
zkPi: Proving Lean Theorems in Zero-Knowledge
Evan Laufer

emlaufer@cs.stanford.edu
Stanford University

Alex Ozdemir
aozdemir@cs.stanford.edu

Stanford University

Dan Boneh
dabo@cs.stanford.edu
Stanford University

ABSTRACT
Interactive theorem provers (ITPs), such as Lean and Coq, can
express formal proofs for a large category of theorems, from abstract
math to software correctness. Consider Alice who has a Lean proof
for some public statement𝑇 . Alice wants to convince the world that
she has such a proof, without revealing the actual proof. Perhaps
the proof shows that a secret program is correct or safe, but the
proof itself might leak information about the program’s source code.
A natural way for Alice to proceed is to construct a succinct, zero-
knowledge, non-interactive argument of knowledge (zkSNARK) to
prove that she has a Lean proof for the statement 𝑇 .

In this work we build zkPi, the first zkSNARK for proofs ex-
pressed in Lean, a state of the art interactive theorem prover. With
zkPi, a prover can convince a verifier that a Lean theorem is true,
while revealing little else. The core problem is building an efficient
zkSNARK for dependent typing. We evaluate zkPi on theorems
from two core Lean libraries: stdlib and mathlib. zkPi successfuly
proves 57.9% of the theorems in stdlib, and 14.1% of the theorems
in mathlib, within 4.5 minutes per theorem. A zkPi proof is suffi-
ciently short that Fermat could have written one in the margin of
his notebook to convince the world, in zero knowledge, that he
proved his famous last theorem.

Interactive theorem provers (ITPs) can express virtually all sys-
tems of formal reasoning. Thus, an implemented zkSNARK for ITP
theorems generalizes practical zero-knowledge’s interface beyond
the status quo: circuit satisfiability and program execution.

1 INTRODUCTION
Many popular applications, such as Zoom and Microsoft Office, are
proprietary and their source code is not public. Such software is
usually programmed in a high-level language but distributed as an
opaque executable. Users download and execute it, with no hard
guarantees of what it will do their computers. The user trusts that
the software will work as intended.

For open source software, users can audit (or trust a third party
to audit) the source directly. Using verification tools, one could even
prove that the software is safe. Proprietary software precludes such
audits or verification, but it allows the creator to protect intellectual
property (IP) contained in the software’s source. Essentially, pro-
prietary software prioritizes IP protection over public auditability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Is it possible to protect IP while also guaranteeing arbitrarily
complex notions of safety? In theory, yes, by combining verification
with cryptography. First, the developer would use an interactive
theorem prover (ITP), such as Coq [1] or Lean [2], to define and
verify the safety of their executable. Here the definition of safety is
an ITP theorem and verification produces a proof of that theorem.
However, publishing the ITP proofmight leak information about the
program’s design. Such leakage occurs because an ITP proof about
a program often relies on program invariants that are closely tied to
its design [3]. Fortunately, a cryptographic proof like a zkSNARK [4]
eliminates such leakage. With a zkSNARK for a language 𝐿 one
can prove that a statement is in 𝐿, without revealing anything else.
Moreover, the proof is short and verification is fast.

With a zkSNARK for the language of correct ITP theorems, one
could show that an executable is safe, without revealing anything
else about the executable. Users would download the executable,
the safety theorem, and the zkSNARK proof, and check the proof
before running the executable.1 In this paper, we make progress
towards this vision by building the first zkSNARK for ITP theorems.

The Challenge. Building an efficient zkSNARK for ITP theorems
is challenging. Recall that an ITP provides a language for specifying
a theorem (e.g., that some executable is safe) and tools for construct-
ing a proof of the theorem. Then, the ITP uses the Curry-Howard
correspondence [6]: it compiles the theorem and proof respectively
to a type 𝜏 and a term 𝑡 in a dependently-typed lambda calculus;
the proof is valid if and only if 𝑡 has type 𝜏 (see Sec. 2).

Unfortunately, it seems difficult to build an efficient zkSNARK
for even a basic dependent type checker.
• First, 𝑡 and 𝜏 are large recursive datatypes, and there is almost
no prior work on efficient zkSNARKs for recursive datatypes.
• Second, dependent type-checking algorithms are recursive since
𝑡 ’s type depends on the types of its sub-terms. Efficiently model-
ing recursion in zkSNARKs is challenging. Naively, the circuit
model forces shallow recursions to have the same cost as deep
recursions [7], so costs grow exponentially in recursion depth.

Our Approach. We overcome both challenges. First, we represent
recursive datatypes as nodes with child pointers in a random-access
memory, optimized using recent developments in zkSNARKs for
randomized circuits [8]. This memory can be de-duplicated by the
prover, mimicking a hash-consing table [9]. Further, by having the
prover pre-create every term needed during type-checking, these
memories become read-only, enabling another optimization [10].

Second, we optimize recursive type-checking via inference trees.
A type-checker’s only explicit output is a boolean: whether 𝑡 has
type 𝜏 . However, if the output is true, then there exists an implicit
tree of primitive inferences that shows it. Since each inference
is locally checkable, we have the prover materialize the tree and

1Such a tool would could also check automatically constructed proofs. Our techniques
focus on dependent typing, which is also the basis of proofs from SMT solvers [5].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

the verifier check it, node-by-node. Results of previous checks
are cached, so every inference is checked just once. This cache is
essentially a memoization table for the type-checker’s recursion.

Third, the materialized inference tree approach is especially ef-
fective because checking the validity of a provided tree is concretely
easier than algorithmically constructing a valid tree.

An Implemented zkSNARK for Lean Theorems. We apply our
techniques to a restriction of the type system underlying the ITP
Lean [2]. We built a system, called zkPi, that proves knowledge of
a proof for a Lean theorem. The prover’s input is a Lean theorem𝑇

and also a Lean proof 𝑃 for that theorem. Here 𝑃 is a secret “witness”
for why the theorem is correct. The prover’s output is a succinct
zkSNARK proof 𝜋 that it knows a valid Lean proof 𝑃 for 𝑇 . The
verifier’s input is the Lean theorem 𝑇 along with the succinct zk-
SNARK proof 𝜋 . The verifier outputs “accept” or “reject.” The proof
system is succinct: the size of the proof 𝜋 and the verifyer’s time
are constant (independent of the size of the original Lean proof 𝑃).

Lean proofs use more than basic dependent typing; they also
use inductive constructions, the foundation for proofs by induction.
Consequently, we must extend our zkSNARK system to handle
inductive constructions. However, here, the privacy that we obtain
has one limitation: the set of inductive declarations used in the proof
is revealed. Formally, we model this leak by including this set in
the instance provided as input to the verifier. This small leak does
not affect our applications.

We obtain additional concrete and asymptotic optimizations by
a suitable data structure design and type system modifications.

Evaluation. We evaluate zkPi by proving theorems from the two
core Lean libraries: stdlib and mathlib. Section 1.1 gives a few ex-
amples of the theorems in these libraries. Within 4.5 minutes (per
theorem) on an 8-core machine, zkPi can write zkSNARKs for 57.9%
of stdlib theorems and 14.1% of mathlib theorems. Some theorems
would require more resources, while others use Lean constructs
that we do not support. More work is needed to write zkSNARKs
about complex program safety properties, but our results represent
an important step towards that goal. Not only do we produce the
first-ever zkSNARK for any Lean theorem, but our system also works
for a significant fraction of the two biggest Lean libraries. We discuss
directions for improvement in Section 9.

A Broader Perspective. A practical zkSNARK for ITP theorems
narrows the gap between the theory and practice of zero-knowledge.
In theory, there is a ZK proof system for any language in PSPACE [11].
However, efficient, implemented zkSNARKs support languages sim-
ilar to circuit satisfiability [8, 12–25]. So, an efficient zkSNARK for
another language requires an efficient reduction to circuit satisfia-
bility. Historically, this has only been done for languages similar to
circuit satisfiability—such as program execution [12, 26–37].

Recent work by Luo et al. [38]. extends the interface of practi-
cal (interactive) ZK by building a system for resolution proofs of
propositional unsatisfiability. Our practical zkSNARK for ITP theo-
rems extends the interface even further. In the language of an ITP,
one can express resolution proofs, DRAT proofs (unsatisfiability
proofs than can be exponentially smaller than resolution [39]), and
much more. In fact, ITPs can express virtually all human-designed
systems of formal reasoning. Of course, not all ITP theorems are

provable in practice, but for those that are, we would like a practi-
cal zkSNARK. A sufficiently efficient zkSNARK for ITP theorems
would create a world where “Everything [Practically] Provable is
[Practically] Provable in Zero-Knowledge” [11].

Contributions. In sum, our contributions are:
1. Techniques for building a zkSNARK of dependent typing; e.g.:
• a representation of lambda calculus terms (§4.1)
• the use of materialized inference trees (§4.2)

2. Techniques for zkSNARKs of dependent typing with inductive
constructions (§4.4).

3. Data-structure and type system optimizations (§4.3–§4.8).
4. The first implemented zkSNARK for Lean theorems; The system

successfully proves knowledge of a Lean proof for a significant
fraction of the theorems in stdlib and mathlib (§6–§7).

1.1 Examples

Mathematical Theorems. Figure 1 shows three mathematical
theorems that we provedwith zkPi, and one that we have not proved.
Figure 1a is the commutativity of logical and: for all propositions
𝑎, 𝑏 we have that 𝑎 ∧ 𝑏 holds iff 𝑏 ∧ 𝑎 does. Our proof is an explicit
Lean term. The next theorem (Fig. 1b) is the handshaking lemma:
in an undirected graph, the sum of vertex degrees is even. Our
proof is inductive, and is written in Lean’s tactic language. The
third theorem (Fig. 1c) is a statement of the pigeonhole principle.
Informally: if 𝑛 pigeons are placed into 𝑛 + 1 holes, then there must
be one hole with two pigeons. We formalize this as an equivalent
Lean statement: a list of natural numbers whose sum is greater than
its length must have an element that is greater than one. Here, the
proof is more complex than the previous examples (see App. D).
Lastly, we state the Collatz Conjecture in Figure 1d. Although the
statement is very simple, there is no known proof. However, using
zkPi, one would be able to succinctly show they had found such a
proof in zero-knowledge. In fact, zkPi proofs are sufficiently short
that they would fit in Fermat’s proverbial margin.

Properties about Programs. Figure 1e shows a function dedup_-
list which accepts a list of natural numbers and returns a list with
no duplicates. The function is correct if, given list 𝑜𝑙 , the output list
𝑙 : has no duplicates, 𝑙 contains all values in 𝑜𝑙 , and 𝑜𝑙 contains all
values in 𝑙 . We prove this function correct. Since the type signature
encodes correctness (but not the implementation), zkPi is able to
prove dedup_list is correct without revealing the implementation.
One can also state and prove properties of programs in languages
other than Lean. This is done by encoding the semantics of the
language in Lean, and representing the program as a lean term [41].

2 BACKGROUND
2.1 zkSNARKs
An argument of knowledge [4] for a predicate 𝜙 involves a prover
P and a verifierV .V knows an instance 𝑥 and a predicate 𝜙 .V
asks P to show that it knows a witness 𝑤 such that 𝜙 (𝑥,𝑤) holds.
To do so, P constructs a short and efficiently checkable proof 𝜋 . A
non-interactive argument of knowledge comprises three algorithms:
• Setup(𝜙) → (pk, vk): a pre-processing algorithm
• Prove(pk, 𝑥,𝑤) → 𝜋 : creates a proof that 𝜙 (𝑥,𝑤) = ⊤

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

theorem and.comm

(a b : Prop) : a ∧ b ↔ b ∧ a :=

iff.intro (and.swap) (and.swap)

(a) The commutativity of ∧

theorem degree_is_even (V: Type u) (g:

@graph V) : even (degree g) :=

begin

induction g, trivial, exact g_ih,

exact not_not_intro g_ih,

end

(b) Handshaking Lemma

theorem pigeonhole

(l : nat_list)

: ((list_len l) < (sum_list l))

→ (double_pigeon l)

:=

/- ommitted -/

(c) Pigeonhole Principle

1 inductive collatz : N → Prop

2 | coll0 : collatz 0

3 | coll1 : collatz 1

4 | coll_even : ∀ n : N, collatz n → collatz (2 * n)

5 | coll_odd : ∀ n : N , collatz (6 * n + 4) →
6 collatz (2 * n + 1)

7
8 theorem collatz_conjecture : ∀ n : N, collatz n := sorry

(d) The Collatz Conjecture [40]

1 structure deduped_list (ol : list N) :=

2 (l : list N) (p : nodup l)

3 (sub : subset l ol) (sub2: subset ol l)

4
5 def dedup_list Π (ol : list N), deduped_list ol :=

6 /- omitted -/

(e) A deduplication function. Notice the correctness conditions are
encoded within the type deduped_list.

Figure 1: Examples of Lean theorems. Some details elided (see Appendix D). We have proven all (save collatz) with zkPi.

• Verify(vk, 𝑥, 𝜋) → {⊤,⊥}: accepts or rejects the proof

Two properties must hold: completeness and computational knowl-
edge soundness. Informally, completeness means that if𝑤 is valid,
then 𝜋 must be valid and computational knowledge soundnessmeans
that it must be computationally infeasible to construct a valid 𝜋
without knowing a valid𝑤 . See Appendix C for precise definitions.

Typically, proof systems do not operate directly on 𝜙 . Instead, a
compiler converts 𝜙 into an intermediate representation (IR) for the
proof system. Example IRs include Plonkish [42], QAPs [43], and
AIR [44]. There are zkSNARKs for different IRs [8, 12–22, 26–37].

We build on systems that use arithmetic circuits (or similar) as
the IR. A circuit C is a directed acyclic graph. It takes 𝑥 and𝑤 as
vectors of elements in a prime field F𝑝 , its gates compute + and
×, and it enforces some set of equalities. The circuit is satisfied
if all equalities hold. The size of C, denoted |C|, is the number
of non-linear multiplications (i.e., between two non-constants). A
circuit compiler outputs: C, an instance encoder Enc𝑥 and a witness
encoder Enc𝑤 such that C(Enc𝑥 (𝑥), Enc𝑤 (𝑥,𝑤)) ⇐⇒ 𝜙 (𝑥,𝑤).

