
Fiat-Shamir for Bounded-Depth Adversaries

Liyan Chen∗ Yilei Chen† Zikuan Huang‡ Nuozhou Sun§ Tianqi Yang¶

Yiding Zhang‖

February 16, 2024

Abstract

We study how to construct hash functions that can securely instantiate the Fiat-Shamir
transformation against bounded-depth adversaries. The motivation is twofold. First, given the
recent fruitful line of research of constructing cryptographic primitives against bounded-depth
adversaries under worst-case complexity assumptions, and the rich applications of Fiat-Shamir,
instantiating Fiat-Shamir hash functions against bounded-depth adversaries under worst-case
complexity assumptions might lead to further applications (such as SNARG for P, showing
the cryptographic hardness of PPAD, etc.) against bounded-depth adversaries. Second, we
wonder whether it is possible to overcome the impossibility results of constructing Fiat-Shamir
for arguments [Goldwasser, Kalai, FOCS ’03] in the setting where the depth of the adversary is
bounded, given that the known impossibility results (against p.p.t. adversaries) are contrived.

Our main results give new insights for Fiat-Shamir against bounded-depth adversaries in both
the positive and negative directions. On the positive side, for Fiat-Shamir for proofs with certain
properties, we show that weak worst-case assumptions are enough for constructing explicit
hash functions that give AC0[2]-soundness. In particular, we construct an AC0[2]-computable
correlation-intractable hash family for constant-degree polynomials against AC0[2] adversaries,
assuming⊕L/poly * S̃umn−c◦AC0[2] for some c > 0. This is incomparable to all currently-known
constructions, which are typically useful for larger classes and against stronger adversaries, but
based on arguably stronger assumptions. Our construction is inspired by the Fiat-Shamir hash
function by Peikert and Shiehian [CRYPTO ’19] and the fully-homomorphic encryption scheme
against bounded-depth adversaries by Wang and Pan [EUROCRYPT ’22].

On the negative side, we show Fiat-Shamir for arguments is still impossible to achieve against
bounded-depth adversaries. In particular,

• Assuming the existence of AC0[2]-computable CRHF against p.p.t. adversaries, for every
poly-size hash function, there is a (p.p.t.-sound) interactive argument that is not AC0[2]-
sound after applying Fiat-Shamir with this hash function.

• Assuming the existence of AC0[2]-computable CRHF against AC0[2] adversaries, there is an
AC0[2]-sound interactive argument such that for every hash function computable by AC0[2]
circuits the argument does not preserve AC0[2]-soundness when applying Fiat-Shamir with
this hash function. This is a low-depth variant of Goldwasser and Kalai.

∗Tsinghua University. Email: chen-ly21@mails.tsinghua.edu.cn.
†Tsinghua University, Shanghai Artificial Intelligence Laboratory, and Shanghai Qi Zhi Institute. Email:

chenyilei@mail.tsinghua.edu.cn. Research supported by Tsinghua University startup funding.
‡Tsinghua University. Email: hzk21@mails.tsinghua.edu.cn.
§Tsinghua University. Email: snz21@mails.tsinghua.edu.cn.
¶Columbia University. Email: tianqi@cs.columbia.edu.
‖Boston University. Email: zyding@bu.edu.

1

mailto:chen-ly21@mails.tsinghua.edu.cn
mailto:chenyilei@mail.tsinghua.edu.cn
mailto:hzk21@mails.tsinghua.edu.cn
mailto:snz21@mails.tsinghua.edu.cn
mailto:tianqi@cs.columbia.edu
mailto:zyding@bu.edu

Contents
1 Introduction 1

1.1 The soundness of Fiat-Shamir . 1
1.2 Fiat-Shamir and cryptography against bounded-depth adversaries 2
1.3 Our results . 3

1.3.1 Positive results . 3
1.3.2 Negative results . 4

1.4 Related works . 5

2 Technical Overview 6
2.1 Positive results . 6
2.2 Negative results . 7

3 Preliminaries 10
3.1 Circuit . 10
3.2 Interactive protocol . 12
3.3 Fiat-Shamir for 3-round public coin argument with common reference string 14

4 Correlation Intractability Against Bounded-Depth Adversaries 15
4.1 Backgrounds needed in this section . 15

4.1.1 Hard Lattice Problems . 15
4.1.2 Fully Homomorphic Encryption . 16
4.1.3 Inert Commitment . 18
4.1.4 Correlation intractability . 18
4.1.5 Cryptographic primitives against bounded-depth circuits 19

4.2 CI from SIS against bounded-depth adversaries . 21
4.3 CI from worst-case complexity assumptions . 23

4.3.1 Adaptation of inert commitment to Z2 . 23
4.3.2 Construction . 24

5 Impossibility Result for Universal FS Hash Functions 25

6 Stronger Impossibility Results 29
6.1 Interactive Argument for Central Relation . 32
6.2 Reduced Argument for Central Relation . 35
6.3 Protocol 1 . 38
6.4 Protocol 2 . 40
6.5 Protocol 3 . 45

A Detailed Proofs of Almost-Everywhere Security 54

B Low Complexity CRHF 57

C AC0[2]-computable and AC0[2]-proof-of-knowledge PCP 57

2

1 Introduction

The Fiat-Shamir transform [FS86] is a generic method for converting public-coin interactive proto-
cols into non-interactive ones while preserving the original protocol’s functionality. First proposed
as a practical method to compile identification schemes into digital signatures, the Fiat-Shamir
transform was then realized to be an extremely general technique for minimizing interaction in any
public-coin protocols. The basic idea of Fiat-Shamir is to replace the verifier’s message in each
round (which consists of random coin tosses) with a deterministic hash of the protocol transcript
so far. As a typical example, consider a three-round public-coin interactive proof/argument system
(P, V) for a language L. When proving a statement x ∈ L, the prover P first sends a message α,
the verifier V responds with random coins β, and then P sends the last message γ. To convert the
interactive protocol (P, V) into a non-interactive protocol (PFS , V FS), the Fiat-Shamir transform
uses a hash function h (randomly chosen from a hash family H) and removes the verifier’s coin
tosses β by setting β = h(x‖α)1. Then PFS can directly compute β and send (α, β = h(x‖α), γ)
in one shot without any interaction (actually β can be omitted since it is clear from x, α and the
public hash function h). See Figure 1 below for a visual explanation.

P V

α

β ← U

γ

Fiat-Shamir PFS V FS
h← H

α, β = h(x∥α), γ

Figure 1: Instantiating Fiat-Shamir on (P, V) for proving x ∈ L.

1.1 The soundness of Fiat-Shamir

The central problem of Fiat-Shamir is its soundness – justifying whether and when the Fiat-
Shamir transform results in a sound non-interactive protocol has long been a focus of research in
cryptography. It was shown by Pointcheval and Stern [PS96] that the soundness of Fiat-Shamir
holds in the random oracle model (ROM), i.e., the soundness of any constant-round public-coin
protocol can be preserved if we model the Fiat-Shamir hash function as a random oracle. However,
it is more desirable to prove the soundness of Fiat-Shamir transformation in the plain model: the
Fiat-Shamir hash should be instantiated by an explicit hash function in contrast to an idealized
one, and the security in the random oracle model cannot provide any guarantee here.

In the plain model, the difference between proofs and arguments becomes crucial. By using
proofs, we mean protocols that are sound against any cheating provers (can be computationally
unbounded), while by using arguments, we mean protocols that are sound against only computa-
tionally bounded (probabilistic polynomial-time) cheating provers. We summarize the main positive
results here.

• Fiat-Shamir for proofs. If a hash function is correlation intractable (CI) then it can se-
curely instantiate Fiat-Shamir for proofs [CCRR18]. In the past few years there has been a
long line of work on correlation intractable (CI) hash functions [CCR16; KRR17; CCRR18;

1“∥” means the concatenation of two strings. Here we use h(x∥α) but not h(x, α) to emphasize that h takes as
input the entire transcript till now (consisting of x and α) instead of taking x and α separately as two inputs.

1

HL18; Can+19; PS19; BKM20; HLR21; JJ21; LV22; CGJJZ23] showing that we can securely
instantiate Fiat-Shamir on interactive proofs of which the “bad relation” (which is roughly
the messages (α, β) that may allow the prover to cheat) meets some special constraints. CI
hash functions have already been used for applying Fiat-Shamir to some practical interac-
tive proofs, e.g., the sumcheck protocol and the GKR protocol [JKKZ21], and also for con-
structing non-interactive cryptographic primitives from standard cryptographic assumptions,
e.g., non-interactive zero-knowledge (NIZK) [PS19; BKM20; HLR21; JJ21] and succinct non-
interactive arguments (SNARGs) [JKKZ21; CJJ21a; CJJ21b; HJKS22; KLV23; CGJJZ23].

• Fiat-Shamir for arguments. In the context of arguments, however, the soundness of Fiat-
Shamir is still poorly understood. In some applications of Fiat-Shamir, we do know how
to instantiate Fiat-Shamir securely on some special arguments using just CI hash functions
(see, e.g., the SNARG constructions from [KVZ21; CJJ21a; CJJ21b; HJKS22; CGJJZ23]).
However, the security mainly comes from the statistical property in their soundness such that
these arguments can somehow be regarded as proofs – actually we are still using the framework
for proofs. Outside the scope of “proof-like” arguments, there are only few positive results
about some specific protocols, e.g., Fiat-Shamir for Schnorr’s or Lyubashevsky’s identification
schemes [CLMQ21].

As we can see, positive results showing the soundness of Fiat-Shamir in the plain model con-
centrate almost all on proofs, while the soundness of Fiat-Shamir for arguments remains largely
open (instantiating Fiat-Shamir soundly on proofs is intuitively easier since proofs have stronger
security guarantees than arguments). Furthermore, there have been impossibility results or strong
negative indications on the soundness of Fiat-Shamir for arguments in the plain model. Goldwasser
and Kalai [GK03] constructed a set of three (contrived) arguments such that Fiat-Shamir using
any explicit hash function must be insecure on at least one of them. In addition, Dwork, Naor,
Reingold, and Stockmeyer [DNRS99] showed that (constant-round, public-coin) zero-knowledge ar-
guments can also serve as counter-examples for Fiat-Shamir2, and constructions of such protocols
are known based on various cryptographic assumptions (see, e.g., [Bar01; BKP18; Kiy22]).

