
Extractable Witness Encryption for KZG Commitments
and Efficient Laconic OT

Nils Fleischhacker1? , Mathias Hall-Andersen2 , and Mark Simkin3

1 Ruhr University Bochum
mail@nilsfleischhacker.de

2 Aarhus University
ma@cs.au.dk

3 Ethereum Foundation
mark.simkin@ethereum.org

Abstract. We present a concretely efficient and simple extractable witness encryption scheme for
KZG polynomial commitments. It allows to encrypt a message towards a triple (com, α, β), where com
is a KZG commitment for some polynomial f . Anyone with an opening for the commitment attesting
f(α) = β can decrypt, but without knowledge of a valid opening the message is computationally
hidden. Our construction is simple and highly efficient. The ciphertext is only a single group element.
Encryption and decryption both require a single pairing evaluation and a constant number of group
operations.
Using our witness encryption scheme, we construct a simple and highly efficient laconic OT protocol,
which significantly outperforms the state of the art in most important metrics.

1 Introduction

The polynomial commitment scheme of Kate, Zaverucha, and Goldberg (KZG) [KZG10] is a pow-
erful tool that has allowed for constructing a variety of advanced cryptographic primitives. Many
concretely efficient vector commitments [CF13] with all kinds of additional functionalities or se-
curity properties are extensions of the KZG polynomial commitment scheme [TAB+20, GRWZ20,
LPR22, SCP+22, WUP23]. Many of the currently most efficient proof systems [MBKM19, GWC19,
CHM+20] make crucial use of KZG commitments as part of their constructions.

In general, a polynomial commitment scheme allows for committing to a polynomial f(X), such
that one can later provide openings, attesting that f(α) = β for some chosen evaluation point α.
The polynomial commitment scheme should ensure that the committed polynomial is at most of
some degree d, that it is position binding in the sense that one cannot open the commitment to
two different evaluations at the same point α, and in some cases it may also be desirable that the
commitment itself hides the committed polynomial.

The KZG polynomial commitment scheme is highly efficient as both commitments and openings
consists of a single group element, no matter how large the degree of the polynomial is. From a
security perspective, the construction requires a trusted setup and can be proven secure in the
algebraic group model (AGM) [FKL18] under a q-type variant of the standard discrete logarithm
assumption.

Given the widespread usefulness of KZG commitments, it seems natural to ask the following
somewhat abstract questions: Can we expand the toolkit surrounding KZG commitments in a
fundamental way that would allow us to solve an even larger set of problems via these polynomial
commitments?
? Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-

lence Strategy - EXC 2092 CASA - 390781972.

https://orcid.org/0000-0002-3971-9368
https://orcid.org/0000-0002-0195-6659
https://orcid.org/0000-0002-7325-5261

1.1 Our Contribution

In this work, we present a simple, concretely efficient extractable witness encryption [GGSW13,
GKP+13] scheme for KZG commitments and show how it can be used to construct concretely
efficient laconic OT [CDG+17]. Concretely, we make the following contributions:

Witness Encryption for KZG Commitments. We present an encryption scheme that takes
a KZG commitment com, evaluation point α, evaluation β, as well as a message m as input and
produces ciphertext ct. Correctness of the encryption scheme allows anybody, who knows an open-
ing for com that attests that the committed polynomial evaluates to β at point α, to decrypt the
ciphertext ct. Informally, security of the encryption scheme ensures that anybody, who can decrypt
ct, can also compute a valid opening with respect to (com, α, β). Now, if com is a commitment to
polynomial f(X) and ct is an encryption for (com, α, β), where β 6= f(α), then ct computationally
hides the message, due to the evaluation binding property of the polynomial commitment scheme.

We note that for any tuple (com, α, β), there exists an opening and for this reason the vanilla
notion of witness encryption as defined by Garg et al. [GGSW13] would not suffice to guarantee
that the message is hidden. By focusing on extractable witness encryption as defined by Goldwasser
et al. [GKP+13], we can ensure that the message is hidden, whenever computing the opening is
assumed to be hard.

Our encryption scheme is highly efficient in terms of both ciphertext size and computational
costs. One ciphertext for the scheme as described above is comprised of a single group element,
encryption requires two group operations and one pairing evaluation and decryption requires a
single pairing evaluation. The construction is generalized for multiple opening constraints. In that
case the costs grow linearly in the number of constraints.

Efficient Laconic Oblivious Transfer. Using our witness encryption scheme for KZG commit-
ments, we present a simple and highly-efficient protocol for laconic oblivious transfer [CDG+17].
Oblivious transfer [Rab81] is an interactive protocol between a sender holding messages m0 and
m1 and a receiver holding a choice bit b. At the end of the protocol, the receiver should only learn
mb and the sender should learn nothing at all.

In laconic oblivious transfer, the receiver holds a database D ∈ {0, 1}n of n choice bits and
publishes a digest digest ← H(D), whose size is independent of the size of D. The sender can
then repeatedly choose a message pair (m0,m1), an index i ∈ [n], and use the digest to compute a
short message for the receiver, which allows them to obtain mD[i]. As in regular OT, the receiver
does not learn anything about the other message and the sender does not learn anything about the
choice bit of the receiver.

Cho et al. [CDG+17] show that laconic OT is a useful building block for constructing secure
computation protocols that operate on large inputs and for constructing multi-hop homomorphic
encryption for RAM programs. Improving the efficiency of laconic OT, directly translates to faster
protocols for these applications.

Implementation & Benchmarks. The full laconic OT construction was implemented4 in Rust.
We provide benchmarks for various parameter regimes and show that our laconic OT construction
outperforms the state of the art in most important metrics quite significantly.

4 https://github.com/rot256/research-we-kzg

2

https://github.com/rot256/research-we-kzg

1.2 Related Work

In the following, let us discuss related works from several research areas that intersect with our
work here.

Witness Encryption. Witness encryption was originally introduced by Garg et al. [GGSW13],
who presented a construction based on multilinear maps. Such encryption schemes take a statement
x and a messagem as input and produce a ciphertext ct. Correctness guarantees that given a witness
w with (x, w) ∈ R, one can decrypt ct and security ensures that the message is computationally
hidden, if x 6∈ L. It is important to note though that ct provides no explicit security guarantees,
when x ∈ L. In a different work, Garg et al. [GGH+13] showed that one can construct general-
purpose witness encryption from indistinguishability obfuscation [BGI+01]. Two recent works by
Tsabary [Tsa22] and Vaikuntanathan [VWW22] present construction based on new computational
hardness assumptions. Extractable witness encryption is a strengthening of the original notion
that was introduced by Goldwasser et al. [GKP+13]. It requires the existence of an extractor,
which can recover a witness w from any adversary that can break the semantic security of the
encryption scheme. How to construct general-purpose extractable witness encryption is currently
unclear. Garg et al. [GGHW14] show that the existence of a type of special-purpose obfuscation
would imply the non-existence of general-purpose extractable witness encryption. Benhamouda and
Lin [BL18] introduce the notion of witness selectors, which lie somewhere between extractable and
non-extractable witness encryption. They require semantic security of the encryption to hold if
finding a witness for the relation is computationally hard.

While remotely practical general-purpose witness encryption from standard assumptions cur-
rently seems out of reach, there are several works [GS17, BL18, BL20, BJKL21, CFK22] that
construct different types of witness encryption for specific languages. In the work of Garg and
Srinivasan [GS17], they construct a primitive they call homomorphic proof commitments with en-
cryption. Given a commitment com and a message m they allow for encrypting the message, such
that a proof π that com is a commitment to 0 or 1 can be used to decrypt the message. Benhamouda
and Lin [BL20] introduce witness encryption for NIZKs of commitments. Their scheme allows for
encrypting towards a tuple (com, G, y), where com is a commitment, G is a function, and y is an
output. The witness for decryption is a non-interactive zero-knowledge proof for the statement “the
message committed in com is m and G(m) = y”. In the presented construction, the commitment and
proof size are at least linear in the statement size. Campanelli, Fiore, and Khoshakhlagh [CFK22]
present succinct functional commitments with an associated witness encryption scheme with short
commitments and short openings. They introduce a new computational hardness assumption and
use it to prove their construction secure in the AGM.

In contrast to these works, we construct an extractable witness encryption scheme for a polyno-
mial, rather than functional, commitment scheme from standard assumptions in the AGM. We rely
on KZG commitments which have succinct commitments and openings and the ciphertexts of our
construction are equally succinct. Our construction is surprisingly simple and in particular much
simpler than the constructions discussed above. We believe this to be a significant advantage, when
it comes to engineering and deploying a cryptographic primitive in the real world.

Laconic OT. The concept of laconic OT was originally introduced in a work by Cho et al.
[CDG+17]. The authors presented a construction based on a special type of encryption scheme

3

in combination with garbled circuits. While asymptotically interesting, their construction makes
non-blackbox use of cryptographic objects and is completely impractical when it comes to concrete
performance.

Green, Jain, Van Laer [GJL23] focus on concretely efficient laconic OT protocols, but the
security of their proposed construction relies on a new hardness assumption they introduce. In
addition, they require a generic and somewhat expensive transformation via garbled circuits to
achieve sender privacy. Döttling et al. [DKL+23] present another laconic OT protocol based on the
learning with errors (LWE) with error leakage problem. They show that this problem reduces to
standard LWE for certain parameter ranges.

