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Abstract

We build a concretely efficient threshold encryption scheme where the joint public key of a set of
parties is computed as a deterministic function of their locally computed public keys, enabling a silent
setup phase. By eliminating interaction from the setup phase, our scheme immediately enjoys several
highly desirable features such as asynchronous setup, multiverse support, and dynamic threshold.

Prior to our work, the only known constructions of threshold encryption with silent setup relied
on heavy cryptographic machinery such as indistinguishability Obfuscation or witness encryption for
all of NP. Our core technical innovation lies in building a special purpose witness encryption scheme
for the statement “at least t parties have signed a given message”. Our construction relies on pairings
and is proved secure in the Generic Group Model.

Notably, our construction, restricted to the special case of threshold t = 1, gives an alternative
construction of the (flexible) distributed broadcast encryption from pairings, which has been the central
focus of several recent works.

We implement and evaluate our scheme to demonstrate its concrete efficiency. Both encryption
and partial decryption are constant time, taking < 7ms and < 1ms, respectively. For a committee of
1024 parties, the aggregation of partial decryptions takes < 200ms, when all parties provide partial
decryptions. The size of each ciphertext is ≈ 8× larger than an ElGamal ciphertext.

∗Most of the work was done while the second author was a visiting scholar at UC Berkeley.
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1 Introduction

Threshold encryption [Des88, DF90] is a fundamental cryptographic primitive that allows an encryptor to
generate a succinct ciphertext such that it can be decrypted by any threshold t sized subset of n parties,
while remaining semantically secure against any coalition of up to t − 1 parties. Typically, a threshold
encryption system begins with an interactive setup phase where a distributed key generation (DKG) pro-
tocol is run to establish a public key pair, where the secret key is shared amongst the n parties. Any party
can then encrypt a message using the public key and produce a succinct ciphertext, of size independent
of the number of parties. It is highly desirable for the decryption process to be non-interactive, i.e., the
parties locally produce partial decryptions of the ciphertext, which can be publicly aggregated to recover
the message.

Expensive DKG. Although the original notion was proposed over three decades ago, and there has
been a long line of research on this topic, virtually all known threshold encryption schemes1 require a
DKG protocol to sample a correlated partial decryption key for each party. While this is theoretically
feasible, DKG protocol in practice is quite expensive. For instance, it typically requires high communi-
cation/computation complexity [GJKR99, TCZ+20]. Moreover, these theoretical solutions typically as-
sume a synchronous setting. For the more practically-relevant asynchronous setting, despite many ef-
forts [AJM+21, KKMS20, KMS20, DXR21, DYX+22], these costs remains even higher. Moreover, these
asynchronous protocols can only tolerate < 1/3 fraction of malicious corruptions. Therefore, for many
practical applications (refer to Section 1.2), it is much desirable if the setup phase of threshold encryption
schemes can be made entirely non-interactive.

Multiverse Support. One may also want the ability to add or remove a party from the committee without
any additional interaction between the parties. This is particularly useful in practice, where one may
want to easily onboard new parties or remove unresponsive members from the committee. This feature is
absent is traditional threshold encryption schemes and any changes require (at least a threshold number
of) committee members to be online. Instead, it would be highly desirable if a one-time setup could enable,
without any additional interaction, the setup of all future threshold encryption for different universes (i.e.,
the multiverse setting introduced for signatures in [BGJ+23, GJM+24]).

Dynamic Threshold. Another desirable property is to allow encrypting parties to choose a different
threshold for each ciphertext without the need for repeating the interactive setup. This allows for a flexible
tradeoff between security and liveness. For instance, a party can choose a higher threshold if they are
willing to tolerate a higher risk of decryption failure (say due to offline parties), in exchange for reducing
the trust in the committee. Typically, any new threshold would require parties to engage in a new instance
of DKG, and the committee member’s secret state will grow with the number of thresholds maintained.

Although there have been prior attempts to achieve the latter two properties, they either require a
dedicated trusted party (typically called the Private Key Generator) to generate and pass the secret keys
of the users [DP08, HLR10] or the size of the ciphertext is linear in committee size [DHMR08, DHMR07].
The only known solution with constant sized ciphertexts uses iO [RSY21]. In this work, we ask:

Can we realize threshold encryption without an interactive setup phase?

In particular, we want constant-size ciphertexts and non-interactive decryption. Similar questions have
been recently asked for threshold signatures [GJM+24, DCX+23] or threshold encryption restricted to

1The only exception we are aware of is [RSY21], which relies on Indistinguishability Obfuscation (iO) [BGI+01].
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the special case of threshold t = 1 (a.k.a., distributed broadcast encryption2 ) [WQZD10, BZ14, FWW23,
KMW23, GLWW23]; however, this question has remained unexplored for threshold encryption.

1.1 Our Contributions

Silent Threshold Encryption. As our first contribution, we propose the notion of silent threshold en-
cryption (STE). In STE, all parties locally sample a public key pair {(ski, pki)}i∈[n]. These public keys can
be publicly aggregated in a deterministic manner to produce a succinct encryption key ek. Importantly, ek
is the only information required to encrypt a message. The threshold number of parties required to decrypt
a ciphertext can be chosen at the time of encryption. As a crucial efficiency requirement, the encryption
key ek, the ciphertext ct, and partial decryptions σi should all be of constant size. The aggregation time for
recovering the message from partial decryptions should be both asymptotically (i.e., linear in the number
of parties) and concretely comparable to standard threshold encryption.

STE naturally achieves all of the properties discussed above. It enjoys 1) silent setup – no interaction is
required at all, 2) multiverse – a one-time setup that enables all future universe generation, and 3) dynamic
threshold – every ciphertext comes with a ciphertext-specific threshold.

We emphasize that, before our work, the only known path to build STE used heavy cryptographic ma-
chinery such as indistinguishability Obfuscation (iO) [BGI+01] or witness encryption for allNP [GGH+13].3
In fact, various related primitives have been studied in the literature, such as distributed broadcast encryp-
tion [WQZD10, BZ14] and threshold broadcast encryption [RSY21]. Although some of these works studied
a weaker variant of our primitive, all of their constructions require strong assumptions (iO and witness
encryption). We refer the readers to Section 1.2 and Section 1.3 for more detailed discussions on this. Our
work directly gives the first (concretely efficient) construction of this primitive based on pairing-friendly
groups, which we discuss next.

Apractical STE scheme. Our construction assumes a common reference string (CRS), which is similar to
the CRS used in the KZG polynomial commitment scheme [KZG10]. We prove the security of our scheme
in the generic group model (GGM) [Sho97, Mau05].

Stated simply, our approach starts with committee members sampling a signature key pair (ski, pki)
and having them publish pki. When encrypting a message, a random ciphertext-specific tag is sampled,
which can be viewed as a random string. We then build a witness encryption scheme4 for the following
statement: “I have valid signatures under t-out-of-n public keys {pki}i∈[n] on the (ciphertext-specific) tag”.
During decryption, committee members simply sign the tag as their partial decryption, using which, the
corresponding ciphertext can be decrypted. The sematic security is guaranteed against any collusion of
< t number of parties.

In more detail, the signature scheme we use is a modification of the silent threshold signature scheme
recently introduced in [GJM+24] (also concurrently [DCX+23]). Notably, our modification actually im-
proves the efficiency of the original scheme [GJM+24]. In particular, the verification of the aggregated
signature does not use any Fiat-Shamir heuristics [FS87], which is also crucial for our construction.

Arbitrary Threshold in the Asynchronous Setting. In typical threshold encryption schemes, the
secret key is first shared using a linear-secret sharing scheme during the interactive setup phase which

2That is, distributed broadcast encryption can be seen as a setup-free threshold encryption supporting multiverse with thresh-
old t = 1.

3This is in sharp contrast to threshold signatures with silent setup [GJM+24, DCX+23], where, theoretically, one could always
apply a succinct non-interactive argument of knowledge (SNARK) to obtain a non-black-box solution.

4Throughout our work we slightly abuse the term ’witness encryption(WE)’. As a matter fact, we mostly refer to a relaxed
type of WE where semantic security holds even when the witness is only computationally hard to find (in contrast to statistically
in the original WE notion [GGH+13]).
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requires a DKG. In the asynchronous network setting, this limits the maximum corruption threshold to
be t < n/3. In contrast, our scheme is the first, practical, threshold encryption scheme that can tolerate
arbitrary corruption threshold in the asynchronous setting as we completely avoid the DKG and only need
a PKI where parties register their public key.

Implementation and Evaluation. We created a Rust crate containing an implementation of our silent-
threshold encryption scheme. Our benchmarks reveal that threshold encryption with silent setup is indeed
practical. The ciphertext size is 9 group elements (768 bytes), which is only 8× as large as an ElGamal
ciphertext. The encryption time is < 7ms, which is independent of the committee size. For a maximum
committee size of 1024 parties, it takes < 28 s for parties to set up their public keys. This is a one-time
cost, and our implementation can be optimized further. Partial decryption takes < 1ms as it requires just
one group operation, irrespective of committee size. Finally, given partial decryptions, the message can
be recovered in ≈ 200ms for a committee size of 1024 parties. In large-scale distributed networks where
DKGs can be very expensive, thereby limiting committee sizes to small numbers, we argue that our scheme
offers a viable path for scaling to large committee sizes.

1.2 Applications

Advanced Encryption Schemes. Our work also provides new constructions and insights into many
other advanced encryption primitives. We highlight them next.

1. Distributed Broadcast Encryption. Broadcast encryption [FN94] allows encryption to a subset S ⊆ [n] (of
parties). The security requirement is that parties can decrypt the message if and only if they belong to
the target universe S. Crucially, the ciphertext should be succinct, ideally independent of the set size |S|.
Traditionally, broadcast encryption considers the setting, where a central trusted party (the Private Key
Generator) distributes secret keys for each party. A distributed broadcast encryption (DBE) [WQZD10,
BZ14], on the other hand, asks for the same functionality, while also demanding a silent setup, without
any central trusted party. That is, parties locally sample their secret/public key pairs. For more than a
decade, the only constructions of distributed broadcast encryption either relied on indistinguishability
obfuscation (iO) [BZ14] or came without formal security arguments [WQZD10]. Only very recently,
two works showed constructions of this primitive from simpler assumptions [FWW23, KMW23]. Our
work provides an alternative solution to this problem. Indeed, distributed broadcast encryption is a
special case of threshold encryption with silent setup, where the threshold t = 1.5 In particular, the
concrete efficiency of our scheme is comparable to the state-of-the-art [KMW23], which is also based
on pairings.

2. Flexible Broadcast Encryption. Recently Freitag et al. introduced the notion of Flexible Broadcast Encryp-
tion (FBE) [FWW23], which is, in essence, a stronger variant of Distributed Broadcast Encryption (DBE)
where users are oblivious of the state of the system at the time of their local keys sampling. In particular,
in DBE users keys’ are associated with a unique index, typically a counter of the users currently in the
system, unlike FBE where keys are statelessly sampled. Freitag et al. showed a construction of FBE from
Witness Encryption. Concurrently to our work, Garg et al. [GLWW23] showed a compiler to boost any
DBE scheme to an FBE, therefore in combination with [KMW23] achieved an FBE from pairings. How-
ever their compiler induces an ω(log λ) overhead on the size of each public key. We show that a slight
5In fact, threshold encryption (t = 1) with silent setup is slightly stronger than distributed broadcast encryption in that it

decouples the generation of encryption key ek for a universe S and the encryption step. This one-time cost of computing ek could
be amortized if one wants to broadcast many messages to the same universe S. In distributed broadcast encryption, this is not
necessarily the case.
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modification of our STE scheme provides a direct construction of FBE without any overhead on the size
of the public keys. Therefore, this comprises the first FBE from pairings with O(1) (in group elements)
public keys’ size. We stress that this is not the focus of our work, but, notably, our techniques allow us
to get this highly desired feature for free.

