
A New Approach to Generic Lower Bounds:
Classical/Quantum MDL, Quantum Factoring, and More

Minki Hhan*

February 17, 2024

Abstract

This paper studies the limitations of the generic approaches to solving cryptographic problems in clas-
sical and quantum settings in various models.

• In the classical generic group model (GGM), we find simple alternative proofs for the lower bounds
of variants of the discrete logarithm (DL) problem: the multiple-instance DL and one-more DL prob-
lems (and their mixture). We also re-prove the unknown-order GGM lower bounds, such as the order
finding, root extraction, and repeated squaring.

• In the quantum generic group model (QGGM), we study the complexity of variants of the discrete
logarithm. We prove the logarithm DL lower bound in the QGGM even for the composite order
setting. We also prove an asymptotically tight lower bound for the multiple-instance DL problem.
Both results resolve the open problems suggested in a recent work by Hhan, Yamakawa, and Yun.

• In the quantum generic ring model we newly suggested, we give the logarithmic lower bound for the
order-finding algorithms, an important step for Shor’s algorithm. We also give a logarithmic lower
bound for a certain generic factoring algorithm outputting relatively small integers, which includes
a modified version of Regev’s algorithm.

• Finally, we prove a lower bound for the basic index calculus method for solving the DL problem in a
new idealized group model regarding smooth numbers.

The quantum lower bounds in both models allow certain (different) types of classical preprocessing.
All of the proofs are significantly simpler than the previous proofs and are through a single tool, the so-

called compression lemma, along with linear algebra tools. Our use of this lemma may be of independent
interest.

*E-mail:minkihhan@gmail.com. KIAS

1

Contents

1 Introduction 3
1.1 Our Results . 3

2 Compression Lemmas 6

3 Lower Bounds in the Classical Generic Group Model 7
3.1 Generic Group Model . 7

3.1.1 Variations: Maintaining Polynomials . 7
3.2 The Discrete Logarithm Problem and Friends . 8
3.3 Oracle Problems in the GGM . 10

4 Lower Bounds in the Unknown-order GGM 12
4.1 Order-finding in the Unknown-order GGM . 12
4.2 Root Extraction and Repeated Squaring Problems . 14

5 Lower Bounds in the Quantum GGM 14
5.1 Quantum Generic Group Models . 14

5.1.1 Basic Quantum Generic Group Model . 14
5.1.2 QGGM with Coherent Indices . 15
5.1.3 Quantum Generic Group Algorithm with Classical Preprocessing 16

5.2 Discrete Logarithms in the QGGM . 17
5.3 Unknown-order QGGM . 19

6 Lower Bounds in the Quantum Generic Ring Model 19
6.1 Quantum Generic Ring Model . 19

6.1.1 Quantum Generic Ring Algorithm with Classical Preprocessing 21
6.2 Lower Bounds in the QGRM . 21

7 Lower Bounds for Index Calculus Algorithms 22
7.1 Smooth Generic Group Model . 23

7.1.1 Polynomial Representations . 24
7.2 The Discrete Logarithm Problem in the SGGM . 24

A Missing Proofs 28
A.1 Missing proofs in the GGM . 28
A.2 A QGGM lemma . 29

B An Alternative Proof for the MDL Lower Bound 29

C Equivalence between GGMs 30
C.1 Lower bounds in the Random Representation GGM . 32

2

1 Introduction

What is the source of the generic hardness of some cryptographic problems?
The generic group models (GGM) [Nec94, Sho97, Mau05] are the most successful and influential ideal-

ized models in cryptography. In this model, the group operations can be carried out by making queries to a
group oracle, and any other use of the particular features of the group is not allowed. Despite its restricted
nature, many important algorithms, such as Pohlig-Hellman [PH78] or Pollard’s rho algorithm [Pol78], are
encompassed by the class of generic group algorithms. Despite some criticisms [Den02, KM06] and non-
generic algorithms, e.g., index-calculus, the GGM plays an important test bed for cryptographic protocols,
and the security proofs in the GGM provide a sanity check guaranteeing that there are no simple attacks.
The proofs in the GGM become more meaningful in the elliptic-curve groups.

The GGM is especially promising because of its simple security proofs; most of the security proofs in the
GGM heavily rely on the Schwartz-Zippel (SZ) lemma that is already used in [Sho97]. This lemma roughly
states that for a non-zero multivariate linear polynomial P over Zp for a prime p, the probability that a
random element becomes a root of P is 1/p. This provides a meaningful limitation for generic algorithms
obtaining a single piece of information and is used to prove the generic lower bounds for the discrete log-
arithm (DL) problem and computational/decisional Diffie-Hellman (C/DDH) problems, as well as many
cryptographic applications.

We face hurdles in proving the generic security when we slightly tweak the model or problems. If
we consider the unknown-order groups, the lower bounds for various problems can be proven with rel-
atively small efforts, including the order-finding problem [Sut07] or the root extraction problems [DK02].
When we consider the problems where enormous amounts of information can be obtained, the security
proofs based on the SZ lemma do not work. To remedy this, other idealized problems (e.g., the search-
by-hyperplane/surfaces) [Yun15, AGK20, AHP23] are suggested or seemingly involved techniques (e.g.,
compression lemmas or pre-sampling) are used [CK18, CDG18] in the proofs. In the quantum setting, the
rigorous proofs are rather complicated and pass through the classical lower bounds [HYY23].

Extensions beyond the group structures [BL96, BV98, AM09, JS13, YYHK20] become much more com-
plicated. In many cases, there is some evidence that the unconditional lower bounds unlikely exist, and
the proofs are done through the reduction between the problems. To our knowledge, there are no known
unconditional lower bounds, even in the idealized models.

This state of affairs makes the genuine source of the generic hardness elusive and asks for case-by-case
studies for each model. In particular, the unconditional lower bounds in idealized settings are only known
for the generic group models.

1.1 Our Results

We provide a unified way to prove the old and new hardness proofs in the various idealized models: the
known/unknown-order classical generic groups, quantum generic groups, quantum generic rings, and the
new group model embracing index calculus.

Our main technical lemma is, along with some linear algebraic observations, (variants of) the compression
lemma, which roughly asserts that there is no way to compress n-bit strings to strings less than n-bit. This
lemma is occasionally used in proving the time-space tradeoff lower bounds [DTT10, NABT15, DGK17,
CK18, HXY19, CLQ19], and introduces a highly involved proof. Our proofs are significantly simpler, as
shown in this section. Roughly, we compress the problem instances along with some relevant randomness
into the information that generic algorithms can obtain; the decoding simulates the generic algorithm using
the encoding, without accessing the oracles, but still recovers the problem instances. This gives some clues
that the generic hardness is from the limited way of obtaining information on generic algorithms.

This paper mainly focuses on the abstract model of Maurer [Mau05]. In this model, the group (or ring)
elements are stored in element wires, and they can be accessed only by the group operation gates or the
equality gates.

3

The Known-order GGM Lower Bounds Let us begin with the lower bound of folklore for the DL problem
(Theorem 3.3). Let G ≃ Zp be the underlying group of prime order p. In this problem, the algorithm A is
given (g, gx) and is asked to find x. Suppose that A solves the DL problem with almost certainty with T
group operations. We also associate a polynomial aX+ b to the group element gax+b. It is not hard to argue
that (slightly modified) A finds two equal group elements with different polynomials.

We use this algorithm to compress x ∈ [p]. Among T group elements, there are T 2 possibilities for a pair
of equal group elements. In other words, we can encode the discrete logarithm x in T 2 possible collisions,
and the compression lemma says that log T 2 = 2 log T ≥ log p for the high success probability. This implies
that T ≥

√
|G| as in the previous proofs.

We proceed to the MDL problem (Theorem 3.4). Suppose that the algorithm Awith T group operations
is given (g, gx1 , ..., gxm) and is asked to find x = (x1, ..., xm). As before, we can assume that A finds m
collisions. We can encode x using the information of the collisions, which requires

log

((T
2

)
m

)
≈ m log

eT 2

2m

bits. To solve the MDL problem with certainty, it must be larger than m log |G|, which is the information
that x possesses, implying that T ≥ √mp. Previously, this bound was first proven in [Yun15] and required
an involved argument regarding the related problem called the search-by-hyperplane-queries (SHQ). We
note that we have another simple proof for this lower bound solely based on the linear-algebra reasoning
in Theorem B.1.

The same proof strategy easily extends to the other problems. This includes the gap-DL and gap-CDH
problems (Theorems 3.5 and 3.6) and the one-more DL problem (OM-DL) (Theorem 3.7) that was first
proven recently [BFP21] (and was falsely proven in [CDG18]). We actually prove the lower bounds for a
much more general problem, where the adversary is asked to find the n-more DL solutions than its queries
to the DL oracles; n = 1 corresponds to the OM-DL problem.

The Unknown-order GGM Lower Bounds We also consider the unknown-order GGM. In Section 4, we
show that the same strategy can prove the lower bounds for the order-finding in the prime-order group
(Theorem 4.1) that is shown in [Sut07] and in the RSA group (Theorem 4.2). We also prove the hardness of
the root extraction (Theorem 4.3), which was proven in [DK02], and the repeated squaring (Theorem 4.4) in
the unknown-order GGM. We stress that we do not consider the ring operations. Thus, its implications are
limited to the group setting.

We sketch the proof for the order-finding problem. In this model, the generic algorithm can compute
gx±y for given gx, gy as in the previous GGM, but does not know the order of the underlying group. There-
fore, the corresponding polynomials have a bounded coefficient after T group operations, so the number
of their prime factors is bounded. It turns out that each equality gate can contain T prime divisors. The en-
coding contains the equality gate that specifies the order, and the index of its divisors. The length becomes
3 log T to compress log |G|-bit order, giving the T ≥ |G|1/3 bound.

The Quantum GGM Lower Bounds We prove the quantum lower bounds for solving the DL problem
(Theorem 5.2) and variants in the quantum GGM (QGGM). This direction was suggested in [HYY23], and
the authors gave the lower bounds for the DL and C/DDH problems in the QGGM.

The proof strategy is different from the classical lower bounds. Instead of the one-shot encoding as
in the classical setting, we need an interactive version of the compression lemma (Corollary 2.3) proven
in [HNR18]. This roughly states that if Alice wants to send an n-bit message to Bob, Alice needs to send
n-bit anyway, regardless of the amounts of Bob’s messages to Alice and the number of rounds.

In the QGGM, the algorithm can make group operations coherently. Given a generic algorithm, we
construct the interactive protocol between Alice and Bob, where Alice holds all the group elements, and
Bob holds the other registers. Bob runs the DL algorithm, and whenever it needs to make a quantum
group operation, he sends the relevant registers to Alice; Alice applies the group operations and returns

4

the relevant registers to Bob. For simplicity, we assume that the indices for the target group elements are
classical. In this setting, Alice sends two bits (or one qubit) to delegate the group operation Bob requested.
If the algorithm makes Q group operations, the interactive version of the compression lemmas proves
2Q ≥ log |G|, recovering the previous lower bound; actually, with a better constant than the previous bound
4Q ≥ log |G|.

If we allow the indices to be quantum, delegating quantum group operations requires more communi-
cation to include them. The lower bound becomes Q = Ω(log |G|/ log ℓ) for the length of indices ℓ. The same
strategy naturally extends to the MDL problem (Theorem 5.3) in the QGGM, proving Q = Ω(m logG/ log ℓ.)

Our proof equally works for the composite order DL problems and holds even regarding the classical pre-
processing. The composite order DL lower bound and MDL lower bound in the QGGM resolves the open
problems asked in [HYY23], where the matching algorithms were suggested. In fact, our lower bound
implies that the number of quantumly accessible indices is an important measure, while the previous re-
sults only consider the memory-bounded setting, which naturally bounds the number of quantum indices.
Also, our lower bound implies that the speed-up for the MDL problem beyond Shor in terms of the group
operation complexity requires a large quantum data structure.

We also prove the QGGM variant for the order-finding problems (Theorem 5.4), showing the order-
finding in the QGGM requires Ω(log |G|) quantum group operations, even with classical preprocessing.

