ i ≤ c, for some ts where 1 ≤ ts ≤ m − 1. Let f ≡ b(ts)

−1 mod (m). Then
fsi ≡ bei mod (m), 1 ≤ i ≤ c. Thus f, s1, . . . , sc are part of a client ciphertext
request instance Ī, such that Q(I) = Q(Ī).
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(2) Now we prove claim (2) above. Let Yi = 1, if the ith vector in L is
short and compatible with s = (s1, . . . , sc), and let Yi = 0 otherwise. Let Ssi =
Y1 + Y2 + . . .+ Yi. Let

ε2 =
1

k((a+ 1)N)c
.

From the lemma, we have

Pr[|Ssm−1/(m− 1)− µ2| ≥ ε2] <
σ2
2

(m− 1)ε22

where µ2 = Pr[Y1 = 1] = 1/((a+ 1)N)c). Thus

σ2
2

(m− 1)ε22
≤ k2((a+ 1)N)c

m− 1

Thus with probability P2 where

P2 ≥ 1− k2((a+ 1)N)c

m− 1

we have ∣∣∣∣ Ssm−1m− 1
− µ2

∣∣∣∣ ≤ ε2

We now show that entropy associated with a client ciphertext request ap-
proaches perfect security as m grows.

Theorem 2. We order the set of plaintext vectors π = (s1, . . . , sc) where si <
N, 1 ≤ i ≤ c.We denote this ordered set as {π1, . . . , πNc} where πi = (si1, . . . , s

i
c).

Given the module L over Zm generated by (e1, . . . , ec) associated with client input
instance I = (m, b,N, e1, . . . , ec). Let pi be the probability that πi is encoded in
a vector x in L where ‖x‖∞ < m/(a + 1); thus pi = Sπi

m−1/Tm−1. (Tm−1 and
Sπi
m−1 are de�ned above in Theorem 1.) Then for an integer k > 0, we have

k − 1

k + 1
log

(k − 1)N c

k + 1
≤
∑
i

pi log
1

pi
≤ k + 1

k − 1
log

(k + 1)N c

(k − 1)

with probability

P ≥
(

1− k2((a+ 1)N)c

m− 1

)Nc+1

Proof. By Theorem 1, we have∣∣∣∣ Sπi
m−1

m− 1
− µ2

∣∣∣∣ ≤ ε2
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with probability

Pi ≥ 1− k2((a+ 1)N)c

m− 1

where ε2 = 1/k(a+ 1)cN c, µ2 = 1/((a+ 1)N)c. Similarly, we have∣∣∣∣ Tm−1m− 1
− µ

∣∣∣∣ ≤ ε
with probability

P ≥ 1− k2(a+ 1)c

m− 1
≥ 1− k2((a+ 1)N)c

m− 1
,

where ε = 1/k(a+ 1)c, µ = 1/(a+ 1)c. We have(
1− k2((a+ 1)N)c

m− 1

)Nc+1

≈ e−k
2((a+1)N)c(Nc+1)/(m−1)

since we may select m so that k2((a+ 1)N)c/(m− 1) is very small (e−x ≈ 1− x
for very small positive x) and due to independence.

Thus with probability P we have∣∣∣∣ Tm−1m− 1
− µ

∣∣∣∣ ≤ ε
and ∣∣∣∣ Sπi

m−1
m− 1

− µ2

∣∣∣∣ ≤ ε2
for all πi.

We have µ2 + ε2 = (k+ 1)/(k((a+ 1)N)c), µ2− ε2 = (k− 1)/(k((a+ 1)N)c),
µ+ε = (k+1)/(k(a+1)c), and µ−ε = (k−1)/(k(a+1)c). Thus with probability
P we have