3. Threshold Broadcast Encryption. More generally, one may consider a broadcast encryption with threshold
t > 1. That is, the message can only be decrypted if and only if ⩾ t parties from the target universe S
partially decrypt it. This primitive is studied by several prior works under different names (e.g., dynamic
threshold encryption [DP08] and threshold broadcast encryption [DHMR07, HLR10, RSY21]). Note that
this notion is slightly weaker than our notion of multiverse threshold encryption.6 Unlike broadcast
encryption, there is no work that realized threshold broadcast encryption with a silent setup – either the
size of the ciphertext is linear in |S| [DHMR08, DHMR07] or they require a trusted setup [DP08, HLR10],
with the only exception being [RSY21] that resorts to iO. Our work is the first one to construct a
practical, threshold broadcast encryption with a silent setup.

Mempool Transaction Privacy. In many popular blockchains, including Ethereum (the chain with the
largest DeFi liquidity), transactions from users are first submitted to a public mempool from which min-
ers select transactions and create blocks that are to be appended to the blockchain. During the process,
miners are free to insert their own transactions before and/or after a user’s transactions, thereby allow-
ing them to frontrun/backrun other transactions. This provides users of Decentralized Exchanges with
worse prices, hurting the users’ experience. This phenomenon was first documented under the umbrella
of Miner Extractable Value (MEV), [DGK+20] with many followup works showing that it is a widespread
issue [GKW+16, QZG21, TC+21, JSSW21, CJW22]. In particular, an estimated 200,000,000 USD were lost
on Ethereum in 2021 alone, mostly benefiting miners [PFW22].

Consider another situation where a user discovers a bug in their smart contract that allows any party
to drain all of its funds. A natural course of action could be to first recover the funds before any other party
drains the account. However, when this user submits a transaction to the public mempool, a miner can
copy this transaction to make themselves the receiver, and bribe other miners/pay higher gas fees to be
included before the honest user. Finally, revealing the content of transactions allows miners to selectively
censor certain users or certain types of transactions.

By encrypting transactions, the above issues can be mitigated as miners cannot frontrun transactions
they have no information about. Encrypted mempools [BO22, PNS23, MS22, KLJD23, RK23, DHMW23]
have been a topic of active research in recent years, but they all require an expensive setup procedure
limiting the committee sizes. Our solution completely avoids the setup procedure and is non-interactive,
thereby allowing committees to scale even further.

Finally, in many applications, encryption and signatures are often used together – signatures for au-
thentication and encryption for confidentiality. This is, in particular, true in the threshold setting. In
blockchain applications, for instance, signatures are used for validating blocks and encryptions are used
for the confidentiality of the transactions. Thus, it would be ideal if the same system supports both encryp-
tion and signatures. Otherwise, two independent systems need to be implemented. This was done as part
of McFly [DHMW23], where the threshold signature functionality was augmented to support threshold
encryption. However, their system needs a DKG setup. The solution we develop in this work achieves both
signatures and encryption in one system without setup.

6Similar to the case of Distributed Broadcast Encryption, the difference is the decoupling of the encryption key derivation and
the encryption step.
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1.3 Related Work

RemovingDKG fromThresholdCrypto. DKG has been a bottleneck for deploying threshold signatures
at scale for a long time. For instance, Ethereum 2.0 periodically samples 512 validators to sign on the newly
created blocks to reach consensus [eth]. Even for this moderate universe size, DKG is too costly that they
opt for a multisignature, mainly due to the advantage of having a non-interactive setup. For the purpose
of removing DKG, several recent works [MRV+21, GJM+24, DCX+23] gave various solutions to construct
threshold signatures with a silent setup.

Note that, even in the silent setup setting where parties sample their key pairs independently, one can
always generically apply existing succinct non-interactive arguments (SNARKs) to construct threshold
signature schemes. That is, the aggregator will produce a SNARK proof certifying the statement: ⩾ t
parties have signed the message. With the recent rapid development in SNARK literature [Gro16, GWC19],
such generic constructions will have small aggregated signatures and extremely fast verification time. The
bottleneck, however, lies in proof generation time, which is the signature aggregation time for threshold
signature. Therefore, the recent research efforts [MRV+21, GJM+24, DCX+23] can be viewed as designing
custom SNARK schemes for signature verification with concretely efficient aggregation time.

Contrary to threshold signatures, removing DKG from threshold encryption is a significantly more
difficult task. Note that, unlike threshold signature, there are no generic feasibility solutions. That is, it
is not even clear if there are theoretical solutions regardless of the concrete efficiency. In fact, the only
solution for threshold encryption with silent setup in the literature [RSY21] requires iO. As we have
already discussed in Section 1.2, even for the restricted setting of t = 1 and the closely related notion of
distributed broadcast encryption, we only recently began to have feasibility solutions [FWW23, KMW23].

Removing Setup from Advanced Encryption. More broadly, many recent works have been trying
to remove the trusted setup in different advanced encryption schemes to move to a silent setup setting.
In Section 1.2, we have already discussed the works [WQZD10, BZ14, FWW23, KMW23, GLWW23] that
construct broadcast encryption with a silent setup (i.e., distributed broadcast encryption). For identity-
based encryption (IBE), the work of [GHMR18] initiated the study of registration-based encryption (RBE)
as an IBE with a silent setup. A long line of works has been trying to construct concretely efficient RBE
schemes [GHM+19, GV20, CES21, GKMR23, DKL+23, FKdP23]. Moreover, several recent works have ex-
tended this research effort to other advanced encryption schemes, such as (registered) attribute-based
encryption [HLWW23, ZZGQ23] and (registered) functional encryption [FFM+23, DP23].

Our work belongs to this line of research, which initiates the removal of setup for the case of threshold
encryption.

2 Technical Overview

Our objective is to construct a silent threshold encryption (STE), where parties independently sample
their key pair (ski, pki). Afterward, a succinct encryption key ek can be deterministically derived from the
public keys {pki}i. Given any message msg and a message-specific threshold t, the encryptor can produce
a ciphertext ct = Enc(ek,msg, t). Given any ct, party can locally partial decrypt it as σi = Dec(ski, ct).
We emphasize that the ciphertext ct and partial decryptions σi are also required to be constant-size. Given
enough (⩾ t) partial decryptions, the correct message can be reconstructed.

As we have already discussed, although STE is a natural strengthening of “threshold encryption with
an interactive setup” (e.g., DKG), this notion turns out to be remarkably hard to construct (even for t = 1).
On the other hand, silent threshold signature (STS) [GJM+24, DCX+23] is relatively easier to construct.
Hence, our work starts with the following question.
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Can we leverage a silent threshold signature
to construct a silent threshold encryption?

Signature-based witness encryption (SWE) [DHMW23] is a generic tool for building encryption schemes
from signature schemes. It allows the encryptor to encrypt a message with respect to the statement that
there is a valid (aggregated) signature under some tag. The security guarantees that one can recover the
message if and only if it does hold such a valid signature.

Although this approach conceptually works, many technical challenges remains. We do not know how
to construct SWE for an arbitrary signature scheme. [DHMW23] only shows how to construct SWE for
threshold BLS signatures [BLS01]. In general, (plain) witness encryption for any NP languages typically
requires strong assumptions such as iO [GGH+13] or non-standard non-falsifiable (knowledge) lattice
assumptions [Tsa22, VWW22]. Therefore, to instantiate this conceptual plan, we must overcome the fol-
lowing technical challenges.

1. Construct an SWE for a large class of signatures.

2. Construct an STS that falls into this class.

2.1 Signature-based Witness Encryption for Linear Verifiable Signature

The starting point of our construction is to realize that one can construct an SWE for any signature scheme
whose verification is a public linear constraint system. Take BLS signature [BLS01] (refer to Definition 1)
as an example, the verification checks if

g ◦ σ ?
= pk ◦ RO(tag).7

Here, the signature isσ, and everything else is public. Crucially, the verification is checking a linear function
in the signature σ (as in it never computes σ◦σ). Given such a linear verification, one may witness encrypt
a message msg as

ct = (ct1, ct2) =
(
α · g, α · (pk ◦ RO(tag)) +msg

)
, 8

where α is a random field element sampled by the encryptor. Given the signature σ, the decryption is
done by ct2 − (ct1 ◦ σ). An astute reader might realize that this is Boneh-Franklin identity-based encryp-
tion [BF01] from a different perspective.

More generally, one may imagine a more sophisticated signature scheme with a linear verification (in
matrix form) as

Au×v ◦


σ1
σ2
...
σv

 ?
=


b1
b2
...
bu

 .9 (1)

In this particular example, the signature consists of v group elements (σ1, . . . , σv) and the verification
checks u pairing equations. Most crucially, the matrixA and the vector (b1, . . . , bu)⊺ are public information

7Here, RO stands for the random oracle, and ◦ stands for the pairing operation. For simplicity, we present it with symmetric
pairing for now, but everything works similarly for asymmetric pairing.

8We adopt additive notation for the standard group operation.
9Au×v highlights the fact that the dimension of A is u× v.
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given the tag to sign. For such a signature scheme, one may witness encrypt it as

ct =

(α1, . . . , αu) ·A, (α1, . . . , αu) ·


b1
b2
...
bu

+msg


=
(
(α1, . . . , αu) ·A, α1 · b1 + · · ·+ αu · bu +msg

)
.

Again, α1, . . . , αu are random field elements sampled by the encryptor. Here, the ciphertext consists of
v + 1 group elements and, given a valid signature (σ1, . . . , σv), one may decrypt is as

ctv+1 −

(ct1, . . . , ctv) ◦


σ1

σ2

...
σv


 .

We remind the readers that the BLS example above is simply a special case of this general framework with
a single group element signature (i.e., v = 1) and a single pairing equation verification step (i.e., u = 1).

2.2 Silent Threshold Signature with Linear Verification

Now that we have established that one can build a signature-based witness encryption scheme for any
signature scheme with a linear verification, our next objective is to build a silent threshold signature that
comes with a linear verification. At this point, it is helpful to first recall the silent threshold signature
scheme from [GJM+24].

Overview of hinTS [GJM+24]. hinTS is a silent threshold signature scheme based on BLS signature.
During the silent setup, each party will sample an independent BLS key pair {ski, pk = gski}. In the online
phase, given a tag to sign, parties simply sign it using the BLS signature. Now, suppose a subset B ⊆ [n]
of parties have signed tag, the aggregator will proceed to aggregate the partial signatures as follows. It
first shall aggregate the partial signatures {σi}i∈B and public keys {pki}i∈B as σ∗ and aPK. Furthermore,
to ensure unforgeability, the aggregator must prove the honest aggregation of aPK. In particular, the
aggregator needs to commit to the vector B10 and generating two corresponding succinct proofs π1, π2.