The Quantum Generic Ring Model and Lower Bounds We study a quantum variant of the generic ring
model [AM09, JS13], which we call the quantum generic ring model (QGRM). In this model, the algorithm
has oracle access to the ring elements as in the GGM. However, we do not give the explicit value of N to
the algorithm because we aim for the unconditional lower bounds in the idealized model. If the algorithm
knows N , we cannot rule out the direct use of N , and the proof must be through reductions as in [AM09].

We prove that the logarithmic lower bound for the QGRM order finding algorithm in the ring isomor-
phic to ZN where N is a product of two safe primes (Theorem 6.1). The order (or period) finding problem
is a major subroutine in Shor’s factoring algorithm [Sho99].

Note that a recent work of Regev [Reg23] solves the integer factorization with a different method. In
this approach, small integers are extensively used, taking advantage of the fact that small integer arith-
metic operations are faster than large integer operations, giving an improved algorithm with better circuit
complexity.

We observe that this advantage results in a modified algorithm that outputs a plain integer with a non-
trivial common factor with N of relatively small size. We consider the generic algorithms that output such
an integer to solve the integer factoring that can be computed without modulus reductions—this must be
done in plain because QGRM algorithms do not know N . We prove that if the output is relatively small,
the logarithmic ring operation lower bound holds for factoring (Theorem 6.2). Intriguingly, the output of
Shor’s algorithm with this modification is too large to apply this lower bound.

These results give the first evidence that the quantum factoring algorithm needs a logarithmic number
of group operations. Our result extends to the straight-line classical preprocessing that reflects the real
world better.

Beyond GGMs: Index Calculus Finally, we study the idealized group model, called the smooth GGM,
beyond the generic groups, encompassing the index calculus method. This model provides the abstraction
for the notion of smooth elements and efficient factoring for the smooth integers.

We prove that the DL algorithm must make exp
(
C
√
log |G| log log |G|

)
group operations for some con-

stant C > 0 in the SGGM (Theorem 7.1), giving some evidence that going beyond this bound requires a
new idea, as the ones in the number field sieves.

We do not claim this lower bound provides new insights or strong evidence for the index calculus. We
believe that the ideas used in the proof for the SGGM lower bound must have been observed and used
in the development of the index calculus, especially for optimization. Still, our result shows that a proper

5

abstraction of the generic approaches, where only limited operations are used, can indeed prove that these
approaches cannot go further; asking for new ideas.

Notations. For a positive integer N , a finite cyclic group of order N is denoted by ZN , identified by
{0, 1, ..., N − 1}with the natural group operation, and [N] := {1, ..., N}.

2 Compression Lemmas

This section presents our main lemmas, which are usually called the compression lemma. The classical
compression lemma is stated as follows.

Lemma 2.1. Let M, R be finite sets. Let Encode : M × R → {0, 1}m and Decode : {0, 1}m × R → M be
deterministic algorithms. For ϵ ∈ (0, 1], if

Pr
r←R,x←M

[Decode(Encode(x, r), r) = x] ≥ ϵ,

then we have m ≥ log |M|+ log ϵ.

This is a direct corollary of the following quantum interactive version of the compression lemma. Pre-
cisely, the classical one-way protocol with the preshared entanglement

∑
r∈R |r, r⟩ corresponds to the above

lemma.

Lemma 2.2 ([HNR18, Theorem 1.2]). Consider an interactive protocol between Alice and Bob, who share an arbi-
trarily entangled state and communicate through classical channels. Alice wants to send a uniformly random element
in a finite setM to Bob. Suppose that the probability that Bob correctly recovers x with probability ϵ ∈ (0, 1], and
Alice sends m bits to Bob total over all rounds. Then it holds that m ≥ log |M| + log ϵ, regardless of the number of
bits sent by Bob to Alice.

In general, if Alice sends a classical string in [Mi] to Bob as the i-th round message for i ∈ [k] where k is the
maximum number of rounds, then it holds that

log

(
k∏

i=1

Mi

)
≥ log |M|+ log ϵ.

The original theorem in [HNR18, Theorem 1.2] mainly concerns the case of M = {0, 1}n and the bit-
strings as messages. This generalization is straightforward.1 The quantum communication version can be
derived using quantum teleportation (See also [NS06, Theorem 2]).

Corollary 2.3. In the same setting as the above lemma, if Alice and Bob can communicate through quantum chan-
nels, the bounds become

m ≥ log |M|+ log ϵ

2
, and log

(
k∏

i=1

Mi

)
≥ log |M|+ log ϵ

2
,

respectively, where Alice sends one qudit of dimension Mi in the i-th round. When Alice additionally sends c classical
bits, the bounds become

2m+ c ≥ log |M|+ log ϵ, and 2 log

(
k∏

i=1

Mi

)
+ c ≥ log |M|+ log ϵ.

We give some remarks. The above lemmas consider the average-case probability for input x, while the
previous (both classical and quantum) versions [GT00, DTT10, NS06] consider the case that the success
probability is at least ϵ for any input x. This caused a significant loss in the resulting security in the first
AI-QROM bound [HXY19], or call for the random-self-reducibility in the preprocessing DL security [CK18].
Thanks to this average-case feature, we exclude the random-self-reducibility in the proofs.

1Roughly, the choice of M = {0, 1}n is only used at the end of the proof where the probability that input to Alice is x is 1/2n, and
modifying it to 1/|M| suffices to prove our theorem. The non-bit-string is slightly involved, but changing the appropriate set suffices.

6

3 Lower Bounds in the Classical Generic Group Model

3.1 Generic Group Model

We first define the generic group model (GGM) of Maurer [Mau05], also known as the type-safe model [Zha22].
Let N be the known prime order2 of our interested finite cyclic group G ∼= ZN with a generator g. A generic
algorithm A in this model is given by a circuit with the following features:

• There are two types of wires: bit wires and (group) element wires. Bit wires take a bit in {0, 1},
whereas element wires take an element in ZN ∪ {⊥}. For an element wire containing x, we write gx

to denote this wire to distinguish it from a bit string.

• There are bit gates that map bits to bits, which cannot take element wires as input.

• There are three special gates called element gates that can access the element wires as follows:

Labeling Gate. It takes ⌈log2 N⌉ bit wires and interprets them as an element in x ∈ ZN as input, and
outputs an element wire gx. If there is no corresponding element x ∈ ZN to the input wires, it
outputs an element wire containing ⊥.

Group Operation Gate. It takes two element wires containing gx, gy and a single bit wire containing
b as input. If both gx, gy are not ⊥, it outputs an element wire containing gx+by .3 Otherwise, it
outputs an element wire containing ⊥.

Equality Gate. It takes two element wires as input. If both wires contain the same element gx ̸= ⊥, it
outputs a bit wire containing 1. In all other cases including ⊥ inputs, the output is 0.

An algorithm A in this model is called a GGM algorithm and is usually denoted by AG . The cost metric
for the algorithms, denoted by the group operation complexity, counts the number of labeling and group
operation gates used in the circuit, and all other gates are considered free.

We assume that the element gates have some orders so they can be applied sequentially (along with
required bit gates).4 We also assume that GGM algorithms never make two equality gates with the same
input wires. This ensures that for a GGM algorithm taking m element wires as input and with the group
operation complexity T , the number of group operation gates T , the number of equality gates less than or
equal to

(
m+T

2

)
. We further assume that the description of the GGM algorithm contains the order of the

element gates so that they can be applied in order (ignoring bit gates).

Remark 1 (Relations to the other generic group models.). A different model for generic group algorithms is
suggested by Shoup [Sho97]. The results for known-order GGM algorithms in this paper can be extended to
Shoup’s generic group model. This is because this paper focuses on the cryptographic assumptions that can
be described as a single-stage game, where the generic equivalence between two models is known [Zha22].
We place the detailed theorem with the proof in Appendix C for completeness. We note that our proof can
be extended to the Shoup-style GGM directly, as shown in Appendix C.1. However, this makes the proof
involved, and the main body focuses on the Maurer-style model for a simpler exposition.

3.1.1 Variations: Maintaining Polynomials

Before proceeding to the classical lower bounds in the generic group model, we give a variation of GGM
algorithms, which maintains the polynomials representing the elements and information that it achieved.
We assume that the input to the GGM algorithm is specified by polynomials P1, ..., Pm ∈ ZN [X1, ..., Xt]
for some formal variables X1, ..., Xt corresponding to the hidden values. For example, in the discrete log-
arithm problem, X1 specifies the problem instance gx, and the input is specified by P1 = 1, P2 = X1. We

2We can extend to the composite-order setting easily.
3One may define this gate differently, e.g., (gx, gy , a, b) 7→ gax+by , but it does not make any change to our result.
4Given the circuit, such an order can be found using the breadth-first search.

7

occasionally identify a polynomial P = a1X1 + ... + atXt + b as a vector (b, a1, ..., at) ∈ Zt+1
N (recall N is

prime, which makes Zt+1
N a vector space.) especially when we discuss the linear algebra notions.

Given the polynomial representations of inputs, we maintain a list P of a pair of the element wire and
polynomial called the polynomial list and a counter c, and it behaves as follows.

• As an initialization, set P as an empty list. For each input element wire w containing a group element
corresponding Pi for i ∈ [m], store (w,Pi) in the i-th row of P . Set c← m.

• For a labeling gate in the circuit of A with input representing a ∈ ZN and output element wire w, set
c← c+ 1, and store (w,Pc := a) in the c-th row of P .

• For a group operation gate with two element wires w1, w2 and a bit wire containing b as input and
output wire w appears, find i, j ≤ c such that i, j-th rows of P are w1, w2. Set c ← c + 1, compute
Pc := Pi + (−1)bPj , and store (w,Pc) in the c-th row of P .

The equality gates are dealt with differently, by maintaining the zero sets Z that is initialized as an empty
set. For an equality gate eq with two input element wires w1, w2 and output 1 (i.e., they are equal), we find
i, j-th rows of P containing w1, w2 and call g by collision; since no two equality gates have the same inputs,
we also call (i, j) as a collision ambiguously. We process each collision as follows. We do nothing for the
equality gates outputting 0.

• If Pi = Pj as a polynomial over ZN , then the collision is called trivial, and do nothing.

• If an equality query finds a nontrivial collision (i, j), then write |Z| = z and Z = {Qi}i∈[z], check if
there exists a = (a1, ..., az) ∈ Zz

N such that

Pi − Pj = a1Q1 + ...+ azQz (1)

holds as a polynomial. If there is no such a, updates Z ← Z ∪ {Pi − Pj}. We call the collision (i, j)
informative, and otherwise predictable.

Note that the notion of informative collisions is similar to the useful queries in [Yun15] in the search-by-
hyperplane problem, but our definition is purely linear-algebraic and direct. It just says that the new infor-
mative collision must not be included in the span of the previous collisions.

The informative collisions are sufficient for describing the behavior of the GGM algorithm, as shown in
the following lemma, proved in Appendix A.1.

Lemma 3.1. Let A be a GGM algorithm. Given a description of the circuit for A and the zero set Z for the given
input, the polynomial list of A right before its termination can be computed without using the element gates, i.e.,
computed by a Boolean circuit.

The following auxiliary lemma is a generalization of the Schwartz-Zippel lemma, which could be of
independent interest. It gives another alternative proof for the MDL lower bound presented in Appendix B
with its proof.

Lemma 3.2. Suppose the hidden variables x1, ..., xt are uniform in ZN , and the group elements during the execution
of the algorithm always correspond to the linear polynomials in ZN [X1, ..., Xt]. For any equality gate for wi, wj , the
probability that it induces an informative collision is at most 1/N .

3.2 The Discrete Logarithm Problem and Friends

We first prove the following well-known generic lower bound for the DL problem.

Problem 1. A discrete logarithm (DL) problem for a cyclic group G of order p with a generator g asks to
find x given (g, gx) for uniformly random x ∈ {0, ..., p − 1}. An m-multiple DL (m-MDL) problem asks to
find x = (x1, ..., xm) given (g, gx1 , ..., gxm) for uniformly random x ∈ {0, ..., p − 1}m. In the (Q)GGM, the
group is fixed a priori, and the inputs are stored in the element registers.

