
WhisPIR: Stateless Private Information Retrieval
with Low Communication

Leo de Castro †⋄, Kevin Lewi†, and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

ABSTRACT
Recent constructions of private information retrieval (PIR) have
seen significant improvements in computational performance. How-
ever, these improvements rely on heavy offline preprocessing that is
typically difficult in real-world applications. Motivated by the ques-
tion of PIR with no offline processing, we introduceWhisPIR, a fully
stateless PIR protocol with low per-query communication. WhisPIR
clients are all ephemeral, meaning that they appear with only the
protocol public parameters and disappear as soon as their query is
complete, giving no opportunity for additional “offline" communica-
tion that is not counted towards the overall query communication.
As such, WhisPIR is highly suited for practical applications that
must support many clients and frequent database updates.

We demonstrate that WhisPIR requires significantly less com-
munication than all other lattice-based PIR protocols in a stateless
setting.WhisPIR is outperformed in computation only by SimplePIR
and HintlessPIR when the database entries are large (several kilo-
bytes). WhisPIR achieves this performance by introducing a number
of novel optimizations. These include improvements to the index
expansion algorithm of SealPIR & OnionPIR that optimizes the algo-
rithm when only one rotation key is available. WhisPIR also makes
novel use of the non-compact variant of the BGV homomorphic
encryption scheme to further save communication and computa-
tion. To demonstrate the practicality of WhisPIR, we apply the
protocol to the problem of secure blocklist checking, an important
user-safety application in end-to-end encrypted messaging.

1 INTRODUCTION
Private information retrieval (PIR) is a protocol to query a database
of records without revealing which record is being retrieved to the
machine hosting the database. PIR has a wide variety of applications
such as certificate transparency [LG15], metadata-hiding messag-
ing [AS16, ACLS18], password-breach alerting [TPY+19, LPA+19,
PIB+22], private contact discovery [KRS+19], and many others.

Recent works on PIR protocols have yielded exciting improve-
ments in computational performance [MW22, HHCG+23, ZPSZ23,
HDCGZ23]. However, these recent advancements heavily rely on
offline processing. This processing incurs substantial communica-
tion and computation overhead while also producing a state that
must be stored and accessed during the online phase. There are
two major varieties of PIR state, both of which incur significant
penalties.

• Client-side State. Many PIR protocols require each client
to store a state that depends on the database to assist with
query generation and processing. In some protocols, this
state is fixed for any number of online queries, such as
the database digest in [HHCG+23, ZPSZ23], or it can be
consumed in the online phase, such as the per-query state

in [HDCGZ23]. A state that is consumed must be replen-
ished in another offline phase. When the database changes,
this state must be updated for each client, and there is cur-
rently no effective solution to update a client-side state
in a communication-efficient manner. This precludes ap-
plications with frequent database updates. Furthermore, a
per-query client-side state assumes consistent opportuni-
ties to preprocess client queries as well as persistent client
storage between the offline and online phases.

• Server-side State. Some PIR protocols have queries where
the majority of the communication consist of reusable ele-
ments that are common across all queries from a specific
client. It is common for these protocols to have the client
upload these common elements in an offline phase, and
during the online phase the server accesses these elements
to process the query for a particular client. This includes
the per-client state in [MW22], which consists of a client’s
FHE evaluation keys. In addition to the communication of
the upload, this incurs significant storage requirements on
the server itself. For applications with many clients, this
storage can quickly outgrow the database size.

To illustrate the barriers introduced by these state requirements,
we discuss several practical applications of PIR where a stateful PIR
protocol will incur too much overhead.

Private contact discovery. Consider the application of private
contact discovery. In this application, a server stores a list of regis-
tered users, and new users joining a service want to check this list
against their contacts without revealing their contacts to the server.
Observe that this natural application negates the assumptions of
any stateful PIR scheme. The clients in this application have no
opportunity for offline preprocessing as they are joining the service
for the first time. Any per-client state required by the protocol
represents a significant storage overhead, since each database entry
corresponds to a client. In addition, each new client joining the
service represents an update to the database, meaning that any
client-side state must be updated with each new client that joins
the service.

Detecting malicious links in E2EE messaging. Consider the
setting of device-based end-to-end encrypted (E2EE) messaging,
such as in Signal or WhatsApp. The core guarantee of end-to-end
encryption in these applications ensures that clients can exchange
messages using the server as an intermediary message passer with-
out revealing any message content to the server. However, a com-
mon side-effect with E2EE messaging apps is the reduced ability for
the intermediary server to detect phishing attempts that involve
an adversary sending a message containing a malicious URL.

PIR offers away for this attack vector to be addressed in a privacy-
preserving manner: assuming that the server has access to an up-to-
date bank of malicious URLs and fake domains, the client’s device

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

can perform a query on a URL they received through the messaging
app using PIR with the server in order to learn whether or not this
URL exists in the server’s malicious URL bank. This Boolean out-
come can then be used to alert the user about the link they received,
(i.e. supplementing the link with a warning message within the
user’s conversation) all without revealing to the server the query
or the outcome.

However, note that PIR in this setting must operate under a set
of specific constraints: a constantly-updating database, high traffic
(on the order of hundreds of millions of users frequently sharing
URLs), and relatively relaxed requirements on latency, since the
outcome of the PIR query does not necessarily need to block the
transmission of the link, but can be processed after the message
has already been delivered. Specifically, due to the fact that a large-
scale messaging app that deploys this solution would likely be
engaging in millions of these queries per second, often attached
to much smaller payloads, the network bandwidth incurred by the
PIR protocol becomes a bottleneck in the overall practicality of the
solution.

1.1 Prior Work
The starting point for this work is the Spiral PIR protocol of Menon
and Wu [MW22]. In this protocol, a client’s PIR query is encrypted
with a fully homomorphic encryption (FHE) scheme [Gen09, BGV12],
then the lookup function is evaluated homomorphically on this
encrypted index. In all practical FHE schemes, homomorphic op-
erations require additional evaluation keys for efficiency and to
maintain the compactness of the ciphertext. The Spiral protocol
uploads the evaluation keys for each client in an offline phase,
then reuses these evaluation keys to process all subsequent client
queries. Our work can be viewed as taking the Spiral protocol and
compressing the FHE evaluation keys to the point where they can
be uploaded along with the actual query, removing any per-client
state that must be stored on the server. We introduce a number
of optimizations to make using these compressed evaluation keys
more efficient.

The Spiral protocol builds on several prior works with a similar
pipeline of performing homomorphic evaluation of an encrypted
index. In particular, the index expansion algorithm of SealPIR &
OnionPIR [ACLS18, MCR21] is a major focus of this work.

A recent line of work beginning with the SimplePIR protocol
of Henzinger et al. [HHCG+23] and continuing with the TipToe
protocol [HDCGZ23] focuses on optimizing the server computa-
tion time of processing a PIR query. While this is motivated by
the relatively slow performance of prior PIR constructions, both of
these works rely on heavy offline communication and computation
that are infeasible in many PIR applications. When the PIR server is
deployed by a large company or some other entity with significant
resources, server computation time can be heavily parallelized and
is typically not the bottleneck, especially for smaller databases. In
contrast, the communication between the PIR server and the clients
is fixed by the protocol and cannot be optimized with additional
local resources. If this communication is beyond what a client net-
work can easily support, the application is simply not usable by
these clients. This is a major motivation of our work; enabling PIR

for large-scale providers with the resources to optimize server com-
putation by minimizing the per-query communication in settings
where an offline phase cannot be supported.

We conclude by mentioning a very recent prior work called Hint-
lessPIR [LMRSW23], which can be viewed as a stateless version of
the TipToe protocol. In this protocol, the FHE evaluation keys are
transferred along with the query, just like in our protocol. However,
the computation to process the query is essentially the same as
SimplePIR and TipToe, while our protocol’s computation is much
more similar to the Spiral protocol. We demonstrate in Section 4
that our protocol outperforms HintlessPIR in communication for
all database sizes and strictly outperforms HintlessPIR (better com-
munication and computation) when the database entries are small
(less than a few kilobytes).

1.2 Our Contributions
We introduce WhisPIR, a stateless PIR protocol with low per-query
communication. WhisPIR outperforms all other PIR protocols in
communication in a stateless setting. When database entries are
small, WhisPIR also outperforms all prior works in computation
except for SimplePIR, which can match the server’s memory band-
width. More details are given in Section 4.

As a stateless PIR protocol, WhisPIR does not require any offline
phase to update any client or server parameters, regardless of any
database updates (excluding significant changes in the database
size). All WhisPIR clients are considered ephemeral, meaning that
they only interact with the server when they make a query, then dis-
appear once the response has been sent. The only public parameters
in WhisPIR are a database size and basic parameters to specify the
polynomial ring for the Brakerski-Gentry-Vaikuntanathan (BGV)
FHE scheme [BGV12], which can fit into just a few hundred bits.

WhisPIR provides a number of parameter settings to suit a large
variety of applications. In particular, WhisPIR can be tuned to adjust
the communication-computation tradeoff of the protocol’s perfor-
mance, allowing applications that can handle more communication
to benefit from reduced server computation, while applications that
havemore computational resources to benefit from reduced commu-
nication. We discuss these tradeoffs in Section 3.5 and demonstrate
the various optima in Section 4.

WhisPIR achieves its performance by relying on several novel
optimizations that are likely of independent interest. Firstly, we op-
timize the index expansion algorithm [ACLS18, MCR21] for when
only one rotation key is available. By carefully choosing the rota-
tion supported by this key, we can reduce the number of rotations
required to expand the index by over an order of magnitude. Further-
more, we show how dynamically selecting the rotation generator
enables further optimizations by splitting the index representation
into several ciphertexts, saving an additional 5× in the number of
rotations. More details are given in Section 3.2.

An additional optimization introduced by WhisPIR is to adjust
the database representation into a hypercube with relatively few
dimensions (in practice, at most 4). We then take advantage of the
non-compact variant of the BGV FHE scheme by allowing the ci-
phertext to grow with each multiplication. This optimization saves
in both communication and computation, since we no longer need
to transmit the BGV relinearization key and we no longer need to

WhisPIR: Stateless Private Information Retrieval
with Low Communication

perform BGV relinearization. Combining this optimization with
standard BGV modulus reduction to compress the ciphertext modu-
lus to the smallest decryptable value results in a response ciphertext
that is still quite small despite not being theoretically compact. We
believe this optimization likely has other applications when low-
depth homomorphic evaluation is performed in a stateless setting.
More details are given in Section 3.3.