1. π1 proves that aPK is the honest aggregation of public keys for parties in B, i.e.,

aPK = (pk1, . . . , pkn) ·

b1
...
bn

 .

2. π2 proves that the committed subset B is an authorized set, i.e., |B| ⩾ t.

The final signature consists of the aggregated public key aPK, the aggregated signatureσ∗, the commitment
Com(B), and the two succinct proofs π1, π2. Correspondingly, the verification needs to verify the proofs
π1 and π2 and verify the aggregated signature σ under the aggregated public key aPK.

Recall that our objective is to have a silent threshold signature with linear verification. Is the hinTS
verification entirely linear? First, verifying σ∗ under aPK is identical to BLS verification, i.e.,

g ◦ σ∗ ?
= aPK ◦ RO(tag).

10For a set B ⊆ [n], we also think of B as an indicator vector (b1, . . . , bn) ∈ {0, 1}n, i.e., bi = 1 if and only if i ∈ B.
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Therefore, this part of the verification is linear. To answer whether verifying π1 and π2 is linear or not, we
need to delve deeper into how Com(B), π1, π2 are generated, which we explain next.

Polynomial Commitment as Vector Commitment. Similar to pairing-based SNARKs, hinTS use KZG
polynomial commitment [KZG10] as a succinct vector commitment scheme. That is, for any vector B =
(b1, b2, . . . , bn), it is equivalently treated as a polynomial B(x).11 The commitment of B is simply the
polynomial commitment of B(x), i.e., [B(τ)],12 where τ is the trapdoor in the KZG CRS [τ ], [τ2], . . . , [τn].

The Proof π1. For proving that aPK is the inner product between the vector of public keys and B, hinTS
relies on the following polynomial identity (known as generalized sumcheck)

SK(x) ·B(x) = aSK+Qx(x) · x+QZ(x) · Z(x), 13

where deg(Qx) is required to be ⩽ n − 2. We refer the readers to Lemma 1 for technical details. Given
this polynomial identity, the proof consists of the polynomial commitment of Qx(x) and QZ(x), i.e., π2 =
([Qx(τ)], [QZ(τ)]). Verifying π2 involves checking the polynomial identity through pairing as

[SK(τ)] ◦ [B(τ)]
?
= aPK ◦ [1] + [Qx(τ)] ◦ [τ ] + [QZ(τ)] ◦ [Z(τ)]. (2)

Essentially, this verification step checks that the polynomial identity holds at the random location x = τ .
For our purpose, we crucially note that this verification step is linear. In particular, in Equation 2, the group
elements from the signature are highlighted and the rest are public group elements. Before we move on
to π2, we make a few remarks.

1. Although [SK(τ)] is public information, computing this group element involves terms the verifier
cannot compute, e.g., [sk1 · τ ]. Therefore, this scheme crucially relies on each party (holding secret
key sk) to also publish [sk · τ ], [sk · τ2], . . .14 Similarly, the aggregator also relies on these additional
terms to compute [Qx(τ)] and [QZ(τ)].

2. As observed by [GJM+24], this proof π1 is only weakly sound in the following sense. If some
[B(τ)], aPK, [Qx(τ)], [QZ(τ)] passes Equation 2 (for instance, the honest generated proof), the ad-
versary can easily produce other tuples of elements, which will also pass Equation 2. For instance,

[B(τ)], aPK+ τ, [Qx(τ)− 1], [QZ(τ)].

However, this is not an issue in terms of unforgeability since the adversary cannot produce a valid
signature σ for the (maliciously computed) aggregated public key (e.g., aPK+ τ in the above exam-
ple).

3. We are omitting the fact that one needs to check the degree of Qx is ⩽ n−2. As we will see shortly,
the degree check is again a linear verification.

The Proof π2. So far, the verification of hinTS is entirely linear. However, verifying π2 turns out to be
tricky. In particular, hinTS checks B(x) is authorized by checking (1) B is a binary vector, (2) the inner
product between B and (1, 1, . . . , 1) is t.15 While the second condition can be proven similarly as π1,

11For technical reasons, we treat (b1, b2, . . . , bn) as the evaluation form of the polynomial instead of the coefficient form.
12For x ∈ F, we use [x] to denote group element x · g, where g is the generator of the group. Refer to Section 3.1.
13Here, SK(x) is the polynomial defined by the vector (sk1, sk2, . . . , skn) and Z(x) is the (public) vanishing polynomial.
14These are referred to as hints, which is why the scheme is coined as hinTS.
15By changing (1, 1, . . . , 1) to some weighted vector (w1, . . . , wn), one naturally constructs a weighted threshold signature.
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which supports linear verification, proving (1) turns out to be problematic. In particular, one typically uses
the polynomial identity

B(x) · (1− B(x) ) = Q(x) · Z(x)

to prove that B is binary. As highlighted, this is a degree-2 check (as in one needs to pair [B(τ)] with itself),
which we do not know how to build a witness encryption for. Moreover, it seems inherent that one needs
to check if B is binary; otherwise, the adversary may use B = (t, 0, 0, . . . , 0) to prove that B is authorized
even though B contains only one party. This bottleneck raises the following technical question:

How can we prove that B is authorized using only linear verification?

Degree-check to the rescue. Our key observation for addressing this technical challenge is the fol-
lowing. Even if B is not a binary vector, as long as this vector B has ⩾ t non-zero coordinates, aPK =
(pk1, . . . , pkn) · (b1, . . . , bn)⊺ will be the aggregation of sufficiently many (i.e., ⩾ t) public keys, which by
the security of BLS multisignature, is unforgeable if one does not have ⩾ t partial signatures.

Now, checking that B has ⩾ t non-zero coordinates could actually be done by a linear check. In
particular, one may check this by running a degree check on B(x). Intuitively, if a non-zero polynomial
has degree ⩽ n − t, its evaluations will have ⩽ n − t zeros and, hence, ⩾ t non-zeros. Now, suppose
the CRS is [τ ], [τ2], . . . , [τn], checking if a committed polynomial B(x) has degree ⩽ n− t simply means,
asking the prover to also commit to B̂(x) = B(x) · xt and check if

[B(τ)] ◦ [τ t] ?
= [B̂(τ)] ◦ [1].

Crucially for us, note that this is again a linear check.

Are we done? One subtlety is that we do require the committed polynomial B(x) to be non-zero, i.e.,
[B(τ)] ̸= [0]. This check is actually non-linear. However, this can be simply fixed by introducing a dummy
party P0 and always requiring P0 ∈ B. Proving P0 ∈ B introduces another KZG opening proof, whose
verification again conforms to a linear check.

2.3 Putting it together

We are now ready to put everything together to build our silent threshold encryption. First, the silent
threshold signature scheme with a linear verification is summarized as follows. During silent setup phase,
each party independently samples sk, pk and publishes pk together with the hints [sk ·τ ], [sk ·τ2], . . . Given
a random group elements [γ] to sign,16 parties partially sign it as [γ · sk]. The aggregator aggregates these
partial signatures into

aPK, σ∗, [B(τ)], [Qx(τ)], [QZ(τ)], [Q̂x(τ)], [B̂(τ)], [Q0(τ)]

which should satisfy the linear verification through the following five pairing equations.

[SK(τ)]1 ◦ [B(τ)]2 = [1]2 ◦ aPK + [Z(τ)]2 ◦ [QZ(τ)]1 + [τ ]2 ◦ [Qx(τ)]1 (Sumcheck)

[τ ]2 ◦ [Qx(τ)]1 = [1]2 ◦ [Q̂x(τ)]1 (Degree-check)

[γ]2 ◦ aPK = [1]1 ◦ σ∗ (Signature Verification)

[τ t]1 ◦ [B(τ)]2 = [1]2 ◦ [B̂(τ)]1 (Degree-check)

[1]1 ◦ [B(τ)]2 = [τ − 1]2 ◦ [Q0(τ)]1 + 1 (Dummy Party)
16Looking ahead, this element is sampled by the encryptor in the encryption scheme. Therefore, it is not necessary to use a

random oracle to sample a random group element as in the signature scheme.
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As a sanity check, note that without introducing the dummy party, the linear system is trivially satisfiable
(since all zero is a trivial solution), which means the corresponding signature scheme is trivially forgeable.
Given this silent threshold signature scheme, one compiles it into an encryption scheme just as described
in Section 2.1. In particular, our STS is a signature with u = 8 group elements and v = 5 pairing check
verification.

This sums up our construction on a high level. We next discuss a few more points.

Security. We prove the security of our scheme in the generic group model (GGM) [Sho97, Mau05]. In-
tuitively, the security of the encryption scheme reduces to the unforgeability of the signature scheme. In
GGM, the adversary can distinguish a ciphertext from a random group element if and only if it can derive
this element by generic operations. By careful argument, this means that the adversary must be able to find
(σ1, . . . , σv) that satisfies Equation 1, which gives us a forgery. One may argue that this cannot happen
using similar reasoning as hinTS [GJM+24].

Efficiency. In our framework of constructing STE from STS: 1. the encryption key (of STE) is the ver-
ification key (of STS); 2. the partial decryption (of STE) is the partial signing (of STS); 3. decryption
aggregation (of STE) is the partial signature aggregation (of STS), plus a few more constant-time opera-
tions (corresponding to the SWE). Therefore, our scheme inherits the efficiency of the STS scheme of the
(modified) hinTS [GJM+24]. We provide implementation and evaluation details in Section 7.

Extensions. Our basic and CPA-secure scheme is described in Section 5. We then proceed to present
some extensions to the basic scheme. First we show that it readily enjoys multiverse setting. Then we
show a simple extension that has CCA2 security. We show that a straightforward variant of our scheme
for t = 1 serves as a direct Flexible Broadcast Encryption construction with constant-sized public keys.
Finally we discuss how to achieve STE with the highly desirable security properties of Post-Compromise
and Forward Security. For the former we argue that it is a property that we get for free from the Silent
Setup setting. For the latter we discuss how one can rely on a Forward Secure STS (seen as a variant of
hinTS) to build a Forward Secure STE.

These extensions are discussed in Section 6.

3 Preliminaries

Notation. Throughout this work, we useλ for the security parameter and negl(λ) for a negligible function,
i.e., a function that is less than 1/f(λ) for any polynomial f . We use [n] to denote the set {1, . . . , n} and
[a, b] (for a, b ∈ Z and a < b) the set {a, a+ 1, . . . , b}.

3.1 Bilinear Groups

A Bilinear Group BG, generated as (p,G1,G2,GT , g1, g2, e) ← BG(1λ), is specified by three groups
G1,G2,GT (the first two we call ‘source groups’ and the third ‘target group’) of prime order p = 2Θ(λ), a
bilinear map e : G1×G2 → GT that we call ‘pairing’ and one random generator g1, g2 for each group. We
use the implicit notation, i.e., [x]s := x · gs and more generally [A]s represents a matrix of the correspond-
ing group elements, for s ∈ {1, 2, t}. Also, we denote the group operation additively, [x]s+[y]s = [x+y]s,
for s ∈ {1, 2, t}. By [x]1 ◦ [y]2 = [y]2 ◦ [x]1 = [x · y]T , we denote the pairing e([x]1, [y]2). We note that
the way it is defined ‘◦’ is commutative, for instance ([a]1, [b]2)⊺ ◦ ([c]2, [d]1) is well-defined and gives the
outcome [ac+ bd]T .