Sπi
m−1
Tm−1

≤ k + 1

(k − 1)N c

and
Sπi
m−1
Tm−1

≥ k − 1

(k + 1)N c

Thus ∑
i

pi log
1

pi
=
∑
i

Sπi
m−1
Tm−1

log
Tm−1
Sπi
m−1

≤
∑
i

k + 1

(k − 1)N c
log

(k + 1)N c

k − 1

=
k + 1

k − 1
log

(k + 1)N c

k − 1

and ∑
i

pi log
1

pi
=
∑
i

Sπi
m−1
Tm−1

log
Tm−1
Sπi
m−1

≥
∑
i

k − 1

(k + 1)N c
log

(k − 1)N c

k + 1

=
k − 1

k + 1
log

(k − 1)N c

k + 1
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2.3 L1 norm

The max norm in our theorems above corresponds to a circuit that has (a +
1) max ei < m where a is the number of addition gates. Alternatively, if we let
a2 be the maximum number of times any element is added to itself in the circuit,
we have (a2 + 1)

∑
ei < m and

∑
ei < m/(a2 + 1) which gives rise to the L1

norm.
We now give a basic combinatorial lemma which is needed to establish the

analogs of the above theorems for the L1 norm.

Lemma 2.

S = |{x : ‖x‖1 ≤ B where x ∈ Zcm; 1 ≤ xi ≤ B − 1, 1 ≤ i ≤ c}| =
(
B

c

)
Proof. If c = 2, we have 1+2+ . . .+B−1 = (B−1)B/2 =

(
B
2

)
. Using induction,

we have (
B − 1

c− 1

)
+

(
B − 2

c− 1

)
+ . . .+

(
c− 1

c− 1

)
= |S|

We show the left side of this equality is equal to
(
B
c

)
. Choose any element x in a

set of B elements.
(
B−1
c−1
)
is the number of subsets with x in them. Now remove

x. Select y in the set.
(
B−2
c−1
)
is the number of subsets of size c with y (but not

x.) Remove y now. Iterate this step until only c elements are left. This is the
last subset with c elements.

We omit the proofs of the following two theorems since they follow the proofs
of Theorem 1 and Theorem 2 above while leveraging Lemma 2 and Stirling's
formula.

Theorem 3. Given a client ciphertext request Q(I) = (v1, . . . , vc) with N, m,
and b as de�ned above. Suppose r1, . . . , rc are the client's plaintext values; thus
ei mod N = ri, 1 ≤ i ≤ c. Given s = (s1, . . . , sc) as plaintext values correspond-
ing to an arbitrary client ciphertext request. λ is a constant between 1/2 and 2;
a2 bounds the number of times any element is added to itself in the circuit.

1. Let µ = λ/c!(a2 + 1)c. Let Tm−1 be the number of vectors in the cyclic
submodule L of Zcm generated by (e1, . . . ec) that have L1 norm bounded by
m/(a2 + 1). Let k be a positive integer. With probability

P ≥ 1− k2c!(a2 + 1)c

(m− 1)λ

we have ∣∣∣∣ Tm−1m− 1
− µ

∣∣∣∣ ≤ ε
where ε = λ/(kc!(a2 + 1)c).
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2. Let µ2 = λ/(c!((a2+1)N)c). Let Ssm−1 be the number of vectors x in the cyclic
submodule L of Zcm generated by (e1, . . . ec) that have L1 norm bounded by
m/(a2 + 1) and satisfy xi mod N = si, 1 ≤ i ≤ c, Let k be a positive integer.
With probability

P ≥ 1− k2c!((a2 + 1)N)c

λ(m− 1)

we have ∣∣∣∣ Ssm−1m− 1
− µ2

∣∣∣∣ ≤ ε2
where ε2 = λ/(kc!(N(a2 + 1))c). We call two client ciphertext requests com-
patible if they satisfy ei mod N = fi mod N, 1 ≤ i ≤ c, where the cor-
responding client input instances are I = (m, b,N, e1, . . . , ec), and J =
(m, d,N, f1, . . . , fc).

Theorem 4. We order the set of plaintext vectors π = (s1, . . . , sc) where si <
N, 1 ≤ i ≤ c.We denote this ordered set as {π1, . . . , πNc} where πi = (si1, . . . , s

i
c).