2 BACKGROUND
Notation. For a finite set 𝑆 , we denote 𝑥

$←− 𝑆 as sampling an
element 𝑥 ∈ 𝑆 uniformly at random. Let [𝑁] denote the index space
{1, . . . , 𝑁 }. Unless otherwise specified, the base of a logarithm is
always 2.

2.1 PIR: Definitions & API
We begin by giving the API for PIR. The database elements are
treated as elements of Z𝑡 , where 𝑡 is some integer modulus. The
parameters for this primitive are a modulus 𝑡 , a database length 𝑁 ,
and a security parameter _. The algorithms are described below,
and the usage of the API is given in Figure 7 in Appendix A.1.

• pp, sp← Setup(1_, 1𝑁 , 𝑡)
Takes in a security parameter _ and a database size 𝑁 and
𝑡 . Outputs public parameters pp and server parameters sp.
• qry, st←Query(pp, 𝑖 ∈ [𝑁])

Takes in an index 𝑖 ∈ [𝑁] and produces a query qry with a
query state st.

• ans← Answer(sp,D, qry)
Takes in a database D and a query qry and produces an
answer ans.

• 𝑑 ← Recover(pp, st, ans)
Takes in a query state st generated from an index 𝑖 ∈ [𝑁]
and an answer ans. Outputs a database element 𝑑 . If inputs
are honestly generated, the output 𝑑 should be D[𝑖].

We distinguish between the public parameters pp and the server pa-
rameters sp since in our scheme the server performs non-trivial (but
still one-time) precomputation, while the public parameters that
the client downloads are quite small (essentially just the database
size and a _-bit PRG seed). We define basic correctness and security
requirements for the semi-honest PIR primitive in Appendix A.1.

2.2 BGV Homomorphic Encryption Scheme
At a high level, our PIR protocol will use the homomorphic encryp-
tion scheme of Brakerski, Gentry, and Vaikuntanathan [BGV12]
to evaluate the lookup function on the database. The exact com-
putation is described in Section 3, and here we describe the basic
operations in the BGV scheme used to evaluate this computation.

The BGV scheme is parametrized by a ring R𝑞 := Z𝑞 [𝑥]/(𝑥𝑛 +1)
and a plaintext modulus 𝑝 coprime to 𝑞. Let 𝛾R define the ring
expansion factor (see Appendix A.2 formore information). The basic
encryption scheme is defined by the following three algorithms.

• sk← KeyGen(1_)
Sample s

$←− R𝑞 uniformly at random over R𝑞 . Return
sk← s.

• ct← Encrypt(sk,m ∈ R𝑝)

Sample a
$←− R𝑞 uniformly at random over R𝑞 . Sample

an error polynomial e ← 𝜒 . Return the ciphertext ct ←
(m + 𝑝 · e − a · s, a), where all operations are over R𝑞 .

• m← Decrypt(sk, ct)
Parse ct = (c0, c1) and return (c0 + c1 · s mod 𝑞) mod 𝑝 .

Homomorphic Operations. It is common to view ciphertexts
in this scheme as polynomials over R𝑞 that evaluate to the message
on the secret key. This view allows for a natural construction of
the encrypted multiplication operation. Consider two ciphertexts
ct = (c0, c1) and ct′ = (c′0, c

′
1) encrypting messages m and m′,

respectively.

c0 + c1 · s = m + e · 𝑝
c′0 + c

′
1 · s = m′ + e′ · 𝑝

c0c′0 + (c0c
′
1 + c

′
0c1) · s + c1c

′
1 · s

2

= m ·m′ + (m′e + e′m) · 𝑝 + e′ · e · 𝑝2 (1)

This product relation gives a three-term ciphertext

c̃t = (̃c0, c̃1, c̃2) = (c0 + c′0, c0c
′
1 + c

′
0c1, c1c

′
1)

that decrypts to m · m′ mod 𝑝 . While the full instantiation of
BGV includes a relinearization operation to reduce the degree of the
ciphertext back to a linear function of the secret key, we skip explicit
discussion of this operation since it is not used in our PIR protocol.
However, mechanically it is almost identical to the automorphism
key switching described below.

Note that we have slightly generalized the decryption to view
the ciphertext as an element of R𝑞 [𝑌] (the polynomial ring where
the coefficients are elements of R𝑞) that is evaluated at the secret
key to give the message. We now define the basic homomorphic
operations over these general ciphertexts, as well as the more gen-
eral decryption operation. We refer to [BGV12] for the correctness
of these operations.

• ct′ ← EvalAdd(ct1 ∈ R𝑞 [𝑌], ct2 ∈ R𝑞 [𝑌])
This is the homomorphic addition operation. Takes in two
polynomials in R𝑞 [𝑌] and outputs their sum over R𝑞 [𝑌],
where the sum is taken coefficient-wise. The noise term
in ct′ is simply the sum of the noise terms of the input
ciphertexts.

• ct′ ← EvalMultPlain(ct ∈ R𝑞 [𝑌],m ∈ R𝑝)
This is homomorphic multiplication when one operand is
in not encrypted. Takes in a ciphertext as an element in
R𝑞 [𝑌] and a plaintext m ∈ R𝑝 and outputs ct′ ← ct · m,
where m is lifted to R𝑞 and treated as a scalar element of
R𝑞 [𝑌]. If the noise term in the input ciphertext is e, the
noise term e′ in the output ciphertext is at most | |e′ | | ≤
𝛾R · | |m| | · | |e| | < 𝑝

√
𝑛 | |e| |.

• ct′ ← EvalMult(ct1 ∈ R𝑞 [𝑌], ct2 ∈ R𝑞 [𝑌])
This is homomorphic multiplication when both operands
are encrypted. Takes in two elements of R𝑞 [𝑌] and outputs
the polynomial product over R𝑞 [𝑌]. If the noise terms of
the input ciphertexts are e and e′, then by Equation (1) the
noise of the resulting ciphertext will be at most

𝑝 · (| |e| | + | |e′ | | + 𝛾R · | |e| | · | |e′ | |).

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

• m← Decrypt(sk ∈ R𝑞, ct ∈ R𝑞 [𝑌])
Evaluate m′ ← ct(sk) over R𝑞 . Output m← m′ mod 𝑝 .

The correctness of the Decrypt algorithm holds as long as the noise
term of the ciphertext, defined as ct(sk) = m + 𝑝 · e, satisfies
| |e| |∞ < 𝑞/𝑝 .

Modulus Switching. In Appendix A.4, we describe the opera-
tion of BGV modulus switching, which is a common technique to
compress a ciphertext once homomorphic computation is finished.
This is an important optimization to reduce the download size in
our PIR protocol.

2.2.1 BGV Automorphisms. The only other homomorphic opera-
tion that we use in our PIR protocol is the automorphism operation,
which allows us to permute the coefficients of the message while
keeping the same secret key. Note that even though we’ve defined
homomorphic operations over general elements of R𝑞 [𝑌], we only
define the automorphism for ciphertexts that are linear functions
of the secret key. These are the only ciphertexts that we permute
in WhisPIR.

Let 𝜋 : [𝑛] → [𝑛] be a permutation. Consider an encryption
of a message m of the form ct = (c0, c1). We can permute the
ciphertext ct(𝜋) = (c(𝜋)0 , c(𝜋)1), which decrypts to the permuted
message m(𝜋) under the permuted secret key s(𝜋) . In order to
decrypt under the original key, we need to switch back to the
original key using an “encryption” of the permuted key under the
original key. This “encryption” is called a switching key. In WhisPIR,
we use the following structure for the switching key:

swk𝜋 =

{
(b′𝑖 , a

′
𝑖) =

(
𝐵𝑖 · s(𝜋) + 𝑝 · e − a′𝑖 · s, a

′
𝑖

)}log𝐵 (𝑞)
𝑖=0

(2)

where 𝐵 is a free parameter chosen to tune noise and performance,
discussed below. The goal of the key switching operation is to
take ct(𝜋) = (c(𝜋)0 , c(𝜋)1) ∈ R

2
𝑞 and compute a tuple of the form

(c(𝜋)1 · s(𝜋) + e · 𝑝 − a · s, a) = (b, a), where the error e is relatively
small. Once we have this tuple, we can output a new encryption
(b + c(𝜋)0 , a) that decrypts to the permuted message m(𝜋) under
the original secret key.

The computation of this tuple is one of the most intensive steps
in our protocol, so we describe it in detail here. For a base 𝐵, define
𝑤 := ⌈log𝐵 (𝑞)⌉. To compute an “encryption” of c(𝜋)1 · s(𝜋) , the
polynomial c(𝜋)1 is base-decomposed coefficient-wise into𝑤 poly-
nomials d0, . . . , d𝑤−1 ∈ R𝐵 such that c(𝜋)1 =

∑𝑤−1
𝑖=0 𝐵𝑖 · d𝑖 , where

the sum is performed over R𝑞 . Once the digits d0, . . . , d𝑤−1 of c(𝜋)1
are computed, the full key switching tuple can be computed by
taking the inner product of the digits with the switching key, giving
the equation

(b, a) = (c(𝜋)1 · s + 𝑝 · e′ − as) =
𝑤−1∑︁
𝑖=0

d𝑖 · (b′𝑖 , a
′
𝑖) . (3)

To complete the operation, we simply add b to c𝜋0 to cancel the
c(𝜋)1 · s(𝜋) term and leave only the term linear in the original secret
key s. Observe the the noise growth of this operation is the additive
term e′ from the switching tuple (b, a). Let 𝐵𝜒 be the bound on the
output of 𝜒 , which is the bound on the noise terms in the switching
key swk𝜋 . Each tuple in swk𝜋 is multiplied by digits of c(𝜋)1 of

size at most 𝐵. Therefore, the size of the resulting noise term is
| |e| | ≤ 𝛾R · 𝐵𝜒 · 𝐵 ·𝑤 .