All the algorithms of our constructions implicitly take as input a Bilinear Group generated by BG(λ),
even if it is not explicitly stated.
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For completeness, we include a definition of BLS signature [BLS01] below.

Definition 1 (BLS Signature). Let RO : {0, 1}∗ → G2 be a random oracle. The BLS signature consists of the
following algorithms.

• blsgen: It samples a random sk← F and output a public/secret key pair as (pk = [sk]1, sk).

• blssign(msg): It signs as σ = sk · H(msg).

• blsver(pk,msg, σ): It verifies the validity of the signature by pk ◦ RO(msg)
?
= [1]1 ◦ σ.

3.2 Polynomials over Zp

Throughout the paper, we use the following notations for polynomials over the field Zp, defined by the
bilinear group. Let ω ∈ Zp be an ℓ-th primitive root of unity, i.e. ωℓ = 1 over Zp. ω generates the
multiplicative subgroup of roots of unity H = {ω, ω2, . . . , ωℓ}, with |H| = ℓ. Let L1(x), L2(x), . . . , Lℓ(x)
denote the Lagrange basis polynomial. That is, Li is the unique degree-(ℓ − 1) polynomial defined by:
Li(ω

j) is 1 when i = j and 0 when i ̸= j. Let Z(x) =
∏ℓ

i=1(x − ωi) be the vanishing polynomial on
H. Since H is a multiplicative subgroup, Z(x) = xℓ − 1 and Li(x) = ωi

ℓ ·
xℓ−1
x−ωi . Note that Li(0) = 1

ℓ .
Sometimes, we will refer to ωℓ as ω0 and L0 = Lℓ; since H is cyclic, they are equivalent.

3.3 Generic Group Model

Generic (Bilinear)Groupmodel (GGM). Our security proof is based on the Generic Group Model [Sho97,
Mau05]. A ‘generic’ adversary does not have concrete representations of the elements of the group and can
only use generic group operations. This model captures the possible ‘algebraic’ attacks that an adversary
can perform.

In particular, we follow the Maurer’s GGM [Mau05], which is extended to Bilinear Groups by [BBG05].
The adversary in GGM makes oracle queries for each generic group operation she wishes to perform and
receives a handle for the resulting group element, instead of the actual element itself. We call the party
that answers the queries the ‘challenger’. The challenger keeps three lists L1,L2,LT of all group elements
resulted from the queries of the adversary together with their corresponding handles.

A standard GGM technique in security proofs is the ‘symbolic’ equivalence. We call ‘symbolic’ ex-
periment (and symbolic group representation, respectively) the model where the challenger is storing
polynomials instead of group elements and performs polynomial operations instead of group operations.
The formal variables of the polynomials are the initial elements that the adversary received. For example, a
generic adversary to the discrete logarithm problem is initially receiving [1], [x]; thus, the formal variables
are 1, X , and then can perform any generic group operation which is going to be symbolically performed
by the challenger with the corresponding polynomials in Zp[1, X].

MasterTheorem. We recall the ‘Master Theorem’ [BBG05, Boy08] that simplifies the proofs of the hard-
ness of decisional problems.

Theorem 1 (Master theorem [BBG05, Boy08]). Let L1 ∈ Zp[X1, . . . , Xn]
ν1 , L2 ∈ Zp[X1, . . . , Xn]

ν2 ,
L3 ∈ Zp[X1, . . . , Xn]

νT be three lists17 of n-variate polynomials over Zp of maximum degree dL1 , dL2 , dLT
,

respectively. Let f ∈ Zp[X1, . . . , Xn] be an n-variate polynomial of degree df and denote d = max{dL1 +

17Throughout this section, we will abuse the notation sometimes, treating lists as vectors.
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dL2 , dLT
, df}, ν = ν1+ ν2+ ν3. If f is independent of (L1,L2,LT ), then for any generic adversaryA that

makes at most q group oracle queries:∣∣∣∣∣Pr
[
A

(
p, h1[L1(x)],

h2[L2(x)], hT [f(x)]

)
= 1

]
− Pr

[
A

(
p, h1[L1(x)],

h2[L2(x)], hT [r]

)
= 1

]∣∣∣∣∣ ⩽ (q + ν + 2)2 · d
2p

,

where h1, h2, hT denote the corresponding handles, and the probabilities are taken over the choices of x ←$

(Zp)
n and r ←$ Zp.

We have yet to specify what the f -(in)depenence of L = (L1,L2,LT ) means. First, define the com-
pletion [BFF+14] of L as

C(L) := {L1 ⊗L2} ∪LT .

Intuitively {L1 ⊗ L2} are all the elements in GT that can be computed using pairings. Given this, f -
(in)dependence is defined as follows.

Definition 2. Let the lists of polynomials L1,L2,LT with elements in Zp[X1, . . . , Xn], the polynomial
f ∈ Zp[X1, . . . , Xn] andC(L) = {g1(X1, . . . , Xn), . . . , gD(X1, . . . , Xn)}. We say that f is dependent on
L = (L1,L2,LT ) if there exist coefficients κi ∈ Zp such that:

f(X1, . . . , Xn) =
D∑
i=1

κi · gi(X1, . . . , XD).

Otherwise, we say that f is independent of L.

3.4 Univariate Sumcheck

Our construction relies on a univariate sumcheck protocol [BCR+19, RZ21], slightly modified to work for
inner products [CNR+22]. In particular, we use the following lemma.

Lemma 1 (Univariate Sumcheck [BCR+19, RZ21]). LetA(x) =
∑|H|

i=1 ai ·Li(x), B(x) =
∑|H|

i=1 bi ·Li(x).
It holds that

A(x) ·B(x) =

∑
i aibi
|H|

+Qx(x) · x+QZ(x) · Z(x),

where both Qx and QZ are polynomials with degree ⩽ |H| − 2 defined as

Qx(x) =
∑
i

aibi
Li(x)− Li(0)

x
,

QZ(x) =
∑
i

aibi
L2
i (x)− Li(x)

Z(x)
+
∑
i ̸=j

aibj
Li(x)Lj(x)

Z(x)

We note that the original sumcheck is concretely stated for bi = 1. In our case, we treat general inner
products, which is a straightforward generalization (see [CNR+22]).

4 Defining Silent Threshold Encryption

This section formally defines the primitive: silent threshold encryption (STE). Our formal definition below
is inspired by the silent threshold signature definition of [GJM+24]. In particular, parties will publish some
“hints” together with their public key in a silent manner. Given all the hints, a public algorithm will verify
the validity of the hints. Furthermore, a succinct encryption key will be deterministically computed from
the hints.
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Definition 3 (STE). A Silent Threshold Encryption consists of a tuple of algorithms Σ = (Setup,KGen,
HintGen,Preprocess,Enc,PartDec,PartVerify,DecAggr) with the following syntax.

• CRS ← Setup(1λ,M): On input the security parameter λ and an upper bound M on the maximum
number of users, the Setup algorithm outputs a common reference string CRS.

• (pk, sk)← KGen(1λ): On input the security parameter λ, the KGen algorithm outputs a public/secret
key pair (pk, sk).

• hinti ← HintGen(CRS, sk,M, i): On input the CRS, the secret key sk, the number of partiesM , and a
position i ∈ [M ], the HintGen algorithm outputs a hint hinti.

• (ak, ek) ← Preprocess(CRS,U , {hinti, pki}i∈U ): On input the CRS, a universe U ⊆ [M ], all pairs
{hinti, pki}i∈U , the Preprocess algorithm computes an aggregation key ak and a encryption key ek.

• ct ← Enc(ek,msg, t) : On input an encryption key ek, a message msg and a threshold t, it outputs a
ciphertext ct.

• σ ← PartDec(sk, ct) : On input a secret key sk, and a ciphertext ct, PartDec algorithm outputs a
partial decryption σ.

• 1/0 ← PartVerify(ct, σ, pk) : On input a ciphertext msg, a partial decryption σ, and a public key pk,
it returns 1 if and only if the partial decryption verifies.

• msg← DecAggr(CRS, ak, ct, {σi}i∈S) : On input the CRS, an aggregation key ak, and a set of partial
decryptions {σi}i∈S , the DecAggr algorithm outputs a message msg.

Moreover, STE must have the following efficiency requirements:

• The aggregation key ak and the ciphertext ct should be constant size.

• Partial decryption should only take constant time.

Remark 1 (Silent Setup). We note that HintGen does not take other parties’ public keys pki’s as input. It
solely depends on the CRS and, hence, parties can publish (pki, hinti) in one shot. In other words, (pki, hinti)
can be viewed as the (extended) public key of party i.

Remark 2 (Preprocessing). The preprocessing algorithm is only decoupled from encryption and decryption
aggregation for efficiency reasons. In terms of functionality and security, it could be equivalently embedded
in the Enc and DecAggr algorithms.

This decoupling is helpful in the threshold encryption setting, where a universe U is generated once, and an
encryptor will encrypt with respect to U repetitively. In this way, the preprocessing cost is amortized. In other
applications, such as threshold broadcast encryption (see Section 1.2), one may equivalently embed processing
inside encryption and decryption aggregation.

Due to the complexity of the primitive, we define correctness through a game between a challenger
and an adversary. Note that the adversary is computationally unbounded, and the correctness is perfect.
Intuitively, we allow the adversary to choose the universe U and control any number of users in U . Fur-
thermore, the adversary can output the partial decryptions of any party it controls. It is important to note
that correctness should hold even for maliciously generated public keys, hints, and partial decryptions of
users controlled by the adversary. The formal definition of correctness can be found below.
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1. The challenger runs CRS← Setup(1λ,M) and gives CRS to A.

2. The adversary picks a universe U∗ and a subset Cor of corrupt parties such that Cor ⊆ U∗.

3. For all i ∈ U∗ \ Cor, the public key and hint are sampled honestly (pki, ski) ← KGen(1λ) and
hinti = HintGen(CRS, ski,M, i).

4. For all i ∈ Cor, the adversary returns a (potentially maliciously generated) public key pki and
hint hinti to the challenger.

5. The challenger invokes the preprocessing as (ek, ak)← Preprocess(CRS, U∗, {hinti, pki}i∈U∗)
and the outputs are given to A.

6. The adversary is given access to the partial decryption oracle of the honest parties, and it picks
a message msg and a threshold t.

7. The honest ciphertext is generated ct← Enc(ek,msg, t).

8. The adversary prepares the partial decryptions {σi}i∈S1 for some subset of malicious parties
S1 ⊆ Cor. Let S′

1 ⊆ S1 be the subset of maliciously generated partial decryptions that verifies
under PartVerify.

9. The adversary may also request a subset of honest parties S2 ⊆ U∗\Cor for partial decryptions,
which are returned by computing σi ← PartDec(ski, ct).

10. If |S′
1 ∪ S2| ⩾ t (i.e., there are sufficiently many verified partial decryptions), the challenger

computes the aggregated decryption as msg′ ← DecAggr(CRS, ak, ct, {σi}i∈S), where S = S′
1

∪ S2.

