YPIR: High-Throughput Single-Server PIR with Silent Preprocessing

Samir Jordan Menon
Blyss
samir@blyss.dev

David J. Wu
UT Austin
dwu4@cs.utexas.edu

Abstract

We introduce YPIR, a single-server private information retrieval (PIR) protocol that achieves high throughput (up to 83% of the memory bandwidth of the machine) without any offline communication. For retrieving a 1-bit (or 1-byte) record from a 32 GB database, YPIR achieves 12.1 GB/s/core server throughput and requires 2.5 MB of total communication. On the same setup, the state-of-the-art SimplePIR protocol achieves a 12.5 GB/s/core server throughput, requires 1.5 MB total communication, but additionally requires downloading a 724 MB hint in an offline phase. YPIR leverages a new lightweight technique to remove the hint from high-throughput single-server PIR schemes with small overhead. We also show how to reduce the server preprocessing time in the SimplePIR family of protocols by a factor of 10–15×.

By removing the need for offline communication, YPIR significantly reduces the server-side costs for private auditing of Certificate Transparency logs. Compared to the best previous PIR-based approach, YPIR reduces the server-side costs by a factor of 8×. Note that to reduce communication costs, the previous approach assumed that updates to the Certificate Transparency log servers occurred in weekly batches. Since there is no offline communication in YPIR, our approach allows clients to always audit the most recent Certificate Transparency logs (e.g., updating once a day). Supporting daily updates using the prior scheme would cost 48× more than YPIR (based on current AWS compute costs).

1 Introduction

A private information retrieval (PIR) [CGKS95, KO97] protocol allows a client to privately retrieve a record from a database without revealing to the database which record was requested. PIR is a useful building block in systems for metadata-hiding messaging [MOT+11, KLDF16, AS16, ACLS18], private database queries and web search [WYG+17, HDCZ23a], password breach alerting [LPA+19, TPY+19, ALP+21], Certificate Transparency auditing [HHC+23a], private media consumption [GCM+16], private ad delivery [Jue01, BKMP12, GLM16], and more.

Recently, there has been a flurry of works pushing the limits on the concrete efficiency of single-server PIR. Most concretely-efficient PIR constructions rely on an initial offline phase where the client either uploads or downloads some information to or from the server:

- **Downloading a hint**: The fastest single-server PIR schemes [DPC22, HHC+23a, ZPSZ24, MSR23] rely on the client first downloading a query-independent "hint" in an offline phase. With a \sqrt{N}-size hint (where N is the size of the database) the SimplePIR scheme [HHC+23a] achieves a throughput (i.e., the ratio of the database size and the time needed to answer a query) that is comparable to the memory bandwidth of the system (i.e., the speed at which the PIR server can read the database from memory; this is 14.6 GB/s on our machine). Moreover, if the client can stream the entire database in the offline step (and cache $O(\sqrt{N})$ bits), then schemes like [ZPSZ24, MSR23, GZS24] even allow the server to answer queries with sublinear online computation; this enables protocols that can easily handle databases with hundreds of GB of data (e.g., in an application to private DNS lookups). Of course, this assumes that clients can perform a streaming download of this size.

- **Uploading client-specific state**: In an alternative model [ACLS18, AYA+21, MCR21, MW22], clients instead upload a “public key” to the server in the offline phase. The public key is typically used to “compress” the query and response. For retrieving large records (e.g., tens of KB long), these protocols currently achieve the best communication. However, the highest server throughput [MW22] achieved by these approaches is much smaller (over 10×) than the throughput of their hint-based counterparts.
Challenges of offline communication. While moving some of the communication to the offline phase has been critical to the concrete efficiency of PIR, it also imposes challenges for practical deployments. In the hint-based approach, the offline download is large: for an 8 GB database such as the one used in the application to signed certificate timestamp (SCT) auditing in Certificate Transparency from [HHC+23a], the size of the hint is over 200 MB using the SimplePIR scheme and 16 MB using the DoublePIR scheme. This is problematic for dynamic databases, since each time the database updates, every client must re-download portions of the hint. When using DoublePIR for private SCT auditing, the protocol of [HHC+23a] compromised by having clients update their hints on a weekly basis, even though Certificate Transparency log servers typically update their databases daily. Such a scheme sacrifices real-time monitoring for efficiency. Indeed, if the log database updates daily and the client always audits against the most recent version of the database, the hint downloads and updates are more than 90% of the total cost (see Section 4.5). Dynamic databases are common to many other applications of PIR, such as metadata-hiding messaging or private DNS lookups. Moreover, if a client uses PIR to access multiple databases, it would need to cache hints from each database, which imposes storage burdens for the client.

The client-specific state used by OnionPIR [MCR21], Spiral [MW22], and similar schemes [ACLS18, AYA+21] introduces its own share of challenges. In these schemes, the server must store a (large) public key for each client, imposing high storage requirements for the server and also requiring additional infrastructure to support efficient client state lookups and retrieval. Reuse of client-specific public keys can also enable active attacks on the application [HHC+23a].

Silent preprocessing. High offline communication costs and large client-side or server-side storage requirements are major bottlenecks in the most concretely-efficient single-server PIR protocols. A natural question is whether we can achieve good concrete efficiency with preprocessing, but without offline communication (i.e., a protocol with silent preprocessing). In fact, two recent works have already made great strides in this direction: Tiptoe [HDCZ23a] and HintlessPIR [LMRS24a]. Both schemes essentially leverage a form of “bootstrapping” [Gen09] to remove the hint from the SimplePIR protocol [HH+23a], where the server homomorphically compresses the SimplePIR hint using an encoding of the client secret key. We refer to Section 5.1 for a more detailed summary of these two schemes. While these protocols eliminate the client’s need to download the hint, they incur a computation and communication penalty. For example, the throughput of the Tiptoe system on a 32 GB database is over 7x slower than SimplePIR, and the communication cost (for retrieving a 1-bit record) is over 35x greater than the online communication of SimplePIR. HintlessPIR is more lightweight, but still requires 4x more online communication than SimplePIR and has a throughput that is at most 62% of the SimplePIR throughput. We provide a more detailed comparison of the bootstrapping-based approach from Tiptoe and HintlessPIR with our “key-switching-based” approach in Section 4.4, and an overview of the design of Tiptoe and HintlessPIR in Section 5.1.

1.1 Our Contributions

In this work, we introduce YPIR, a new single-server PIR protocol with silent preprocessing. Like Tiptoe [HDCZ23a] and HintlessPIR [LMRS24a], we build on SimplePIR and its recursive variant, DoublePIR. However, instead of using bootstrapping, we take a packing approach (which has a conceptually-similar flavor to the response packing techniques from [MW22]) and “pack” the DoublePIR response into a more compact representation using polynomial rings. We provide a technical overview of YPIR in Section 1.2 and the full construction in Section 3 (see also Fig. 1 in Section 3 for a visualization).

High throughput with silent preprocessing. The YPIR protocol can be viewed as appending a lightweight post-processing step to DoublePIR to “compress” the DoublePIR response. When retrieving a single bit from a 32 GB database, YPIR achieves a throughput of 12.1 GB/s, which is 97% of the throughput of SimplePIR (and 83% of the memory bandwidth of the machine). In contrast, HintlessPIR achieves a maximum throughput that is only 62% of SimplePIR.

1 Tiptoe is a system for performing private web queries, but as part of their design, they introduce a hintless variant of SimplePIR. In this work, when we refer to Tiptoe, we refer specifically to their hintless PIR scheme.

2 The Y in YPIR is to reflect the fact that the protocol design combines the high-throughput capabilities of PIR based on integer lattices (i.e., the LWE assumption [Reg05]) with the response compression techniques from PIR based on ideal lattices (i.e., the RLWE assumption [LPR10]).

3 Here, we compare against our implementation of SimplePIR which is slightly faster than the reference implementation of SimplePIR [HHC+23b]. The reference implementation of SimplePIR achieves a throughput of 10.4 GB/s on our test system, which is actually slower than YPIR.
(and concretely, 6.4 GB/s on our machine) [LMRS24a]. For database sizes ranging from 1 GB to 32 GB, the YPIR response size is the same as that in DoublePIR, 9–37× shorter than the response size in SimplePIR, and over 100× shorter than that of HintlessPIR and Tiptoe. On the flip side, YPIR queries are 1.8–3× larger than those in DoublePIR, 3–7× larger than SimplePIR, and similar to those in HintlessPIR. We refer to Section 4 for a more detailed breakdown and comparison. In short, for retrieving small records from a large database, YPIR achieves 97% of the throughput of one of the fastest single-server PIR schemes while fully eliminating all offline communication and only incurring a modest increase in query size.

Faster server preprocessing. While YPIR requires no offline communication, it still relies on an offline server preprocessing step (the same as that in SimplePIR). In Section 4.1, we describe a simple approach to improve the server preprocessing throughput by a factor of 10–15×. For instance, while preprocessing a 32 GB database in SimplePIR requires two hours, it just requires 11 minutes with the YPIR approach. Asymptotically, our approach reduces the offline preprocessing cost by a factor of $n / \log n$, where n is the lattice dimension (in SimplePIR-based systems, $n \geq 1024$). Our technique can be used to reduce the preprocessing costs of any of the protocols in the SimplePIR family.

Cross-client batching. The throughput of protocols like SimplePIR is bounded by the memory bandwidth of the system. Since the server throughput is memory-bounded rather than CPU-bounded, we can achieve higher effective throughput by increasing the number of CPU operations per byte of memory read. In Section 4.3, we describe a simple cross-client batching approach where the PIR server uses a single scan over the database to answer multiple queries from non-coordinating clients. In this work, we show that it is straightforward to tweak SimplePIR (and generalizations like DoublePIR and YPIR) to allow the server to answer a small batch of k queries using a single linear scan through memory. While cross-client batching does not reduce the raw number of instructions performed by the CPU, it achieves better utilization of the CPU. With just 4 clients, cross-client batching improves the effective server throughput for a protocol like SimplePIR by a factor of 1.4× to 17 GB/s; applied to YPIR, we achieve an effective throughput of 16 GB/s. In typical applications where servers routinely process queries from multiple clients simultaneously, cross-client batching provides a way to increase the effective throughput for the server and make better use of the available computing resources on the server.

Application to Certificate Transparency. In Section 4.5, we compare the server-side costs of using YPIR to realize an application to private SCT auditing in Certificate Transparency [Lau14, LLK13]. In this setting, a log server holds a set of SCTs and a client (e.g., a web browser) periodically checks that the SCTs it received from web servers are contained in the log. In private SCT auditing, the goal is to perform these audits without requiring clients to reveal their browsing history to the log server. Henzinger et al. [HHC+23] designed an elegant solution for private SCT auditing by combining PIR with Bloom filters. In their protocol, an SCT audit translates to a single PIR query to the log server. A major challenge in this setting is that Certificate Transparency logs update on a daily basis (with millions of certificates added daily). When built from protocols like DoublePIR, clients will frequently need to download hint updates when performing an audit. To mitigate these communication costs, the work of [HHC+23] compromises by updating the database on a weekly basis. Thus, their approach does not support real-time auditing.

Based on current AWS computation and communication costs, YPIR has 8× lower server costs compared to the DoublePIR system that could only support weekly updates to the log server (i.e., the cost drops from $1822 per million clients for DoublePIR to $228 per million clients for YPIR). The cost of YPIR further drops to $183 per million clients if we leverage cross-client batching with a batch size of 4 (i.e., assume that the server always has a saturated queue of at least 4 queries). Moreover, with YPIR, the client always audits the latest version of the log server. In fact, the total communication incurred by YPIR each week is smaller than the total communication of the DoublePIR approach. In other words, YPIR reduces the total communication even after accounting for the fact that the cost of downloading the DoublePIR hint can be amortized over the course of a week. Conversely, if we were to use DoublePIR to support daily log updates, the weekly server cost balloons to over $10,000 per million clients, which is 48× higher than using YPIR. Compared to other hintless PIR schemes such as Tiptoe and HintlessPIR, we estimate YPIR achieves a cost savings of 16–84× for private SCT auditing (see Table 6).

4We contrast this with single-client batching [BIM00, IKOS04, GKL10, ACLS18], which seeks to amortize the cost over multiple queries from a single client. Our cross-client batching applies even if each client makes a single query and is entirely transparent to the client (i.e., requires no client-side changes). Cross-client batching was also used in [LG15] to improve the effective throughput of PIR in the multi-server setting.
Application to password breach checking. In Section 4.6, we show how the YPIR techniques can also be used to support queries to databases with large records (e.g., 32 KB or 64 KB records). Specifically, we consider an application to password breach checking. In this application, a client wishes to check whether a password (or username-password pair) has appeared in a publicly-available breach without revealing the password to the server. These protocols are useful for preventing credential stuffing attacks [LPA+19, TPY’19, ALP+21, KC21]. As in prior work [ALP+21], we realize this application by constructing a database of (large) records, where each record contains a set of hashed passwords sharing a common hash prefix. A client can then hash their password locally, use PIR to retrieve the record associated with their hash prefix, and then search within this record for their target hash to determine whether the password is in the set of breached credentials. To support the larger records (32–64 KB) typically used in these settings, we introduce a modified version of YPIR called “YPIR+SP” that builds on SimplePIR instead of DoublePIR. We then compare the YPIR+SP approach to the previous approach of HintlessPIR.

On 1 GB and 8 GB databases of 32 KB records, YPIR+SP has 6–15 times smaller responses, similar query size, and similar throughput as HintlessPIR. HintlessPIR has large response sizes because its bootstrapping-style approach requires that the plaintext modulus of the RLWE encoding scheme be at least as large as the LWE encoding modulus in SimplePIR. In contrast, YPIR+SP packs encodings using standard key-switching, so the input LWE and output RLWE encodings can share the same modulus. For checking a password against a set of 1 billion compromised credentials, our approach achieves a 2.2x reduction in total communication (primarily because the responses are 7.4x smaller) with a less than 5% reduction in throughput compared to HintlessPIR.

Limitations. The main limitation of YPIR is the larger query sizes compared to SimplePIR and DoublePIR. Specifically, a YPIR query is 1.8–3x larger than a DoublePIR query (for an 8 GB database, YPIR queries are 1.5 MB while DoublePIR queries are 724 KB) and 3–7x larger than a SimplePIR query. This is because the post-processing step in YPIR requires communicating a “packing key” as part of the query. If the application setting has a small, fixed communication budget, YPIR may not be appropriate; for example, for a 32 GB database, the minimum YPIR query size is 1.1 MB. We refer to Fig. 3 in Section 4.4 for an illustration of the communication-computation trade-offs in YPIR, HintlessPIR, SimplePIR, and DoublePIR.

1.2 Overview of YPIR

The starting point for this work is the SimplePIR/DoublePIR schemes from [HHC’23a] based on the learning with errors (LWE) problem [Reg05]. First, an LWE encryption of \(\mu \in \mathbb{Z}_p \) is a pair \(ct = (a, b) \in \mathbb{Z}_q^{n+1} \) where \(b = s^a + e + \Delta \cdot \mu \).

Here, \(n \) is the lattice dimension, \(s \in \mathbb{Z}_q^n \) is the secret key, \(e \in \mathbb{Z} \) is a (small) error term, and \(\Delta \) is a scaling factor (typically, \(\lfloor q/p \rfloor \)). Given \(ct \) and the secret key \(s \), the user can compute \(b - s^a = \Delta \cdot \mu + e \mod q \). If \(e \) is small relative to the scaling factor \(\Delta \) (i.e., \(|e| \ll \Delta/2 \)), the user can recover \(\mu \in \mathbb{Z}_p \) from \(ct \) by rounding.

In SimplePIR and DoublePIR, the database is represented by a matrix \(D \in \mathbb{Z}_p^{n \times d} \) and records are indexed by a row-column pair \((i, j)\). The query consists of LWE encryptions of the components of the indicator vectors \(u_i \) and \(u_j \) (i.e., \(u_i \) is the vector that is 0 everywhere and 1 in index \(i \)). In SimplePIR, the response consists of \(\ell_2 \) ciphertexts \(ct_1, \ldots, ct_{\ell_2} \in \mathbb{Z}_q^{n+1} \) which encrypt the \(\ell_2 \) entries of row \(i \) of the database. In DoublePIR, the response is an LWE encryption of \(ct_{\ell_2} \), which is itself an encryption of the element in row \(i \), column \(j \) of \(D \).

An LWE encryption of an element of \(\mathbb{Z}_p \) consists of \(n+1 \) \(\mathbb{Z}_q \) elements. Since \(ct_j \in \mathbb{Z}_q^{n+1} \) is a vector over \(\mathbb{Z}_q \), an encryption of \(ct_j \) (i.e., the DoublePIR response) contains \(\kappa(n+1)^2 \) elements over \(\mathbb{Z}_q \), where \(\kappa = \log q/\log p \). The extra factor of \(\kappa \) comes from the fact that the plaintext space for the LWE encryption scheme is \(\mathbb{Z}_p \), so to encrypt the components of \(ct_j \) over \(\mathbb{Z}_q \), DoublePIR first decomposes each \(\mathbb{Z}_q \) element into its base-\(p \) representation (consisting of \(\kappa \) digits in \(\mathbb{Z}_p \)). For security, the lattice dimension \(n \) is around \(2^{10} = 1024 \), so the response is very large. The insight in [HHC’23a] is that most of the components in the response only depend on the database and not the query. Thus, these can be prefetched as a hint in the offline phase. For example, for an 8 GB database with \(2^{36} \) 1-bit records, the query-independent portion of the response is 16 MB while the query-dependent portion is just 32 KB.

Packing the DoublePIR responses. The YPIR protocol eliminates the offline hint from DoublePIR by compressing the full DoublePIR response using ring LWE [LPR10]. Specifically, we work over the polynomial ring \(R = \mathbb{Z}[x]/(x^d+1) \) where \(d \) is a power-of-two. RLWE ciphertexts have the advantage of having a much smaller ciphertext expansion factor.
With vanilla LWE, encoding a single value $\mu \in \mathbb{Z}_p$ requires a vector of $(n+1)$ elements over \mathbb{Z}_q whereas encoding a ring element $\mu \in R_q$ only requires two elements in R_q (where $R_q = \mathbb{Z}/q\mathbb{Z}$). If we consider the ciphertext expansion factor (i.e., the ratio of the ciphertext size to the plaintext size), RLWE decreases the expansion factor from $(n + 1) \log q / \log p$ to $2 \log q / \log p$. For concrete values of $n = 2^{10}$, this is a $1000\times$ reduction in ciphertext expansion factor.

In YPIR, we use the LWE-to-RLWE packing technique from [CDKS21]. This transformation takes a collection of d LWE ciphertexts $c_{t_1}, \ldots, c_{t_d} \in \mathbb{Z}_q^{d+1}$ that encode messages $\mu_1, \ldots, \mu_d \in \mathbb{Z}_p$ (under a secret key s) and packs them into an RLWE ciphertext that encrypts the polynomial $f(x) := \sum_{i \in [d]} \mu_i x^{i-1} \in R_p$ (under a key $s \in R_p$ derived from s). Note that we assume the lattice dimension n in LWE coincides with the ring dimension d in RLWE. Critically, the transformation takes $d(d+1)$ elements over \mathbb{Z}_q and compresses them into just $2d$ elements over \mathbb{Z}_q. This yields a factor $(d+1)/2$ reduction in ciphertext size. For an 8 GB database, this packing approach compresses the full 16 MB DoublePIR response into a 12 KB response (see Table 2). The cost is that the query must now include a “packing key” for the transformation from [CDKS21] (which essentially consists of RLWE key-switching matrices). This increases the query size from 724 KB in DoublePIR by a factor of 2× to 1.5 MB. We additionally note that most of the computational costs of the [CDKS21] transformation can actually be moved to an offline preprocessing phase (because it is applied to query-independent components). In our experiments, we observed a 9× reduction in the online computational cost by having the server perform a modest amount of additional work in the offline phase. We describe this approach in Section 4.2.

Supporting large records

A limitation of DoublePIR is that it only supports retrieving small records (i.e., a single element of the plaintext space \mathbb{Z}_p). This is sufficient for some applications like private SCT auditing (see Section 4.5), but other PIR applications may require support for large records. In Section 4.6, we show that we can also apply the same packing approach to SimplePIR to obtain a PIR protocol (YPIR+SP) that supports queries to databases with large records. This is a similar setting considered in HintlessPIR (i.e., composing SimplePIR with a LWE-to-RLWE transformation) [LMRS24a]. As we describe in Section 4.6, our YPIR+SP protocol achieves a 2.2× reduction in total communication with only a 5% reduction in throughput compared to HintlessPIR when considering databases with 32–64 KB records.