1.2 Fiat-Shamir and cryptography against bounded-depth adversaries

In this work, we study the soundness of Fiat-Shamir in a new setting where the adversaries’s
parallel time is further limited. In contrast to the standard security notion in cryptography that the
adversaries run in probabilistic polynomial time (p.p.t.) with no further limitation, we consider a
relaxed version of security that the adversaries are from bounded-depth (and thus bounded parallel
time) circuit classes like AC0[2] and TC0. If we can get positive results for Fiat-Shamir against
bounded-depth adversaries, it will be very exciting : given the rich applications of (or inspired
by) Fiat-Shamir in recent years (such as SNARGs for P, showing the cryptographic hardness of
PPAD [Cho+19], etc.), instantiating Fiat-Shamir hash functions against bounded-depth adversaries
might lead to further applications against bounded-depth adversaries. Furthermore, given the
strong negative indications and the extreme lack of positive results on Fiat-Shamir for arguments
against p.p.t adversaries, we would like to see if it is possible to bypass the known impossibility
results in the bounded-depth setting.

2The intuition of [DNRS99] is: we can construct a cheating verifier that sends messages according to the Fiat-
Shamir hash function, and the zero-knowledge property guarantees that a simulator can efficiently simulate the view
of such a cheating verifier. If the protocol is sound after Fiat-Shamir, the simulator can then be used to decide the
language. Therefore, Fiat-Shamir can only be sound when the zero-knowledge protocol proves a language in BPP.

2

Recently there has been a fruitful sequence of work on constructing cryptographic primitives
with security against only bounded-depth adversaries3, including one-way functions, pseudorandom
generators, collision-resistant hash functions [DVV16], one-way permutations [EWT21], fully ho-
momorphic encryption schemes [CG18; WP22], and non-interactive zero-knowledge [WP22]. Com-
pared to their analogs with the standard p.p.t. security, these primitives are indeed less secure
but can rely only on worst-case complexity assumptions or even be unconditional (see, e.g., the
construction of CRHF against AC0 in [DVV16]).

Back to the context of Fiat-Shamir, our work focus on the low-end of Fiat-Shamir: the sound-
ness is rather weak (but still non-trivial) against circuit classes as low as AC0[2], while the under-
lying assumption is likewise weak. The choice of bounded-depth circuit classes is also motivated
by the developments in circuit complexity, where strong lower bounds for bounded-depth classes
are known. Therefore, it is very likely that we can translate these lower bounds into good hash
constructions that are only useful for Fiat-Shamir against the same bounded-depth classes.

Also note that the lowest circuit class we care about is AC0[2]. We choose “AC0[2]” because
our results (as shown in the next section) can indeed work for classes as low as AC0[2], and AC0[2]
is arguably the smallest circuit class that makes Fiat-Shamir reasonable. In cryptography, almost
all hash functions (and other cryptographic primitives) use some kind of linearity or algebra over
finite fields, and constructions without the use of parity or modulo gates are rare. To the best
of our knowledge, there are only two exceptions about classes lower than AC0[2]. The first one
is the cryptography in AC0 by Degwekar, Vaikuntanathan, and Vasudevan [DVV16], but their
construction is still inherently using parity, except they use some clever tricks to bound the number
of bits in the parity by polylog. The other one is the cryptography in NC0 by Applebaum, Ishai,
and Kushilevitz [AIK06], but their construction is not robust enough, e.g., their PRG can only
have additive stretch.

1.3 Our results

Our results include two independent parts that make progress on both the positive side and the neg-
ative side. On the positive side, we give new constructions of Fiat-Shamir hash functions for proofs
in the bounded-depth setting. Inspired by the correlation intractable hash by Peikert and Shiehian
[PS19] and the FHE with bounded-depth security by Wang and Pan [WP22], we construct a new
family of correlation intractable hash functions against bounded-depth adversaries. It allows us to
generally instantiate Fiat-Shamir, at least on a class of interactive proofs, to obtain non-interactive
cryptographic primitives in the bounded-depth setting. On the negative side, unfortunately, we
observe that our positive results on proofs are almost the best we can do in the bounded-depth
setting. In particular, we show that the known impossibility results for Fiat-Shamir for arguments
like Goldwasser and Kalai [GK03] can be extended to the bounded-depth setting.

1.3.1 Positive results

We first present the positive results for Fiat-Shamir for proofs against bounded-depth cheating
provers. In particular, we show new constructions of correlation-intractable (CI) hash functions
for relations representable by constant-degree polynomials that are secure against bounded-depth
adversaries.

3This research topic is also referred to as “fine-grained cryptography” like in [DVV16]. We do not use the notion
“fine-grained” because in complexity theory it usually refers to unrobust classes like DTIME[n2]. We use the name
“cryptography against bounded-depth adversaries” to avoid any possible ambiguity.

3

Our construction is inspired by the CI hash function constructed by Peikert and Shiehian [PS19],
which uses the FHE scheme of Gentry, Sahai, Waters [GSW13] (henceforth GSW-FHE) as a building
block. Our main observation is that the FHE scheme against low-depth adversaries constructed
by Wang and Pan [WP22] bares a striking similarity with GSW-FHE. The similarity allows us
to replace GSW-FHE with WP-FHE to obtain a CI hash function against low-depth adversaries
assuming worst-case complexity assumptions. Our main positive result is:

Theorem 1.1 (Informally stated, see Theorem 4.18). Assuming NC1 6= ⊕L/poly, there ex-
ists a CI hash function family for constant-degree polynomials against NC1 that is computable in
AC0[2]. ♦

The circuit class NC1 here is just a typical example and can actually be replaced with lower
circuit classes. See Section 4.3 for more details. The worst-case complexity assumption is a standard
assumption in the area of cryptography against bounded-depth adversaries: previous constructions
of, e.g., one-way functions, pseudorandom generators, collision-resistant hash functions [DVV16]
are all based on the same assumption.

1.3.2 Negative results

On the negative side, we get two (incomparable) impossibility results in the bounded-depth setting.
The first one shows the non-existence of a universal Fiat-Shamir hash against bounded-depth
adversaries; while the second one extends the work by Goldwasser and Kalai [GK03] showing the
existence of a protocol that makes every Fiat-Shamir hash fail even in the bounded-depth setting.

C-soundness and C-arguments. For simplicity, we say a protocol has C-soundness if it is sound
against adversaries computable in the complexity class C. Also, we use the notation C-arguments
for protocols with C-soundness. Typical choices of C include bounded-depth circuit classes AC0[2],
TC0, or NC1. When just saying an argument, we refer to a P/poly-argument.

We first (informally) define what is a universal Fiat-Shamir hash in the bounded-depth setting
(see definition 5.1 for the detailed definition):

Definition 1.2 (Universal Fiat-Shamir hash, informal). For circuit classes D ⊆ C, we say a
hash function family H is a universal Fiat-Shamir hash from C to D if Fiat-Shamir using H always
results in a sound non-interactive D-argument starting from any (3-round public-coin) interactive
C-argument that matches the input and output lengths of H (i.e., the protocol’s instance + first
message length should be H’s input length, and the protocol’s second message length should be
H’s output length). ♦

Note that Definition 1.2 is already enough to capture a large class of hash functions, which
is a fixed hash function family as long as the input and output lengths are determined. As an
example, the CI hash function in [CCRR18] fits well into this format. However, there also exist
hash functions outside the scope of Definition 1.2. For example, the CI hash from [PS19] does not
fit into this definition4 because its key length depends on some specific property of the interactive
proofs we want to collapse, which cannot be fixed in advance given only the input and output

4Here we are only talking about the formats of these hash functions (e.g., how the key length is chosen) instead
of their specific functionalities – of course, we do not have such a universal Fiat-Shamir hash with security against
p.p.t. due to [GK03].

4

lengths (more precisely, its key length depends on how fast we can compute the “bad function” of
the protocol). Based on this definition, we give our first negative result:

Theorem 1.3 (Informally stated, see Theorem 5.2). Assuming the existence of a CRHF fam-
ily that is computable in D and collision-resistant against C with any polynomial shrinkage, there
does not exist a universal Fiat-Shamir hash from C to D with any polynomial input and output
lengths. ♦

Here we further justify our assumption of a low-complexity CRHF. One can examine that the
CRHF construction fA(x) = Ax mod q based on the hardness of short integer solution (SIS) [Ajt96]
is actually computable in TC0 (and has polynomial shrinkage). Also, the discrete-log (DLOG)-
based CRHF construction fg,h(x1, x2) = gx1 · hx2 can also be computed by a TC0 circuit using
some standard pre-processing techniques. Therefore, low-complexity CRHFs are known from these
well-studied cryptographic assumptions, which leads to the following corollary:

Corollary 1.4. Assuming SIS/DLOG, there does not exist a universal Fiat-Shamir hash that can
soundly transform any interactive argument into a non-interactive TC0-argument. ♦

Actually, similar results hold also for circuit classes lower than TC0. We present a candidate
AC0[2]-computable poly-shrinkage CRHF based on a variant of SIS, indicating the impossibility
of a universal Fiat-Shamir hash achieving even only AC0[2]-soundness. See Appendix B for more
discussions on the AC0[2]-computable CRHF.

Even more generally, we show that the the result of Goldwasser and Kalai [GK03] – albeit
looks complicated and requires super-constant depth at a first glance – can be generalized to the
bounded-depth setting with adversaries from circuit classes as low as AC0[2].

Theorem 1.5 (Informally stated, see Theorem 6.1). For any circuit class C ⊇ AC0[2], as-
suming the existence of a CRHF family with arbitrary polynomial shrinkage that is computable
in C and collision-resistant against C, there exists a 3-round public-coin C-argument such that
instantiating Fiat-Shamir using any hash function computable in C does not result in a sound
non-interactive C-argument. ♦

Compared to the previous result in Theorem 1.3 showing impossibility even when we require
only some weaker soundness on the Fiat-Shamir-collapsed protocol, Theorem 1.5 shows only the
impossibility of Fiat-Shamir hash functions preserving the same level of soundness due to some
technical issues. However, instead of saying every FS hash must fail on some tailored protocol,
Theorem 1.5 is stronger in the sense that it shows the existence of some fixed protocol that makes
every Fiat-Shamir hash fail. The Fiat-Shamir hash is allowed to depend arbitrarily on the fixed
interactive protocols (e.g., the third message’s length |γ| or the prover/verifier running time, which
are not allowed in Definition 1.2 and Theorem 1.3).

Also note that the CRHF in our assumption can be instantiated (at least for AC0[2] ⊆ C ⊆ NC1)
by the CRHF from [DVV16] that is computable in AC0[2] and secure against NC1 based on the
worst-case complexity assumption NC1 6= ⊕L/poly.