8

Theorem 3.3. Let G be a cyclic group of prime order. Let ADL be a DL algorithm in the GGM having at most T
group operation gates, then the following holds:

Pr
ADL,x

[
AGDL(g, g

x)→ x
]
= O

(
T 2

|G|

)
.

Proof. Let p = |G| and ϵ be the success probability of ADL. We make the following modifications: For
z ← AGDL(g, g

x), we let the algorithm make the labeling gate on input z and apply the equality gate on input
(gz, gx) to find a collision at the end, so that A always finds an informative collision with probability at
least ϵ. Including this procedure, we assume that the algorithm makes C = T + 1 group operations. The
algorithm ADL may be randomized by taking a random string r as a seed.

Now, we construct a pair of encoding and decoding protocols for M = [p] and a set R of seed r. For
x ∈ [p], the protocols are defined as follows.

Encode(x, r): It runs AGDL(g, g
x) with randomness r and outputs the equality gate c with input (i, j) that is

the lexicographically first informative collision, i.e., for any other informative collision (i′, j′), it holds
that i < i′, or i = i′ and j < j′. If there is no informative collision, it outputs a special symbol c = ⊥.

Decode(c, r): If c = ⊥, it outputs a random value in [p]. Otherwise, it constructs a sub-circuitA′DL ofADL by
cutting out the gates after the equality gate c corresponding to the first informative collision (i, j). We
associate the group element gax+b with a polynomial aX + b ∈ Zp[X]. By Lemma 3.1, the correspond-
ing polynomials Pi = aiX + bi and Pj = ajX + bj can be computed without using the element wires.
Then it returns z = −(bi − bj)/(ai − aj) mod p as an output.

We prove this protocol is correct with a probability of at least ϵ, or whenever ADL finds x. In this case,
the encoder finds a collision c with input (i, j), which is informative only when

(aix+ bi = ajx+ bj mod p) ∧ ((ai, bi) ̸= (aj , bj)) ⇐⇒ x = − bi − bj
ai − aj

mod p.

Thus, given c ̸= ⊥, the decoder always finds the correct answer x, i.e., the protocol succeeds with probability
at least ϵ.

Now we compute the encoding length of the protocol. Since ADL obtains at most C + 2 group elements
including inputs, the encoding space C has the cardinality

(
C+2
2

)
+ 1 ≤ (T + 3)2/2. By Lemma 2.1, we have

the following inequality

log ϵ+ log |G| ≤ log |C| ≤ log

(
(T + 3)2

2

)
=⇒ ϵ = O

(
T 2

|G|

)
which concludes the proof.

It can easily be extended to the multiple-instance DL problem with small adjustments. For a positive
integer m, we write gx to denote (gx1 , ..., gxm).

Theorem 3.4. Let G be a cyclic group of prime order. Let Am-MDL be an m-MDL algorithm in the GGM having at
most T group operation gates. It holds that:

Pr
Am-MDL,x

[
AGm-MDL(g, g

x)→ x
]
= O

((
e(T + 2m+ 1)2

2m|G|

)m)
.

Proof. Let p = |G| and ϵ be the success probability of Am-MDL. With a similar modification, we assume that
Am-MDL finds at least m informative collisions with probability at least ϵ using C = T +m group operation
complexity. We associate a group element ga1x1+...+amxm+b with a polynomial a1X1 + ... + amXm + b ∈
Zp[X1, ..., Xm]. We additionally need the following result from linear algebra.

9

Fact 1. Given m informative collisions, there is a polynomial time algorithm to find the unique assignments
(X1, ..., Xm) = (x1, ..., xm) making the given collisions informative.

The proof can be found in Appendix A.1.
Am-MDL may be randomized using a random seed r. We construct encoding and decoding protocols for

M = [p]m and a set R of the seed r. For input x ∈ Zm
p , the protocols are defined as follows.

Encode(x, r): It runsAGm-MDL(g, g
x) with randomness r and collects the lexicographically first m informative

collision gates ck with input (ik, jk) for k ∈ [m]. If m informative collisions are found during the
execution, it outputs c = (c1, ..., cm). Otherwise, it outputs a symbol ⊥.

Decode(c, r): If c = ⊥, it outputs a random value in [p]m. Otherwise, it parses c = (c1, ..., cm) and constructs
a sub-circuit A′m-MDL of Am-MDL by cutting out the gates after the m-th informative collision gate
(corresponding to cm). By Lemma 3.1, it recovers the polynomial list. Using c and Fact 1, it finds and
outputs the assignment z = (z1, ..., zm) of (X1, ..., Xm).

It is obvious that if Am-MDL finds x = (x1, ..., xm) then the decoder correctly recovers x, which happens
with probability at least ϵ. We focus on the encoding size below. Let B =

(
C+m+1

2

)
be the upper bound of

the number of equality queries. The bit-length for describing the m informative collision (or ⊥) is less than
log
((

B
m

)
+ 1
)

, which is bounded by

log

(
B + 1

m

)
≤ m log

(
e(B + 1)

m

)
≤ m log

(
e(T + 2m+ 1)2

2m

)
,

where we use B + 1 ≤ (C+m+1)2

2 ≤ (T+2m+1)2

2 . By Lemma 2.1, we have

log ϵ+m log |G| ≤ log |C| ≤ m log

(
e(T + 2m+ 1)2

2m

)
which can be rewritten as follows

ϵ = O

((
e(T + 2m+ 1)2

2m|G|

)m)
,

as we desired.

3.3 Oracle Problems in the GGM

This section extends the lower bounds relative to the oracle. We first consider the following problems.

Problem 2. In the gap DL (gap-DL) problem, the adversary is given (g, gx) as input and is asked to find
x, having access to the decisional Diffie-Hellman (DDH) oracle: ODDH : (gx, gy, gz) 7→ δxy,z . In the gap
computational Diffie-Hellman (gap-CDH) problem, the adversary is given (g, gx, gy) and is asked to output
gxy with the DDH oracle access.

Theorem 3.5. Let G be a cyclic group. Let AGap-DL be a gap-DL algorithm in the GGM having at most T group
operation gates and making TDDH queries to the DDH oracle, then the following holds:

Pr
AGap-DL,x

[
AG,ODDH

Gap-DL (g, g
x)→ x

]
= O

(
T 2 + TDDH

|G|

)
.

Proof sketch. We extend the notion of collisions to include the DDH oracle answers that output 1. By a
similar modification as the previous section, we can assume that the algorithm finds at least one informative
collision. If it is an answer from the DDH oracle, then it specifies the equation (aX + b)(cX + d) = eX + f
for some a, b, c, d, e, f . It has at most two solutions; thus, the encoding includes one more bit to specify the
correct solution. The number of collisions is bounded by

(
T+3
2

)
+ TDDH. The other parts of the proof are

identical.

10

Theorem 3.6. Let G be a cyclic group. Let AGap-CDH be a gap-CDH algorithm in the GGM having at most T group
operation gates and making TDDH queries to the DDH oracle, then the following holds:

Pr
AGap-CDH,x

[
AG,ODDH

Gap-CDH(g, g
x, gy)→ gxy

]
= O

(
T 2 + TDDH

|G|

)
.

The proof is almost identical and placed in Appendix A.1.

Problem 3. In the one-more-DL (OM-DL) problem, the adversary is given access to the challenge oracle
OChal that outputs gxi for an unknown xi and to the DL oracle ODL : gx 7→ x. The number of DL oracle
queries q must be less than the number of challenge queries t. The adversary aims to find all answers to the
challenges. More generally, in the n-out-of-m-more-DL ((n,m)-M-DL) problem, it must hold that t = q+m,
and the adversary needs to find q + n solutions to the challenges among q +m challenges.

Theorem 3.7. Let G be a cyclic group. Let A(m,n)-M-DL be an n-out-of-m-more-DL algorithm in the GGM having at
most T group operation gates and making q queries to the DL oracle, then the following holds:

Pr
A(n,m)-M-DL,x

[
AG,OChal,ODL

(n,m)-M-DL(g) solves (n,m)-M-DL
]
= O

((
e(T +m+ n+ 1)2

|G|

)n)
.

In particular, the advantage against OM-DL is O
(

T 2

|G|

)
.

Proof. Suppose that the t = m + q challenges are gx1 , ..., gxt . We construct an encoding for x = (x1, ..., xt).
We assume that the algorithm is deterministic. Regarding informative collisions, we include the DL oracle
answers as the collision. If the DL oracle outputs z for input gP , we regard P − z as a collision. Since the
algorithm finds n+ q solutions, it must find n+ q informative collisions (including the DL oracle outputs).
We assume that the algorithm never queries to the DL oracle that the answer induces a trivial collision. This
means there are n informative collisions that are not from the DL oracle queries.

We need the following simple fact from linear algebra.

Fact 2. Given a linear independent linear equations over b variables for a < b. There are b − a variables
such that the linear equations are still independent after fixing them to some values.

The procedures are as follows.

Encode(x): It runs AG,OChal,ODL

m-M-DL (g) and collects the lexicographically first t informative collisions, which
could be the equality gate or the DL oracle answer. If n + q informative collisions are found dur-
ing the execution, it outputs c = (c1, ..., cn) that denote the informative equality gates and the DL
oracle answers z = (z1, ..., zq). By Fact 2, there are m − n xi’s such that revealing them does not hurt
the linear independence of the informative collisions. Finally, those xi’s, denoted by w become a part
of the encoding. Otherwise, it outputs a symbol ⊥.

Decode(c, z,w): It runs AG,OChal,ODL

m-M-DL (g) to recover n + q informative collisions. Given these equations, the
decoder can recognize the indices for w. It recovers w, and plugs them in the informative collisions.
The informative collisions become n+ q linear equations over n+ q variables, so that it can recover x.

The length of the encoding is bounded by

log

((T+m+n
2

)
n

)
+ q log |G|+ (m− n) log |G|+O(1)

which must be larger than (m+ q) log |G|+ log ϵ for the success probability ϵ by Lemma 2.1. This gives

n log

(
e(T + 2m+ 1)2

2n

)
≥ n log |G|+ log ϵ

11

which implies

ϵ = O

((
e(T +m+ n+ 1)2

|G|

)n)
,

concluding the proof.

Remark 2. Extending the results to high-degree variants like m-CDH problems is not trivial. We believe
with some algebraic geometry reasoning like Bézout theorem, as in [AGK20], the high-degree variants can
be proven in essentially the same way.

4 Lower Bounds in the Unknown-order GGM

We extend the generic group to the unknown-order setting. As the order is unknown, we should consider
the distribution of the order.

Let G be a cyclic group of order N , where the distribution of N will be specified later. We assume that
N is unknown to the algorithm except for its bit length. The other interface of the generic algorithms is
identical to the (known-order) GGM. In particular, the assumption that the group operation only allows to
compute (gx, gy) 7→ gx+y is important.5 Note that the algorithm cannot extract any information from the
element wire containing ⊥; for example, the equality gate involving ⊥ always outputs 0.

Remark 3. We found that the known equivalence proof between the generic group models does not ex-
tend to the unknown-order group setting. Therefore, we include the random-representation GGM proof
at Appendix C.1.

Polynomial Representations As in the known-order GGM, we give the polynomial representations for
each group element. However, as the group order is unknown, we choose the polynomials from Z[X1, ..., Xt]
without modulus for the formal variables X1, ..., Xt corresponding to the hidden values. In particular, if the
algorithm takes no input, the representations could be in just Z without formal variables.

We extend the notion of informative collisions appropriately. We maintain the zero set Z and process
each collision (i, j) with inputs corresponding to polynomials Pi, Pj (i.e., the equality gate outputting 1) as
follows:

• If Pi = Pj as a polynomial, then the collision is called trivial, and do nothing.

• If an equality query finds a nontrivial collision (i, j), then check if Pi − Pj is included in Z-span of Z ;
recall the we only checked ZN -span in the known-order case. If it is not true, updateZ ← Z∪{Pi−Pj}.
We call the collision (i, j) informative, and otherwise predictable.