Faster preprocessing

YPIR relies on the same preprocessing as SimplePIR (and DoublePIR). The main cost of this preprocessing is computing a product of the form AD where $A \in \mathbb{Z}_q^{n \times k}$ is a (random) matrix and $D \in \mathbb{Z}_p^{k \times \ell}$ is the database. While this process only needs to be performed once, it is a very expensive process for large databases: on a single core, this precomputation has a throughput of under 4 MB/s; for a 32 GB database, the SimplePIR preprocessing takes over two hours. In this work, we observe that we can replace A with a structured matrix and use number-theoretic transforms (NTTs) to compute the matrix-vector product. Asymptotically, this yields a $n/\log n$ improvement in preprocessing, and concretely, we observe a 10–15× increase in the throughput. The only cost of this is that security of the scheme now rests on the ring LWE assumption rather than the LWE assumption. Note that this optimization only changes the preprocessing and not the online server computation. In particular, the online server computation is still over \mathbb{Z}_q (and not over a polynomial ring). We describe our approach in more detail in Section 4.1. We also stress that our approach is not just lifting SimplePIR to work over polynomial rings. While this works in theory, the performance bottleneck in practice is the memory bandwidth of the system. As we discuss in Remark 4.1, a ring-based SimplePIR has higher memory requirements, which is enough to reduce throughput from 11.5 GB/s to just 3.2 GB/s.

2 Preliminaries

We write λ for the security parameter. For a positive integer $n \in \mathbb{N}$, we write $[n]$ for the set $\{1, \ldots, n\}$. For integers $a, b \in \mathbb{Z}$, we write $[a, b]$ for the set $\{a, a+1, \ldots, b\}$. For a positive integer $q \in \mathbb{N}$, we write \mathbb{Z}_q to denote the integers modulo q. We use bold uppercase letters to denote matrices (e.g., A, B) and bold lowercase letters to denote vectors (e.g., u, v). For a matrix A, we write A^\top to denote its transpose. When $A \in \mathbb{Z}_q^{n \times m}$ and $B \in \mathbb{Z}_q^{m \times k}$, we write $AB \in \mathbb{Z}_q^{n \times k}$.

3 It is also possible to pack LWE encodings (e.g., using the SPIRAL approach for response compression [PW08], but this requires $O(d)$ key-switching matrices. Since these key-switching matrices must now be communicated with the query, this does not help reduce communication. The LWE-to-RLWE transformation only requires $O(\log d)$ key-switching matrices, which can be included as part of the query with only modest communication overhead.
We define both operators over ρ where σ width D can in turn be computed using fast radix-2 number-theoretic transforms (NTTs). For R for a positive integer q, Polynomial rings. Our construction will use the cyclotomic ring σ subgaussian with parameter τ refer to [Pei16] for more details and references. The discrete Gaussian distribution We recall some basic facts about the discrete Gaussian distribution, and Discrete Gaussians and tail bounds.

Rounding. For an input $x \in \mathbb{R}$, we write $[x]$ to denote the rounding function; that is $[x]$ outputs the nearest integer to x (rounding up in case of ties). For integers $q > p$, we write $[\cdot]_{q,p}: \mathbb{Z}_q \rightarrow \mathbb{Z}_p$ to denote the rounding function that first takes the input $x \in \mathbb{Z}_q$, lifts it to an integer in the interval $x' \in (−q/2, q/2]$, and outputs $[p/p \cdot x']$ as an element of \mathbb{Z}_p. Here, the division and the rounding are performed over the rationals. We extend $[\cdot]_{q,p}$ to operate on vectors in a component-wise manner. In particular, this means that for 2×2 matrices $A = (A_{ij})$ and $B = (B_{ij})$, we have

$$AB = \sum_{i,j} A_{ij}B_{ij}$$

where the summation is component-wise. We can similarly lift A and B to \mathbb{Z}_q by associating each of its entries A_{ij} and B_{ij} with elements of \mathbb{Z}_q.

Discrete Gaussians and tail bounds. We recall some basic facts about the discrete Gaussian distribution, and refer to [Pei16] for more details and references. The discrete Gaussian distribution $D_{\mathbb{Z},\sigma}$ over \mathbb{Z} with mean 0 and width σ is the distribution with probability mass function

$$\Pr[X = x : X \leftarrow D_{\mathbb{Z},\sigma}] = \frac{\rho_{\sigma}(x)}{\sum_{y \in \mathbb{Z}} \rho_{\sigma}(y)},$$

where $\rho_{\sigma}(x) := \exp(-\pi x^2/\sigma^2)$ is the Gaussian function with width σ. We say a real-valued random variable X is subgaussian with parameter σ if for every $t \geq 0$, $\Pr[|X| > t] \leq 2 \exp(-t^2/\sigma^2)$. The discrete Gaussian distribution $D_{\mathbb{Z},\sigma}$ is subgaussian with parameter σ. Moreover, the following properties hold for subgaussian random variables:

- If X is subgaussian with parameter σ, then for all $c \in \mathbb{R}$, cX is subgaussian with parameter $|c| \sigma$.
- If X_1, \ldots, X_k are independent subgaussian random variables with parameters $\sigma_1, \ldots, \sigma_k$, respectively, then their sum $\sum_{i \in [k]} X_i$ is also subgaussian with parameter $(\sum_{i \in [k]} \sigma_i^2)^{1/2}$.

Polynomial rings. Our construction will use the cyclotomic ring $R = \mathbb{Z}[x]/(x^d + 1)$ where d is a power of two. For a positive integer $q \in \mathbb{N}$, we write $R_q := R/qR$. We now define the Coeffs and NCyclicMat functions over R (and by extension, R_q). Let $g = \sum_{i=0}^{d-1} a_ix^i \in R$ be a ring element.

- Let $\text{Coeffs}: R \rightarrow \mathbb{Z}^d$ be the mapping $g \mapsto [a_0, \ldots, a_{d-1}]^T$ that outputs the vector of coefficients of g.
- Let $\text{NCyclicMat}: R \rightarrow \mathbb{Z}^{d \times d}$ be the linear transformation over \mathbb{Z}^d associated with multiplication by $g \in R$. Namely, for all $f \in R$, it holds that $\text{Coeffs}(f)^T \cdot \text{NCyclicMat}(g) = \text{Coeffs}(fg)^T$. Specifically,

$$\text{NCyclicMat}(g) := \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{d-1} \\ -a_{d-1} & a_0 & a_1 & \cdots & a_{d-2} \\ -a_{d-2} & -a_{d-1} & a_0 & \cdots & a_{d-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_1 & -a_2 & -a_3 & \cdots & a_0 \end{bmatrix} \in \mathbb{Z}^{d \times d}$$

We extend NCyclicMat to operate on vectors in a component-wise manner. In particular, this means that for all $f \in R$ and $g = (g_1, \ldots, g_m) \in R^m$,

$$\text{Coeffs}(f \cdot g)^T = [\text{Coeffs}(fg_1)^T \mid \cdots \mid \text{Coeffs}(fg_m)^T] = \text{Coeffs}(f)^T \cdot \text{NCyclicMat}(g^T). \quad (2.1)$$

We define both operators over R_q in the identical manner. When $q = 1 \mod 2d$, we say that q is “NTT-friendly;” in this case, polynomial multiplication in R_q can be implemented using a negacyclic convolution [LMPR08, LN16], which can in turn be computed using fast radix-2 number-theoretic transforms (NTTs). For $f \in R$, we write $\|f\|_\infty$ to denote
the ℓ_∞ norm of the vector of coefficients $\text{Coeffs}(f)$. For all polynomials $f, g \in R$, it holds that $\|fg\|_\infty \leq d\|f\|_\infty\|g\|_\infty$.

Finally, we say that $f \in R$ is sampled from a subgaussian distribution with parameter σ if each coefficient of f is independently distributed according to a subgaussian distribution with parameter σ. Our analysis will only rely on the following basic lemma from [MW22] on bounding the norm of the coefficients of a product of two polynomials over R:

Lemma 2.1 (Polynomials with Subgaussian Coefficients [MW22, Lemma 2.6, adapted]). Let $R = \mathbb{Z}[x]/(x^d + 1)$ and $g = \sum_{i \in [0,d-1]} g_i x^i \in R$ be any polynomial where $\|g\|_\infty \leq B$. Let $f = \sum_{i \in [0,d-1]} f_i x^i$ where each f_i is independently sampled from a subgaussian distribution with parameter σ and let $h = fg = \sum_{i \in [0,d-1]} h_i x^i \in R$. Then, the distribution of each h_i is subgaussian with parameter $\sqrt{d}B\sigma$.

Gadget matrices. Next, we recall the notion of the gadget matrix from [MP12]. For a modulus $q \in \mathbb{N}$ and a decomposition base $z \in \mathbb{N}$, we write $g_z = [1, z, z^2, \ldots, z^{t-1}] \in \mathbb{Z}_q^t$ where $t = \lceil \log q / \log z \rceil$. For a dimension $n \in \mathbb{N}$, we define $G_{n,z} := I_q \otimes g_z \in \mathbb{Z}_q^{nxn}$ to be the gadget matrix. We write $G_{n,z}^{-1} : \mathbb{Z}_q^n \rightarrow \mathbb{Z}_q^n$ to denote the base-z digit decomposition operator that expands each component of the input vector into its base-z representation (where each output component is an integer between $-z/2$ and $z/2$). We write $g_z^{-1} : \mathbb{Z}_q \rightarrow \mathbb{Z}_q$ for the 1-dimensional operator $G_{1,z}^{-1}$. We extend $G_{n,z}^{-1}$ to operate on matrices $M \in \mathbb{Z}_q^{nxk}$ by independently applying $G_{n,z}^{-1}$ to each column of M. Both the gadget matrix $G_{n,z}$ and its digit decomposition $G_{n,z}^{-1}$ are defined identically over the ring R_q.

Ring learning with errors. Like many lattice-based PIR schemes [MBFK16, ACLS18, GH19, MCR21, MW22, LMRS24a], the security of our protocol relies on the ring learning with errors (RLWE) problem [Reg05, LPR10]. We state the “normal form” of the assumption where the RLWE secret is sampled from the error distribution; this version reduces to the one where the secret key is uniform [ACPS09].

Definition 2.2 (Ring Learning with Errors [LPR10]). Let λ be a security parameter, $d = d(\lambda)$ be a power-of-two, and $R = \mathbb{Z}[x]/(x^d + 1)$. Let $m = m(\lambda)$ be the number of samples, $q = q(\lambda)$ be a modulus, and $\chi = \chi(\lambda)$ be an error distribution over R. The ring learning with errors (RLWE) assumption RLWE$_{d,m,q,\chi}$ in Hermite normal form states that for a $\xrightarrow{\mathcal{N}} R_q^n$, $s \xleftarrow{\mathcal{R}} \chi$, $e \xleftarrow{\mathcal{R}} \chi^m$, and $v \xrightarrow{\mathcal{N}} R_q^n$, the following two distributions are computationally indistinguishable:

$$(a, sa + e) \text{ and } (a, v).$$

LWE and RLWE encodings. We say that a vector $c \in Z_q^{n+1}$ is an "LWE encoding" of a value $\mu \in Z_q$ with respect to a secret key $s \in Z_q^n$ and error $e \in Z$ if $[-s^t|1] \cdot c = \mu + e$. For a ring $R = \mathbb{Z}[x]/(x^d + 1)$, we say that $c \in R_q^n$ is an "RLWE encoding" of a value $\mu \in R_q$ with respect to a secret key $s \in R_q$ and error $e \in R$ if $[-s|1] \cdot c = \mu + e$. In our setting, it will typically be the case that $\mu = [q/p]v$ for some $v \in P_q$ (or $v \in R_q$). Given $\mu + e$ for sufficiently small e, it is then possible to recover the value of v by rounding. We state this in the following lemma from [MW22]:

Lemma 2.3 (Message Decoding [MW22, Theorem 2.11]). Let $R = \mathbb{Z}[x]/(x^d + 1)$. Suppose $z = [q/p]v + e \in R$ where $\|v\|_\infty < p$ and $\|e\|_\infty < q/2p - (q \mod p)$. Then, $[z]_{q,p} = v$.

Independence heuristic. Like many lattice-based PIR constructions [ACLS18, GH19, MCR21, MW22, LMRS24a] and other systems based on homomorphic encryption [GHS12b, CGGI18, CCR19], we use the independence heuristic that models the error terms arising in intermediate homomorphic computations to be independent. Specifically, instead of bounding the worst-case magnitude on the noise, we bound the variance of the noise vector (i.e., σ^2 where σ is the subgaussian width parameter associated with the noise distribution). Since the variance is additive for independent subgaussian variables, bounding the variance often yields a square-root improvement in the noise bound compared to a worst-case bound.

Modulus switching. A standard technique to reduce the size of lattice-based encodings after performing homomorphic operations on them is to use *modulus switching* [BV11, BGV12]. Modulus switching takes an (R)LWE encoding mod q and rescales it to an encoding mod q_1 where $q_1 < q$. This reduces the size of the encoding. Here, we describe a more fine-grained variant from [MW22] where two different moduli are used. We describe the approach for encodings over any ring $R = \mathbb{Z}[x]/(x^d + 1)$; the case where $d = 1$ corresponds to the case of the integers.
• ModReduce\(_{q_1,q_2}(c)\): For integers \(q > q_1 \geq q_2\) and on input an encoding \(c \in R^{q+1}_q\) where \(c = [c_1]_q\) for \(c_1 \in R^n_q\) and \(c_1 \in R_q\), output \(([c_1]_{q_1}, [c_2]_{q,q_2}) \in R^{q_1}_q \times R_{q_2}\).

When there is a single modulus \(q_1\), we write ModReduce\(_{q_1}(c)\) to denote ModReduce\(_{q_1,q_1}(c)\). We extend ModReduce\(_{q_1,q_2}\) to matrices by column-wise evaluation. We now state the main correctness guarantee from [MW22].

Lemma 2.4 (Modulus Switching [MW22, Theorem 3.4, adapted]). Let \(q > q_1 \geq q_2 > p\) and let \(R = \mathbb{Z}[x]/(x^d + 1)\) where \(d\) is a power of two. Suppose \([-s^e]_1]c = [q/p]_n \mu + e \mod q\) for some \(s \in R^n_q, c \in R^{q+1}_q, ||\mu||_\infty \leq p/2\) and \(e \in R\). Suppose the components of \(s\) are independent subgaussian random variables with parameter \(\sigma_e\) and \(e\) is subgaussian with parameter \(\sigma_e\). Let \((c'_1, c'_2) = \text{ModReduce}_{q_1,q_2}(c)\). Then \([-s^e]_{q_1,q_2} + c'_2 = [q_2/p]_n \mu + e' \mod q_2\) where \(e' = e'_1 + e'_2\),

\[
||e'_1||_\infty \leq \frac{1}{2} \left(2 + (q_2 \mod p) + \frac{q_2}{q} (q \mod p) \right),
\]

and the components of \(e'_2\) are subgaussian with parameter \(\sigma' = \sqrt{(q_2/q_1)^2 n d \sigma_e^2 / 4} + (q_2/q)^2 \sigma_e^2\).

Private information retrieval. We now recall the formal definition of a (two-message) single-server PIR protocol [KO97]. We work in the model where there is an initial database-dependent preprocessing algorithm that outputs a set of public parameters (assumed to be known to the client and to the server) and an internal server state.

Definition 2.5 (Private Information Retrieval [KO97, adapted]). Let \(N \in \mathbb{N}\) be an integer. A (two-message) single-server private information retrieval (PIR) scheme \(\Pi_{\text{PIR}} = (\text{DBSetup}, \text{Query}, \text{Answer}, \text{Extract})\) with message space \(\mathbb{Z}_N\) is a tuple of efficient algorithms with the following properties:

- **DBSetup\((1^λ, D)\) \rightarrow \(\text{pp, dbp}\):** On input the security parameter \(\lambda\) and a database \(D\), the setup algorithm outputs a set of public parameters \(\text{pp}\) and database parameters \(\text{dbp}\).

- **Query\((\text{pp, idx})\) \rightarrow \(\text{(q, qk)}\):** On input the public parameters \(\text{pp}\) and an index \(\text{idx}\), the query algorithm outputs a query \(\text{q}\) and a query key \(\text{qk}\).

- **Answer\((\text{dbp, q})\) \rightarrow \text{resp}:** On input the database parameters \(\text{dbp}\), a query \(\text{q}\), the answer algorithm outputs a response \(\text{resp}\).

- **Extract\((\text{qk, resp}) \rightarrow D_i\):** On input the client state \(\text{qk}\) and a response \(\text{resp}\), the extract algorithm outputs a database record \(D_i \in \mathbb{Z}_N\).

The algorithms should satisfy the following properties:

- **Correctness:** For all \(\lambda \in \mathbb{N}\), all databases \(D\), and all indices \(\text{idx}\), if we sample \((\text{pp, dbp}) \leftarrow \text{DBSetup}\((1^λ, D)\), \(\text{(q, qk)} \leftarrow \text{Query}\((\text{pp, idx})\), and \(\text{resp} \leftarrow \text{Answer}\((\text{dbp, q})\), then

\[
\Pr \left[\text{Extract}(\text{qk, resp}) = D[\text{idx}] \right] \geq 1 - \delta,
\]

where \(D[\text{idx}]\) denotes the element of \(D\) indexed by \(\text{idx}\), and where the probability is taken over the randomness of DBSetup, Query, Answer, and Extract. We refer to \(\delta\) as the correctness error. When \(\delta = 0\), we say the scheme satisfies perfect correctness.

- **Query privacy:** For a bit \(b \in \{0, 1\}\), we define the query privacy game between an adversary \(\mathcal{A}\) and a challenger as follows:

 - On input the security parameter \(1^\lambda\), the adversary outputs a database \(D\).
 - The challenger computes \((\text{pp, dbp}) \leftarrow \text{DBSetup}\((1^\lambda, D)\) and gives \(\text{pp}\) to \(\mathcal{A}\).
 - Algorithm \(\mathcal{A}\) now outputs a pair of indices \(\text{idx}_0, \text{idx}_1\). The challenger computes \((\text{q, qk}) \leftarrow \text{Query}\((\text{pp, idx}_b)\) and replies with \(q\).
 - Algorithm \(\mathcal{A}\) outputs a bit \(b' \in \{0, 1\}\), which is the output of the experiment.

We say that \(\Pi_{\text{PIR}}\) satisfies query privacy if for all efficient adversaries \(\mathcal{A}\), there exists a negligible function \(\text{negl}(\cdot)\) such that for all \(\lambda \in \mathbb{N}\),

\[
\left| \Pr[b' = 1 : b = 0] - \Pr[b' = 1 : b = 1] \right| = \text{negl}(\lambda).
\]
2.1 LWE-to-RLWE Packing

Let $R = \mathbb{Z}[x]/(x^d + 1)$. Observe that RLWE encodings (over R_q) have better rate compared to LWE encodings over \mathbb{Z}_q; namely, an encoding of $\mu \in R_q$ consists of just two elements of R_q, whereas an LWE encoding of $\mu \in \mathbb{Z}_q$ requires a vector of $(n + 1)$ elements, where n is the lattice dimension (i.e., the security parameter). In this section, we recall the general transformation introduced by Chen, Dai, Kim, and Song [CDKS21] to “pack” multiple LWE encodings into a single RLWE encoding. Their transformation relies on homomorphically evaluating automorphisms on RLWE encodings [GHS12a, BGV12]. We recall this below before describing the full transformation.

Automorphisms over R_q. For a positive integer $\ell \in \mathbb{N}$, we let $\tau_\ell : R \rightarrow R$ denote the ring automorphism that maps $p(x) \mapsto p(x^\ell)$. We define $\tau_r : R_q \rightarrow R_q$ analogously, and for ease of notation, denote both automorphisms by the mapping $\tau(\cdot)$. We extend τ to vector-valued and matrix-valued inputs via component-wise application of τ_ℓ to the entries of the vector or matrix.

Automorphisms on RLWE encodings. A number of works have shown how to homomorphically evaluate automorphisms on RLWE encodings [GHS12a, BGV12]. We recall the main algorithms here. Some of our presentation is adapted from [MW22]:

Construction 2.6 (Automorphisms on RLWE Encodings [GHS12a, BGV12, adapted]). Let λ be a security parameter and $d = d(\lambda)$, $q = q(\lambda)$ be lattice parameters where $d = 2^\ell$ is a power of two. Let $R = \mathbb{Z}[x]/(x^d + 1)$ and $\chi = \chi(\lambda)$ be an error distribution over R.