1.4 Related works

Aside from the results like Goldwasser and Kalai [GK03] showing that there is an interactive
argument such that no explicit hash function can collapse the protocol while preserving soundness,

5

there have also been negative results for some restricted classes of protocols, in particular, for
protocols related to SNARGs like Kilian’s protocol.

Kilian’s protocol [Kil92] is a 4-message succinct argument for any NP language. The idea of
collapsing Kilian’s protocol by Fiat-Shamir comes from Micali’s CS proofs [Mic00], which are now
usually referred to as succinct non-interactive arguments (SNARGs). While Micali’s construction
applies Fiat-Shamir in the random oracle model, there have been negative results on Fiat-Shamir
for Kilian’s protocol in the plain model. Gentry and Wichs [GW11] showed a substantial barrier to
constructing SNARGs in general (not limited to collapsing Kilian’s protocol), and the problem of
securely instantiating Fiat-Shamir on Kilian’s protocol also suffers from this barrier. More recently,
Bartusek, Bronfman, Holmgren, Ma, and Rothblum [BBHMR19] showed that Fiat-Shamir with any
explicit hash function can never be secure on some contrived instantiation of Kilian’s protocol.

Organization. The rest of this paper is organized as follows. We first give an overview of the
intuition and techniques underlying our results in Section 2. In the subsequent sections, we present
the details of our main results: on the positive side, we present our construction of CI hash functions
in Section 4; on the negative side, we first show the impossibility of universal Fiat-Shamir hash
functions in Section 5 (which corresponds to Theorem 1.3), and then present the stronger negative
result of a universal counter-example for Fiat-Shamir in Section 6 (which corresponds to Theorem
1.5).

2 Technical Overview

In this section, we give an overview of the main ideas and techniques underlying our proofs.

2.1 Positive results

Our positive result is inspired by the CI hash function in [PS19], which crucially relies on the FHE
scheme of Gentry, Sahai, Waters [GSW13] (henceforth GSW-FHE). Our main observation is that
the FHE scheme against low-depth adversaries constructed by Wang and Pan [WP22] (henceforth
WP-FHE) bares a striking similarity with GSW-FHE, therefore it can be used as in [PS19] to
obtain a CI hash function against low-depth adversaries.

Let us start by explaining the intuition of [PS19]. They consider sparse relations defined by
efficient functions i.e. {(x, f(x))} for some efficiently computable function f . Designing a hash
function h(k, x) that is correlation intractable for a single function-defined relation is trivial: sim-
ply define h(k, x) = f(x) + 1. The construction [PS19] utilized the idea: for any f , a random
hash key will look indistinguishable from a hash key that is specifically designed to be correlation
intractable with respect to the relation defined by f , i.e. the construction achieves the notion of
“somewhere correlation intractability”. This idea can be implemented by using any fully homo-
morphic encryption scheme, i.e., the hash key is the homomorphic encryption of the circuit that
computes a fixed function g0 (hence for any f , it looks indistinguishable from the encryption of
the circuit that computes f), and the hash function homomorphically computes g0(x) + 1 using
a universal circuit U(x, ·) s.t. U(x, f) = f(x). The result of homomorphic evaluation would be a
ciphertext of g0(x)+1, so it remains as the last step to decrypt this ciphertext. One idea, as shown
in [Can+19], is to put the encryption of the FHE decryption function inside the public key.

h(k, x) = Eval(pk,U(x, ·), ct), where k = (pk, ct), ct = Enc(pk, g0) ≈ Enc(pk,Dec(sk, f(·))⊕ 1).

6

Then for any function f , if k is sampled according to (pk,Enc(pk,Dec(sk, f(·))⊕ 1)), we have

f(x) = h(k, x) =⇒ f(x) = Enc(pk,Dec(sk, f(x))⊕ 1) =⇒ Dec(sk, f(x)) = Dec(sk, f(x))⊕ 1.

However, in this approach, in order to show the hash key k does not leak FHE secret key, we need
to assume circular security. [PS19] bypasses this “decryption problem” based on an observation
about the ciphertext of GSW-FHE. Namely, for any vector (yi)i∈[n], if we have the ciphertext of
each yi, then we can compute Ar + y where A is the FHE public key and r is derived from the
randomness used to encrypt each yi. Coarsely, if y = f(x) as the result of homomorphic evaluation,
then from f(x) = Ar+ f(x) we find a solution for Ar = 0. [PS19] manages to reduce breaking SIS
assumption to breaking correlation intractability of their construction.

Our construction of CI against low-depth adversary can be explained in a single sentence:
replace GSW-FHE in the construction [PS19] by WP-FHE. We claim that these two FHE schemes,
though under different assumptions and are against different adversaries, are similar to each other
in a precise sense: WP-FHE can be regarded as the mod-2, noise-free version of GSW-FHE. We
provide the following table to sustain this intuition.

GSW-FHE WP-FHE
(pk, sk) kTA = e ≈ 0 kTA = 0
Enc AR+mG AR+mI
Dec kT ct ·G−1((0, . . . , 0, q/2)T) kT ct · (0, . . . , 0, 1)T

Evaladd ct0 + ct1 − 2ct0 ·G−1(ct1) ct0 + ct1
Evalmul ct0 ·G−1(ct1) ct0 · ct1

Table 1: Comparison between GSW-FHE and WP-FHE

The replacement allows the hash function to be computable in AC0[2]. Also, we use a result
in [EWT21] to show that the security of our construction follows from the worst-case complexity
assumption.

2.2 Negative results

Our main impossibility result (Theorem 6.1) comes from adapting the impossibility result by [GK03]
to the bounded-depth settings. Before stepping into the technical details of the modification, we
first explain the intuition behind the impossibility results of Fiat-Shamir for arguments and show a
much simpler (albeit weaker) impossibility result (Theorem 5.2) which directly follows the intuition.

There is a simple intuition behind all existing contrived impossibility results: the prover in
an interactive protocol is never able to predict the verifier’s choice of the next message, but Fiat-
Shamir makes the verifier’s messages “predictable”. Consider the standard 3-round public-coin
setting where the protocol transcript is (α, β, γ). While sending the first message α, the prover can
never predict the next message β in advance – no matter what prediction it makes, the verifier’s
random choice of β coincides with the prediction only with negligible probability. However, things
become totally different when we collapse the protocol by Fiat-Shamir: with the help of a randomly
chosen hash function h ← HFS , the prover now directly generates (α, β = h(x‖α), γ) in one shot
without the verifier’s random choice. In other words, the next “verifier’s message” β = h(x‖α) is
just a fixed value after generating α, and of course, the malicious prover can predict β.

Based on this observation, we can design an interactive protocol that simply asks the prover
to predict the next message: in the first round, the prover tries to predict β by submitting the

7

description of a function α = Ĉ (we use C to denote the circuit of the function and Ĉ to denote
the encoding of C), which means his prediction of β is C(α) = C(Ĉ). Then the verifier randomly
chooses β and sends it to the prover, ignores the prover’s third message, and finally accepts iff
β = C(α) holds (which means the prediction is correct). This is an interactive proof for the empty
language: the verifier always rejects except the randomly-chosen β happens to be the fixed value
C(α), which holds with only negligible probability5. After applying Fiat-Shamir, unfortunately,
the non-interactive protocol becomes totally broken. Given a Fiat-Shamir hash h ← HFS , the
cheating prover can simply send the description of this hash function (i.e., send α = ĥ(x‖·) with
the instance x hardcoded), and then the Fiat-Shamir transform indeed chooses β as β = h(x‖α),
which makes the verifier accept.

P V

α = Ĉ

β

γ = ∅ Parse α into Ĉ.
Accept iff β = C(α).

Fiat-Shamir

PFS V FS
h← H

α, β = h(x∥α), γ

α← ĥ(x∥·).

β = h(x∥α) holds.
Accept.

Figure 2: A protocol for the empty language that is not sound after Fiat-Shamir.

This counter-example can work in our bounded-depth setting (since what the cheating prover
does is simply copying the Fiat-Shamir hash function). However, there is an implicit limitation:
when saying α = ĥ(x‖·), β = h(x‖α), we implicitly require the Fiat-Shamir hash h to have a short
enough description that can fit into its input. In the case of choosing h ← HFS , the description
size can be roughly regarded as the length of the key k of the hash family HFS , and thus the hash
function here must satisfy |k| ≤ |α|. As a result, this counter-example fails to capture a large class
of Fiat-Shamir hash functions with the key length longer than the input length. This limitation
somehow makes the counter-example worthless, since Fiat-Shamir hash functions usually have long
keys: as shown in the work of Canetti, Goldreich, and Halevi [CGH04], a hash function cannot even
be correlation intractable (i.e., preserving soundness for proofs) if its key length is shorter than the
input length.

In order to bypass the limitation on the key length, we made some modifications based on the
protocol above. Instead of sending the whole circuit description Ĉ in the first round, the prover only
commits to such a description by sending a succinct commitment α = f(Ĉ) (f is the commitment
function) – although the description may be long, its commitment can still be short enough to fit
into the Fiat-Shamir hash’s input. After that, the prover in the third round sends γ = Ĉ in clear
to open the commitment, and the verifier decides to accept or reject by checking if α = f(Ĉ) (the
opening is correct) and β = C(α) (the prediction is correct). See Figure 3 for an illustration of the
modified protocol.

Note that this protocol is an interactive argument for the empty language, since a succinct
5Note that in an interactive protocol for the empty language, there is no honest prover since no instance can be

proved (except with negligible probability). Or we can say the honest prover is just a machine that sends all-0 strings
of some fixed lengths in each round. We clarify here that when describing the prover’s behaviors, we actually mean
what the prover is supposed to do (and the verifier will check it later). For example, by saying the prover sends
α = Ĉ, we actually mean the cheating prover sends an arbitrarily α and the verifier will parse α into the description
of a circuit C when deciding to accept/reject.

8

f
P V

α = f(Ĉ)

β

γ = Ĉ Parse γ into Ĉ.
Accept iff α = f(Ĉ) ∧ β = C(α).

Fiat-Shamir

PFS V FS
f , h← H

α, β = h(x∥α), γ

α← f(ĥ(x∥·))
γ ← ĥ(x∥·)

α = f(ĥ(x∥·)) ∧ β = h(x∥α).
Accept.