Precomputing the Decomposition.We now describe a very
important optimization to the rotation algorithm that significantly
improves the performance of computing rotations on input cipher-
texts. In the textbook version of the BGV scheme, the base decom-
position described above is the most computationally expensive
step in key switching. This is because the decomposition must be
performed over the coefficients while the remainder of the ring op-
erations (in particular, polynomial multiplication) are performed in
the elements evaluation domain. This means that expensive NTTs
are required to map the element to it’s original coefficients to per-
form the base decomposition.

In the recent work of Li et al. [LMRSW23], it was observed that
if the a term of a ciphertext is known in advance, all of the NTTs
can be precomputed in an offline phase. We define this algorithm
with the following two functions, one that is computed during the
protocol setup and the other that is computed when processing a
query.

• (a𝑜𝑢𝑡 , {d𝑖 }𝑤−1𝑖=0) ← PreSwitch({a′
𝑖
}𝑤−1
𝑖=0 , c1, 𝐵, 𝜋)

Takes in as input {a′
𝑖
}𝑤−1
𝑖=0 where each a′

𝑖
∈ R𝑞 as the switch-

ing key terms, c1 ∈ R𝑞 as the ciphertext linear term, the
decomposition base 𝐵, and the permutation 𝜋 . Compute the
permuted ring element c(𝜋)1 . Compute d0, . . . , d𝑤−1 ∈ R𝐵
via the coefficient base-decomposition of c(𝜋)1 . Compute
a𝑜𝑢𝑡 :=

∑𝑤−1
𝑖=0 d𝑖 · a′𝑖 and output (a𝑜𝑢𝑡 , {d𝑖 }𝑤−1𝑖=0).

• b𝑜𝑢𝑡 ← KSNoDecomp({b′
𝑖
}𝑤−1
𝑖=0 , c0, {d𝑖 }𝑤−1𝑖=0 , 𝜋)

Takes in the second elements in the key switching tuple
{b′

𝑖
}𝑤−1
𝑖=0 , the second element of the ciphertext b, the pre-

computed digits {d𝑖 }𝑤−1𝑖=0 , and the permutation 𝜋 . Com-
pute the permutation c(𝜋)0 of c0 and output b𝑜𝑢𝑡 ← c(𝜋)0 +∑𝑤−1
𝑖=0 b′

𝑖
· d𝑖 .

Observe the that the online operation KSNoDecomp consists only
of linear operations over R𝑞 . The usage of these algorithms is
given in Figure 8 in Appendix A.3, which displays the iterative
precomputation where the output of PreSwitch can be used to
precompute the next permutation. Note that the usage requires
sampling a fresh secret key each time a precomputed output is
used, which is necessary for security. The correctness of these
operations follows directly from the correctness of the original key
switching routine as long as the inputs to PreSwitch matches the
elements used to generate the c0 and b′

𝑖
elements of the ciphertext

and switching key.
Iterative Precomputation. An important use of the API de-

scribed above is that many rotations can be precomputed from a
single switching key. In other words, suppose the server wishes
to compute the permutations 𝜋, 𝜋2, 𝜋3. As shown in Figure 8 in
Appendix A.3, the output of one iteration of PreSwitch can be used
to precompute the next permutation. In Section 3.2, we discuss
more efficient methods of precomputing the rotation when the only
desired output is some high power of the input permutation.

3 THEWHISPIR PROTOCOL
In this section, we present WhisPIR, our stateless PIR protocol. We
begin with the most basic version of the protocol, which minimizes

WhisPIR: Stateless Private Information Retrieval
with Low Communication

total communication. In Section 3.5, we describe the computation
optimizations that can be included at only a marginal communica-
tion overhead.

3.1 Protocol Overview
We begin with a high-level description of the protocol.

DatabaseRepresentation.As described in Section 2.1, we begin
with the view of the database as an element in Z𝑁𝑡 . The entries of
this database are indexed by 𝑖 ∈ [𝑁]. Our first step is to digitize
this index space with respect to some digit ℓ , such that ℓ𝑘 ≥ 𝑁 . We
can now write an index 𝑖 ∈ [𝑁] as 𝑘 digits 𝑖1, . . . , 𝑖𝑘 , where each
𝑖 𝑗 ∈ [ℓ].

A BGV ciphertext can encrypt 𝑛 elements of Z𝑝 . We pack data-
base entries into elements in R𝑝 in order to reduce the effective
index space [𝑁]. For databases with entries of size less than 𝑛 ·⌊
log2 (𝑝)

⌋
bits, this can result in a significant reduction in the total

number of indices. For the remainder of this section, we will assume
that 𝑁 is the number of indices after this packing has been per-
formed. Note that if the database entries are larger than𝑛·

⌊
log2 (𝑝)

⌋
,

we can simply split elements across multiple R𝑝 elements that are
queried in parallel. As we discuss below, artificially growing the
database blocks to further reduce the index space is an effective
computation optimization when a larger download can be tolerated.

Query Structure. The structure of a query is stable for all vari-
ants of WhisPIR. The query consists of two pieces. The first piece is
a BGV rotation key, described in Section 2.2, where the base decom-
position is performed over the full ciphertext modulus. Note that
this differs from most efficient implementations of RLWE-based
homomorphic encryption, which performs the base decomposition
over some RNS-friendly basis. Decomposing over the RNS basis
increases the number of digits in the decomposition, which corre-
spondingly increases the size of the key. We discuss how a hoisting-
style optimization [JVC18, LMRSW23] makes this non-standard
choice of basis optimal. The second piece is a BGV ciphertext en-
crypting the index. The representation of an index 𝑖 ∈ [𝑁] is in
base ℓ , where each digit is represented as a one-hot vector. In total,
the representation of this digit is a 𝑘-hot binary vector of length 𝑘 ·ℓ ,
where there is exactly one 1 in each block of ℓ elements. As long as
𝑘 · ℓ ≤ 𝑛, this digit fits in a single BGV ciphertext. We discuss below
why the structure of the automorphism group over R𝑞 only allows
us to use half the elements in the index ciphertext, which in practice
necessitates that 𝑘 · ℓ ≤ 𝑛/2. Despite this restriction, the typical
choice of 𝑛 = 212 allows us to represent essentially all practical
database sizes with a digit space that fits within a single ciphertext.
Some parameter choices require 𝑛 = 213, but this is not due to the
index representation. We discuss below how it is typically optimal
to have an index representation with a length far less than 𝑛/2 for
either of these choices of 𝑛.

As we discuss below, many encrypted indices can be sent along
with a single rotation key if the application allows a client to per-
form a batch of queries at once. Note that this batch need not be
performed interactively, although the upper limit on the batch size
must be known in advance so that the server can perform the
sufficient precomputation.

Homomorphic Computation.The homomorphic computation
proceeds in two phases. The first phase is independent of the data-
base and consists of an index expansion algorithm. This algorithm,
first introduced in [ACLS18], has now become relatively standard in
many PIR protocols [ACLS18, MCR21, MW22]. At a high level, this
algorithm takes in a single BGV ciphertext encrypting a message
m ∈ R𝑝 and outputs𝑛 ciphertexts where the 𝑖𝑡ℎ ciphertext encrypts
the scalar𝑚𝑖 ∈ Z𝑝 , the 𝑖𝑡ℎ coefficient of the original m. This scalar
occupies the free term of the full R𝑝 plaintext element, where the
other coefficients are 0. The algorithm consists of a log(𝑛)-depth
tree of rotations with 𝑛 leaves, for a total of roughly 2𝑛 rotations
when all rotation keys are available. We discuss below how we
efficiently evaluate this tree with only a single rotation key.

In our protocol, we evaluate this tree until we obtain 𝑘 · ℓ cipher-
texts, each encrypting a binary scalar value. The server then takes
these ciphertexts and breaks them into 𝑘 sets of ℓ ciphertexts each,
one set for each digit. The server now has encryptions of 𝑘 one-hot
vectors, where each element of the vectors is in its own ciphertext.
The server then multiplies each of these one-hot vectors with the
database. Recall that we view the database as consisting of 𝑁 = ℓ𝑘

elements of R𝑝 , and each multiplication reduces the dimension of
the remaining database by a factor of ℓ . After this depth-𝑘 circuit is
evaluated, the resulting ciphertext is returned to the client.

3.2 Index Expansion with One Key
We now describe the our optimizations to the coefficient expansion
algorithm. The original algorithm [ACLS18, MCR21] is given in Al-
gorithm 1. We define the algorithm over the plaintext ring R𝑝 . This
algorithm uses the substitution operation over R𝑝 . This operation is
indexed by some 𝑟 ∈ Z∗2𝑛 and is defined by replacing 𝑥 ← 𝑥𝑟 . These
substitutions form a group isomorphic to Z∗2𝑛 , and any substitution
𝑟 ∈ Z∗2𝑛 of a BGV plaintext can be computed with a single auto-
morphism key [GHS12]1. The goal of the index expansion phase
is to homomorphically evaluate Algorithm 1 on the query, where
the number of expanded coefficients is equal to 𝑘 · ℓ . Note that the

Algorithm 1 Coefficient Expansion Algorithm. The expansion is
over the first 𝑐 coefficients of m, and correctness requires that m
has zeros for the remaining 𝑛 − 𝑐 coefficients.
Input: A ring element m ∈ R𝑝 and scalar 𝑐 ≤ 𝑛.
1: 𝑒𝑙𝑒𝑚𝑠 ← [m]
2: Let 𝑑 be the smallest power of two such that 𝑑 ≥ 𝑐 .
3: for 𝑖 = 0 to log(𝑑) − 1 do
4: for 𝑗 = 0 to 2𝑖 − 1 do
5: a0 ← 𝑒𝑙𝑒𝑚𝑠 [𝑗]
6: a1 ← a0 (𝑥𝑛/2

𝑖+1) ⊲ Substitution with 𝑥𝑛/2
𝑖+1

7: a′
𝑗
← a0 + a1

8: a𝑗+2𝑖 ← (a1 − a0) · 𝑥𝑛−2
𝑖

9: 𝑒𝑙𝑒𝑚𝑠 ← [a′0, . . . , a
′
2𝑖+1−1]

10: for 𝑖 = 0 to 𝑑 do b𝑖 ← 𝑒𝑙𝑒𝑚𝑠 [𝑖] · (𝑑−1 mod 𝑝)
Output: {b𝑖 }𝑑−1𝑖=0 where b𝑖 ∈ R𝑝 and b𝑖 =𝑚𝑖 .