- **AutomorphSetup($1^\ell, s, r, z$):** On input a secret key $s \in R_q$, an automorphism $\tau : R_q \rightarrow R_q$, and a decomposition base $z \in \mathbb{N}$, let $t = \lceil \log_2 q \rceil + 1$. Sample a $\frac{\lambda}{2}$-R\$and $e \leftarrow \chi^t$. Output

$$W_\tau = \begin{bmatrix} a^T + e^T - \tau(s) \cdot g^T_z \end{bmatrix} \in R_{q\times t}^2.$$

- **Automorph(W, c, r, z):** On input an automorphism key $W \in R_{q\times t}^2$, an RLWE encoding $c = (c_0, c_1) \in R_q^2$, an automorphism $\tau : R_q \rightarrow R_q$, and a decomposition base $z \in \mathbb{N}$, the automorph algorithm outputs

$$c' = W \cdot g_z^{-1}(\tau(c_0)) + \begin{bmatrix} 0 \\ \tau(c_1) \end{bmatrix} \in R_q^2. \quad (2.2)$$

Theorem 2.7 (Homomorphic Evaluation of Automorphisms [GHS12a, BGV12, adapted]). For a positive integer $\ell \in \mathbb{N}$, let $\tau_\ell : R_q \rightarrow R_q$ be the automorphism $r(x) \mapsto r(x^\ell)$ and $z \in \mathbb{N}$ be a decomposition base. Suppose $[-s \mid 1] \cdot c = \mu + e$ for some $s \in R_q$, $c \in R_q^2$, $\mu \in R_q$, and $e \in R$. Let $W_\tau \leftarrow$ AutomorphSetup($1^\ell, s, r, z$) and $e' \leftarrow$ Automorph(W_τ, c, r, z). Suppose e is subgaussian with parameter σ and the error distribution χ in Construction 2.6 is subgaussian with parameter σ'. Then, under the independent heuristic, $[-s \mid 1] \cdot c' = \tau_\ell(\mu) + e'$, e' is subgaussian with parameter σ', $(\sigma')^2 \leq \sigma^2 + t d z^2 \sigma_z^2 / 4$, and $t = \lceil \log_2 q \rceil + 1$.

The Chen-Dai-Kim-Song transformation. We start by summarizing the key insight of the Chen-Dai-Kim-Song transformation [CDKS21]. Let $d = 2^\ell$ be the lattice dimension for the LWE encoding as well as the degree of the ring for ring LWE encodings. The packing transformation takes as input d independent LWE encodings of scalars μ_1, \ldots, μ_d and outputs an RLWE encoding of the polynomial $\sum_{i \in [d]} \mu_i x^{i-1}$. The key insight underlying the transformation is that over $R = \mathbb{Z}[x]/(x^d + 1)$,

$$\sum_{j \in [\ell]} \tau_{2^{\ell-j}+1}(x^j) = \begin{cases} d & i = 0 \\ 0 & 0 < i < d, \end{cases} \quad (2.3)$$

where $\tau_1 : R \rightarrow R$ is the ring automorphism $f(x) \mapsto f(x^\ell)$. Namely, Eq. (2.3) provides an algebraic way to extract the constant term of an input polynomial. We now describe the full procedure and its correctness and security properties.
Construction 2.8 (LWE-to-RLWE Packing [CDKS21]). Let λ be a security parameter, $d = d(\lambda)$ be a power-of-two (i.e., $d = 2^t$), $q = q(\lambda)$ be a modulus, and $\chi = \chi(\lambda)$ be an error distribution. Let $R = \mathbb{Z}[x]/(x^d + 1)$ and let $(\text{AutomorphSetup}, \text{Automorph})$ be the algorithms from Construction 2.6 instantiated with the parameters (R, q, χ).

- CDKS.Setup($1^\lambda, s, z$): On input the security parameter λ, a secret key $s \in R_q$, and a decomposition base $z \in \mathbb{N}$, the setup algorithm computes $W_i \leftarrow \text{AutomorphSetup}(1^\lambda, s, \tau_{2^t+1}, z)$ for each $i \in [t]$. It outputs the packing key $pk = (W_0, \ldots, W_t)$.
- CDKS.PackHelper($pk, (c_0, \ldots, c_{2t-1})$): On input the packing key $pk = (W_1, \ldots, W_t)$ and a collection of 2^t encodings $c_0, \ldots, c_{2t-1} \in R_q^2$ where $t \leq \ell$, the recursive helper algorithm proceeds as follows:
 - If $t = 1$, return c_0.
 - If $t > 1$, then compute
 \[
 c_{\text{even}} \leftarrow \text{CDKS.PackHelper}(pk, (c_0, c_2, \ldots, c_{2t-2})),
 \]
 \[
 c_{\text{odd}} \leftarrow \text{CDKS.PackHelper}(pk, (c_1, c_3, \ldots, c_{2t-1})).
 \]
 Let $c_1 \leftarrow c_{\text{even}} + x^{d/2} \cdot c_{\text{odd}}$ and $c_2 \leftarrow c_{\text{even}} - x^{d/2} \cdot c_{\text{odd}}$. Output $c_1 + \text{Automorph}(W_t, c_2, \tau_{2^t+1}, z) \in R_q^2$.
- CDKS.Pack(pk, C): On input the packing key $pk = (W_1, \ldots, W_t)$ and a matrix $C \in \mathbb{Z}_q^{d+1 \times d}$ of d LWE encodings, the packing algorithm first parses the encodings as
 \[
 C = \begin{bmatrix} a_0 & \cdots & a_d \ b_0 & \cdots & b_d \end{bmatrix},
 \]
 where $a_i \in \mathbb{Z}_q^d$ and $b_i \in \mathbb{Z}_q$ for all $i \in [0, d - 1]$. Then, for each $i \in [0, d - 1]$, let $\tilde{a}_i = \sum_{j \in [0, d - 1]} a_{i,j} x^{-j} \in R_q$, where $a_i = [a_{i,0}, \ldots, a_{i,d-1}]^T$. Let $c_i = [\tilde{a}_i \mid b_i]^T \in R_q^2$. Finally, output $\text{CDKS.PackHelper}(pk, (c_0, \ldots, c_{d-1}))$.

Theorem 2.9 (LWE-to-RLWE Packing [CDKS21, Appendix A.3, adapted]). Let λ be a security parameter and $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = d(\lambda)$ is a power of two. Let $q = q(\lambda)$ be an encoding modulus and $\chi = \chi(\lambda)$ be a subgaussian error distribution with parameter σ_X. Consider an instantiation of Construction 2.8 with parameters (R, q, χ).

Take any secret key $s \in R_q$, any matrix $C = [c_1 \mid \cdots \mid c_d] \in \mathbb{Z}_q^{d+1 \times d}$ where $c_i \in \mathbb{Z}_q^{d+1}$, and any decomposition base $z \leq q$. Let $s = \text{Coeffs}(s)$. Suppose $[-s^t \mid 1] \cdot c_i = v_i \in \mathbb{Z}_q$. Suppose $pk \leftarrow \text{CDKS.Setup}(1^\lambda, s, z)$ and $c' \leftarrow \text{CDKS.Pack}(pk, C)$.

Then, under the independence heuristic,
\[
[-s \mid 1] \cdot c' = d \sum_{i \in [d]} v_i x^{i-1} + e' \in R_q,
\]
where e' is subgaussian with parameter σ' and $(\sigma')^2 \leq \frac{1}{2}(d^2 - 1)(t d z^2 \sigma_X^2 / 4)$ and $t = \lfloor \log_q q \rfloor + 1$.

Security. The security of our PIR scheme requires that RLWE encodings with respect to a secret $s \in R_q$ remain pseudorandom even given the packing key pk output by CDKS.Setup($1^\lambda, s$). Essentially, the packing key pk consists of encryptions of automorphisms of $\tau(s)$ under s. Pseudorandomness thus relies on a "circular security" assumption. Such assumptions are commonly used for constructing lattice-based (fully) homomorphic encryption [Gen09, BV11, BGV12, Bra12] as well as in previous RLWE-based PIR schemes [ACLS18, AYA+21, MCR21, MW22, LMRS24a]. We state the security requirement below and provide the formal analysis (as well as a precise statement of the key-dependent pseudorandomness assumption on RLWE encodings we use) in Appendix A.

Definition 2.10 (Pseudorandomness Given the Packing Key). Let λ be a security parameter and $R = \mathbb{Z}[x]/(x^d + 1)$ where $d = d(\lambda)$ is a power of two. Let $q = q(\lambda)$ be an encoding modulus and $\chi = \chi(\lambda)$ be a subgaussian error distribution with parameter σ_X. Consider an instantiation of Construction 2.8 with parameters (R, q, χ). Let $m = m(\lambda)$ be the number of samples. Then, for a bit $b \in \{0, 1\}$, a decomposition base $z \in \mathbb{N}$ and an adversary \mathcal{A}, let
\[
W_b := \Pr \left[\mathcal{A}(1^\lambda, pk, a, t_b) = 1 : \begin{array}{c}s \leftarrow \chi, a \leftarrow R^m_q, e \leftarrow \chi^m \\ pk \leftarrow \text{CDKS.Setup}(1^\lambda, s) \\ t_0 = sa + e, t_1 \leftarrow R^m_q \end{array} \right].
\]
We say the construction satisfies pseudorandomness (for m samples) given the packing key if for all $z \leq q$ and all efficient adversaries \mathcal{A}, there exists a negligible function $\text{negl}(\cdot)$ such that for all $\lambda \in \mathbb{N}$, $|W_0 - W_1| = \text{negl}(\lambda)$.

3 The YPIR Protocol

In this section, we describe the YPIR protocol (we refer to Fig. 1 for a visual description). As described in Section 1.2, the YPIR protocol first invokes DoublePIR [HHH∗23a] over the database, and then packs the DoublePIR response (a collection of LWE encodings) into a small number of RLWE encodings.

Construction 3.1 (YPIR Protocol). Let λ be a security parameter. We model the database as a matrix $D \in \mathbb{Z}_N^{\ell_1 \times \ell_2}$. In the scheme, we associate the records in D with its integer representative in the interval $(-N/2, N/2]$. We index records by a row-column pair $(i_1, i_2) \in [\ell_1] \times [\ell_2]$. YPIR uses different sets of lattice parameters for the initial pass (i.e., the linear scan over the database—"SimplePIR") and for the second pass (i.e., recursing on the output of the first pass—"DoublePIR"). This is because the parameters for the second pass must be compatible with the LWE-to-RLWE packing transformation. We define the parameters below:

- Let $d_1 = d_1(\lambda)$, $d_2 = d_2(\lambda)$ be ring dimensions, where each is a power of two. We write $R_{d_j} := \mathbb{Z}[x]/(x^{d_j} + 1)$ and $R_{d_j}^q := \mathbb{Z}[x]/(x^{d_j} + 1)$. For $j \in \{1, 2\}$ and a modulus q, we write $R_{d_j,q} := R_{d_j}/qR_{d_j}$.
- Let $q_1 = q_1(\lambda)$, $q_2 = q_2(\lambda)$ be the encoding modulus and $\tilde{q}_1 = \tilde{q}_1(\lambda)$, $\tilde{q}_{2,1} = \tilde{q}_{2,1}(\lambda)$, and $\tilde{q}_{2,2} = \tilde{q}_{2,2}(\lambda)$ be a set of reduced modulus (for modulus switching). We require that $\gcd(d_2, q_2) = 1$.
- Let $\chi_1 = \chi_1(\lambda)$, $\chi_2 = \chi_2(\lambda)$ be error distributions over R_{d_1} and R_{d_2}, respectively.
- Let $z = z(\lambda)$ be a decomposition parameter (for the LWE-to-RLWE packing).
- Let $p = p(\lambda)$ be an intermediate modulus and let $\kappa = \lceil \log \tilde{q}_1 / \log p \rceil$.
- Let $(\text{CDKS.Setup}, \text{CDKS.Pack})$ be the LWE-to-RLWE packing algorithms from Construction 2.8 instantiated with parameters $(R_{d_1,q}, q_2, \chi_2)$.

The YPIR = (DBSetup, Query, Answer, Extract) scheme is defined as follows:

- **DBSetup$(1^\lambda, D)$**: On input the security parameter λ and a database $D \in \mathbb{Z}_N^{\ell_1 \times \ell_2}$, where $\ell_1 = m_1d_1$ and $\ell_2 = m_2d_2$ for integers $m_1, m_2 \in \mathbb{N}$, the setup algorithm samples $a_j \leftarrow R_{d_j/q_j}^{m_j}$ and sets $A_j = \text{NCyclicMat}(a_j) \in \mathbb{Z}_{\tilde{q}_j}^{d_j \times \ell_j}$ where $j \in \{1, 2\}$. Finally, the setup algorithm computes

$$H_1 = G_{d_1,p}^{-1}(\{A_1D\}_{q_1, \tilde{q}_1}) \in \mathbb{Z}_{\tilde{q}_1}^{d_1 \times \ell_2} \quad \text{and} \quad H_2 = A_2 \cdot H_1^\top \in \mathbb{Z}_{\tilde{q}_2}^{d_2 \times d_1}. \tag{3.1}$$

The setup algorithm then outputs the public parameters $\text{pp} = (1^\lambda, \ell_1, \ell_2, N, a_1, a_2)$ together with the server state $\text{dbp} = (1^\lambda, D, H_1, H_2)$.

- **Query(pp, idx)**: On input the public parameters $\text{pp} = (1^\lambda, \ell_1, \ell_2, N, a_1, a_2)$ and an index $\text{idx} = (i_1, i_2) \in [\ell_1] \times [\ell_2]$, the query algorithm proceeds as follows:

1. **Key generation**: Sample two secret keys $s_1 \leftarrow \chi_1$ and $s_2 \leftarrow \chi_2$. Compute the packing key $\text{pk} \leftarrow \text{CDKS.Setup}(1^\lambda, s_2, z)$.

2. **Query encoding**: Define the scaling factors $\Lambda_1 = \lfloor q_1/N \rfloor$ and $\Lambda_2 = \lfloor q_2/p \rfloor$. The query encodings are then constructed as follows:

 (a) For $j \in \{1, 2\}$, let $m_j = \ell_j/d_j$ and $i_j = \alpha_j d_j + \beta_j$ where $\alpha_j \in [m_j]$ and $\beta_j \in [d_j]$. Let $\mu_j = x^{\beta_j}u_{\alpha_j} \in R_{d_j,q_j}^{m_j}$ where u_j denotes the j^{th} elementary basis vector (of the appropriate dimension).

For ease of exposition, we describe our construction for the setting where the database dimensions are a multiple of the ring dimensions d_1 and d_2. This can be ensured by padding the database with dummy rows and columns. It is straightforward to extend the scheme to support arbitrary dimensions *without* padding, but this introduces additional notational burden. We defer the description of the modified scheme to Remark 3.3.
(b) For \(j \in \{1, 2\} \), sample \(e_j \leftarrow X_j^{m_j} \) and construct the encoding \(c_j = \text{Coeffs}(s_j a_j + e_j + \Lambda_j \mu_j) \in \mathbb{Z}_{q_j}^{m_j} \). Output the query \(q = (pk, c_1, c_2) \) and the query key \(q_k = (s_1, s_2) \).

- **Answer**(dbp, q): On input the database parameters \(\text{dbp} = (1^\lambda, D, H_1, H_2) \) and the query \(q = (pk, c_1, c_2) \), where \(D \in \mathbb{Z}_N^{d_1 \times d_2} \), \(H_1 \in \mathbb{Z}_N^{k \times d_2} \), \(H_2 \in \mathbb{Z}_N^{k \times d_1} \), \(c_1 \in \mathbb{Z}_{q_1}^{m_1} \), and \(c_2 \in \mathbb{Z}_{q_2}^{m_2} \), the answer algorithm proceeds as follows:
 1. **Compute the SimplePIR response**: Let \(T = g_p^{-1}(\langle [c_1^T]_{q_1}, \hat{q}_1 \rangle) \in \mathbb{Z}_N^k \).
 2. **Compute the DoublePIR response**: Compute
 \[
 C = (d_2^{-1} \mod q_2) \cdot \begin{bmatrix} H_2 & A_2^T \end{bmatrix} \in \mathbb{Z}_{q_2}^{(d_2+1) \times (d_2+1)}.
 \]

3. **Pack encodings**: Let \(\rho = \llbracket k(d_1+1)/d_2 \rrbracket \) and parse \([C | 0^{(d_2+1) \times (d_2 \cdot \rho - k(d_2+1))}] = [C_1 | \cdots | C_\rho] \) where each \(C_i \in \mathbb{Z}_{q_2}^{(d_2+1) \times d_1} \). Namely, \(C_1, \ldots, C_\rho \) are the blocks of \(C \) and \(C_\rho \) is padded to the required dimension with columns of all-zeroes. Then, for each \(i \in [\rho] \), compute \(\hat{c}_i \leftarrow \text{CDKS-Pack}(pk, C_i) \in R_{d_2,q_2} \).

4. **Apply (split) modulus switching**: For each \(i \in [\rho] \), let \((c_{i,1}, c_{i,2}) = \text{ModReduce}_{\hat{q}_2,1,\hat{q}_2,2}(\hat{c}_i) \). Output resp = \((\langle c_{i,1}, c_{i,2} \rangle, \ldots, \langle c_{\rho,1}, c_{\rho,2} \rangle)\).

- **Extract(qk, resp)**: On input the client state \(qk = (s_1, s_2) \) and the response \(\text{resp} = (\langle c_{i,1}, c_{i,2} \rangle, \ldots, \langle c_{\rho,1}, c_{\rho,2} \rangle) \) where \(c_{i,1} \in R_{d_1,q_1,1} \), \(c_{i,2} \in R_{d_2,q_2,2} \), the extract algorithm computes \(v'_i = [-s_2 c_{i,1}]_{\hat{q}_2,\hat{q}_1,1} + c_{i,2} \in R_{d_1,q_1,2} \) and \(v_i = [v'_i]_{\hat{q}_2,\hat{q}_1,1} \) for each \(i \in [\rho] \). Let
 \[
 w = \begin{bmatrix} \text{Coeffs}(v_1) \\ \vdots \\ \text{Coeffs}(v_\rho) \end{bmatrix} \in \mathbb{Z}_p^{d_2 \cdot \rho}.
 \]
 Parse \(\hat{w} = [\hat{w}] \) where \(\hat{w} \in \mathbb{Z}_p^{k(d_1+1)} \) and \(\hat{w}' \in \mathbb{Z}_p^{k \cdot \rho \cdot (d_2-1)} \). Compute
 \[
 c' = \begin{bmatrix} G_{d_1,p} & 0_{d_1 \times k} \end{bmatrix} \hat{w} \in \mathbb{Z}_p^{d_1 \cdot \rho} \text{ and } \mu' = [-\text{Coeffs}(s_1) | 1] \cdot c' \in \mathbb{Z}_{q_1} \text{.}
 \]
 Compute \(\mu = [\mu']_{\hat{q}_1,N} \in \mathbb{Z}_N \) and output the representative of \(\mu \) in \(\mathbb{Z}_N \).

Remark 3.2 (Silent Preprocessing). As described, the public parameters \(\text{pp} \) in Construction 3.1 are very long (specifically, the vectors and \(a_1 \) and \(a_2 \)). However, the vectors \(a_1 \) and \(a_2 \) are uniformly random, and could be derived from a random oracle. This is a standard technique used in lattice-based PIR [MCR21, MW22, HHC+23a, DPC22]. With this modification, the public parameters in Construction 3.1 only consist of the meta-parameters for the database itself (i.e., the database dimensions and the record size). Thus, we say YPIR supports silent preprocessing (in the random oracle model).

Remark 3.3 (Supporting Arbitrary Dimension). To simplify the description, Construction 3.1 assumes that the database dimensions are multiples of the ring dimensions \(d_1 \) and \(d_2 \). While this can be guaranteed by padding the database with dummy records, it is straightforward to extend the scheme to support databases with arbitrary dimensions without padding. We describe the modifications to DBSetup and Query:

- **DBSetup**(1\(^\lambda\), D): Suppose \(D \in \mathbb{Z}_N^{d_1 \times d_2} \). The DBSetup algorithm now sets \(m_1 = \lfloor t_1/d_1 \rfloor \) and \(m_2 = \lfloor t_2/d_2 \rfloor \). For \(j \in \{1, 2\} \), it samples \(a_j \leftarrow R_{d_j,q_j}^{m_j} \) and lets \(\hat{A}_j = \text{NCyclicMat}(a_j^T) \in \mathbb{Z}_N^{d_j \times m_j} \). It parses \(\hat{A}_j = [A_j | A_j'] \) where \(A_j \in \mathbb{Z}_{q_j}^{d_j \times f_j} \) and \(A_j' \in \mathbb{Z}_{q_j}^{d_j \times (m_j-f_j)} \). The computation of \(H_1 \) and \(H_2 \) then proceeds as in Eq. (3.1).