Figure 3: The modified protocol for the empty language.

commitment inherently cannot have statistical binding. In order to fit into the bounded-depth
setting, we instantiate the succinct commitment f with a CRHF that can be computed in low
depth and has enough shrinkage, which leads to our first negative result as shown in Theorem
1.3. Note that the exact shrinkage of CRHF matters here because we cannot boost the shrinkage
arbitrarily in the bounded-depth setting: the circuit depth grows as we stack a CRHF several times
to build a Merkle tree. The detailed security proof of this protocol is deferred to Section 5.

To obtain a more general negative result, we also extend the result of [GK03] and similarly get
a set of three protocols that Fiat-Shamir must fail on at least one of them. We first summarize
the high-level idea of the construction in [GK03]. Among the three protocols, the first protocol
is almost the same as the one in Figure 3, except that we also need to limit the length of γ in
order to be more general. To obtain a shorter γ, the prover now does not send the opening Ĉ in
clear and sends a “SNARK” instead to prove that he knows a valid opening. The use of such a
strong primitive may seem ridiculous, but we bypass the problem of constructing a “SNARK” by
applying a win-win argument: we construct a second protocol (e.g., Kilian’s protocol [Kil92]) that
results in a “SNARK” if Fiat-Shamir can be securely instantiated on it. Then for any explicit Fiat-
Shamir hash function, if it can be soundly applied to the second protocol, we get a construction
of “SNARK” and the first protocol becomes a valid counter-example; if not, the second protocol
itself is a counter-example for Fiat-Shamir – anyway, we can get at least one protocol that is not
sound after Fiat-Shamir. Note that the “SNARK” here is just an intuitive example of the condition
we set in a win-win argument (actually it does not work – Kilian’s protocol does not necessarily
preserve proof of knowledge after Fiat-Shamir). The real construction is much more complicated
with win-win arguments among three protocols, and we defer the detailed construction to Section
6. In the rest part of this section, we give an overview the main technical issues we need to resolve
in adapting the [GK03] construction to the more restricted bounded-depth setting:

• Merkle tree hash: The construction of [GK03] relies on a Merkle tree hash to succinctly
commit to messages that may have an arbitrary polynomial size. In our bounded-depth
setting, however, the depth of the Merkle tree is inherently limited to a constant. To handle
limitation on depth, we base our construction on the stronger assumption of a CRHF with
arbitrary polynomial shrinkage – then a constant-depth Merkle tree is enough to handle any
polynomial-size message.

• AC0[2]-computable PCPs: [GK03] also uses probabilistic checkable proofs (PCPs) to guar-
antee the efficiency of the verifier. Since the prover in our setting is only allowed to do
the bounded-depth computation, we therefore need a bounded-depth computable PCP. We

9

Figure 4: The picture of Protocol 3 from [GK03, Page 32]. Here q′′ denotes the CRS of a Fiat-
Shamir reduced protocol used in their Protocol 1. Since q′′ is sent in the second message of the
verifier R3, q′′ is supposed to be uniformly random. However, this implies (in a contrived manner)
that the Fiat-Shamir hash function applied to Protocol 1 must be a public-coin hash function.

present the construction of an AC0[2]-computable PCP in Appendix C, which meets our
requirements here.

• Public-coin hash v.s. private-coin hash: Note that the original construction in [GK03]
works only for public-coin Fiat-Shamir hash functions, i.e., the hash key must be a uniformly
generated random string instead of a structured one with the generator’s randomness remain
hidden. In order to achieve a win-win situation, the [GK03] construction needs to plug the
non-interactive Fiat-Shamir-collapsed version of one interactive protocol into another interac-
tive protocol, and the public-coin verifier is responsible for generating the common reference
string (which contains the Fiat-Shamir hash function). See Figure 4 for an illustration. A
later work by Goldwasser and Kalai [GK] fixed this issue by changing the way of “plugging
in” non-interactive protocols. To obtain a more general impossibility result that works also
for private-coin Fiat-Shamir hash functions, we use a similar modified method of plugging in
protocols for our construction in the bounded-depth setting.

3 Preliminaries

3.1 Circuit

In the context of this paper, when we refer to circuits, we are specifically referring to Boolean
circuits designed to accept a fixed number of input bits and produce a fixed number of output bits,
with gates inside as computation units. For any given circuit denoted as C, we employ the notation
C(x) to signify the result produced by circuit C when it is given input x. Within the scope of a
defined circuit class C, we employ the notation Ĉ to represent the encoded representation of circuit
C, and we denote the length of this encoding as |Ĉ|. Here, we require the encoding satisfying that:

• Hard-coding any bits into the input of circuit C will not affect the length of the encoding.

• For all polynomials S(n), d(n), there exists a universal circuit class U = {Un}n∈N in C, such
that for any circuit families {Cn}n∈N in C with encoding length S(n) and depth d(n), Un can
evaluate Cn .

It is worth noting that universal circuits exist in all commonly encountered circuit classes, which

10

ensures the existence of required encoding. We sometimes refer to the length of encoding as circuit
size, when we do not explicitly specify encoding of the circuit.

Circuit classes. We frequently use the following circuit classes in this paper (cf. [AB09] for a
standard reference):

Definition 3.1 (NCd). For every d, a language L is in NCd if L can be decided by a family of
circuits {Cn} where Cn has poly(n) size and depth O(logd n). ♦

Definition 3.2 (ACd). The class ACi is defined similarly to NCi except gates are allowed to have
unbounded fan-in (i.e., the OR and AND gates can be applied to more than two bits). ♦

We frequently use variants of AC0 in this paper. For every integer q ≥ 2, a language L is in
AC0[q] if L can be decided by circuits consisting of OR, AND, MODq gates with unbounded fan-in,
and NOT gates, of poly(n) size and depth O(1). For a constant c ∈ N+, AC0

c denotes AC0 circuits
with an explicit depth c.

Definition 3.3 (⊕L/poly). A language L is in ⊕L/poly if the characteristic function f(x) = [x ∈
L] satisfies the following: there is a constant c such that for each n, there is a non-deterministic
Turing Machine Mn such that for all x ∈ {0, 1}n, Mn(x) uses at most c log n space, and f(x) equals
to the parity of the number of accepting paths of Mn(x). ♦

Definition 3.4 (S̃umδ ◦ C). For δ being a constant or a function of n, we say a function f :

{0, 1}∗ → {0, 1} admits a family of S̃umδ ◦ C circuits, if ∃s(n) ∈ poly(n) and {Cn : {0, 1}n →
{0, 1}s(n)} ∈ C, such that for each n, there exists a length-s(n) vector αn = (αs(n),1, αs(n),2, . . . , αs(n),s(n)) ∈
Rs(n), ∀x ∈ {0, 1}n,

|〈αn, Cn(x)〉 − f(x)| ≤ δ. ♦

Definition 3.5 (Collision resistant hash function family). For a function family

F =
{
fn : {0, 1}lk(n) × {0, 1}lin(n) → {0, 1}lout(n)

}
n∈N

with the key generation algorithm

GenF =
{
GenF ,n : {0, 1}∗ → {0, 1}lk(n)

}
,

we say it is a collision resistant hash function family, if for any adversary A = {An}n∈N, there
exists negligible function negl(n) that ∀n ∈ N,

Pr

[
fn(k, x1) = fn(k, x2) ∧ x1 6= x2

∣∣∣∣ k ← GenF ,n
x1, x2 ← An(k)

]
< negl(n) ♦

We say that a collision resistant hash function family is in C iff F and GenF are in C. In other
words, we require F to be uniform, in the sense that each C circuit computing fn takes both the
key k ∈ {0, 1}lk(n) and x ∈ {0, 1}lin(n) as input.

11

For simplicity, we will also denote this function family as

F =
{
Fn : {0, 1}lin(n) → {0, 1}lout(n)

}
n∈N

.

We use f ← Fn to represent the process of generating a key k using GenF ,n and get a circuit fn(k, ·)
with a key hard-coded in it. The key generation circuit size of F is the size of circuit computing
f ← Fn, and the evaluation circuit size is the circuit size of f ∈ Fn. These two sum up to the
circuit size of F . We use lF (n) to represent the evaluation circuit size. Sometimes, we may use
f(x) for some x with length |x| < lin(n). You can interpret the input as padding x to lin(n) with
0s.

3.2 Interactive protocol

Definition 3.6 (3-round public coin protocol with common reference string (CRS)). A
3-round protocol with common reference string consists of 2 entities: the prover P and the verifier
V . Here, the prover P consists of an interactive circuit family {Pn}n∈N, and the verifier V consists
of an interactive circuit family {Vn}n∈N. Here, we let Vn generate the common reference string.
The common input is x and the auxiliary input for the prover is w. The process of interaction is
shown below:

P (x,w) V (x)
crs

a

b

c accepts/rejects

We may omit the indices if they are clear from the content. We will use P (x,w, crs) to represent
the process of generating the first message and use P (x,w, crs, a, b) to represent the process of
generating the third message when the previous state of P is clear from the context. We will
use V (x, crs, a, b, c) to represent the process of verification. We will introduce the notation V |a,
signifying the interactive circuit V with the first message restricted to a. Also, we denote by
V |a1,··· ,at the interactive circuit V with first t messages fixed. Note that the verifier will not keep the
state after sending each message, so this notation is well-defined. We use lcrs(n), la(n), lb(n), lc(n)
to indicate the length of common reference string and each message and use lx(n), lw(n) to represent
the length of instance and witness when there is no ambiguity. We say that a 3-round public coin
protocol is in C if there exists {P1,n}n∈N , {P2,n}n∈N and {V1,n}n∈N , {V2,n}n∈N in C such that the
prover Pn behaves as follows:

1. Uniformly selects r1, r2 ← {0, 1}∗.

2. a← P1,n(x,w, crs, r1), and outputs a, waits for b.

3. c← P2,n(x,w, crs, a, b, r1, r2) and outputs c.

The verifier Vn behaves as follows:

12

1. Uniformly selects r ← {0, 1}∗.

2. crs← V1,n(r) and outputs crs, waits for a.

3. Uniformly selects b← {0, 1}lb(n) and outputs b, waits for c.

4. Accepts if V2,n(x, crs, a, b, c) = 1.

The total circuit size of (P, V) is defined to be the summation of circuit size of P1,n, P2,n

and V1,n, V2,n. We sometimes abbreviate the notation for the interaction for two parties P, V with
common input x and auxiliary input to the prover w as (P, V)(x,w), and we will use (P, V)(x,w) = 1
to denote the event that V accepts after the interaction.