1Computing these substitutions is equivalent to permuting the evaluations of an R𝑝
element, which is typically the operation of interest. In this work, we never consider
the evaluation domain of R𝑝 since we do not need batched multiplication.

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

final loop requires the existence of 𝑑−1 mod 𝑝 , which requires us
to choose an odd 𝑝 since 𝑑 is a power of two.

Picking the Right Generator. The first observation that should
be made is that the group Z∗2𝑛 is alternating, so there is no single
generator for the entire group. This means that we cannot com-
pute every possible substitution with a single switching key. While
Algorithm 1 only requires a small subset of substitutions (namely,
substitutions indexed by 𝑛/2𝑖 + 1 ∈ Z∗2𝑛), attempting to expand all
𝑛 coefficients requires substitutions by both 3 and 5, which are not
in the same subgroup. Therefore, we are limited to only expanding
half of the coefficients. Luckily, the remainder of the substitutions
𝑛/2𝑖 + 1 for 𝑖 < log(𝑛) are in the subgroup generated by 5. Send-
ing the automorphism key corresponding to substitution 𝑥 ← 𝑥5

allows 𝑛/2 coefficients to be expanded with a single key.
However, there are many other choices of generators for this

subgroup, and we empirically find that other choices result in far
fewer rotations than the naive choice of 5. For a power of two 𝑑 ≥
𝑘 ·ℓ , our goal is to select a generator𝑔 such that𝑛/2𝑖 +1 ∈ ⟨𝑔⟩ ⊂ Z∗2𝑛
for all 0 ≤ 𝑖 < log(𝑑) that minimizes the the following function. Let
𝑢𝑖 be the smallest exponent such that 𝑔𝑢𝑖 ≡ 𝑛/2𝑖 + 1 mod 2𝑛. The
𝑖𝑡ℎ iteration of the outer loop in Algorithm 1 requires 2𝑖 iterations of
the inner loop, each of which requires 𝑢𝑖 rotations by 𝑔. Therefore,
our choice of 𝑔 should minimize

∑log(𝑑)−1
𝑖=0 𝑢𝑖 · 2𝑖 , which is the

total number of rotations that must be performed during the index
expansion. For each choice of 𝑘 and ℓ , we empirically compute the
generator that minimizes the number of rotations as part of the
public parameters of the PIR scheme. A survey of optimal generators
along with the total number of rotations is given in Table 1. This

Table 1: Optimal generators 𝑔 ∈ Z∗2𝑛 for Algorithm 1 for various
choices of 𝑑 , the number of expanded coefficients.

𝑛 = 212

𝑑 2048 1024 512 256 128 64

𝑔 2269 5513 5777 7713 65 129

Total
Rotations 386048 113664 20736 7168 2496 192

𝑛 = 213

𝑑 2048 1024 512 256 128 64

𝑔 9193 13969 14881 14401 129 257

Total
Rotations 506880 91136 22784 5120 448 192

optimization reduces the number of rotations by roughly 2 − 50×
below the naive choice of generator. We leave the development
of a closed-form expression for this optimal generator, as well as
closed-form solutions when multiple generators are available, for
future work.

Don’t Rotate the Ciphertext, Rotate the Key. In Section 2.2,
we describe the optimization to precompute the base decomposi-
tion in key switching as well as how this precomputation can be
composed to quickly compute iterative rotations. However, observe
that in this iterative precomputation (see Figure 8) each online key

switching computes the full intermediate result. If only the switch-
ing key for 𝜋 is available, then instead of computing 𝜋3 directly,
the input ciphertext is first rotated once to compute 𝜋 , then a sec-
ond time to compute 𝜋2, then finally a third time to compute 𝜋3.
This is inefficient when only the final permutation 𝜋3 is of interest,
as is the case when computing a high power of some generator
permutation in this index expansion phase.

To address this, we introduce a variant of the precomputed key
switching that is optimized for computing many iterative rotations.
In the original version, the permutation 𝜋𝑢 was iteratively com-
puted by permuting a ciphertext by 𝜋 , performing a key switching
operation, then repeating this process 𝑢 times. Our idea is to only
rotate the input ciphertext once to the target permutation 𝜋𝑢 , then
perform 𝑢 key switching operations where each operation rotates
the secret key by 𝜋−1. The input switching key already performs
this rotation by 𝜋−1, but correctness only holds when multiplying
the switching key by the digits of the term linear in s(𝜋) . To rotate
s(𝜋

𝑗) back to s(𝜋
𝑗−1) for 𝑗 > 1, we need to compute rotations of

the switching key itself. Observe that applying the permutation 𝜋 𝑗

to Equation (2) yields the switching key

𝜋 𝑗 (swk𝜋) =
{(
𝜋 𝑗 (b′𝑖), 𝜋

𝑗 (a′𝑖)
)}log𝐵 (𝑞)

𝑖=0
(4)

𝜋 𝑗 (b′𝑖) = 𝐵𝑖 · s(𝜋
𝑗+1) + 𝑝 · e − 𝜋 𝑗 (a′𝑖) · s

(𝜋 𝑗)

that maps an encryption under the secret s(𝜋
𝑗+1) to an encryption

under the secret s(𝜋
𝑗) . To complete the key switching for the target

ciphertext, we apply the key switching procedure 𝑢 times using
𝜋𝑢−1 (swk𝜋), 𝜋𝑢−2 (swk𝜋), . . . , swk𝜋 iteratively until the ciphertext
decrypts to m(𝜋

𝑢) (the correct permutation of the input plaintext)
under the original key.

We define variants of the switching key precomputation and
online algorithms in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 Precomputation of Iterative Rotations. When precom-
puting many sets of iterative rotations, the permutations of the a′

𝑖
terms are reused.
Input: {a′

𝑖
}𝑤−1
𝑖=0 as the initial switching key terms, c1 as the input

ciphertext linear term, the decomposition base 𝐵, the generat-
ing permutation 𝜋 , and the exponent 𝑢.

1: Compute the permuted ring element a← c(𝜋
𝑢)

1 .
2: for 𝑗 = 𝑢 − 1 down to 0 do
3: Decompose a into digits ®d(𝑗) ← {d(𝑗)0 , . . . , d(𝑗)

𝑤−1}
4: ⊲ Each d(𝑗)

𝑖
∈ R𝐵 and a =

∑𝑤−1
𝑖=0 𝐵𝑖d(𝑗)

𝑖
.

5: Set a← ∑𝑤−1
𝑖=0 d(𝑗)

𝑖
· 𝜋 𝑗 (a𝑖).

Output: a, {®d𝑗 }𝑢−1𝑗=0 .

When computing many iterative rotations, this approach reduces
the number of permutations (but not the number of inner products
with a switching key), since we only rotate the input ciphertext once
rather than 𝑢 times. In addition, observe that the online key switch-
ing algorithm (Algorithm 3) is almost entirely a single inner product
over R𝑞 . Combined with standard “lazy” modulus-reduction, this
allows significant acceleration from vectorized instructions which
would not be available if we had to pause and permute the elements

WhisPIR: Stateless Private Information Retrieval
with Low Communication

Algorithm 3 Online Computation of Iterative Rotations. We as-
sume the relevant permutations of the {b′

𝑖
}𝑤−1
𝑖=0 terms have already

been computed. Define b′
𝑖
(𝑗) := 𝜋 𝑗 (b′

𝑖
).

Input: Takes as input the relevant permutations of the switching
key terms {b′

𝑖
(𝑗) }0≤𝑖<𝑤,0≤ 𝑗<𝑢 , the ciphertext message term

c0, the 𝑢 sets of precomputed digits, {®d𝑗 }𝑢−1𝑗=0 , and the target
permutation 𝜋𝑢 .

1: Compute c(𝜋
𝑢)

0 ← 𝜋𝑢 (c0)
2: for 𝑗 = 𝑢 − 1 to 0 do
3: for 𝑖 = 0 to𝑤 − 1 do c(𝜋

𝑢)
0 ← c(𝜋

𝑢)
0 + d(𝑗)

𝑖
· b′

𝑖
(𝑗)

Output: c(𝜋
𝑢)

0 .

after each switching key inner product. Overall, this optimization
saves us as much as 4× in computation time during this phase.

3.3 Non-compact Homomorphic Multiplication
We now describe the second phase of the homomorphic compu-
tation, which is where the expanded index is multiplied by the
database. The output of the expansion is 𝑘 · ℓ ciphertexts, which
the server splits into 𝑘 sets of ℓ ciphertexts each. Each set of ℓ ci-
phertexts encrypts a one-hot vector, which represents one digit
of the index in base ℓ . After the expansion, we perform a depth 𝑘

homomorphic multiplication over the database, where each multi-
plication reduces one dimension of the [ℓ] × [ℓ] × . . . × [ℓ] index
space. The first level of the homomorphic multiplication is with the
plaintext database, while the remaining 𝑘 − 1 levels are ciphertext-
ciphertext multiplications. At depth 𝑖 , the ciphertexts containing
the remaining database entries have degree 𝑖 in the secret key. At
each level, these database ciphertexts are multiplied by the corre-
sponding encrypted one-hot vector, representing the current digit
of the index.

An important optimization in our protocol is that we do not
relinearize the result of multiplications as in most instantiations of
BGV. This can be viewed as the non-compact variant of BGV, where
the size of the ciphertext grows with the depth of the function.
However, since (empirically) we do not require a depth 𝑘 beyond
three or four, this is not an issue in the final output ciphertext. More
specifically, the final ciphertext has the form(

m + 𝑝 · e −
𝑘∑︁
𝑖=1

a𝑖 · s𝑖 , a1, . . . , a𝑘

)
.

By not relinearizing, we save on communicating the relinearization
key, which is as large as the rotation switching key, at the cost of
growing the number of ring elements in the resulting ciphertext
by roughly a factor of 𝑘 . We can achieve significant savings by
further reducing the ciphertext modulus to the smallest value that
remains decryptable, as described in Remark A.2. Overall, the size
of this “non-compact” download is often dominated by the size of
the upload, as we show in Section 4.