Given the module L over Zm generated by (e1, . . . , ec) associated with client input
instance I = (m, b,N, e1, . . . , ec). Let pi be the probability that πi is encoded in
a vector x in L where ‖x‖1 < m/(a2 + 1); thus pi = Sπi

m−1/Tm−1. (Tm−1 and
Sπi
m−1 are de�ned above in Theorem 3.) Then for an integer k > 0, we have

k − 1

k + 1
log

(k − 1)N c

k + 1
≤
∑
i

pi log
1

pi
≤ k + 1

k − 1
log

(k + 1)N c

(k − 1)

with probability

P2 ≥
(

1− k2c!((a2 + 1)N)c

λ(m− 1)

)Nc+1

2.4 Incorporating Multiplication

The multiplication of be1 mod m and be2 mod m where ei mod N = ri, i = 1, 2
is de�ned to be be mod m for some e where e < m/(a + 1) and e mod N =
r1r2 mod N. 1

Non-Interactive Scheme Our �rst scheme requires the client to send N ele-
ments be1 mod m, . . . , beN mod m for each multiplication gate where eimodN =
ri and r1, . . . , rN are the N possible client plaintexts. The server computes all Ng

possible results where g is the number of multiplication gates. The server selects
one possible multiplication result, bei mod m, for each multiplication gate. For
each of the Ng possible results, the server returns the 2 multiplicand elements
and the selected multiplication result for each gate, plus the output. Thus the

1 For N = 2, (a boolean circuit), a multiplication gate is an AND gate. Alternatively,
we could replace the AND gate with a NAND gate in our descriptions below.
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server returns 3g+ 1 elements for each of the Ng selection tuples. Note that the
server does not know which of the Ng results contains correct multiplications.
Only one of the results has all correct multiplications.

The client, upon receiving the server results, performs the following steps:

1. The client loops through all Ng results. Each result is a tuple of g triples:

(x1, y1, z1), . . . , (xg, yg, zg)

2. For each tuple, the client computes r1 = b−1x1 mod m mod N and r2 =
b−1y1 mod m mod N and checks if r1r2 mod N = b−1z1 mod m mod N. If
not, then the tuple is discarded.

3. Only 1 tuple will not be discarded and the output is the output element
from this tuple.

This scheme can only be practical for a circuit with a small number of mul-
tiplication gates since the work scales exponentially with the number of multi-
plication gates.

Interactive Scheme To preserve information-theoretic security, the client is
assumed to know the number of multiplication gates in the circuit. Each multi-
plication gates adds 1 to the c parameter in the information-theoretic security
analysis above.

The interactive scheme works as follows. Initially, the client sends c1 elements
be1 mod m, . . . , bec1 mod m to the server, one element for each of the client's
inputs to the circuit. The server can process addition gates on its own. The
server leverages help from the client to process multiplication gates:

1. When the server has two multiplicands for a multiplication gate, it returns
both elements, be1 mod m and be2 mod m to the client.

2. The client decrypts by multiplying by b−1 mod m to obtain e1 mod m and
e2 mod m. The client then computes r1 = e1 mod m mod N and r2 = e2 mod
m mod N.

3. The client computes e = aN+r where a is random uniform and r = r1r2 mod
N ; we take r < N.

4. The client sends be mod m to the server.
5. The server lets be mod m be the output of the multiplication gate.

The server returns the �nal output to the client.

3 Two-Party Computation (2PC)

In this section, we consider the case where the server also has inputs for the
circuit. As in Section 2, the client provides its (encrypted) inputs to the server,
the server processes the client and server inputs through the circuit, and it
returns the output to the client. Optionally, the client may share the decrypted
output with the server.
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For multiplication, we assume the interactive scheme is being used. Client
privacy is information-theoretic per the results in Section 2; client privacy holds
even if the server is fully malicious and computationally unbounded, except
possibly if the client shares the decrypted output with the server. (A malicious
server could learn additional information about client input values if the client
returns the decrypted output to the server since the server could have returned
as output the sum of one of its encrypted input values with a client encrypted
input value.) If the client receives noti�cation from a veri�er that veri�es the
correctness of server's processing after the output is delivered to the client (see
Section 3 for details), then the client can deliver an output to the server and be
assured that client privacy is not impacted by a malicious server.

Server privacy depends on the hardness of the subset sum problem and our
assumption that the client is semi-honest. Correctness also assumes the client
is semi-honest. A veri�er can inspect the protocol transcript along with the
speci�cation of the circuit to verify that the server's actions are correct. If the
secret key and parities of the server inputs are not shared with the veri�er, then
client and server privacy is statistically protected from the veri�er.