- **Query**(pp, idx): The query algorithm proceeds exactly as in Construction 3.1 with \(m_1 = \lfloor t_1/d_1 \rfloor \) and \(m_2 = \lfloor t_2/d_2 \rfloor \), except it now computes \(\hat{c}_j = \text{Coeffs}(s_j a_j + e_j + \Lambda_j \mu_j) \in \mathbb{Z}_{q_j}^{m_j \cdot d_j} \). It then parses \(\hat{c}_j \leftarrow \begin{bmatrix} c_j \end{bmatrix} \) where \(c_j \in \mathbb{Z}_{q_j}^{m_j \cdot d_j} \) and \(c_j \in \mathbb{Z}_{q_j}^{m_j \cdot d_j} \). The query is still \(q = (pk, c_1, c_2) \).
1. **SimplePIR:**

\[
\begin{array}{c|c}
\ell_1 & \ell_2 \\
\hline
C_1 & D \\
\end{array}
\]

\[
C_1 \times \ell_2 = C_1 D
\]

2. **DoublePIR:**

\[
\begin{array}{c|c}
\ell_2 & \kappa d \\
\hline
G^{-1}(C_1 D)^T & \kappa \\
\end{array}
\]

\[
kappa d \times \kappa
\]

3. **LWE-to-RLWE Packing:**

\[
\begin{array}{c|c|c|c}
1 & d & d & d \\
\hline
pk & C & C & C \\
\end{array}
\]

Figure 1: Illustration of the server computation in YPIR (i.e., the Answer algorithm in Construction 3.1). The operator \(\times \) denotes matrix multiplication, the parameter \(d \) is the lattice (and ring) dimension, and \(\kappa \) is the ratio of the encoding modulus (i.e., \(q \)) to the size of the (intermediate) plaintext modulus (i.e., \(p \)). Each square cell represents a \(d \times d \) matrix of \(\mathbb{Z}_q \) values. The database is represented as an \(\ell_1 \)-by-\(\ell_2 \) matrix, and each database value is an element of \(\mathbb{Z}_N \). We let \(C_1 \) and \(C_2 \) be the stacked matrices \(\begin{bmatrix} A_1^T \\ c_1 \end{bmatrix} \) and \(\begin{bmatrix} A_2^T \\ c_2 \end{bmatrix} \), respectively. The striped cells represent values that are precomputed by the server (i.e., these are independent of the query). We omit the modulus switching and the use of different lattice dimensions for simplicity.

Correctness and security. We state our correctness and security theorems below, and defer their formal proofs to Appendix C.

Theorem 3.4 (Correctness). Let \(N \in \mathbb{N} \) be the record size and \(\ell_1, \ell_2 \in \mathbb{N} \) be the database dimensions. Let \(d_1, d_2, q_1, q_2, \hat{q}_1, \hat{q}_{21}, \hat{q}_{22}, \chi_1, \chi_2, z, p \) be the scheme parameters from Construction 3.1. Suppose \(\chi_1 \) and \(\chi_2 \) are subgaussian with parameters \(\sigma_1 \) and \(\sigma_2 \), respectively. Let \(\kappa = \lceil \log \hat{q}_1 / \log p \rceil \), \(\rho = \lceil \kappa(d_1 + 1)/d_2 \rceil \), and \(t = \lfloor \log z q_2 \rfloor + 1 \). Then, under the independence heuristic, Construction 3.1 has correctness error

\[
\delta \leq 2d_2 \rho \exp(-\pi \tau_{\text{double}}^2/\sigma_{\text{double}}^2) + 2 \exp(-\pi \tau_{\text{simple}}^2/\sigma_{\text{simple}}^2),
\]
We now describe how we instantiate the different parameters to achieve a correctness error (Security) under the RLWE assumption and assuming the LWE-to-RLWE packing scheme (CDKS.Setup, CDKS.Pack) satisfies pseudorandomness given the packing key (Definition 2.10), then Construction 3.1 satisfies query privacy.

Security assumptions. As we show in Appendix A, the security of the LWE-to-RLWE packing scheme relies on hardness of RLWE$_{d_1,m_1,q_1,x_1}$ where $m_1 = m_2 + ([\log_2(q_2) + 1] \cdot \log d_2$ along with a “circular security” assumption on RLWE encodings (Definition A.1). The latter assumption is a standard assumption when working with lattice-based homomorphic encryption schemes [Gen09, BV11, BGV12, Bra12] and used in many previous RLWE-based PIR schemes [ACLS18, AYA+21, MCR21, MW22, LMRS24a].

4 Implementation and Evaluation

In this section, we describe our implementation and experimental evaluation of the YPIR protocol (Construction 3.1).

Parameter selection. Theorem 3.4 bounds the correctness error δ of YPIR as function of the scheme parameters. We now describe how we instantiate the different parameters to achieve a correctness error $\delta \leq 2^{-40}$ and 128-bits of security (as estimated by the Lattice Estimator [APS15]). We select a single parameter set for YPIR using the following procedure:

- Like SimplePIR [HHC+23a], we set $d_1 = 2^{10} = 1024$ and $q_1 = 2^{32}$. We set χ_1 to be a discrete Gaussian distribution with parameter $s_1 = 11\sqrt{2}\pi$ (to achieve 128-bits of security for this choice of ring dimension and modulus).
- For the DoublePIR and LWE-to-RLWE packing steps, we work over a larger ring, to allow for the extra noise added by the LWE-to-RLWE transformation. Here, we choose $d_2 = 2^{11} = 2048$ and q_2 to be a 56-bit modulus that splits into a product of two (28-bit) NTT-friendly modulus (specifically, $q_2 = (2^{28} - 2^{16} + 1) \cdot (2^{28} - 2^{24} - 2^{21} + 1)$). Using two 28-bit NTT-friendly modulus allows us to use native 64-bit integer arithmetic to implement arithmetic modulo each of the prime factors of q_2. We choose χ_2 to be a discrete Gaussian distribution with parameter $s_2 = 6.4\sqrt{2}\pi$ (to achieve 128-bits of security for this choice of ring dimension and modulus).

We use commit 4195c66 (2024/02/06) from https://github.com/malb/lattice-estimator for our security estimates.

8Since we use 64-bit integer arithmetic to implement arithmetic operations with respect to a 28-bit modulus, we do not need to perform a modulus reduction after every arithmetic operation. For instance, in our experiments, the computation of Eq (3.2) is 60× slower if we perform a modulus reduction after every arithmetic operation. In our implementation, we reduce only when the computation might “overflow” the 64-bit integer.

<table>
<thead>
<tr>
<th>SimplePIR d_1</th>
<th>σ_1</th>
<th>N</th>
<th>q_1</th>
<th>\hat{q}_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{10}</td>
<td>$11\sqrt{2}\pi$</td>
<td>2^8</td>
<td>2^{32}</td>
<td>2^{28}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoublePIR d_2</th>
<th>σ_2</th>
<th>p</th>
<th>q_2</th>
<th>$\hat{q}_{2,1}$</th>
<th>$\hat{q}_{2,2}$</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{11}</td>
<td>$6.4\sqrt{2}\pi$</td>
<td>2^{15}</td>
<td>$\approx 2^{56}$</td>
<td>2^{28}</td>
<td>2^{20}</td>
<td>2^{19}</td>
</tr>
</tbody>
</table>

Table 1: YPIR parameters chosen to provide correctness error $\delta \leq 2^{-40}$ and 128-bits of security. These parameters support databases up to 64 GB (and dimensions $\ell_1, \ell_2 \leq 2^{18}$). The parameters are partitioned into those used in the “SimplePIR” step (Step 1) and those used in the “DoublePIR” step (Step 2).
We summarize the lattice parameters we select in Table 1. When the database consists of O with respect to the matrix $A \cdot D$ using NTTs, we work over \mathbb{Z}_M where $M > dNq$ is an NTT-friendly modulus. Noting that the entries in A are bounded by q and those in D are bounded by N, computing $A \cdot D$ mod M is equivalent to computing $A \cdot D$ over the integers. This is sufficient for computing $A \cdot D$ in $\mathbb{Z}_q^{d \times \ell_2}$. Even though this approach requires working over a larger modulus M, the ability to use NTTs to speed up the matrix-matrix multiplication outweighs the costs (see Section 4.4).

Remark 4.1 (SimplePIR with RLWE). Given that the use of structured matrices (and ring LWE) allows faster preprocessing, a natural question is why we do not just apply SimplePIR over polynomial rings. In this setting, we represent the database as $D \in \mathbb{Z}_N^{\ell_1 \times \ell_2}$ by packing each block of d entries into the coefficients of a polynomial; the resulting database is $\hat{D} \in \mathbb{R}_N^{\ell_1 \times \ell_2}$. The public matrix $A \in \mathbb{Z}_q^{d \times \ell_2}$ is replaced by a vector $\hat{a} \in \mathbb{R}_q^{\ell_2}$ and the query vector $q \in \mathbb{Z}_q^{\ell_2}$ becomes $\hat{q} \in \mathbb{R}_q^{\ell_2/d}$. Like in SimplePIR, the online computation is a matrix-vector product of ring elements $\hat{q} \cdot \hat{D}$. If

4.1 NTT-Based Hint Computation

We now describe our approach to efficiently compute the hints H_1 and H_2 in Eq. (3.1) of YPIR. By using structured matrices, the YPIR approach is asymptotically faster (by a factor $d/\log d$, where d is the lattice dimension) and concretely faster ($10-15x$) compared to the preprocessing approaches of protocols like SimplePIR [HHC23a] or FrodoPIR [DPC22]. Our approach directly applies to reduce the preprocessing cost in any system that builds on SimplePIR/FrodoPIR (e.g., [CNC23, HDCZ23a, LMRS24a, dCL24]) with zero impact to the online costs of the protocol (the online server processing is unchanged). The only difference is security relies on RLWE rather than LWE.

SimplePIR and FrodoPIR preprocessing. SimplePIR [HHC23a] and FrodoPIR [DPC22] achieve high throughput by moving the majority of the server processing cost to a query-independent offline phase. There, the offline precomputation consists of computing a matrix-vector product $A \cdot D \in \mathbb{Z}_q^{d \times \ell_2}$, where $A \in \mathbb{Z}_q^{d \times \ell_1}$ is a random matrix and $D \in \mathbb{Z}_N^{\ell_1 \times \ell_2}$ is the database. Here, d is the lattice dimension. The query in their protocols consist of LWE encodings of the index with respect to the matrix A. With a naïve matrix-matrix multiplication algorithm, computing the product $A \cdot D$ requires $O(\ell_1 \ell_2 d)$ arithmetic operations. Concretely, in these schemes, $d \geq 2^{10}$, so the offline precomputation is very expensive.

Our approach. In YPIR, we achieve faster preprocessing by using a structured negacyclic matrix $A = \text{NCGencyclicMat}(a^\ell)$, where $a \in \mathbb{R}_q$. When A is negacyclic and the modulus q is NTT-friendly, we can use the NTT to compute the product $A \cdot D$ using $O(\ell_1 \ell_2 \log d)$ arithmetic operations. This yields a $d/\log d$ speed-up over previous approaches. On the flip side, security of the scheme now relies on the ring LWE assumption (as opposed to plain LWE), since the queries are now encodings of the index with respect to the structured matrix A. We provide more details in Appendix B.

Modulus selection. SimplePIR/FrodoPIR use a power-of-two modulus q so arithmetic operations can make use of native machine-word arithmetic and avoid expensive modular reductions. Unfortunately, such q is not NTT-friendly (since $q \neq 1 \mod 2d$). In YPIR, we retain the same power-of-two modulus q as in prior work. However, to compute the hint $A \cdot D$ using NTTs, we work over \mathbb{Z}_M where $M > dNq$ is an NTT-friendly modulus. Noting that the entries in A are bounded by q and those in D are bounded by N, computing $A \cdot D$ mod M is equivalent to computing $A \cdot D$ over the integers. This is sufficient for computing $A \cdot D$ in $\mathbb{Z}_q^{d \times \ell_2}$. Even though this approach requires working over a larger modulus M, the ability to use NTTs to speed up the matrix-matrix multiplication outweighs the costs (see Section 4.4).

- We choose parameters to support any choice of $\ell_1, \ell_2 \leq 2^{18}$ (recall that the database in YPIR is represented as an ℓ_1-by-ℓ_2 matrix). This is sufficient to support databases with up to 2^{36} records and for our choice of N, up to 64 GB in size.
- We choose the largest value for the gadget decomposition base $z \in \mathbb{N}$ that achieves correctness error at most $\delta \leq 2^{-40}$. This allows for faster computation (smaller gadget decompositions).
- We choose the largest value of N and the largest intermediate decomposition base p that achieves correctness error at most δ when $\hat{q}_1 = q_1$ and $\hat{q}_{2,1} = \hat{q}_{2,2} = q_2$. This minimizes the communication overhead of the scheme. We constrain N and p to be powers-of-two so elements can be represented by a single machine word.
- After fixing N and p, we choose the smallest modulus switching parameters $\hat{q}_1, \hat{q}_{2,1}, \hat{q}_{2,2}$ that achieve correctness error at most δ. This minimizes the size of the responses.

We summarize the lattice parameters we select in Table 1. When the database consists of ℓ one-bit records, we let $\ell' = \lceil \ell/\log N \rceil$, and set $\ell_1 = 2^\lceil \log \ell'/2 \rceil$ and $\ell_2 = 2^\lceil \log \ell'/2 \rceil$.
\(q\) and \(\hat{T}\) are in NTT representation, then computing \(q^t \hat{T}\) requires the same number of arithmetic operations modulo \(q\) as computing \(q^t D\) in SimplePIR. While this seems like a reasonable approach, there are two significant limitations:

- **Choice of modulus \(q\):** For fast processing, the query vector \(\hat{q}\) and the database \(\hat{T}\) need to be in NTT representation. This means we either need to choose an NTT-friendly modulus \(q\) or we need to run FFT over the complex numbers. Both are more costly compared to using a power-of-two modulus (where mod \(q\) operations can be implemented with native integer arithmetic).

- **Size of in-memory representation:** A bigger limitation in practice is the fact that to leverage NTTs, the server needs to store the database \(D\) in NTT representation (over the encoding ring \(Z_q\)). This increases the size of the in-memory representation of the database. For instance, if the database elements are \(Z_N\)-elements and the query encodings are \(Z_q\)-elements, there is a \(\log q / \log N\) overhead in storage. As we discuss in Sections 4.3 and 4.4, the throughput of the SimplePIR-family of approaches is bottlenecked by memory bandwidth. This means a \(\log q / \log N\) increase in representation size translates to an equal reduction in throughput. Experimentally, we compared a basic implementation of SimplePIR with RLWE encodings to standard SimplePIR and observed that the use of RLWE incurs a \(3.6\times\) reduction in throughput (from 11.5 GB/s to 3.2 GB/s). For this parameter setting, \(\log q / \log N = 56/16 = 3.5\).

The approach we take in YPIR allows us to get the best of both worlds. We keep the SimplePIR structure of working over the integers, but replace \(A\) with a negacyclic matrix. This allows us to use NTTs for fast preprocessing, but does not introduce additional storage overhead for the server processing (since the online computation is still performed over the integers \(Z_q\) rather than the polynomial ring \(R_q\)).

4.2 Preprocessing for the LWE-to-RLWE Packing Transformation

In this section, we show how to speed up the [CDKS21] LWE-to-RLWE packing transformation (Construction 2.8) by moving a large portion of the online packing computation to the offline preprocessing stage (i.e., from Answer to Setup). Specifically, our approach reduces the number of NTTs that must be performed in Answer from \(O(kd_1 + \log d_2)\) to \(O(k + \log d_1)\). Concretely, this reduces the online cost of the packing transformation by \(9\times\) (see Table 5). Our approach relies on the observation that many of the operations in the CDKS.Pack algorithm used by YPIR (Construction 3.1) operate on quantities that are actually known at Setup, and thus, can be precomputed in an offline phase.

Our approach follows a similar methodology taken in HintlessPIR [LMRS24a] of moving these operations to the offline phase. The specific approach we take relies on the following observations about the CDKS.Pack algorithm and its use in the Answer algorithm of YPIR:

- Let \(pk \leftarrow \text{CDKS.Setup}(1^\lambda, s, z)\) and parse \(pk = (W_1, \ldots, W_t)\). From Construction 2.6, we can write
 \[
 W_i = \begin{bmatrix} a_{i,1}^t \\ b_{i,1}^t \end{bmatrix} \in R_q^{2 \times t},
 \]
 where \(a_{i,1}, b_{i,1} \in R_q^{d_1}\). Let \(c_{1,1}, \ldots, c_{d,1} \in Z_q^{d_1}\) be LWE encodings where each \(c_j^t = [c_j, 1]\), and \(c_{i,0} \in Z_q^d\) and \(c_{i,1} \in Z_q\). Let \(e' \leftarrow \text{CDKS.Pack}(pk, c_1, \ldots, c_d)\) and parse \(e' = (c_{0}^t, c_{1}^t) \in R_q^2\). In the following, we will refer to the components \(a_{i,1}, c_{i,0}, c_{i,1}\) as the "random" component of the packing key or the ciphertext. From Constructions 2.6 and 2.8, we observe that the random component \(c_{0}^t\) of the response only depends on the random components \(a_{1,1}, \ldots, a_{t,1}\) of the packing key and the corresponding components \(c_{i,1}, \ldots, c_{d,1}\) of the ciphertext.

- Normally, the CDKS.Setup algorithm would sample \(a_1, \ldots, a_t\) uniformly at random from \(R_q^{d_t}\), but similar to Remark 3.2, we can instead derive these components from a short seed instead (and appeal to the random oracle heuristic). This way, the random components \(a_{1,1}, \ldots, a_{t,1}\) in the packing key are fixed at Setup time (and can be preprocessed in Setup).

- The Answer algorithm in YPIR invokes CDKS.Pack on \(\kappa(d_1 + 1)\) input LWE encodings to produce a total of \(\rho = [\kappa(d_1 + 1)/d_2]\) output RLWE encodings. It does so by processing a block of \(d_2\) LWE encodings at a time. From Eq. (3.2), we observe that the random component of the first \(kd_1\) LWE encodings is precisely the matrix \(H_2\) (i.e., the precomputed hint). Using the above observations, the server can precompute the random component of the output RLWE encodings for the first \(\lfloor kd_1/d_2 \rfloor\) blocks.
Using the above approach, the server can precompute most of the random components in the CDKS-Pack output. Namely, during Setup, after the server computes the hint H_2, it then precomputes the random component of the first $\lfloor k d_1 / d_2 \rfloor$ RLWE encodings that would be output by CDKS-Pack. In the Answer algorithm, the server only needs to apply the packing procedure to the remaining κ query-dependent LWE encodings. Normally, packing kd_1 LWE encodings using CDKS-Pack would require computing $O(kd_1)$ automorphisms, which in turn requires $O(kd_1)$ NTTs to implement the multiplication with the key-switching matrix. Thus, by precomputing the random components for most of the CDKS-Pack outputs, we reduce the number of NTTs the Answer algorithm has to compute from $O(kd_1 + \log d_2)$ to $O(k + \log d_2)$. The extra $O(\log d_2)$ factor is from the padding (with the all-zeroes matrix) added to C_ρ in Step 3 of the Answer algorithm.

The server still needs to calculate the non-random component (i.e., the “message-embedding component”) of each of the RLWE encodings output by CDKS-Pack. These components depend on the non-random portions of the key-switching matrices as well as the query LWE encodings, so they can only be computed during the online phase. However, these can be computed without any additional NTTs:

- From Eq. (2.2), when computing an automorphism (the main operation in CDKS-Pack), the server needs to compute $W g_z^{-1}(\tau(c_0))$, where W is the key-switching matrix and c_0 is the random component of the input encoding. Now, in order to compute the random component of the output, the server must have already computed $g_z^{-1}(\tau(c_0))$, either during Setup or during Answer. In both cases, we assume the server caches the value of $g_z^{-1}(\tau(c_0))$ in NTT representation.

- The client sends the key-switching matrix W to the server (during Query) in NTT representation. This does not affect the size of the query and saves the need for a separate NTT computation on the server side. We similarly assume that the client sends the query encodings in NTT representation. Since generating the key-switching matrices and the query encodings already requires performing polynomial multiplication, the client has already performed the necessary NTTs, so this step does not introduce any additional client computation.

- After computing $W \cdot g_z^{-1}(\tau(c_0))$, the server needs to apply the automorphism τ to the message-embedding component of the ciphertext (i.e., compute $\tau(c_1)$). If c_1 is in NTT representation, then the NTT representation of $\tau(c_1)$ is simply a permutation on the NTT representation of c_1. In our implementation, the server simply precomputes and caches the log d_2 permutations used by CDKS-Pack. This way, the server does not need to perform additional NTTs when computing CDKS-Pack.

Our overall packing approach implements the exact same procedure as CDKS-Pack. The only difference is that most of the computation (that depend on components known at Setup time) is precomputed in Setup rather than during the online Answer algorithm. With preprocessing, the server only needs to compute $O(k + \log d_2)$ NTTs during the online phase. Concretely, this yields a $9 \times$ in the online costs of Answer. This improvement is critical to achieving high throughput. For instance, as we discuss in Section 4.4, when retrieving a bit (or a byte) from a 4 GB database, the running time of the packing procedure constituted 51% of the total running time of the Answer algorithm. With preprocessing, the cost of packing is just 10% of the total cost of the Answer algorithm. In terms of overall throughput, for this particular database configuration, preprocessing increases the server throughput from 6 GB/s to 11 GB/s (see Table 3 and Table 5). Our approach incurs a modest amount of additional precomputation time (under 500 ms) and server storage (under 10 MB). Moreover, this precomputation cost is independent of the database size.