Precomputing the Top Coefficient.We briefly note that we
can extend the precomputation described in Section 3.2 to precom-
pute the top coefficient a𝑘 of the output ciphertext as long as the
database remains fixed. If the database changes, this precomputed
a𝑘 term must also be updated, but this takes less computation than

even the database scan during a single query. Only in settings
where the server is receiving many more updates than queries
would maintaining this a𝑘 term result in significant computational
overhead, and for most practical applications this will likely not
occur. Therefore, we consider it practical for the server to maintain
the precomputed a𝑘 term, which can save nearly a factor of 2× dur-
ing the database scan computation. In the benchmarks presented in
Section 4, the server will still transmit this a𝑘 element to the client
as part of the response in order to maintain client statelessness.

3.4 Full Protocol Description
We now define the PIR API from Section 2.1 for the WhisPIR proto-
col in terms of the algorithms described in this section. The usage
of this API is identical to Figure 7 in Appendix A.1.

Algorithm 4 WhisPIR Setup. We use the standard technique of
transmitting a PRG seed 𝜎 rather than sending the truly random
terms c1 and {a′𝑖 }

𝑤−1
𝑖=0 .

Input: Security parameter _ and a database size 𝑁 and 𝑡 .
1: Select a polynomial degree 𝑛, a plaintext modulus 𝑝 , and index

parameters 𝑘 and ℓ such that ℓ · 𝑘 ≤ 𝑛/2 and ℓ𝑘 · 𝑛 · log(𝑝) ≥
𝑁 · log(𝑡).

2: Select a ciphertext modulus 𝑞 and a decomposition base 𝐵 that
satisfies correctness & security.

3: Sample a PRG seed 𝜎 ← {0, 1}_ .
4: Select a generator permutation 𝜋 that minimizes the number

of key switching operations in Algorithm 1.
5: Set the public parameters

pp← (𝜎, 𝜋, 𝑘, ℓ, 𝑛, 𝑞, 𝐵, 𝑝, 𝑁 , 𝑡) .
6: Sample a query index polynomial c1 and𝑤 :=

⌈
log𝐵 (𝑞)

⌉
poly-

nomials a′
𝑖
for 𝑖 ∈ [𝑤] as the switching key polynomials. All of

these polynomials are outputs of the PRG at 𝜎 .
7: Use Algorithm 2 to precompute all rotations in Algorithm 1. Set

sp to be pp alongwith all outputs of all iterations of Algorithm 2
for the precomputed rotations.

Output: Public parameters pp and server parameters sp.

• pp, sp← Setup(1_, 1𝑁 , 𝑡)
This is defined in Algorithm 4.
• qry, st←Query(pp, 𝑖 ∈ [𝑁])

Parse the public parameters

(𝜎, 𝜋, 𝑘, ℓ, 𝑛, 𝑞, 𝐵, 𝑝, 𝑁 , 𝑡) ← pp.

Using 𝑁, 𝑡, 𝑛, 𝑝, 𝑘 , and ℓ , determine element of R𝑝 that con-
tains the desired database entry, then determine the digits
of this element in base ℓ . Compute m ∈ R𝑝 such that the
first 𝑘 · ℓ coefficients are the concatenation of the 𝑘 digits
of this index, where each digit is represented as a length-ℓ
one-hot vector. The remaining 𝑛−𝑘 · ℓ coefficients are zeros.
Next, compute c1 and {a′𝑖 }

𝑤−1
𝑖=0 from the PRG seed. Sample

a secret s← 𝜒 and compute

c0 := m + 𝑝 · e − c1 · s

b′𝑖 := 𝐵𝑖 · s(𝜋) + 𝑝 · e − a′𝑖 · s for 0 ≤ 𝑖 < 𝑤

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

where all error terms e are freshly sampled from 𝜒 . Output
qry← (c0, {b′𝑖 }

𝑤−1
𝑖=0) and st← (s, 𝑖).

• ans← Answer(sp,D, qry)
This algorithm follows the online protocol described in
this section. Parse (c0, {b′𝑖 }

𝑤−1
𝑖=0) ← qry. Homomorphically

evaluates Algorithm 1 on the ciphertext element c0 and
the switching key elements {b′

𝑖
}𝑤−1
𝑖=0 , using Algorithm 3 to

compute the online iterative rotations. Assume the database

D has already been packed into an element of
(
Rℓ𝑝

)𝑘
. The

output of the index expansion is 𝑘 · ℓ encrypted scalars,
which are interpreted as encryptions of 𝑘 length-ℓ one-hot
vectors. The server runs the EvalMultPlain algorithm on
the first level and the EvalMult algorithm on the subsequent
levels, using EvalAdd to sum the results of each level. Each
multiplication reduces the dimension of the database by one,
and after multiplicative depth 𝑘 there is only one ciphertext
remaining. Return this ciphertext as ans.

• 𝑑 ← Recover(pp, st, ans)
Parse (s, 𝑖) ← st and compute m′ ← Decrypt(s, ans),
where this is the generalized BGV decryption described
in Section 2.2. Use the index 𝑖 to select the correct subset
of bits and output D[𝑖].

3.5 Communication-Computation Trade-offs
The protocol described above is only the basic variant of WhisPIR.
Instantiating WhisPIR as described will result in a PIR protocol
with small total communication but relatively slow server run times.
However, the performance of WhisPIR can be tuned for a target
application by choosing a different point in the communication-
computation trade-off space. As we show in Section 4, these ad-
justments can improve the computation times by over an order of
magnitude while still maintaining relatively low communication.

Reducing the Index Space by Splitting the Database. The
protocol described in Section 3 downloads only a single BGV ci-
phertext that has been compressed to the smallest possible modulus.
However, we can consider a simple variant of the scheme where the
database is split into 𝑐 equal chunks, then the query is evaluated on
each chunk in parallel and the responses to all chunks are returned.
This increases the download by a factor of 𝑐 , but it also reduces
the index space by a factor of 𝑐 , since now the client only needs
to specify an index within a chunk rather than the entire database.
Consider 𝑘 = 2, where a chunk size as small as 𝑐 = 4 will result in
the index space 𝑁 /𝑐 = ℓ𝑘/𝑐 = (ℓ/2)2 that requires an index length
of only 𝑘 · ℓ/2 rather than 𝑘 · ℓ . Observe in Table 1 how reducing the
length of an index by a factor of 2 can save anywhere from 3 − 10×
the number of rotations in the index expansion phase. Since the
downloaded ciphertexts are only a few dozen kilobytes, returning a
several more is a small price to pay for what can be a order of mag-
nitude reduction in the index expansion time. This optimization
has the added benefit of increasing the maximum record size that
can be returned to the client. Furthermore, reducing the number of
rotations marginally decreases the upload size, since the ciphertext
is required to handle less noise. While total communication may
increase, in many commercial applications, download bandwidth
is significantly greater than upload bandwidth, resulting in this
adjusted communication saving on overall network latency.

ReducingRotations by Splitting the Index.AsTable 1 demon-
strates, reducing the length of the index representation by a factor
of 2 reduces the rotations required to expand the index by > 2×.
This means that if we split the length 𝑘 · ℓ vector into two vectors
each of length 𝑘 · ℓ/2, encrypt these vectors separately, then expand
out the index using two invocations of Algorithm 1, we will save on
the overall number of rotations at the cost of increasing the upload.
However, as we show in Section 4, the encrypted index is typically
around 10− 20% the size of the switching key, so splitting the index
into two ciphertexts represents a relatively small communication
increase. We discuss in Section 4 how splitting the index can reduce
the number of rotations in the index expansion phase by an order
of magnitude with only a marginal communication overhead.

Increasing the Ciphertext Rate. While the above optimiza-
tions are effective, they do essentially nothing to improve the run-
time of the second phase of query evaluation: the database multipli-
cations. This second phase quickly becomes the bottleneck as the
index expansion becomes more efficient. To improve the runtime
of this phase, we decrease the number of R𝑝 elements required to
represent the database by increasing the plaintext modulus 𝑝 . This
reduces the number of multiplications that must be performed dur-
ing the database scan since the same database can be represented
with fewer R𝑝 elements. However, growing the plaintext modulus
also increases the noise growth from the homomorphic multiplica-
tions (see Section 2.2). Leaving all other parameters constant would
quickly require the ciphertext modulus to grow, eventually requir-
ing the ring dimension 𝑛 to jump to the next power to 2, which
should be avoided whenever possible as this results in a significant
performance hit.

In order to maintain roughly the same ciphertext modulus, we
instead shrink the decomposition base 𝐵 of the switching key. This
has the effect of growing the number of digits in the switching key,
although the lazy modular reduction in the iterative preprocessed
key switching (see Section 3.2 and Algorithm 3) makes the compu-
tational overhead of processing additional digits relatively small.
Instead, the most significant effect of this adjustment is growing
the size of the query upload, since the switching key must include
a R𝑞 element for each digit in the decomposition.

4 IMPLEMENTATION & EVALUATION
In this section, we present our implementation of WhisPIR, discuss
various design points, and compare to prior work.

Experimental Setup. We implement WhisPIR in C++, compile
the code with clang++ version 10, and benchmark on a machine
running Ubuntu 20 with an Intel i7 core running at 2.5 GHz and
32 GB of RAM. All computation benchmarks were run on a single
thread. While this protocol is “embarrassingly” parallel, available
parallelism is highly application dependent, so we leave the ex-
amination of the parallel performance for future work. Our imple-
mentation makes use of the standard RNS representation of the
RLWEmodulus [GHS12, KPZ21] to efficiently work over ciphertext
moduli larger than 64 bits. All of our parameters achieve 128-bit
security level [ACC+18].

Main Focus: Communication and Server Time.Wewill focus
our benchmarks on two measures: the per-query communication

WhisPIR: Stateless Private Information Retrieval
with Low Communication

and the server’s computation time. The client’s computation con-
sists only of key generation, encryption and decryption, which take
only a few dozen milliseconds regardless of the database size. We
do not expect the client’s computation to be a bottleneck in any
practical application. Furthermore, while we allow for an applica-
tion to frequently update the database content, we assume that the
database size remains relatively stable throughout the application.
In particular, we assume that the server will not have to run the
preprocessing of the index expansion algorithm more than once
in the application’s lifetime, since this output can be reused for
all queries. We leave examination of specialized applications that
require frequent changes to the database size for future work.