We build on zero-knowledge Succinct Non-interactive ARguments
of Knowledge (zkSNARKs) [4]. Informally, zero-knowledge means
that 𝜋 must reveal nothing about𝑤 other than its existence. Suc-
cinctness means that |𝜋 |, |vk|, and verification time are polyloga-
rithmic in |C| and linear in |𝑥 |. Note that proving time and memory
can be quasi-linear in |C|. Proving costs are the bottleneck in most
applications of zkSNARKs, so, minimizing |C| is useful.

One optimization technique is using non-deterministic “advice”
from P. Suppose that P wants to show that 𝑥 ∈ F𝑝 is nonzero,
using only field equalities. It suffices to show that 𝑥𝑝−1 = 1 (by Fer-
mat’s little theorem, this holds iff 𝑥 ≠ 0). However, evaluating 𝑥𝑝−1
requiresΘ(log𝑝) multiplications. Instead, P can provide 𝑖 ∈ F such
that 𝑖𝑥 = 1. If 𝑥 ≠ 0, setting 𝑖 = 𝑥−1 satisfies the constraint; other-
wise, it is unsatisfiable. Using non-determinism (new data from P)
is a widespread optimization technique when using zkSNARKs.

Randomized circuits. Recent work [8] optimizes zkSNARKs fur-
ther through randomized circuits. The circuit C is extended to also
take as input a random 𝑟 ∈ F𝑛𝑟 . Let𝑝C,𝑥,𝑤′ denote Pr𝑟 [C(Enc𝑥 (𝑥),𝑤 ′, 𝑟)]:
the probability that C accepts (Enc𝑥 (𝑥),𝑤 ′). If 𝜙 (𝑥,𝑤) implies that
𝑝C,𝑥,Enc𝑤 (𝑥,𝑤) = 1, then C is complete for 𝜙 . The soundness error 𝜖𝑠
is the least upper bound on {𝑝C,𝑥,𝑤′ }𝑥,𝑤′ when �𝑤,𝜙 (𝑥,𝑤). If 𝜖𝑠
is negligible,2 then C is also sound. Given a sound and complete C,
one can build a zkSNARK for 𝜙 [8]. We discuss the precise security
definition of a zkSNARK for a randomized circuit in Appendix C.

Randomization is a powerful optimization tool. While standard
circuits capture the complexity class NP, randomized circuits cap-
tureMA (Merlin-Arthur) [45]. Importantly, some problems have
smaller randomized circuits than deterministic ones. For instance,
the smallest known deterministic circuit for checking whether
two vectors ®𝑥, ®𝑦 ∈ F𝑛 are permutations of one another has size
Θ(𝑛 log𝑛) [46]. However, consider a circuit that enforces∏𝑖 (𝑥𝑖 −
𝑟) = ∏

𝑖 (𝑦𝑖 −𝑟), for random 𝑟 . This circuit checks the same property
with soundness error 𝑛/|F |—using only Θ(𝑛) multiplications.

Hash Functions. We present two keyed hash functions. Let 𝑘 ∈ F
and ®𝑥 ∈ F𝑛 . The root hash𝐻r [47] and coefficient hash𝐻c are defined:

𝐻r (𝑘, ®𝑥) ≜
∏𝑛−1
𝑖=0 (𝑘 − 𝑥𝑖) 𝐻c (𝑘, ®𝑥) ≜

∑𝑛−1
𝑖=0 𝑘

𝑖𝑥𝑖

Both are universal hash functions: they are collision resistant if the
key 𝑘 is chosen after the inputs ®𝑥 , ®𝑥 ′. 𝐻𝑐 distinguishes inputs that
differ as sequences, while 𝐻𝑟 distinguishes inputs as multisets. For
both, the probability of a collision is ≤ 𝑛/|F | and the probability of
any pairwise collision among 𝑄 inputs is ≤ 𝑄2𝑛/|F | [48].

Read-Only Memory. These hash functions can be used to build
a zkSNARK for a circuit with random-access to a read-only mem-
ory (ROM). The ROM is a sequence of 𝑘 values 𝑥1, . . . , 𝑥𝑘 (private
or public). The circuit’s inputs are augmented with a list of 𝑁
accesses (adr𝑖 , val𝑖)𝑁𝑖=1, each comprising an address and a value.

2A quantity 𝑓 is negligible if for all 𝑐 ∈ N, 𝑓 = 𝑜 (𝜆−𝑐) , with 𝜆 the security parameter.

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

𝐶 [𝑓] ↦→ Π𝑥 : N.N
𝐶 ⊢ 𝑓 : Π𝑥 : N.N

𝐶 [𝑔] ↦→ Π𝑥 : N.N
𝐶 ⊢ 𝑔 : Π𝑥 : N.N

𝐶 [𝑎] ↦→ N
𝐶 ⊢ 𝑎 : N

(*)(𝑦 ↦→ 𝑎,𝐶) ⊢ N ⇓ N
𝐶 ⊢ 𝑔 𝑎 : N

(*)(𝑥 ↦→ 𝑔 𝑎,𝐶) ⊢ N ⇓ N
𝐶 ⊢ 𝑓 (𝑔 𝑎) : N

Figure 2: An example tree with 𝐶 = (𝑓 ↦→ Π𝑥 : N.N , 𝑔 ↦→ Π𝑦 : N.N , 𝑎 ↦→ N).

𝐶 ⊢ 𝑓 : (Π𝑥 : 𝐴.𝐵) 𝐶 ⊢ 𝑎 : 𝐴 (𝑥 ↦→ 𝑎,𝐶) ⊢ 𝐵 ⇓ 𝐵′

𝐶 ⊢ 𝑓 𝑎 : 𝐵′

Figure 3: The judgement rule for typing an application.

The (extended) predicate holds if: the circuit is satisfied and for all
𝑖 ∈ {1, . . . , 𝑁 }, 1 ≤ adr𝑖 ≤ 𝑘 and 𝑥adr𝑖 = val𝑖 .

Previous work studies zkSNARKs for circuits with access to
read-write and read-only memories [8, 26, 29, 47, 49, 50]. For ROMs
with private data, the best existing solution [10] is based on 𝐻𝑟
and 𝐻𝑐 . It supports values 𝑥𝑖 that are each field vectors of length-ℓ .
Checking that the accesses are consistent with some ROM requires
a (randomized) sub-circuit of size 𝑂 (ℓ (𝑁 + 𝑘)), with soundness
error ≤ (1+ℓ) (𝑁+𝑘)/|F |. Read-write memories are more expensive.

2.2 Theorem Proving and Dependent Typing
Lean [2] is an interactive theorem prover (ITP): a tool for specify-
ing and proving theorems. Users write theorems and proofs in a
high-level language. The language can also express programs, so
Lean admits theorems (and proofs) about computer systems. The
correctness of the proofs is checked by a small kernel module.

Lean’s kernel reduces checking proofs to type-checking lambda
calculus terms. The kernel comprises three algorithms:
• Thm2Type (maps a Lean theorem 𝜙 to a lambda-calculus type 𝜏),
• Pf2Term (maps a Lean proof 𝜌 to a lambda-calculus term 𝑡), and
• TypeCheck(𝑡, 𝜏) → {0, 1}.
The kernel is sound if: for all𝜙 , if there exists a 𝑡 such that TypeCheck(𝑡,
Thm2Type(𝜙)) = 1, then 𝜙 is true. The user has found a valid proof
𝜌 for 𝜙 when TypeCheck(Pf2Term(𝜌), Thm2Type(𝜙)) = 1.3

Lean’s variant of the lambda calculus has a dependent type sys-
tem. Recall that in the lambda calculus, function terms are written
as 𝜆𝑥. 𝑒 (𝑥 is the argument and 𝑒 is the body), and applications
have form 𝑓 𝑥 . In a dependent type system, functions have Pi type:
written Π𝑥 : 𝑋 . 𝑌 , where 𝑋 is the type of the argument and 𝑌 is
the return type. A Pi type may be dependent, meaning the resultant
type 𝑌 can depend on the value of the argument 𝑥 . As an example,
If IntArray<N> is the type of length-N arrays, a function that takes
an integer x and returns an array of x zeros has dependent type.

Since dependent typing allows types to depend on values, type-
checking requires reasoning about evaluation. In fact, dependent
type-checkers have three modules: typing, evaluation, and equal-
ity. The typing module reasons about whether a term 𝑡 has type
𝜏 , written 𝑡 : 𝜏 . The evaluation module reasons about whether 𝑡
reduces to 𝑡 ′, written 𝑡 ⇓ 𝑡 ′ (e.g., through function application or

3This is an instance of the Curry-Howard correspondence [6], which relates valid proof
to well-typed terms.

beta reduction). The equality module reasons about whether 𝑡 and
𝑡 ′ are definitionally equal, written 𝑡 ≡ 𝑡 ′; this is case if they are:
syntactically equal, equal modulo variable renaming, etc.

Abstracting, we say that typing, evaluation, and equality are
different relations that the type-checker comprehends. Generally,
dependent type systems do not syntactically distinguish “types”
from “terms”; thus all three relations are binary relations over
terms. Furthermore, each relation depends on a context C that maps
variable names to terms. The notation 𝐶 ⊢ 𝑡 : 𝜏 denotes that 𝑡 has
type 𝜏 in the context of𝐶 . As we will see, contexts are used to reason
about variable bindings in typing and evaluation.

A dependent type system is defined by judgement rules (synony-
mously, inference rules) for determining whether a relation holds.
Each judgement rule assumes hypotheses and yields a conclusion.
For example, Figure 3 shows the judgement rule for function ap-
plications. It says that if 𝑓 has type Π𝑥 : 𝐴.𝐵, 𝑎 has type 𝐴, and 𝐵
evaluates to 𝐵′ when 𝑥 ↦→ 𝑎 is added to the context, then 𝑓 𝑎 has
type 𝐵′ (note that 𝑓 𝑎 denotes the application of 𝑓 to 𝑎).

While a judgement rule is essentially a template, a judgement
shows a statement about concrete terms, e.g., 4 : nat. Judgement
rules can be recursive; the application typing rule is an example:
it depends on two other typing relationships and one evaluation
relationship. Because of this recursion, a relationship between two
concrete terms is shown by a tree (really, a DAG) of judgements.

Figure 2 shows an example judgement tree. It proves that 𝑓 (𝑔 𝑎)
has typeN in a context where 𝑓 and𝑔 are functions fromN toN. The
internal nodes are judgements for the type of a function application.
The leaves comprise variable typing judgements (which depend
on a context lookup, i.e., 𝐶 [𝑡 ′] ↦→ 𝜏 ′) and constant evaluation
judgements (e.g., N ⇓ N). While an inference algorithm’s only
explicit output is a type 𝜏 such that𝐶 ⊢ 𝑡 : 𝜏 (𝜏 = N in the example),
the algorithm implicitly constructs the whole judgement tree.

Summarizing, in a dependent type system, a typing relationship
is proved by a tree of judgements about typing, evaluation, and
equality. A type-checker is an algorithm that takes as input terms 𝑡
and 𝜏 , outputs whether 𝑡 : 𝜏 . If the typing relationship holds, the
type-checker constructs (sometimes implicitly) a tree showing that.

Calculus of Inductive Constructions. Lean’s type system extends
the Calculus of Inductive Constructions (CIC) [51]: a dependent type
system that also includes inductive definitions. These allow for user-
defined inductive (i.e., recursive) data types. For example, Figure 4
shows the Lean definition of the natural numbers (lines 1–3). There
are two constructors: zero takes no arguments and returns a nat,
while succ recursive takes a nat, returning the next nat.

Each inductive type automatically defines a recursor (lines 5–9).
The recursor (like the Y combinator) facilitates defining recursive
functions over inductive datatypes. Its first argument (motive) is
the type of the recursive function. Subsequent arguments (minor

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

1 inductive N : Type

2 | zero : N

3 | succ : N → N

4
5 protected eliminator N.rec :

6 Π(motive: N → Type*),

7 (motive zero) →
8 (Π(n: N), motive n → motive (succ n)) →
9 (Π(n: N), motive n)

10
11 def is_zero : N → bool := @N.rec

12 (𝜆(n: N), bool) -- type: N -> bool

13 bool.tt -- case: zero

14 (𝜆(n: N) (p: bool), bool.ff) -- case: succ

15
16 #eval is_zero zero -- bool.tt

17 #eval is_zero (succ zero) -- bool.ff

Figure 4: Lean definition of the nat inductive type, its recur-
sor, and a definition of is_zero

premises) are functions that compute recursive cases. The final
argument (major premise) is the argument to the recursive function.

For example, is_zero (lines 11–14) defines a function from nat-
urals to booleans that detects zero. The motive is a Pi from nat
to bool: signifying our function will return bool. The first minor
premise (this one applies to the zero constructor) is just bool.tt.
The second minor premise is recursive. It ignores its arguments
and returns bool.ff.

The recursor can also be used to write inductive proofs over
the datatype (e.g., induction over the natural numbers). This is
possible, essentially, because motive can be dependent. In such a
proof, there is one inductive case for each recursive constructor.
Induction declarations can also be polymorphic over any number of
type parameters. This allows for general-purpose container types
like lists and maps. Typing and evaluation rules are added to the
type system for all constructors and the eliminator.

Lean’s type system includes other advanced features: type uni-
verses {Sort 𝑖}𝑖∈N, definitional equivalence for eta expansions,
proof irrelevance, quotient types, and more.

3 OVERVIEW: A ZKSNARK FOR LEAN
THEOREMS

Figure 5 shows the interface and pseudo-code for our zkSNARK for
Lean theorems. Setup accepts the security parameter and circuit size
parameters as arguments, and outputs the prover and verifier keys.
First, the function generates a circuit with the given parameters cp.
These parameters include the (maximum) number of judgements,
terms, axioms, inductive declarations, etc. Then, it uses CirC [7]
and Mirage [8] to create the proving key pk and verifying key vk.4

Prove generates a proof 𝜋 for a Lean theorem 𝜙 . It accepts pk and
four Lean constructs: the proof 𝜌 , theorem 𝜙 , axioms list ax, and a
list of inductive declarations ind. 𝜙 , ax, and ind are public data. First,

4Replacing Mirage with a different proof system (secure as defined in Appendix C)
would be straightforward.