4.3 Cross-Client Batching and the Memory Bandwidth Barrier

SimplePIR [HHC*23a] achieves the highest concrete server throughput among all single-server protocols (that do not require streaming the full database in an offline phase). The bottleneck in SimplePIR is the memory bandwidth of the machine and not the cost of performing the underlying arithmetic operations during query processing. One way to increase the effective throughput of the protocol then is to perform additional computation for each byte of memory accessed. A natural approach would be to process multiple queries with a single scan through memory. The notion of batch PIR is well-studied in the case where a single client seeks to make multiple queries [BIM00, IKOS04, GKL10, ACLS18, MR23], and indeed batch PIR enables significant improvements to server throughput both concretely and asymptotically.
Here, we show that concrete reductions in computation time are possible even if multiple independent clients are making queries. We refer to this approach as cross-client batching. As we show in Section 4.4, cross-client batching can increase the effective server throughput of many PIR schemes by 1.5–1.7x. A benefit of our approach is that it is entirely transparent to the client (i.e., requires no changes client-side) and applies even if the clients are each making a single query.

Cross-client batching. The idea in cross-client batching is to use a single scan through the database to simultaneously answer multiple queries from non-coordinating clients. The structure of many recent PIR protocols is directly amenable to cross-client batching. As a concrete example, in SimplePIR, the query computation corresponds to computing a matrix-vector product $q^T D$ where q is the query vector and D is the database. Suppose k different clients each issue a SimplePIR query q_1, \ldots, q_k. Let Q be the matrix formed by stacking the vectors q_1, \ldots, q_k. To answer the k queries, the server now computes the matrix-matrix product $Q \cdot D$. While this would require the same number of elementary multiplications as computing $q_1^T D, \ldots, q_k^T D$ individually, the server can now compute $Q \cdot D$ with only a single pass over the database. Put another way, for every entry of D that the CPU accesses, it now performs k arithmetic operations rather than 1. Since memory bandwidth is the bottleneck of the basic protocol, computing $Q \cdot D$ is overall faster than separately computing $q_1^T D, \ldots, q_k^T D$. If it takes time T to process k queries on a database of size ℓ, we define the effective throughput of the protocol to be kT/ℓ. Similar batching techniques have been used to improve the throughput of database systems in settings where the storage bandwidth is saturated [CMS16, CGB’14].

Previously, Lueks and Goldberg [LG15] showed how to leverage cross-client batching to improve the effective server throughput of multi-server PIR protocols where the server computation consists of computing a matrix-vector product (much like in our setting). When processing multiple queries, the matrix-vector product becomes a matrix-matrix product. In [LG15], the authors use fast matrix multiplication algorithms to achieve asymptotic and concrete speed-ups. In our setting, we leverage batching as a means to improve CPU utilization and as such, our approach only provides a concrete (and not asymptotic) improvement to server throughput. It is interesting to see whether faster matrix multiplication algorithms can be used to further improve concrete efficiency in SimplePIR-based protocols.

Practical considerations. Cross-client batching only makes sense in a setting where the server often has a queue that is at least k deep. In our experiments, a small batch size of $k = 4$ is sufficient to get most of the advantages of cross-client batching. In many of the applications of PIR (e.g., private DNS or private Certificate Transparency auditing), assuming a queue of size $k = 4$ is a mild assumption. The non-private versions of each of these services employ large server fleets that regularly process requests from more than 4 clients simultaneously. Moreover, there is no requirement that the server must wait until the queue is full before processing the query.

Memory bandwidth in RLWE-based PIR. PIR schemes based on RLWE [ACLS18, MCR21, MW22] require less communication than SimplePIR and DoublePIR, but have much smaller throughput. Even though the overall throughput of these schemes is much smaller than the system’s memory bandwidth, we observe that memory bandwidth is also a constraint in these schemes (for reasons similar to those outlined in Remark 4.1).

In a typical RLWE-based PIR scheme, the database records are represented by polynomials in R_N, where N is the plaintext modulus. To process the query, the server performs multiplications over the ring R_q (i.e., the encoding space), where the encoding modulus q is much greater than N. To efficiently implement the polynomial arithmetic over R_q, the plaintext polynomials need to be stored in their NTT representation (over R_q). This incurs a log q/$\log N$ blowup in the size of the in-memory representation of the database (or the protocol incurs a significant degradation in throughput). Because RLWE-based schemes must pay for this log q/$\log N$ factor in representation size, even when they saturate memory bandwidth, they can only achieve a throughput of $M \log N / \log q$, where M is the memory bandwidth. For example, the memory blowup factor is 8 for the SPIRAL system [MW22] ($\log N = 8$ and $\log q \approx 64$). A standard per-core memory bandwidth is 14.6 GB/s, which leads to a throughput upper bound of roughly 1.8 GB/s (roughly the throughput reported for the fastest version of SPIRAL [MW22]). We refer to Remark 4.1 for a similar analysis in the setting of SimplePIR instantiated with RLWE.

Our cross-client batching approach can be applied to RLWE schemes like SPIRAL to improve the effective throughput. However, the benefit there is smaller since cross-client batching only helps improve the initial linear scan over the database (and does not help with the subsequent folding steps). The SPIRAL scheme sets the parameters to balances
the cost of the initial linear scan with the folding steps; as such, cross-client batching would only be beneficial to the first half of the protocol processing as opposed to the full processing.

4.4 Experimental Evaluation

In this section, we describe our experimental evaluation of the YPIR protocol and compare it against other PIR protocols. We compare against the state-of-the-art high-throughput single-server PIR schemes: SimplePIR/DoublePIR [HHC+23a] as well as the hintless schemes proposed in Tiptoe [HDCZ23a] and HintlessPIR [LMRS24a]. We refer to Section 5.1 for a more detailed summary of the design of the PIR scheme from Tiptoe as well as the HintlessPIR scheme. We do not benchmark schemes in alternative models such as the sublinear schemes that require streaming the database in the offline phase [ZPSZ24, MSR23, GZS24] or the RLWE-based schemes that require maintaining client-specific keys [ACLS18, AYA21, ALP21, MCR21, MW22].

Experimental setup. We implement YPIR in 3000 lines of Rust, with a 1000 line C++ kernel for fast 32-bit matrix-multiplication adapted from the public SimplePIR implementation [HHC+23a]. We use the approach from Section 4.1 to implement the server hint precomputation, and use the approach from Section 4.2 to speed up the LWE-to-RLWE packing transformation. As discussed in Remarks 3.2 and A.4, we compress the vectors a_1 and a_2 in the public parameters pp as well as the pseudorandom components of the packing key pk using the output of a stream cipher (ChaCha20 in counter mode). We benchmark YPIR against the public implementations of SimplePIR, DoublePIR [HHC+23a] (commit e9020b0), the PIR scheme from Tiptoe [HDCZ23a] (commit f053a81), and HintlessPIR [LMRS24a] (commit 4be2a8e). When relevant, we compile each scheme with support for the Intel HEXL [BKS21] acceleration library. We use an Amazon EC2 r6i.16xlarge instance running Ubuntu 22.04, with 64 vCPUs (Intel Xeon Platinum 8375C CPU @ 2.9 GHz) and 512 GB of RAM. We use the same (single-threaded) benchmarking environment for all experiments, and compile all of the implementations using GCC 11. The processor supports the AVX2 and AVX-512 instruction sets, and we enable SIMD instruction set support for all schemes. We write KB, MB, and GB to denote 2^{10}, 2^{20}, and 2^{30} bytes, respectively. All of our runtime measurements are averaged from a minimum of 5 sample runs and have a standard deviation of at most 5%.

Server throughput. In Table 2, we report the different computational and communication costs for retrieving a 1-bit record from databases of varying sizes. We focus on single-bit retrieval since this is the setting of interest in private SCT auditing and provides a common baseline for comparing different schemes. Each YPIR response actually encodes an element of \mathbb{Z}_N (for our parameters, each record is 8 bits long).

For small databases (e.g., 1 GB), the throughput of YPIR is 43% slower than SimplePIR and 26% slower than DoublePIR. This is because a significant portion of the query-processing time is spent on the LWE-to-RLWE transformation (30%; see Table 3). However, since the cost of this transformation is essentially independent of the size of the database, the throughput of YPIR quickly approaches that of DoublePIR as the size of database increases. With an 8 GB database, the throughput is 3–18% faster than the reference implementations of SimplePIR and DoublePIR and 7% of the memory bandwidth of the system. The efficiency gain over DoublePIR and DoublePIR is due both to a different choice of parameters in YPIR compared to the reference implementation [HHC+23b] and to a more optimized implementation. To compare the schemes on an even footing, we include measurements against our implementation of these protocols (denoted SimplePIR and DoublePIR) with our lattice parameters from Table 1 in Appendix D (Table 8). Compared to our SimplePIR and DoublePIR implementations, the throughput of YPIR on a 8 GB database is only 10% slower, and for a 32 GB database, only 1% slower. Thus, for moderate-size databases, YPIR achieves similar throughput to SimplePIR/DoublePIR without any offline hints. We also show the throughput of the different schemes as a function of the database size in Fig. 2.

Compared to the Tiptoe approach [HDCZ23a], YPIR achieves 8–19× higher throughput. This is because over 85% of the server processing time in Tiptoe is spent on the LWE-to-RLWE conversion algorithm (based on homomorphic...
Table 2: Communication and computation needed to retrieve a single bit for databases of varying sizes. For each scheme, we also measure the speed of the preprocessing algorithm (“Prep. Throughput”) that the server must run upon each database update, and if applicable, the size of the hint that the client must download in the offline phase (“Off. Download”). The measurements for SimplePIR, DoublePIR, [HHC+23a], Tiptoe [HDCZ23a], and HintlessPIR [LMRS24a] are all obtained by running their official reference implementations on our test system [HHC+23b, HDCZ23b, LMRS24b]. We refer to Table 8 for a direct comparison with our implementations of SimplePIR and DoublePIR (derived from the subprotocols of YPIR), which achieve higher throughput than the provided reference implementation.

<table>
<thead>
<tr>
<th>Database</th>
<th>Metric</th>
<th>SimplePIR</th>
<th>DoublePIR</th>
<th>Tiptoe</th>
<th>HintlessPIR</th>
<th>YPIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prep. Throughput</td>
<td>3.7 MB/s</td>
<td>3.4 MB/s</td>
<td>1.6 MB/s</td>
<td>4.8 MB/s</td>
<td>39 MB/s</td>
</tr>
<tr>
<td>1 GB</td>
<td>Off. Download</td>
<td>121 MB</td>
<td>16 MB</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>120 KB</td>
<td>312 KB</td>
<td>33 MB</td>
<td>488 KB</td>
<td>846 KB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>120 KB</td>
<td>32 KB</td>
<td>2.1 MB</td>
<td>1.7 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>74 ms</td>
<td>94 ms</td>
<td>2.47 s</td>
<td>743 ms</td>
<td>129 ms</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>13.6 GB/s</td>
<td>10.6 GB/s</td>
<td>415 MB/s</td>
<td>1.3 GB/s</td>
<td>7.8 GB/s</td>
</tr>
<tr>
<td>8 GB</td>
<td>Prep. Throughput</td>
<td>3.1 MB/s</td>
<td>2.9 MB/s</td>
<td>1.6 MB/s</td>
<td>5.2 MB/s</td>
<td>46 MB/s</td>
</tr>
<tr>
<td></td>
<td>Off. Download</td>
<td>362 MB</td>
<td>16 MB</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>362 KB</td>
<td>724 KB</td>
<td>33 MB</td>
<td>1.4 MB</td>
<td>1.5 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>362 KB</td>
<td>32 KB</td>
<td>8.6 MB</td>
<td>1.7 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>708 ms</td>
<td>845 ms</td>
<td>9.75 s</td>
<td>1.62 s</td>
<td>687 ms</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>11.3 GB/s</td>
<td>9.5 GB/s</td>
<td>840 MB/s</td>
<td>4.9 GB/s</td>
<td>11.6 GB/s</td>
</tr>
<tr>
<td>32 GB</td>
<td>Prep. Throughput</td>
<td>3.3 MB/s</td>
<td>3.3 MB/s</td>
<td>1.4 MB/s</td>
<td>5.7 MB/s</td>
<td>48 MB/s</td>
</tr>
<tr>
<td></td>
<td>Off. Download</td>
<td>724 MB</td>
<td>16 MB</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>724 KB</td>
<td>1.4 MB</td>
<td>34 MB</td>
<td>2.4 MB</td>
<td>2.5 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>724 KB</td>
<td>32 KB</td>
<td>17 MB</td>
<td>3.2 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>3.08 s</td>
<td>3.22 s</td>
<td>21.00 s</td>
<td>5.00 s</td>
<td>2.64 s</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>10.4 GB/s</td>
<td>9.9 GB/s</td>
<td>1.5 GB/s</td>
<td>6.4 GB/s</td>
<td>12.1 GB/s</td>
</tr>
</tbody>
</table>

decryption). In YPIR, for large databases, the LWE-to-RLWE packing is only 1–10% of the total server processing time (see Table 3). For the private web search application that Tiptoe was designed for, this packing step does not impact client query latency, but the server incurs the full computational costs of the packing process. Tiptoe’s throughput increases with database size, because larger databases help amortize the cost of LWE-to-RLWE packing (which scales with the square root of the database size).

Compared to HintlessPIR, YPIR achieves 2–6× higher server throughput. Notably, the HintlessPIR reference implementation peaks at 6.4 GB/s while YPIR peaks at 12.1 GB/s. One reason underlying this performance gap is because HintlessPIR applies the LWE-to-RLWE transformation to pack $O(\sqrt{N})$ encodings, where N is the number of records in the database. In contrast, YPIR only needs to pack a fixed number of LWE encodings (independent of the number of records). For a 32 GB database, HintlessPIR spends roughly 50% of its time performing packing (because it packs $O(\sqrt{N})$ encodings), whereas YPIR spends only 1% of its time packing.

Communication. Comparing the communication requirements of YPIR to hint-based schemes, the queries in YPIR are about 1.8–2.7× larger than DoublePIR and 3.5–7× larger than SimplePIR (with smaller overheads for larger databases). The larger queries are due to the key-switching matrices needed for the LWE-to-RLWE packing. On the flip side, the response size for YPIR is 2.7× smaller than DoublePIR and 10–60× smaller than SimplePIR. This is due to the better rate of RLWE encodings compared to LWE encodings, as well as the use of modulus switching in our implementation. The response size of YPIR and DoublePIR depend only on the lattice parameters and not the database size; in SimplePIR, the response scales with the square root of the database size. If we look at total online communication (both upload and download), the cost of YPIR is only 1.8–3.6× larger compared to SimplePIR and
1.8–2.5× larger compared to DoublePIR. The key advantage, of course, is that YPIR does not require the client to download a hint. In the case of a 32 GB database, the size of the hint is 724 MB for SimplePIR and 16 MB for DoublePIR. A client would have to make 681 queries to SimplePIR or 15 queries to DoublePIR before the total communication of YPIR is worse. Thus, for dynamic settings where the database is frequently changing and the client makes a small number of queries at a time, YPIR gives a net reduction in communication with only a small hit to throughput.

Compared to HintlessPIR, YPIR queries are 1.7–3× larger and responses are 125× smaller. The YPIR response size is significantly smaller because the HintlessPIR response size scales with the square root of the database size (like SimplePIR). On the other hand, YPIR queries are larger than in HintlessPIR due to needing more key-switching matrices for the LWE-to-RLWE packing. Compared to Tiptoe, YPIR has 13–39× smaller queries and 175–1417× smaller responses. The total communication cost for a issuing a single query for an 8 GB database is 1.5 MB for YPIR, 2 MB for HintlessPIR, and 42 MB for Tiptoe.

Preprocessing cost. Our NTT-based precomputation (Section 4.1) is about 10–15× faster than that of SimplePIR or DoublePIR and 8× faster than HintlessPIR. For a 32 GB database, the offline precomputation of YPIR would take about 11 CPU-minutes, whereas for SimplePIR/DoublePIR, it would take roughly 144 CPU-minutes, and for HintlessPIR, it would take 95 CPU-minutes. As described in Section 4.1, our precomputation method can be used directly in SimplePIR/DoublePIR/HintlessPIR without affecting the online performance of the protocol.

Server microbenchmarks. Table 3 provides a fine-grained breakdown of the server computation costs of YPIR (i.e., the Answer algorithm in Construction 3.1). We separately measure the costs of the SimplePIR step (Step 1), the DoublePIR step (Step 2), and the LWE-to-RLWE packing step (Step 3). The modulus switching cost is insignificant compared to the other three components so we do not include it in the breakdown. First, we observe that the packing transformation essentially incurs a fixed cost to the server processing time. This is because the LWE-to-RLWE packing
Table 3: Breakdown of YPIR server computation time for retrieving a single bit from databases of varying sizes. For each database size, we report the time spent in the SimplePIR step (Step 1), the DoublePIR step (Step 2), and the LWE-to-RLWE packing step (Step 3) for the Answer algorithm in Construction 3.1. In parentheses, we report the percentage of the total time spent on the associated step.

<table>
<thead>
<tr>
<th>Size</th>
<th>SimplePIR</th>
<th>DoublePIR</th>
<th>Packing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GB</td>
<td>0.07 s (59%)</td>
<td>14 ms (11%)</td>
<td>39 ms (30%)</td>
<td>0.13 s</td>
</tr>
<tr>
<td>4 GB</td>
<td>0.30 s (82%)</td>
<td>27 ms (7%)</td>
<td>38 ms (10%)</td>
<td>0.37 s</td>
</tr>
<tr>
<td>16 GB</td>
<td>1.21 s (93%)</td>
<td>57 ms (4%)</td>
<td>39 ms (3%)</td>
<td>1.31 s</td>
</tr>
<tr>
<td>32 GB</td>
<td>2.56 s (96%)</td>
<td>58 ms (2%)</td>
<td>39 ms (1%)</td>
<td>2.66 s</td>
</tr>
</tbody>
</table>

Table 4: Breakdown of YPIR query size for retrieving a single bit from databases of varying sizes. Recall from Construction 3.1 that the query consists of three components: (1) the LWE encoding c_1 of the row of interest (processed in the initial SimplePIR step), (2) the LWE encoding c_2 of the column of interest (processed in the DoublePIR step), and (3) the key-switching parameters pk for the LWE-to-RLWE packing. We report the size of each of these components. In parentheses, we report the percentage of the total query size associated with each component.

| Database Size | $|c_1|$ | $|c_2|$ | $|pk|$ | Total Size |
|---------------|------|------|------|-----------|
| 1 GB | 128 KB (15%) | 256 KB (30%) | 462 KB (55%) | 846 KB |
| 4 GB | 256 KB (21%) | 512 KB (42%) | 462 KB (38%) | 1.2 MB |
| 16 GB | 512 KB (26%) | 1.0 MB (51%) | 462 KB (23%) | 2.0 MB |

Query size breakdown. In Table 4, we provide a breakdown of the different components of the YPIR query. From Construction 3.1, the YPIR query consists of two sets of LWE encodings c_1, c_2 (that encode indicator vectors of the row and column of the desired database record) as well as the packing parameters pk (i.e., the key-switching matrices) for the LWE-to-RLWE packing transformation (Construction 2.8). The size of the packing parameters matrices are fixed (concretely, these are 462 KB), while the encodings of the indicator vectors for the row and the column scale with the number of rows and columns, respectively. In our experiments, the database is arranged as a square with an equal number of rows and columns. As such, the number of LWE encodings needed to encode the indicator vectors for the row (c_1) and for the column (c_2) are the same. However, we use larger parameters for the second set of encodings c_2 (to support the LWE-to-RLWE packing transformation). As such, the encoding c_2 is roughly $(\log q_2/\log q_1) \approx 2 \times$ larger than the encoding c_1.

Communication-computation tradeoffs. Fig. 3 shows the highest server throughput that each scheme can achieve on a 32 GB database for a given budget on the total online communication. When the communication limit does not allow us to use the base configuration of a scheme, we consider running multiple instances of a smaller configuration. For example, the vanilla version of YPIR over a 32 GB database requires 2.5 MB of total communication to process a query. If we require the total communication to be at most 2 MB, then it would no longer be feasible to run the base version of YPIR. In this case, we would consider running 2 instances of YPIR, each on a 16 GB database, or 4 instances, each on an 8 GB database. If there are k instances, the client would issue a single query that is used across all k instances, and the response would consist of k responses. This reduces the size of the query while...
increasing the size of the response. Note that this rebalancing is only applicable in the case of DoublePIR and YPIR where the response size is much smaller than the query size (the query size scales with the size of the database but the response size does not). Thus, rebalancing allows us to reduce the size of the DoublePIR and YPIR queries at the expense of longer responses and a reduction in server throughput.