Our security proof assumes N = 2.

Our protocol includes a preprocessing step that occurs prior to client and
server inputs and subsequent processing. The client creates a small number of
elements of the form be mod m following the same algorithm as in creating client
input elements. The client creates client input elements, server input elements,
and noise elements. The client sends these elements to the server along with the
parities of the exponents for the server input elements and the noise elements.
The server input elements include an even and an odd parity exponent element
for each server input. (Alternatively, the client creates the encrypted server in-
puts and the parties use an Oblivious Transfer protocol with sender statistical
privacy to transfer 1 out of 2 strings to the server for each server input. The
advantage is reducing 2cs to cs in the sum for the c parameter at the cost of
some public key operations and another computational assumption.)

For processing a multiplication gate, the server computes random subset
sums of the noise elements and adds them to each multiplicand. Four elements
are sent to the client.2 Each multiplicand is added to both an odd sum and
an even subset sum prior to both of the resulting elements being sent to the
client. We de�ne an even (odd) sum as a sum where the sum of the exponents is
even (odd). Each pair of elements is randomly ordered prior to being sent to the
client. The client is able to obtain the least signi�cant bit after multiplying by
b−1 mod m for all four of the elements and return four products. Three of the
products will be discarded by the server and the client does not know which of
the products is the correct one (see Figure 2).

2 For optimization, only two elements have to be sent; one element from each pair is
sent. The client knows the other values after decrypting these two elements.
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Algorithm 1 Preprocessing Steps for 2-Party Protocol with Information-
Theoretic Security for Client, Steps Occur Prior to Introduction of Data

2-Party Protocol with Information-Theoretic Privacy for Client: Prepro-

cessing

1: The client selects the c parameter: c = cc + 2cs + c1 + 4g where g is the number
of multiplication gates in the circuit, cc is the number of client inputs, cs is the
number of server inputs, and c1 is a small integer (e.g., c1 = 8) for the number of
base elements used to create noise elements. The client selects m such that m and
c satisfy the Theorem 2 bound.

2: b← Zm where gcd(b,m) = 1. The secret key is (b,m).

3: The client creates the set C of c1 elements (the noise generator elements) where
these c1 elements are part of the larger set of c elements. t is an integer parameter
which will limit leakage of subset sums to the client which will be described in our
privacy proof. (As above, e = aN + r where a is random uniform and r is 0 or 1,
N = 2.) Roughly half of the elements are even:
ei ← Zm,where 2 ≤ ei ≤ m/(t(a+ 1)), 1 ≤ i ≤ c1.

4: The client creates uniform random noise elements from the c1 elements discarding
any duplicates until the client has n new elements. n is approximately log(m1/2).
The random noise elements have the form a1e1+a2e2 where a1 and a2 are integers
and e1, e2 are relatively prime integers in the set of c1 elements. Let h1, . . . , hn be
the set of noise element exponents. The client ensures that these values are positive
and

∑
i
hi < m/2 :

i = 0
while i < n do

hi ← ai1e1 + ai2e2; ai1, ai2 ← Z, e1, e2 ∈ C.
if hi = hj for some j < i or hi > m/2n then

discard hi

else

store hi, parity(hi)
i = i + 1

endif

endwhile

5: The client sends the noise elements to the server along with information to identify
the parity of the exponents for each element:
send zi = bhi mod m, parity(hi) to server, 1 ≤ i ≤ n.
server stores zi, parity(hi), 1 ≤ i ≤ n.
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Algorithm 2 Input Processing Steps for 2-Party Protocol with Information-
Theoretic Security for Client

2-Party Protocol with Information-Theoretic Privacy for Client: Processing

Inputs Through Circuit

1: The client creates 2cs server input elements each of the form be mod m where
these 2cs elements are part of the larger set of c elements:
for i = 0 to cs do
ei ← Zm where 2 < ei < m/(t(a+ 1))
if parity(ei) = 1 then
ei = ei − 1
endif

yi = bei mod m
end for

for i = cs + 1 to 2cs do
ei ← Zm where 2 < ei < m/(t(a+ 1))
if parity(ei) = 0 then
ei = ei + 1
endif

yi = bei mod m
end for

2: Client randomizes the order of yi, 1 ≤ i ≤ cs, stores the yi exponent parities
separately, sends the yi to the server, and sends a separate message with yi
exponent parities to the server. (The exponent parities will not be shared with
a veri�er.) Alternatively, oblivious transfer is used to send cs elements to the server.