Setup(1𝜆 , cp)→ (pk, vk)
𝐶 ← CircuitGen(cp)
𝑅 ← CirC.Compile(𝐶)
return Mirage.Setup(1𝜆, 𝑅)

Prove(pk, 𝜌 , 𝜙 , ax, ind)→ 𝜋

𝑡 ← Simplify(Pf2Term(𝜌))
𝜏 ← Simplify(Thm2Type(𝜙))
𝑥,𝑤 ← EncodeTermAndType(𝑡, 𝜏, ax, ind)
return Mirage.Prove(pk, 𝑥,𝑤)

Verify(vk, 𝜋 , 𝜙 , ax, ind)→ {0, 1}
𝜏 ← Simplify(Thm2Type(𝜙))
𝑥 ← EncodeType(𝜏, ax, ind)
return Mirage.Verify(𝑣𝑘, 𝑥, 𝜋)

Figure 5: Pseudo-code for zkPi: our zkSNARK for Lean

it uses Lean’s exporting utilities (Pf2Term and Thm2Type) to encode
𝜌 and 𝜏 as terms in the Calculus of Inductive Constructions (CIC).
Then, it simplifies both of these using zkPi’s simplification tool in
an attempt to reduce their size (see Sec. 6). It encodes the simplified
term and type using zkPi’s encoder, which converts the term/type,
axioms, and inductive declarations into the representation that the
circuit𝐶 expects, and creates a tree of judgements which prove that
the term is of the correct type. This tree is also a (private) circuit
input. Lastly, this encoded input is given to the Mirage prover,
which creates the final zkSNARK proof 𝜋 .

Verify checks 𝜋 ’s validity using the verifying key vk, a Lean
theorem 𝜙 , a list of axioms ax, and a list of inductive declarations
ind. First, it encodes𝜙 as a CIC term the Lean exporter and simplifies
it. Then, it encodes the type, axioms, and inductive declarations
in the representation that the circuit expects. Unlike Prove, it does
not create a tree of judgements; those depend on 𝜌 and 𝑡 , which are
private to the prover. Lastly, it verifies 𝜋 using the Mirage verifier.

4 A ZKSNARK FOR DEPENDENT TYPING
In this sectionwe describe the core part of zkPi and its optimizations.
We consider the following problem: Let 𝜏 be a public CIC type that
both the prover and verifier know. The prover would like to show
that it knows a (secret) CIC term 𝑡 such that the typing relation
Γ0 ⊢ 𝑡 : 𝜏 holds, where Γ0 is an empty context. Thus, we must design
anMA verification circuit for the Γ ⊢ 𝑡 : 𝜏 relation.
The task suggests three immediate challenges:
(1) As CIC terms, 𝑡 and 𝜏 are recursive datatypes.
(2) The definition of the typing relation is itself recursive—the

type of term 𝑡 may depends on the type of a sub-term 𝑡 ′—and
other necessary relations are also recursive.

(3) The typing relation involves operations on a data structure:
the context Γ.

We begin by considering term representation (§4.1), recursive
relations (§4.2), and contexts (§4.3) for a basic dependently-typed
lambda calculus. Then, we consider advanced features and tech-
niques: inductive constructions (§4.4), axioms (§4.6), and De Bruijn
levels (§4.7). Finally, we discuss low-level optimizations (§4.8).

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

⟨t⟩ |= 𝜆𝑥.⟨t⟩
| Π𝑥 : ⟨t⟩.⟨t⟩
| ⟨t⟩⟨t⟩
| 𝑥

(a) Abstract syntax

struct T {

kind: Kind ,

l: usize ,
r: usize , .. }

enum Kind { Lambda ,

Pi, App , Var , }

(b) Concrete term structure

Figure 6: Terms for a basic dependent lambda calculus.

Throughout, we consider a circuit built in two stages. First, we
describe the circuit in a high-level language that exposes non-circuit
concepts such as structures, arrays, fixed-width integers, functions,
control flow, etc. Second, a compiler converts this program into an
MA circuit. In our implementation, we specify a circuit design in
the Z# language (which extends ZoKrates [36] v0.6.2) and compile it
to a circuit with the CirC compiler infrastructure [7]. We implement
some techniques in Z# and others as improvements to CirC.

4.1 Term representation
A term is a recursive datatype. Figure 6a shows the abstract syntax
of terms: notice that there can be two subterms. We represent terms
as nodes in memory: each term is a Z# structure with pointers to
potential subterms (Fig. 6b). All terms reside in a global term array
and that subterm pointers index into. Thus, accessing a subterm
reduces to an array access; we discuss array accesses in Section 4.8.

We will use the same approach for other recursive datatypes in
zkPi. Each is its own structure, in its own global array, with pointers
into that array (and possibly the arrays of other datatypes). This
mimics the memory layout created by a typed-arena allocator.

4.2 Recursive relations
Our goal is to enforce a typing relationship inside a zkSNARK.
Recall that a type checker is given a term 𝑡 and type 𝜏 . It determines
whether 𝑡 : 𝜏 ; if so it produces (often implicitly) a judgement tree.
Thus, the type-checker searches for a valid judgement tree for 𝑡 : 𝜏 .
This is more difficult than the corresponding decision problem:
checking whether a given judgement tree is valid.

In a zkSNARK circuit we can optimize type-checking by materi-
alizing the judgement tree as prover advice. Then, the circuit only
solves the decision problem: enforcing the validity of the tree. We
represent judgements for that relation as a recursive datatype. The
recursive arguments show that the judgements hypotheses hold. As
with terms, we represent these recursive datatypes a Z# structures
in a global array. Our circuit simply checks that all judgements are
valid, and that the result is 𝑡 : 𝜏 , as desired.

Evaluation and definitional equality. The aforementioned judge-
ment tree includes judgements that show evaluations and defini-
tional equality, as well as typing. This is because the judgement
rules for the different relations are mutually referential. For exam-
ple, Figure 3 shows a typing rule that references evaluation, and
Figure 7 shows a definitional equality rule that references typing.
We handle all judgements in the same way: as recursive datatypes.

𝐶 ⊢ 𝑎 : 𝜏 𝐶 ⊢ 𝑏 : 𝜏 𝐶 ⊢ 𝜏 : 𝑃𝑟𝑜𝑝
𝐶 ⊢ 𝑎 ≡ 𝑏

Figure 7: Definitional equality holds formembers of the same
proposition. Prop refers to a distinguished Sort within the
Lean type system, which we discuss in 4.5.

To optimize, we merge the relations for definitional equality and
evaluation. That is, we make evaluation the union of the two rela-
tions. This reduces the number of cases in our judgement-checking
circuit, shrinking the circuit. As we discuss in Section 5.1, this does
not compromise soundness.

4.3 Contexts
Recall (Sec. 2.2) that contexts are crucial for evaluation and typing.
In typing (respectively evaluation), for a term 𝑡 containing a variable
𝑥 , one must determine the type (resp., value) of 𝑡 when 𝑥 is bound
to some type (resp., value) 𝜏 . We do this by including contexts in
relations and judgements.

There is another approach for variable bindings, called substitu-
tion. In it, one eagerly replaces occurrences of 𝑥 in 𝑡 with 𝜏 , yielding
a new term 𝑡 ′. A judgement about 𝑡 under binding 𝑥 ↦→ 𝜏 is instead
applied to 𝑡 ′. Both approaches are correct, but perform differently.

While the Lean kernel uses substitution, we use contexts. Substi-
tution creates many short-lived terms 𝑡 ′. Lean makes short-lived
terms cheap using a custom allocator. However, it’s unclear how
to make short-lived terms cheap in a zkSNARK. As we will dis-
cuss (Sec. 4.8), memory in a zkSNARK is cheaper if it is read-only.
But, read-only memory forces all objects to have the same (global)
lifetime. So, it is not clear how to get substitution to perform well.

A context is a key-value map with insert and lookup. With non-
determinism, both operations reduce to a predicateCtxElem(Γ′, Γ, 𝑘, 𝑣),
which holds when Γ′ = (Γ, 𝑘 ↦→ 𝑣). To “look up” 𝑘 in Γ′, P provides
Γ. To “insert” 𝑘 ↦→ 𝑣 into Γ, P provides Γ′.

We reduce map operations to set operations using the coefficient
hash (𝐻c, Sec. 2.1). The map becomes a set of hashes of key-value
pairs. Naively, this allows one key to map to multiple values. This
could let a malicious prover create invalid proofs using inconsistent
substitutions. We prevent this by using De Bruijn levels to ensure
that all binding names are fresh within an expression (§4.7).

Set representation. Typically, sets use comparisons or (keyless)
hashing: both are expensive in our setting. Keyless hash functions
are very non-linear, thus expensive in arithmetic circuits. Doing
comparisons in arithmetic circuits (bitwise) is also expensive. We
need a different kind of set.

We represent a set as a linked list, optimized with randomness
and non-determinism. In a linked list, the first element is easily
accessible. Consider a list 𝐿 containing an item 𝑥 that is not at the
head of 𝐿. To access 𝑥 , P provides an equivalent list 𝐿′ (i.e., one
with the same elements as 𝐿) with 𝑥 at the head. Then, P convinces
V that 𝐿′ and 𝐿 are equivalent using the root hash function 𝐻r
(Sec. 2.1): 𝐻r (𝑘, 𝐿) = 𝐻r (𝑘, 𝐿′), for random 𝑘 . Note if 𝐿 and 𝐿′ both
have length less than 𝑁𝐶 , the probability of a hash collision is at
most 𝑁𝐶/|F |, which is negligible.

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

This approach is efficient because evaluating 𝐻r for 𝐿 is cheap in
an arithmetic circuit. Computing the hash of 𝐿 from the hash of its
tail requires one array access (to get the tail’s hash) and one multi-
plication. Moreover, the hash computations can be amortized over
all equivalence checks: one samples a single 𝑘 , computes 𝐻r (𝑘, Γ)
for all contexts Γ, and uses those hash values to test equivalence.

We implement context list nodes (which contain a key, value,
tail pointer, and hash) as Z# structures in a global array. One can
show that 𝐻r-collisions occur with negligible probability (Sec. 5.1).

Reducing Redundancy with Subcontexts. A naive implementation
of context-based judgement-checking leads to proof redundancy.
The root cause is that contexts can bind unused variables. Consider
the (*) inferences in Figure 2:

(𝑥 ↦→ 𝑔 𝑎,𝐶) ⊢ N ⇓ N (𝑦 ↦→ 𝑎,𝐶) ⊢ N ⇓ N
For both inferences, the context is irrelevant. However, because the
inferences syntactically contain distinct contexts, they are distinct
and must be separately checked. Redundancy can occur even when
the context is used. For instance, the judgement 𝐶 ⊢ 𝑥 ⇓ N only
uses the value associated with variable 𝑥 within𝐶 . It is syntactically
distinct from 𝐶′ ⊢ 𝑥 ⇓ N, even when 𝐶′ also binds 𝑥 to N.

To reduce redundancy, we relax the type system. We allow the
context for an antecedent judgement to be a subset of the context
for the current judgement. The equivalence of this relaxation to
the original type system follows from the strengthening property
for CIC typing and evaluation We state the former here:

(Γ, 𝑥 ↦→ 𝐴) ⊢ 𝑒 : 𝜏 𝑥 ∉ 𝐹𝑉 (𝑒) ∪ 𝐹𝑉 (𝜏)
Γ ⊢ 𝑒 : 𝜏

This optimization is only sound if context subsets bind all free
variables in the expression being typed or evaluated. Otherwise,
an evaluation (𝜆𝑥, 𝑥) 𝑦 ⇓ 𝑥 would incorrectly be allowed. In type
checking, this is enforced in the variable typing rule: it requires the
typed variable to have a context entry. In evaluation, we cannot
require that all variables occur in the context (e.g. when evaluat-
ing (𝜆𝑥, 𝑥), the variable 𝑥 never gets bound to a value). Instead,
we enforce that the resultant expression correctly replaces substi-
tuted variables during lifting (§4.7), by requiring that the result of
applications do not contain the variable just replaced.

Subcontexts can asymptotically reduce judgment tree size. Ap-
pendix A presents a family of CIC term-type pairs {(𝑡𝛼 , 𝜏𝛼)} where
the tree size for 𝑡𝛼 : 𝜏𝛼 isΘ(𝛼) with subcontexts butΘ(𝛼2) without.

4.4 Inductive constructions
Recall (Sec. 2.2) that an inductive declaration creates a new datatype,
constructors, and a recursor.

Representation. We represent inductive declarations themselves
as public Z# structures that are passed into the circuit (Figure 8).
We discuss the significance of this publicity in Section 5. Each con-
structor is referred to by an integer name. The declaration contains
• the number of type parameters,
• the number of recursive and non-recursive arguments for each
constructor,
• a term pointer to the type of each constructor,
• a term pointer to the recursor body: the recursor without the type
parameters or motive parameter, and

struct Ind {

ty: usize ,
num_params: usize ,
ctors: [usize],
num_nonrec_params: [usize],
num_rec_params: [usize],
rec_body: usize ,
rec_argc: usize ,
motive: usize ,

}

Figure 8: Concrete inductive declaration structure

• the number of arguments the recursor expects,
• a term pointer to the motive,
• a term pointer to the inductive type itself.

Inductive types also require changes to term representation.
Terms must now include inductive types, constructors, or recursors.
First, we add three new entries to the enumeration of term kinds
(Fig. 6b): IndType, IndCtor, and IndRec. Second, for terms, we add
a (nullable) pointer to an inductive declaration structure (described
in the next paragraph). For an inductive type, constructor, or re-
cursor, this points to the inductive declaration. Finally, inductive
constructor terms also contain the name of their constructor.

Evaluating Recursor Applications. Recursors introduce a new
judgement rule for evaluating applications of the recursor to argu-
ments. Figure 4 shows an example evaluation on line 17. Paraphras-
ing, the example reduction is

rec (𝜆 n, bool) tt ret_ff (succ zero) ⇓ ff
where ret_ff = (𝜆 n, p, ff). With this example, we will explain
the five conditions required when evaluating a recursor application
𝑡 = rec · · · (and how we ensure that they hold).