Comparison with Prior Art. Our main points of comparison
are

(1) Spiral [MW22], which has the best per-query communica-
tion not counting the client evaluation keys of state-of-the-
art PIR protocols,

(2) SimplePIR [HHCG+23], which has the best server runtime
of state-of-the-art PIR protocols,

(3) HintlessPIR [LMRSW23], which represents the current state-
of-the-art in stateless PIR protocols.

We benchmark Spiral and SimplePIR by running the implemen-
tations23 on the same machine that we benchmark our code. All
Spiral and SimplePIR benchmarks were taken with 32-byte database
entries. The implementation of HintlessPIR is not available at the
time of this writing, so instead we simply take the benchmarks
reported in their paper [LMRSW23, Tables 1 & 2]4.

4.1 Isolating Optimizations
WhisPIR provides a number of parameters that can be tuned to
adjust performance based on the acceptable communication and
computation of an application. To illustrate the impact of each
parameter, we analyze the communication and computation of
WhisPIR for a 1 GB database. The BGV parameters for a database
of this size are 𝑛 = 212 and a ciphertext modulus requiring two
machine words to represent (roughly 110 bits). We begin with
exploring the effect of splitting the database into chunks for fixed
ciphertext rates, given in Figure 1.We plot all data points in Figure 2,
where we also include benchmarks for related works for reference.

In Figure 1, the points where the index representation drops
below a given power of two is clearly visible. Observe the drop
in the index expansion time as the index representation length
shrinks from 2048 to 1024 between the 4 and 8 chunk bars on the
left plot. Similarly, in the right plot, the representation length drops
from 1024 to 512 between the 1 and 4 chunk bars and from 512
to 256 between the 8 and 16 chunk bars. See Table 1 to compare
the reductions in the number of rotations with the reduction in
runtime.

It is worth noting that the database scan time is essentially iden-
tical for a fixed log(𝑝) value (and degree 𝑛), since this is the only
parameter that determines the number of R𝑝 elements needed to
represent the database. For log(𝑝) = 1, it requires about 2.1 million
2https://github.com/menonsamir/spiral
3https://github.com/ahenzinger/simplepir
4The computation benchmarks in [LMRSW23, Table 2] were taken on a machine
running at 3.0 GHz, while our benchmarking machine runs at 2.5 GHz. Nevertheless,
we use the exact run times from [LMRSW23] to avoid any inaccuracies.

R𝑝 elements to represent the database, while for log(𝑝) = 8 the
rate increases proportionally to only require roughly 262000 R𝑝
elements. Since the polynomial modulus degree 𝑛 is not changing
and the coefficient modulus is still roughly two machine words,
the database scan time scales directly with the plaintext modulus.
Observe in Figure 1 that for log(𝑝) = 1, the database scan time
takes just under 6 seconds, while for log(𝑝) = 8 the database scan
time takes a bit less than 3/4 of a second. This time holds regardless
of the parameters of the index expansion phase. In general, when
tuning the performance of WhisPIR, we first benchmark the run-
time of the database scanning phase, since this is essentially fixed
by 𝑛, log(𝑝), and the number of machine words required to repre-
sent the ciphertext modulus. Once this runtime is acceptable, the
index expansion parameters are then adjusted to meet the desired
performance.

Figure 3 illustrates the effect of splitting the index representation
(reducing the overall number of rotations). This plot further ex-
tends the computational performance of the 16-chunk database by
splitting the index into more than one vector. With only one index
vector, the index representation length is 256, requiring roughly
seven thousand rotations to expand the index (see Table 1). With
two index vectors, each vector has only 128 elements, requiring
a total of roughly five thousand rotations (2496 for each vector)
to expand the index. Observe in Figure 3 that with this parameter
setting, we can achieve both sub-second latency in single-threaded
server runtimes while also staying under 1 MB of communication.
The most dramatic savings comes from splitting each vector one
more time. With four vectors of 64 elements each, the total number
or rotations is only 768, representing an order of magnitude reduc-
tion in the original number of rotations. We demonstrate below
how combining these three optimizations results in a wide range
of performance profiles for various database sizes.

4.2 Full Benchmarks
In this section, we present benchmarks for WhisPIR for a variety
of database sizes to demonstrate how the protocol performance
scales.

Observe in Figure 2 the general shape of the performance options
for WhisPIR, which is roughly a shape of 1/𝑥 . For all database sizes,
the minimum communication point is relatively slow compared to
the parameter settings with slightly higher (< 2×) communication
overhead. More specifically, we can save over an order of magni-
tude in the server’s computation time while staying within 2× of
the minimum communication. On the other side of the trade-off,
the server’s computation quickly “bottoms-out” at the database
scan time, and decreasing this time further requires progressively
more communication. At some point, it is necessary to nearly dou-
ble the communication for a roughly 10% decrease in the server’s
computation time.

We are interested in understanding the “sweet-spot” of this trade-
off, where changes in communication and computation result in
proportional changes in the other dimension. It is likely that most
applications will be interested in a performance point around this
area, since only extremely constrained applications would consider
pushing this trade-off further. We plot example points in this region
in Figure 4 for various database sizes.

https://github.com/menonsamir/spiral
https://github.com/ahenzinger/simplepir

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

Figure 1: WhisPIR performance with varying parameters for a 1 GB database. All benchmarks use 𝑛 = 212 and a ciphertext
modulus 𝑞 that fits in two 64-bit machine words. The left plot has no minimum plaintext modulus, and all bars use log(𝑝) = 1
except the first bar that uses log(𝑝) = 3. All benchmarks in the right plot use log(𝑝) = 8.

Figure 2: Plot of communication vs. computation trade-off
for the parameter options given in Figure 1. The numbers
next to the blue points indicate the number of chunks that
the database is equally split into. All benchmarks are for a
single query running on a single thread. The communication
axis is truncated to view our results more clearly. Spiral has
communication roughly 15800 KB and a computation time of
2.1 seconds, while SimplePIR has communication of roughly
126000 KB and a computation time of roughly 0.125 seconds.

Observe in Figure 4 that the shape of the performance tradeoff
is essentially the same regardless of the database size. The jump in
the communication that occurs within the 8 GiB plot is due to the
increase in the polynomial modulus degree from 𝑛 = 212 to 𝑛 = 213.
This increase continues for the 16 GiB and 32 GiB sizes. Aside from
this jump, the communication growth is quite slow. For example,
observe the leftmost points in the 16 GiB and 32 GiB plots. The
increase in communication is less than 30KBwhile the computation
increases from about 21 seconds to about 29 seconds. For the same
32 GiB database, WhisPIR can achieve a 20 second computation
time while only communicating 1.6× more than the marked 16
GiB point. This wide range of performance options makes WhisPIR
well-suited for a large variety of application constraints.

Comparison: Stateless PIR. Figure 4 includes results from
HintlessPIR, the current state-of-the-art stateless PIR scheme. The
benchmarks from the largest four databases in [LMRSW23] are
plotted in Figure 4. The 0.25 GiB database has 256 byte entries,
the 0.5 GiB database has 8 byte entries, and the 1 GiB database

Figure 3: This plot illustrates the effect of splitting the index
representation into more digits. The legend is identical to
Figure 1. The key upload, the download, and the database
scan times are identical throughout the plot. Only the index
upload size and the index expansion time change.

has 1 byte entries. For all of these databases, WhisPIR outperforms
HintlessPIR in both communication and computation. For the 8
GiB database benchmarks, WhisPIR outperforms HintlessPIR in
communication but not computation. However, this database has 32
KB entries, which is significantly larger than all other benchmarks
in this work. We leave for future work to determine the small-
est database entry size for which WhisPIR can no longer strictly
outperform HintlessPIR.

Comparison: Stateful PIR. We now compare against prior
works that are designed to be stateful. When moving to the stateless
setting, these protocols suffer from very high communication, since
the protocol state must be transferred along with the query. We do
not attempt to optimize the protocol state. The communication for
a single query for Spiral, SimplePIR, and WhisPIR is displayed in
Figure 5.

Figure 5 displays the communication in terms of the portion that
is reusable for any number of queries and the portion that must
be resent for each query. The reusable portion corresponds to the
protocol state that would be communicated in the offline phase.
Observe that nearly all of the communication in both Spiral and
SimplePIR is this protocol state. The SimplePIR state is a database
digest that must be updated as the database changes. Furthermore,

WhisPIR: Stateless Private Information Retrieval
with Low Communication

Figure 4:WhisPIR performance for databases of various sizes. These points are examples to illustrate the performance trade-offs;
WhisPIR supports more extreme parameter settings in both the communication and computation direction. The plot on the
right is a closer look at the marked points on the left, indicated with an *. The numbers next to the HintlessPIR points indicate
the database size in GiB. Note that the 8 GiB point is for a database with 32 KB entries, while all other points are for a database
with significantly smaller entries (≤ 256 bytes).

the per-query communication is also outperformed by WhisPIR
for all database sizes, so the communication of SimplePIR will
never outperform WhisPIR for any number of queries. While the
computation of SimplePIR is quite fast, roughly 100 milliseconds
per gigabyte of database, the high communication precludes this
protocol’s use in a stateless setting, even when the number of
queries is high.

We focus the remainder of the comparison on Spiral, since the
per-query communication of Spiral outperforms WhisPIR for all
database sizes. This means that for some number of queries, the
communication of Spiral will eventually outperformWhisPIR. Note
that all parameter values benchmarked for WhisPIR outperform
Spiral in computation, so the Spiral computation will never catch
up to WhisPIR without further optimization. Solving for the min-
imum number of queries before Spiral outperforms WhisPIR in
communication gives 120 queries for a 1 GiB database, 58 queries
for an 8 GiB database, and 26 queries for a 16 GiB database. It is
interesting to observe the gradual convergence of the two protocols
as the database size grows. Eventually, as the batch size grows, it
will likely make sense for WhisPIR to start taking on more features
of the Spiral protocol, such as sending more evaluation keys in the
initial upload to reduce the per-query communication. We leave
these fine-grain trade-offs for future work, as they more closely
resemble a stateful PIR protocol setting.