3: The client creates cc input elements each of the form be mod m where these cc
elements are part of the larger set of c elements:
for i = 0 to cc do
ei ← Zm where 2 < ei < m/(t(a+ 1))
if inputi = 0 then
if parity(ei) = 1 then
ei = ei − 1

endif

endif

if inputi = 1 then
if parity(ei) = 0 then
ei = ei + 1

endif

endif

wi = bei mod m
end for

4: Client sends wi to server, 1 ≤ i ≤ cc.

5: The server can now begin processing through the circuit given the client and server
input elements.
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Algorithm 3 Steps for 2-Party Protocol with Information-Theoretic Security
for Client: Multiplication, Addition Gates and Output

2-Party Protocol with Information-Theoretic Privacy for Client: Processing

Multiplication, Addition, and Output

1: When the server needs to multiply be1 and be2, it creates four elements (in Zm)
to send to the client: be1 plus an even parity subset sum element (using the n hi

elements), be1 plus an odd parity subset sum element, be2 plus plus an even parity
subset sum element, and be2 plus an odd parity subset sum element. The 1st and
2nd elements are randomly ordered and the 3rd and 4th elements are randomly
ordered:
for i = 0 to 3 do
z = (z1, . . . , zn)
s← {0, 1}n
sumi ← s · z mod m
de�ne parity(sumi) =

∑
sj=1

parity(hj)

do while parity(sumi) 6= i mod 2
select random j where sj = 1, sumi = sumi − zj
select random j where sj = 0, sumi = sumi + zj

end do while

end for

x0 = be1 + sum0 mod m.
x1 = be1 + sum1 mod m.
x2 = be2 + sum2 mod m.
x3 = be2 + sum3 mod m.

2: x0 and x1 are randomly ordered and sent to the client.
3: x2 and x3 are randomly ordered and sent to the client.
4: Relabel x0, x1, x2, x3 as u0, u1, u2, u3 where u0, u1, u2, u3 is the receiving order.
5: Client computes:

for i = 0 to 3 do
vi = uib

−1 mod m
if parity(vi) = 1 then
ri = 1

else

ri = 0
endif

end for

6: Client generates f0, f1, f2, f3 as in step 3 in Algorithm 2 where parity(f0) = r0r2,
parity(f1) = r0r3, parity(f2) = r1r2, and parity(f3) = r1r3.

7: The client computes bf0 mod m, bf1 mod m, bf2 mod m, and bf3 mod m, and sends
these elements to the server in this order.

8: The server keeps the element corresponding the correct product and discards the
other 3 elements. The kept element is the output of the multiplication gate.

9: Addition gates are processed by the server without client interaction.
10: An output o is summed with an even parity subset sum element s to get s + o

which is sent to the client. The client computes the plaintext output as
parity(b−1(s+ o) mod m).

Remark 1. One question is how does server privacy hold up given a client in
the malicious model. During preprocessing, the client can give incorrect parity
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Server(be0, be1)

Keep bfi that corresponds to 
parity(e0 + b-1s0) parity(e1 + b-1s2 ) as output 
of multiplication gate (product of be0, be1)

Client
Create subset sums: s0,s2 (even) s1,s3 (odd)

Randomly permute be0+s0, be0+s1 to get u0,u1

Randomly permute be1+s2, be1+s3 to get u2,u3

u0 u1 u2 u3

v0=b-1u0

Client decrypts:

v1=b-1u1

v2=b-1u2 v3=b-1u3

(mod m)
Generate fi < m/(t(a+1)),
ri = parity(vi)
parity(f0)=r0r2, parity(f1)=r0r3

parity(f2)=r1r2, parity(f3)=r1r3

bf0 bf1 bf2 bf3  (mod m)

(ei + b-1sj < m)