Fig. 3 shows that YPIR can achieve 95% of the throughput of DoublePIR with a total communication budget of 1.5 MB (and no offline communication). When the communication budget drops below 1.5 MB, YPIR’s throughput decreases rapidly, as the LWE-to-RLWE packing transformation becomes a larger fraction of online processing time (if we run \(k \) instances of YPIR, then we need to run the packing procedure \(k \) times). Currently, YPIR cannot achieve total communication of less than 1 MB when retrieving a record from a 32 GB database. With DoublePIR, the minimum communication for retrieving a bit from a 32 GB database hovers around 0.6 MB; however, this additionally requires the client to pre-fetch a 14 MB hint. An important open question is to design PIR schemes that require significantly smaller communication while retaining comparable server throughput (and silent preprocessing).

Cross-client batching. We modify SimplePIR, DoublePIR, and YPIR to support cross-client batching as described in Section 4.3. For a database of size \(\ell \), we define the effective (per-query) server throughput to process a batch of \(k \) queries to be \(k\ell/T \), where \(T \) is the time it takes to answer all \(k \) queries. We consider batch sizes ranging from \(k = 1 \) to \(k = 8 \) and measure the effective throughput of the scheme for retrieving a single bit from a 32 GB database in Fig. 4. In all cases, using cross-client batching increases the effective throughput by a factor of up to \(1.4 \times \). In the case of SimplePIR and DoublePIR, processing a batch of 4 queries yields a \(1.4 \times \) improvement (an effective throughput of over 17 GB/s). This is higher than the memory throughput of the machine. With YPIR, the effective throughput for a batch size of 4 is over 16 GB/s, which is \(1.3 \times \) larger than the single-query throughput. The gap in effective throughput between YPIR and SimplePIR widens as we increase \(k \), since the fixed cost of the LWE-to-RLWE packing (see Table 3) does not benefit from cross-client batching. These results show that for setting where a server needs to process concurrent queries from different clients, it is advantageous to process them in a batch rather than sequentially, even though there is no reduction in the total number of arithmetic operations the server performs.
Batch Size k

Effective Server Throughput (GB/s/core)

- **Conjectured max throughput**
- **Memory bandwidth**
- **SimplePIR**
- **DoublePIR**
- **YPIR**

![Figure 4: Effective per-query server throughput for retrieving a single bit from a 32 GB database with cross-client batching. For a batch of k client queries and a database of size ℓ, the effective per-query server throughput is $k\ell/T$, where T is the time to process all k queries. As in Fig. 2, we use our implementation of SimplePIR and DoublePIR (i.e., SimplePIR* and DoublePIR*) for the comparisons. We measure the memory bandwidth of the system using STREAM [McC95]. We compute the conjectured maximum possible throughput for these schemes based on the assumption that processing each database byte requires a minimum of two 32-bit arithmetic operations and using the clocks-per-instruction values provided by the CPU vendor [Int23].](image)

LWE-to-RLWE translation. Tiptoe [HDCZ23a], HintlessPIR [LMRS24a], and YPIR all apply some form of LWE-to-RLWE translation to compress the SimplePIR/DoublePIR hints and eliminate the need for an offline hint download. Tiptoe and HintlessPIR rely on a bootstrapping-like approach where the client provides an RLWE encoding of the secret key in its query. The server then treats the LWE encodings in the SimplePIR hint as a vector of plaintexts. Then, using the RLWE encoding of the LWE secret key, it homomorphically evaluates the inner product between the encodings in the SimplePIR hint and the secret key. This yields an RLWE encoding of the desired database record. Since both of these approaches essentially implement homomorphic decryption, they set the plaintext modulus of the RLWE encoding scheme to be at least as large as the LWE encoding modulus. This results in needing to use a much larger RLWE encoding modulus to achieve correctness. For example, HintlessPIR uses a 90-bit RLWE modulus to implement this step (whereas the LWE encoding modulus in the SimplePIR hint is just 32 bits). We refer to Section 5.1 for a more detailed description of the different approaches.

In contrast to the previous approaches, YPIR applies the Chen-Dai-Kim-Song packing transformation [CDKS21]. While this could also be viewed as a type of “bootstrapping” (since the transformation relies on key-switching, which is in some sense a homomorphic decryption operation), it does not require us to “re-encode” the LWE encodings under RLWE. Like most key-switching transformations, the Chen et al. transformation allows us to use the same modulus for the LWE encoding and for the RLWE encodings. Moreover, the noise introduced by key-switching is additive and is not scaled up by the magnitude of the LWE encoding modulus. A downside of this approach is that the LWE and RLWE encodings share a common modulus, so we cannot use a power-of-two modulus, as such moduli are not NTT-friendly.

In Table 5, we provide microbenchmarks for packing 4096 LWE encodings (of dimension n) into RLWE encodings (of dimension $d \geq n$) using the different approaches. HintlessPIR has the smallest public parameters because it only requires a single key-switching matrix. The Chen et al. approach uses $\log d$ key-switching matrices. Tiptoe uses a separate RLWE encoding for each component of the LWE secret, so its parameters have size $O(nd)$ and are concretely...
Table 5: Concrete costs of packing 2^{12} input LWE encodings into RLWE encodings using the Tiptoe [HDCZ23a], HintlessPIR [LMRS24a], and the Chen et al. [CDKS21] approach (Construction 2.8) used in YPIR. We report the lattice parameters for the input LWE encodings considered in each construction: n is the lattice dimension, q is the encoding modulus, and p is the plaintext modulus. We also report the size of the parameters the client must upload to the server, and the size of the output RLWE encodings. To normalize for the differences in the lattice parameters, we also report the rate (the ratio of the plaintext size in the packed encoding to the size of the encoding). Finally, we measure the offline and online server computation times. We report the Chen et al. packing approach with and without the preprocessing technique described in Section 4.2. For approaches with preprocessing, we assume that the pseudorandom components of the input encodings and public parameters are known to the server ahead of time.

4.5 Application to Private SCT Auditing

Certificate Transparency (CT) [Lau14, LLK13] is a standard for monitoring and auditing the issuance of digital certificates by maintaining a public append-only log of every certificate issued by every certificate authority. In this model, whenever a certificate authority (CA) issues a certificate, it also deposits the certificate into one or more CT logs. The log operator responds with a signed certificate timestamp (SCT). The SCT is embedded within the certificate and represents a commitment from the log operator to include the certificate in its log within a certain timeframe (e.g., typically 24 hours). Whenever a client receives a certificate with an embedded SCT, the client can verify the SCT with the log server to confirm that the server has indeed received the associated certificate. The client may choose to reject certificates that do not contain a valid SCT. In turn, domain owners can check with log servers to obtain the certificates that have been issued for their domain, and identify any fraudulent certificates.

To defend against log operators falsifying SCTs (i.e., issuing an SCT but not depositing the certificate into the log), clients must regularly verify that (a subset of) the SCTs they receive from web servers are actually contained in the CT
Table 6: Weekly server costs per client needed to support private SCT auditing using the PIR-based approach of Henzinger et al. [HHC+23a]. Following [HHC+23a, DeB24], we assume the client performs 20 SCT audits each week, where each audit corresponds to retrieving a single bit using a PIR query over an 8 GB database. For DoublePIR [HHC+23a], the client needs to download a hint associated with the current state of the SCT database. We consider the setting where the client downloads the hint once each week and the case where the client downloads the hint (or a hint update) each day. The other schemes (Tiptoe [HDCZ23a], HintlessPIR [LMRS24a] and YPIR) do not require hints. We disregard the cost of the server preprocessing in these measurements (since this is a one-time cost that can be amortized across all clients). We measure the cost of running such a service based on current AWS costs: ($0.09 per outbound GB and $1.5 \times 10^{-5}/\text{core-second}; \text{inbound communication is free}) [HHC+23a].

<table>
<thead>
<tr>
<th>Update Frequency</th>
<th>DoublePIR Weekly</th>
<th>DoublePIR Daily</th>
<th>Tiptoe</th>
<th>HintlessPIR</th>
<th>YPIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline Download</td>
<td>16 MB</td>
<td>112 MB</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Upload</td>
<td>14 MB</td>
<td>14 MB</td>
<td>659 MB</td>
<td>27 MB</td>
<td>29 MB</td>
</tr>
<tr>
<td>Download</td>
<td>640 KB</td>
<td>640 KB</td>
<td>172 MB</td>
<td>34 MB</td>
<td>240 KB</td>
</tr>
<tr>
<td>Computation</td>
<td>16.90 s</td>
<td>16.90 s</td>
<td>194.96 s</td>
<td>32.40 s</td>
<td>13.74 s</td>
</tr>
<tr>
<td>Communication Cost</td>
<td>$0.001569</td>
<td>$0.010610</td>
<td>$0.016215</td>
<td>$0.003222</td>
<td>$0.000022</td>
</tr>
<tr>
<td>Computation Cost</td>
<td>$0.000253</td>
<td>$0.000253</td>
<td>$0.002924</td>
<td>$0.000486</td>
<td>$0.000206</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$0.001822</td>
<td>$0.010863</td>
<td>$0.019139</td>
<td>$0.003708</td>
<td>$0.000228</td>
</tr>
</tbody>
</table>

Private SCT auditing. Several works have proposed to use PIR for private SCT auditing [LG15, KOR19, HHC+23a]. In this work, we focus on the recent approach of Henzinger et al. [HHC+23a] that leverages single-server PIR to construct a private SCT auditing protocol. In their approach, each log operator prepares a data structure (based on Bloom filters) representing the set of active SCTs in the log. To test whether a particular SCT is contained in the log, the client privately reads a single bit from this data structure using PIR.

To represent the set of 5 billion currently-active SCTs, the Henzinger et al. approach encodes the SCTs as a database of size 2^{36} bits (8 GB). Each SCT audit in turn corresponds to a single PIR query to this database. In [HHC+23a], the underlying PIR protocol is instantiated using DoublePIR.

Cost of private SCT auditing. A limitation of using DoublePIR for private SCT auditing is the need to download (and store) the large hint. SCT databases are constantly updated, with roughly 10 million certificates issued each day [Mer24]. To audit against the latest version of the log, the clients must first download the hint for the current log state. To mitigate this, the approach in [HHC+23a] is to have clients download the hints on a weekly basis and wait to test an SCT if its validity falls outside the time window associated with the current hint. While this reduces the protocol’s communication costs, it also introduces delays in detecting malicious log behavior. The log server must also maintain multiple copies of the SCT database to support PIR queries for hints issued at different times.

A PIR scheme with silent preprocessing avoids these deployment issues. Following [HHC+23a], we assume a client makes 10^4 TLS connections each week and performs two audits for a 1/1000-fraction of connections (this is also the setting Chrome uses [DeB24]). This corresponds to a client making 20 audits (i.e., PIR queries) over the course of

11 Instead of downloading the full hint each time, the client could download an update instead. The size of the update scales roughly with the number of rows in the database that has changed. Since the bits of the database correspond to the bits of a Bloom filter, updates will typically occur in random positions. Since the number of insertions each day is significantly larger than the number of rows, the size of a daily hint update is comparable to the size of the entire hint.
a week. In Table 6, we report the monetary costs of the outbound communication\(^{12}\) and the server computation based on current AWS pricing when instantiating the [HHC\(^{+23a}\)] approach with DoublePIR, Tiptoe, HintlessPIR, and YPIR.

When the client downloads weekly hints, the DoublePIR approach [HHC\(^{+23a}\)] has a weekly server cost of $1822 per 1 million clients. Over 80% of this cost is from clients downloading the 16 MB hint. If we consider daily updates,\(^{13}\) and have clients audit the most recent version of the log, the weekly cost of DoublePIR balloons to $10,863 per 1 million clients.

A system based on YPIR would have a weekly cost of $228 per 1 million clients. This is $8×$ cheaper than using DoublePIR with weekly updates and over $48×$ cheaper than using DoublePIR with daily updates. Most of YPIR’s costs are from server computation, not communication. If we apply cross-client batching with a queue of size 4, YPIR’s estimated weekly server cost drops to just $183 per 1 million clients.

Scheme likes HintlessPIR, Tiptoe, and YPIR that do not require hints are unaffected by update frequency and can be better-suited for SCT auditing. The upload in YPIR is just $10.7×$ larger than HintlessPIR, and $23×$ smaller than Tiptoe. Since AWS only charges for outgoing communication, and Tiptoe and HintlessPIR have larger responses than YPIR, they have substantially higher AWS costs ($84×$ and $16×$, respectively). Overall, the total communication required by YPIR is $2×$ lower than HintlessPIR, $28×$ lower than Tiptoe, and $4.3×$ lower than DoublePIR with daily updates. In fact, YPIR’s total communication with daily updates is smaller even compared to DoublePIR’s total communication with weekly updates. So even if the client amortizes the DoublePIR hint across multiple queries over the course of the week, YPIR still achieves smaller end-to-end communication costs. Compared to the communication needed by Chrome’s k-anonymity-based approach for private SCT auditing [DeB\(^{24}\)], which does not provide cryptographic privacy, the communication requirement using YPIR is only $12.6×$ smaller. Concretely, the weekly communication costs are 2.3 MB for the k-anonymity approach, and 29 MB for YPIR.

4.6 Application to Private Password Breach Checking

Another application of PIR is to password breach checking. In this setting, a client wants to detect whether a password has been detected in a publicly-available breach, but without revealing the password to the server. These protocols are useful for preventing credential stuffing attacks [LPA\(^{+19}\), TPY\(^{+19}\), ALP\(^{+21}\), KC\(^{21}\)]. There are several ways to use PIR to perform this kind of check:

- **Bloom filter:** One approach for password breach checking is for the server to construct a Bloom filter for all of the compromised passwords. Similar to the approach for private SCT auditing considered in Section 4.5, the client runs PIR to retrieve individual bits of the Bloom filter to determine whether a particular password is present. False positives where the client incorrectly believes their password is present in the Bloom filter will occur with some low probability, and can be adjusted by having the client read multiple bits of the Bloom filter.

- **Keyword PIR:** In keyword PIR [CGN\(^{98}\)], clients retrieves records from the database via a keyword lookup rather than by specifying an index. In this setting, the client either learns the record of interest if a record with the queried keyword exists in the database; otherwise, the client learns that no such record exists. This immediately implies a protocol for password breach checking as the client can simply query for the password (or alternatively, a collision-resistant hash of the password) and learn whether it is contained in the database. Keyword PIR can be reduced to index-based PIR with low overhead [CGN\(^{98}\), PSY\(^{23}\), CD\(^{24}\)].

- **Bucket retrieval:** A third approach is for clients to use a traditional index-based PIR to retrieve a *bucket* of password hashes that share a common prefix, and then locally check whether their desired item is in this smaller set [ALP\(^{+21}\)]. For example, to check a password against a set of 2^{30} compromised entries, clients could hash their target item, and retrieve the bucket corresponding to the first 15 bits of this hash. On average, each bucket will contain $\approx 2^{15}$ hashes that each begin with the chosen 15-bit prefix. When the number of items in the set is large relative to the number of buckets, the buckets will be filled evenly with high probability.

In this work, we show how to use YPIR to implement the bucket-retrieval approach [ALP\(^{+21}\)]. We opt for this one because it avoids false positives, and moreover, can be directly supported by a standard index PIR scheme. To realize

\(^{12}\) AWS only charges for *outbound* communication.

\(^{13}\) Since SCTs are promises to include certificates in logs within a 24-hour period, the maximum useful frequency of database updates is daily.
Table 7: Communication and computation needed to retrieve larger records from databases of varying configurations.

<table>
<thead>
<tr>
<th>Database</th>
<th>Metric</th>
<th>SimplePIR</th>
<th>HintlessPIR</th>
<th>YPIR+SP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prep. Throughput</td>
<td>3.7 MB/s</td>
<td>4.8 MB/s</td>
<td>63 MB/s</td>
</tr>
<tr>
<td></td>
<td>Off. Download</td>
<td>121 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$2^{15} \times 32$ KB (1 GB)</td>
<td>Upload</td>
<td>120 KB</td>
<td>488 KB</td>
<td>686 KB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>120 KB</td>
<td>1.7 MB</td>
<td>120 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>74 ms</td>
<td>743 ms</td>
<td>415 ms</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>13.6 GB/s</td>
<td>1.3 GB/s</td>
<td>2.4 GB/s</td>
</tr>
<tr>
<td></td>
<td>Prep. Throughput</td>
<td>3.1 MB/s</td>
<td>5.2 MB/s</td>
<td>101 MB/s</td>
</tr>
<tr>
<td></td>
<td>Off. Download</td>
<td>362 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$2^{18} \times 32$ KB (8 GB)</td>
<td>Upload</td>
<td>362 KB</td>
<td>1.4 MB</td>
<td>1.3 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>362 KB</td>
<td>1.7 MB</td>
<td>228 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>708 ms</td>
<td>1.62 s</td>
<td>1.56 s</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>11.3 GB/s</td>
<td>4.9 GB/s</td>
<td>5.1 GB/s</td>
</tr>
<tr>
<td></td>
<td>Prep. Throughput</td>
<td>3.3 MB/s</td>
<td>5.7 MB/s</td>
<td>115 MB/s</td>
</tr>
<tr>
<td></td>
<td>Off. Download</td>
<td>724 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$2^{19} \times 64$ KB (32 GB)</td>
<td>Upload</td>
<td>724 KB</td>
<td>2.4 MB</td>
<td>2.2 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>724 KB</td>
<td>3.2 MB</td>
<td>444 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>3.08 s</td>
<td>5.00 s</td>
<td>5.24 s</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>10.4 GB/s</td>
<td>6.4 GB/s</td>
<td>6.1 GB/s</td>
</tr>
</tbody>
</table>

YPIR with SimplePIR. To support larger database records, we consider a variant of YPIR where we apply the LWE-to-RLWE packing procedure to the SimplePIR output rather than the DoublePIR output. Recall that the SimplePIR output encodes an entire column of the database (as opposed to just a single record). Thus, the SimplePIR output is already naturally encoding a “large record.” Note that this version of YPIR is similar to the approach taken in HintlessPIR, where they apply bootstrapping to pack the SimplePIR hint into a small number of RLWE encodings.

In Table 7, we compare the performance of our YPIR with SimplePIR (denoted YPIR+SP) approach with SimplePIR and HintlessPIR for retrieving large records from various databases. For sake of comparison, we consider the database configurations from [LMRS24a]. Overall, YPIR with SimplePIR has a similar query size to HintlessPIR, but $7\text{–}14\times$ smaller responses. As discussed in Section 4.4, HintlessPIR has larger responses because the bootstrapping approach requires it to embed the SimplePIR encoding modulus (32 bits) within the plaintext space of the output RLWE encodings. This leads to a much larger RLWE encoding modulus (and thus, response size). In contrast, the approach used by YPIR applies packing directly to the input LWE encodings, rather than treating them as plaintexts; this allows the RLWE ciphertext modulus to be the same as the LWE ciphertext modulus.

The throughput of YPIR+SP is similar to that of HintlessPIR, ranging from 1.8× faster for small databases, to 5% slower for large databases. YPIR is faster for small databases because it uses a lighterweight LWE-to-RLWE packing procedure (see Section 4.4 and Table 5). However, the conversion step is only applied to an input of size $O(\sqrt{N})$ whereas the SimplePIR step is applied to an input of size $O(N)$, where N is the size of the database. This makes the difference in overall throughput less substantial when N is large but noticeable when N is small. Because YPIR+SP performs packing directly on the result of the SimplePIR step, it uses an NTT-friendly modulus that is not a power-of-two in the SimplePIR step. This makes the SimplePIR step of YPIR+SP about 1.4× slower than the SimplePIR reference implementation. Since HintlessPIR can be directly applied to SimplePIR, it is able to achieve higher throughput than YPIR+SP when the
database is large (e.g., HintlessPIR is 5% faster for a 32 GB database). Thus, for large databases with big records, YPIR+SP has substantially smaller total communication, but comes at a small reduction in throughput relative to HintlessPIR.

Application to password breach checking. Returning to the application to password breach checking, we measure performance on a 32 GB database containing 1 billion SHA-256 hashes. This is roughly twice the size of the 2022 “Have I Been Pwned?” public dataset of leaked passwords hashes [HIB22]. To balance query and response sizes, we view this as a database with 2^{19} records, each of size 64 KB. Using YPIR+SP, performing a single password breach check against 1 billion compromised passwords requires just 2.6 MB of total communication and 5.2 seconds of computation. This is 2.2× less communication than HintlessPIR (mostly due to a 7.4× smaller response), but 5% more computation.

5 Related Work

Private information retrieval was first introduced in [CGKS95]. The original construction considered the multi-server model where the database is replicated across multiple (non-colluding) servers. The reliance on non-colluding servers enables lightweight constructions (based on symmetric cryptography or even no cryptography at all) [Yek07, Efr09, BIKO12, GI14, BGI16, HH19].