4.1 Order-finding in the Unknown-order GGM

We consider the following problem.

Problem 4. LetD(n)
prime be a uniform distribution over the set of n-bit primes. An order-finding problem over

D(n)
prime in the GGM is defined as follows. First, a random N is sampled from D(n)

prime. The adversary in the
unknown-order GGM for the group GN of order N is asked to output N . A product-order-finding problem
over D(n)

prime is similarly defined, but the two distinct primes p, q are sampled and N := pq.

This problem is studied in [Sut07] in detail. In particular, the generic order-finding algorithm with
the O(

√
N/ log logN) group operation complexity suggested in [Sut07, Section 4], and the lower bound of

Ω(N1/3) (for the prime-order case) is proven in the same thesis. We reprove this bound using our method.

5This was also used in the related works [DK02, Sut07] in the unknown-order GGM.

12

Theorem 4.1. Let Aord be an order-finding algorithm over D(n)
prime in the GGM with the group operation complexity

T . It holds that

Pr
Aord,N

[
AGNord (g)→ N

]
= O

(
T 3

2n

)
.

In particular, any generic order-finding algorithm with a constant success probability must make Ω
(
N1/3

)
group

operations.

Proof. Let ϵ be the success probability of Aord. For simplicity, we assume that Aord is deterministic.
We consider the integer representations corresponding to the elements of Aord because of the unknown

order and no indeterminate value. In this case, an informative collision (i, j) must specify two integers
xi, xj such that xi − xj is a multiple of the order N . The integer x appearing in this list must satisfy

|x| ≤ 2TN

because a group operation only increases the number twice. This gives that the number of n-bit primes
divisors of x− y for some x, y appearing in the list is bounded by

log2n(2
TN) = O

(
T

logN

)
.

We consider the following modification: If Aord outputs z, we let the algorithm make the labeling gate
on inputs z, 0 and apply the equality gate on input (g0, gz) to find a collision at the end with probability at
least ϵ.

Now, we construct the following encoding-decoding pair.

Encode(N): It runs AGNord (g) and computes the equality gate c with input (i, j) that is the lexicographically
first informative collision. Let xi, xj be the corresponding integer representations. It factorizes xi−xj

and lets p1, ..., pK be the n-bit prime divisors. It outputs (c, ℓ) where pℓ = N if exists. Otherwise, it
outputs a special symbol c = ⊥.

Decode(c, ℓ): If c = ⊥, it outputs a random sample from D(n)
prime. Otherwise, it recovers xi, xj , computes and

outputs the ℓ-th prime factor N ′.

The correctness is analogous. The size of the encoding is log
(
T
2

)
+ log(K) + O(1), and we have K =

O(T/ logN). This gives

log

(
T

2

)
+ log(K) +O(1) ≥ log

(
2n

n

)
+O(1) + log ϵ =⇒ ϵ = O

(
T 3

N

)
applying Lemma 2.1 and 2n−1 ≤ N ≤ 2n.

We can prove the analogous result for the product of two primes. The proof is essentially identical,
except that we need to encode two prime factors using two informative collisions.

Theorem 4.2. Let Aord be a product-order-finding algorithm over D(n)
prime in the GGM with the group operation

complexity T . It holds that

Pr
Aord,p,q

[
AGpqord (g)→ pq

]
= O

(
T 4

22n

)
.

In particular, any generic order-finding algorithm with a constant success probability must make Ω
(
N1/4

)
group

operations for N = pq.

13

4.2 Root Extraction and Repeated Squaring Problems

We prove similar lower bounds for the (strong) root extraction and the repeated squaring in the unknown-
order GGM.

Theorem 4.3. LetA be an algorithm in the GGM with the group operation complexity T . Suppose that N is sampled
from D(n)

prime. It holds that

Pr
A,N,x

[
gey = gx : AGN (g, gx)→ (e, gy)

]
= O

(
T 3

2n

)
.

Proof sketch. If there is an informative collision when running A, we can apply the same encoding as in the
previous section. We show that if the algorithm finds the root gy, then it finds an informative collision.

Suppose that there is no informative collision during the execution for given input (g, gx). Then, the
polynomial corresponding to gy must be Y = aX + b ∈ Z[X]. The correctness implies that eax + eb =
x mod N. To do so, either N |ea − 1, N |eb or x = eb/(ea − 1) mod N must hold. The first case implies that
N |b (otherwise ea− 1 is not divided by N), and since |b|| ≤ 2TN, this event only happens with probability
at most O(Tn/2n). The second case holds with probability 1/N . In other words, except this probability, the
algorithm finds an informative collision.

Theorem 4.4. LetA be an algorithm in the GGM with the group operation complexity T . Suppose that N is sampled
from D(n)

prime. Let t > T be a positive integer. It holds that

Pr
A,N,x

[
AGN (g)→ g2

t
]
= O

(
(T + t)3

2n

)
.

Proof sketch. If the algorithm A outputs h, we can compute g2
t

using t group operations and check if h =

g2
t

. Also, the integer representation corresponding to h must be smaller than 2T , thus it should be the
informative collision. Using this, we can construct an encoding algorithm for N as in the previous section,
proving the desired result.

5 Lower Bounds in the Quantum GGM

5.1 Quantum Generic Group Models

5.1.1 Basic Quantum Generic Group Model

We define the quantum generic group model (QGGM) extending the model in Section 3.1, following the
formalization in [HYY23]. Let G be a cyclic group of order N with a generator g. A quantum generic group
algorithm A works similarly to a generic group algorithm but is defined on the registers holding qubits or
superpositions of elements.

We first consider a rudimentary model, denoted by the basic QGGM, where group operations only work
on two a priori fixed registers. As we look for the logarithmic lower bounds, we do not allow the quantum
labeling gate and give a quantum inversion gate as a unit. An algorithm in the basic QGGM is defined as
follows.

• There are two registers: qubit and element registers holding superpositions of some information.
Qubit registers take a set of bits {0, 1} as the computational basis. In contrast, element registers take a
set of elements x ∈ G ∪ {⊥} as the computational basis, which is denoted by gx; sometimes ⊥ is also
written in this form though there is no corresponding x. The algorithm arbitrarily appends a new
element register initialized by |g⟩.

• There are (arbitrary) quantum gates that map qubits to qubits, which cannot take element registers as
input.

14

• There are two special gates called element gates that can access the element wires as follows:

Group Operation Gate. It takes two element registers X,Y and a single qubit register B and applies
the unitary UG.op that works on the computational basis as follows:

UG.op :

{
|b⟩B |gx, gy⟩X,Y 7→ |b⟩B

∣∣gx+by, gy
〉
X,Y

if gx, gy ̸= ⊥,
|b⟩B |gx, gy⟩X,Y 7→ |b⟩B |gx, gy⟩X,Y otherwise.

(2)

Inverse-Operation Gate. It takes two element registers X,Y and a single qubit register B and applies
the unitary UG.inv that works on the computational basis as follows:

UG.inv :

{
|b⟩B |gx, gy⟩X,Y 7→ |b⟩B

∣∣gx−by, gy〉
X,Y

if gx, gy ̸= ⊥,
|b⟩B |gx, gy⟩X,Y 7→ |b⟩B |gx, gy⟩X,Y otherwise.

Equality Gate. It takes two element registers X,Y and a single qubit register B. It then applies the
unitary operation UG.eq that works on the computational basis as follows:

UG.eq :

{
|b⟩B |gx, gy⟩X,Y 7→ |b⊕ δx,y⟩B |g

x, gy⟩X,Y if gx, gy ̸= ⊥,
|b⟩B |gx, gy⟩X,Y 7→ |b⟩B |gx, gy⟩X,Y otherwise,

where δx,y = 1 if x = y and 0 otherwise.

• We allow the intermediate measurements for registers. When we apply the measurements on all of
B,X,Y right before applying the element gates, we call them classical. An element gate that is not
classical is called quantum. For simplicity, we allow the classical labeling gate that does not much
affect the result.

Classical Labeling Gate. It takes ⌈log2 N⌉ qubit registers, measures it, and interprets them as an el-
ement in x ∈ ZN . It appends a new element register holding |gx⟩. If there is no corresponding
element x ∈ ZN to the input wires, it outputs an element wire containing |⊥⟩.

A QGGM algorithm denotes an algorithm A in this model and is occasionally written by A|G⟩. As in the
classical GGM, we assume the element gates have some order to be applied sequentially with the relevant
qubit gates.

The formal complexity measure of the generic algorithms is described in the next subsection. Roughly,
we count the number of quantum element gates including the equality gates as the cost metric. The main
reason is that while the equality check between two classical data is essentially free, e.g., using hash tables,
the equality check between two element registers that store superpositions is not freely done. We also note
that Shor’s algorithm does not use any equality query.

5.1.2 QGGM with Coherent Indices

Now, we consider more general operations that can coherently access the indices of registers. Let t, w be
positive integers. We define the (t, w)-QGGM similarly to the basic QGGM, but it also has qudit registers of
dimension t and w, and the element gates are defined as follows.

• There are two special gates called element gates that can access the element wires as follows. The
unspecified registers are unchanged by the operations.

Group Operation Gate. It takes three registers B,T,W and t+w element registers X1, ...,Xt,Y1, ...,Yw

and applies the unitary U
(t,w)
G.op that works on the computational basis as follows:

U
(t,w)
G.op : |b, i, j⟩BTW |g

xi , gyj ⟩Xi,Yj
7→ |b, i, j⟩BTW

∣∣gxi+byj , gyj
〉
Xi,Yj

for i ∈ [t], j ∈ [w], gxi , gyj ̸= ⊥ and Xi ̸= Yj , otherwise do nothing.

15

Inverse-Operation Gate. It takes three registers B,T,W and t+w registers X1, ...,Xt,Y1, ...,Yw and
applies the unitary U

(t,w)
G.inv that works on the computational basis as follows:

U
(t,w)
G.inv : |b, i, j⟩BTW |g

xi , gyj ⟩Xi,Yj
7→ |b, i, j⟩BTW

∣∣gxi−byj , gyj
〉
Xi,Yj

for i ∈ [t], j ∈ [w], gxi , gyj ̸= ⊥ and Xi ̸= Yj , otherwise do nothing.

Equality Gate. It takes three registers B,T,W and t+ w element registers X1, ...,Xt,Y1, ...,Yw and
applies the unitary U

(t,w)
G.eq that works on the computational basis as follows:

U
(t,w)
G.eq : |b, i, j⟩BTW |g

xi , gyj ⟩Xi,Yj
7→
∣∣b⊕ δxiyj , i, j

〉
BTW

|gxi , gyj ⟩Xi,Yj

for i ∈ [t], j ∈ [w], gxi , gyj ̸= ⊥ and Xi ̸= Yj , and do nothing other cases, where δx,y = 1 if x = y
and 0 otherwise.

Note that the (1, 1)-QGGM is identical to the basic QGGM. We remark that allowing coherent access to
indices is relevant to practice. Coherent access to indices means the corresponding unitary operation should
be large and implemented differently from the above gates. Furthermore, setting t > 1 implies that the
quantum storage should store t group elements, requiring a large quantum memory. Allowing w > 1 was
studied in [Gid19], and the estimation in [GE21] mainly used t = 1 and w = 5.

When we say the QGGM, the choice of (t, w) is unimportant in that context.

Remark 4. We did not explicitly state that the element registers are different. This potentially allows the
group operations between the registers Xi,Xj .

5.1.3 Quantum Generic Group Algorithm with Classical Preprocessing

This paper considers the generic algorithms for the discrete logarithm that may perform classical generic
computation before running the quantum parts. Formally, a generic (C,Q)-algorithm A in the QGGM
decomposes into two generic algorithms Ac,Aq as follows.

1. Given the problem instance, Ac consists of at most C classical group operation gates and arbitrar-
ily many classical equality gates. It may have arbitrarily many qubit gates. At the end, it gives all
registers to Aq .

2. Given the registers from Ac as input, it applies at most Q quantum element gates along with arbi-
trarily many qubit gates. It measures the output registers and returns the measurement result as the
outcome.