Fig. 2. Multiplication Gate Protocol

results to the server. We could construct a protocol where the server sends subset
sums of its server elements to the client and the client responds with the parity
for each of multiple queries. Given the hardness of subset sum, a malicious client
could be detected (the client has to return the correct parity or guess, while the
server knows what the parity should be based on the client's parity statements
during preprocessing.) A similar protocol could detect a client that sends server
elements with exponents that are incorrectly sized. A malicious client could
return incorrect results for multiplication queries from the server resulting in
leakage of server inputs or send initial client input elements and server elements
(cc and 2cs elements respectively) that are not independent from each other
which could lead to leakage of server inputs.

3.1 Proof of Security

De�nition 2. (Linear Subset Sum Problem): Given a circuit with a addition
gates. For server security, we depend on the subset sum problem: we have a
uniform random vector s where si ∈ {0, 1}, T = s · be mod m, e = (e1, . . . , en),
2 ≤ ei ≤ m/(2n), 1 ≤ i ≤ n. The adversary is given T, m, e, and b, and must
�nd s.

Theorem 5. Suppose the adversary has a polynomial time algorithm for the lin-
ear subset sum problem de�ned above. Then the adversary can use this algorithm
as a subroutine to solve an integer subset sum problem in polynomial time.
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Proof. We are given integers a1, . . . , an, and T =
∑n
i=1 siai where s = (s1, . . . , sn),

si ∈ {0, 1}, 1 ≤ i ≤ n. The adversary constructs the linear subset sum prob-
lem as follows: We select m such that a1, . . . , an < m/(2n), b ∈ Zm such that
gcd(b,m) = 1. Then let T2 = bT mod m. Thus T2, (a1, . . . , an), b is an instance
of a linear subset sum problem and the adversary can obtain s in polynomial
time.

Theorem 6. The 2-party protocol of Algorithms 1, 2, and 3 has server privacy
given the hardness of the subset sum problem and information-theoretic client
privacy where server privacy also assumes the client is semi-honest. Server pri-
vacy has leakage roughly bounded by 8g/(t + 2) plus additional leakage due to
subset sum noise distribution leakage of the multiplicand. Both leakages approach
zero as t grows. We assume that cs ≤ log(m1/4) if using oblivious transfer to
send server input elements from the client, or cs ≤ log(m1/4)/2 otherwise. The
number of subset sum noise elements is n ≈ log(m1/2).

Proof. Theorem 2 establishes information-theoretic client privacy where we re-
place a+ 1 with t(a+ 1) in the statement of the theorem and in the probability
bound, given a malicious model server that does not receive decrypted output
from the client. If the malicious server is to receive decrypted output from the
client, the client �rst checks with the veri�er (see below) to con�rm that the
server's protocol actions are correct. If so, then the client can send the decrypted
output to the server.

Given that the client decrypts elements it receives from the server, collisions
do not a�ect server privacy. The client ensures that both its client input ele-
ments and multiplication query response elements do not intersect with either
the server input elements or the noise generator and noise elements. Then The-
orem 2 bounds leakage of the client parities (the server's knowledge of its own
element parities does not a�ect the possible parities for the client elements).

We use a simulator argument for server privacy. The simulator is given the
client inputs, output, and the security parameter m.. It selects uniform random
b such that gcd(b,m) = 1. It encrypts the client inputs ii, i2, . . . , icc ∈ {0, 1} by
selecting uniform random a1, . . . , acc so that ej = 2aj + ij , 1 ≤ j ≤ cc, where
ej <= m/(t(a+ 1)). It creates the noise elements as described in Algorithm 1.

It then selects cs server input elements of the same form be mod m as de-
scribed in Algorithm 2. The (trial) server plaintext bits are random.

The simulator processes the plaintext client and trial server inputs through
the circuit and obtains the trial client output.