From a concrete efficiency perspective, our construction is highly efficient in terms of band-
width and computational overheads that are induced by the individual OT executions. The main
drawback of our construction is a large crs, since we require the same setup as KZG commitments.
In comparison the work of Green, Jain, Van Laer, our public parameters are smaller by a factor of
3-4x, our sender’s message size is smaller by a factor ≈ 5x, and our receiver’s computation time is
smaller by 1-6 orders of magnitude depending on the precise setting. In comparison to the work of
Döttling et al., our sender’s OT message is smaller by 5 orders of magnitude. We provide a detailed
discussion of the concrete efficiency of our construction in Section 6.

2 Preliminaries

In this section, we will recall some notation and standard definitions that we will use throughout
the paper.

Notation. We denote by λ ∈ N the security parameter, by poly(λ) any function that is bounded
by a polynomial in λ and by negl(λ) any negligible function in λ. An algorithm is PPT if it is
modeled by a probabilistic Turing machine with a running time bounded by poly(λ). Let S be a
set. We write x← S for the process of sampling an element of S uniformly at random. For n ∈ N,
we write [n] to denote the set {1, . . . , n}. For a vector v ∈ Sn and i ∈ [n], we write vi to denote its
i-th component.

2.1 Algebraic Group Model

Some of our proofs will rely on the algebraic group model, which was introduced by Fuchsbauer,
Kiltz, and Loss [FKL18]. In this model, one considers algebraic algorithms and, in particular, an
algebraic adversary. Let G of prime order q. Whenever an algorithm returns a value Y ∈ G, it
must also provide an algebraic representation of that element (e1, . . . , en), such that Y =

∏i=1
n Xei

i ,
where (X1, . . . , Xn) are group elements the algorithm has previously seen.

2.2 Pairings and Assumptions

Let GGen be the parameter generation algorithm that takes the security parameter λ as input and
returns (G1,G2,GT , g1, g2, q, e) as its output, where G1,G2,GT are groups of prime order p = p(λ),
where g1 ∈ G1 and g2 ∈ G2 are generators and where e : G1 × G2 → GT is a bilinear map. For
i ∈ {1, 2, T}, we write [α]i as a shorthand notation for gαi and we write [α]i + [β]i = [α + β]i as a
shorthand notation for the multiplication of two group elements. The type of pairing is irrelevant
for our applications.

4

Definition 1 (`-DLOG Assumption). The `-DLOG assumption holds with respect to GGen, if
for any λ ∈ N and any PPT adversary A, it holds that

Pr

τ = τ ′ :

par← GGen(1λ)

τ ← Fp
τ ′ ← A(par, ([τ0]1, . . . , [τ

`]1, [1]2, [τ]2))

 ≤ negl(λ),

where the probability is taken over the random coins of the group generation algorithm and the
adversary and over the uniform choice of τ .

Remark 1. Throughout the paper we will omit explicitly spelling out the group parameter genera-
tion and we will assume all involved parties are always implicitly provided with the parameters.

2.3 Polynomial Commitments

A polynomial commitment allows for computing a short value com for a polynomial f of potentially
high degree over a finite field F. Later on, one can compute short openings that certify that the
polynomial committed to by com evaluates to β ∈ F at some position α ∈ F. Polynomial commitment
should be binding in the sense that it should be impossible to open the same point to two different
values.

Definition 2 (Polynomial Commitments). A polynomial commitment over F is a tuple of PPT
algorithms PC = (Setup,Commit,Open,Verify) defined as follows:

ck← Setup(1λ, 1d): The setup algorithm takes security parameter λ and degree upper bound d as
input and returns commitment key ck.

com← Commit(ck, f): The commitment algorithm takes commitment key ck and polynomial f ∈
F[X] as input and returns commitment com.

π ← Open(ck, f, α, β): The opening algorithm takes commitment key ck, polynomial f ∈ F[X], point
α ∈ F, and point β ∈ F as input and returns openings π.

b← Verify(ck, com, π, α, β): The verification algorithm takes commitment key ck, commitment com,
opening π, point α ∈ F, and point β ∈ F as input and returns a bit b.

Definition 3 (Correctness). A polynomial commitment scheme PC = (Setup,Commit,Open,
Verify) over F is correct, if for all λ, d ∈ N, all ck ← Setup(1λ, 1d), all polynomials f ∈ F[X]
of degree at most d, all com ← Commit(ck, f), all α, β ∈ F, and all π ← Open(ck, f, α, β) it holds
that Verify(ck, com, π, α, β) = 1.

Definition 4 (Binding). A polynomial commitment scheme PC = (Setup,Commit,Open,Verify)
over F is binding, if for all λ, d ∈ N and all PPT adversaries A it holds that

Pr

 β0 6= β1

∧Verify(ck, com, π0, α, β0) = 1

∧Verify(ck, com, π1, α, β1) = 1

:
ck← Setup(1λ, 1n)

(com, α, β0, β1, π0, π1)← A(ck)

 ≤ negl(λ).

5

Setup(1λ, 1d)

τ ← Fp
return ([τ0]1, . . . , [τ

d]1, [1]2, [τ]2)

Commit(ck, f)

com :=

d∑
i=0

fi · [τ i]1

return com

Open(ck, com, f, α, β)

q(X) :=
f(X)− β
X − α

π :=

d∑
i=0

qi · [τ i]1

return π

Verify(ck, com, π, α, β)

return e(com− [β]1, [1]2)
?
= e(π, [τ]2 − [α]2)

Fig. 1. The KZG polynomial commitment scheme.

2.4 KZG Commitments

Let us recall the KZG polynomial commitment scheme. The scheme’s public parameters are powers
of a secret point τ in the exponent of a group generator. Committing to a polynomial is done
by evaluating it in the exponent at point τ , which can be done using the public parameters, but
without knowledge of τ .

Theorem 1 ([CHM+20]). If the d-DLOG assumption holds with respect to GGen, then KZG
commitment scheme described in Figure 1 is a correct and binding polynomial commitment scheme
in the AGM.

It was shown by Feist and Khovratovich [FK23] that it is possible to open a KZG commitment
in n positions much more efficiently than naively computing each opening separately Specifically,
it is possible to perform a batch opening at n points in time O

(
n log2(n)

)
. This can be further

improved to O(n log(n)), if the points are powers of a root of unity. We refer to this batch opening
algorithm as BatchOpen.

2.5 Weakly-Hiding Vector Commitments

A vector commitment allows for computing a short value com for a potentially long vector of
messages (m1, . . . ,mn). Later on, one can compute short openings that certify that the vector
committed to by com opens to mi at some position i ∈ [n]. Vector commitment should be binding
in the usual sense, meaning that no position can be opened to two different values. In addition, we
will require a weak form of hiding from our vector commitments.

Definition 5. A vector commitment with batch opening is a tuple of PPT algorithms VC = (Setup,
Commit,BatchOpen,Verify) defined as follows:

ck← Setup(1λ, 1n): The setup algorithm takes security parameter λ and vector length n as input
and returns commitment key ck.

(com, aux)← Commit(ck,m): The commitment algorithm takes commitment key ck and vector m ∈
Mn as input and returns commitment com and auxiliary output aux.

(π1, . . . , πn)← BatchOpen(ck, com, aux): The batch opening algorithm takes commitment key ck, a
commitment com, and auxiliary input aux, as input and returns openings π1, . . . , πn.

6

b← Verify(ck, com, π, i,m): The verification algorithm takes commitment key ck, commitment com,
opening π, index i and message m as input and returns a bit b.

Definition 6 (Correctness). A vector commitment VC = (Setup,Commit,BatchOpen,Verify)
is correct, if for all λ, n ∈ N, all m ∈ Mn, all (com, aux) ← Commit(ck,m), all (π1, . . . , πn) ←
BatchOpen(ck, com, aux), and all i ∈ [n] it holds that Verify(ck, com, πi, i,m) = 1.

Definition 7 (Position-Binding). A vector commitment VC = (Setup,Commit,BatchOpen,
Verify) is position binding if for all λ, n ∈ N and all PPT adversaries A it holds that

Pr

 m0 6= m1

∧Verify(ck, com, π0, i,m0) = 1

∧Verify(ck, com, π1, i,m1) = 1

:
ck← Setup(1λ, 1n)

(com, i,m0,m1, π0, π1)← A(ck)

 ≤ negl(λ).

Definition 8 (Perfect Weak Hiding). A vector commitment VC = (Setup,Commit,BatchOpen,
Verify) is perfectly weakly hiding if for all λ, n ∈ N and all m0,m1 ∈Mn and all ck← Setup(1λ, 1n)
it holds that over the random coins of the commitment algorithm, com0 and com1 computed as
(com0, aux0)← Commit(ck,m0) and (com1, aux1)← Commit(ck,m1) are distributed identically.

Definition 9 (Efficiency). A vector commitment VC = (Setup,Commit,BatchOpen,Verify) is
efficient, if commitments are of size independent of n, the commitment algorithm runs in time
n · poly(λ)(λ) and the batch opening algorithm runs in time n · poly(λ)(log n, λ).

Setup(1λ, 1n)

pp← KZG.Setup(1λ, 1n)

return pp

Commit(ck,m)

r ← Fp
Fp[X] 3 f(X) :=

{
mi if X ∈ [n]

r if X = 0

com← KZG.Commit(pp, f)

return (com, f)

BatchOpen(ck, com, f)

π ← KZG.BatchOpen(ck, com, f, (i, f(i))i∈[n])

return π

Verify(ck, com, π, i,m)

return KZG.Verify(ck, com, π, i,m)

Fig. 2. Weakly-hiding vector commitments from KZG polynomial commitments.