11. The output of this game is 0 if msg ̸= msg′.

Figure 1: Correctness Game

Definition 4 (Correctness). The STS scheme Σ satisfies correctness if, for any unbounded adversary A and
anyM = poly(λ), the output of the correctness game defined in Figure 1 is 0 with probability 0.

For the security of STE, we naturally define a semantic security game between a challenger C and a PPT
adversary A. Again, the adversary chooses the target universe U∗ and corrupts any subset of parties,
denoted by Cor, in U∗. Later, the adversary also chooses the threshold t (adaptively). For the security to
be meaningful, we demand that t > |Cor|; otherwise, A can trivially win the game.

Definition 5 (Semantic Security). The STE scheme Σ satisfies semantic security if, for every M = poly(λ)
and any adversary PPT A, the output of the game in Figure 2 is 1 with probability ⩽ 1/2 + negl(λ).
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1. The challenger runs CRS← Setup(1λ,M) and gives CRS to A.

2. The adversary picks U∗ and a subset of parties to corrupt Cor← A(CRS).

3. For all honest parties i ∈ U∗ \Cor, the public key and hint are sampled honestly by the challenger
(pki, ski)← KGen(1λ) and hinti = HintGen(CRS, ski, M, i) and are sent to A.

4. For all i ∈ Cor, the adversary picks a public key pki and the corresponding hint hinti.

5. The challenger invokes the preprocessing as (ek, ak) ← Preprocess(CRS, U∗, {hinti, pki}i∈U∗)
and the output are given to A.

6. The adversary picks messages msg0, msg1, and a threshold t.

7. The challenger picks a bit b← {0, 1} and generates a ciphertext ct∗ ← Enc(ek,msgb, t).

8. The adversary outputs a bit b′ and wins the semantic security game if t > |Cor| and b′ = b, in
which case, the output of the game is 1.

Figure 2: Security Game

Remark 3. The adversary A can also corrupt parties outside the target universe U∗. However, they do not
play any role as they do not participate in the decryption committee, i.e., their public keys are not taken as
input on Enc or DecAggr. For correctness and security, we can ignore them; equivalently, one may consider
all parties outside U∗ corrupted.

5 Our Silent Threshold Encryption Construction

This section presents our core contribution: our construction of a silent threshold encryption scheme. First,
in Section 5.1, we show the description of the construction. Then, Section 5.2 presents the analysis of the
scheme: its (asymptotic) efficiency, correctness, and security proof.

5.1 Construction

Here, we describe formally our silent threshold encryption scheme. For an intuitive description of the
construction, we refer to Section 2. As noted there, the core of the construction is a (witness) encryption
with respect to a matrix A representing the verification of a threshold signature. To ease the presentation,
we explain here where this matrix comes from. Consider the following five pairing equations18 (recall
from Section 3 that ‘◦’ is commutative).

1. [SK(τ)]1 ◦ [B(τ)]2 = [1]2 ◦ aPK + [Z(τ)]2 ◦ [QZ(τ)]1 + [τ ]2 ◦ [Qx(τ)]1

2. [τ ]2 ◦ [Qx(τ)]1 = [1]2 ◦ [Q̂x(τ)]1

3. [γ]2 ◦ aPK = [1]1 ◦ σ∗

4. [τ t]1 ◦ [B(τ)]2 = [1]2 ◦ [B̂(τ)]1

5. [1]1 ◦ [B(τ)]2 = [τ − 1]2 ◦ [Q0(τ)]1 + 1

18The shaded elements are from the signature. The rest are public group elements.
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where SK(X) =
∑M

i=1 skiLi(X). This, essentially, yields a Silent Threshold Signature verification. In
particular, this is a variant of hinTS [GJM+24].
Intuitively, the first equation is for proving the honest aggregation of aPK by the univariate sumcheck
(Lemma 1). The second and fourth equation is for the degree check on Qx and B. The third equation
verifies the aggregated signature σ (for a random tag [γ]2) under the aggregated public key aPK. Finally,
the fifth equation is for checking that a dummy party is always included in B, so that setting everything
to [0] does not give a valid solution.
In matrix form, this can be written as A ◦w = b, where

w =
(
[B(τ)]2,−aPK, [−QZ(τ)]1, [Qx(τ)]1, [Q̂x(τ)]1, σ

∗, [B̂(τ)]1, [Q0(τ)]1
)⊤

is the aggregated signature. In conclusion, the matrix A comes from the above linear verification. The
only difference is that, we can replace RO(tag) with a random element [γ]2 during the encryption.
Henceforth, we will consider that M + 1 is a power of 2 and we set the subgroup H = {ω0, ω1, . . . , ωM}
of roots of unity to be such that |H| = M + 1. M is the maximum number of decryptors participating in
the system. We reserve an artificial position 0 that always has sk0 = 1. No actual user is allowed to use 0
as her index. We consider that the artificial user 0 is always in the set of the universe U .

Construction 1. We present below a formal description of our silent threshold encryption scheme:

• Setup(1λ): Sample τ ←$ Zp and output: 19

CRS =
(
[τ1]1, . . . , [τ

M+1]1, [τ
1]2, . . . , [τ

M+1]2
)
.

• KGen(1λ): Sample x←$ Z∗
p and output pk = [x]1, sk = x.

• HintGen(CRS, ski, i,M): output

hinti =

(
[skiLi(τ)]1, [ski

(
Li(τ)− Li(0)

)
]1,

[
ski

L2
i (τ)− Li(τ)

Z(τ)

]
1

,

[
ski

Li(τ)− Li(0)

τ

]
1

,

{[
ski

Li(τ)Lj(τ)

Z(τ)

]
1

}
j∈[0,M ],j ̸=i

)
.

• Preprocess(CRS,U , {hinti, pki}i∈U ): Verify the validity of each hint: for each i ∈ U run
isValid(CRS, hinti, pki) (isValid is defined below) and let V ⊆ U be the set of the indices with valid
hints. Set sk0 = 1 and ski = 0 for each i /∈ U outside the universe. Implicitly, set ski = 0 for each
i /∈ V and for each i ∈ [M ] \ U outside the universe. Output

ak =

(
V,
{
pki
}
i∈V ∪{0},

{
[ski
(
Li(τ)− Li(0)

)
]1

}
i∈V ∪{0}

,

{[
ski

L2
i (τ)− Li(τ)

Z(τ)

]
1

}
i∈V ∪{0}

,

{[
ski

Li(τ)− Li(0)

τ

]
1

}
i∈V ∪{0}

,


 ∑
j∈S,j ̸=i

skj
Li(τ)Lj(τ)

Z(τ)


1


i∈V ∪{0}

)
.

ek =

([∑
i∈V

skiLi(τ)

]
1

, [Z(τ)]2

)
:= (C,Z)

19For efficiency, we assume that all algorithms also have direct access to {[Li(τ)]1,2}i, which can be efficiently computed from
{[τ i]1,2} without knowing τ .
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• Enc(ek,msg, t) : Sample [γ]2 ←$ G2, parse ek := (C,Z), set Z0 = [τ − ω0]2 and set

A =


C [1]2 Z [τ ]2 0 0 0 0
0 0 0 [τ ]2 [1]2 0 0 0
0 [γ]2 0 0 0 [1]1 0 0

[τ t]1 0 0 0 0 0 [1]2 0
[1]1 0 0 0 0 0 0 Z0


b = ([0]T , [0]T , [0]T , [0]T , [1]T )

⊤ .

Notice that each column of A contains elements from the same source group (looking ahead, this is so
that the pairingA ◦w can be properly performed.)

Sample a vector s←$ (Z∗
p)

5 and output

ct =
(
[γ]2, s

⊤ ·A, s⊤ · b+msg
)
.

• PartDec(sk, ct) : Parse ct := ([γ]2, ct2, ct3) and output σ = sk · [γ]2.

• PartVerify(ct, σ, pk) : Parse ct := ([γ]2, ct2, ct3) and output 1 if and only if pk ◦ [γ]2 = [1]1 ◦ σ.

• DecAggr(CRS, ak, ct, {σi}i∈S) : Using ak compute the subset of indices with valid hints, Sv = S ∩V .
Then proceed as follows:

1. Compute a polynomialB(X) by interpolating 0 on all ωi with i /∈ Sv and 1 on ω0, i.e., interpolate
B as {(ω0, 1), (ωi, 0)i/∈Sv

} and set

B =

[
M∑
i=0

B(ωi)Li(τ)

]
2

2. Set aPK = 1
M+1(

∑
i∈Sv

B(ωi)pki + [1]1).

3. Compute polynomials Qx(X) and QZ(X) such that

SK(X)B(X) =
aSK

M + 1
+QZ(X)Z(X) +Qx(X)X

where aSK =
∑M

i=0 SK(ω
i)B(ωi) :=

∑
i∈Sv

skiB(ωi) + 1 (since, by definition, B evaluates to
0 outside Sv and to 1 on ω0).
According to Lemma 1 they can be computed as:

QZ(X) =

M+1∑
i=0

B(ωi)

(
ski

L2
i (X)− Li(X)

Z(X)

)
+

(
M+1∑
i=0

B(ωi)

M+1∑
j=0,j ̸=i

skj
Li(X)Lj(X)

Z(X)

)
,

Qx(X) =
M+1∑
i=0

B(ωi)

(
ski

Li(X)− Li(0)

X

)
.

Then using ak compute QZ = [QZ(τ)]1.

4. Compute Qx = [Qx(τ)]1.

5. Compute Q̂x = [Qx(τ) · τ ]1
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6. Set σ∗ = 1
M+1(

∑
i∈Sv

B(ωi)σi + ct1).

7. Compute B̂ = [τ tB(τ)]1

8. Compute a KZG evaluation at ω0, i.e., compute Q0(X) such that B(X)− 1 = Q0(X)(X − ω0)
and compute Q0 = [Q0(τ)]1.

Set w =
(
B,−aPK,−QZ ,−Qx, Q̂x, σ

∗,−B̂,−Q0

)⊤
, parse ct = (ct1, ct2, ct3) and output:

msg∗ = ct3 − ct2 ◦w

In order to confirm that hinti is well-formed in the Preprocess algorithm we use an isValid algorithm which
we define as follows.

isValid(CRS, hinti, pki)→ {0, 1} : parses hinti :=
(
h1, h2, h3, h4, {h5,j}j∈[0,M ],j ̸=i

)
and output 1 iff it

holds that:

1. h1 ◦ [1]2 = pki ◦ [Li(τ)]2,
2. h2 ◦ [1]2 = pki ◦ [(Li(τ)− Li(0))]2,

3. h3 ◦ [1]2 = pki ◦ [
L2
i (τ)−Li(τ)

Z(τ) ]2,

4. h4 ◦ [1]2 = pki ◦ [
Li(τ)−Li(0)

τ ]2,

5. h5 ◦ [1]2 = pki ◦ [
Li(τ)Lj(τ)

Z(τ) ]2, for each j ∈ [0,M ], j ̸= i.