Kushilevitz and Ostrovsky [KO97] gave the first single-server PIR scheme based on additively homomorphic encryption. Subsequently, single-server PIR has been constructed from many number-theoretic assumptions [CMS99, GR05, DG19, CGH21, BCM22]. Of particular note are the lattice-based constructions, which yield the most (concretely)-efficient constructions of single-server PIR [MBFK16, AS16, ACLS18, GH19, PT20, ALP+21, AYA+21, MCR21, MR23, MW22, DPC22, HHC+23a, HDCZ23a, LMRS24a].

Reducing the computational cost of PIR. There are many techniques to reduce the computational burden of PIR. Batch PIR [BIM00, IKOS04, GKL10, ACLS18, MR23] allows a client to retrieve many elements from the database with low overhead relative to the cost of a single query. In *stateful PIR* [PPY18, KC21, MCR21, MZRA22], the client retrieves *private* state from the server in an offline phase in order to reduce the cost of the online phase. Recently, several works have also shown how to construct single-server PIR protocols with amortized sublinear online computation [LP23, MSR23, WZLY23, ZPSZ24]. Notably, several of these constructions only rely on symmetric cryptography [MSR23, WZLY23, ZPSZ24] and can plausibly handle queries to extremely large databases (on the order of hundreds of GB). However, these systems have the limitation that the client has to stream the *entire* database in the offline phase, which may be infeasible for large databases.

In *doubly-efficient PIR* [CHR17, BIPW17], the server locally preprocesses the database in a way that allows it to answer queries in sublinear time. Notably, no communication is needed in the offline phase. A recent breakthrough [LMW23] gives a construction of doubly-efficient PIR from the RLWE assumption; however, the concrete costs of this protocol still seem too high to be practically viable for realistic database sizes [OPPW23].

PIR variations. A number of recent works have also sought to strengthen PIR to provide security in the presence of *malicious* servers [WZ18, BKP22, CNC+23, DT24, dCL24]. Other extensions of PIR include retrieving records by keyword instead of index [CGN98]; this case can be reduced to standard PIR [CGN98, ALP+21, MK22, PSY23].

5.1 Comparison with Tiptoe and HintlessPIR

In this section, we provide a more detailed overview of the PIR scheme implicit in Tiptoe [HDCZ23a] and the HintlessPIR scheme [LMRS24a]. Both of these schemes build on top of SimplePIR [HHC+23a]. At a high level, the database in SimplePIR is represented as a matrix $D \in \ZZ_q^{n \times \ell}$. In Tiptoe and HintlessPIR, the client’s query is a SimplePIR query vector $q \in \ZZ_q^{n \times \ell}$ for their desired index. The server then computes the SimplePIR answer $t = q^T D \in \ZZ_q^{\ell}$. In an offline phase, the server also computes a hint $H = AD \in \ZZ_q^{\ell \times \ell}$, where $A \in \ZZ_q^{n \times \ell}$. Given the hint H and the server’s answer t, the client can recover the desired record by computing the linear function $t - s^T H$ and rounding the result, where $s \in \ZZ_q^n$ is the LWE secret key the client used to generate the query. The basic SimplePIR protocol requires the client download the hint $H \in \ZZ_q^{\ell \times \ell}$ in the preprocessing phase. Both Tiptoe and HintlessPIR leverage bootstrapping
techniques to remove the need for the client to download the hint. In both systems, instead of having the client download H, they instead have the client upload an encryption of the secret key s' (under a new RLWE encryption scheme) and have the server homomorphically compute the function $s' H \in \mathbb{Z}_q^\ell$. Since the server knows H, this only requires linear homomorphisms. The result is an RLWE encryption of $s' H \in \mathbb{Z}_q^\ell$. This is much smaller than the hint matrix which has dimensions n-by-ℓ. The two schemes differ in how they implement this decryption strategy.

Tiptoe. The Tiptoe [HDCZ23a] query consists of a standard SimplePIR query, and an additional vector of n RLWE ciphertexts encrypting the components of the the LWE secret key $s \in \mathbb{Z}_q^n$. The server then evaluates the matrix-vector product $s' H \in \mathbb{Z}_q^\ell$. This yields a collection of ℓ RLWE ciphertexts, which is then sent back to the client.

HintlessPIR. The HintlessPIR [LMRS24a] approach is similar to Tiptoe: the query consists of a SimplePIR query and an additional RLWE encryption of the LWE secret key $s \in \mathbb{Z}_q^n$. Instead of encrypting each of the n components of s individually, the client packs all of the components of s into a single RLWE ciphertext (using the fact that RLWE ciphertexts support multiple plaintext “slots” [BGV12, GHS12a]). In order to operate on the packed representation, the client also provides a key-switching matrix for evaluating automorphisms on RLWE ciphertexts. The server can use these query encodings to efficiently compute the same matrix-vector product as in Tiptoe, and produces an RLWE encryption of the matrix-vector product $s' H$. Since performing rotations and key-switching normally requires expensive NTTs, the HintlessPIR work also shows how to move the bulk of the work to the offline phase.

Comparison with YPIR. In both Tiptoe and HintlessPIR, the client sends over an RLWE encryption of the LWE secret s and the server homomorphically computes the product $s' H$. As noted in Section 4, this approach requires the RLWE encryption scheme to support homomorphic operations over \mathbb{Z}_q (i.e., the ciphertext ring for the LWE instances). This leads to concretely-larger parameters compared to the YPIR approach which relies on key-switching rather than bootstrapping. Moreover, applying the approach to the SimplePIR response requires operating on $O(\ell)$ values and yields a response of size $O(\ell)$. In contrast, if we apply packing to the DoublePIR response, then the packing cost and the response size only depends polylogarithmically on the database size.

Acknowledgments

We thank Alexandra Henzinger for helpful pointers on the Tiptoe implementation, Baiyu Li for advice on parameter selection and benchmarking for HintlessPIR, and Kevin Yeo for suggestions related to keyword PIR. We thank the Usenix Security reviewers for their helpful comments. David J. Wu is supported in part by NSF CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, a Google Research Scholar award, and a grant from Protocol Labs.

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

[DT24] Marian Dietz and Stefano Tessaro. Fully malicious authenticated PIR. In CRYPTO, 2024.

34

A Analysis of the Chen-Dai-Kim-Song Packing Transformation

In this section, we show that the pseudorandomness security property from Definition 2.10 holds for the Chen-Dai-Kim-Song packing transformation [CDKS21] (Construction 2.8). This follows assuming a key-dependent pseudorandomness property on RLWE encodings (namely, that $(a, sa + e)$ even given fresh RLWE encodings of functions of the secret key s). This can also be stated as a “circular security” property on RLWE encodings. We state the specific assumption we use below:

Definition A.1 (Key-Dependent Pseudorandomness for RLWE Encodings). Let λ be a security parameter, $d = d(\lambda)$ be a power-of-two, $m = m(\lambda)$ be the number of samples, $q = q(\lambda)$ be an encoding modulus, and $\chi = \chi(\lambda)$ be an error distribution over the ring $R = \mathbb{Z}[x]/(x^d + 1)$. Let \mathcal{F} be an efficiently-computable set of functions from R_q to R_q. For a bit $b \in \{0, 1\}$ and an adversary \mathcal{A}, let

$$W_b := \Pr \left[\mathcal{A}^{O(\cdot)}(1^\lambda, a, t_b) : s \leftarrow \chi, a \leftarrow R_q^m, e \leftarrow \chi^m, t_0 = sa + e, t_1 \leftarrow \chi R_q^m \right] \right],$$

where the oracle O takes as input a function $f \in \mathcal{F}$, and outputs $(a, sa + e + f(s))$, where $a \leftarrow R_q$ and $e \leftarrow \chi$. We say that the key-dependent pseudorandomness assumption for RLWE encodings with parameters (d, m, q, χ) holds if for all efficient adversaries \mathcal{A}, there exists a negligible function $\text{negl}(\cdot)$ such that for all $\lambda \in \mathbb{N}$, $|W_0 - W_1| = \text{negl}(\lambda)$.

To show that Construction 2.8 satisfies the pseudorandomness property in Definition 2.10, we require key-dependent pseudorandomness with respect to the set of (scaled) automorphisms $\mathcal{F}_{\text{auto}}$:

$$\mathcal{F}_{\text{auto}} = \{ r \mapsto k \cdot \tau_\ell(r) : k \in \mathbb{Z}_q, \ell \in \mathbb{N} \},$$

(A.1)

where $\tau_\ell : R \rightarrow R$ is the automorphism $r(x) \mapsto r(x^\ell)$. We give the formal statement and analysis below:
Lemma A.2 (Security of Construction 2.8). Let λ be a security parameter, $d = d(\lambda)$ be a power-of-two, $q = q(\lambda)$ be an encoding modulus, and $\chi = \chi(\lambda)$ be an error distribution over the ring $R = \mathbb{Z}[x]/(x^d + 1)$. Let $\mathcal{F}_{\text{auto}}$ be the family of scaled automorphisms on R_q defined in Eq. (A.1). If RLWE encodings satisfy key-dependent pseudorandomness with parameters (d, m, q, χ) with respect to $\mathcal{F}_{\text{auto}}$, then Construction 2.8 is pseudorandom given the packing key (also for m samples).

Proof. Take any decomposition base $z \leq q$ and write $d = 2^t$. Suppose there exists an efficient adversary A that can break pseudorandomness of Construction 2.8. We use A to construct an efficient adversary B that breaks key-dependent pseudorandomness of RLWE encodings with respect to $\mathcal{F}_{\text{auto}}$. Algorithm B operates as follows:

1. At the beginning of the game, algorithm B receives the challenge $a, t \in R_q^m$.

2. Let $t = \lceil \log_q q \rceil + 1$. Algorithm B constructs the packing key pk as follows. For each $i \in [t]$ and each $j \in [t]$, algorithm B queries the oracle on the function $f_{i,j}(r) := -z^{j-1} \cdot r_{2i+1}(r)$. It obtains an encoding $(a_{i,j}, b_{i,j}) \in R_q^2$. Algorithm B now sets

$$W_i = \begin{bmatrix} a_{i,1} & a_{i,2} & \cdots & a_{i,t} \\ b_{i,1} & b_{i,2} & \cdots & b_{i,t} \end{bmatrix} \in R_q^{2 \times t}.$$

Finally, it sets $pk = (W_1, \ldots, W_t)$ and gives pk to algorithm A.

3. Algorithm B gives $(1^t, pk, a, t)$ to A. Algorithm A outputs a bit $b' \in \{0, 1\}$, which algorithm B also outputs.

Let $s \in R_q$ be the secret key the challenger samples in the key-dependent pseudorandomness game. By construction, the challenger samples a $a \in R_q^m$ and either sets $t = sa + e$ where $s \leftarrow \chi$ and $e \leftarrow \chi^n$ or samples $t \leftarrow R_q^m$. The former corresponds to the pseudorandom distribution for A while the latter corresponds to the truly random distribution for A. Thus, it suffices to argue that algorithm B correctly constructs the packing key pk. By definition, for all $i \in [t]$ and $j \in [t]$, we have that $a_{i,j} \leftarrow R_q$ and $b_{i,j} = sa_{i,j} + e_{i,j} - z^{j-1} \cdot r_{2i+1}(s)$, where $a_{i,j} \leftarrow R_q$ and $e_{i,j} \leftarrow \chi$. If we define $a_i^j = [a_{i,1} | \cdots | a_{i,t}], e_i^j = [e_{i,1} | \cdots | e_{i,t}]$, then

$$W_i = \begin{bmatrix} a_i^j \cdot e_i^j - r_{2i+1}(s) \cdot g_z^j \end{bmatrix},$$

which exactly coincides with the output distribution of CDKS.Pack(1^t, s, z). Hence, algorithm B perfectly simulates the packing key for A, and we can conclude that the advantage of B in the key-dependent pseudorandomness game is precisely the advantage of A in the pseudorandom game. The claim follows.

Remark A.3 (Number of Samples). In the proof of Lemma A.2, algorithm B makes tt queries to its oracle and learns tt additional RLWE encodings (on top of the m encodings in the challenge). Thus, if we require (CDKS.Setup, CDKS.Pack) to satisfy pseudorandomness for m samples, then the reduction algorithm in B obtains $m + tt$ RLWE encodings. For this reason, we only consider parameter instantiations for Construction 2.8 where the RLWE encodings plausibly holds.

Remark A.4 (Shorter Query Keys). The public parameters in Construction 2.8 consist of $t = \log d$ key-switching matrices W_1, \ldots, W_t. Each key-switching matrix (Construction 2.6) is a 2-by-t matrix of ring elements (where $t = \lceil \log_q q \rceil + 1$ and z is the decomposition base). Moreover, the first row of each W_i is a uniform random element over R_q. Thus, similar to Remark 3.2, we can “compress” these random elements using a short seed for a pseudorandom generator, and appeal to the random oracle heuristic (our implementation uses ChaCha20 in counter mode). This reduces the size of the packing parameters in Construction 2.8 by a factor of 2.

B Hint Computation in YPIR

For a polynomial $g = \sum_{i=0}^{d-1} a_i x^i$, we define $\text{NCoefs}(g) = [a_{d-1}, \ldots, a_0]^\top$ to denote the coefficients of g in reverse order. By inspection, over $R = \mathbb{Z}[x]/(x^d + 1)$, we have for all $f \in R$,

$$\text{NCyclicMat}(g) \cdot \text{NCoefs}(f) = \text{NCoefs}(fg).$$

(B.1)
Let $\mathbf{a} = [a_{1,1}, \ldots, a_{1,m_1}]^T$ be the vector in Construction 3.1. By definition, Construction 3.1 sets $\mathbf{A}_1 = \text{NCyclicMat}(\mathbf{a}_1^T)$.

For a vector \mathbf{d}, this means

$$\mathbf{A}_1 \mathbf{d} = [\text{NCyclicMat}(a_{1,1}) \mid \cdots \mid \text{NCyclicMat}(a_{1,m_1})] \cdot \mathbf{d}. $$

If we parse

$$\mathbf{d} = \begin{bmatrix} d_1 \\ \vdots \\ d_{m_1} \end{bmatrix} \in \mathbb{Z}_{q_1}^{m_1}$$

then

$$\mathbf{A}_1 \mathbf{d} = \sum_{i \in [m_1]} \text{NCyclicMat}(a_{1,i}) \cdot d_i. \tag{B.2}$$

By appealing to Eq. (B.1), we can compute the term $\text{NCyclicMat}(a_{1,i}) \cdot d_i$ in $O(d_i \log d_i)$ time using the NTT (and inverse NTT). Specifically, let $d_i \in \mathbb{R}$ be the polynomial where $\text{NCoefs}(d_i) = d_i$. Then,

$$\text{NCyclicMat}(a_{1,i}) \cdot d_i = \text{NCyclicMat}(a_{1,i}) \cdot \text{NCoefs}(d_i) = \text{NCoefs}(a_{1,i}d_i).$$

Thus, each term in Eq. (B.2) can be computed as follows:

1. Apply the NTT to the polynomials $a_{1,i}$ and d_i and compute the product $a_{1,i}d_i$.
2. Apply the inverse NTT to the product $a_{1,i}d_i \in R_q$ to obtain $\text{NCoefs}(a_{1,i}d_i)$.

Overall, computing $\mathbf{A}_1 \mathbf{d}$ requires $m_1 \cdot O(d_i \log d_i)$ time. In contrast, when $\mathbf{A}_1 \in \mathbb{Z}_{q_1}^{d_1 \times d_1}$, computing $\mathbf{A}_1 \mathbf{d}$ naively requires $O(d_1 |d_1|) = m_1 \cdot O(d_1^2)$ time. Thus, by taking \mathbf{A}_1 to be a structured (negacyclic) matrix, we can reduce the preprocessing cost by a factor of $d_1 / \log d_1$. For typical parameters, $d_1 \approx 2^{10}$, so using a structured \mathbf{A}_1 translates to a substantial reduction in the concrete preprocessing costs.

C Correctness and Security of YPIR

In this section, we provide the correctness and security analysis for the YPIR protocol (Construction 3.1).

C.1 Correctness (Proof of Theorem 3.4)

Take any security parameter λ, any database $\mathbf{D} \in \mathbb{Z}_{q_1}^{d_1 \times d_1}$ (with records $D_{i_1,i_2} \in \mathbb{Z}_N$ where $i_1 \in [t_1]$ and $i_2 \in [t_2]$), and any index $\text{idx} = (i_1,i_2) \in [t_1] \times [t_2]$. Let $(\mathbf{pp}, \mathbf{dbp}) \leftarrow \text{DBSetup}(1^\lambda, \mathbf{D})$, $(q, \mathbf{qk}) \leftarrow \text{Query}(\mathbf{pp}, \text{idx})$, and $\mathbf{resp} \leftarrow \text{Answer}(\mathbf{dbp}, q)$. These components are constructed as follows:

- By construction of DBSetup, this means $\mathbf{pp} = (1^\lambda, t_1, t_2, N, a_1, a_2)$, where $a_1 \in R_{d_1,q_1}^{m_1}$ and $a_2 \in R_{d_2,q_2}^{m_2}$, and $\mathbf{dbp} = (1^\lambda, \mathbf{D}, \mathbf{H}_1, \mathbf{H}_2)$, where $\mathbf{H}_1 = G_{d_1,q_1}^{a_1^T}(A_1 \mathbf{D})$, $\mathbf{H}_2 = A_2 \cdot \mathbf{H}_1^T$, $A_1 = \text{NCyclicMat}(a_1^T)$, and $A_2 = \text{NCyclicMat}(a_2^T)$.

- The query-generation algorithm samples $s_j \leftarrow \chi_j$, $e_j \leftarrow \chi_j^{m_j}$, and sets $c_j = \text{Coeffs}(s_j a_j + e_j + \lambda_j \mu_j) \in \mathbb{Z}_{q_j}$, where $\mu_j = x^\lambda u_{a_j}, i_j = \alpha_j d_j + \beta_j, \alpha_j \in [m_j]$ and $\beta_j \in [d_j]$ for $j \in \{1, 2\}$. It also samples $\mathbf{pk} \leftarrow \text{CDKS.Setup}(1^\lambda, s_2, z)$ and sets $q = (pk, c_1, c_2)$ and $\mathbf{qk} = (s_1, s_2)$.

- The answer algorithm first computes the encoding $\mathbf{C} \in \mathbb{Z}_{q_1}^{(d_2+1) \times (d_1+1)}$ according to Eq. (3.2). It then packs the encodings together $\tilde{e}_i \leftarrow \text{CDKS.Pack}(pk, C_i) \in R_{d_1,q_1}^2$, where C_1, \ldots, C_p are the padded blocks of the matrix \mathbf{C}. Finally, the response $\mathbf{resp} = ((c_{1,1}, c_{1,2}), \ldots, (c_{p,1}, c_{p,2}))$ is obtained by applying modulus switching to c_1, \ldots, c_p.