Given a polynomial commitment, it is easy to construct a vector commitment by encoding
the message vector’s entries into distinct polynomial evaluations. In the theorem statement be-
low, we recall this transformation using KZG commitments but add a small twist that makes the
construction weakly hiding.

Theorem 2. If KZG is a binding polynomial commitment scheme, then the construction specified
in Figure 2 is a correct, efficient, computationally position binding, and perfectly weakly hiding
commitment scheme.

7

Proof. Correctness is immediate from the correctness of KZG. Efficiency similarly follows from the
definition of KZG and the batch opening algorithm of Feist and Khovratovich [FK23].

It is trivial to see, that any adversary breaking position binding of the vector commitment im-
mediately also breaks binding of the KZG commitment scheme with the same probability. Position
binding therefore follows immediately from the binding property of the KZG commitment. To see
that the scheme is perfectly weakly hiding, consider any λ, n ∈ N and any m0,m1 ∈ Mn and any
ck← Setup(1λ, 1n). Any commitment to either vector has the form comb = [µb]1 + [r]1, where µb is
defined by mb and independent of r. Since r is chosen uniformly from Fp, comb is always a uniformly
distributed element of G1. In particular, this means that com0 and com1 are distributed identically.

2.6 Symmetric Encryption

We quickly recall the definition of a symmetric encryption scheme.

Definition 10. A symmetric encryption scheme with keyspace K and message space M is a pair
of PPT algorithms SE = (Encsym,Decsym) defined as follows:

ct← Encsym(K,m): The setup algorithm takes a key k ∈ K and a message m ∈ M as input and
returns ciphertext ct.

ct← Decsym(K, ct): The setup algorithm takes a key k ∈ K and a ciphertext ct as input and
returns message m.

Definition 11 (Correctness). A symmetric encryption scheme SE = (Encsym,Decsym) is correct,
if for all k ∈ K, all m ∈M, and all ct← Encsym(k,m) it holds that Decsym(k, ct) = m.

We will only require a very weak notion of security, namely indistinguishability against eaves-
droppers, also called EAV-security. This security notion is e.g. satisfied by the one-time pad or a
(nonce-less) stream cipher.

Definition 12 (EAV-Security). A symmetric encryption scheme SE = (Encsym,Decsym) has in-
distinguishable encryptions in the presence of an eavesdropper, or is EAV-secure, if for any PPT
adversary A it holds that

Pr[ExptEAVSE,A(1λ) = 1] ≤ 1

2
+ negl(λ),

where the experiment is defined as follows.

ExptEAVSE,A(1λ)

k← K

(m0,m1)← A(1λ)

b← {0, 1}
ct← Encsym(k,mb)

b′ ← A(ct)

return

{
1 if b′ = b

0 otherwise

8

3 Extractable Witness KEMs

As a building block for our main constructions, we first define and instantiate the notion of an
extractable witness KEM. This notion, with minor differences, has previously been defined by Choi
and Vaudenay [CV21]. In their work, the authors present an instantiation of this notion for some
class of problems using a new non-falsifiable hardness assumption in a new restricted non-standard
computational model. In our work, we will focus on instantiating the notion of an extractable
witness KEM for specific relations using a standard assumption in the AGM.

We first define the notions of an indexed family of NP relations. We will later define extractable
witness KEMs relative to such a family. This is more general than defining them for an individual
relation and allows some part of the relation to be fixed by system parameters.

Definition 13. Let I ⊆ {0, 1}∗ be a set. A set F = {RI}I∈I a family of NP relations with index
set I if for all I ∈ I, RI is an NP relation. We call I the index of RI and RI the relation identified
by I. We use LI to refer to the corresponding NP language.

Relative to these families we can now define a witness KEM. The general idea of a witness KEM
is that it works like a regular key encapsulation mechanism, but uses the pairs of statement and
witness in an NP relation as a key-pair.

Definition 14. A witness key encapsulation mechanism for a family of NP relations F and a
keyspace K is a pair of PPT algorithms WKEM = (Encap,Decap), defined as follows:

(ct, k)← Encap(I, x): The encapsulation algorithm takes as input an index I identifying a relation
RI ∈ F and a statement x and returns as output a ciphertext ct and a key k ∈ K.

k← Decap(I, w, ct): The deterministic decapsulation algorithm takes as input an index I identify-
ing a relation RI ∈ F , a witness w, and a ciphertext ct and returns a key k ∈ K.

Definition 15 (Correctness). A witness KEM WKEM = (Encap,Decap) for a family of NP
relations F is correct, if for any RI ∈ F , any λ ∈ N, any (x, w) ∈ RI , and any (ct, k)← Encap(I, x)
it holds that Decap(I, w, ct) = k.

The above definitions by themselves do not guarantee any kind of security. Security will be derived
from the extractability of the scheme. Extractability essentially says that if any efficient adversary
can distinguish between a key encapsulated under some statement x and a random key, then this
adversary can also be used to extract a witness w for x.

Definition 16 (Extractability). A witness KEM WKEM = (Encap,Decap) for a family of NP-
relations F is extractable, if there exists a PPT algorithm Ext such that for any stateful PPT
adversary A and any relation RI ∈ F such that

Pr[ExptKEM−CPAWKEM,A (1λ, I) = 1] ≥ 1

2
+ ε(λ)

for some non-negligible function ε(λ), it holds that

Pr

[
(x, w) ∈ RL :

x← A(1λ, I)

w← ExtA(·,·)(I, x)

]
≥ δ(λ),

for some non-negligible function δ(λ). The latter probability is taken over the random coins of the
adversary and the extractor and the experiment ExptKEM−CPAWKEM,A (1λ) is defined as follows.

9

ExptKEM−CPAWKEM,A (1λ, I)

x← A(1λ, I)

b← {0, 1}
(ct, k0)← Encap(I, x)

k1 ← K
b′ ← A(ct, kb)

return

{
1 if b′ = b

0 otherwise

3.1 An Extractable Witness KEM for KZG Openings

We now proceed with constructing an extractable witness KEM as just defined for a very specific
family of relations, specifically those describing valid opening of KZG commitments. Let (Setup,
Commit,Open,Verify) be the KZG commitment relative to the bilinear group G1,G2,GT of prime
order p as specified in Figure 1. Let CK = {ck ∈ Gd+1

1 × G2
2 | d ∈ N ∧ ck ∈ Setup(1λ, 1d)} be the

set of valid KZG commitment keys. We can then define the family of NP relations of valid KZG
openings as

FKZG := {Rck}ck∈CK
where

Rck =
{(

(comj , αj , βj)j∈[`], (πj)j∈[`]
)
| ` ∈ N ∧ ∀j ∈ [`]. Verify(ck, comj , πj , αj , βj) = 1

}
for any ck ∈ CK.

EncapH(ck, (com, α, β))

for 1 ≤ j ≤ `
rj ← Fp
sj := e(rj · (com− [βj]1), [1]2)

ctj ← rj · ([τ]2 − [αj]2)

ct := (ct1, . . . , ct`)

k := H(s1, . . . , s`)

return (ct, k)

DecapH(ck, (π1, . . . , π`), ct)

parse ct as (ct1, . . . , ct`)

for 1 ≤ j ≤ `
sj := e(πj , ctj)

k := H(s1, . . . , s`)

return k

Fig. 3. Construction of an Extractable Witness KEM for FKZG with keyspace {0, 1}λ in the combined Algebraic
Group and Random Oracle Model.

Theorem 3. Let H : G∗T → {0, 1}λ be a hash functioned modeled as a random oracle. If the d-
DLOG assumption holds with respect to GGen, then the construction described in Figure 3 is an
extractable witness KEM for FKZG in the algebraic group model.

Proof. Let A be an arbitrary algebraic PPT adversary with non-negligible advantage ε(λ) for the
extractability of the construction described in Figure 3.

10

We construct an extractor Ext as follows. The extractor receives as input an index ck =
([τ0]1, . . . , [τ

d]1, [1]2, [τ]2) ∈ CK as well as a statement ((com1, α1, β1), . . . , (com`, α`, β`) ∈ (G1×F2
p)
`.

Further, since A is an algebraic algorithm, the extractor also receives an algebraic representations
of each comj in the form of coefficients fj,0, . . . , fj,d such that

comj :=
d∑
i=0

fj,i · [τ i]1.

The extractor chooses r1, . . . , r` ← Fp, computes ctj := rj · ([τ]2 − [αj]2) for each j ∈ [`], sets
ct := (ct1, . . . , ct`), chooses a random key k← {0, 1}λ, initializes an empty list Γ := ∅ and invokes
A(ct, k). The adversary A expects access to a random oracle that Ext simulates as follows. For any
query s ∈ G∗T such that either |s| 6= ` or for at least one j ∈ [`], sj 6= e(rj · (com − [βj]1), [1]2),
Ext continues to simulate the random oracle via lazy sampling. That is, if there exists an entry
(s, ks) ∈ Γ it returns ks. If such an entry does not yet exist, Ext samples ks ← {0, 1}n, adds (s, ks)
to Γ , and returns ks.