The following lemma shows the classical equality gates can be safely removed. The proof can be found
in Appendix A.2.

Lemma 5.1. Let G be a cyclic group of order N , and p the smallest prime divisor of N . For any (C, 0)-algorithmAc

in the (arbitrary) QGGM for G, there is another (C, 0)-algorithm A′c without equality gates such that

Pr
x←[N]m

[Ac |0n, g, gx1 , ..., gxm⟩ = A′c |0n, g, gx1 , ..., gxm⟩] ≥ 1− (C +m+ 1)2

2p
.

In particular, for generic (C,Q)-algorithms A = (Ac,Aq) and A′ = (A′c,Aq) for A′c defined above, the outputs of
two algorithms are identical with probability at least 1− (C+m+1)2

2p .

16

5.2 Discrete Logarithms in the QGGM

The basic QGGM. We begin with the DL lower bound in the basic QGGM.

Theorem 5.2. Let G be a cyclic group of order N with a generator g. Suppose that the smallest prime divisor of N is
p. Let ADL be a (C,Q)-algorithm in the basic QGGM, then the following holds:

Pr
ADL,x←[N]

[
A|G⟩DL (g, g

x)→ x
]
≤ (C + 2)2

2p
+

22Q

N
.

Proof. Let ϵ be the success probability of ADL. Decompose ADL = (Ac,Aq) as described in the previous
section. By Lemma 5.1, it suffices to consider A′DL = (A′c,Aq) where A′c does not have any equality gates,
whose output is identical to ADL = (Ac,Aq) with probability 1 − (C + 2)2/2p. In other words, A′DL solves
the DL problem with a probability of at least

ϵ′ ≥ ϵ− (C + 2)2

2p
. (3)

Similarly to the classical case, we will construct an interactive compression protocol and apply Corol-
lary 2.3. In the protocol, Alice holds group registers and applies element gates. Bob only holds the qubit
registers and delegates all group-related operations to Alice.

We introduce the simple sub-protocols between Alice and Bob, showing that Alice sends one qubit
during one element gate delegation.

Subprotocol Delegate.Gop for group operation gates. The initial states are∑
b

βb |b⟩B ⊗
∑
z,w

αz,w |gz, gw⟩XY (4)

where Alice holds the registers X,Y and Bob holds B.

1. Bob sends his register B to Alice. Alice applies quantum group operation gates on BXY to obtain∑
b

βb |b⟩B ⊗
∑
z,w

αz,w

∣∣gz+bw, gw
〉
XY

. (5)

2. Alice returns the register B to Bob.

In this protocol, Alice only sent one qubit and the group operation gate is applied as a result (compare Equa-
tions (4) and (5) and Equation (2)).

Subprotocol Delegate.Ginv and Delegate.Geq. These are almost the same as the protocol Delegate.Gop. The
difference is as follows.

1. Alice applies the quantum inversion-operation gate or equality gate instead of the group operation
gate.

Now, we return to the proof. We construct the following interactive protocol between Alice and Bob,
where Alice selects x ∈ [N] and tries to send x using this protocol. Given a (T,Q)-algorithmA′DL = (A′c,Aq)
for T = C + 2, we consider the following protocol.

17

Main interactive protocol. Suppose that Alice chooses x ∈ [N]. In the protocol, Alice and Bob try to
execute the algorithmA′DL together, while Alice holds all element registers and Bob holds all qubit registers.
For qubit gates, Bob applies them locally without interacting with Alice.

To apply element gates, Alice and Bob use the above protocol. For the classical preprocessing, a simpler
protocol suffices. We give the overall protocol below.

1. Alice prepares two element registers holding |g, gx⟩. If they are stored in the i, j-th element registers
in A′c’s input, Alice also stores them in the i, j-th element registers.

2. Alice and Bob together execute A′c, with the following modifications.

• Every qubit register is stored in Bob’s memory, and every qubit gate is applied to Bob’s side
accordingly. Every element register is stored in Alice’s memory. Alice and Bob use the same
name/order of the registers as in A′c.

• For each classical group operation gate that is applied to the registers B and X,Y, Bob measures
B in the computational basis and sends the measurement outcome b to Alice. Alice applies the
group operation on her registers XY controlled on b, and discards b.

• Each classical labeling gate is processed analogously.

We make some observations on this part. Alice’s state is always classical during this procedure, so
the measurement of Alice’s registers can be ignored, and discarding bit b is not problematic. Alice has
not sent any information to Bob until this point. Finally, the overall states between Alice and Bob are
identical to the state after A′c(g, gx), except that all qubit registers are stored in Bob’s memory and all
element registers are stored in Alice’s memory.

3. Alice and Bob execute Aq together in a similar way:

• Every qubit gate is applied to Bob’s registers accordingly.

• For each group operation gate UG.op that is applied to the qubit register B and element registers
X,Y, Alice and Bob executes Delegate.Gop on BXY.

• Similarly, Delegate.Ginv or Delegate.Geq is executed for each UG.inv or UG.eq, respectively.

4. Finally, Bob outputs the final output of Aq .

It is not hard to see that the overall states between Alice and Bob are always identical to the corresponding
intermediate states of A′DL (ignoring the discarded bits). Therefore, the probability that Bob successfully
recovers x is exactly the same as that A′DL solves the DL problem on input (g, gx).

We then count the number of qubits sent from Alice to Bob. Alice sends a bit only when ADL applies an
element gate. Thus, the total number of qubits is Q. At this point, we can apply Corollary 2.3 to have the
following inequality:

log ϵ′ + logN

2
≤ Q =⇒ ϵ ≤ ϵ′ +

(C + 2)2

2p
≤ 22Q

N
+

(C + 2)2

2p

where we use Equation (3), which completes the proof.

The (t, w)-QGGM. We then extend the lower bounds in the QGGM for more general settings. The proof
ideas are almost the same, except for the sub-protocols; Alice needs to send one qudit for appropriate
dimensions. We present the following generalization to the MDL problem.

Theorem 5.3. Let G be a cyclic group of order N with a generator g. Suppose that the smallest prime divisor of N is
p. Let m be a positive integer. Let AMDL be a (C,Q)-algorithm in the (t, w)-QGGM, then the following holds:

Pr
ADL,x←[N]m

[
A|G⟩DL (g, g

x)→ x
]
≤ (C +m+ 1)2

p
+

(2tw)2Q

Nm
.

18

Proof. Applying Lemma 5.1, it suffices to consider the generic algorithm A′MDL with no classical equality
queries, which solves the MDL problem with probability at least ϵ′ ≥ ϵ− (C+m+1)2

2p . Then, we can construct
a protocol between Alice and Bob where Alice aims to send x ∈ [N]m to Bob using this algorithm. We need
appropriate subroutines for the (t, w)-QGGM. For the group operation gate, it works as follows.

Subprotocol Delegate.Gop for group operation gates. The initial states are∑
b,i∈[t],j∈[w]

βb,i,j |b, i, j⟩BTW ⊗
∑
z,w

αz,w |..., gz, ..., gw, ...⟩...Xi...Yj ...

where Alice holds the registers X = (X1, ...,Xt),Y = (Y1, ...,Yw) and Bob holds B,T,W. gz and gw are
stored in Xi,Yj , respectively.

1. Bob sends B,T,W to Alice. Alice applies quantum group operation gates on BTWXY.

2. Alice returns the register B,T,W to Bob.

In this protocol, Alice sends a quantum state of dimension 2tw. The other element gates can be delegated
analogously.

Each quantum element gate is operated with a quantum state with 2tw dimension, thus Corollary 2.3
implies that

log ϵ′ +m logN

2
≤ Q log(2tw) =⇒ ϵ ≤ (2tw)2Q

Nm
+

(C +m+ 1)2

2p
,

which concludes the proof.

5.3 Unknown-order QGGM

We can prove the following QGGM variant of Theorems 4.1 and 4.2.

Theorem 5.4. LetAord be a (C,Q)-algorithm to solve the order-finding problem over D(n)
prime in the (t, w)-QGGM. It

holds that

Pr
Aord,N

[
A|GN ⟩ord (g)→ N

]
= O

(
C3

2n
+

n(2tw)2Q

2n

)
.

For the product-order-finding algorithm over D(n)
prime in the QGGM, it holds that

Pr
Aord,p,q

[
A|Gpq⟩ord (g)→ pq

]
= O

(
T 4

22n
+

n2(2tw)2Q

22n

)
.

Proof sketch. The proof is almost identical with the known-order QGGM proofs. Instead of applying Lemma 5.1,
whenever the classical preprocessing finds an informative collision, we use it to compress N . Otherwise,
Bob can delegate quantum group operations to Alice to construct the interactive protocol encoding N . The
product-order-finding case is analogous.

6 Lower Bounds in the Quantum Generic Ring Model

6.1 Quantum Generic Ring Model

We define the quantum generic group model (QGRM) in this section. The QGRM is a natural analog of the
classical generic ring model [AM09, JS13], similar to the relation between the QGGM and GGM.

Let R be a commutative ring isomorphic to ZN for some integer N to be specified later. Let t, w be
positive integers. A quantum generic ring algorithm A in the QGRM is defined as follows. Note that the

19

definition of ring multiplication and division is rather complicated because of their subtlety; for example,
they are not invertible as is, or there is no inverse. Our abstraction closely resembles the actual target
arithmetic gates of circuit optimizations, e.g., [Bea03, Gid19]. We also remark that the (t, w)-QGGM can be
defined analogously.

• There are two registers: qubit and element registers holding superpositions of some information.
In contrast, element registers take a set of elements x ∈ R ∪ {⊥} as the computational basis. The
algorithm arbitrarily appends a new element register initialized by |0⟩ or |1⟩.

• There are (arbitrary) quantum gates that map qubits to qubits, which cannot take element registers as
input.

• There are special gates called element gates that can access the element wires as follows. The unspeci-
fied registers are unchanged by the operations.

Ring Addition Gate. It takes a qubit register B and two element registers X,Y and applies the uni-
tary that works on the computational basis as follows:

|b⟩B |x, y⟩XY 7→ |b⟩B |x+ by, y⟩XY

for x, y ̸= ⊥, otherwise do nothing.

Ring Subtraction Gate. It is essentially identical to the ring addition gate, except for the choice of
unitary:

|b⟩B |x, y⟩XY 7→ |b⟩B |x− by, y⟩XY .

Ring Product-Addition Gate. It takes a qubit register B and three element registers X,Y,Z and ap-
plies the unitary that works on the computational basis as follows:

|b⟩B |x, y, z⟩XYZ 7→ |b⟩B |x+ byz, y, z⟩XYZ

for x, y, z ̸= ⊥ and registers, otherwise do nothing.

Testing Invertible Gate. It takes an element register X and a qubit register C, and applies the unitary
UTest that works on the computational basis as follows:

UTest : |x, c⟩XC 7→ |x, c⊕ Test(x)⟩XC

where Test(x) = 1 if x is invertible, otherwise Test(x) = 0.

Ring inversion-addition Gate. It takes a qubit register B and three element registers X,Y,Z. It ap-
pends an ancillary qubit register C initialized by |0⟩ and applies the following sequence of uni-
taries that works on the computational basis as follows:

|b⟩B |x, y, z⟩XYZ |0⟩C
7→ |b⟩B |x, y, z⟩Xi,Yj ,Yk

|Test(z)⟩C
7→ |b⟩B

∣∣x,+bTest(z)y · z−1, y, z
〉
XYZ

|Test(z)⟩C
7→ |b⟩B

∣∣x,+bTest(z)y · z−1, y, z
〉
XYZ

|0⟩C

for x, y, z ̸= ⊥, and do nothing other cases. Here, the first and last unitaries are UTest on ZC. In
the second unitary, it adds y · z−1 only if Test(yk) = 1 and b = 1. It discards C in the end.

Equality Gate. It takes a qubit register B and two element registers X,Y and applies the unitary that
works on the computational basis as follows:

|b⟩B |x, y⟩XY 7→ |b⊕ δx,y⟩B |x, y⟩XY

for x, y ̸= ⊥, otherwise do nothing, where δx,y = 1 if x = y and 0 otherwise.