Definition 3.7 (3-round public coin argument with CRS for language L against D). Let
lx(n) be the length of the instance from L on security parameter n. Let R be the relation underly-
ing L (i.e., x ∈ L iff ∃w : (x,w) ∈ R) and lw(n) be the witness length on security parameter n. A
3-round public coin argument with CRS for language L against D is a 3-round public-coin protocol
(P, V) with common reference string that satisfies:

• Completeness: ∀n ∈ N, ∀x ∈ {0, 1}lx(n), ∀w ∈ {0, 1}lw(n) s.t. (x,w) ∈ R,

Pr [(P, V)(x,w) = 1] = 1,

where the probability is over the randomness of P, V .

• Computational soundness against D: For any cheating prover P̃ =
{
P̃n

}
n∈N

computable

in D, there exists a negligible function negl(n) that, ∀n ∈ N, ∀x ∈ {0, 1}lx(n) s.t. x /∈ L,

Pr
[
(P̃ , V)(x) = 1

]
< negl(n),

where the probability is over the randomness of P̃ , V . Sometimes we also say (P, V) is secure
against D for the same meaning.

Additionally, we say (P, V) is an argument of knowledge in C if it satisfies:

• Knowledge extraction in C against D: For all polynomial p(n), there exists an extrac-
tor EP̃ in C with oracle access to some circuit P̃ such that for any prover P̃ =

{
P̃n

}
n∈N

computable in D such that for every x ∈ {0, 1}lx(n), if

Pr[(P̃ , V)(x) = 1] ≥ 1

p(n)
,

then
Pr[(x,w) ∈ R | w ← EP̃ (x)] = 1.

Here the relation R is the same as the one in Completeness. ♦

13

3.3 Fiat-Shamir for 3-round public coin argument with common reference string

Definition 3.8 (Fiat-Shamir hash function). Given four polynomials lk(n), lx(n), la(n), lb(n),
a function family of the form

H =
{
hn : {0, 1}lk(n) × {0, 1}lx(n)+la(n) → {0, 1}lb(n)

}
n∈N

with the key generation algorithm

GenH =
{
GenH,n : {0, 1}∗ → {0, 1}lk(n)

}
n∈N

is called a Fiat-Shamir hash function family. Here, lx is the input length of the protocol, la is the
length of the first message, and lb is the length of the second message. ♦

We say that a Fiat-Shamir hash function is in C iff H and GenH are computable in C. In other
words, we require the hash H to be uniform, in the sense that each C circuit computing hn takes
both the key k ∈ {0, 1}lk(n) and the instance concatenating the first message x‖a ∈ {0, 1}lx(n)+la(n)

as input.
For simplicity, we will also denote this function family as

H =
{
Hn : {0, 1}lx(n)+la(n) → {0, 1}lb(n)

}
n∈N

.

We use h ← Hn to represent the process of generating a key k using GenH,n and get a circuit
hn(k, ·) with a key hard-coded in it. The key generation circuit size of H is the size of the circuit
computing h← Hn, and the evaluation circuit size is the circuit size of h ∈ Hn. These two sum up
to the circuit size of H. We use lH(n) to represent the evaluation circuit size.

Definition 3.9 (The Fiat-Shamir transform). Given a 3-round public coin protocol (P, V)
with common reference string and a Fiat-Shamir hash function family H,GenH. The Fiat-Shamir
transform on (P, V) with respect to H results in a new protocol (PFS , V FS). The prover PFS

consists of a circuit family
{
PFS
n

}
n∈N and the verifier V FS consists of a circuit family

{
V FS
n

}
n∈N.

The protocol interacts as follows:

PFS(x,w) V FS(x)

crs← V

h← Hncrs′ = h‖crs

a← P (x,w, crs)

b← h(x∥a)
c← P (x,w, crs, a, b) a, c

b← h(x∥a)
Verify:
V (x, crs, a, b, c) = 1

For (PFS , V FS) proving language L, we define several properties:

14

• Completeness: Let R be the relation underlying L and lw(n) be the witness length. Then
∀n ∈ N, ∀x ∈ {0, 1}lx(n), ∀w ∈ {0, 1}lw(n) s.t. (x,w) ∈ R

Pr
[
(PFS , V FS)(x,w) = 1

]
= 1,

where the probability is over the randomness of PFS , V FS .

• Computational Soundness against D: For each adversary P ∗ = {P ∗n}n∈N computable in
D, there exists a negligible function negl(n) that, ∀n ∈ N, ∀x ∈ {0, 1}lx(n) s.t. x /∈ L,

Pr
[
(P ∗, V FS)(x) = 1

]
< negl(n),

where the probability is over the randomness of P ∗, V FS .

If (P, V) is 3-round public coin argument with CRS for language L against D, and (PFS , V FS)
satisfies completeness and computational soundness against D, we say that applying Fiat-
Shamir transformation to the argument with H gives an argument against adversary in D for L.
Sometimes we also say that it is secure against D for the same meaning.

4 Correlation Intractability Against Bounded-Depth Adversaries

In this section we show positive results for Fiat-Shamir for proofs against bounded-depth adver-
saries. We first observe that the construction of correlation intractable (CI) hash functions of
Peikert and Shiehian [PS19] is computable in TC0, therefore it has already implied the existence
of a CI hash function family computable in TC0 against adversaries in circuit class D ⊇ TC0,
assuming SIS is hard against D. We then show our main result: the construction of CI hash
functions computable in AC0[2] against adversaries in any circuit class C ⊇ AC0[2], assuming ⊕L/
poly * S̃umn−c ◦ C for some constant c > 0, which is a worst-case complexity assumption.

The rest of Section 4 is organized as follows. In Section 4.1 we provide the background needed
for this section. In Section 4.2 we present the construction in [PS19]. The reasons we choose to
present the construction in [PS19] are:

• We emphasize that the construction and hardness reduction can be computed in TC0;

• The full construction makes the latter construction (which is our main result) more under-
standable.

Then in Section 4.3 we present our main construction of CI hash function computable in AC0[2]
against low-depth adversaries.

4.1 Backgrounds needed in this section

4.1.1 Hard Lattice Problems

Definition 4.1. The SISn,m,q,β problem is, given a uniformly random matrix A ∈ Zn×m
q , find a

non-zero integral vector z ∈ Zm such that Az ≡ 0 (mod q) and ‖z‖ ≤ β. ♦

Definition 4.2. The LWEn,m,q,χ problem is to distinguish, with non-negligible advantage, between
m independent samples for a single s← Zn

q , each sampled by choosing a uniformly random a← Zn
q ,

e← χ and outputing (a, b = a · s+ e) ∈ Zn+1
q , and m uniformly random and independent samples

over Zn+1
q . ♦

15

4.1.2 Fully Homomorphic Encryption

Definition 4.3 (Strongly Fully Homomorphic Encryption (sFHE) for D against C). A sFHE
scheme for D circuits is a function family FHE = {FHEGenn,Encn,Decn,Evaln}n∈N with the follow-
ing syntax.

• FHEGenn returns a public/secret key pair (pk, sk).

• FHEGen′n returns a public key pk.

• Encn(pk,m ∈ {0, 1}; r ∈ {0, 1}∗) returns a ciphertext ct using random bits r.

• Decn(sk, ct) (deterministically) returns a message m ∈ {0, 1}.

• Evaln(pk, f ∈ D, (ct1, ct2, . . . , cts)) (deterministically) return a ciphertext ct (s is the input
size of f).

• RandEvaln(pk, f ∈ D, (m1, . . . ,ms), (r1, . . . , rs)) (deterministially) returns a randomness r ∈
R (again s is the input size of f).

Furthermore, it satisfies the following properties:

• Correctness: we have m = Decn(sk,Encn(pk,m; r)) for all n ∈ N and m ∈ {0, 1} with
probability 1 over (pk, sk)← FHEGenn and r ← {0, 1}∗.

• CPA security: For any adversary A = {An} ∈ C,∣∣ Pr [An(pk) = 1 | (pk, sk)← FHEGenn]− Pr
[
An(pk) = 1

∣∣ pk← FHEGen′n
] ∣∣ < negl(n),

and the two distribution families

{(pk,Enc(pk, 0)) : pk← FHEGen′n}, {(pk,Enc(pk, 1)) : pk← FHEGen′n}

are statistically indistinguishable.

• Strong homomorphism: for every function familly f = {fn} ∈ D, all n ∈ N, all (pk, sk)
generated by FHEGenn and all m1, . . . ,ms ∈ {0, 1} and r1, . . . , rs ∈ R (s = s(n) is the input
size of fn), we have

Evaln(pk, fn, (Enc(pk,m1; r1), . . . ,Enc(pk,ms; rs)))

=Encn(pk, fn(m1, . . . ,ms);RandEvaln(pk, fn, (m1, . . . ,ms), (r1, . . . , rs))). ♦

Remark. Both GSW-FHE and WP-FHE defined later are sFHE schemes for at least bounded-
degree polynomials under certain assumptions, although our proof does not rely on this fact. Also,
in these two schemes, RandEval is given implicitly by Eval.

Definition 4.4 (Lattice Gadgets over Zq). For a positive integer modulus q, let l = dlg qe. We
define the “gadget” vector as

gT = (1, 2, . . . , 2l−1) ∈ Zl
q.

16

For every u ∈ Zq, there is an efficiently computable binary vector g−1(u) ∈ {0, 1}l such that
g · g−1(u) ≡ u (mod q), i.e., the binary representation of u. We treat g−1 : Zq → {0, 1}l as a
function that computes binary decomposition.

The gadget matrix is defined as Gn = In⊗gT , and sometimes we drop the subscript n. Similarly,
we define the function G−1 = (I ⊗ g−1) : Zn

q → {0, 1}nl, which applies g−1 to each coordinate and
concatenates the results. For any u ∈ Zn

q , we have

G ·G−1(u) = u. ♦

Construction 1 (GSW-FHE). GSW-FHE is given by the function family GSW-FHE = {GSW-FHEGenn,
GSW-Encn, GSW-Decn, GSW-Evaln}n∈N, parameterized by the lattice dimension n, the error distri-
bution χ, the modulus q, and the number of samples m = n dlog qe. We assume these parameters
are chosen properly so that LWEn−1,2m,q,χ is believed to be hard.

• GSW-FHEGenn:

1. Take A′ ← Z(n−1)×2m
q , s′ ← Zn−1

q , and e← χ2m.
2. Compute b = A′T s′ + e ∈ Z2m

q .
3. Return

pk = A =

(
A′

bT

)
∈ Zn×2m

q , sk = k =

(
−s′
1

)
∈ Zn

q .