If, however, |s| = ` and for all j ∈ [`], sj = e(rj · (com− [βj]1), [1]2), then the extractor aborts A
and continues as follows. Since A is an algebraic algorithm it also provides an algebraic description
of each sj in the form of of coefficients5

w̃j,0, . . . , w̃j,2d, q̃j,1,0, . . . , q̃j,1,d, q̃j,2,0, . . . , q̃j,`,d, h̃j,1, . . . , h̃j,`

such that

sj :=

2d∑
i=0

w̃j,i · [τ i]T +
∑̀
k=1

d∑
i=0

q̃j,k,i · [rk · (τ − αk) · τ i]T

+
∑̀
k=1

h̃j,k · [rj · (τ − αj) · rk · (τ − αk)]T .

Since Ext computed each ctk, for k 6= j algebraically, however, we can simplify this representa-
tion. Specifically Ext can compute an algebraic description of each sj in the form of coefficients
wj,0, . . . , wj,2d, qj,0, . . . , qj,d, hj defined as

wj,i :=


w̃j,i +

∑
k∈[`]\{j} q̃j,k,irkαk if i = 0

w̃j,i +
∑

k∈[`]\{j} q̃j,k,irkαk + q̃j,k,i−1rk if 0 < i ≤ d
w̃j,i +

∑
k∈[`]\{j} q̃j,k,i−1rk if i = d+ 1

w̃j,i if i > d+ 1

qj,i :=


q̃j,j,i +

∑
k∈[`]\{j} h̃j,krk if i = 0

q̃j,j,i +
∑

k∈[`]\{j} h̃j,krkαk if i = 1

q̃j,j,i if i > 1

hj := h̃j,j

5 Note that we allow the algebraic adversary the maximum amount of freedom here that they would only have in
the context of a Type-1 pairing. In the context of Type-2 or Type-3 pairings, many of these coefficients would
necessarily be 0.

11

such that

sj :=
2d∑
i=0

wj,i · [τ i]T +
d∑
i=0

qj,i · [rj · (τ − αj) · τ i]T + hj · [r2 · (τ − αj)2)]T

=

2d∑
i=0

wj,i · [τ i]T + rj · (τ − αj) ·
d∑
i=0

qj,i · [τ i]T + hjr
2
j · [(τ − αj)2]T

For each j ∈ [`] we define the two polynomials

Fj(X) :=

d∑
i=1

fj,i ·Xi

and

Gj(X,Y) :=
2d∑
i=0

wj,i ·Xi + Y · (X − αj) ·
d∑
i=0

qj,i ·Xi + hjY
2 · (X − αj)2.

It is easy to see that comj = [Fj(τ)]T and sj = [Gj(τ, rj)]T .

If for all j ∈ [`], Gj(X,Y) = Y (Fj(X) − βj) the extractor computes πj :=
∑d

i=1 qj,i · [τ i]1 and
outputs π := (π1, . . . , π`). Otherwise the extractor outputs ⊥. If the adversary terminates without
querying an s as described above, then the extractor also outputs ⊥.

We now prove two claims about the extractor.

Claim 4. If Ext outputs π 6= ⊥, then for all j ∈ [`] it holds that Verify(ck, comj , πj , αj , βj) = 1.

Proof. The extractor only outputs π 6= ⊥, if for all j ∈ [`], Gj(X,Y) = Y (Fj(X)−βj). We observe
that, this can only be true if hj = 0 and wj,i = 0 for all j ∈ [`] and 0 ≤ i ≤ 2d. Therefore,

Gj(X,Y) := Y · (X − αj) ·
d∑
i=0

qj,i ·Xi.

and thus

Gj(X,Y) = Y (Fj(X)− βj)

⇐⇒ Y · (X − αj) ·
d∑
i=0

qj,i ·Xi = Y (Fj(X)− βj)

⇐⇒
d∑
i=0

qj,i ·Xi =
Fj(X)− βj
X − αj

.

It follows that the extractor’s output

πj =

[
Fj(τ)− βj
τ − αj

]
1

and thus the verification equation

e(πj , [τ]2 − [αj]2) = e

([
Fj(τ)− βj
τ − αj

]
1

, [τ − αj]2
)

12

= [Fj(τ)− βj]T
= e([Fj(τ)− βj]1, [1]2) = e(comj − [βj]1, [1]2)

holds as required. ut

Claim 5. Ext outputs π = ⊥ with probability at most 1− 2ε(λ) + negl(λ).

Proof. Let Hit denote the event that s with |s| = ` and sj = e(rj · (comj − [βj]1), [1]2) for all j ∈ [`]
is queried to the random oracle. The extractor outputs ⊥, either if Hit does not occur, or if Hit
occurs but for at least one j ∈ [`] Gj(X,Y) 6= Y (Fj(X)− βj). Since those two events are mutually
exclusive, we thus have

Pr[π = ⊥] = Pr[Hit] + Pr[Hit ∧ ∃j ∈ [`]. Gj(X,Y) 6= Y (Fj(X)− βj)]. (1)

We bound the two probabilities separately.
Let us first bound Pr[Hit]. Recall, that A is an adversary with advantage ε(λ). Whenever Hit

does not occur, the view of A remains independent of the bit b in the KEM-CPA experiment. This
is the case, since unless Hit occurs, both k0 and k1 are uniformly distributed. Therefore we have
that

1

2
+ ε(λ) = Pr[ExptKEM−CPAWKEMKZG,A(1λ) = 1]

= Pr[b′ = b]

=

≤1︷ ︸︸ ︷
Pr[b′ = b | Hit] Pr[Hit] +

=1/2︷ ︸︸ ︷
Pr[b′ = b | Hit] Pr[Hit]

≤ 1− Pr[Hit] +
1

2
Pr[Hit]

= 1− 1

2
Pr[Hit]

and thus, we have that
Pr[Hit] ≤ 1− 2ε(λ). (2)

Next we bound Pr[Hit ∧ ∃j ∈ [`]. Gj(X,Y) 6= Y (Fj(X) − βj)]. For each j ∈ [`], define the
bivariate polynomial Qj(X,Y) = Gj(X,Y)−Y (Fj(X)−βj). Since Hit happened, it must hold that
sj = e(rj · (comj − [βj]1), [1]2) = [rj · (Fj(τ) − βj)]T and since sj = [Gj(τ, rj)]T , it must hold that
Qj(τ, rj) = 0. However, since Gj(X,Y) 6= Y (Fj(X)−βj), it also holds that Qj(X,Y) 6= 0, meaning
Qj(X,Y) is a non-zero polynomial with a root at (τ, rj).

We can rewrite Qj(X,Y) as a polynomial of the form Qj(X,Y) = Cj,0(X) + Cj,1(X) · Y +
Cj,2(X) · Y 2, where each Cj,i(X) ∈ Fp[X] is a univariate polynomial of degree at most 2d. Since
Qj(X,Y) is non-zero, at least one of Cj,0(X), Cj,1(X), Cj,2(X) must also be non-zero.

Now consider the univariate Polynomial Pj(Y) := Qj(τ, Y). We can consider two cases, either
Pj(Y) = 0, or Pj(Y) 6= 0. In the case that Pj(Y) = 0, it would need to hold that Cj,0(τ) = Cj,1(τ) =
Cj,2(τ) = 0, but at least one of these is a non-zero polynomial. We can therefore find the roots of
one of the non-zero Cj,0(Y), Cj,1(Y), Cj,2(Y) to recover τ . On the other hand, if Pj(Y) 6= 0, we can
find the roots of Pj(Y) to recover rj .

We use this to specify the following reduction to d-DLOG. On input [η0]1, . . . , [η
d]1, [η

0]2, [η
1]2,

the reduction B flips a bit b ← {0, 1}. If b = 0, then B defines ck = ([η0]1, . . . , [η
d]1, [η

0]2, [η
1]2).

13

If b = 1, then B chooses τ ← Fq and defines ck = ([τ0]1, . . . , [τ
d]1, [1]2, [τ]2). In both cases, B

then invokes A(1λ, ck). Eventually A will output ((com1, α1, β1), . . . , (com`, α`, β`)) together with
the algebraic explanation of each comj . If b = 0, then for j ∈ [`], the reduction chooses rj ← Fp
and computes ctj := rj · ([η]2 − [αj]2). If b = 1, then for j ∈ [`], the reduction chooses zj ← Fp
and computes ctj := (τ − αj) · ([η]2 + zj · [1]2). Note, that, if we define rj := zj + η it holds that
(τ − αj) · ([η]2 + zj · [1]2) = (zj + η) · ([τ]2 − [αj]2) = rj · ([τ]2 − [αj]2). Therefore, in the case of
b = 1 the ciphertexts are computed correctly for implicitly defined but uniformly distributed rj .
From this point, B proceeds exactly as Ext until Hit occurs. It is important to verify that B can
actually check whether this query occurs, even in the case b = 1. However, due to the bilinearity of
the pairing, B can compute the relevant values as

e(comj − [βj]1, zj · [1]2 + [η]2) = e(comj − [βj]1, (zj + η) · [1]2)

= e(comj − [βj]1, rj · [1]2)

= e(rj · (comj − [βj]1), [1]2)

and thus can check each query against these values. If Hit does not occur or if for all j ∈ [`], it
holds that Gj(X,Y) = Y (Fj(X)− βj), then B aborts. Otherwise, we consider two cases.