37
We now consider the output of \mathbf{e} where each \mathbf{e} where $\alpha \in \mathbb{R}$, this in particular means that \mathbf{f} as $\mathbf{v} = \mathbf{u} \cdot \mathbf{H} + \mathbf{f} \mathbf{H}$, $\mathbf{q} \in \{0, 1\}$ and $\mathbf{e} = \mathbf{f} \mathbf{H}$, we can write Eq. (3.2) as
\[
\mathbf{C} = \delta \left[\mathbf{H} \right]_{\mathbf{e} \mathbf{2} \mathbf{T}} = \delta \left[\mathbf{A} \right]_{\mathbf{e} \mathbf{2} \mathbf{T}} \cdot \left[\mathbf{H} \right]_{\mathbf{e} \mathbf{2} \mathbf{T}} = \delta \left[\mathbf{A} \right]_{\mathbf{e} \mathbf{2} \mathbf{T}} \cdot \left[\mathbf{H} \right]_{\mathbf{e} \mathbf{2} \mathbf{T}}.
\]
This means that
\[
[-\bar{s}_2 \mid 1] \cdot \mathbf{C} = \delta (\bar{e}_2 + \Delta \mathbf{u}) [\mathbf{H} \mid \mathbf{T}] \in \mathbb{Z}_{q}^{d+1}.
\]
Define $\alpha_1, \ldots, \alpha_\rho \in \mathbb{Z}_{q}^{d+1}$ where
\[
[-\bar{s}_2 \mid 1] \cdot \mathbf{C} = \delta (\bar{e}_2 + \Delta \mathbf{u}) [\mathbf{H} \mid \mathbf{T}] \in \mathbb{Z}_{q}^{d+1}.
\]
Since $\Delta_2 = \{q_2 \mid p\}$, this in particular means that
\[
\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_\rho \end{bmatrix} = \begin{bmatrix} \mathbf{H} \\ \mathbf{T} \end{bmatrix} \left[\mathbf{e} \right]_{\mathbf{2} \mathbf{T}} \text{ and } \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_\rho \end{bmatrix} = \begin{bmatrix} \mathbf{H} \\ \mathbf{T} \end{bmatrix} \left[\mathbf{e} \right]_{\mathbf{2} \mathbf{T}}.
\]
\[
\begin{bmatrix} \mathbf{H} \\ \mathbf{T} \end{bmatrix} \left[\mathbf{e} \right]_{\mathbf{2} \mathbf{T}} \text{ and } \begin{bmatrix} \mathbf{H} \\ \mathbf{T} \end{bmatrix} \left[\mathbf{e} \right]_{\mathbf{2} \mathbf{T}}.
\]
Since $\|\mathbf{H}\|_{\infty}$, $\|\mathbf{T}\|_{\infty} \leq p/2$ and \mathbf{u} is a unit vector, it holds that $\|\alpha_i\|_{\infty} \leq p/2$ for all $i \in \{\rho\}$. Since \mathbf{e}_2 is subgaussian with parameter σ_2, it follows that each \mathbf{f}_2 is subgaussian with parameter $\sigma_{\text{scan}} \leq \sqrt{\rho \mathbf{p} / 2\Sigma\rho}$. Now, for each $i \in \{\rho\}$, let $\mathbf{f}_i, f_i \in R_{d, q_2}$, where $\mathbf{f}_i = \mathbf{f}_i$ and $\mathbf{f}_i = \mathbf{f}_i$. Let $f_i = \delta ((q_2/p) f_{i,1} + f_{i,2}) \in R_{d, q_2}$. By construction, observe that $\mathbf{f}_i = \mathbf{f}_i$. Since \mathbf{f}_i is CDKS-Pack(\mathbf{p}, \mathbf{c}_i), \mathbf{s}_2 = Coefs(\mathbf{s}_2) and Eq. (C.1) holds, we appeal to Theorem 2.9 and the fact that $\Delta_2 = 1 \mid p$ to conclude that
\[
[-\bar{s}_2 \mid 1] \cdot \mathbf{f}_2 = d_2 f_i + e_{\text{pack},i} = d_2 \delta ((q_2/p) f_{i,1} + f_{i,2}) + e_{\text{pack},i} = \{q_2/p\} f_{i,1} + f_{i,2} + e_{\text{pack},i} \in R_{d_2, q_2},
\]
where each $e_{\text{pack},i} \in R_{d_2}$ is subgaussian with parameter σ_{pack} and $\sigma_{\text{pack}}^2 = \frac{1}{3} (d_2^2 - 1) (t d_2 z^2 \sigma_2^2 / 4)$ and $t = \log_2 q_2$ + 1 \in R_{d_2, q_2}. Since (c_{i,1}, c_{i,2}) = ModReduce(q_1, q_2, (c_i)), we appeal to Lemma 2.4 to conclude that
\[
v_i' = [-s_2 c_{i,1} \mid q_2 / p] + c_{i,2} = [q_2 / p] f_{i,1} + e_{\text{double},i} \in R_{d_2, q_2},
\]
where $e_{\text{double},i} = e_{\text{double},i,1} + e_{\text{double},i,2}$ and $\|e_{\text{double},i,1}\|_{\infty} \leq \frac{1}{2} \left(2 + (q_2 \mid p) + (q_2 / q_2) (q_2 \mod p) \right)$ and the components of $e_{\text{double},i,2}$ are subgaussian with parameter σ_{double} where (assuming the independence heuristic),
\[
\sigma_{\text{double}}^2 \leq (q_2 / q_2)^2 d_2^2 \sigma_2^2 / 4 + (q_2 / q_2)^2 (\sigma_{\text{scan}}^2 + \sigma_{\text{pack}}^2)
\]
\[
\leq (q_2 / q_2)^2 d_2^2 \sigma_2^2 / 4 + (q_2 / q_2)^2 (\sigma_{\text{scan}}^2 / 4) (p_2 p^2 + (d_2^2 - 1) (t d_2 z^2) / 3).
\]
By Lemma 2.3, if $|e_{\text{double},i}| \leq q_2 / 2p$, then $v_i = [v_i' \mid q_2 / p] = f_{i,1}$. Let
\[
\tau_{\text{double}} = \frac{q_2}{2p} - (q_2 / p) \mod p - \frac{1}{2} (2 + (q_2 / p) + (q_2 / q_2) (q_2 \mod p)).
\]
Then, by a subgaussian tail bound and a union bound,
\[
\Pr[\forall i \in [\rho] : u_i = f_{i,i}] \geq 1 - 2d_2 \rho \exp(-\pi \sigma_{\text{double}}^2 / \sigma_{\text{double}}^2).
\] (C.2)

Suppose for all \(i \in [\rho] \), \(u_i = f_{i,i} \). Then,
\[
\mathbf{w} = \begin{bmatrix}
\text{Coeffs}(v_1) \\
\vdots \\
\text{Coeffs}(v_\rho)
\end{bmatrix} = \begin{bmatrix}
\alpha_{1,1} \\
\vdots \\
\alpha_{1,\rho}
\end{bmatrix} = \begin{bmatrix}
H_1 \\
\begin{bmatrix} T \\
0^{d_2-\kappa(d_1+1)}
\end{bmatrix}
\end{bmatrix} u_{i_2} \in \mathbb{Z}_{p}^d.
\]

In particular, this means that
\[
\mathbf{w} = \begin{bmatrix}
H_1 \\
T
\end{bmatrix} u_{i_2} \in \mathbb{Z}_{p}^{\kappa(d_1+1)}.
\] (C.3)

Suppose Eq. (C.3) holds. Since \(H_1 = G_{d_1,\rho}^{-1}([A_1]_{q_1,\bar{q}_1}) \), \(T = G_{1,\rho}^{-1}([c_1^i]_{q_1,\bar{q}_1}) \), and \(c_1^i = \bar{s}_1^i A_1 + \bar{e}_1^i + \Delta_1 u_i^T \), this means
\[
G_{d_1+1,\rho} \mathbf{w} = \begin{bmatrix}
G_{d_1,\rho} \\
0^{d_1 \times d_1}
\end{bmatrix} \begin{bmatrix}
H_1 \\
T
\end{bmatrix} u_{i_2} = \begin{bmatrix}
[A_1]_{q_1,\bar{q}_1} \\
[c_1^i]_{q_1,\bar{q}_1}
\end{bmatrix} u_{i_2} = \text{ModReduce}_{\bar{q}_1} \left(\left(\bar{s}_1^i A_1 + \bar{e}_1^i D + \Delta_1 u_i^T \right) \cdot u_{i_2} \right) \in \mathbb{Z}_{\bar{q}_1}^d.
\]

Since \(\Delta_1 = \lfloor q_1 / N \rfloor \), we have
\[
[\bar{s}_1^i | 1] \left(\begin{bmatrix}
A_1 \\
\bar{s}_1^i A_1 + \bar{e}_1^i D + \Delta_1 u_i^T
\end{bmatrix} \right) = [q_1 / N] \cdot u_i^T D + \bar{e}_1^i D \in \mathbb{Z}_{q_1}^d.
\]

Since the components of \(\bar{e}_1 \) are subgaussian with parameter \(\sigma_1 \) and \(\|D\|_\infty \leq N/2 \), the components of \(\bar{e}_1^i \) are subgaussian with parameter \(\sqrt{\ell_1} (N/2) \sigma_1 \). By Lemma 2.4, this means
\[
[\bar{s}_1^i | 1] \cdot \text{ModReduce}_{\bar{q}_1} \left(\left(\bar{s}_1^i A_1 + \bar{e}_1^i D + \Delta_1 u_i^T \right) \right) = \left(\bar{q}_1 / N \right) \cdot u_i^T D + e_i^1 \cdot u_{i_2}.
\]

where \(e_i^{1} \) is subgaussian with parameter \(\sigma_1 \) and \(\|e_i^{1}\|_\infty \leq \frac{\ell_1}{2} (1 + \bar{q}_1) (q_1 / N) \) and the components of \(e_i^{1} \) are subgaussian with parameter \(\sigma_1 \) and
\[
\sigma_2^2 \leq d_1 \sigma_1^2 / 4 + \left(\bar{q}_1 / q_1 \right)^2 \ell_1 N^2 \sigma_1^2 / 4.
\]

Putting the above pieces together,
\[
\mu = \left[\bar{s}_1^i | 1 \right] \cdot c' = \left[\bar{s}_1^i | 1 \right] \cdot G_{d_1+1,\rho} \mathbf{w} = \left[\bar{q}_1 / N \right] \cdot u_i^T D u_{i_2} + e_i^1 \cdot u_{i_2}.
\]

Let \(e_i^{1} = e_i^{1} \cdot u_{i_2} \). Since \(u_{i_2} \) is a unit vector, \(\|e_i^{1}\|_\infty \leq \|e_i^{1}\|_\infty \). By Lemma 2.3, \(\mu = [\mu'] \bar{q}_1, N = u_i^T D u_{i_2} = D_{i,i_2} \) as long as \(e_i^{1} \) is subgaussian with parameter \(\sigma_1 \) and
\[
\sigma_2^2 \leq d_1 \sigma_1^2 / 4 + \left(\bar{q}_1 / q_1 \right)^2 \ell_1 N^2 \sigma_1^2 / 4.
\]

Then, by a subgaussian tail bound
\[
\Pr[\mu = D_{i,i_2}] \geq 1 - 2 \exp\left(-\pi \sigma_{\text{simple}}^2 / \sigma_{\text{simple}}^2\right).
\]

The claim now follows by combining Eq. (C.2) and applying the union bound. \(\square \)
C.2 Security (Proof of Theorem 3.5)

We proceed with a hybrid argument:

- **Hyb\(_0\)\(^{(b)}\):** This is the real query privacy experiment with bit \(b \in \{0, 1\}\). Specifically, the game proceeds as follows:
 1. At the beginning of the game, the adversary chooses a database \(D \in \mathbb{Z}_N^t\). The challenger computes the parameters \((\text{pp}, \text{dbp}) \leftarrow \text{DBSetup}(1^t, D)\) and gives \(\text{pp}\) to \(\mathcal{A}\). In this case, \(\text{pp} = (1^t, t_1, t_2, N, a_1, a_2)\) where \(a_1 \leftarrow R_{d_1,q_1}^m\) and \(a_2 \leftarrow R_{d_2,q_2}^m\).
 2. Algorithm \(\mathcal{A}\) outputs a pair of indices \(\text{idx}_0 = (t_1^{(0)}, t_2^{(0)})\) and \(\text{idx}_1 = (t_1^{(1)}, t_2^{(1)})\). The challenger computes \((q, \text{qk}) \leftarrow \text{Query}(\text{pp}, (i_0^{(b)}, i_1^{(b)}))\) and gives \(q\) to \(\mathcal{A}\). Concretely, let \(\mu_1^{(b)} \in R_{d_1,q_1}^{m_1}\) and \(\mu_2^{(b)} \in R_{d_2,q_2}^{m_2}\) be the messages derived from \(\text{idx}_b\) according to the specification of the Query algorithm. Then, for each \(j \in \{1, 2\}\), the challenger samples \(s_j \leftarrow \chi_j, e_j \leftarrow \chi_j^{m_j}\) and computes \(c_j = \text{Coeffs}(s_j a_j + e_j + \Delta_j \mu_j^{(b)})\), where \(\Delta_j\) is the scaling factor defined in Construction 3.1. The challenger also computes \(\text{pk} \leftarrow \text{CDKS.Setup}(1^t, s_2, z)\) and sets \(q = (\text{pk}, c_0, c_1)\).
 3. At the end of the game, algorithm \(\mathcal{A}\) outputs a bit \(b' \in \{0, 1\}\), which is the output of the experiment.

- **Hyb\(_1\)\(^{(b)}\):** Same as Hyb\(_0\)\(^{(b)}\) except when responding to the query, the challenger now samples \(r_1 \leftarrow R_{d_1,q_1}^{m_1}\) and sets \(c_1 = \text{Coeffs}(r_1)\).

- **Hyb\(_2\)\(^{(b)}\):** Same as Hyb\(_1\)\(^{(b)}\) except when responding to the query, the challenger now samples \(r_2 \leftarrow R_{d_2,q_2}^{m_2}\) and sets \(c_2 = \text{Coeffs}(r_2)\).

We now argue that each adjacent pair of hybrids are computationally indistinguishable.

- First, Hyb\(_0\)\(^{(b)}\) and Hyb\(_1\)\(^{(b)}\) are computationally indistinguishable under the RLWE\(_{d_1,q_1,\lambda_1}\) assumption. Namely, given an RLWE challenge \((u_1, v_1)\) where \(u_1, v_1 \in R_{d_1,q_1}^{m_1}\), the reduction algorithm sets \(a_1 = u_1\) and samples \(a_2 \leftarrow R_{d_2,q_2}^{m_2}\). It gives \(\text{pp} = (1^\lambda, t_1, t_2, N, a_1, a_2)\) to the adversary. After the adversary outputs indices \(\text{idx}_0, \text{idx}_1\), the reduction algorithm computes \(\mu_1^{(b)}\) and \(\mu_2^{(b)}\) from \(\text{idx}_0\) and \(\text{idx}_1\). It then sets \(c_1 = \text{Coeffs}(v_1 + \Delta_1 \mu_1^{(b)})\). It samples \(s_2 \leftarrow \chi_2, e_2 \leftarrow \chi_2^{m_2}\), and sets \(c_2 = \text{Coeffs}(s_2 a_2 + e_2 + \Delta_2 \mu_2^{(b)})\). Finally, it computes \(\text{pk} \leftarrow \text{CDKS.Setup}(1^\lambda, s_2, z)\) and gives \(q = (\text{pk}, c_1, c_2)\) to the adversary. The reduction algorithm outputs whatever the adversary outputs. If the RLWE challenger sampled \(u_1 \leftarrow R_{d_1,q_1}^{m_1}\) and set \(v_1 = s_1 u_1 + e_1\), where \(s_1 \leftarrow \chi_1\) and \(e_1 \leftarrow \chi_1^{m_1}\), then the reduction perfectly simulates Hyb\(_0\)\(^{(b)}\). Conversely, if the reduction algorithm sampled \(u_1, v_1 \leftarrow R_{d_1,q_1}^{m_1}\), then it perfectly simulates Hyb\(_1\)\(^{(b)}\).

- Next, Hyb\(_1\)\(^{(b)}\) and Hyb\(_2\)\(^{(b)}\) are computationally indistinguishable if (CDKS.Setup, CDKS.Pack) satisfies pseudorandomness given the packing key (with \(m_2\) samples). Namely, given the challenge \((1^\lambda, \text{pk}, u_2, v_2)\), the reduction algorithm sets \(a_2 = u_2\). It samples \(a_1 \leftarrow R_{d_1,q_1}^{m_1}\) and gives \(\text{pp} = (1^\lambda, t_1, t_2, N, a_1, a_2)\) to the adversary. After the adversary outputs indices \(\text{idx}_0, \text{idx}_1\), the reduction algorithm computes \(\mu_1^{(b)}\) and \(\mu_2^{(b)}\) from \(\text{idx}_0\) and \(\text{idx}_1\). It then samples \(r_1 \leftarrow R_{d_1,q_1}^{m_1}\), and sets \(c_1 = \text{Coeffs}(r_1)\). It sets \(c_2 = \text{Coeffs}(v_2 + \Delta_2 \mu_2^{(b)})\). Finally, it gives \(q = (\text{pk}, c_1, c_2)\) to the adversary. The reduction algorithm outputs whatever the adversary outputs. If the challenger sampled \(u_2 \leftarrow R_{d_2,q_2}^{m_2}\) and set \(v_2 = s_2 u_2 + e_2\), where \(s_2 \leftarrow \chi_2\) and \(e_2 \leftarrow \chi_2^{m_2}\), then the reduction perfectly simulates Hyb\(_1\)\(^{(b)}\). Conversely, if the reduction algorithm sampled \(u_2, v_2 \leftarrow R_{d_2,q_2}^{m_2}\), then it perfectly simulates Hyb\(_2\)\(^{(b)}\).

- Finally, Hyb\(_0\)\(^{(b)}\) and Hyb\(_1\)\(^{(b)}\) are identical experiments (the distribution of the query \(q\) in the two experiments is independent of \(\text{idx}_0, \text{idx}_1\)).

Since each pair of adjacent hybrid experiments are computationally indistinguishable, query privacy now follows by a hybrid argument.\(\square\)
<table>
<thead>
<tr>
<th>Database</th>
<th>Metric</th>
<th>SimplePIR</th>
<th>SimplePIR*</th>
<th>DoublePIR</th>
<th>DoublePIR*</th>
<th>HintlessPIR</th>
<th>YPIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prep. Speed</td>
<td>3.7 MB/s</td>
<td>48 MB/s</td>
<td>3.4 MB/s</td>
<td>39 MB/s</td>
<td>4.8 MB/s</td>
<td>39 MB/s</td>
</tr>
<tr>
<td>1 GB</td>
<td>Off. Comm.</td>
<td>121 MB</td>
<td>112 MB</td>
<td>16 MB</td>
<td>14 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>120 KB</td>
<td>128 KB</td>
<td>312 KB</td>
<td>352 KB</td>
<td>488 KB</td>
<td>846 KB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>120 KB</td>
<td>112 KB</td>
<td>32 KB</td>
<td>12 KB</td>
<td>1.7 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>74 ms</td>
<td>75 ms</td>
<td>94 ms</td>
<td>89 ms</td>
<td>743 ms</td>
<td>129 ms</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>13.6 GB/s</td>
<td>13.3 GB/s</td>
<td>10.6 GB/s</td>
<td>11.2 GB/s</td>
<td>1.3 GB/s</td>
<td>7.8 GB/s</td>
</tr>
<tr>
<td></td>
<td>Prep. Speed</td>
<td>3.1 MB/s</td>
<td>48 MB/s</td>
<td>2.9 MB/s</td>
<td>46 MB/s</td>
<td>5.2 MB/s</td>
<td>46 MB/s</td>
</tr>
<tr>
<td>8 GB</td>
<td>Off. Comm.</td>
<td>362 MB</td>
<td>224 MB</td>
<td>16 MB</td>
<td>14 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>362 KB</td>
<td>512 KB</td>
<td>724 KB</td>
<td>960 KB</td>
<td>1.4 MB</td>
<td>1.5 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>362 KB</td>
<td>224 KB</td>
<td>32 KB</td>
<td>12 KB</td>
<td>1.7 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>708 ms</td>
<td>614 ms</td>
<td>845 ms</td>
<td>642 ms</td>
<td>1.62 s</td>
<td>687 ms</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>11.3 GB/s</td>
<td>13.0 GB/s</td>
<td>9.5 GB/s</td>
<td>12.5 GB/s</td>
<td>4.9 GB/s</td>
<td>11.6 GB/s</td>
</tr>
<tr>
<td></td>
<td>Prep. Speed</td>
<td>3.3 MB/s</td>
<td>49 MB/s</td>
<td>3.3 MB/s</td>
<td>48 MB/s</td>
<td>5.7 MB/s</td>
<td>48 MB/s</td>
</tr>
<tr>
<td>32 GB</td>
<td>Off. Comm.</td>
<td>724 MB</td>
<td>448 MB</td>
<td>16 MB</td>
<td>14 MB</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Upload</td>
<td>724 KB</td>
<td>1.0 MB</td>
<td>1.4 MB</td>
<td>1.9 MB</td>
<td>2.4 MB</td>
<td>2.5 MB</td>
</tr>
<tr>
<td></td>
<td>Download</td>
<td>724 KB</td>
<td>448 KB</td>
<td>32 KB</td>
<td>12 KB</td>
<td>3.2 MB</td>
<td>12 KB</td>
</tr>
<tr>
<td></td>
<td>Server Time</td>
<td>3.08 s</td>
<td>2.56 s</td>
<td>3.22 s</td>
<td>2.62 s</td>
<td>5.00 s</td>
<td>2.64 s</td>
</tr>
<tr>
<td></td>
<td>Throughput</td>
<td>10.4 GB/s</td>
<td>12.5 GB/s</td>
<td>9.9 GB/s</td>
<td>12.2 GB/s</td>
<td>6.4 GB/s</td>
<td>12.1 GB/s</td>
</tr>
</tbody>
</table>

Table 8: Costs of retrieving a single bit using YPIR compared to other PIR schemes. This is the same breakdown as in Table 2, except we include additional columns for our implementation of SimplePIR (SimplePIR*) and DoublePIR (DoublePIR*) using the parameters from Table 1, modulus switching, and our faster preprocessing algorithm from Section 4.1.

D Additional Evaluation

Table 8 provides the full breakdown of the computation and communication costs of YPIR compared to SimplePIR, DoublePIR, HintlessPIR, and Tiptoe. In particular, we include comparisons with the reference implementation of SimplePIR/DoublePIR [HHCT+23b] as well as an implementation using our parameters from Table 1 (labeled SimplePIR* and DoublePIR*). The latter comparisons provide a more direct illustration of the extra overhead incurred by YPIR over SimplePIR and DoublePIR. We refer to Section 4 for further discussion.