20

• We allow the intermediate measurements for registers and the labeling gate.

Classical Labeling Gate. It takes ⌈log2 N⌉ qubit registers, measures it, and interprets them as an ele-
ment in x ∈ ZN ≃ R. It appends a new element register holding |x⟩. If there is no corresponding
element x ∈ ZN to the input wires, it outputs an element wire containing |⊥⟩.

We count the number of element gates as the cost metric, denoted by the ring operation complexity.
We stress that the modulus N is NOT given to the generic algorithms explicitly. Instead, the algorithm

only accesses the ring (or modular) operations. This still captures most quantum parts of the quantum fac-
toring algorithms. For Shor’s algorithm, the quantum part aims to find the order r of the randomly chosen
integer a, which only requires modular arithmetic. We prove the lower bound for the order finding in the
QGRM in Theorem 6.1. The knowledge of N beyond our model is used in the classical post-processing
parts for computing (say) gcd(ar/2 + 1, N).

Regev’s algorithm does not compute the order. Instead, it computes a short vector z = (z1, ..., zd) in
a certain lattice, and then compute gcd(bz11 ...bzdd − 1, N). In the QGRM, the algorithm still can compute
bz11 ...bzdd − 1 as an integer, which is relatively small, having a nontrivial common factor with N . We prove
that this algorithm needs to make a logarithmic number of ring operations in Theorem 6.2.

6.1.1 Quantum Generic Ring Algorithm with Classical Preprocessing

We consider a slightly more general algorithm that can do classical preprocessing without the testing or
equality gates. The classical ring operations are defined by the ring operations that element gates are mea-
sured before applying ring operations. Recall the ring operations are done on Alice’s side in the proofs.
The delegation of classical ring operations can be done without Alice’s messages, except for the equality
gates, where Bob needs to take the output of gates. Therefore, the number of classical ring operations, such
as precomputing x2k , is irrelevant to our lower bounds. We do not explicitly discuss this setting in the
remainder of this section.

6.2 Lower Bounds in the QGRM

This section is devoted to proving that the order-finding problems with certain distributions and a certain
type of factoring algorithms have logarithmic ring operation complexity. In a ring R ≃ ZN , the order of
x ∈ R, denoted by ordN (x), is defined by the minimal positive integer e such that xe = 1 mod N . A prime
number p is safe if p−1

2 is also prime. We consider the following problem.

Problem 5. Let D(n)
safe be a uniform distribution over the set of n-bit safe primes. An order-finding problem

over D(n)
safe in the QGRM is defined as follows. First, two distinct primes p, q are sampled from D(n)

safe and let
N = pq. Choose a random x ∈ ZN . The adversary is given x stored in the element register in the QGRM
forR ≃ ZN and asked to find ordN (x).

We assume that the number of n-bit safe primes is at least C · 2n/n2 for some constant C > 0, which is a
variant of the conjecture that the number of safe primes below N is of order Θ(N/ log2 N) [Sho09, Section
5.5.5].

Theorem 6.1. Let Aord be an order-finding algorithm over D(n)
safe in the (t, w)-QGRM with the ring operation com-

plexity of Q. Assuming that the number of n-bit safe primes is at least C · 2n/n2 for C > 0, it holds that

Pr
Aord,p,q,x

[Aord(x)→ ordpq(x)] = O

(
n4(2tw)2Q

22n
+

1

2n

)
Proof. Let N = pq. We first observe that the order of x is a divisor of (p−1)(q−1)

2 = 2 · p−1
2 · q−1

2 . With
probability 1−O(1/p) over random x, ordN (x) = (p−1)(q−1)

2 or (p−1)(q−1)
4 . In this case, one can recover (p, q)

for safe primes p, q from ordN (x) using the factorization.

21

Based on this observation, we construct a protocol between Alice and Bob where Alice wants to send
(p, q) to Bob. The proof is identical to that of Theorem 5.2, except that we need the delegation sub-protocols
for ring operations. By the assumption, Alice sends one out of O

(
22n

n4

)
candidates to Bob using Q qubits of

communications.

We then consider the factoring algorithms, where the generic algorithm’s goal is to find an integer with
a nontrivial common divisor with N . We prove the following theorem.

Theorem 6.2. Let A be an algorithm in the (t, w)-QGRM with the ring operation complexity of Q. For two primes
p, q sampled from D(n)

prime and N = pq, it holds that

Pr
A,p,q

[1 < gcd(Z,N) < N : A()→ Z] = O

(
n logZ(2tw)2Q

2n

)
.

In particular, if logZ = O(2(2−ϵ)n) for any ϵ > 0, this implies that Q = Ω(logN
log(2tw)) to have the constant success

probability.

Before proceeding with the proof, we give some interpretations of this theorem. As we do not give N
to the generic algorithm, it cannot apply the modulus operation. Therefore, the known quantum factoring
algorithms must be explained with some modifications, where the final steps usually compute the common
divisor of some integer and N .

Instead of giving N , we ask to find an integer that suffices for factoring N . In the QGRM, this integer
must be computed in plain, without modulus computation. For Regev’s algorithm, the final integer is of
the form Z =

∏
i∈[d] b

zi
i for zi = exp(O(

√
n)) and d ≈

√
n. The last statement holds in this case as well.

The output of Shor’s algorithm corresponds to Z = ar/2−1 for r = ordN (a). The bit length of Z is about
logZ ≤ r

2 · log a ≤
nN
2 . Therefore, we cannot apply this theorem to Shor’s algorithm in general.

Proof. Let ϵ be the success probability of A. We construct a protocol that sends (p, q) using A. Precisely,
Bob runs A using the delegation of quantum ring operations using Q log(2tw) qubits. After obtaining
the outputs Z from A, Alice additionally sends an index of the prime factor of Z among its n-bit prime
factors. Since the number of n-bit primes factors of Z is bounded by logZ/n, the index can be described
in log(logZ) − log n classical bits. Finally, Alice sends the other prime factor which can be specified by
n− log n+O(1) classical bits. Appying Corollary 2.3, we have

2Q log(2tw) + (log logZ − log n) + (n− log n+O(1)) ≥ 2n− 2 log n+ log ϵ+O(1),

which implies

ϵ = O

(
n(logZ)(2tw)2Q

2n

)
,

concluding the proof.

7 Lower Bounds for Index Calculus Algorithms

This section introduces a new model called the smooth index calculus model (SGGM) of generic algorithms,
including the (simplest) index calculus methods.

A main feature of index calculus is using the set of B-smooth numbers, denoted by SB , whose prime
factors are all less than or equal to B. These numbers are relatively quickly factorized, and the index
calculus method finds many nontrivial elements in SB to leverage this fact.

22

7.1 Smooth Generic Group Model

The smooth GGM is parameterized by a parameter B, which induces the factor base B and the set S =
{h1, ..., h|S|} of smooth elements. Precisely, the factor base is a set of primes B = {p1, ..., pb} and the smooth
element hi ∈ S is of the form

hi = p
c
(i)
1

1 · · · · · pc
(i)
b

b (6)

for c(i) = (c
(i)
1 , ..., c

(i)
b), whose precise conditions will be specified later.

An SGGM algorithm A over G of order N with the parameter B, denoted by an algorithm in the B-
SGGM, is given by a circuit with the following features:

• There are two types of wires: bit wires and element wires. Bit wires take a bit in {0, 1}, and element
wires take an element in x ∈ ZN ∪ {⊥}, which is denoted by gx.

• There are bit gates and element gates that are identically defined as the generic group model.

• There are special element gates defined as follows:

Smooth Test Gate. It takes an element wire containing h. If h ∈ S, it outputs 1, otherwise outputs 0.

Smoothing Gate. It takes an element wire containing h. If it is smooth, i.e., h = hi for some i ∈ [|S|],
outputs c(i) defined in Equation (6). Otherwise, it outputs ⊥.

We further establish the properties of the factor base and the smooth elements regarding the parameter
B. Let g be the generator of G, and let u > 0 be such that B = N1/u. Let cbase, csmooth, dsmooth ≥ 1 be the
universal constants that are independent from B. Here, o(1) hides a factor much less than 1.

• The set B is given to the algorithm. The set S is randomly chosen and unknown to the algorithm. For
the factor base B = {p1, ..., pb}, it holds that pi = gzi for some random zi for each i, which is unknown
to the algorithm.

• The size of the factor base |B| = b is (cbase + o(1))B/ logB.

• The number of smooth elements is

pS :=
|S|
N

= (csmooth + o(1)) ·
(
dsmooth + o(1)

u log u

)u

. (7)

• For any rank-c affine space V in Zb
N , define

SV := {h(i) ∈ S : c(i) ∈ V }.

If c = (cbase + o(1))C/ logC for some C = N1/v , it holds that

|SV |
N
≤ (csmooth + o(1)) ·

(
dsmooth + o(1)

v log v

)v

. (8)

We explain the reasoning behind these assumptions. The assumption on the prior knowledge of the algo-
rithm reflects the reality. The randomness of S and zi prevents the generic algorithm from using the explicit
values related to the smooth elements.

The sizes of B and S stem from the original choices in the index calculus, whose estimated sizes are
well-studied. We refer the survey on this topic [Gra08] to the readers.

The last assumption describes that the vectors c(i) are well-distributed. In particular, it asserts that the
factor base {p ≤ C}, which corresponds to the subspace V = Zc

N × {0}b−c, maximizes the size of SV ,
according to the estimated size by Equation (7).

23

7.1.1 Polynomial Representations

Again, we identify the group elements by the corresponding polynomials. We mainly focus on the dis-
crete logarithm problems where the problem instance is given as (g, gx1 , ..., gxm), which corresponds to
1, X1, ..., Xm. Furthermore, because of the factor base, we have more formal variables Z1, ..., Zb. Therefore,
each element corresponds to the polynomial in

ZN [X1, ..., Xm, Z1, ..., Zb].

We stress that we occasionally identify the polynomial with its coefficient vector.
We consider the answer from the smoothing gate to be the collision. Precisely, if an element h corre-

sponding to the polynomial P is given to the smoothing gate and the answer is (c1, ..., cb), then it induces
the collision

P = c1Z1 + ...+ cbZb.

If it is not included in the span of the previous zero set Z , we include it as an informative collision as well.

7.2 The Discrete Logarithm Problem in the SGGM

In this section, we assume that the variables N = N(λ), B = B(λ), u = u(λ) are parameterized by some
implicit parameter λ so that we can work in the asymptotic regime. Still, we drop the parameter λ for
simplicity.

Theorem 7.1. Let G be a cyclic group of prime order N . Let B be an integer such that B = N1/u for some u > 0. Let
ADL be a DL algorithm in the B-SGGM with a constant success probability. Then, the number of group operations T
of ADL must satisfy

T = exp
(
Ω
(√

logN log logN
))

.

Proof. Toward contradiction, we assume that ADL successfully solves the DL problem in the SGGM with
smaller group operations than the statement. We first observe that each equality query makes an informa-
tive collision with probability 1

N ; thus, with probability 1− T 2

N , there are no informative collisions from the
equality queries. From now on, we ignore the equality gates and assume that all informative collisions are
from the smoothing gate.

As before, we assume that ADL makes the equality gate at the end so that the collision is found. We
begin with the following fact, which is a SGGM variant of Lemma 3.2.

Fact 3. Each group operation introduces a new informative collision (through the smoothing gate) with
probability at most pS defined in Equation (7). In particular, the input element to the smoothing gate
collides with a random element in S.

Proof of fact. Let h be a new group element corresponding to (c0, a, c1, ..., cb), which is linearly independent
from the vectors in Z. This means that h is uniformly distributed over random X,Z1, ..., Zb conditioned on
the equations in Z hold. That is, h ∈ S holds with probability |S|/N = pS .

Case 1. We first consider the case that u is sufficiently large so that

u8u2

≥ N =⇒ u log u = Ω
(√

logN log logN
)
.