If b = 0 and there exists an index j∗ such that Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗) and Pj∗(Y) = 0,
then, as discussed above, there exists a Cj∗(X) ∈ {Cj∗,0(X), Cj∗,1(X), Cj∗,2(X)} such that Cj∗(X)
is non-zero. B factors Cj∗(X) to finds all of its at most 2d roots. For each root ξ, B checks whether
ξ · [1]1 = [η]1 and returns ξ if that’s the case. Since η must be one of the roots, B will always
correctly identify η in this case.

If b = 1 and there exists an index j∗ such that Gj∗(X,Y) = Y (Fj∗(X)− βj∗) and Pj∗(Y) 6= 0,
then B factors Pj∗(Y) to find the all of its at most 2 roots. For each root ξ, B checks whether
ξ · [1]1 = zj∗ · [1]1 + [η]1 and returns ξ − zj∗ if that is the case. Since rj∗ = zj∗ + η must be one of
the roots, B will always correctly identify η = rj∗ − zj∗ in this case.

If neither of those two cases happens, then B also aborts.
Since the view of A is independent of the value of b and for each j∗ such that Gj∗(X,Y) 6=

Y (Fj∗(X) − βj∗), it must either be the case that Pj∗(Y) = 0 or that Pj∗(Y) 6= 0, it follows under
the d-DLOG assumption, that

negl(λ) ≥ Pr

τ = τ ′ :

par← GGen(1λ)

τ ← Fp
τ ′ ← B(par, ([τ0]1, . . . , [τ

d]1, [1]2, [τ]2))


= Pr[b = 0] · Pr

[
Hit ∧

(
∃j∗ ∈ [`]. Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗) ∧ Pj∗(Y) = 0

)]
+ Pr[b = 1] · Pr

[
Hit ∧

(
∃j∗ ∈ [`]. Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗) ∧ Pj∗(Y) 6= 0

)]
=

1

2
·

(
Pr[Hit ∧ (∃j∗ ∈ [`]. Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗)) ∧ Pj∗(Y) = 0)]

+ Pr[Hit ∧ (∃j∗ ∈ [`]. Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗)) ∧ Pj∗(Y) 6= 0)]

)
≥ 1

2
Pr[Hit ∧ ∃j∗ ∈ [`]. Gj∗(X,Y) 6= Y (Fj∗(X)− βj∗))].

The claim thus follows. ut

By combining the two claims we finally get

Pr

[
∀j ∈ [`]. Verify(ck, comj , πj , αj , βj) = 1 :

(comj , αj , βj)j∈[`] ← A(1λ, ck)

π ← ExtA(·,·)(ck, (comj , αj , βj)j∈[`])

]

14

= Pr[π 6= ⊥] = 1− Pr[π = ⊥] = 2ε(λ)− negl(λ).

which is non-negligible for any non-negligible function ε(λ), as required. ut

We will later require an extractable witness KEM not just for plain KZG, but in fact for the
derived weakly hiding vector commitment described in Figure 3. Let VC be the vector commitment
and let CKVC = {ck | ck ∈ VC.Setup(1λ, 1n)} be the set of valid commitment keys. We can then
define the family of NP relations of valid VC openings as

FVC := {Rck}ck∈CKVC

where

Rck =
{(

(comj , ij ,mj)j∈[`], (πj)j∈[`]
)
| ` ∈ N ∧ ∀j ∈ [`]. VC.Verify(ck, comj , πj , ij ,mj) = 1

}
for any ck ∈ CKVC.

Since VC commitments are simply KZG commitments, openings are KZG openings, and verifi-
cation is KZG verification, it follows immediately that FVC = FKZG and we thus get the following
corollary from Theorem 3.

Corollary 6. Let H : G∗T → {0, 1}λ be a hash functioned modeled as a random oracle. If the d-
DLOG assumption holds with respect to GGen, then the construction described in Figure 3 is an
extractable witness KEM for FVC in the algebraic group model.

4 Extractable Witness Encryption

In this section, we recall the definition of extractable witness encryption following broadly the
definitions of [GKP+13], with the extension to families of relations. We then go on to show that
one can generically construct it from any extractable witness KEM using the standard KEM/DEM
paradigm.

As is the case for regular encryption and KEMs, witness encryption and witness KEMs are very
similar, with the only difference being that a witness encryption scheme is capable of encrypting
a freely chosen message instead of a random one. The definitions are otherwise very similar to the
definitions from the previous section.

Definition 17. A witness encryption scheme for a family of NP relations F and a messagespace
M is a pair of PPT algorithms WE = (Enc,Dec), defined as follows:

ct← Enc(I, x,m): The encryption algorithm takes as input an index I identifying a relation RI ∈
F , a statement x, and a message m ∈M and returns as output a ciphertext ct.

m/⊥ ← Dec(I, w, ct): The deterministic decryption algorithm takes as input an index I identifying
a relation RI ∈ F , a ciphertext ct, and a witness w and returns a message m ∈ M or a error
symbol ⊥.

Definition 18 (Correctness). A witness encryption scheme WE = (Enc,Dec) for a family of NP
relations F is correct, if for any RI ∈ F , any λ ∈ N, any (x, w) ∈ RI , any m ∈ M, and any
ct← Enc(x) it holds that Dec(I, w, ct) = m.

15

Definition 19 (Extractability). A witness encryption scheme WE = (Enc,Dec) for a family of
NP-relations F is extractable, if there exists a PPT algorithm Ext such that for any stateful PPT
adversary A and any relation RI ∈ F such that

Pr[ExptCPAWE,A(1λ, I) = 1] ≥ 1

2
+ ε(λ),

for some non-negligible function ε(λ) it holds that

Pr

[
(x, w) ∈ RL :

(x,m0,m1)← A(1λ, I)

w← ExtA(·)(I, x,m0,m1)

]
≥ δ(λ),

for some non-negligible function δ(λ). The latter probability is taken over the random coins of the
adversary and the extractor and the experiment ExptCPAA is defined as follows.

ExptCPAWE,A(1λ, I)

(x,m0,m1)← A(1λ, I)

b← {0, 1}
ct← Enc(I, x,mb)

b′ ← A(ct)

return

{
1 if b′ = b

0 otherwise

4.1 Extractable Witness Encryption from Extractable Witness KEMs

We can construct extractable witness encryption for a family of NP-relations F and a message
space M from any extractable witness KEM for F and any EAV secure symmetric encryptions
scheme with message space M, as long as the two schemes share a compatible key space K. The
construction, shown in Figure 4 essentially follows the standard KEM/DEM paradigm instantiated
with an extractable witness KEM. Even though the security of the KEM/DEM paradigm has been

Enc(I, x,m)

(ct1, k)← Encap(I, x)

ct2 ← Encsym(k,m)

return (ct1, ct2)

Dec(I, w, (ct1, ct2))

k := Decap(I, w, ct1)

m := Decsym(k, ct2)

return m

Fig. 4. Construction of an extractable witness encryption Scheme for F based on an extractable witness KEM and
an EAV secure symmetric encryption scheme.

proven ad nauseam, we will not skip the proof here. Since we are not proving indistinguishability,
but extractability we need to be a bit more careful. Note that encapsulated keys are in general not
indistinguishable from random keys. In fact, since the adversary chooses the statement, they may
very well know the witness and thus be capable of distiguishing with overwhelming probability. It
is merely the case in this case we are capable of extracting the witness. We need to be careful in
our proof that this capability is preserved in the KEM/DEM paradigm. This may not always be
the case, depending on how one executes the standard hybrid argument.

16

Theorem 7. Let WKEM = (Encap,Decap) be an extractable witness KEM for F and key space
K. Let SE = (Encsym,Decsym) be an EAV secure symmetric encryption scheme with key space
K, message space M. Then WE = (Enc,Dec) as specified in Figure 4 is an extractable witness
encryption scheme for F and message space M.

Proof. We first define a modified witness encryption scheme W̃E = (Ẽnc, ·) that, instead of using
the encapsulated key k to perform the symmetric encryption, chooses a fresh key k′ ← K to do so.
This scheme has no well-defined decryption algorithm.Nevertheless, for any PPT adversary A, the
probability Pr[ExptCPA

W̃E,A(1λ, I) = 1] is still well defined. Let A be an arbitrary PPT adversary such

that

Pr[ExptCPAWE,A(1λ, I) = 1] =
1

2
+ ε(λ). (3)

for some non-negligible function ε(λ). We first prove the following claim.

Claim 8. For any I ∈ I, it holds that

Pr[ExptCPA
W̃E,A(1λ, I) = 1] ≤ 1

2 + negl(λ).

Proof. We construct a PPT adversary B against the EAV security of SE as follows. Upon input
1λ, B invokes A(1λ, I), receiving x,m0,m1 in response, and outputs m0,m1. After receiving as
input the challenge ciphertext ct2, it compues (ct1, k)← Encap(I, x) and invokes A((ct1, ct2)). In
response, A will output a bit b′, which B also outputs.

It is easy to see that B perfectly simulates the ExptCPA
W̃EA(1λ, I) experiment for A. Further,

whenever A would be successful, so is B. It thus follows from the EAV security of SE that

1

2
+ negl(λ) ≥ Pr[ExptEAVSE,B(1λ) = 1] = Pr[ExptCPA

W̃E,A(1λ, I) = 1]

as claimed. ut

Claim 9. There exists a PPT adversary B such that for any I ∈ I, it holds that

Pr[ExptKEM−CPAWKEM,B (1λ, I) = 1] = 1
2 + 1

2ε(λ)− negl(λ).