First, 𝑡 must be well-typed, which we will discuss later.
Second, the head function of 𝑡 must be the recursor. A non-

applicative term is its own head; an applicative term’s head is the
head of the left pointer. In the example, the head is rec. We check
that the head is correct for each term. To optimize, we cache each
term’s head in a new field of the term structure.

Third, the recursor must take the correct number of arguments.
In the example, that is four. Like head, we check this for each term
and cache it in the term structure.

Fourth, the final argument’s head must be a constructor. In the
example, that argument is succ zero (head: succ).

Fifth, the result must be an evaluation of an application of the
correct minor premise. In the example, that minor premise is ret_ff.
It must be applied to the arguments of the major premise (zero) and
then the recursive evaluation. In sum, the result in our example is
an evaluation of ret_ff zero (is_zero zero).

We identify and apply the correct minor premise with new re-
lations get_arg and apply_elim. get_arg(𝑓 , 𝑖, 𝑔) holds when the
𝑖th argument to 𝑓 ’s head is 𝑔 and apply_elim ensures that the
application of the minor premise is well-formed (see App. B).

Other Considerations. Inductive type and constructor terms are
simpler than recursor terms. Neither require an evaluation rule.
Further, their typing rules are straightforward (App. B). However,

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

inductive list {Type u} : Type u

| list.nil : Π {T : Type u}, list T

| list.cons : Π {T : Type u}, T → list T → list T

Figure 9: Lean definition for a generic list type, which uses a
universe parameter u to support any inner type.

the typing rule for a recursor is somewhat complex because the
recursor is universe polymorphic. We discuss further in Section 4.5.

Argument Constraints. To simplify the circuit, we only allow
the final parameters of an inductive constructor to be recursive.
Lean does not require this: for example, list.cons could accept the
recursive list parameter first and then the value. However, our re-
quirement is easy to satisfy: arguments could even be automatically
re-ordered as a pre-precessing step.

We also do not support some types of recursive arguments. Lean
allows recursive arguments to either appear by themselves (e.g. the
second argument of list.cons) or as the body of a Pi-type (e.g. the
argument can be a function which returns the inductive type). We
do not support the latter; it would be more complex.

Inductive Families. An inductive type family is an inductive dec-
laration that declares a family of types, instead of just a single type.
Like for inductive types, their constructors can be recursive—i.e.,
can accept accepts a member of the inductive type family as a pa-
rameter. zkPi supports only non-recursive inductive type families
(e.g. the eq inductive type family is supported, while vector is
not). As a consequence, we also do not support mutually inductive
types or nested inductive types, which are desugared into recursive
inductive families. Adding recursive inductive type families would
require modifications to the recursor evaluation judgements.

4.5 Universe Parameters
In Lean, types are partitioned into different universes or sorts: {Sort 𝑖}𝑖∈N.5
Here, 𝑖 is called the universe level. Each type parameter specifies
which sort it inhabits.

Monomorphizing Definitions. Lean allows definitions to be pa-
rameterized by (i.e., polymorphic over) universe levels. This allows
for definitions that are polymorphic over the type hierarchy. Fig-
ure 9 shows an example of this used for the type list. Our circuit
requires that all Lean theorems have their universe parameters
resolved before being proven by the circuit. Essentially, the prover
must monomorphize universe-polymorphic definitions. We require
this to avoid implementing the complexity of universe polymor-
phism within the circuit.6 We believe this restriction does not bar
many applications, and we discuss further in Section 9.

Polymorphic Recursors. However, we do allow for universe poly-
morphism in inductive recursors. We do this because it allows the

5Lean distinguishes Sort 0 as the sort of propositional types (e.g. 𝑎 ∧ 𝑏). It is denoted
Prop, and has special typing rules (see Appendix B).
6This complexity would be significant. Some typing rules (e.g., Type-Sort) modify
universe levels, while others (e.g., Type-Pi) impose bounds on them (App. B). Thus, typ-
ing with universe polymorphism requires proving that such (symbolic) modifications
respect (symbolic) bounds.

prover to recurse to any type without specifying all the monomor-
phizations publicly (increasing privacy), and because it is simpler
to implement than generic universe parameterization. For example,
recall (Fig. 4) that the type of the recursor for nat is

nat.rec : Π(m : nat → Type*),

(m zero) →
(Π(n : nat), m n → m (succ n)) →
(Π(n : nat), m n)

Here, Type* is syntactic sugar for any sort. Instead of allowing
universe-polymorphic recursors, we could require the prover to
publicly monomorphize them. However, allowing polymorphism is
manageable for two reasons.

First, though a recursor may be polymorphic, its recursor body
may not be. The recursor body refers to everything after the motive.
For nat, this would be the term,

(m zero) →
(Π(n : nat), m n → m (succ n)) →
(Π(n : nat), m n)

Note that it is not universe polymorphic.
Second, the polymorphism imposes only a mild constraint when

typing the recursor itself. Essentially, we allow the prover to claim
the recursor has any suitable universe-monomorphized type. To
elaborate on meaning of “suitable”, we describe the four typing
conditions for the recursor itself. First, the typemust be a Pi type and
have parameters for all the parameters of the inductive type. Second,
the motive must be a Pi type which accepts the correct parameters,
and returns some Sort. Third, the body of the recursor’s type after
the motive must be equal to the recursor body. This equality holds
(even after monomorphizing) because the recursor body does not
depend on the polymorphic universe level. Finally, certain recursors
are not allowed to be universe polymorphic. Particularly, most
inductive propositions are only allowed to have a motive which
returns a Prop. We mark this restriction with an additional boolean
field in each inductive declaration, any_elim, which signifies the
motive may return any Sort. We capture all these conditions with a
relation, well_formed_rec, described in Appendix B.

4.6 Axioms
An axiom is a type that is assumed to be inhabited; or, equivalently
a theorem that is assumed to be true. Axioms are encoded in the
circuit as a public input array of pointers to types. The axiom itself
is also a kind of term. An Axiom term has kind Axiom, and contains
a pointer into the axiom array. The typing judgement for an Axiom
term follows the term pointer in the Axiom array, and ensures the
type is correct. The axiom array should only contain pointers to
public terms (or the prover could replace the term with whatever
they like). But, we do not enforce this within the circuit, the verifier
checks this constraint externally.

4.7 Lifting
Thus far we have described variable bindings using names. For
example, (𝜆𝑥, 𝑏) 𝑒 binds the variable named 𝑥 to the expression
𝑒 when evaluating 𝑏. However, we actually use De Bruijn levels
to represent variable bindings. De Bruijn levels assign names to
fresh bindings based on the number of previous bindings, where

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

the most recent binding is referred to by adding one to the previous
binding. These are similar to De Bruijn indices, where the binding
names are reversed. For instance, in the term (𝜆0, 𝜆1, 𝑏), the first
binding has name 0, and the second binding has name 1. This
ensures that binding names are unique by construction, so alpha
renaming and duplicate binding checks are not needed. We use De
Bruijn levels instead of De Bruijn indices, because indices require
re-indexing the context when adding a new binding. For example,
when evaluating (0 ↦→ 𝑒) ⊢ (𝜆0, 1) 𝑒′), De Bruijn indices require
incrementing the name of 𝑒 within the context (0), to create a new
context (1 ↦→ 𝑒, 0 ↦→ 𝑒′). In contrast, De Bruijn levels leave prior
bindings intact. With levels, (0 ↦→ 𝑒) ⊢ (𝜆1, 0) 𝑒′ creates a new
context (0 ↦→ 𝑒, 1 ↦→ 𝑒′).

De Bruijn levels necessitate lifting: re-indexing bound variables
when substituting one term into another. For example, consider the
term (𝜆0, 𝜆1, 0) (𝜆0, 0). To evaluate it, we first add (0 ↦→ (𝜆0, 0)) to
the context. Then, to evaluate (0 ↦→ (𝜆0, 0)) ⊢ (𝜆1, 0), we substitute.
Replacing 0 in (𝜆1, 0) with (𝜆0, 0) would invert the De Bruijn levels;
instead, we lift the replacement to get (𝜆2, 2). Finally, we lift the
substitution result (𝜆1, (𝜆2, 2)), to get (𝜆0, (𝜆1, 1)). We implement
lifting as an additional relation within the circuit.

4.8 Additional optimizations
Memory. Our techniques require many accesses to large random-

access memories that contain Z# structures. These memories are
read-only because the objects they contain (terms, judgements,
etc.) are checked—but not modified—by our circuit. Further, P can
ensure that all judgements are checked and all terms are used, so
each address is accessed at least once. Thus, ROM optimizations
apply (Sec. 2.1). We implemented them as CirC compiler passes;
which allows our Z# circuit to be expressed in terms of array reads.

Relation Grouping. To hide the proportions of different judge-
ment rules used in a proof, all judgements (evaluation, typing, . . .)
are structures in a single array, with a field that identifies the judge-
ment rule. The array size is public, but this only reveals a bound on
the total number of judgements.

This unification into a single array impacts performance. Sup-
pose that rule 𝑖 is checkable with a circuit of size 𝑠𝑖 . The cost of
checking that some rule has been correctly applied cannot be less
than the max: max𝑖 𝑠𝑖 (recall: circuits cannot branch). Every judge-
ment pays this max𝑖 𝑠𝑖 cost, even if that judgement’s rule has cost
𝑠 𝑗 ≪ max𝑖 𝑠𝑖 . This is particularly painful for lifting judgements,
which are numerous, but very cheap to check on their own (Sec. 7.3).

To reduce the overhead of these rules, we split lifting judgements
into their own array; their correctness is checked separately. If
𝑙 is the number of lifting judgements, 𝑝 is the number of non-
lifting judgements, 𝑠𝑙 is cost of checking lifting, and 𝑠𝑝 is the cost
of checking non-lifting, then this optimization reduces cost from
𝑂 ((𝑙 + 𝑝)max(𝑠𝑙 , 𝑠𝑝)) to𝑂 (𝑙𝑠𝑙 + 𝑝𝑠𝑝). However, it reveals an upper
bound on the number of lifting rules used within the proof. As
usual, this mild leakage can be mitigated by increasing the bound.

Node splitting. In our type system, some judgement rules (e.g.,
Eval-Ind, App. B) have four antecedent judgements, while most
have two or fewer. Accessing each antecedent is an array access,
so checking a judgement may require four accesses. Again, since

circuit cannot branch, these accesses are materialized for every
judgement rule, regardless of whether it actually uses the parent
or not. This means that the number of judgement rule lookups in
a naive implementation with 𝑝 judgement rules is 4𝑝 , even if all
judgement rules only use two of the parents. To avoid this cost, we
modify our type system.We split all judgement rules that have more
than two parents into multiple rules, such that each individual rule
only has two antecedent judgements. This modification is straight-
forward to implement. In the worst case (if all judgements require
three lookups), this will introduce marginal overhead because of
the redundant/unused fields within the intermediate judgement
structures. However, in the best case (if all judgements require two
lookups), this cuts the number of antecedent lookups by 50%.

5 SECURITY
5.1 Existential Soundness
First, we consider existential soundness of zkPi: whether it is feasible
to construct a valid zkPi proof for a false Lean theorem 𝜙 . Here
we sketch the security proofs, see Appendix E for further details.
The existence of a proof 𝜌 for 𝜙 reduces to whether the CIC type
𝜏 = Thm2Type(𝜙) is inhabited by some term 𝑡 :

𝜏 ∈ LI LI ≜ {𝜏 : ∃𝑡, Γ0 ⊢ 𝑡 : 𝜏} (1)

Prior work on Lean’s type theory shows that if (1) holds, then 𝜙 is
true (relative to a reasonable background theory) [52, §6]. In our sys-
tem, we establish (1) indirectly. We construct a randomized circuit
C(𝜏, (𝑡,𝑤), 𝑟) that implements a modification of Lean’s type system.
That is, it respects a slightly different set L′I of inhabited types.
Then, we show that C is satisfied with the Mirage zkSNARK [8].

Now, we will argue that L′I is sound (just as Lean’s LI is) and
that C is a sound randomized circuit for L′I . Together, these facts
imply that our zkSNARK is existentially sound for the language of
true Lean theorems.

Type System Modifications. There are two differences between
our type system and the Lean kernel’s. First, our system’s evalua-
tion relation is the union of the kernel’s evaluation and definitional
equality relations (Sec. 4.2). Second, our system omits some con-
structs and judgements (i.e., quotient types, 𝜂-reduction, etc.). The
omissions shrink the set of inhabited types, so they preserve sound-
ness. However, our modified evaluation relation must be analyzed.

Our type system’s soundness follows closely from prior work.
Carneiro’s analysis of Lean [52] distinguishes definitional equality
as checked by the Lean kernel (which implements algorithms for
term evaluation and equality checking) from an ideal definitional
equality relation. The kernel cannot implement the ideal relation
because it is undecidable. Carneiro shows that the kernel’s equality
relation is a subset of the ideal relation. Then, since the type system
is sound when instantiated with the ideal relation, it is also sound
for the kernel’s relation. Our evaluation relation is also a subset of
Carneiro’s ideal equality relation (despite the difference in name),
so our type system is sound by the same reasoning.

Circuit Soundness. Our randomized circuit C is sound (Sec. 2.1)
for the language L′I . C checks a judgement tree in the type system
that defines L′I , using randomness as an optimization. It uses
randomness to reduce certain polynomial equalities (e.g., 𝑓 (𝑋,𝑌) =

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

𝑔(𝑋,𝑌)) to equalities over evaluations of those polynomials at a
random input (e.g., 𝑓 (𝑟𝑋 , 𝑟𝑌) = 𝑔(𝑟𝑋 , 𝑟𝑌), for random 𝑟𝑋 , 𝑟𝑌 ∈ F).