In this case, by Fact 3, ADL must make

1/pS = Ω(uu) = exp
(
Ω
(√

logN log logN
))

group operations to find an informative collision with a constant probability.6

6A formal proof requires some probabilistic arguments, which we omitted here.

24

Case 2. We consider the other case that u is relatively small so that

u8u2

≤ N.

In this case, we choose v > u such that vv
2

= N . Note that

(2u)(2u)
2

= (2u)4u
2

≤ u8u2

≤ N,

thus v ≥ 2u holds. Suppose that the algorithm finds K informative collisions at total. We will prove that
K = Ω

(
N1/2v

)
in this case. Since

v2 log v = logN =⇒ v = Θ

(√
logN

log logN

)
,

we have

T ≥ K = exp

(
Ω

(
logN

v

))
= exp

(
Ω
(√

logN log logN
))

.

Combining the two cases, we prove the theorem.
It remains to prove the lower bound of K in the second case. We identify the formal variable X to

represent gx. In particular, the span of the final zero set Z must include the polynomial X − x, or a vector
(−x, 1, 0, ..., 0). We define Z(t) to denote the zero set right after the t-th informative collision. Define the
following projections of Z(t):

Z(t)
X=x := {(ax+ c0, c1, ..., cb) : c0 + aX + c1Z1 + ...+ cbZb ∈ Z(t)}

Z(t)
B := {(c1, ..., cb) : c0 + aX + c1Z1 + ...+ cbZb ∈ Z(t)}

We observe the following facts.

Fact 4. The rank ofZ(K)
X=x is less than K. In particular, there must exist a smoothing gate making the t(≤ K)-

th informative collision P such that P (t)
X=x is included in the span of Z(t−1)

X=x . The rank of Z(t)
X=x is equal to

the rank of Z(t)
B for each t ∈ [K].

Proof of fact. Let (−x, 1, 0, ..., 0) = b and {b,b2, ...,bK} be the basis extension of Z = Z(K) from {b}. The
projection π : (c0, a, c1, ..., cb) 7→ (c0 + ax, c1, ..., cb) maps Z to Z(K)

B and π(b) = 0, thus the rank of Z(K)
B

must be K − 1. The final statement follows from (1, 0, ..., 0) is not included in the span of Z.

We call the first smoothing gate by critical with input h and output h(i) ∈ S satisfying the condition
described in Fact 4. Let (h1, ..., hb) and c(i) be the corresponding coefficient vectors of h and h(i).

We give an upper bound for the probability pt that the t-th informative collision is critical. This means
that the rank of Z(t−1)

B is t− 1, and (h1, ..., hb)− c(i) is included in Z(t−1)
B . In other words,

c(i) ∈ (h1, ..., hb) + span
(
Z(t−1)
B

)
=: V.

Since h(i) is a random element in S, Equation (8) implies that the probability pt is bounded by

pt = Pr
[
c(i) ∈ V

]
=
|SV |
|S|

.

Let C = N1/v and c = cbaseC/ logC. If t ≤ c, the logarithm of the above equation becomes for a constant
α ≈ log dsmooth

log

(
|SV |
|S|

)
≤ −v log(v log v) + u log(u log u) + α(v − u) +O(1)

≤ −0.5v log(v log v)− u log(2u log 2u) + u log(u log u) + αv +O(1)

≤ −0.5v log v +O(1).

25

where we use the fact that dsmooth is constant and v ≥ 2u, and set α ≈ log dsmooth, which is less than
0.5 + 0.5 log log v in the interested parameter regime. It implies that pt ≤ β/v0.5v for some constant β > 0.
In other words, with constant probability, the critical informative collision will be found after Ω(v0.5v) =
Ω(N1/2v) informative collisions are found.

References

[AGK20] Benedikt Auerbach, Federico Giacon, and Eike Kiltz. Everybody’s a target: Scalability in public-
key encryption. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 475–506. Springer, 2020.

[AHP23] Benedikt Auerbach, Charlotte Hoffmann, and Guillermo Pascual-Perez. Generic-group lower
bounds via reductions between geometric-search problems: With and without preprocessing.
IACR Cryptol. ePrint Arch., page 808, 2023.

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking rsa generically is equivalent to factoring. In Ad-
vances in Cryptology-EUROCRYPT 2009: 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings 28, pages
36–53. Springer, 2009.

[Bea03] Stephane Beauregard. Circuit for shor’s algorithm using 2n+ 3 qubits. Quantum Information &
Computation, 3(2):175–185, 2003.

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm
assumption in the generic group model. In Mehdi Tibouchi and Huaxiong Wang, editors, Ad-
vances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part IV, volume
13093 of Lecture Notes in Computer Science, pages 587–617. Springer, 2021.

[BL96] Dan Boneh and Richard J Lipton. Algorithms for black-box fields and their application to cryp-
tography. In Annual International Cryptology Conference, pages 283–297. Springer, 1996.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking rsa may be easier than factoring. In Ad-
vances in Cryptology—EUROCRYPT, volume 98, pages 59–71. Citeseer, 1998.

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-
permutation, ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 693–721. Springer, 2018.

[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer
Science, pages 415–447. Springer, 2018.

[CLQ19] Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower bounds for function inversion with
quantum advice. arXiv preprint arXiv:1911.09176, 2019.

[Den02] Alexander W Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In International Conference on the Theory and Application of Cryptology and Information Se-
curity, pages 100–109. Springer, 2002.

26

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 473–495. Springer, 2017.

[DK02] Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 256–271. Springer, 2002.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against one-
way functions and prgs. In Annual Cryptology Conference, pages 649–665. Springer, 2010.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using 20 million
noisy qubits. Quantum, 5:433, 2021.

[Gid19] Craig Gidney. Windowed quantum arithmetic. arXiv preprint arXiv:1905.07682, 2019.

[Gra08] Andrew Granville. Smooth numbers: computational number theory and beyond. Algorithmic
number theory: lattices, number fields, curves and cryptography, 44:267–323, 2008.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
305–313. IEEE, 2000.

[HNR18] Shima Bab Hadiashar, Ashwin Nayak, and Renato Renner. Communication complexity of one-
shot remote state preparation. IEEE Transactions on Information Theory, 64(7):4709–4728, 2018.

[HXY19] Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model with aux-
iliary input. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 584–614. Springer, 2019.

[HYY23] Minki Hhan, Takashi Yamakawa, and Aaram Yun. Quantum complexity for discrete logarithms
and related problems. arXiv preprint arXiv:2307.03065, 2023.

[JS13] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in the generic ring
model. Journal of cryptology, 26:225–245, 2013.

[KM06] Neal Koblitz and Alfred Menezes. Another look at generic groups. Cryptology ePrint Archive,
2006.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor,
Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, December 19-21, 2005,
Proceedings, volume 3796 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[NABT15] Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. Quantum lower bound
for inverting a permutation with advice. Quantum Information & Computation, 15(11-12):901–913,
2015.

[Nec94] Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Math-
ematical Notes, 55(2):165–172, 1994.

[NS06] Ashwin Nayak and Julia Salzman. Limits on the ability of quantum states to convey classical
messages. Journal of the ACM (JACM), 53(1):184–206, 2006.

[PH78] S Pohlig and M Hellman. An improved algorithm for computing logarithms over gf (p) and
its cryptographic significance (corresp.). IEEE Transactions on Information Theory, 24(1):106–110,
1978.

27

[Pol78] John M Pollard. Monte carlo methods for index computation (mod p)). Mathematics of computa-
tion, 32(143):918–924, 1978.

[Reg23] Oded Regev. An efficient quantum factoring algorithm. arXiv preprint arXiv:2308.06572, 2023.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233
of Lecture Notes in Computer Science, pages 256–266. Springer, 1997.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

[Sho09] Victor Shoup. A computational introduction to number theory and algebra. Cambridge university
press, 2009.

[Sut07] Andrew V Sutherland. Order computations in generic groups. PhD thesis, Massachusetts Institute
of Technology, 2007.

[Yun15] Aaram Yun. Generic hardness of the multiple discrete logarithm problem. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages 817–836.
Springer, 2015.

[YYHK20] Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro. Generic hardness
of inversion on ring and its relation to self-bilinear map. Theoretical Computer Science, 820:60–84,
2020.

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 66–96. Springer, 2022.

A Missing Proofs

A.1 Missing proofs in the GGM

Proof of Lemma 3.1. Suppose that A is deterministic; if A is randomized, we include the random seed as its
description. We construct an algorithmA′ that has the same circuits asA, but the element wires are replaced
by the polynomial wires. The initialization P = {(w1, P1), ..., (wm, Pm)} for input can be done without any
query, and each input element wire wi is replaced by Pi inA′. The labeling gates and group operation gates
are processed as in the polynomial list. For the equality gates with element wires wi, wj , the output can be
computed by checking if Pi − Pj is included in the span of Z ; if included the output of the equality gate is
1, otherwise 0.

Proof of Fact 1. Let Pi := ai,1X1 + ...+ ai,mXm + bi. A collision (i, j) induces a linear equation over Zp as

0 = Pi − Pj = (ai,1 − aj,1)X1 + ...+ (ai,m − aj,m)Xm + (bi − bj).

Since collisions are informative, they are nontrivial and linearly independent due to Equation (1). Thus
m informative collisions give a system of m linear equations over Zp with m variables that are linearly
independent, which can be easily solvable.

28

Proof of Theorem 3.6, sketch. Observe that without finding an informative collision, the output should corre-
spond to aX + bY + c for some a, b, c, where X,Y are the variables corresponding to gx, gy . The probability
that aX + bY + c = XY is at most 1/|G| over the random choice of X,Y . Therefore, the algorithm must find
an informative collision.

Given an informative collision exists, the first part of the encoding is the first informative collision. If this
collision has a nonzero coefficient for the monomial containing X , then the second part of the encoding is
x. Otherwise, it is y. Given the encoding, the decoding procedure is 1) parses the first informative collision
and one of x or y, and 2) plugs it in the first collision. The collision collapses to a one-variable polynomial
of degree less than 1, and the correct solution can be guessed with probability at least 1/2.

A.2 A QGGM lemma

Proof of Lemma 5.1. Except for the equality gates, we define the algorithm A′c as identical to Ac. It removes
all equality gates, except the trivial equality gate (as in the classical GGM) that are replaced by bit flipping.
Given the first assertion, the “In particular” part is obvious because the trace distance between the inter-
mediate outputs of two (C,Q)-algorithms are identical with probability 1 − (C+m+1)2

2p , and the remaining
parts are the same.

The proof proceeds as follows. As the algorithmAc is only given classical group elements and can apply
classical group gates, it only maintains at most C+m+1 classical group elements, which are represented by
polynomials P1, ..., PC+m+1 as done in the classical generic group models. Each equality query corresponds
to the difference between polynomials Pi − Pj . If Pi − Pj is identically zero or never be zero, then there is
no difference between Ac and A′c from these equality gates.

Consider an equality gate corresponding to Pi −Pj that is not identically zero. There exists some prime
power qt that exactly divides N such that Pi − Pj is nonzero modulo qt. Since Pi − Pj is linear, the portion
of inputs where the equality gate corresponding to Pi − Pj behaves differently from the identity gate is at
most 1/q ≤ 1/p. Since there are at most

(
C+m+1

2

)
≤ (C+m+1)2

2 different pairs of group elements, at most
(C+m+1)2

2p -fraction of inputs make difference on the behaviors of Ac and A′c. In other words, the output

states of the two algorithms are identical with probability at least 1− (C+m+1)2

2p for random inputs.

B An Alternative Proof for the MDL Lower Bound

We give a simple proof for the MDL lower bound Theorem 3.4. We begin with the proof of Lemma 3.2.

Proof of Lemma 3.2. Let Z = {Q1, ..., Qs} be the current zero set. Assume that s < t; otherwise, there is no
more informative collision. Let P be the linear polynomial corresponding to the new collision. Assume that
P /∈ span(Z). This implies that P is nonzero in the quotient ring ZN [X1, ..., Xt]/span(Z) ≃ ZN [L1, ..., Lt−s]
for some linear polynomials L1, ..., Lt−s, and each variable Li is uniform random over random choice of
x1, ..., xt conditioned on Q1, ..., Qs = 0, making P uniform over ZN . That is, P = 0 holds and is informative
with probability 1/N .