Proof. Upon input 1λ and I, B invokesA(1λ, I), receiving x,m0,m1 in response and outputs x. After
receiving ct1, k, B samples b′ ← {0, 1}, computes ct2 ← Encsym(k,mb′), and invokes A((ct1, ct2)).
Eventually A will output a bit b′′ and B will output 0, if b′′ = b′ and 1 otherwise.

Let b denote the random bit of the experiment ExptKEM−CPAWKEM,B (1λ, I). It is then easy to see that, if

b = 0, then B perfectly simulates the experiment ExptCPAWE,A(1λ, I) and outputs 0 iff the experiment

outputs 1. Similarly, if b = 1, then B perfectly simulates the experiment ExptCPA
W̃E,A(1λ, I) and outputs

0 iff the experiment outputs 1. It then follows from Claim 8 and Equation 3 that

Pr[ExptKEM−CPAWKEM,B (1λ, I) = 1]

= Pr[b = 0] · Pr[ExptKEM−CPAWKEM,B (1λ, I) = 1 | b = 0] + Pr[b = 1] · Pr[ExptKEM−CPAWKEM,B (1λ, I) = 1 | b = 1]

=
1

2
·
(
Pr[ExptCPAWE,A(1λ, I) = 1] + 1− Pr[ExptCPA

W̃E,A(1λ, I) = 1]
)

≥ 1

2
·
(1

2
+ ε(λ) + 1− 1

2
− negl(λ)

)
=

1

2
+

1

2
ε(λ)− negl(λ) ut

17

Finally, since WKEM is known to be extractable and 1
2ε(λ)−negl(λ) is a non-negligible function

whenever ε(λ) is non-negligible, there exists a PPT extractor Ẽxt, such that

Pr

[
(x, w) ∈ RL :

x← B(1λ, I)

w← Ẽxt
B(·)

(I, x)

]
≥ δ(λ)

for some non-negligible function δ(λ). We can thus construct an extractor Ext for WE as follows. The

extractor receives as input (I, x,m0,m1) and is given oracle access toA. It then invokes Ẽxt
B

(·)(I, x).

Whenever Ẽxt queries ct1 to its oracle, Ext samples b′ ← {0, 1}, computes ct2 ← Encsym(k,mb′),

and queries (ct1, ct2) to its own oracle, forwarding the reply to Ẽxt. It is easy to see that this
perfectly simulates oracle access to B. Therefore, it holds that

Pr

[
(x, w) ∈ RL :

(x,m0,m1)← A(1λ, I)

w← ExtA(·)(I, x,m0,m1)

]
≥ δ(λ)

as required. ut

5 Laconic OT

As discussed in the introduction, we will now show how to construct a concretely efficient laconic
OT protocol from our extractable witness encryption scheme for KZG commitments and openings.

Definition 20 ([CDG+17]). A laconic oblivious transfer scheme is a tuple of PPT algorithms
LOT = (Setup,H, Send,Receive) defined as follows:

pp← Setup(1λ, 1n): The setup algorithm takes security parameter λ and database length n as input
and returns public parameters pp.

(digest, aux)← H(pp, D): The hashing algorithm takes public parameters pp and database D as
input and returns a public hash digest and some secret auxiliary information aux.

c← Send(pp, digest, i,m0,m1): The sender algorithm takes public parameters pp, database hash
digest, index i, and message m0 and m1 as input and returns message c.

m← Receive(pp, aux, c, i): The receiver algorithm takes public parameters pp, auxiliary information
aux, sender message m, and index i as input and returns message m.

Definition 21 (Correctness). A laconic oblivious transfer scheme LOT = (Setup,H, Send,
Receive) is correct, if for all λ, n ∈ N with n = poly(λ), all pp ← Setup(1λ, 1n), all databases D ∈
{0, 1}n, all (digest, aux)← H(pp, D), all i ∈ [n], all m0,m1 ∈M, and all c← Send(pp, digest, i,
m0,m1) it holds that Receive(pp, aux, c, i) = mD[i].

Sender privacy requires the sender’s message to the receiver to hide the message that was not
selected by the receiver’s choice bit.

Definition 22 (Sender Privacy). A laconic oblivious transfer scheme LOT = (Setup,H, Send,
Receive) is sender private against semi-honest adversaries, if for all λ, n ∈ N with n = poly(λ), any
PPT adversary A, any database D ∈ {0, 1}n, any i ∈ [n], and any pair of messages m0,m1 ∈ M,
it holds that ∣∣∣∣∣ Pr[ExptOT-S-Real

A (1λ, 1n, D,m0,m1, i) = 1]

−Pr[ExptOT-S-Sim
A (1λ, 1n, D,m0,m1, i) = 1]

∣∣∣∣∣ ≤ negl(λ),

where ExptOT-S-Real
A and ExptOT-S-Sim

A are defined as follows

18

ExptOT-S-Real
LOT,A (1λ, 1n, D,m0,m1, i)

pp← Setup(1λ, 1n)

(digest, aux)← H(pp, D)

c← Send(pp, digest, i,m0,m1)

b← A(pp, c, aux)

return b

ExptOT-S-Sim
LOT,A (1λ, 1n, D,m0,m1, i)

pp← Setup(1λ, 1n)

c← Sim(pp, D, i,mD[i])

b← A(pp, c, aux)

return b

In the original work of Cho et al. [CDG+17], no explicit definition for receiver privacy was stated.
The authors informally argued that any protocol that is not receiver privacy can be transformed
into one that is, via the use of generic secure computation. In our work, we do define receiver privacy
and we focus on the arguably strongest possible notion, namely that of perfect receiver privacy,
where the sender learns no information about the receivers choice bits in the information-theoretic
sense. We do not make use of generic secure computation and instead our construction will directly
satisfy this security notion.

Definition 23 (Receiver Privacy). A laconic oblivious transfer scheme LOT = (Setup,H, Send,
Receive) is receiver private against semi-honest adversaries, if for all λ, n ∈ N with n = poly(λ),
any PPT adversary A, all databases D ∈ {0, 1}n, it holds that∣∣∣Pr[ExptOT-R-Real

LOT,A (1λ, 1n, D) = 1]− Pr[ExptOT-R-Sim
A (1λ, 1n, D) = 1]

∣∣∣,
where ExptOT-R-Real

LOT,A and ExptOT-R-Sim
LOT,A are defined as follows.

ExptOT-R-Real
LOT,A (1λ, 1n, D)

pp← Setup(1λ, 1n)

(digest, aux)← H(pp, D)

b← A(pp, digest)

return b

ExptOT-R-Sim
LOT,A (1λ, 1n, D)

pp← Setup(1λ, 1n)

digest← Sim(pp)

b← A(pp, digest)

return b

The main property that makes laconic OT non-trivial and interesting is its efficiency. The digest
is required to be independent of the original database size, the hashing should run in quasi-linear
time in the database size, and both the computational complexity of sending and receiving should
have at most a polylogarithmic dependency on the size of the database.

Definition 24 (Efficiency). A laconic oblivious transfer scheme LOT = (Setup,H,Send,Receive)
is efficient, if |digest| ∈ poly(λ) and in particular independent of |D|, the hashing algorithm H
runs in time |D| · poly(log|D|, λ), and both Send and Receive run in time poly(log|D|, λ).

5.1 Constructing Laconic OT

Our construction is conceptually very simple. The receiver will use a hiding vector commitment to
compute a commitment com to their database D. Upon the i-th invocation of the OT, the sender
will use our extractable witness encryption scheme to separately encrypt m0 and m1, such that
they can be decrypted, if com can be opened to 0 and 1, respectively. The sender, who will receive
the two ciphertexts, can then use their opening πi for commitment com to decrypt the ciphertext
containing mD[i]. Sender privacy effectively follows from the security guarantees of the extractable
witness encryption scheme, whereas receiver privacy follows from the hiding properties of the vector
commitment.

19

Setup(1λ, 1n)

pp← VC.Setup(1λ, 1n)

H(pp, D)

(com, aux)← VC.Commit(pp, D)

(π1, . . . , πn)← BatchOpen(pp, aux)

return (com, (D,π1, . . . , πn))

Send(pp, digest, i,m0,m1)

ct0 ←WE.Enc(pp, (digest, i, 0),m0)

ct1 ←WE.Enc(pp, (digest, i, 1),m1)

return (ct0, ct1)

Receive(pp, aux, (ct0, ct1), i)

parse aux as (D,π1, . . . , πn))

b := Di

mb ←WE.Dec(pp, πi, ctb)

return mb

Fig. 5. Laconic OT construction.

Theorem 10. Let λ, n ∈ N with n = poly(λ). Let VC = (Setup,Commit,BatchOpen,Verify) be
a correct, efficient, position binding, and perfectly weakly-hiding vector commitment. Let WE =
(Enc,Dec) be an extractable witness encryption scheme for FVC. Then the construction in Figure 5
is an efficient, sender-private, and perfectly receiver-private laconic OT.

Proof. Efficiency follows immediately from the efficiency of VC. We will prove the other two prop-
erties seperately.

Lemma 11. Let VC = (Setup,Commit,Open,Verify) be a correct and position binding vector com-
mitment. Let WE = (Enc,Dec) be an extractable witness encryption scheme for FVC. Then the
construction in Figure 5 is sender private.