(Note that kTA = eT ≈ 0.)

• GSW-FHEGen′n: return pk = A← Zn×2m
q sampled uniformly at random.

• GSW-Encn(pk = A,µ ∈ {0, 1}):

1. Take R← {0, 1}2m×m ∈ Z2m×m
q .

2. Return ct = AR+ µG ∈ Zn×m
q .

We allow GSW-Encn to take a vector in Zm
2 as the input, instead of a single bit. In this

case, the encryption of each dimension of that vector (using independent randomness) is
concatenated together by each row. That is, for a length-m vector x, GSW-Enc(pk = A, x) =

AR+ xT ⊗ In ⊗ gT , where R← Z2m×m2

2 .

• GSW-Decn(sk = k, ct):

1. Take w = (0, 0, . . . , 0, dq/2e)T ∈ Zn
q .

2. Compute the value of V = kT ct ·G−1(w), output the decrypted message as
⌈

V
q/2

⌉
.

• GSW-Evaln. We describe it by giving how to homomorphically compute addition and multi-
plication in Zq.

– GSW-Evaladd
n (pk = A, (ct0, ct1)): return ct0 + ct1 − 2ct0 ·G−1(ct1) ∈ Zn×m

q .
– GSW-Evalmul

n (pk = A, (ct0, ct1)): return ct0 ·G−1(ct1) ∈ Zn×m
q . ♦

Remark. For any constant-degree polynomial function family {fn}, the corresponding circuit fam-
ily computing GSW-Evaln(pk, fn, (ct1, . . .)) is in TC0. WP-FHE, which will be defined later, has a
stronger property: the circuit family computing homomorphic evaluation of constant-degree poly-
nomial function is in AC0[2].

17

4.1.3 Inert Commitment

Let A ∈ Zn×2m
q be the public key of GSW-FHE, and let Ci = ARi + xiG be the homomorphic

encryption of scalar xi ∈ {0, 1}, for i ∈ [m]. Then we concatenate all Ci’s together, and view it as
a commitment (relative to A) to xT = (x1, · · · , xm)T under randomness R =

(
R1, · · · , Rm

)
, i.e.

C =
(
C1, · · · , Cm

)
= AR+ xT ⊗G = AR+ xT ⊗ In ⊗ gT = GSW-Enc(A, x).

Since any matrix M ∈ Zn×m
q can be “vectorized” as an vM ∈ Znm

q , so that (xT ⊗In) ·vM = Mx,
we have

cM = C ·G−1(vM) = A (R ·G−1(vM))︸ ︷︷ ︸
rM

+(xT ⊗ In ⊗ gT) · (Im ⊗ In ⊗ g−t)vM = ArM +Mx ∈ Zn
q .

We view cM as an “inert commitment” to Mx ∈ Zn
q , and we write it as InertEval(M,C).

Definition 4.5 (Inert Commitment). Given C ∈ Zn×m2

q as the homomorphic encryption of
some length-m vector, and M ∈ Zn×m

q as a matrix, we write

InertEval(M,C) := cM = C ·G−1(vM),

where vM ∈ Znm
2 is the vector satisfies (xt⊗ In) · vM = Mx for any length-m vector x, obtained by

reordering the elements of M . ♦

4.1.4 Correlation intractability

Definition 4.6. We say a relation R ⊆ X × Y is searchable in a set of functions F if there exists
a function f : X → Y in F such that if (x, y) ∈ R then y = f(x).

We say a relation class S = {Sn}n∈N (i.e. a set of relations for each n) is searchable in a function
family F = {Fn}n∈N if for each n ∈ N, for all R ∈ Sn, R is searchable in Fn. ♦

Definition 4.7. Let S = {Sn} be a relation class and C be a circuit class. A hash function family

H =
{
hn : {0, 1}lk(n) × {0, 1}lin(n) → {0, 1}lout(n)

}
with a key generation algorithm

GenH =
{
GenH,n : {0, 1}∗ → {0, 1}lk(n)

}
is correlation intractable for S against C if for every circuit family A = {An} ∈ C, there exists a
negligible function negl(·) such that for every n ∈ N, for every R ∈ Sn,

Pr

[
(x, hn(k, x)) ∈ R

∣∣∣∣ k ← GenH,n

x← An(k)

]
< negl(n).

We omit the polynomials lk(n), lin(n), lout(n) when they are clear from the explicit construc-
tion. ♦

18

4.1.5 Cryptographic primitives against bounded-depth circuits

We consider the capability of adversaries as some circuit class that at least contains AC0[2] (thus can
compute matrix multiplication in Z2), with the assumption that the same circuit class augmented
by an error-tolerant majority gate is not able to compute ⊕L/poly.

Assumption 4.8. For a certain circuit class C s.t. AC0[2] ⊆ C, there exists a constant c > 0 s.t.
⊕L/poly * S̃um1/nc ◦ C.

For example, Assumption 4.8 is widely believed to be true for C ∈ {AC0[2],TC0,NC1}.

Remark. When C = NC1, the assumption above is equivalent to ⊕L/poly 6= NC1 as in [DVV16].

Definition 4.9 (ZeroSamp, OneSamp). Let n be the security parameter. For r(1) ∈ Zn(n−1)/2
2 ,

and r(2) ∈ Zn−1
2 , denote

L(r(1)) =


1 r

(1)
1 r

(1)
2 · · · r

(1)
n−1

1 r
(1)
n · · · r

(1)
2n−3

.
1 r

(1)
n(n−1)/2

1

 , R(r(2)) =


1 0 0 0 r

(2)
1

1 0 0 r
(2)
2

.
...

1 r
(2)
n−1
1

 .

Also, let Mn
0 ,M

n
1 be the following n× n matrices:

M0 =

(
0T 0
In−1 0

)
,M1 =

(
0T 1
In−1 0

)
(In−1 is the identity matrix of rank n− 1).

Then we define two sampling procedures:

• ZeroSamp(n): take r(1) ← {0, 1}∗ , r(2) ← {0, 1}∗ and output L(r(1))Mn
0 R(r(2)).

• OneSamp(n): take r(1) ← {0, 1}∗ , r(2) ← {0, 1}∗ and output L(r(1))Mn
1 R(r(2)).

Note that the output of ZeroSamp(n) always has rank n−1, and the output of OneSamp(n) always
has rank n. What’s more, the random bits used by A ← ZeroSamp(n) also gives the kernel of A,
and therefore we sometimes use A, k ← ZeroSamp(n) where k s.t. Ak = 0 is additionally given by
ZeroSamp(n).

If the security parameter n is clear from context, we may drop it and use the notation ZeroSamp,
OneSamp. ♦

Previous literature discovered that NC1 circuits cannot distinguish ZeroSamp and OneSamp if
⊕L/poly 6= NC1. We extend this idea from NC1 to other circuit classes that contain AC0[2], as
stated in the following lemma.

Lemma 4.10. For any circuit class C ⊇ AC0[2], if Assumption 4.8 holds for C, there is a negligible
function negl(·) such that for any family F = {fn} in C, for an infinite number of values of n,

| Pr [fn(M) = 1 | M ← ZeroSamp(n)]− Pr [fn(M) = 1 | M ← OneSamp(n)] | < negl(n). ♦

19

Remark. As Remark 3.1 of [DVV16] points out, from worst-case complexity assumptions, we can
only achieve infinitely-often primitives, as if we assume D * C where C,D are circuit classes, we
only mean that there exists a function family {fn} ∈ D, such that for any function family {gn} ∈ C,
fn 6= gn for infinitely many n.

However, as long as we strengthen the assumption from the previous one to that there exists
{fn} ∈ D, for all {gn} ∈ C, ∃n0 such that fn 6= gn for all n > n0, we can achieve the conventional
almost-everywhere security. We state this observation below. All our constructions assuming 4.8
automatically achieve almost-everywhere security using the strengthened assumption, and we only
state theorems in the infinitely-often secure version for brevity.

Assumption 4.11 (Strengthened assumption). For a certain circuit class C s.t. AC0[2] ⊆ C,
there exists c > 0 s.t. ∃{fn} ∈ ⊕L/poly such that for any function family {gn} ∈ S̃um1/nc ◦ C, ∃n0

such that fn 6= gn for all n > n0.

Lemma 4.12. For any circuit class C ⊇ AC0[2], if Assumption 4.11 holds for C, there is a negligible
function negl(·) such that for any family F = {fn} in C, for all but infinitely many n,

| Pr [fn(M) = 1 | M ← ZeroSamp(n)]− Pr [fn(M) = 1 | M ← OneSamp(n)] | < negl(n). ♦

Since we extend previous work from NC1 to general circuit classes C, and our previous lemmas
4.10, 4.12 are slightly different from those in literature (see lemma 4.3 of [DVV16], where n = n(λ)
is polynomial of security parameter), we include proofs of those lemmas in Appendix A.

Construction 2 (WP-FHE [WP22]). WP-FHE is given by the function family WP-FHE = {
WP-FHEGenn, WP-Encn, WP-Decn, WP-Evaln}n∈N.

• WP-FHEGenn: Take AT , k ← ZeroSamp(n), and set pk = A, sk = k.

• WP-FHEGen′n: Take AT ← OneSamp(n), and then output pk = A.

• WP-Encn(pk = A,m ∈ {0, 1}): Take R ← Zn×n
2 , then return ct = AR + mIn ∈ Zn×n

2 . We
allow WP-Encn to take a vector in Zn

2 as input, instead of a single bit. In this case, the
encryption of each dimension of that vector (using independent randomness) is concatenated
together by each row. That is, for a length-n vector x, WP-Enc(pk = A, x) = AR + xT ⊗ In,
where R← Zn×n2

2 .

• WP-Decn(sk = k, ct): Let c be the n-th column vector of ct, and then return k · c.

• WP-Evaln. We describe it by giving how to homomorphically compute addition and multipli-
cation in Z2.

– WP-Evaladd
n (pk = A, (ct0, ct1)): return ct0 + ct1 ∈ Zn×n

2 .
– WP-Evalmul

n (pk = A, (ct0, ct1)): return ct0ct1 ∈ Zn×n
2 . ♦

Remark. We emphasize the striking similarity between GSW-FHE and WP-FHE. The (pk, sk)
pairs of both schemes are (pk= A, sk= k) where A is a matrix, k is a vector with kTA ≈ 0 in GSW-
FHE, and kTA = 0 in WP-FHE. What’s more, if we treat the identity matrix I as G’s analog in
Z2, then the encryption of both schemes is Enc(pk = A,m) = AR +mG. Similarly, homomorphic
addition of both schemes is adding two ciphertexts together, and Evalmul(ct0, ct1) = ct0G−1(ct1)
for both schemes. Recall Table 1 as a summary of the above observations.