This reduction is used by C in three ways. First, in ROM check-
ing, for various ROMs. If ROM 𝑖 has length 𝑛𝑖 , values of length
ℓ𝑖 , and at most 𝐾 accesses, then the soundness error here is ≤
2
∑

𝑖 (1+ℓ𝑖) (𝑛𝑖+𝐾)/|F | (Sec. 2.1). Second, context entries are hashed to
scalars using 𝐻𝑐 with a random key. The probability of a collision
between any pair of the 𝑁𝐶 context entries is ≤ 𝑁 2

𝐶/2 |F |. Third,
contexts are tested for (order-independent) equality using 𝐻𝑟 with
a random key. The number of inputs to each root-hash at most 𝑁𝐶 ,
and the number of equalities is at most

(𝑁𝐶

2
)
. Thus, the probability

of a collision in 𝐻𝑟 for any equality test is at most 𝑁 3
𝐶/2 |F |.

Thus, the total soundness error of C is at most

(4∑𝑖 (1 + ℓ𝑖) (𝑛𝑖 + 𝐾)) + 𝑁 2
𝐶
+ 𝑁 3

𝐶

2|F|

In asymptotic terms, all of 𝑁𝐶 , ℓ𝑖 , 𝑛𝑖 , 𝐾 are poly(𝜆), and |F| ≈ 2𝜆 ,
so the soundness error is negligible in 𝜆. Concretely, in our experi-
ments (Sec. 7.3), 𝑁𝐶 , 𝑛𝑖 , 𝐾 are at most 104, ℓ𝑖 is at most 30, and |F| >
2255. Thus, the soundness error of C is less than 2−214 ≪ 2−128
(the target soundness of Mirage).

5.2 Knowledge Soundness and Zero-Knowledge
If one assumes Mirage is knowledge-sound, then zkPi’s proof for
CIC typing is also knowledge-sound. That is, for a P∗ to convince
V , it must know a CIC term that has type Thm2Type(𝜙). More
precisely, there exists an efficient extractor E that, for any Lean
theorem 𝜙 and any efficient prover P∗ that convincesV with all
but negligible probability, EP∗ (𝜙) : Thm2Type(𝜙) holds with all
but negligible probability. We construct E in Appendix E.1. Its
correctness follows from the assumption that Mirage is knowledge-
sound (App. C), the efficient invertibility of EncodeType, and the
closure of the set of inhabited CIC types under zkPi’s simplifier.

In an ideal zero-knowledge proof for Lean, only the theorem 𝜙

and the assumed axioms ax would be public. In zkPi, upper bounds
on the number of judgements, contexts, and lifting judgements
are public, as well as the inductive definitions ind used in the
proof (these are all included in the instance). Prior work has similar
bounds leakage [38], and it can be mitigated by artificially increas-
ing the bounds, at the cost of proving time. Similarly, in practice
many theorems are provable without private inductive declarations
(e.g. all our example theorems, see Section 7.1), in which case the
leakage of ind is immaterial. In Appendix E.2, we prove that zkPi is
zero-knowledge. This follows directly from the fact that Mirage is
zero-knowledge: the Mirage parameters encode only the aforemen-
tioned bounds and the Mirage instance encodes only (𝜙, ax, ind).

6 IMPLEMENTATION
To implement zkPi, we implement the sub-routines of Figure 5.
That is, we implement: a term simplifier (≈2.4k lines of code, in
Rust), an encoder (≈4k LOC, Rust), a circuit description (≈1k LOC,
Z#), Mirage [8] (a 500 LOC patch to the bellman [53] library), and
improvements to the CirC [7] Z# compiler (≈2.5k LOC, Rust). Our
implementation is open-source.7

7The code is available at: https://anonymous.4open.science/r/zkpi-F31E/

Simplifier. The simplifier attempts to simplify a CIC term 𝑡 to an
equivalent term 𝑡 ′ of smaller size (i.e., fewer sub-terms). Smaller
terms can be processed by a smaller type-checking circuit, which
reduces the cost of creating the zkSNARK. For instance, for the
and.comm theorem (Fig. 1a), Lean exports a term-type pair of size
154. Our simplifier reduces the size to 54. The simplifier also re-
duces the number of type-checking judgements needed. Without
simplification, the and.comm example requires 479 judgements. The
simplifier reduces this count to 300. Our simplifier is naive: it at-
tempts to fully evaluate both the proof term and type. Sometimes,
this may fail because even well-typed terms may take a long time
to evaluate. Indeed, the Lean kernel itself often times-out when
running the #reduce command over terms. We leave implementing
a more intelligent simplifier as future work.

Parameters. Our circuit description depends on some parameters.
That is, it describes a family of circuits indexed by these parameters.
Essentially, the parameters encode the maximum size of of a proof
checkable by that circuit, along various dimensions. Thus, proof
creation requires a circuit with sufficiently big parameters.

The parameters comprise the maximum numbers of (non-lifting)
judgements, lifting judgements, private terms, public terms, context
nodes, and axioms used in type-checking. The theorem is encoded as
public terms, while the proof is encodedwith private ones. There are
also four parameters for to inductive constructions: the number of
declarations, the total number of constructors, the maximum number
of recursive constructor arguments, and the maximum number of
non-recursive constructor arguments.

When using zkPi, one must determine sufficiently large param-
eters for the application, generate a circuit, and run Setup. Then,
one can create and verify proofs. Proving time and memory depend
on circuit size, which depends on the parameter values.

7 EVALUATION
We evaluate in four ways. First, we prove example theorems in
zero-knowledge. Second, we measure how many theorems from
from Lean’s standard library (stdlib) and from mathlib zkPi can
prove with limited resources. These experiments show that despite
limitations (Sec. 9), zkPi can handle real Lean proofs.

Third, we measure the dependence of zkPi’s performance on
system parameters (e.g., the number of judgements, terms, etc.).
This shows the cost of different system components.

Lastly, we compare zkPi to ZKUNSAT [38], a prior work for
interactive, non-succinct ZKPs for propositional unsatisfiability.
This experiment shows that zkPi takes longer to prove statements
about propositional unsatisfiability. However, we’ll also see that
the generality of zkPi can compensate for this.

7.1 Example Theorems
First, we prove some example theorems, which includes those men-
tioned in Section 1.1. See Appendix D for the full Lean source code
of each example. We wrote the Lean proofs for these theorems,
using alternate implementations of common standard library con-
structs (e.g. addition, subtraction, equality of natural numbers) to
reduce term and proof size. We also state some basic facts (e.g.,
the transitivity of greater-than-or-equals) as public axioms (see
Appendix D). Then, we compute suitable circuit size parameters cp

https://anonymous.4open.science/r/zkpi-F31E/

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

Theorem Prove (s) Verify (s) Setup (s) # Constraints

Simplify Compile Mirage.Setup

and.comm 23.28 0.15 0.0021 37.83 25.24 538892
demorgan 85.10 0.26 1.30 152.89 74.34 1698306

degree_is_even 58.72 0.43 0.0037 102.82 56.02 1216795
pigeonhole 235.70 0.96 0.0097 455.19 208.64 4327799
dedup_list 1499.51 10.92 2.74 5086.72 1192.22 24384281

insertion_sort 2967.25 25.81 3.21 17480.79 2435.70 48615773

Figure 10: Proving time, verifying time, setup time, and constraint counts for zkPi as applied to the example theorems.

Library Success (%) Failure, by cause (%)

Memout Timeout Quotient Types Inductive Families Eta Expansion Other

mathlib 14.1 54.5 8.1 20.5 0.3 0.4 2.1
stdlib 57.9 18.5 16.9 2.2 1.1 1.5 1.9

Figure 11: The percentage of theorems from each library that we proved in zero-knowledge.

for each example. Finally, we run zkPi’s Setup, Prove, and Verify
algorithms to prove and verify the theorems in zero-knowledge.
Figure 10 shows the proving time, verification time, setup time,
and R1CS constraint count for each example. The proof size for all
theorems is 240 bytes. We intentionally give examples with a wide
range of proving times.

Setup ismore expensive. However, typically onewould run Setup
once (with sufficiently large cp) and re-use the proving and verify-
ing keys (pk, vk) to create and check many proofs. Thus, Setup’s
cost is amortized away.

7.2 Library Theorems
In this experiment, we run zkPi on many pre-proved Lean theorems.
Our benchmark set is 2k theorems, half sampled from stdlib and half
from mathlib. stdlib comprises ≈10k theorems about basic objects:
numbers, lists, sets, etc. [54]. mathlib is a community-developed
Lean library of formal mathematics with ≈100k theorems and over
1M lines of code [55, 56]. mathlib is broad: it spans analysis (e.g.,
the principle of analytic continuation), algebra (e.g., Hilbert’s basis
theorem), combinatorics (e.g., Hall’s marriage theorem), and more.
As before, we run Setup, Prove, and Verify for each benchmark.
Our testbed is a GCP e2-highmem-8 machine, which has 8 cores
and 64GB of memory. We limit each attempt to 30 minutes.

Figure 11 shows the percentage of theorems proven from each
benchmark set, as well as the percentage which fail. We success-
fully prove and verify many theorems in zero-knowledge: 57.9% of
the stdlib benchmark set and 14.1% of the mathlib benchmark set.
There are two primary failure causes. First, some proofs are large
enough that our pipeline exausts its time or memory limit. 54%
of the mathlib benchmark set and 18% of the stdlib benchmark
set fail because of memory exhaustion. Second, some proofs (es-
pecially in mathlib) use features that zkPi doesn’t support. 23% of
the mathlib benchmark set and 7% of the stdlib benchmark set fail
because of unsupported features (quotient types, inductive families,
𝜂-expansion, etc.).

The reasons that many theorems exhaust the resource limits is
because they have huge proofs. One key reason for this is because
in our experiments we prove each theorem from first principles.

0

20

40

60

0 1 2 3 4
Proving Time (min)

%
 P

ro
ve

d Library

mathlib

stdlib

Figure 12: The number of theorems provable in various
amounts of time.

Meanwhile, when Lean’s kernel checks theorems, it checks each
theorem assuming that previous theorems are correct. Incremen-
tally proving theorems in zero-knowledge is a promising way of
reducing resource costs. zkPi’s support for axiom’s already allows
incremental proofs if the lemmas used by the theorem are public.
We believe zkPi can be extended to do this privately using tech-
niques like commit-and-prove or proof recursion. Another reason
for large proof sizes is that many common Lean tactics like simp
and rw can produce needlessly large proofs. For example, a proof
that ∀𝑎, 𝑏 ∈ bool, 𝑎 | |𝑏 = 𝑡𝑡 → 𝑎 = 𝑡𝑡 ∨ 𝑏 = 𝑡𝑡 using simp was 4060
judgements. A proof for the same theorem without simp was only
741 judgements. Looking at other ways to reduce proof sizes in
Lean is another promising direction for future work.

Figure 12, shows the proving time for theorems proved from
stdlib and mathlib. The maximum amount of time spent on any
one proof is ≈4.5; almost all of the rest of the pipeline’s 30 minute
time-limit is spent in Setup.

7.3 Performance Analysis
Now, we analyze how the size of the type-checking circuit depends
on system parameters (Sec 6). Our size metric is the number of rank-
1 constraints in the compiled circuit; this is essentially equivalent to
the number of non-linear multiplications [57]. This metric is stan-
dard, because the time and memory costs of Setup and Prove both
depend quasi-linearly on it. To measure the dependence on a param-
eter 𝑝 , we set all other parameters to 1. We compile our circuit for
𝑝 ∈ {10𝑖 }4

𝑖=0 and measure constraint count. Then, multiple-linear

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

Parameter Constraints

Judgements 1638
Lifting Judgements 282
Terms 44
Public Terms 132
Context Nodes 95
Axioms 10
Ind. Declarations 40
Ind. Constructors 94
Non-Rec Args 94
Rec Args 94

Figure 13: Total constraint count is a linear function of all
parameters. This table shows the coefficients.

10

100

1000

5 10 15 20
Pigeons

P
ro

vi
ng

 ti
m

e
(s

)

System

zkPi (all n)

zkPi (fixed n)

ZKUNSAT (fixed n)

Figure 14: Proving time for the pigeonhole principle. ZKUN-
SAT takes less time to produce a proof for a propositional
representation (for fixed 𝑛). However, zkPi can prove pigeon-
hole directly (for all 𝑛) in a modest amount of time.

regression (which gives a near-perfect fit) shows the dependency
of constraint count on each parameter. Figure 13 shows the results.

Judgements clearly has the largest impact: 1638 constraints each.
There are three reasons for this. First, each judgement may require
many additional RAM accesses. Because the circuit model does not
allow for branching, these accesses are the union of the accesses
required by all judgement rules. Second, checking a judgement
entails additional judgement accesses (itself and two antecedents).
Judgements are the largest Z# structure by far (they have 20 fields!),
which must be “unpacked” into a sequence of fields at each access.
Third, even without RAM, the judgement checking circuit is large
because there are many different judgement types.

On the other hand, axioms, inductives, contexts, and terms are
cheap because they add few or no RAM accesses, and they require
few constraints to validate. Finally, the considerable difference be-
tween the cost of general judgements and lifting judgements justi-
fies our decision to separate the them (Sec. 4.8).

7.4 Comparison to ZKUNSAT
ZKUNSAT [38] is an interactive, non-succinct ZKP for proposi-
tional unsatisfiability proved with resolution. Lean can also express
resolution proofs [58], so we evaluate zkPi against ZKUNSAT. We
use formulas that encode the pigeonhole principle (if 𝑛 + 1 pigeons
are placed in 𝑛 holes, some hole has two pigeons) for each value of
𝑛 [59]. We generate a resolution proof with PicoSAT [60], and use
zkPi or ZKUNSAT to convert it to a zero-knowledge proof.

Figure 14 shows the time to refute the formula for different 𝑛.
Each run is limited to 1 hour. For fixed 𝑛, ZKUNSAT (optimized for
resolution) is faster than zkPi (which is general-purpose).

However, zkPi is able to prove more powerful statements than
ZKUNSAT. For example, ZKUNSAT’s resolution proofs can only
show that pigeonhole holds for a specific value of 𝑛. Further, since
resolution proofs of pigeonhole have size exponential in 𝑛 [59],
ZKUNSAT cannot handle large pigeonhole instances. In contrast,
zkPi is able to prove the pigeonhole principle generically for all val-
ues of 𝑛 in a single theorem in 235.7 seconds (see Section 7.1). More
generally, since ZKUNSAT is for propositional proofs, it cannot
directly prove any statement over an infinite domain (e.g. natural
numbers, data types, Turing machine traces).