Proof. We specify a simulator as follows. On input pp, D, i,mD[i] the simulator simply computes

ctD[i] ←WE.Enc(pp, (digest, i,D[i]),mD[i])

and ct1−D[i] ←WE.Enc(pp, (digest, i, 1−D[i]), 0)

and outputs (ct0, ct1).
Let D ∈ {0, 1}n be an arbitrary database, i ∈ [n] an arbitrary index, m0,m1 ∈ F an arbitrary

pair of messages, and A an arbitrary PPT adversary against sender privacy with

ε(λ) = Pr[ExptOT-S-Real
LOT,A (1λ, 1n, D,m0,m1, i) = 1]

− Pr[ExptOT-S-Sim
LOT,A (1λ, 1n, D,m0,m1, i) = 1].

(4)

Assume wlog, that ε(λ) ≥ 0.
We construct a PPT adversary B against the extractability of WE as follows. On input 1λ, ck,

the adversary B computes (com, aux)← VC.Commit(pp, D) and outputs(
(com, i, 1−D[i]︸ ︷︷ ︸

=:x

), 0,m1−D[i]

)
.

Upon receiving ct1−D[i], B further computes ctD[i] ← WE.Enc(ck, (digest, i,D[i]),mD[i]), sets
aux := (D, com, aux) and invokes A(ck, (ct0, ct1), aux). Eventually A will output a bit, which B
will also output.

20

Let b ∈ {0, 1} be the bit in the experiment ExptCPAWE,B(1λ). It is easy to see that, if b = 1, then B
perfectly simulates ExptOT-S-Real

LOT,A (1λ, 1n, D,m0,m1, i). On the other hand, if b = 0, then B perfectly

simulates ExptOT-S-Sim
LOT,A (1λ, 1n, D,m0,m1, i). It thus follows that

Pr[ExptCPAWE,B(1λ, ck) = 1]

=
1

2

(
Pr[ExptCPAWE,A(1λ) = 1 | b = 1] + Pr[ExptCPAWE,A(1λ) = 1 | b = 0]

)
=

1

2

(
Pr[ExptOT-S-Real

LOT,A (1λ, 1n, D,m0,m1, i) = 1] + Pr[ExptOT-S-Sim
LOT,A (1λ, 1n, D,m0,m1, i) = 0]

)
=

1

2

(
Pr[ExptOT-S-Real

LOT,A (1λ, 1n, D,m0,m1, i) = 1] + 1− Pr[ExptOT-S-Sim
LOT,A (1λ, 1n, D,m0,m1, i) = 1]

)
=

1

2
+

1

2
ε(λ).

Since WE is extractable, it follows that there exists a PPT algorithm Ext, such that, if ε(λ),
and thereby also ε(λ)/2 were non-negligible, it would hold that

Pr

[
Verify(ck, com, π, i, 1−D[i]) = 1 :

((com, i, 1−D[i]), 0,m1−D[i])← B(1λ, ck)

π ← ExtB(·)(ck, (com, i, 1−D[i]), 0,m1−D[i])

]
≥ δ(λ)

for some non-negligible function δ(λ).
To show that this can’t be the case, we construct an adversary C against the position binding

of VC as follows. On input ck, the adversary C computes (com, aux) ← VC.Commit(pp, D), and
invokes ExtB(·)((com, i, 1−D[i]), 0,m1−D[i]). Whenever Ext queries its oracle with ct1−D[i], C further
computes ctD[i] ← WE.Enc(ck, (digest, i,D[i]),mD[i]), sets aux := (D, com, aux), invokes b ←
A(ck, (ct0, ct1), aux) and replies with b. Eventually, Ext will output π. C will then compute π′ ←
VC.Open(ck, aux, i) and output com, i, 1−D[i], D[i], π, π′.

It is easy to see, that C perfectly simulates B for the extractor. Therefore, it holds with proba-
bility at least δ(λ), that Verify(ck, com, π, i, 1−D[i]) = 1. The correctness of the vector commitment
guarantees that Verify(ck, com, π′, i,D[i]) = 1. Since further D[i] 6= 1−D[i], it thus holds that

negl(λ) ≥ Pr

 m0 6= m1

∧Verify(ck, com, π0, i,m0) = 1

∧Verify(ck, com, π1, i,m1) = 1

:
ck← Setup(1λ, 1n)

(com, i,m0,m1, π0, π1)← C(ck)

 = δ(λ)

Which immediately implies that ε(λ) ≤ negl(λ) as required. ut

Lemma 12. Let VC = (Setup,Commit,Open,Verify) be a perfectly weakly hiding vector commit-
ment. Then the construction in Figure 5 is perfectly receiver private.

Proof. The simulator takes as input the public parameters pp = ck, computes (com, aux) ←
VC.Commit(ck, 0n) and outputs com. The only difference between the two experiments from the
point of view of an adversary is that in one case they receive a commitment to D, whereas in the
other they receive a commitment to 0n. However, since VC is perfectly weakly hiding, those two
commitments are distributed identically. ut

Now Theorem 10 follows directly by combining Lemmas 11 and 12. ut

21

6 Benchmarks

The laconic OT protocol from Section 5 was instantiated with the KZG based vector commitment
from Section 2.5 and the extractable witness commitment derived by combining the extractable
witness KEM from Section 3 with the generic transformation from Section 4. A simple one-time pad
as the symmetric encryption scheme in the transformation. The full construction was implemented6

in Rust using arkworks [ac22]. The BLS12-381 [Bow17] curve was used as the pairing-friendly
elliptic curve throughout the implementation. All involved computational costs and bandwidth
overheads were measured for various parameters. All benchmarks were run on a personal laptop
with an i7-11800H @ 2.30GHz CPU and 64 GB of RAM.

As already explained in Section 2.5, the batch opening technique of Feist and Khovratovich
was used [FK23] to precompute all openings of the used vector commitment during the hashing
of the database of choice indices. For concreteness the sender’s OT inputs are assumed to be 256-
bit messages. A single witness encryption for such a message consists of a 96 byte witness KEM
ciphertext and a 32 bytes large one-time pad encryption of the message itself, thus leading to a 128
byte ciphertext. The public parameters for a database of size n consists of n+ 1 many G1 elements
and two G2 elements with G1 and G2 for BLS12-381 clocking in at 48 and 96 bytes respectively.
The benchmark results can be found in Table 1.

|D| Sizes Times

pp digest Sender Msg. Hash Send Receive

26 3.2 KB 48 B 256 B 173 ms 4 ms 1 ms

28 12.2 KB 48 B 256 B 723 ms 4 ms 1 ms

210 48.2 KB 48 B 256 B 3 s 4 ms 1 ms

212 192.2 KB 48 B 256 B 10 s 4 ms 1 ms

214 768.2 KB 48 B 256 B 43 s 4 ms 1 ms

216 3.0 MB 48 B 256 B 3 min 5 ms 1 ms

218 12.0 MB 48 B 256 B 8 min 5 ms 1 ms

231 96.0 GB 48 B 256 B — 5 ms 1 ms

Table 1. Runtimes and bandwidth overheads of our laconic OT protocol for varying sizes of the receiver’s database
D. The computation times for |D| = 231 are extrapolated to compare with [GJL23].

Our construction is highly efficient in most parameters, in particular database digest and the
sender’s message are both not just constant in size but concretely very small. The time to compute
the sender’s message and to decode on the receiver’s side in an OT invocation is below 5 ms. The
main drawbacks of our construction the initial one-time cost of computing the hash of the receiver’s
database and the size of the public parameters.

Weakly Laconic OT. We also examine the efficiency of a variant of our construction, which does
not strictly satisfy the formal efficiency requirements for laconic OT protocols from Definition 24
but has significantly smaller public parameters at the cost of somewhat larger digests. The idea
for achieving this trade-off is to simply partition the receiver’s database D into

√
|D| smaller

6 https://github.com/rot256/research-we-kzg

22

https://github.com/rot256/research-we-kzg

|D| Sizes Times

pp digest Sender Msg. Hash Send Receive

26 624 B 384 B 256 B 194 ms 4 ms 1 ms

28 1008 B 768 B 256 B 743 ms 4 ms 1 ms

210 1.7 KB 1.5 KB 256 B 3 s 4 ms 1 ms

212 3.2 KB 3.0 KB 256 B 11 s 4 ms 1 ms

214 6.2 KB 6.0 KB 256 B 44 s 4 ms 1 ms

216 12.2 KB 12.0 KB 256 B 3 min 4 ms 1 ms

218 24.2 KB 24.0 KB 256 B 12 min 4 ms 1 ms

231 3 MB 1.5 MB 256 B 69 days 4 ms 1 ms

Table 2. Runtimes and bandwidth overheads for the variant of our laconic OT protocol, which splits the database
D into

√
|D| many smaller databases. The numbers are extrapolated from our experimental results for laconic OT.

databases and to then hash each of them individually. The hash returned by the receiver is simply
the concatenation of all

√
|D| hashes. This construction does not formally satisfy the asymptotic

efficiency requirement of a laconic OT because the digest size now (sublinearly) depends on the size
of the input database. The main observation here is that all of those hashes can be computed using
the same trusted setup for instances of size

√
|D|. This simple trick was already observed by Green,

Jain, and Van Laer in their work [GJL23]. We calculate the sizes of objects and we extrapolate the
timing benchmarks for this construction from our benchmarks for regular laconic OT. The results
can be found in Table 2.