For the readability, we restate the lower bound.

Theorem B.1. Let G be a cyclic group of prime order. Let Am-MDL be an m-MDL algorithm in the GGM having at
most T group operation gates. It holds that:

Pr
Am-MDL,x

[
AGm-MDL(g, g

x)→ x
]
= O

((
e(T + 2m)2

2m|G|

)m)
.

Proof. As seen in the original proof of Theorem 3.4, we can assume that the algorithm finds m informative
collisions to solve the m-MDL problem. Let T be the number of group operations.

29

By Lemma 3.2, each equality gate induces an informative collision with probability at most 1/N . We
further assume that the algorithm never applies the equality gates to the predictable inputs. This makes
the probability that each equality gate is informative equal to 1/N independent from the previous equality
gates.

Let E be the number of equality gates, which is at most
(
T+2m

2

)
≤ (T+2m)2

2 . Assume that
(
T+2m

2

)
≤ mN,

otherwise the upper bound becomes larger than 1. Let C be the number of informative collisions during
the algorithm and µ = E[C] = E

N . Let δ = mN
E − 1. Note that δµ ≤ (1 + δ)µ = m. By the multiplicative

Chernoff bound, we have

Pr[C ≥ m] ≤
(

eδ

(1 + δ)1+δ

)µ

=
eµδ

(mN/E)m

≤ em

(mN/E)m
=

(
eE

mN

)m

≤
(

eE

mN

)m

≤
(
e(m+ 2T)2

2mN

)m

.

Since this is an upper bound of the success probability of the m-MDL algorithm, it concludes the proof.

C Equivalence between GGMs

This section proves that any single-stage problems secure in the Maurer-style (or type-safe) generic group
model are also secure in the Shoup-style (or random representation) generic group model. The proof is
essentially the same as [Zha22, Theorem 3.5] with some additional finer analysis.7

We call the generic algorithms described in Section 3 by type-safe (TS). We consider another style of
generic algorithm that is called random representation (RR) introduced in [Sho97]. In this model, a set S ∈
{0, 1}∗ (with the known maximal length of elements) is given public, and a random injection L : ZN → S
is chosen, which is called by the labeling function. L(x) is understood as a group element gx. A generic
algorithm in the random representation model is able to make the following queries:

Labeling Query. It takes x ∈ ZN as input and outputs L(x).

Group Operation Query. It takes ℓ1, ℓ2 ∈ S and a single bit b as input. If there exist x1, x2 ∈ ZN such that
L(x1) = ℓ1 and L(x2) = ℓ2, it outputs L(x1 + bx2). Otherwise, it outputs ⊥.

We count the number of queries as a unit cost. A generic algorithm in this model is denoted by AGRR . Note
that there is no equality query in this model, which can be done by comparing the labels without accessing
the oracle. If an algorithm only makes queries with the inputs that it received before by some queries or
input, then we call it faithful.

The following lemma shows that, when considering a single-stage game as in this paper, a faithful
generic algorithm in the RR model is essentially the same as one in the TS model, but there is a subtle
difference otherwise. We write L(x) = (L(x1), ..., L(xm)) for x = (x1, ..., xm) ∈ Zm

N .

Theorem C.1. Let f be a function that takes an element in Zm
N as input, p > 0, and D a distribution over Zm

N .
Suppose for any generic algorithm B in the TS model with T + Λ group operation complexity, it holds that

Pr
B,x←D

[BG(gx, aux) = f(x)] ≤ p

where aux is a bit string, Λ is to be specified and suppose that f includes k group element wires.

7In the original paper, the author only considers the polynomially-bounded algorithms and negligible advantage. We need to
consider more fine-grained equivalence for the exact advantage and any number of group operations.

30

Then, in the RR model, the following inequality holds

Pr
A,L,x←D

[AGRR(L(x), aux) = f(x)] ≤ p−∆

where

• for a faithful generic algorithm A with T queries and Λ = ∆ = 0, and

• in general, for a generic algorithm A with T queries such that at most t labels that are not given to A before,
where Λ = tr and ∆ = r ·

(
T
N

)r
for any positive integer r.

In particular, when T = N1−1/c for some constant c > 0 and p ≥ 1/N , we can choose r = 2c, which asserts that the
asymptotic results equally hold.

Proof. Toward contradiction, we assume that there exists a generic algorithm A in the RR model with the
winning probability larger than p−∆. We first consider the case thatA is faithful. In this case, the algorithm
B proceeds as follows. B initializes an empty table T , which will contain pairs (h, ℓ) for h in an element wire
and ℓ ∈ S. This will be interpreted as L(x) = ℓ. We define the following subroutines of B:

FindLabel(h): It takes an element wire containing h as input. It searches for a pair (h′, ℓ) ∈ T with h = h′

using the equality gates. If such a pair exists, it returns ℓ. Otherwise, it samples a random ℓ ∈ S
conditioned on ℓ not being in the table T . It adds (h, ℓ) to T and returns ℓ.

FindElement(ℓ): It searches for a pair (h, ℓ′) ∈ T with ℓ = ℓ′. If such a pair exists, it returns h on an element
wire. Otherwise, it generates an element wire containing ⊥ and adds (⊥, ℓ) to ℓ. It returns ⊥. (This
case does not occur for the faithful algorithms.)

B executes A and processes the queries from A and the inputs/outputs as follows.

• Given the problem instance, B parses it into a list L of element wires. For each element wire h ∈ L, B
runs ℓ← FindLabel(h) and sends ℓ to A as a part of input corresponding to h.

• For a labeling query x fromA, B constructs an element wire containing gx using a labeling gate. Then
it runs ℓ← FindLabel(gx) and returns ℓ to A.

• For a group operation query (ℓ1, ℓ2, b), B runs h1 ← FindElement(ℓ1), h2 ← FindElement(ℓ2), and com-
putes h = h1 · hb

2 using a group operation gate. Then it runs ℓ← FindLabel(h) and returns ℓ to A.

• The final output of B is identical to that of A. Precisely, if A outputs (ℓ1, ..., ℓk, τ) for labels ℓ1, ..., ℓk
and a string τ , B runs hi ← FindElement(ℓi) for i ∈ [k] and outputs (h1, ..., hk, τ).

Note that each labeling query and group operation query incurs a single element gate, thus the group
operation complexity of B is the same as one of A. To prove that B wins with probability at least p, we
consider the following sequence of hybrid experiments.

H0. In this hybrid,A interacts with the group oracle GRR. Awins with probability at least p by the assump-
tion.

H1. This hybrid is the same as H0 except that the random injection L is lazily sampled. This is possible
because A is faithful. In the perspective of A, this is identical to H0, thus the winning probability is
the same as H0.

H2. Here, A is a subroutine of B. The view of A is identical to that of H1, and the translation between two
models is done inside of B. The winning probability of B is equal to that of A, which is the same as in
H1.

31

This completes the proof for the faithful A.
We then consider the general case. In this case, A may ask queries with the labels it never received. To

remedy this, we need to modify the subroutine FindElement, taking the probability that such a label is valid
(i.e., an image of L) into account. The modified subroutine is as follows.

FindElement′(ℓ): It searches for a pair (h, ℓ′) ∈ T with ℓ = ℓ′. If such a pair exists, it returns h on an element
wire. Otherwise, let m := |{(h, ℓ) ∈ T : h ̸= ⊥}|, and it does the following:

• With probability 1 − (N − m)/(|S| − |T |), it generates an element wire containing ⊥ and adds
(⊥, ℓ) to ℓ. It returns ⊥.

• With probability (N − m)/(|S| − |T |), it does the following procedures t times: It randomly
samples x ∈ ZN and construct the corresponding element wire containing gx, and searches for
(h, ℓ′) ∈ T with h = gx using the equality gates. If such a pair does not exist, it adds (gx, ℓ) to T ,
returns gx on an element wire and halts. Otherwise, it discards gx, and samples a fresh x ∈ ZN

and repeats.

A single iteration of the second case of FindElement′ terminates with probability at least 1−m/N ≥ 1−T/N ,
and takes one labeling gate.

In this case, the algorithm B in the TS model is defined with FindElement′ instead of FindElement. This
change makes B find the corresponding element to the label that is not previously given. The success
probability computation is almost identical, but incurs (2T + k) ·

(
T
N

)r
errors in the success probability

regarding the failure of FindElement′.8 If we carefully count the number t of the labels that are not given
before, the number of gates becomes q + tr and ∆ = r ·

(
T
N

)r
.

C.1 Lower bounds in the Random Representation GGM

Let L : ZN → S be the labeling function, which will be lazily sampled. We prove the RR GGM variant
of Theorem 4.1 in this section.

Note that the proof of Theorem C.1 for the faithful case works well for the unknown-order group case.
In other words, it suffices to focus on the algorithm’s behavior to look for a new label that was not given to
the algorithm before.

Theorem C.2. LetAord be an order-finding algorithm overD(n)
prime in the random-representation GGM with the group

operation complexity T . It holds that

Pr
Aord,N,L

[
AGNord ()→ N

]
= O

(
T 3

2n

)
.

Proof sketch. Suppose that t labels to queries that are not given to A before and also not corresponding to
⊥. We let them ℓ1 = L(x1), ..., ℓt = L(xt) and x = (x1, ..., xt). We must maintain the representations of the
elements of Aord as a polynomial in Z[X1, ..., Xt] where Xi corresponds to xi. The definition of informative
collisions is a pair of elements that have the same labels but as the polynomials different, and their difference
is not included in the span of the previous informative collisions. Note that the algorithm must find at least
one informative collision. Let us assume that it is represented by

P (x1, ..., Xt) = a1X1 + ...+ atXt + c = 0,

where we can assume that |ai|, |c| ≤ 2TN by the same reason to the original proof.
We make the encoding scheme for (N,x).

8If we assume that T ≤ N1−1/c for some constant c > 0, then repeating r = 2c times ensures that the probability of failure is
1/N2 for each FindElement′.

32

Encode(N,x): It runs AGNord () and computes the first informative collision c. It additionally includes x as a
part of the encoding. Note that the probability that M = P (x1, ..., xt) = 0 mod p for another n-bit
prime p is 1/p, and |P (x1, ..., xt)| ≤ (t+ 1)2TN2. Let ℓ be the index of N among the divisor of M .

Decode(c, ℓ,x): If c = ⊥, it outputs a random sample fromD(n)
prime. Otherwise, it recovers the first informative

collision and plugs x to X1, ..., Xt to compute M = P (x1, ..., xt), and outputs the ℓ-th prime factor N ′.

The encoding size is 3 log T− log logN+log
(|G|

t

)
+O(1), which should be larger than log 2n

n +log
(|G|

t

)
+log ϵ.

Rearranging this concludes the proof.

33

	Introduction
	Our Results

	Compression Lemmas
	Lower Bounds in the Classical Generic Group Model
	Generic Group Model
	Variations: Maintaining Polynomials

	The Discrete Logarithm Problem and Friends
	Oracle Problems in the GGM

	Lower Bounds in the Unknown-order GGM
	Order-finding in the Unknown-order GGM
	Root Extraction and Repeated Squaring Problems

	Lower Bounds in the Quantum GGM
	Quantum Generic Group Models
	Basic Quantum Generic Group Model
	QGGM with Coherent Indices
	Quantum Generic Group Algorithm with Classical Preprocessing

	Discrete Logarithms in the QGGM
	Unknown-order QGGM

	Lower Bounds in the Quantum Generic Ring Model
	Quantum Generic Ring Model
	Quantum Generic Ring Algorithm with Classical Preprocessing

	Lower Bounds in the QGRM

	Lower Bounds for Index Calculus Algorithms
	Smooth Generic Group Model
	Polynomial Representations

	The Discrete Logarithm Problem in the SGGM

	Missing Proofs
	Missing proofs in the GGM
	A QGGM lemma

	An Alternative Proof for the MDL Lower Bound
	Equivalence between GGMs
	Lower bounds in the Random Representation GGM