5 APPLICATION: SECURE BLOCKLIST
CHECKING

In this section, we discuss a concrete example application ofWhisPIR
that takes advantage of both the low communication and fine-grain
query batching.

Description. Blocklist checking is a common application in mes-
saging services. The task is to reduce spam by screening messages
against a “blocklist”, which is a list of known spam or malicious
content. Typical contents for a blocklist are URLs that are known
to be malicious in some way, such as routing to a malicious website.
If a user’s app detects a message that is in the blocklist, it will not

deliver the message to the user or display a warning, preventing
the user from encountering spam or phishing attempts.

If this important user-safety feature is to be implemented in an
end-to-end encrypted service, a lookup protocol must be imple-
mented that maintains the message privacy while still informing
the user if the received message is contained in the blocklist. We
propose using WhisPIR to allow users’ applications to privately
query the blocklist server to check membership of a message in the
blocklist without revealing messages to this host server.

There are several features of this application that make WhisPIR
a natural choice. This application requires rapid updates; when a
new malicious URL is detected, the database must be updated im-
mediately to reflect this new entry. The application cannot rely on
users downloading an updated digest for each new malicious URL
that is discovered. In addition, this application could be support-
ing millions or even billions of users, making the storage of large
parameters for each client practically infeasible. Finally, the client
application is likely a user’s cellphone with limited bandwidth, so
minimizing the protocol’s communication is critical to maintain
practicality.

Database Representation. Applying PIR to this application is
not immediately straightforward, since the API of PIR performs an
index lookup rather than a key-word membership check. Naively
performing a lookup over the space of all URLs would be prohibi-
tively slow. Instead, the server first hashes the URLs in the blocklist
with a cryptographic hash function (e.g. SHA3) to map the URLs to
32-byte strings. The server then inserts these values into a Cuckoo
hash table using two hash functions, resampling the hash func-
tions on insertion failure. As long as the hash table size is at least
twice the number of keys in the hash table, insertion is expected
to succeed in constant time, even when considering the time to
rebuild the table [PR01]. Regardless, this table construction occurs
in a setup phase and has no effect on the query runtime. The only
state that may change is resampling the hash functions, but the
description of these hash function are short (𝑂 (_) bits) and can
easily be updated if they change.

The result of this Cuckoo hash table construction is a hash table
that is twice the size of the original table where the lookup of a hash

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

Figure 5: Comparison between WhisPIR and stateful PIR protocols. The left plot indicates the portion of the query that
can be reused across multiple queries. Note the log scale on the left plot. The right plot indicates the portion that must be
communicated for each query. All WhisPIR values are the minimum communication points from Figure 4.

key requires checking at most two locations in the hash table. To
apply WhisPIR, the user’s application first hashes the received URL
down to a 32-byte string, then uses the Cuckoo hash functions to
map this value to two indices in the hash table. The application then
acts as the client in WhisPIR to query the hash table at these two
indices. The response will be two hash values, which the application
checks against the hash of the received URL. If these hashes match,
the application determines that the received URL is in the blocklist
and proceeds accordingly (e.g. not delivering the message, warning
the user, etc.). Otherwise, the application determines that the URL
is not in the blocklist and delivers the message normally.

Database Size. Based on conversations with industry experts,
it is common for a single malicious URL to map to many entries
in a blocklist, since many forms of a URL can route to the same
address. For example, the blocked URL evil.com/a/b/c/ would
result in four distinct entries in the blocklist of the form evil.com/,
evil.com/a/, evil.com/a/b/, and evil.com/a/b/c/. Further reg-
ular expression evaluation is performed to normalize URL inputs,
but we omit these details as they occur locally on the user’s de-
vice. Overall, we determine a blocklist consisting of 224 entries
is a representative size for practical applications. Each entry is a
32-byte hash, and the hash table is double the size of the input keys.
This results in a database of roughly 1 GB that must be queried
twice for a URL that the application wishes to test. Note that we
only consider pairs of queries to the hash table, which is a query
corresponding to a single substring of the URL. A user that receives
evil.com/a/b/c/ will likely want to query all four possibilities,
but batching these eight hash table lookups may leak information
about the structure of the received URL, potentially compromising
privacy.

Performance. To determine the performance WhisPIR on this
task at various trade-off points, simply take the benchmarks from
Section 4 and double the index upload, the download, and the server
computation time. Note that the switching key can be used to pro-
cess both indices, so this value only needs to be communicated
once for a pair of indices. Example values are plotted in Figure 6
along with the estimated performance of the HintlessPIR protocol
on this task. Observe that WhisPIR is able to come within 10% of
HintlessPIR’s runtime while using 25% of the communication, and
WhisPIR strictly outperforms HintlessPIR using less than 1/3 the

Figure 6: This plot displays the performance of WhisPIR on
querying a 1 GB blocklist database. Each query consists of a
single pair of PIR indices, one for each Cuckoo hash function.
The HintlessPIR performance includes the reuse of the key
encryption communication and rotation processing runtime
across both indices.

communication. All benchmarks here are taken on a single thread,
and practical applications will have significantly more compute re-
sources available for the server’s computation. In contrast, therewill
be essentially no opportunity to change the protocol communica-
tion during deployment, so WhisPIR’s focus on low communication
makes it the clear choice for secure blocklist checking.

REFERENCES
[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-

wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic en-
cryption security standard. Technical report, HomomorphicEncryp-
tion.org, Toronto, Canada, November 2018.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with
compressed queries and amortized query processing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 962–979, 2018.

[AS16] Sebastian Angel and Srinath Setty. Unobservable communication over
fully untrusted infrastructure. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 551–569, Savannah,
GA, November 2016. USENIX Association.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
Fully Homomorphic Encryption without Bootstrapping. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS

WhisPIR: Stateless Private Information Retrieval
with Low Communication

’12, page 309–325, New York, NY, USA, 2012. Association for Computing
Machinery.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic
encryption with polylog overhead. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, pages
465–482, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[HDCGZ23] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and
Nickolai Zeldovich. PrivateWeb Search with Tiptoe. In Proceedings of the
29th Symposium on Operating Systems Principles, SOSP ’23, page 396–416,
New York, NY, USA, 2023. Association for Computing Machinery.

[HHCG+23] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah
Meiklejohn, and Vinod Vaikuntanathan. One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3889–3905,
Anaheim, CA, August 2023. USENIX Association.

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved rns variant
of the bfv homomorphic encryption scheme. In Mitsuru Matsui, editor,
Topics in Cryptology – CT-RSA 2019, pages 83–105, Cham, 2019. Springer
International Publishing.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A Low Latency Framework for Secure Neural Network Infer-
ence. In 27th USENIX Security Symposium (USENIX Security 18), pages
1651–1669, Baltimore, MD, August 2018. USENIX Association.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homo-
morphic encryption schemes for finite fields. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
pages 608–639, Cham, 2021. Springer International Publishing.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In
28th USENIX Security Symposium (USENIX Security 19), pages 1447–1464,
Santa Clara, CA, August 2019. USENIX Association.

[LG15] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client
private information retrieval. In Rainer Böhme and Tatsuaki Okamoto,
editors, Financial Cryptography and Data Security, pages 168–186, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[LMRSW23] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu.
Hintless Single-Server Private Information Retrieval. Cryptology ePrint
Archive, Paper 2023/1733, 2023. https://eprint.iacr.org/2023/1733.

[LPA+19] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and
Thomas Ristenpart. Protocols for checking compromised credentials.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 1387–1403, New York, NY, USA,
2019. Association for Computing Machinery.

[Lyu12] Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, pages 738–755, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[MCR21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR: Re-
sponse Efficient Single-Server PIR. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21,
page 2292–2306, New York, NY, USA, 2021. Association for Computing
Machinery.

[MW22] Samir Jordan Menon and David J. Wu. SPIRAL: Fast, High-Rate Single-
Server PIR via FHE Composition. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 930–947, 2022.

[PIB+22] Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke
Valenta, TaraWhalen, Christopher Wood, Thomas Ristenpart, and Rahul
Chatterjee. Might I get pwned: A second generation compromised cre-
dential checking service. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1831–1848, Boston, MA, August 2022. USENIX Asso-
ciation.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Fried-
helmMeyer auf der Heide, editor, Algorithms — ESA 2001, pages 121–133,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[TPY+19] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,
Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,
Sarvar Patel, Dan Boneh, and Elie Bursztein. Protecting accounts from
credential stuffing with password breach alerting. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 1556–1571, Santa Clara, CA,
August 2019. USENIX Association.

[ZPSZ23] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano:
Extremely simple, single-server PIR with sublinear server computation.
Cryptology ePrint Archive, Paper 2023/452, 2023. https://eprint.iacr.org/
2023/452.

Server Client
pp, sp← Setup(1_, 1𝑁 , 𝑡)

pp
−−−−−−−−→
Query

Database D ∈ Z𝑁𝑡 Index 𝑖 ∈ [𝑁]
qry, st←Query(pp, 𝑖)

qry
←−−−−−−−−

ans← Answer(sp,D, qry)
ans−−−−−−−−→

Output 𝑑 ← Recover(pp, st, ans)

Figure 7: Usage of the PIR API.

A FURTHER BACKGROUND
A.1 PIR Definitions & API Usage
We define basic correctness and security requirements for the semi-
honest PIR primitive. Example usage of the PIR API is given in
Figure 7.

Definition A.1 (Correctness). We say that a PIR scheme has cor-
rectness error 𝛿 if, for security parameter _, for all databasesD ∈ Z𝑁𝑡
and for all indices 𝑖 ∈ [𝑁],

Pr

Recover(st, ans)

≠ D[𝑖]

�������
pp, sp← Setup(1_, 1𝑁 , 𝑡)

qry, st←Query(𝑖)
ans← Answer(D, qry)

 ≤ 𝛿.

The public parameters pp and server parameters sp are implicit inputs
in all algorithms following Setup.

Definition A.2 (Query Hiding). We say that a PIR scheme is (𝑇, 𝜖)-
Query Hiding if, for all adversaries A running in time at most 𝑇 , on
database size 𝑁 and for all 𝑖, 𝑗 ∈ [𝑁],��� Pr[A(pp, sp, qry) = 1 : (qry, st) ←Query(pp, 𝑖)]

− Pr[A(pp, sp, qry) = 1 : (qry, st) ←Query(pp, 𝑗)]
��� ≤ 𝜖.