20

Our proof uses the following lemma:

Lemma 4.13 ([EWT21]). For any circuit class C ⊇ AC0[2], if Assumption 4.8 holds for C, then
{pA(x) = Ax : A ← OneSamp} is a collection of one-way permutations against C, that is, for any
adversary family {An}n∈N ∈ C, there exists a negligible function negl(·) such that for infinitely
many n,

Pr

Ay = Ax

∣∣∣∣∣∣
A← OneSamp(n)

x← Zn
2

y ← An(A,Ax)

 < negl(n). ♦

[EWT21] only proves the lemma for C = NC1, but actually their proof can be applied to any
circuit class C that satisfies requirement 4.8. We give a sketch of their proof.

Proof sketch. The idea is to use the adversary {An}n∈N that breaks one-wayness with probability
1/p(n) to distinguish ZeroSamp and OneSamp. First, checking Ay = Ax involves only matrix
multiplication, so we can assume An returns y with Ay = Ax or ⊥. Since {An}n∈N ∈ C cannot
distinguish ZeroSamp and OneSamp, we have

Pr

Ay = Ax

∣∣∣∣∣∣
A← ZeroSamp(n)

x← Zn
2

y ← An(A,Ax)

 >
1

p(n)
− negl(n) >

1

p′(n)
.

For A sampled from ZeroSamp, whenever An finds y s.t. Ay = Ax, we have probability 1
2 that

x 6= y due to the randomness of x (recall A is of rank n − 1, so y has two solutions), in which
case we have x − y as a non-trivial kernel of A. Therefore by invoking An we have non-negligible
probability to obtain the kernel of A, which can be used to distinguish ZeroSamp and OneSamp
(recall that the output of OneSamp is always full-rank).

We emphasize that only matrix multiplication in Z2 is used in this reduction, and thus the
reduction is computable in C ⊇ AC0[2]. □

4.2 CI from SIS against bounded-depth adversaries

In this subsection, we follow the construction of [PS19] to show that it can be computed in TC0,
yielding a CI hash against bounded-depth adversary under the super-weak assumption of SIS
against bounded-depth adversaries.

Theorem 4.14. For any circuit class C that contains TC0, for any polynomial S(n) and constant
d, assuming the hardness of SISn,m+1,q,β for q = poly(n), l = dlog qe,m = nl and sufficiently large
β = mO(d) against C, there exists a hash family computable in TC0 that is CI for any relation class
searchable by size-S(n)6, degree-d polynomials {fn : {0, 1}n → {0, 1}m}n∈N, against adversaries in
C. ♦

By lemma B.3, when n is large enough, by setting q ≥ nΩ(d) s.t. q ≥ β · nΩ(1), there is an
polynomial time reduction from nΩ(d)-approximate SIVP to SISn,m+1,q,β .

Remark. The main difficulty in computing the construction in [PS19] lies in computing the sum
of polynomially many numbers in Zq, where q is polynomially large.

6Here “size” means the encoding length of the constant degree polynomial.

21

Remark. The hash function is only CI for constant-degree polynomials because TC0 circuits can
only perform a constant number of homomorphic multiplications (which involve matrix multipli-
cations). Therefore, achieving constant-degree polynomials is the best we can do with FHE-based
constructions.

Construction 3. The hash familyH = {hn}n∈N with key generation algorithm GenH = {GenH,n}n∈N
is parameterized by an arbitrary circuit size S(n) = poly(n) and depth d. Let U(C, x) = C(x) denote
the universal circuit for size-S, degree-d polynomials (hence, it is also a constant degree polynomial
itself). We write q = q(n), l = dlog qe,m = nl.

• GenH,n: generate A ← Zn×2m
q and C ← GSW-Enc(A, 0S(n)) = AR + 0S(n) ⊗ G, where R ∈

Z2m×m. Choose a uniform random a← Zn
q , output the hash key k = (a,C).

• hn(k = (a,C), x ∈ {0, 1}n): let circuit Ux(·) = U(x, ·), and output

G−1n [a+ InertEval(Gn,GSW-Eval(Ux, C))] ∈ {0, 1}m. ♦

Remark. We do not use the term “fully homomorphic commitment” (which is implicitly given
by sFHE schemes) in [PS19], since computational binding is not satisfied for that “commitment”.
However, the construction is essentially the same with the one in [PS19].

We first show this hash function family can be computed in TC0, then show its correlation
intractability. The latter property directly follows the proof of Theorem 3.4 in [PS19].
Lemma 4.15. Construction 3 can be computed by TC0 circuits. ♦

Proof. Computing GenH,n and hn only requires:

• Computing iterative sum mod q = poly(n); (In this construction, we only need to compute
the product of a normal matrix (with each element in Zq) and a binary matrix (with each
element in {0, 1}), so it suffices to compute iterative sum in Zq.)

• Generating universal circuit Ux from x; (we only need to replace some input gates with binary
values.)

• Computing G−1n , i.e. bit decomposition, which is trivial since we store a number in Zq as a
binary number.

All these tasks can be computed in TC0. □

Lemma 4.16. Assuming the hardness of SISn,m,q,β for a sufficiently large β = mO(d) against C
adversary, Construction 3 is correlation intractable (cf. Theorem 4.14). ♦

Proof. Let A = {An}n∈N ∈ C be any adversary that breaks correlation intractability against {fn},
i.e.

Pr

hn(k = (a,C), x) = fn(x)

∣∣∣∣∣∣∣∣∣
A← Zn×2m

q

C ← GSW-Enc(A, 0S(n))
a← Zn

q

x← An(k)


is non-negligible.

First, we change C ← GSW-Enc(A, 0S(n)) to C ← GSW-Enc(A, f) for f = fn by hybrid argu-
ment. It can be done because the distribution of C is statistically indistinguishable by the following
lemma.

22

Lemma 4.17 (Item 1 of Proposition 2.10 in [PS19]). For any x ∈ Zn
q , the statistical dis-

tance between the distribution of (A ← Zn×2m
q , C = GSW-Enc(A, x)) and uniformly random is in

negl(m) by the leftover hash lemma. ♦

Therefore,

Pr

hn(k = (a,C), x) = fn(x)

∣∣∣∣∣∣∣∣∣
A← Zn×2m

q

C ← GSW-Enc(A, fn)
a← Zn

q

x← An(k)


is also non-negligible. Then we can use A to break SIS. Since hn(k, x) = fn(x) implies that

Gn · fn(x) =Gn · hn(k, x)
=a+ InertEval(Gn,GSW-Eval(Ux, C))

=a+ (Ar +Gn · fn(x))
=A′z +Gn · fn(x),

where
A′ =

[
a A

]
∈ Zn×(m+1)

q , z = (1, r) ∈ Zm+1.

Note that ||z|| = mO(d) as Ux is done by universally computing depth-d circuits.
So our SIS attacker works as follows: given an SIS instance A′, the attacker takes A as the last

m columns of A′ and generates C ← GSW-Enc(A, f) with randomness R retained. After taking
x← An(k), it simulates the computation of hn(k, x) to get r, then outputs z = (1, r). The attacker
is in C since the reduction is in TC0. □

4.3 CI from worst-case complexity assumptions

In this subsection, we bypass the reliance on the lattice assumptions, which therefore also allows
the hash function to be computable in AC0[2], by applying techniques from [PS19] to WP-FHE
(see Construction 2) instead of GSW-FHE (see Construction 1). This approach provides the con-
struction of a hash function family that is computable in AC0[2] and correlation-intractable for any
relation searchable in constant-degree polynomials (with bounded circuit size) against any circuit
class C ⊇ AC0[2], assuming ⊕L/poly * S̃umn−c ◦ C for some c > 0. The result can be stated as
follows:

Theorem 4.18. For any circuit class C ⊇ AC0[2], if Assumption 4.8 holds for C, for any polynomial
S(n) and constant d, there exists a hash family computable in AC0[2] that is CI for any relation
class searchable by degree-d polynomials {fn : {0, 1}n → {0, 1}n}n∈N computable by circuits of size
S(n), against adversaries in C (following the “infinitely many” version of security). ♦

4.3.1 Adaptation of inert commitment to Z2

In our construction, all computation are performed in Z2, hence we restate the inert commitment
in Z2, i.e, set q = 2. Although it is just the special case for q = 2, we emphasize that in this case, G
is simplified to the identify matrix (as what we observed in WP-FHE), hence the inert commitment
is greatly simplified.

23

Definition 4.19 (Inert Commitment in Z2). Given C = WP-Enc(A, x) ∈ Zn×n2

2 as the homo-
morphic encryption of some length-n vector, and M ∈ Zn×n

2 as a matrix, we write

InertEval(M,C) := cM = C · vM ,

where vM ∈ Zn2

2 is the vector satisfies (xT ⊗ In) · vM = Mx for any length-n vector x, obtained by
reordering the elements of M . ♦

4.3.2 Construction

Here we present the construction of the CI hash family to prove Theorem 4.18.

Construction 4. The hash family H = {hn}n∈N with the key generation algorithm GenH =
{GenH,n}n∈N is parameterized by an arbitrary circuit size S(n) = poly(n) and depth d. Let
U(C, x) = C(x) denote a universal circuit for size-S, degree-d polynomials.

• GenH,n: generate A ← OneSamp and C ← WP-Enc(A, 0S(n)), choose a uniformly random
a← Zn

2 and output the hash key k = (a,C).

• hn(k = (a,C), x ∈ {0, 1}n): define the circuit Ux(·) as Ux(·) = U(x, ·) and output

a+ InertEval(In,WP-Eval(Ux, C)) ∈ {0, 1}n . ♦

Proof of Theorem 4.18. We prove that for any circuit class C ⊇ AC0[2], Construction 4 is a
CI hash family against C if Assumption 4.8 holds for C. Let A = {An} ∈ C be any adversary
family that breaks CI for some sequence of polynomials {fn}. Since given x, we can check whether
hn((a,C), x) = fn(x) in C (which only involves matrix multiplication and computing fn(x)), w.l.o.g.,
we assume that An always outputs some x ∈ {0, 1}n s.t. hn((a,C), x) = fn(x) with non-negligible
probability or outputs ⊥ after taking k = (a,C) sampled according to GenH,n as input.