8 RELATEDWORK
A long line of research proves correct computation evaluation in
zero-knowledge [12], including proof systems for circuit evaluation
and (bounded) RAM machine execution, and similar [7, 8, 13–35,
49, 57, 61–74]. We build on this research to implement a practical
zkSNARK for Lean theorems. In addition to proving properties
about a single program/circuit execution, a Lean theorem can show
that a safety property holds for all executions.

In a closely related work, Luo et al. build a non-succinct, interac-
tive ZKP of propositional unsatisfiability [38]. Meanwhile, we build
a zkSNARK for a more expressive target (Lean theorems). A con-
current work extends this (interactive and non-succinct) approach
to SMT theorems [75]. Some SMT proof calculi build on dependent
typing [76–78], so zkPi’s core could be used for SMT theorems too.

There are also interactive protocols to privately solve distributed
satisfiability problems: including SAT [79] and computational tree
logic [80]. These assume semi-honest behavior, so they do not
constitute a ZK proof. In contrast, zkPi is succinct, non-interactive,
and more expressive. Finally, Fang et al. build a ZKP for static
program analysis [81].

9 DISCUSSION AND FUTUREWORK
Limitations and Future Work. zkPi’s limitations suggest direc-

tions for future work. First, zkPi reveals the inductive declarations
used in the proof (Sec. 5.2). Often this leakage is immaterial, be-
cause the inductive types are already public. For example, none of
the proofs of our example theorems use private inductive types. In
principle, one could remove this limitation with an in-circuit test
that a declaration is well-formed.

Second, zkPi leaks upper bounds on the number of judgements,
lifting judgements, and context entries (essentially, a 3D bound
on proof size). This creates a mild trade-off between privacy and
efficiency. Prior work has a similar tradeoff [38].

Third, zkPi does not support all of Lean: it does not handle
quotient types, eta-expansion, universe parameterization (Sec. 4.5),
nor all inductive declarations (Sec. 4.4). Many mathlib theorems
use some of these features, so supporting them would increase the
completeness of zkPi.

Conclusion. Wehave designed and constructed the first zkSNARK
for Lean theorems. Our implementation works for a significant
fraction of real Lean theorems from stdlib and mathlib. Our key
technical contribution is a collection of techniques for zkSNARKs of
dependent typing. One future application is distributing proprietary
binaries with ZK proofs of their safety or correctness.

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

Acknowledgements. redacted REFERENCES
[1] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program

development: Coq’Art: the calculus of inductive constructions. Springer.
[2] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and

Jakob von Raumer. 2015. The Lean theorem prover (system description). In
International Conference on Automated Deduction. Springer, 378–388.

[3] Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg,
Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. 2010. Software foundations.
Webpage: http://www. cis. upenn. edu/bcpierce/sf/current/index. html (2010).

[4] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin,
Aviad Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. Journal
of Cryptology 30, 4 (Oct. 2017), 989–1066.
https://doi.org/10.1007/s00145-016-9241-9

[5] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli.
2013. SMT proof checking using a logical framework. Formal Methods in System
Design (2013).

[6] William A Howard. 1980. The formulae-as-types notion of construction. To HB
Curry: essays on combinatory logic, lambda calculus and formalism 44 (1980),
479–490.

[7] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. 2022. CirC: Compiler
infrastructure for proof systems, software verification, and more.

[8] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Dawn Song. 2020. MIRAGE: Succinct Arguments for Randomized Algorithms
with Applications to Universal zk-SNARKs. In USENIX Security. USENIX
Association, 2129–2146.

[9] Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe modular
hash-consing. In ML.

[10] Lior Goldberg, Shahar Papini, and Michael Riabzev. 2021. Cairo – a
Turing-complete STARK-friendly CPU architecture. Cryptology ePrint Archive,
Report 2021/1063. https://eprint.iacr.org/2021/1063.

[11] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. 1990. Everything Provable is Provable in
Zero-Knowledge. In CRYPTO (LNCS, Vol. 403), Shafi Goldwasser (Ed.). Springer,
Heidelberg, 37–56. https://doi.org/10.1007/0-387-34799-2_4

[12] Michael Walfish and Andrew J. Blumberg. 2015. Verifying computations without
reexecuting them: from theoretical possibility to near practicality. CACM (Feb.
2015).

[13] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael
Walfish. 2012. Making argument systems for outsourced computation practical
(sometimes). In NDSS. The Internet Society.

[14] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.
Blumberg, and Michael Walfish. 2012. Taking Proof-Based Verified Computation
a Few Steps Closer to Practicality. In USENIX Security, Tadayoshi Kohno (Ed.).
USENIX Association, 253–268.

[15] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:
Nearly Practical Verifiable Computation. In IEEE S&P. IEEE Computer Society
Press, 238–252. https://doi.org/10.1109/SP.2013.47

[16] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno,
and Michael Walfish. 2013. Resolving the conflict between generality and
plausibility in verified computation. In EuroSys.

[17] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. 2014.
Verifiable computation using multiple provers. Cryptology ePrint Archive,
Report 2014/846. https://eprint.iacr.org/2014/846.

[18] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien Coron (Eds.).
Springer, Heidelberg, 305–326. https://doi.org/10.1007/978-3-662-49896-5_11

[19] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential
Transactions and More. In IEEE S&P. IEEE Computer Society Press, 315–334.
https://doi.org/10.1109/SP.2018.00020

[20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In EUROCRYPT (LNCS), Vincent Rijmen and Yuval Ishai (Eds.).
Springer, Heidelberg, 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[21] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Cryptology ePrint Archive, Report 2019/953.
https://eprint.iacr.org/2019/953.

[22] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Halo: Recursive Proof
Composition without a Trusted Setup. Cryptology ePrint Archive, Report
2019/1021. https://eprint.iacr.org/2019/1021.

[23] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:
Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials
over Any Field. In ACM CCS. ACM Press, 2986–3001.
https://doi.org/10.1145/3460120.3484556

[24] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine:
Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

https://doi.org/10.1007/s00145-016-9241-9
https://eprint.iacr.org/2021/1063
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1109/SP.2013.47
https://eprint.iacr.org/2014/846
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1021
https://doi.org/10.1145/3460120.3484556

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

and Arithmetic Circuits. In 2021 IEEE S&P. IEEE Computer Society Press,
1074–1091. https://doi.org/10.1109/SP40001.2021.00056

[25] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowledge
Proof with Linear Prover Time (LNCS). Springer, Heidelberg, 299–328.
https://doi.org/10.1007/978-3-031-15985-5_11

[26] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In CRYPTO (LNCS, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.).
Springer, Heidelberg, 90–108. https://doi.org/10.1007/978-3-642-40084-1_6

[27] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. 2013. A
Hybrid Architecture for Interactive Verifiable Computation. In IEEE S&P. IEEE
Computer Society Press, 223–237. https://doi.org/10.1109/SP.2013.48

[28] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J.
Blumberg, and Michael Walfish. 2013. Verifying computations with state. In
SOSP. Extended version: http://eprint.iacr.org/2013/356.

[29] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014.
Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
USENIX Security, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association,
781–796.

[30] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014.
Scalable Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg,
276–294. https://doi.org/10.1007/978-3-662-44381-1_16

[31] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. 2015. Efficient RAM and control flow in verifiable outsourced
computation. In NDSS. The Internet Society.

[32] Matthew Fredrikson and Benjamin Livshits. 2014. ZØ: An Optimizing
Distributing Zero-Knowledge Compiler. In USENIX Security, Kevin Fu and
Jaeyeon Jung (Eds.). USENIX Association, 909–924.

[33] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. 2015. Geppetto:
Versatile Verifiable Computation. In IEEE S&P. IEEE Computer Society Press,
253–270. https://doi.org/10.1109/SP.2015.23

[34] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with
Program-Independent Preprocessing. In IEEE S&P. IEEE Computer Society Press,
908–925. https://doi.org/10.1109/SP.2018.00013

[35] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark: A
Framework for Efficient Verifiable Computation. In IEEE S&P. IEEE Computer
Society Press, 944–961. https://doi.org/10.1109/SP.2018.00018

[36] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates—Scalable Privacy-Preserving
Off-Chain Computations. In IEEE Blockchain.

[37] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. 2022. CirC: Compiler
infrastructure for proof systems, software verification, and more. IEEE Computer
Society Press, 2248–2266. https://doi.org/10.1109/SP46214.2022.9833782

[38] Ning Luo, Timos Antonopoulos, William Harris, Ruzica Piskac, Eran Tromer,
and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge.
https://eprint.iacr.org/2022/206. To appear in ACM CCS.

[39] Nathan Wetzler, Marijn JH Heule, and Warren A Hunt. 2014. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In SAT.

[40] xenaproject. 2018. Learning Lean by example.
https://xenaproject.wordpress.com/2018/12/30/learning-lean-by-example/.

[41] Anne Baanen, Alexander Bentkamp, Jasmin Blanchette, Johannes Hölzl, and
Jannis Limperg. 2021. The Hitchhiker’s Guide to Logical Verification.

[42] Srinath Setty, Justin Thaler, and Riad Wahby. 2023. Customizable constraint
systems for succinct arguments. https://ia.cr/2023/552 https://ia.cr/2023/552.

[43] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013.
Quadratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT
(LNCS, Vol. 7881), Thomas Johansson and Phong Q. Nguyen (Eds.). Springer,
Heidelberg, 626–645. https://doi.org/10.1007/978-3-642-38348-9_37

[44] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable
Zero Knowledge with No Trusted Setup. In CRYPTO (LNCS, Vol. 11694),
Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg,
701–732. https://doi.org/10.1007/978-3-030-26954-8_23

[45] László Babai. 1985. Trading Group Theory for Randomness. In ACM STOC. ACM
Press, 421–429. https://doi.org/10.1145/22145.22192

[46] Abraham Waksman. 1968. A permutation network. JACM 15, 1 (1968).
[47] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.

In ACM CCS, Michael K. Reiter and Pierangela Samarati (Eds.). ACM Press,
116–125. https://doi.org/10.1145/501983.502000

[48] Dan Boneh and Victor Shoup. 2021. A graduate course in applied cryptography.
Draft 0.6.

[49] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. 2013. Fast
reductions from RAMs to delegatable succinct constraint satisfaction problems:
extended abstract. In ITCS, Robert D. Kleinberg (Ed.). ACM, 401–414.
https://doi.org/10.1145/2422436.2422481

[50] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
2018. Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program

Execution. In ASIACRYPT (LNCS, Vol. 11272), Thomas Peyrin and Steven
Galbraith (Eds.). Springer, Heidelberg, 595–626.
https://doi.org/10.1007/978-3-030-03326-2_20

[51] Frank Pfenning and Christine Paulin-Mohring. 1989. Inductively defined types
in the Calculus of Constructions. In International Conference on Mathematical
Foundations of Programming Semantics.

[52] Mario Carneiro. 2019. The Type Theory of Lean. Technical Report. Version 1.0.
[53] Zcash developers. [n. d.]. Bellman Circuit Library and zkSNARK.

https://github.com/zkcrypto/bellman.
[54] The Lean Community. [n. d.]. Lean.

https://github.com/leanprover-community/lean. Version 3.43.0.
[55] The mathlib Community. 2020. The lean mathematical library. In Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs.
ACM. https://doi.org/10.1145/3372885.3373824

[56] The mathlib Community. [n. d.]. mathlib.
https://github.com/leanprover-community/mathlib.

[57] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. 2020. Scaling
Verifiable Computation Using Efficient Set Accumulators. In USENIX Security.
USENIX Association, 2075–2092.

[58] Tomaz Gomes Mascarenhas. 2023. Lean resolution proofs.
https://github.com/ufmg-smite/lean-
smt/blob/main/Smt/Reconstruction/Certifying/Resolution.lean.

[59] Armin Haken. 1985. The intractability of resolution. Theoretical computer science
39 (1985).

[60] Armin Biere. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean
Modeling and Computation (2008).

[61] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured
Reference Strings. In ACM CCS, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM Press, 2111–2128.
https://doi.org/10.1145/3319535.3339817

[62] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In CRYPTO (LNCS), Hovav Shacham and Alexandra Boldyreva
(Eds.). Springer, Heidelberg, 704–737.
https://doi.org/10.1007/978-3-030-56877-1_25

[63] Srinath Setty and Jonathan Lee. 2020. Quarks: Quadruple-efficient transparent
zkSNARKs. Cryptology ePrint Archive, Report 2020/1275.
https://eprint.iacr.org/2020/1275.

[64] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In IEEE S&P. IEEE
Computer Society Press, 926–943. https://doi.org/10.1109/SP.2018.00060

[65] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.
Wahby. 2021. Brakedown: Linear-time and post-quantum SNARKs for R1CS.
Cryptology ePrint Archive, Report 2021/1043. https://eprint.iacr.org/2021/1043.

[66] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical
verified computation with streaming interactive proofs. In ITCS, Shafi
Goldwasser (Ed.). ACM, 90–112. https://doi.org/10.1145/2090236.2090245

[67] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. 2012.
Verifiable Computation with Massively Parallel Interactive Proofs. In HotCloud.

[68] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In CRYPTO (LNCS, Vol. 11694), Alexandra Boldyreva and Daniele
Micciancio (Eds.). Springer, Heidelberg, 733–764.
https://doi.org/10.1007/978-3-030-26954-8_24

[69] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. [n. d.]. EMP-toolkit: Efficient
Multi Party computation toolkit. https://github.com/emp-toolkit.