If the trial client output is not equal to the actual client output, the simu-
lator will change one or more of the random trial server inputs and recheck the
resulting trial client output as follows: The simulator can mark all of the inputs
to the gates in the circuit as not modi�able, for the inputs that derive solely
from the client inputs. The simulator then works backwards through the circuit
starting with �ipping one of the bits that is an input to the output gate. This
forces changes to each of the gate inputs on a path from the output gate to an
input gate. If the path dead ends prior to reaching an input gate, the simulator
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has to backtrack and push the changes up another path to an input gate of the
circuit. The process completes when the simulator reaches an input gate and �ips
a server input bit. The resulting modi�ed server input bits are now used as the
server input bits. The simulator can now encrypt these bits as in Algorithm 2.

For multiplication gates and output, subset sums are added to the multipli-
cands and output (the target point). When the sum of the noise and target point
is between m/2 and m/2 + m/t or less than m/t, we have potential leakage to
the client. We roughly bound this leakage as 2mt/(m/2 +m/t) = 4/(t+ 2) per
element resulting in 8g/(t+ 2) total leakage for the circuit.

A random subset sum added to two distinct target points will result in slightly
di�erent probability distributions. The maximal di�erence will be bounded by
a zero and a m/(t(a+ 1)) target point distributions (the approximately normal
curve of the latter will be slid to the right by m/(t(a+ 1)).

Both leakages go to zero as t grows.

A veri�er without access to the client secret key and parities of the client,
server inputs but with access to the rest of the server's data and calculations,
client's protocol messages, and circuit speci�cation can verify that the server's
computations are correct:

Theorem 7. A veri�er with access to a run of the 2-party protocol of Algorithms
1, 2, and 3 can verify that the server's computations are correct. Access to the
run is de�ned as:

1. access to the server's internal data and computations other than the server
input parity information,

2. access to the client's protocol record of messages sent and received by the
client, and

3. access to the circuit speci�cation.

If the veri�er does not have access to additional data (client secret key, input
parities, and server's input parities), then client and server privacy is protected
information-theoretically from a computationally unbounded veri�er. If the veri-
�er is correct then a malicious unbounded server that deviates from the protocol
will be detected.

4 Scaling the Homomorphic and 2PC Schemes

For the 2PC scheme, the client will need to create 4g additional elements of the
form be mod m, where g is the number of multiplication gates in the circuit.
We recall c = cc + cs + c1 + 4g. Thus m grows exponentially as the number of
multiplication gates grows (see Theorem 2).

In order to limit the growth of m, the circuit can be partitioned into sub-
circuits so that each subcircuit has only a small number of multiplication gates.
The outputs of these gates can be viewed as subcircuit outputs. The client can

20



take the subcircuit outputs that are not �nal circuit outputs and submit them
as inputs into one of the other subcircuits, where the inputs are re-encrypted
under a new secret key and possibly a new modulus.

This technique allows us to keep the m values growing very slowly (if we
double the circuit size we expect the bit length of m grows by 1) while processing
aribitrarily large circuits.

Figure 3 gives an example of dividing a circuit into two subcircuits C1 and
C2. The input gates are circles with an i character inside. The inputs to C1 are
A,B,C,D,E, and F. The inputs to C2 are G,H, I, J,K, and L. Note that G and
H are outputs of multiplication gates in C1, so they are re-encrypted with the
new secret key for subcircuit C2. More precisely, all four of the client responses
are returned to the server and the server selects the correct product for each of
the gates. The correct products are the inputs G and H to subcircuit C2.

De�nition 3. (Subcircuits): Given boolean circuit C. A subcircuit C1 is a con-
nected subgraph of C such that the output of every gate in C1 can be computed
using only the wires and gates of C1. A terminal gate of C1 is a gate G such that
all of the output wires of G lead to gates outside of C1, and G is not an output
gate of C. These outputs are the terminal outputs of C1 and are C ′1s inputs to
other subcircuits of C. If subcircuit C1 uses secret key b and modulus m, then
the terminal outputs are encrypted in keys that correspond to the subcircuit for
which they are inputs. The other subcircuits have distinct secret keys. The other
subcircuits also use separate sets of noise elements (see Algorithm 1). The non-
terminal output inputs to the other subcircuits are computed as in Algorithm 2.

The probability bound of Theorem 2 is slightly a�ected:

P ≥
(

1− wk2(t(a+ 1)N)c

m− 1

)Nc+1

is the approximate bound for subdividing into w subcircuits, each using m as
the modulus or other modulus values of similar size.
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