Comparison to Related Works. Equipped with the concrete performance numbers for our con-
structions, we can compare its efficiency to that of existing protocols. Green, Jain, Van Laer [GJL23]
provide benchmarks for a single data point for their laconic OT construction, which does not achieve
sender privacy. They argue that one can generically obtain sender privacy by using garbled circuits,
which would incur a significant overhead on top of their provided benchmarks. In their favour, we
shall ignore this and simply compare it to our construction that achieves both sender and receiver
privacy.

For a database size of 231, their construction’s public parameters 412.3 GB, their digest is 48 B,
their sender’s message size is 1.34 KB and receiving takes 27.7 minutes. That means their public
parameters are ≈ 4x larger, their digests have the same size, their sender’s message is ≈ 5x larger,
and their receiving time is larger by 6 orders of magnitude. No further data points were provided
in their benchmarks.

The authors also provide benchmark results for a weakly laconic version of their construction,
which splits the database in

√
|D| chunks as described above. Comparing it to our weakly laconic

OT construction, they have ≈ 3x larger public parameters, comparable digest size, and ≈ 5x larger
sender’s message. Their receiver’s computational time is still ≈ 38x larger.

Döttling et al. [DKL+23] only sketch how to construct laconic OT from another cryptographic
primitive, which they do provide some benchmarks for. The main advantage of their work is that the
public parameters do not grow with the receiver’s database size. Taking the benchmarks for their
lowest security levels, their public parameters are 8 MB, their digest is 2 KB, and their sender’s
message size is 98 MB. The constant size of their public parameters makes them concretely smaller

23

than ours once the databases size reaches 218. Their digests are always ≈ 8x larger and their sender’s
message size is 5 orders of magnitude larger.

Comparing with our weakly laconic OT protocol, our public parameters would only become
concretely larger than theirs, when the database size reaches at least 235. For a database size of
218, our digest is ≈ 12x larger, but our sender’s message is still 5 orders of magnitude smaller. We
believe that a slightly larger digest size in exchange for much smaller sender messages is a valuable
trade-off. The digest is sent once, but the sender’s messages need to be send for each OT invocation.

Acknowledgements

We would like to thank Nathan Xiong for pointing out a flaw in an earlier version of the proof of
Claim 5.

References

ac22. arkworks contributors. arkworks zksnark ecosystem, 2022. URL: https://arkworks.rs. 6
BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and

Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany. doi:10.1007/3-540-44647-8_1. 1.2

BJKL21. Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty reusable non-
interactive secure computation from LWE. In Anne Canteaut and François-Xavier Standaert, edi-
tors, Advances in Cryptology – EUROCRYPT 2021, Part II, volume 12697 of Lecture Notes in Com-
puter Science, pages 724–753, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-77886-6_25. 1.2

BL18. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 500–532, Tel
Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78375-8_
17. 1.2

BL20. Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure computation.
In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference,
Part II, volume 12551 of Lecture Notes in Computer Science, pages 349–378, Durham, NC, USA, Novem-
ber 16–19, 2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-64378-2_13. 1.2

Bow17. Sean Bowe. Bls12-381: New zk-snark elliptic curve construction, March 2017. URL: https://

electriccoin.co/blog/new-snark-curve/. 6
CDG+17. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou.

Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science, pages
33–65, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. doi:10.1007/

978-3-319-63715-0_2. 1.1, 1.1, 1.2, 20, 5
CF13. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa

and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on Theory and Practice of
Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 55–72, Nara, Japan,
February 26 – March 1, 2013. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-36362-7_5. 1

CFK22. Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Witness encryption for succinct func-
tional commitments and applications. Cryptology ePrint Archive, Report 2022/1510, 2022. https:

//eprint.iacr.org/2022/1510. 1.2
CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward.

Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 738–768, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-45721-1_26. 1, 1

24

https://arkworks.rs
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-77886-6_25
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-64378-2_13
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2022/1510
https://eprint.iacr.org/2022/1510
https://doi.org/10.1007/978-3-030-45721-1_26

CV21. Gwangbae Choi and Serge Vaudenay. Towards witness encryption without multilinear maps - extractable
witness encryption for multi-subset sum instances with no small solution to the homogeneous problem.
In Jong Hwan Park and Seung-Hyun Seo, editors, ICISC 21: 24th, volume 13218, pages 28–47, Seoul,
South Korea, December 1–3 2021. doi:10.1007/978-3-031-08896-4_2. 3

DKL+23. Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza
Rahimi. Efficient laconic cryptography from learning with errors. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in
Computer Science, pages 417–446, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-30620-4_14. 1.2, 6

FK23. Dankrad Feist and Dmitry Khovratovich. Fast amortized KZG proofs. Cryptology ePrint Archive, Report
2023/033, 2023. https://eprint.iacr.org/2023/033. 2.4, 2.5, 6

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, volume
10992 of Lecture Notes in Computer Science, pages 33–62, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-96881-0_2. 1, 2.1

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th Annual Symposium
on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE
Computer Society Press. doi:10.1109/FOCS.2013.13. 1.2

GGHW14. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 518–535, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-44371-2_29. 1.2

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory
of Computing, pages 467–476, Palo Alto, CA, USA, June 1–4, 2013. ACM Press. doi:10.1145/2488608.
2488667. 1.1, 1.1, 1.2

GJL23. Matthew Green, Abhishek Jain, and Gijs Van Laer. Efficient set membership encryption and applications.
pages 1080–1092, Copenhagen, Denmark, November 26–30, 2023. doi:10.1145/3576915.3623131. 1.2,
1, 6, 6

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
536–553, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. doi:10.1007/

978-3-642-40084-1_30. 1.1, 1.1, 1.2, 4
GRWZ20. Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating proofs for

multiple vector commitments. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020: 27th Conference on Computer and Communications Security, pages 2007–2023, Virtual
Event, USA, November 9–13, 2020. ACM Press. doi:10.1145/3372297.3417244. 1

GS17. Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear maps.
In Chris Umans, editor, 58th Annual Symposium on Foundations of Computer Science, pages 588–599,
Berkeley, CA, USA, October 15–17, 2017. IEEE Computer Society Press. doi:10.1109/FOCS.2017.60.
1.2

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953. 1

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of
Lecture Notes in Computer Science, pages 177–194, Singapore, December 5–9, 2010. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-17373-8_11. 1

LPR22. Benôıt Libert, Alain Passelègue, and Mahshid Riahinia. PointProofs, revisited. In Shweta Agrawal and
Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of Lecture
Notes in Computer Science, pages 220–246, Taipei, Taiwan, December 5–9, 2022. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-22972-5_8. 1

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes

25

https://doi.org/10.1007/978-3-031-08896-4_2
https://doi.org/10.1007/978-3-031-30620-4_14
https://eprint.iacr.org/2023/033
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/3576915.3623131
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1109/FOCS.2017.60
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-031-22972-5_8

Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer
and Communications Security, pages 2111–2128, London, UK, November 11–15, 2019. ACM Press. doi:
10.1145/3319535.3339817. 1

Rab81. Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81, Aiken
Computation Lab, Harvard University,, 1981. URL: http://eprint.iacr.org/2005/187. 1.1

SCP+22. Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, and Yupeng
Zhang. Hyperproofs: Aggregating and maintaining proofs in vector commitments. In Kevin R. B. Butler
and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX Security Symposium, pages 3001–3018,
Boston, MA, USA, August 10–12, 2022. USENIX Association. 1

TAB+20. Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry Khovratovich.
Aggregatable subvector commitments for stateless cryptocurrencies. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20: 12th International Conference on Security in Communication Networks,
volume 12238 of Lecture Notes in Computer Science, pages 45–64, Amalfi, Italy, September 14–16, 2020.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-57990-6_3. 1

Tsa22. Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in
Computer Science, pages 535–559, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-15802-5_19. 1.2

VWW22. Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive
LWE. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022, Part I,
volume 13791 of Lecture Notes in Computer Science, pages 195–221, Taipei, Taiwan, December 5–9, 2022.
Springer, Heidelberg, Germany. doi:10.1007/978-3-031-22963-3_7. 1.2

WUP23. Weijie Wang, Annie Ulichney, and Charalampos Papamanthou. Balanceproofs: Maintainable vector com-
mitments with fast aggregation. pages 4409–4426, Anaheim, CA, USA, August 9–11, 2023. 1

26

https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
http://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-030-57990-6_3
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-22963-3_7

	Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
	1 Introduction
	1.1 Our Contribution
	Witness Encryption for KZG Commitments.
	Efficient Laconic Oblivious Transfer.
	Implementation & Benchmarks.

	1.2 Related Work
	Witness Encryption.
	Laconic OT.

	2 Preliminaries
	2.1 Algebraic Group Model
	2.2 Pairings and Assumptions
	2.3 Polynomial Commitments
	2.4 KZG Commitments
	2.5 Weakly-Hiding Vector Commitments
	2.6 Symmetric Encryption

	3 Extractable Witness KEMs
	3.1 An Extractable Witness KEM for KZG Openings

	4 Extractable Witness Encryption
	4.1 Extractable Witness Encryption from Extractable Witness KEMs

	5 Laconic OT
	5.1 Constructing Laconic OT

	6 Benchmarks
	Weakly Laconic OT.
	Comparison to Related Works.