5.2 Analysis

5.2.1 Efficiency

We measure the computational complexity (running times) of our algorithms in group operations. Firstly,
if we have CRS as ‘powers-of-tau’ [τ i]1,2, it takes O(M logM) time to compute the ‘powers-of-Lagrange’
[Li(τ)]1,2 via DFT. KGen takes O(1) time. HintGen takes O(M) multiplication and additions, respectively.
Preprocess for U is dominated by O(|U|2) additions. Enc and PartDec require O(1) multiplications, while
PartVerify requires O(1) pairings. Finally, DecAggr require O(|U|polylog|U|) field operations and O(|U|)
group multiplications (see Section 7 last paragraph).
For the communication complexity (sizes), we measure in group elements:

• |CRS| = (M + 1)|G1|+ (M + 1)|G2|,

• |pki| = 1|G1|, |ski| = 1|Zp|,

• |hinti| = (M + 3)|G1|,

• |ak| = (5|U|+ 5)|G1|, |ek| = 1|G1|+ 1|G2|,

• |ct| = 2|G1|+ 7|G2|+ 1|GT |,

• |σi| = 1|G2|.
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5.2.2 Correctness

For correctness, we first show that if the partial decryptions and the malicious keys sent by the adversary
pass the verification, then they are well-formed.

• Malicious σi: If PartVerify(ct, σi, pki) = 1 then by definition pki ◦ [γ]2 = [1]1 ◦σi. Since G1 is cyclic
(since it has prime order p), there always exist ski ∈ Zp such that pki = [ski]1 and y ∈ Zp such that
σi = [y]2. Therefore, from the pairing we get that [y]T = [γski]T , which means that y = γski, thus
σi = [γski]2 is well-formed.

• Malicious pki, hinti: If isValid(CRS, hinti, pki) = 1 then using the same argument pki = [ski] for
some ski ∈ G1. Then by applying the five pairing checks and repeating the same line of thought as
above it is straightforward to get that hinti = HintGen(CRS, ski, i,M) is well-formed.

At this point, correctness comes by careful inspection, in essence using the correctness of the univariate
sumcheck (Lemma 1).

5.2.3 Security

Here, we prove the semantic security of our construction in the generic group model (we recall it in 3.3).
Essentially, we prove that the decision problem related to our construction is generically hard.
For our proof, we need to show that it is computationally hard for a generic adversary that learns the
elements specified by our construction (e.g., {[τ i]}i, {skiτj}i,j , ct∗, etc.) to distinguish between [s5]T and
a random element [r]T .
For this, we employ the generic group model and the Master Theorem (Theorem 1 in appendix 3.3). In
order to apply the theorem, we need to show the side condition holds. For this, in turn, we work in the
symbolic group model to argue that S5 is symbolically independent of the lists of (symbolic) elements that
arise in the security game of our construction (and after the completion). Then hardness readily follows
from the Master Theorem 1.20 In conclusion, the core of the proof is in showing this independence.
For ease of presentation, we denote the set of non-corrupted users in the target universe U∗ as H :=
U∗ \ Cor. 0 is by construction in H (it is always in the universe and cannot be corrupted); for clarity, we
will writeH∗ = H \ {0} as the set of honest indices excluding the ‘artificial’ index 0.

Theorem 2. Construction 1 is a semantically secure Silent Threshold Encryption scheme in the generic group
model.

Proof. Game0: This is the semantic security game of Definition 5. The challenger C samples τ ←$ Z∗
p

computes CRS = ([τ1]1, . . . , [τ
M+1]1, [τ

1]2, . . . , [τ
M+1]2) and gives the corresponding handles to A,

who answers with a target universe U∗. Then C for each i ∈ H∗ samples ski ←$ Z∗
p, computes

pki = [ski]1, hinti ← HintGen(CRS, ski,M, i) and sends the corresponding handles to A. The adversary
responds with {ski}i∈Cor and the challenger sends back the corresponding handles to {pki, hinti}i∈Cor.
The challenger runs (ek, ak) ← Preprocess(CRS, U∗, {hinti, pki}i∈U∗) and passes the handles of ek, ak
to A. A sends msg0,msg1 and t to C. Then C samples a bit b ←$ {0, 1}, generates the ciphertext
ct∗ ← Enc(ek,msgb, t), i.e. samples γ, s1, . . . , s5 ←$ Z∗

p, computes the corresponding matrix A and
sets ct∗ = ([γ]2, s

⊤A, [s5]T +msgb), and sends the corresponding handles toA. At this point the view of
the adversary is (M, t,U∗, {ski}i∈Cor) and handles to:

(CRS, {pki, hinti}i∈H, {pki, hinti}i∈Cor, (ek, ak), ct∗)

Finally, A makes any generic operation of her choice to C, who in turn answers them.
20Notice that for every PPT A q = poly(λ), ν = poly(λ), d = poly(λ), while p = Θ(2λ) in our groups.
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Game1: Is the same as Game0 but we simplify the view of the adversary. First, instead of {hinti}i, with
the ‘Lagrange polynomial’-hints, the challenger passes the ‘powers-of-tau’-hints, {[skiτ ]1, . . . , [skiτM ]1}i,
to the adversary. Second, C does not give (ek, ak) toA, since this is deterministically computed, therefore,
can be computed by A herself at the generic operations-query phase. Clearly, the adversary can compute
the ‘Lagrange-polynomial’-hints from the ‘powers-of-tau’-hints and vice-versa; thus, Pr[Game0 = 1] =
Pr[Game1 = 1].
Game2: Here, we change the ciphertext to: ct∗ =

(
[γ]2, s

⊤A, [r]T +msgb
)

where r ←$ Z∗
p is sampled

uniformly at random by the challenger C.
Now, it is clear that ct∗ information theoretically leaks no information about the message msgb; thus,
Pr[Game2 = 1] = 1/2.
Therefore, overall, the proof boils down to proving indistinguishability between Game1 and Game2. For
this, we make use of the Master Theorem (Theorem 1). In order to apply it, we need to make sure that the
‘side condition’ holds. That is, our polymomial f is independent of our lists of polynomials L1,L2,LT .
From now on, we will focus on proving this condition. Furthermore, we will work with the symbolic group
representation, where group elements are represented as polynomials. Once we prove the independence
condition in the symbolic experiment, we make use of the Master Theorem 1 to argue the indistinguisha-
bility of the actual games Game1 and Game2.
In our case, the formal variables that we concisely denote as Y , are Y = (X, (Ki)i∈H∗ , Γ, (Si)

5
i=1) cor-

responding to the hidden–from the adversary–elements τ, {ski}i∈H∗ , γ, {si}5i=1 respectively. Concisely,
we denote K = (Ki)i∈H∗ and S = (Si)

5
i=1, thus Y = (X,K,Γ,S). The lists of polynomials correspond

to the view of the adversary, i.e. the handles she receives. The polynomial f corresponds to the element
we want to prove pseudorandomness for. Overall:

L1(Y ) =

(
1, X, . . . ,XM+1, {Ki,KiX, . . . ,KiX

M}i∈H∗ ,

S⊤a6︷︸︸︷
S3 ,

S⊤a1︷ ︸︸ ︷∑
i∈H∗

KiLi(X) +
∑
i∈Cor

skiLi(X) + S4X
t + S5

)

L2(Y ) =

(
1, X, . . . ,XM+1,Γ,

S⊤a2︷ ︸︸ ︷
S1 + ΓS3,

S⊤a3︷ ︸︸ ︷
S1X

M+1 − S1,

S⊤a4︷ ︸︸ ︷
S1X + S2X,

S⊤a5︷︸︸︷
S2 ,

S⊤a7︷︸︸︷
S4 ,

S⊤a8︷ ︸︸ ︷
S5X − S5

)
LT (Y ) =

(
1
)

f(Y ) = S5

Concisely, we write S⊤a6, S
⊤a1 for the two polynomials of L1 involving S (which are the ones that

correspond to ct∗) and similarly S⊤a2, S
⊤a3, S⊤a4, S

⊤a5, S⊤a7, S⊤a8 the ones in L2.
First, we show that if f is dependent onL = (L1,L2,LT ) then it should be the case thatS⊤A·g(X,K) =
S⊤b, for a vector of polynomials g ∈ (Zp[X, (Ki)i∈H∗ ])8 that does not depend on S. f(Y ) = S5, so
according to definition 2 if it is dependent on L then there exist κi ∈ Zp such that: S5 =

∑D
i=1 κigi(Y ),

where C(L) = (g1(Y ), . . . , gD(Y )) is the completion of L. The completion of L is essentially each term
of L1 multiplied with each term of L2 (the tensor product). By inspection, we see that there are three
types of terms in the completion:

• Terms that do not involve S. E.g. (KiX
2) ·X .

• Terms that involve S in both sides. E.g. S3 · (S1 + ΓS3).

• Terms that involve S only in one side. E.g. S3 ·XM+1 or KiX · (S5X − S5).

The first two types of elements cannot symbolically play any role in the sum S5 =
∑D

i=1 κigi(Y ). The
first ones have all degree 0 in S1, . . . , S5 while the second ones all have quadratic terms S1, . . . , S5. Thus
we are only left with the third type of terms S5 =

∑8
i=1 S

⊤aigi(X,K,Γ), which can be written as:
S⊤A · g(X, (Ki)i∈H∗ ,Γ) = S⊤b
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Furthermore, if S⊤A · g(X, (Ki)i∈H∗ ,Γ) = S⊤b then in fact it symbolically holds that A ·
g(X, (Ki)i∈H∗) = b.
Finally, we show that as long as |Cor| < t symbolically the above cannot happen. We prove this in the
following lemma.

Lemma 2. Assume that

• L1 =
(
1, {Xj}j∈[M+1], {KiX

j}j∈[0,M ]
i∈H

)
,

• L2 =
(
1, {Xj}j∈[M+1],Γ

)
.

Let the matrix A ∈ Zp[X, (Ki)i∈H∗ ,Γ]5×8 defined as:

A =


F1(Y ) 1 F2(Y ) X 0 0 0 0

0 0 0 X 1 0 0 0
0 Γ 0 0 0 1 0 0
Xt 0 0 0 0 0 1 0
1 0 0 0 0 0 0 F3(Y )


(columns 1, 6 are inL1 and columns 2, 3, 4, 5, 7, 8, are inL2), where F1(Y ) = L0(X)+

∑
i∈H∗ KiLi(X)+∑

i∈Cor skiLi(X), F2(Y ) = XM+1 − 1, F3(Y ) = X − 1 and b = (0, 0, 0, 0, 1)⊤ .
If |H∗| > M − t then there does not symbolically exist any non-zero g ∈ Zp[X, (Ki)i∈H,Γ]

8 (g1, g6 from
L2 and g2, g3, g4, g5, g6, g8 from L1 resp.) such thatA · g = b.

Proof. Assume that there is a g = (gi)
8
i=1 such that A · g = b, then this translates to:

F1(Z)g1 + g2 + g3(X
M+1 − 1) + g4X = 0 (3)

g4X + g5 = 0 (4)
g2Γ + g6 = 0 (5)
g1X

t + g7 = 0 (6)
g1 + g8(X − 1) = 1. (7)

gk for i = 2, 3, 4, 5, 7, 8 can be written as

gk =

M+1∑
j=0

α
(k)
j Xj +

∑
i∈H∗

M∑
j=0

β
(k)
i,j KiX

j ,

while gk for i = 1, 6 can be written as

gk =

M+1∑
j=0

α
(k)
j Xj + δ(k)Γ.

From construction the set H contains 0 with sk0 = 1; with H∗ we denote the set H \ {0}. Recall that
F1(Z) =

∑
i∈H∗ KiLi(X) +

∑
i∈Cor skiLi(X) + L0(X).