[70] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering
Information Leakage from Browser Extensions. In ACM CCS, David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press,
1687–1700. https://doi.org/10.1145/3243734.3243823

[71] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive
Zero-Knowledge Proofs. In EUROCRYPT (LNCS), Vincent Rijmen and Yuval
Ishai (Eds.). Springer, Heidelberg, 569–598.
https://doi.org/10.1007/978-3-030-45727-3_19

[72] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz Zero-Knowledge
Processor with BubbleRAM. In ACM CCS. ACM Press, 2055–2074.
https://doi.org/10.1145/3372297.3417283

[73] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero
Knowledge for Everything and Everyone: Fast ZK Processor with Cached
ORAM for ANSI C Programs. In 2021 IEEE S&P. IEEE Computer Society Press,
1538–1556. https://doi.org/10.1109/SP40001.2021.00089

[74] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM Press, 2075–2092. https://doi.org/10.1145/3319535.3339820

[75] Daniel Luick, John Kolesar, Timos Antonopoulos, William R. Harris, James
Parker, Ruzica Piskac, Eran Tromer, Xiao Wang, and Ning Luo. 2023. ZKSMT: A
VM for Proving SMT Theorems in Zero Knowledge. https://ia.cr/2023/1762.

https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1109/SP.2013.48
http://eprint.iacr.org/2013/356
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2018.00013
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1109/SP46214.2022.9833782
https://eprint.iacr.org/2022/206
https://xenaproject.wordpress.com/2018/12/30/learning-lean-by-example/
https://ia.cr/2023/552
https://ia.cr/2023/552
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1007/978-3-030-03326-2_20
https://github.com/zkcrypto/bellman
https://github.com/leanprover-community/lean
https://doi.org/10.1145/3372885.3373824
https://github.com/leanprover-community/mathlib
https://github.com/ufmg-smite/lean-smt/blob/main/Smt/Reconstruction/Certifying/Resolution.lean
https://github.com/ufmg-smite/lean-smt/blob/main/Smt/Reconstruction/Certifying/Resolution.lean
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://doi.org/10.1109/SP.2018.00060
https://eprint.iacr.org/2021/1043
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/978-3-030-26954-8_24
https://github.com/emp-toolkit
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1145/3319535.3339820
https://ia.cr/2023/1762

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

𝐶 ⊢ 𝑓 : Π(𝑖 : [[2𝛼]]) .add [[𝛼]] [[𝛼]] 𝐶 ⊢ 𝑓𝑗−1 : [[2𝛼]] (𝐶, 𝑖 ↦→ 𝑓𝑗−1) ⊢ add [[𝛼]] [[𝛼]] ⇓ [[2𝛼]]
𝐶 ⊢ 𝑓 𝑓𝑗−1 : [[2𝛼]]

Figure 15: The recursive step in inference for 𝑡𝛼

[76] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli.
2013. SMT proof checking using a logical framework. Formal Methods in System
Design (2013).

[77] Liana Hadarean, Clark Barrett, Andrew Reynolds, Cesare Tinelli, and Morgan
Deters. 2015. Fine grained SMT proofs for the theory of fixed-width bit-vectors.
In LPAR.

[78] Duckki Oe, Andrew Reynolds, and Aaron Stump. 2009. Fast and flexible proof
checking for SMT. In SMT Workshop.

[79] Ning Luo, Samuel Judson, Timos Antonopoulos, Ruzica Piskac, and Xiao Wang.
2022. ppSAT: Towards Two-Party Private SAT Solving.
https://eprint.iacr.org/2021/1584. To appear in USENIX Security.

[80] Samuel Judson, Ning Luo, Timos Antonopoulos, and Ruzica Piskac. 2020.
Privacy Preserving CTL Model Checking through Oblivious Graph Algorithms.
In WPES.

[81] Zhiyong Fang, David Darais, Joseph P Near, and Yupeng Zhang. 2021. Zero
Knowledge Static Program Analysis. In CCS.

[82] Oded Goldreich and Yair Oren. 1994. Definitions and Properties of
Zero-Knowledge Proof Systems. Journal of Cryptology 7, 1 (Dec. 1994), 1–32.
https://doi.org/10.1007/BF00195207

[83] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In ACM CCS, Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM
Press, 62–73. https://doi.org/10.1145/168588.168596

[84] Ran Canetti and Marc Fischlin. 2001. Universally Composable Commitments. In
CRYPTO (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer, Heidelberg, 19–40.
https://doi.org/10.1007/3-540-44647-8_2

A REDUNDANCY HAS ASYMPTOTIC COST
We give a family of CIC term pairs {(𝑡𝛼 , 𝜏𝛼)}𝛼∈N such that
• the typing relation 𝑅 defined as ∅ ⊢ 𝑡𝛼 : 𝜏𝛼 holds
• with subcontexts, the inference DAG for 𝑅 has size Θ(𝛼)
• without, the inference DAG for 𝑅 has size Θ(𝛼2)

Let nat be an inductive type representing the natural numbers
through Peano arithmetic. For (metatheoretic) natural number 𝛼 ∈
N, let [[𝛼]] denote the inductive value for 𝛼 . Let add : nat →
nat→ nat be the addition function for inductive naturals, defined
recursively in its first argument.

Note that for all 𝛼, 𝛽 ∈ N, for all contexts 𝐶 , a reduction DAG of
size Θ(𝑖) shows that 𝐶 ⊢ add [[𝛼]] [[𝛽]] ⇓ [[𝛼 + 𝛽]].

The type 𝜏𝛼 is

Π(𝑎 : [[2𝛼]]) . Π(𝑓 : Π(𝑖 : [[2𝛼]]) . add [[𝛼]] [[𝛼]]) .[[2𝛼]]

and term 𝑡𝛼 is a function of 𝑎 and 𝑓 that applies 𝑓 to 𝑎 𝛼 times:

𝜆𝑎. 𝜆𝑓 . (𝑓 (𝑓 · · · (𝑓 𝑎) · · ·))

Proof size without subcontexts. We show that without subcon-
texts, the size of the inference DAG for 𝑅 is Θ(𝛼2). Let

𝑓0 ≜ 𝑎

𝑓𝑗 ≜ (𝑓 𝑓𝑗−1) (𝑗 = 1, . . . , 𝛼)
𝐹 ≜ Π(𝑖 : [[2𝛼]]) . add [[𝛼]] [[𝛼]]

The inference DAG begins with lambda typing judgements
· · ·

(𝑎 ↦→ [[2𝛼]], 𝑓 : 𝐹) ⊢ 𝑓𝛼 : [[2𝛼]]
(𝑎 ↦→ [[2𝛼]]) ⊢ 𝜆𝑓 . 𝑓𝛼 : Π(𝑓 : 𝐹) .[[2𝛼]]

∅ ⊢ 𝜆𝑎. 𝜆𝑓 . 𝑓𝛼 : 𝜏𝛼

The inference continues recursively with application judgements.
Let 𝑗 be in {1, . . . , 𝛼} and define 𝐶 ≜ (𝑎 ↦→ [[2𝛼]], 𝑓 ↦→ 𝐹). The
inference 𝐶 ⊢ 𝑓𝑗 : [[2𝛼]] holds from the inference 𝐶 ⊢ 𝑓𝑗−1 : [[2𝛼]],
as shown in Figure 15. This inference recurses to a base case (𝐶 ⊢
𝑎 : [[2𝛼]]) in a total of 𝛼 recursive steps. The inference for the type
of 𝑓𝑗 relies of the reduction

(𝐶, 𝑖 ↦→ 𝑓𝑗−1) ⊢ add [[𝛼]] [[𝛼]] ⇓ [[2𝛼]] (2)

In each instance of (2), the contexts differ, so each instance is justi-
fied by a DAG disjoint from all others. Thus, the total size of the
inference is 𝛼 · Θ(𝛼) = Θ(𝛼2).

Proof size with subcontexts. In a system that permits subcontexts
in reduction inferences, the DAG can be smaller. Each instance of
the reduction (2) follows from

𝐶 ⊢ add [[𝛼]] [[𝛼]] ⇓ [[2𝛼]] (3)

The latter reduction has an inference DAG size of Θ(𝛼), as before,
but it can be used for all instances of (2). Thus, the total inference
size is now Θ(𝛼).

B LISTING OF JUDGEMENT RULES
Figure 16 shows a listing of the judgement rules implementedwithin
the system. Our rules use a few base relations:
• lookup(𝐶,𝑛): get name 𝑛 from context 𝐶 ,
• get_args (Section 4.4),
• lookup_ind(𝑖): accesses the 𝑖th inductive declaration,
• lookup_ind_ctor(𝑖, 𝑐): accesses the 𝑐th constructor for the 𝑖th
inductive declaration, and
• get_args (Section 4.4)
• imax: impredicativemaximum,which is defined as imax(𝑢, 𝑣) =

if 𝑣 == 0 then 0 else max(𝑢, 𝑣)
They also reference a few term fields:
• “kind”: e.g., application, inductive constructor, etc.
• “ind”: a pointer to an inductive declaration (see Section 4.4)
if this term refers to one,
• “head”: the leftmost application argument, checked by the
head relation (see Section 4.4),
• “ind_ctor”: a pointer to the actually constructor term, if this
is a constructor
• ”argc”: the number of application arguments applied to the
head, check by the argc relation (see Section 4.4),

; as well as inductive declaration fields: defined in Section 4.4:
• “type”: the inductive type
• “any_elim”: a boolean which specifies that the recursor may
resolve to any Sort
• “rec_body”: the recursor’s body
• “num_params”: number of type parameters for the type
• “non_recs”: number of recursive parameters, by constructor

https://eprint.iacr.org/2021/1584
https://doi.org/10.1007/BF00195207
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-44647-8_2

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

𝑙𝑜𝑜𝑘𝑢𝑝 (𝐶,𝑛) = 𝑒
(Eval-Var)

𝐶 ⊢ Var 𝑛 ⇓ 𝑒
𝐶 ⊢ 𝑒 ⇓ 𝑒′

(Eval-Lam)
𝐶 ⊢ 𝜆𝑥.𝑒 ⇓ 𝜆𝑥.𝑒′

𝐶 ⊢ 𝐴 ⇓ 𝐴′ (𝑥 ↦→ 𝐴,𝐶) ⊢ 𝐵 ⇓ 𝐵′
(Eval-Pi)

𝐶 ⊢ Π 𝑥 : 𝐴.𝐵 ⇓ Π 𝑥 : 𝐴′ .𝐵′

𝐶 ⊢ 𝑓 ⇓ 𝑓 ′ 𝐶 ⊢ 𝑒 ⇓ 𝑒′
(Eval-App)

𝐶 ⊢ 𝑓 𝑒 ⇓ 𝑓 ′ 𝑒′
𝐶 ⊢ 𝑓 ⇓ 𝜆𝑥.𝑏 𝐶 ⊢ 𝑒 ⇓ 𝑣 (𝑥 ↦→ 𝑣,𝐶) ⊢ 𝑏 ⇓ 𝑣 ′

(Eval-App-Lam)
𝐶 ⊢ 𝑓 𝑒 ⇓ 𝑣 ′

(Eval-Id)
𝐶 ⊢ 𝑒 ⇓ 𝑒

𝐶 ⊢ 𝑒 ⇓ 𝑒′ 𝐶 ⊢ 𝑒′ ⇓ 𝑒′′
(Eval-Transitive)

𝐶 ⊢ 𝑒 ⇓ 𝑒′′
Γ ⊢ 𝑎 : 𝜏 Γ ⊢ 𝑏 : 𝜏 Γ ⊢ 𝑇 : Prop

(Eval-Proof-Irrel)
Γ ⊢ 𝑎 ⇓ 𝑏

𝑙𝑜𝑜𝑘𝑢𝑝 (Γ, 𝑛) = 𝑒
(Type-Var)

Γ ⊢ Var 𝑛 : 𝑒
(Type-Sort)

Γ ⊢ Sort 𝑢 : Sort (𝑢 + 1)
(𝑥 ↦→ 𝐴, Γ) ⊢ 𝑏 : 𝐵

(Type-Lam)
Γ ⊢ 𝜆𝑥, 𝑏 : Π 𝑥 : 𝐴.𝐵

Γ ⊢ 𝑓 : (Π 𝑥 : 𝐴.𝐵) Γ ⊢ 𝑒 : 𝐴 (𝑥 ↦→ 𝐴) ⊢ 𝐵 ⇓ 𝐵′
(Type-App)

Γ ⊢ 𝑓 𝑒 : 𝐵′
Γ ⊢ 𝑒 : 𝑇 ∅ ⊢ 𝑇 ⇓ 𝑇 ′

(Type-Eval)
Γ ⊢ 𝑒 : 𝑇 ′

𝐴 ⇓ 𝑣 Γ ⊢ 𝑣 : Sort 𝑖 (𝑥 ↦→ 𝑣, Γ) ⊢ 𝐵 : Sort 𝑗
(Type-Pi)

Γ ⊢ Π 𝑥 : 𝐴.𝐵 : Sort (imax(𝑖, 𝑗))

lookup_ind(𝑖) .type = 𝑇
(Type-Ind)

Γ ⊢ Ind 𝑖 : 𝑇
lookup_ind_ctor(𝑖, 𝑐) = 𝑇

(Type-Ind-Ctor)
Γ ⊢ IndCtor (𝑖, 𝑐) : 𝑇

ind = lookup_ind(𝑖) well_formed_rec(𝑛, ind.type, 𝑢, ind,𝑇)
(Type-Ind-Rec)

Γ ⊢ IndRec (𝑖, Sort 𝑢) : 𝑇

𝑇 = Π 𝑥 : 𝐴.𝑇 ′ 𝐼 = Π 𝑥 : 𝐴.𝐼 ′ well_formed_rec(𝑛 − 1, 𝐼 ′, 𝑢, ind,𝑇 ′)
(Well-Formed-Rec)

well_formed_rec(𝑛, 𝐼,𝑢, ind,𝑇)

𝑇 = Π 𝑥 : 𝑁 .𝑅 ind.rec_body = 𝑅 well_formed_motive(𝑁,𝑀,𝑢, ind.any_elim)
(Well-Formed-Rec-Zero)

well_formed_rec(0, 𝐼 , 𝑢, ind,𝑇)

𝑁 = Π 𝑥 : 𝐴.𝑁 ′ 𝑀 = Π 𝑥 : 𝐴.𝑀′ well_formed_motive(𝑁 ′, 𝑀′, 𝑢, ind.any_elim)
(Well-Formed-Motive)

well_formed_motive(𝑁,𝑀,𝑢, ind.any_elim)

𝑀 = Prop 𝑁 = Sort 𝑢
(Well-Formed-Motive-True)

well_formed_motive(𝑁,𝑀,𝑢, true)
𝑀 = Prop 𝑁 = Prop

(Well-Formed-Motive-False)
well_formed_motive(𝑁,𝑀,𝑢, false)