A.2 Ring Learning with Errors
The security of our PIR scheme is based on the Ring Learning with
Errors (RLWE) [Lyu12] problem. This problem is parametrized
by a polynomial ring R𝑞 := Z𝑞 [𝑥]/(𝑥𝑛 + 1), where 𝑞 ∈ N is the
coefficient modulus and 𝑛 is a power of 2. In addition to the ring
itself, the RLWE problem is specified by an error distribution 𝜒

over R𝑞 that samples polynomials with small coefficients. In typical
instantiations, including this work, 𝜒 outputs elements of R𝑞 where
each coefficient is sampled independently from a discrete, zero-
centered Gaussian modulo 𝑞.

Definition A.3 (The Ring Learning with Errors (RLWE) prob-
lem [Lyu12]). For a ring R𝑞 := Z𝑞 [𝑥]/(𝑥𝑛 + 1), where 𝑞 is a positive
integer 𝑞 and 𝑛 is a power of two, let 𝜒 be an error distribution over
R𝑞 . The RLWE𝑛,𝑞,𝜒 problem is to distinguish samples of the following
distributions. The first distribution is defined by a secret s ∈ R𝑞 . Each

https://eprint.iacr.org/2023/1733
https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452

Leo de Castro †⋄ , Kevin Lewi† , and G. Edward Suh†§
†Meta, ⋄Massachusetts Institute of Technology, §Cornell University

sample of this distribution consists of two elements (a, b) ∈ R2𝑞 where

a
$←− R𝑞 and b = a · s + e, where e← 𝜒 is a fresh error sample. The

second distribution is simply the uniform distribution over R2𝑞 , where

a sample is (a, u) $←− R2𝑞 .

In short, the hardness of RLWE states that samples

(a, a · s + e) ≈𝑐 (a, u)

are computationally indistinguishable, where all operations are
over R𝑞 . Note that an instance of RLWE𝑛,𝑞,𝜒 uses a fixed s across
all samples while the error e is freshly sampled from 𝜒 each time.
It is typical to sample s← 𝜒 .

The following definition will be useful in the analysis of the
noise growth throughout the homomorphic computations.

DefinitionA.4 (Ring Expansion Factor). For a ringR = Z[𝑥]/(𝑥𝑛+
1), define 𝛾R as the smallest factor such that for any a, b ∈ R

||a · b| | ≤ 𝛾R · | |a| | · | |b| |.

When | | · | | is the Euclidean norm, 𝛾R ≤
√
𝑛 by Cauchy-Schwarz.

When | | · | | is the ℓ∞ norm, 𝛾R ≤ 𝑛.

Remark A.1 (Empirical Expansion Factor). We leverage empirical
results [HPS19, Section 6.1] demonstrating that an expansion factor
of 𝛾R = 2

√
𝑛 is sufficient to bound | |a · b| |∞ ≤ 𝛾R · | |a| |∞ · | |b| |∞.

The discrete Gaussian output bound is | |e| |∞ ≤ 6𝜎 for a fresh sample
e← 𝜒 .

Throughout this work, we will write the analysis in terms of
a generic ring expansion factor. In Section 4, we instantiate this
expansion factor with the empirical analysis of Remark A.1.

A.3 Precomputed Key Switching API Usage
Figure 8 demonstrates the usage of the precomputed key switching
API.

A.4 Further BGV Background
Modulus Switching. One of the primary methods used in BGV to
manage the noise level is called modulus switching. This operation
reduces the noise level in the ciphertext by reducing the modulus by
roughly the same amount. By reducing the magnitude of the noise,
we reduce the growth of the noise in the resulting ciphertext. We
restate the modulus switching definition and noise growth lemma
from BGV [BGV12].

Definition A.5 (Modulus Switching [BGV12]). For a vector c ∈ Z𝑛𝑞1
and integers 𝑞1 > 𝑞2 > 𝑝 , we define c′ ← ModSwitch(c, 𝑞1, 𝑞2, 𝑝)
as the vector in Z𝑛𝑞2 closest to (𝑞2/𝑞1) · c that satisfies c

′ ≡ c mod 𝑝 .

We abuse notation slightly by writing ModSwitch(c, 𝑞1, 𝑞2, 𝑝)
for c ∈ R𝑞1 [𝑌] as applying ModSwitch to each coefficient of c in
R𝑞1 seperately. The output is c′ ∈ R𝑞2 [𝑌] of the same degree.

Lemma A.1 (Modulus Switching Noise [BGV12]). Let 𝑞1 > 𝑞2 > 𝑝

be positive integers satisfying 𝑞1 ≡ 𝑞2 ≡ 1 mod 𝑝 . Let s← 𝜒 be a
secret, where 𝜒 has standard deviation 𝜎 . Let c ∈ R𝑞1 be such that

| | [⟨c, s⟩]𝑞1 | | < 𝑞1 − 𝑝 (𝑞1/𝑞2) · 𝛾R · | |s| |∞,

Server Client
Permutation 𝜋

Ring elements {a′
𝑖
}𝑤−1
𝑖=0 , c1
𝜋, {a′

𝑖
}𝑤−1
𝑖=0 , c1

−−−−−−−−→
(a(1)𝑜𝑢𝑡 , {d

(1)
𝑖
}𝑤−1
𝑖=0) ← PreSwitch({a′

𝑖
}𝑤−1
𝑖=0 , c1, 𝐵, 𝜋)

(a(2)𝑜𝑢𝑡 , {d
(1)
𝑖
}𝑤−1
𝑖=0) ← PreSwitch({a′

𝑖
}𝑤−1
𝑖=0 , a(2)𝑜𝑢𝑡 , 𝐵, 𝜋)

(a(3)𝑜𝑢𝑡 , {d
(1)
𝑖
}𝑤−1
𝑖=0) ← PreSwitch({a′

𝑖
}𝑤−1
𝑖=0 , a(3)𝑜𝑢𝑡 , 𝐵, 𝜋)

Rotation
Sample s← 𝜒

c0 ← (m + 𝑝 · e − c1 · s)
For 𝑖 ∈ {0, . . . ,𝑤 − 1}

b′
𝑖
← (𝐵𝑖 · s(𝜋) + 𝑝 · e − a′

𝑖
· s)

c0, {b′𝑖 }
𝑤−1
𝑖=0←−−−−−−−−

b(1)𝑜𝑢𝑡 ← KSNoDecomp({b′
𝑖
}𝑤−1
𝑖=0 , c0, {d𝑖 }𝑤−1𝑖=0 , 𝜋)

b(2)𝑜𝑢𝑡 ← KSNoDecomp({b′
𝑖
}𝑤−1
𝑖=0 , b(1)𝑜𝑢𝑡 , {d𝑖 }𝑤−1𝑖=0 , 𝜋)

b(3)𝑜𝑢𝑡 ← KSNoDecomp({b′
𝑖
}𝑤−1
𝑖=0 , b(2)𝑜𝑢𝑡 , {d𝑖 }𝑤−1𝑖=0 , 𝜋)

b(1)𝑜𝑢𝑡 , b
(2)
𝑜𝑢𝑡 , b

(3)
𝑜𝑢𝑡−−−−−−−−→

m(𝜋) ← Decrypt(s, (b(1)𝑜𝑢𝑡 , a
(1)
𝑜𝑢𝑡))

m(𝜋
2) ← Decrypt(s, (b(2)𝑜𝑢𝑡 , a

(2)
𝑜𝑢𝑡))

m(𝜋
3) ← Decrypt(s, (b(3)𝑜𝑢𝑡 , a

(3)
𝑜𝑢𝑡))

Figure 8: Usage of the precomputed key switching API. The
displayed functionality is simply to evaluate three powers of
the rotation 𝜋 . The BGV parameters R𝑞 and 𝑝 are implicitly
defined. Each error term e is freshly sampled.

and define c′ ← ModSwitch(c, 𝑞1, 𝑞2, 𝑝). Then, we have
[⟨c′, s⟩]𝑞2 = [⟨c, s⟩]𝑞1 mod 𝑝

| | [⟨c′, s⟩]𝑞2 | | <
𝑞2
𝑞1
· | | [⟨c, s⟩]𝑞1 | | + 𝑝 · 𝛾R · | |s| |∞ . (5)

The bound in Equation (5) follows from multiplying the secret
with the rounding error from themodulus switch scaling.Wewill al-
ways select moduli such that the scaled down noise 𝑞2

𝑞1
· | | [⟨c, s⟩]𝑞1 | |

is dominated by the additive 𝑝 · 𝛾R · | |s| |∞ term. From Remark A.1,
we can bound the overall noise term output by modulus switching
by 12𝜎

√
𝑛.

Remark A.2 (Compressing Ciphertexts). Modulus switching en-
ables an important optimization when communicating the results of
a homomorphic computation. Regardless of the size of the ciphertext
resulting from a homomorphic computation, as long as this ciphertext
meets the requirements in Lemma A.1 (i.e. the ciphertext can handle
an additive noise of size (𝑞1/𝑞2) · 𝛾R · | |s| |∞, which is almost any
decryptable ciphertext) then it can be reduced to a minimal modulus
before being sent over the network. This minimum modulus is defined
by the noise level in Equation (5), meaning that all result ciphertexts
have a modulus of size roughly 𝑝 · 𝑛.

	Abstract
	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions

	2 Background
	2.1 PIR: Definitions & API
	2.2 BGV Homomorphic Encryption Scheme

	3 The WhisPIR Protocol
	3.1 Protocol Overview
	3.2 Index Expansion with One Key
	3.3 Non-compact Homomorphic Multiplication
	3.4 Full Protocol Description
	3.5 Communication-Computation Trade-offs

	4 Implementation & Evaluation
	4.1 Isolating Optimizations
	4.2 Full Benchmarks

	5 Application: Secure Blocklist Checking
	References
	A Further Background
	A.1 PIR Definitions & API Usage
	A.2 Ring Learning with Errors
	A.3 Precomputed Key Switching API Usage
	A.4 Further BGV Background