We further specify the structure of gi’s by inspecting Equations 3-7.

g1: For g1 we argue the following:

• Equation 3: Γ does not appear in equation 3 which means that δ(1) = 0. So

g1 = g1(X) =
M+1∑
j=0

α
(1)
j Xj .
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• Equation 6: We get that

M+1∑
j=0

α
(1)
j Xj ·Xt =

M+1∑
j=0

(−α(7)
j )Xj +

∑
i∈H∗

M∑
j=0

(−β(7)
i,j )KiX

j

so β
(7)
i,j = 0 for all i, j and α

(1)
j = 0 for j > M+1−t, i.e. g1(X) has degree (at most) M+1−t,

g1 =
∑M+1−t

j=0 α
(1)
j Xj .

• Equation 7: We get that

M+1−t∑
j=0

α
(1)
j Xj − 1 =

(M+1∑
j=0

(−α(8)
j )Xj +

∑
i∈H∗

M∑
j=0

(−β(8)
i,j )KiX

j
)
(X − 1)

so β
(8)
i,j = 0 for all i, j and g8 = g8(X). Therefore, g1(X)− 1 = g8(X)(X − 1) which means

that X − 1 divides g1(X)− 1, which in turns gives us that g1(1) := g1(ω
0) = 1.

g2: From Equation 5 we get thatM+1∑
j=0

α
(2)
j Xj +

∑
i∈H∗

M∑
j=0

β
(2)
i,j KiX

j

Γ =

M+1∑
j=0

(−α(6)
j )Xj + (−δ(6))Γ

which gives us that all α(2)
j , β

(2)
i,j , α(6)

j are 0 except for α(2)
0 . Therefore g6 = δ(6)Γ and g2 = α

(2)
0 is a

constant.

g4: From Equation 4 we get thatM+1∑
j=0

α
(4)
j Xj +

∑
i∈H∗

M∑
j=0

β
(4)
i,j KiX

j

X =

M+1∑
j=0

(−α(5)
j )Xj +

∑
i∈H∗

M∑
j=0

(−β(5)
i,j )KiX

j


thus α(5)

0 = 0 and β
(5)
i,0 = 0 for all i.

Now we use the Lemma 1 in Equation 3. We write the polynomial g1(X) in the lagrange basis form,
g1(X) =

∑M+1
i=0 biLi(X), where bi are the evaluation in ωi. As shown above b0 = g1(ω

0) = 1, therefore∑
i∈H∗

Kibi +
∑
i∈Cor

skibi + 1 +Qx(X)X +QZ(X)(XM+1 − 1) = g2 + g3(X
M+1 − 1) + g4X :=

: = α(2) +
(M+1∑

j=0

α
(3)
j Xj +

∑
i∈H∗

M∑
j=0

β
(3)
i,j KiX

j
)
(XM+1 − 1) +

M+1∑
j=1

(−α(5)
j )Xj +

∑
i∈H∗

M∑
j=1

(−β(5)
i,j )KiX

j

where above we replaced g2 and g4X . By inspection we observe that β
(3)
i,j = 0 for all i, j, since

β
(3)
i,j KiX

j+M does not appear anywhere in the equation. Furthermore, β(5)
i,j = 0 for all i, j, so:

bi = 0, for each i ∈ H∗.

This, in addition to b0 = 1 shown before, gives us that the degree of g1(X) =
∑M+1

i=0 biLi(X) is deg(g1) ≥
|H∗|+1. On the other hand, we also argued above that M +1− t ≥ deg(g1), thus |H∗|+1 ⩽ M +1− t.
Now, by assumption |H∗| > M − t, which is a contradiction.
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Therefore, we conclude that f is independent of L1,L2,LT . So, we can apply the Master Theorem 1 that
gives us:

∣∣Pr[Game1 = 1]− Pr[Game2 = 1]
∣∣ ⩽ q + (|H∗|+ 2)(M + 1) + 10

2p
= negl(λ)

which, since Pr[Game2 = 1] = 1/2 gives that Pr[Game0] =
1
2 + negl(λ) and concludes the proof.

6 Extensions of the Basic Construction

We present various extensions and implications of our core silent threshold encryption scheme described
in Section 5.

6.1 Multiverse Silent Threshold Encryption

As described in the introduction, a highly desirable property for a threshold encryption scheme is to be
able to support different sets of decryptor committees, i.e., different ‘universes’, without re-running the
setup of the system. This is reminiscent of multiverse threshold signtures [BGJ+23, GJM+24].
We stress that our construction supports by default any universe. We specify at the beginning an upper
bound on the size of the universe M and then the scheme works for any subset of parties of size ⩽ M .
Each user is computing her hint, which is then valid for every universe. Then, notice that the Preprocess
algorithm takes as input any universe. Crucially, the efficiency of our scheme only scales with the maxi-
mum number of universe M , but not the overall number of users participating in the system. For instance,
even if we have a million users, if the maximum universe size is 1024, each user only needs to publish
hints21 of size ⩽ 1024.

6.2 CCA2 Security

In CCA2 security for threshold encryption [BBH06], the adversary A is given access to the partial de-
cryption oracle for honest users before and after she receives the challenge ciphertext ct∗. Intuitively, to
enhance an STE with CCA2 security, we need to make sure that ct∗ is not indirectly queried for partial
decryption after A sees it. Of course, for the security definition to be meaningful the adversary cannot
query directly ct∗.
A bit more formally, the ciphertext ct = ([γ]2, ct2, ct3). The partial decryption, nonetheless, is oblivious to
ct2, ct3, it solely depends on [γ]2. What an adversary can possibly do after receiving the challenge cipher-
text ct∗ = ([γ∗]2, ct∗2, ct

∗
3) is to query ct′ = ([γ∗]2, ct′2, ct

′
3), which is technically a different ciphertext.

To prevent this and achieve CCA2 security, it suffices to ‘bind’ together the three parts of the ciphertext.
For this, we employ a straight-line simulation-extractable [Sah99, DDO+01] tag-based NIZK as was done
in [SG02] for the ElGamal encryption scheme. The NIZK proves knowledge of γ, while the tag contains
ct2 and ct3. This can be, for instance, a straight-line simulation-extractable Schnorr protocol for [γ]2
in the Algebraic Group Model, where we use Fiat-Shamir, and the random oracle additionally takes the
tag = (ct2, ct3) as input. Then, the ciphertext of the CCA2 secure scheme gets ([γ]2, ct2, ct3, π), where
π is the NIZK proof. After this appropriate adaptation, it is straightforward for the challenger to simulate
partial decryption-oracle queries: She uses the extractor of the NIZK to obtain [γ]2 and then computes
the partial decryption ski · [γ]2 honestly. The only difference between CPA and CCA security game is the
adversary’s partial decryption query, once we can simulate these queries, the rest of the proof is similar to
CPA security. Since this transformation is a standard technique, we only describe it at a high level.

21The hints can be made independent of the index i as described in Section 6.3.
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6.3 Flexible Broadcast (andThreshold) Encryption

Freitag et al. [FWW23] recently introduced the notion of Flexible Broadcast Encryption (FBE). This is, es-
sentially, an enhancement of Distributed Broadcast Encryption (DBE) [WQZD10, BZ14], i.e. Brodacast
Encryption without a central authority (see Section 1.2), in which the user does not need to be assigned
to a specific index in i ∈ [M ]. That is, the public keys of the users are oblivious to any index i. Then,
the public keys alone suffice to encrypt and decrypt. [FWW23] provided a construction from general-
purpose witness encryption. Then Garg et al. [GLWW23] provided a generic compiler for FBE from any
DBE, however inducing an ω(log λ) overhead on the size of the public keys. Here we present a direct FBE
construction from Pairings with O(1) keys.
For ease of presentation we recall the Flexible Broadcast Encryption definition from [FWW23] (with
adapted notation to fit ours) in Appendix A.
With a simple modification, our construction can achieve this property, where the public key and the
corresponding hints do not depend on any index i. First, we observe that the actual public key already
does not depend on the index of the user: pk = [sk]1. The hint hinti, however, depend on the specific index:
for instance [skiLi(τ)]1 depends on the specific lagrange poynomial Li. To circumvent this we observe
that a ‘powers-of-tau’ hint hint′i = {[skiτ j ]1}j∈[M+1] is functionally fully equivalent; from hint′i one can
efficiently derive hinti. Therefore, the modified STE scheme with hint′i as hints are equivalent, in terms of
correctness, with Construction 1. We note that the observation, regarding hint′i being i-independent and
equivalent to hinti, was already made in [GJM+24] in the context of Silent Threshold Signatures.

6.3.1 Our Construction

For completeness we show our FBE construction below.

• Setup(1λ): Sample τ ←$ Zp and output:

CRS =
(
[τ1]1, . . . , [τ

M+1]1, [τ
1]2, . . . , [τ

M+1]2
)
.

• KGen(1λ): Sample x←$ Z∗
p and output pk = [x]1, sk = x.

• HintGen(CRS, sk,M): output

hintpk =
(
[sk · τ ]1, . . . , [sk · τM+1]1

)
• Preprocess(CRS, {hintpki , pki}

k
i=1): Verify the validity of each hint: for each i ∈ [k] run

isValid(CRS, hintpki , pki) (isValid is defined below) and let V ⊆ [k] be the set of the indices with
valid hints. Set sk0 = 1 and ski = 0 for each i /∈ V . Output:

dk =

(
V,
{
pki
}
i∈V ∪{0},

{
[ski
(
Li(τ)− Li(0)

)
]1

}
i∈V ∪{0}

,

{[
ski

L2
i (τ)− Li(τ)

Z(τ)

]
1

}
i∈V ∪{0}

,

{[
ski

Li(τ)− Li(0)

τ

]
1

}
i∈V ∪{0}

,


 ∑
j∈S,j ̸=i

skj
Li(τ)Lj(τ)

Z(τ)


1


i∈V ∪{0}

)
.

ek =

([∑
i∈V

skiLi(τ)

]
1

, [Z(τ)]2

)
:= (C,Z)

It is crucial that the above can be computed by having access to
(
[skiτ

j ]1
)
j∈[k+1]

and [ski]1 (which
is contained in hintpk =

(
[skiτ

j ]1
)
j∈[M+1]

and pki respectively). In essence, from
(
[skiτ

j ]1
)
j∈[0,k+1]

one can efficiently compute any [sk · f(τ)]1 for any univariate polynomial f of degree at most k+1
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• Enc(ek,msg) : Identical to Construction 1 with threshold set to 1.

• Dec(dk, ct, (j, skj)) : Each user runs σj ← PartDec(sk, ct) and outputs msg∗ ←
DecAggr(CRS, dk, ct, σj), where DecAggr is defined in Construction 1.

To conclude our FBE construction we define the isValid algorithm as follows:

isValid(CRS, hintpk, pk)→ {0, 1} : parses hintpk := (h1, . . . , hM+1) and output 1 iff it holds that:

1. h1 ◦ [1]2 = pk ◦ [τ ]2
2. hi ◦ [1]2 = hi−1 ◦ [τ ]2, for each i ∈ [2,M + 1]

6.3.2 Security

For semantic security, observe that the security proof already uses a modified scheme with ‘powers-of-tau’
hints in a game-hop, it is essentially Game1. Therefore, the security of this modification readily follows
from that.