(Apply-Elim)
apply_elim(0, 0, 𝑒𝑖 , rec, 𝑜, 𝑓) = 𝑒𝑖

apply_elim(𝑛 − 1, 0, 𝑒𝑖 , rec, 𝑜, 𝑓) = 𝑓 ′
(Apply-Elim)

apply_elim(𝑛, 0, 𝑒𝑖 , 𝑟𝑒𝑐, 𝑜, (𝑓 𝑒)) = (𝑓 ′ 𝑒))

apply_elim(𝑛, 0, 𝑒𝑖 , rec, 𝑜, 𝑜) = 𝑓 ′
(Apply-Elim)

apply_elim(𝑛, 1, 𝑒𝑖 , rec, 𝑜, (𝑓 𝑒)) = (𝑓 ′ (rec 𝑒)))
apply_elim(𝑛,𝑚 − 1, 𝑒𝑖 , rec, 𝑜, 𝑓) = 𝑓 ′

(Apply-Elim)
apply_elim(𝑛,𝑚, 𝑒𝑖 , rec, 𝑜, (𝑓 𝑒)) = (𝑓 ′ (rec 𝑒)))

f .head.kind = IND_REC f .head.ind = 𝑖 f .argc = ind.rec_argc e.head.kind = IND_CTOR e.head.ind = 𝑖
(Ind-Rec-Match)

inds_match(𝑓 , 𝑒, ind)

lookup_ind(𝑒.𝑖𝑛𝑑) = 𝑖𝑛𝑑 e.ind_ctor = 𝑐 inds_match(𝑓 , 𝑒, 𝑖𝑛𝑑) get_arg(ind.num_params + 1 + 𝑐) = 𝑒𝑖
apply_elim(ind.num_non_recs[c] + ind.num_recs[c], ind.num_recs[c], 𝑒𝑖 , 𝑓 , 𝑒, 𝑒) = 𝑒′

(Eval-Ind)
𝐶 ⊢ 𝑓 𝑒 ⇓ 𝑒′

Figure 16: Listing of judgement rules implemented by the system

zkPi: Proving Lean Theorems in Zero-Knowledge Conference’17, July 2017, Washington, DC, USA

theorem pigeonhole (l : nat_list) : (lt_eff (list_len l) (sum_list l)) → (double_pigeon l) :=

nat_list.rec (sub_eff_zero_zero)

(𝜆 (l_hd : N) (l_tl : nat_list) (l_ih : lt_eff (list_len l_tl) (sum_list l_tl) → double_pigeon l_tl)

(h : lt_eff (list_len (nat_list.cons l_hd l_tl)) (sum_list (nat_list.cons l_hd l_tl))),

(em_eff (lt_eff (list_len l_tl) (sum_list l_tl))).cases_on

(𝜆 (h_1 : lt_eff (list_len l_tl) (sum_list l_tl)),

(or.intro_right (lt_eff nat.zero.succ l_hd) (l_ih h_1)))

(𝜆 (h_1 : ¬lt_eff (list_len l_tl) (sum_list l_tl)),

(or.intro_left

(double_pigeon l_tl)

(lt_eff_succ_gt h h_1))))

l

Figure 17: Pigeonhole proof

• “num_non_recs”: number of non-recursive parameters, by
constructor
• “rec_argc”: the total number recursor arguments

Most of these are standard for CIC. The only main additions
are the modified rules for the typing and evaluation of inductive
types. The typing rule Type-Ind-Rec depends on the relation Well-
Formed-Rec, which checks that the type 𝑇 is correct for the given
inductive type (as described in Sec. 4.5).

Prop. Recall (Sec. 4.5), that Prop (equivalently, Sort 0) is a dis-
tinguished type in Lean. It has some special typing rules. First, in
Lean, inhabitant of the same proposition are definitionally equal.
Since we combine definitional equality with evaluation, (Eval-Proof-
Irrel) is our analogue of this rule. Also, while generally a Pi Π 𝑥 :
𝑆𝑜𝑟𝑡 𝑖, 𝑆𝑜𝑟𝑡 𝑗 has type to 𝑆𝑜𝑟𝑡 imax (𝑖, 𝑗), Π 𝑥 : 𝑆𝑜𝑟𝑡 𝑢, Prop has
type Prop. Through imax(𝑖, 𝑗), which is 0 when j is and max(𝑖, 𝑗)
otherwise, the (Type-Pi) rule captures both.

Context Subsetting. Additionally, in all rules, we implicitly allow
each antecedent context to be a subset of the conclusion context.
Different antecedent contexts can be different subsets of the con-
clusion context. We omit this from our explicit description of the
rules for brevity.

C ZKSNARKS FORMA AND MIRAGE
Prior work [8] introduces the syntax and a construction for a zk-
SNARK for anMA language. However, they stop just short of
defining security. In this section, we review the syntax of such a
proof system and then define security. We conjecture that their
construction fulfills our security definition.

Let L be a language inMA, with a deterministic, polynomial
verification algorithm C(𝑥,𝑤, 𝑟) such that
• if 𝑥 ∈ L, ∃𝑤 such that Pr𝑟 [C(𝑥,𝑤, 𝑟) = ⊤] = 1, and
• if 𝑥 ∉ L, ∀𝑤 , Pr𝑟 [C(𝑥,𝑤, 𝑟) = ⊤] ≤ 𝜖𝑠 ≤ 1/2.

Here 𝜖𝑠 is the soundness error. With 𝑛 independent repetitions, one
can improve 𝜖𝑠 to 𝑂 (2−𝑛). Define 𝑅C as

𝑅C = {(𝑥,𝑤) : Pr𝑟 [C(𝑥,𝑤, 𝑟) = ⊤] = 1}

Let L be a set ofMA languages. A non-interactive proof sys-
tem for L is three polynomial-time, randomized algorithms Π =

(Setup, Prove,Verify) with the following syntax:

• Setup(1𝜆,L ∈ L) → (pk, vk): Given the security parameter
and a language L, generate a proving key pk and a verifying
key vk.
• Prove(pk, 𝑥,𝑤) → 𝜋 : Given a valid instance-witness pair,
construct a proof that 𝑥 is in the language that pk was gen-
erated for.
• Verify(vk, 𝑥, 𝜋) → {⊥,⊤}: Accept or reject a proof that 𝑥 is
the language L that vk was generated for.

Completeness. Π is complete if for all L ∈ L, for all (pk, vk) in
the support of Setup, and for all (𝑥,𝑤) ∈ 𝑅C ,

Pr[Verify(vk, 𝑥, Prove(pk, 𝑥,𝑤))] ≥ 1 − negl(𝜆)
where negl(𝜆) denotes a function 𝑓 (𝜆) that is 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N.

Knowledge soundness. Π is knowledge-sound if there exists a
polynomial-time, randomized algorithm E (the “extractor”) such
that for any L ∈ L and for any polynomial-time, randomized algo-
rithm P∗, the following is ≤ negl(𝜆):

Pr

(pk, vk) ← Setup(1𝜆,L)
(𝑥, 𝜋) ← P∗ (pk)

Verify(vk, 𝑥, 𝜋) = ⊤
∧ 𝑤 ← EP∗ (pk, 𝑥)

(𝑥,𝑤) ∉ 𝑅C


Zero-knowledge. Π is zero-knowledge if there exists a polynomial-

time, randomized algorithmS (the “simulator”) such that for allL ∈
L, for all (pk, vk) in the support of Setup, and for all (𝑥,𝑤) ∈ 𝑅C ,
the following distributions are computationally indistinguishable:

{Prove(pk, 𝑥,𝑤)} ≈ {S(tk, 𝑥)}
where tk is the simulation trapdoor from Setup.

Succinctness. Π is succinct if the length of 𝜋 and the runtime of
Verify are both bounded by poly(𝜆 + |𝑥 | + log |C|), where |C| is the
evaluation time of C.

A zkSNARK for L is a zero-knowledge succinct non-interactive
argument of knowledge: a Π that is complete, knowledge-sound,
zero-knowledge, and succinct.

Since non-interactive zero-knowledge proofs are impossible in
the standard model [82] for NP languages (assuming P ≠ NP),
they are also impossible forMA languages. But, there are many
constructions of non-interactive zero-knowledge for NP (and zk-
SNARKs forNP) in the random-oracle model [83] and the common-
reference-string model [84]. We conjecture that the Mirage proof

Conference’17, July 2017, Washington, DC, USA Evan Laufer, Alex Ozdemir, and Dan Boneh

system can be shown to be a zkSNARK in the generic group model,
or in the algebraic group model under a discrete-logarithm assump-
tion [8].

C.1 Application to NP languages
Let C′ (𝑥,𝑤, 𝑟) be a randomized circuit and C(𝑥,𝑤) be a determin-
istic circuit that defines anNP language L. We say that C′ is com-
plete with respect to C (or L) if for all 𝑥,𝑤 such that C(𝑥,𝑤) = ⊤,
Pr𝑟 [C′ (𝑥,𝑤, 𝑟) = ⊤] ≥ 1 and it is sound if for all 𝑥,𝑤 such that
C(𝑥,𝑤) = ⊥, Pr𝑟 [C′ (𝑥,𝑤, 𝑟) = ⊤] ≤ negl(𝜆). It’s easy to see that
given a C′ that is sound and complete for C, instantiating Mirage
with C′ gives a zkSNARK for the NP language L.

We use Mirage in this way to build zkPi’s zkSNARK for CIC
typing (Sec. 4). The language L is the set of inhabited CIC types.
The circuit C is the non-randomized type-checker, and we build a
optimized and randomized circuit C′ that we argue is sound for C
(Sec. 5).

D FULL EXAMPLE PROOFS
The Lean code for the pigeonhole proof is listed in Figure 17. The
full Lean code for our examples (including our custom standard li-
brary definitions) is open-source: https://anonymous.4open.science/
r/zkpi-F31E/lean-examples/.

E SECURITY
E.1 Knowledge Soundness
The following extractor shows that zkPi is knowledge-sound. It
relies on two procedures, DecodeTerm and Term2Pf.
EP∗ (pk, 𝑥 = (𝜙, 𝑎𝑥, 𝑖𝑛𝑑))→ 𝜋

𝜏 ← Simplify(ThmToType(𝜙)))
𝑥 ′ ← EncodeType(𝜏, 𝑎𝑥, 𝑖𝑛𝑑)
𝑤 ← Mirage.EP∗ (𝑝𝑘, 𝑥 ′)
𝑡 ← DecodeTerm(𝑤, 𝑥 ′)
𝜌 ← Term2Pf (𝑡)
return 𝜌

DecodeTerm is a deterministic, polytime algorithm that is an in-
verse of EncodeTermAndType. More specifically, if𝑥 ← EncodeType(𝜏, ax, ind)
and Pr𝑟 [C(𝑥,𝑤, 𝑟) = ⊤] = 1, then DecodeTerm(𝑤, 𝑥) guarantees
that its output 𝑡 satisfies ∅ ⊢ 𝑡 : 𝜏 (given axioms ax and inductive dec-
larations ind). EncodeType exists because in EncodeTermAndType’s
witness encoding creates a witness which includes an encoding
of a typing judgement for 𝜏 . That judgement includes a pointer
to a term 𝑡 that the circuit shows has type 𝜏 . DecodeTerm simply
decodes 𝑡 .

Term2Pf is a deterministic polytime algorithm that is an inverse
of Pf2Term. Given a CIC term 𝑡 , it constructs a Lean proof 𝜌 such
that 𝑡 = Pf2Term(𝜌), e.g., by constructing and explicit Lean term.

Nowwe analyze our extractor.Wewill show thatwhenMirage.EP∗

succeeds, our extractor does too. When the former succeeds, we
have 𝑟 , C(𝑥,𝑤, 𝑟) = 1, but then, per the property of DecodeTerm,
we have that ∅ ⊢ 𝑡 : 𝜏 (given axioms ax and inductive declarations
ind). Then we have that ∅ ⊢ Term2Pf (𝜌) : Thm2Type(𝜙), which,
per the Curry-Howard correspondence, implies that 𝜌 is a proof of
𝜙 .

One subtlety: in the foregoing proof, the typing relation “:” is
the typing relation for our modification of Lean’s type system.
Thus, the Curry-Howard correspondence is being applied between
Lean proofs and our type system. It is therefor important that the
correspondence holds between Lean’s proof language and it’s type
system, but between that proof language and our type system (as
we argued in in Section 5).

E.2 Zero-Knowledge
Zero-knowledge is more straightforward. We give the simulator
below. The inputs to the Mirage simulator are distributed exactly
the same as the inputs to the Mirage verifier in the real protocol.
Therefore, our simulators output is distributed exactly as the proof
in the real protocol.

Simulate(tk, 𝑥 = (𝜙, 𝑎𝑥, 𝑖𝑛𝑑))→ 𝜋

𝜏 ← Simplify(ThmToType(𝜙)))
𝑥 ′ ← EncodeType(𝜏, 𝑎𝑥, 𝑖𝑛𝑑)
return Mirage.Simulate(tk, 𝑥 ′)

https://anonymous.4open.science/r/zkpi-F31E/lean-examples/
https://anonymous.4open.science/r/zkpi-F31E/lean-examples/

	Abstract
	1 Introduction
	1.1 Examples

	2 Background
	2.1 zkSNARKs
	2.2 Theorem Proving and Dependent Typing

	3 Overview: A zkSNARK for Lean Theorems
	4 A zkSNARK for Dependent Typing
	4.1 Term representation
	4.2 Recursive relations
	4.3 Contexts
	4.4 Inductive constructions
	4.5 Universe Parameters
	4.6 Axioms
	4.7 Lifting
	4.8 Additional optimizations

	5 Security
	5.1 Existential Soundness
	5.2 Knowledge Soundness and Zero-Knowledge

	6 Implementation
	7 Evaluation
	7.1 Example Theorems
	7.2 Library Theorems
	7.3 Performance Analysis
	7.4 Comparison to ZKUNSAT

	8 Related Work
	9 Discussion and Future Work
	References
	A Redundancy has asymptotic cost
	B Listing of Judgement Rules
	C zkSNARKs for MA and Mirage
	C.1 Application to NP languages

	D Full Example Proofs
	E Security
	E.1 Knowledge Soundness
	E.2 Zero-Knowledge