Remark 4. We describe our construction in the context of FBE, to stress the implications of our STE scheme to
this recently introduced notion. That is we describe it for a threshold of T = 1. We note that our construction
can be extended in a straightforward way to work for any threshold T . Overall, this yields the first pairing-
based Flexible Threshold Encryption scheme.

6.4 Forward and Post-Compromise Security

As a final extension, in this subsection, we briefly discuss how we can achieve Threshold Encryption with
Silent Setup that additionally supports Forward Security [BM99] and Post-Compromise Security [OY91].
These are two highly desirable properties in real-world applications where secret keys can be potentially
compromised.

Forward Secure STE. A Threshold Encryption scheme has, informally, Forward Security if a secret key
compromise at the present cannot affect old ciphertexts. That is, a leakage of a secret key should not
allow one to partially decrypt (sufficiently) old ciphertexts. This, intuitively, requires that users’ keys are
periodically updated in manner that the new keys cannot decrypt ciphertexts computed with the old keys.
In this section, we informally discuss how we can obtain a Forward Secure STE scheme from Pairings
using the techniques we developed for our STE scheme of section 5.
Following our reasoning for STE, if we start from a Pairing-based Threshold Signature scheme that has
(1) silent setup, (2) public linear verification (in the pairing operator, ‘◦’), and additionally has (3) Forward
Security, we can use our witness encryption methodology to construct an STE with Forward Security.
To this end, we can resort to Pixel [DGNW20], a Forward Secure aggregate signature scheme, which is a
variant of BLS. The verification equation of an aggregated signature in Pixel is similar to the one of BLS:

[α]2 ◦ aPK + [α0 +
t∑

j=1

αjtj + αℓ+1γ]1 ◦ σ∗
2 = σ∗

1 ◦ [1]2

where σ∗ = (σ∗
1, σ

∗
2) = (

∏n
i=1 σi,1,

∏n
i=1 σi,2) is the aggregated signature of σ1, . . . , σn,

{[α]2, [α0]1, . . . , [αℓ+1]1} are public group elements, [γ]1 is the tag and t a public variable specifying the
session number of the signature. Crucially the aggregated public key aPK = [x1 + . . .+ xn]2 is identical
to the one in the BLS signature. Therefore, one can build a Silent Setup version of Pixel analogously to the
STS scheme of BLS, unveiled in the technical overview (see sec. 2.2). The verification of the Silent Setup
Pixel would be as follows:
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1. [SK(τ)]1 ◦ [B(τ)]2 = [1]2 ◦ aPK + [Z(τ)]2 ◦ [QZ(τ)]1 + [τ ]2 ◦ [Qx(τ)]1

2. [τ ]2 ◦ [Qx(τ)]1 = [1]2 ◦ [Q̂x(τ)]1

3. [α]2 ◦ aPK + [α0 +
∑t

j=1 αjtj + αℓ+1γ]1 ◦ σ∗
2 = σ∗

1 ◦ [1]2

4. [τ t]1 ◦ [B(τ)]2 = [1]2 ◦ [B̂(τ)]1

5. [1]1 ◦ [B(τ)]2 = [τ − 1]2 ◦ [Q0(τ)]1 + 1

Finally, we observe that the above is a public linear constraint system, thus from this STS scheme we can
build a Threshold Encryption scheme with Silent Setup that admits Forward Security. The latter property
is inheritted directly from the forward security of Pixel.

Post-Compromise Secure STE. Post-Compromise Security in the context of Threshold Encryption is,
essentially, the property that even if a secret key is leaked in a specific time instance, it will become shortly
useless in (partially) decrypting ciphertexts. In particular, to achieve this property users’ keys should be
periodically updated.
We stress that Silent Setup offers a straightforward means to Post-Compromise Security, in comparison to
DKG protocols. That is, a party is updating her keys by just locally sampling a new secret and then (de-
terministically) computing the corresponding public keys and hints. After that, the user posts her updated
public key/hint pair and new ciphertexts can be computed with respect to the updated keys of the user.
In contrast, in Threshold Encryption schemes that resort to Distributed Key Generation protocols a new
round of interaction between the users should happen in order to update the users’ keys.

7 Implementation and Evaluation

To evaluate the concrete performance of our silent-threshold encryption scheme, we implement our
scheme in Rust. We use the arkworks [ac22] library for implementations of pairing-friendly
curves and the associated algebra. Our code can be found at https://github.com/guruvamsi-policharla/
silent-threshold.

Setup. All of our experiments were run on a 2019 MacBook Pro with a 2.4 GHz Intel Core i9 processor
and 16 GB of DDR4 RAM in single-threaded mode.22 We use BLS12-381 as our pairing-friendly curve. For
all experiments, we use a threshold t = n/2, where n is the number of parties.

Evaluation. We now evaluate the performance of our STE. In particular, we aim to answer the following
questions and provide insights about bottlenecks in different parts of the protocol.

• How long does it take to set up and aggregate public keys? What are their sizes?

• How long does it take to encrypt a message? What is the size of corresponding ciphertexts?

• How long does it take to recover all messages given partial decryptions?

Finally, how do the above vary with committee size? Throughout the evaluation, where meaningful, we
compare our scheme against the ElGamal encryption scheme to understand the price of silent setup.

Key Generation. The local key generation is only done once per party, and for a large committee of
size 1024, it takes less than 28 s. This local key generation cost scales linearly with the number of parties.
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Parties Key Gen. (s) Decryption (ms)
8 0.007 12.9
32 0.06 20.2
128 0.65 45.5
512 7.87 126.1
1024 27.79 211.0

Table 1: Scaling of key generation and reconstruction times with committee size.

Although we have improved performance over the original hinTS implementation [GJM+24], the code can
be optimized further. We provide the local key generation times for smaller committee sizes in Table 1.

Encryption. Given an aggregated public key, a constant number of group operations are needed to encrypt
a ciphertext. The ciphertext consists of 7 G2 elements and 2 G1 elements and a string proportional to the
message length, which amounts to 768 bytes ignoring the message size. In comparison to ElGamal, which
requires an expensive interactive setup, our ciphertexts are only 12× larger. We observe that it takes
< 7ms to encrypt a message, independent of the committee size. There is a trade-off possible between
the size of the public key and ciphertexts by switching the source groups. In this case, the ciphertext size
would be 528 bytes, and the encryption would be faster.

Partial Decryption. Here, each party computes one group exponentiation which takes < 1ms, and the
size of each partial decryption is just oneG2 element (96 bytes), which can again be halved by switching the
groups. This makes the communication needed for decryption quite small – in fact, identical to ElGamal.

Reconstruction. Any party can publicly recover the message given enough partial decryptions of the
ciphertext. The main bottleneck here is the group exponentiations involved in computing various witness
elements w, which scale linearly with the number of parties.23 arkworks provides an implementa-
tion of Pippenger’s algorithm [Pip80], which brings the complexity of multi-scalar-multiplications down
to O(n/ log n). Even for a committee of size 1024, ciphertexts can be decrypted in close to 200ms. In-
deed, ElGamal only needs one multi-scalar-multiplication of size O(n) for reconstruction and will be more
efficient than our scheme.
We note that, when interpolating the polynomial B(X), we are only given evaluations over a subset
of the roots of unity, which do not necessarily form a set FFT-friendly evaluation points. Interpolating
this polynomial naı̈vely using Lagrange interpolation, would take O(n2) field operations. This is indeed
what we do in our implementation. However, one can speed up this to O(n polylog(n)) using standard
techniques for non-FFT friendly evaluation points (see, e.g., [HHL17, Sch71]). We do not implement this
faster version because, for the committee sizes (e.g., 1024) that we benchmark, O(n2) field operations are
still much faster than O(n) group operations. Actually, the interpolation cost is only < 1% of the total
reconstruction time. As a result, it would not meaningfully affect the reported numbers.
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A Flexible Broadcast Encryption Definition

We recall the definition of Flexible Broadcast Encryption that was put forth by Freitag et al. [FWW23].
For consistency, we adapt the definition to our notation and syntax. In particular, we enrich the FBE
syntax with two additional algorithms, HintGen and Preprocess, analogously to our STE definition. Our
FBE definition implies the original one by [FWW23] if one integrates HintGen in KGen and Preprocess in
Enc and Dec. We note that a preprocessing algorithm for a set of public keys {pk1, . . . , pkk} is implicitly
performed inside Enc and Dec in all previous FBE constructions.

Definition 6 (FBE). A Flexible Broadcast Encryption scheme consists of a tuple of algorithms Σ =
(Setup,KGen,HintGen,Preprocess,Enc,Dec) with the following syntax:

• CRS ← Setup(1λ,M): On input the security parameter λ and an upper bound M on the maximum
number of users, the Setup algorithm outputs a common reference string CRS.

• (pk, sk)← KGen(1λ): On input the security parameter λ, the KGen algorithm outputs a public/secret
key pair (pk, sk).

• hintpk ← HintGen(CRS, sk,M): On input the CRS, the secret key sk, the maximum number of parties
M , the HintGen algorithm outputs a hint hintpk for the corresponding to sk public key.

• (dk, ek) ← Preprocess(CRS, {hintpki , pki}
k
i=1): On input the CRS, a set of public key/hint pairs

{hintpki , pki}
k
i=1 (where k ⩽ M ), the Preprocess algorithm computes a decryption key dk and an

encryption key ek.

• ct← Enc(ek,msg) : An encryption key ek and a message msg, it outputs a ciphertext ct.

• msg ← Dec(dk, ct, (j, skj)) : On input a decryption key dk, a ciphertext ct and an index and secret
key pair (j, skj) (where j ∈ [k]), it outputs a message msg.

Moreover, FBE must have succinct (on the number of public keys k) ciphertexts.

Remark 5. The algorithm HintGen could be equivalently integrated in the KGen algorithm and hintpk inte-
grated to pk correspondingly. Similarly Preprocess could be integrated to Enc and Dec so that ek is computed
by Enc and dk by Dec.

Analogously to [FWW23] we define static security for FBE as follows.24

Definition 7 (FBE Static Security). An FBE scheme Σ satisfies static security if, for everyM = poly(λ) and
any adversary PPT A, the output of the game in Figure 2 is 1 with probability ⩽ 1/2 + negl(λ).

24For ease of presentation we define only static security. Our scheme of section 6.3 can be also proven secure in the GGM under
the stronger notion of semi-static security.
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1. The challenger runs CRS← Setup(1λ,M) and gives CRS to A.

2. The adversary picks k, the size of the broadcast set of the challenge ciphertext.

3. The challenger samples k public keys and the corresponding hints, (pki, ski) ← KGen(1λ) and
hinti = HintGen(CRS, ski,M), for i ∈ [k], and sends them to A.

4. For all i ∈ [k + 1,M ], the adversary picks a public key pki and the corresponding hint hinti.

5. The challenger invokes the preprocessing as (dk, ak) ← Preprocess(CRS, {hintpki , pki}
k
i=1) and

the output are given to A.

6. The adversary picks messages msg0, msg1.

7. The challenger picks a bit b← {0, 1} and generates a ciphertext ct∗ ← Enc(ek,msgb).

8. The adversary outputs a bit b′ and wins the semantic security game if b′ = b, in which case, the
output of the game is 1.

Figure 3: FBE Static Security Game
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