We abuse the notation to let fn ∈ {0, 1}S(n) also denote the encoding of the circuit that computes
this function. The idea is to apply the hybrid argument to change the input distribution of An.
We observe that the following two distribution are equivalent, since A (sampled from OneSamp) is
always full-rank. Hence the two distributions are indistinguishable for C circuits.

• D0
n = {(a,WP-Enc(A, 0S(n)) = AR+ 0S(n) ⊗ In) : a← Zn

2 , A← OneSamp, R← Zn×nS(n)
2 }.

• D1
n = {(a,WP-Enc(A, fn) = AR+ fn ⊗ In) : a← Zn

2 , A← OneSamp, R← Zn×nS(n)
2 }.

Lemma 4.20. For any circuit class C ⊇ AC0[2], if Assumption 4.8 holds for C, any circuit family
{An} ∈ C cannot distinguish D0

n and D1
n, i.e,∣∣ Pr [An(k) = 1

∣∣ k ← D0
n

]
− Pr

[
An(k) = 1

∣∣ k ← D1
n

] ∣∣ < negl(n). ♦

So after switching the input to An from k ← D0
n to k′ ← D1

n, An should also output x ∈ {0, 1}n
s.t. hn(k

′ = (a,WP-Enc(A, fn)), x) = fn(x) with non-negligible probability. Since

fn(x) =hn(k
′, x)

=a+ InertEval(In,WP-Eval(Ux,WP-Enc(A, fn)))

24

=a+ InertEval(In, AR+ fn(x)
t ⊗ In)

=a+ArIn + fn(x),

we have ArIn = a (in Z2). So if we record the randomness used to compute WP-Enc(A, fn),
by calculating hn(k

′, x), we are able to compute rIn = A−1a. However, this allows us to invert
pA(x) = Ax, which is impossible by Lemma 4.13. □

5 Impossibility Result for Universal Fiat-Shamir Hash Functions

In this section, we show how we prove the impossibility result for the universal Fiat-Shamir hash
function. We show that for any function family H, we can construct an argument whose soundness
cannot be preserved after applying the Fiat-Shamir transformation with H.

Definition 5.1 ((lx, la, lb)-universal Fiat-Shamir hash from C to D). Given circuit classes
D ⊆ C and functions lx(n), la(n), lb(n), we say a Fiat-Shamir hash function family

H =
{
Hn : {0, 1}lx(n)+la(n) → {0, 1}lb(n)

}
n∈N

is an (lx, la, lb)-universal Fiat-Shamir hash from C to D if for every 3-round public-coin C-argument
with first message length la(n) and second message length lb(n) that proves instances of length
lx(n), applying Fiat-Shamir with H always gives a sound non-interactive D-argument. ♦

Theorem 5.2. For circuit classes D ⊆ C, assume there exists collision-resistant hash function
family computable in D and collision resistant against C with arbitrary polynomial compression.
Then for any functions la(n), lb(n) ∈ poly(n) such that lx(n), la(n) ∈ ω(nε) for some ε > 0 and
lb(n) ∈ ω(log(n)), there is no (lx, la, lb)-universal Fiat-Shamir hash from C to D that is computable
in C. ♦

The proof of Theorem 5.2 is done by showing that for any hash family H, there is an interactive
C-argument for the empty language such that an adversary in D can break the reduced protocol
after Fiat-Shamir with H. Note that the empty language here can be generalized to any language
L (except some corner cases that the soundness is trivial, like L does not have a C-argument or
there is no x 6∈ L). This can be achieved by modifying the verifier of the interactive C-argument
for L to additionally accept the view that convinces the verifier of the empty language’s protocol.

Here we first give the intuition before stating the proof. For the empty language, there exists
a trivial protocol that the verifier just rejects anything. But to make the protocol insecure after
the Fiat-Shamir transformation, we will use a verifier that accepts with negligible probability.
Intuitively, the verifier will accept the view which convinces him that the prover can predict the
second message before it is revealed. Here, the prover can convince the verifier by showing that he
knows a circuit that can output the second message if it takes the first message as the input before
the second message is revealed. As the second message is chosen at random, the prover cannot
predict it during the real interaction. So, with this verifier, the argument is still secure.

After applying the Fiat-Shamir transformation, the Fiat-Shamir hash function can be used by
the malicious prover as the circuit to predict the second message.

However, there exists a little problem. There is a limitation on the length of the first message,
so the prover cannot send the circuit before the second message is revealed if it is too long. To

25

bypass this problem, we allow the prover to first send a commitment of the circuit and reveal the
circuit in the third message.

This idea is similar to the first idea of [GK03], which lets the verifier accept the view which
convinces him the prover can predict the verifier’s next message. But our idea is much simpler
because currently the circuit size is fixed before we decide the protocol.

Proof of theorem 5.2. In the whole proof, all encoding of circuits or circuit sizes are considered
under circuit class C.

For any D ⊆ C, for any lx(n), la(n), lb(n) ∈ poly(n), consider any hash function family H =
Hn : {0, 1}lx(n)+la(n) → {0, 1}lb(n)n∈N computable in C. From the assumptions, we know there exists
a collision resistant hash function family

F =
{
Fn : {0, 1}lH(n) → {0, 1}la(n)

}
n∈N

.

Here we will construct an argument (P, V) for the empty language that applying Fiat-Shamir
with H cannot preserve soundness (and thus H is not a universal Fiat-Shamir hash):

• Common input: x ∈ {0, 1}lx(n).

• Auxiliary input to the prover (or witness): none

1. V : Compute f ← Fn Output crs = f .

2. P : On input (x,w, crs):

(a) Parse crs as f .
(b) Let Ĉ be an arbitrary string ∈ {0, 1}lH(n), which denotes a circuit.
(c) Compute a = f(Ĉ) and output it.

3. V : On input (x, crs, a), get public coin b← {0, 1}lb(n) and output it.

4. P : On input (x,w, crs, a, b), output c = Ĉ.

5. V : On input (x, crs, a, b, c):

(a) Parse crs as f .
(b) Parse c as Ĉ ∈ {0, 1}lH(n).
(c) Check whether a = f(Ĉ), reject if it is not the case.
(d) Accept if Ĉ is a valid encoding with input size la(n) and output size lb(n) and C(a) = b.

Here, the evaluation of C is calculated by a universal circuit in C, which is capable of
computing any h ∈ Hn.

(e) Otherwise, reject.

The lengths of four messages are lF (n), la(n), lb(n), lH(n) respectively, which satisfy the re-
quirement of applying Fiat-Shamir transformation with H. Let the protocol obtained by applying
Fiat-Shamir transformation be (PFS , V FS).

Now, we should examine the security before applying Fiat-Shamir transformation and the in-
security after it. We prove the security by constructing an adversary for the CRHF F .

26

P Vcrs = f ← Fn

Decide Ĉ

a← f(Ĉ)
a

b← {0, 1}lb(n)

c = Ĉ

Verify:
a = f(Ĉ) ∧ C(a) = b

Figure 5: Argument (P, V)

Suppose P ∗ = {P ∗n}n∈N is the adversary that breaks (P, V) with non-negligible probability. The
construction of the adversary A = {An}n∈N for F is described below:

On input f :

1. Compute crs = f and a ← P ∗(x, crs), the first message of (P ∗, V)(x). Here, x ∈ {0, 1}lx(n)
is the input that the interaction between P ∗ and V results in acceptance with the highest
probability.

2. Compute b1 ← V (x, crs, a) and b2 ← V (x, crs, a), the second message of (P ∗, V)(x) with
different random bits.

3. Compute c1 ← P ∗(x, crs, a, b1) and c2 ← P ∗(x, crs, a, b2), the third message of (P ∗, V)(x).

4. Output c1 and c2.

Clearly, the adversary is in C, so we only need to show it can succeed with non-negligible probability.

Claim 5.3. Assume there exists polynomial q(n), for infinite many n, ∃x ∈ {0, 1}lx(n),

Pr[(P ∗, V)(x) = 1] > 1/q(n),

then A can break F with non-negligible probability. Formally, there exists a polynomial p(n), for
infinite many n ∈ N,

Pr

[
f(x1) = f(x2) ∧ x1 6= x2

∣∣∣∣ f ← Fn

(x1, x2)← A(f)

]
> 1/p(n), ♦

Proof. The adversary A for breaking the collision resistance of f sets f as the crs in the protocol
(P ∗, V), then runs P ∗ on crs to get started. So, for infinite many n ∈ N, with probability 1/2q(n)
over the generation of crs and a in adversary A, we have

Pr[(P ∗, V (x)|crs)(x) = 1] >
1

2q(n)
. (1)

Here P ∗ will follow from the state after the generation of crs and a in adversary A, which means
P ∗’s first message will be restricted to a.

27

Since b1, b2 are generated independently, we have for infinite many n ∈ N, with probability
1/2q(n) over the generation of f and a,

Pr

(P ∗, V |crs,b1)(x) = 1∧
(P ∗, V |crs,b2)(x) = 1∧
b1 6= b2

∣∣∣∣∣∣ crs, b1, b2 ← A(f)

 >
1

4q2(n)
− negl(n).

Same as was in Eqn. (1), here both P ∗ will follow from the state after the generation of crs and a
in adversary A, which means they will both reply a as the first message.

As a result, for infinite many n ∈ N,

Pr

V (x, crs, a, b1, c1) = 1∧
V (x, crs, a, b2, c2) = 1∧
b1 6= b2

∣∣∣∣∣∣ f ← Fn

crs, a, b1, b2, c1, c2 ← A(f)

 >
1

8q3(n)
− negl(n).

This indicates that for infinite many n ∈ N,

Pr

[
f(x1) = f(x2) ∧ x1 6= x2

∣∣∣∣ f ← Fn

(x1, x2)← A(f)

]
>

1

8q3(n)
− negl(n). □

Next, we will prove the insecurity of the argument after applying Fiat-Shamir transformation by
directly constructing an adversary. The construction of adversary P ∗ = {P ∗n}n∈N for (PFS , V FS)
is shown below:

On input x, crs′ = (kh, crs):

1. Parse crs′ as h, f , the Fiat-Shamir hash function and the CRHF for commitment.

2. Let C = h(x‖·), hard-coding x into h. Let c = Ĉ. Note that length of Ĉ is bounded by lH(n).

3. Compute a← f(c).

4. Output a, c.

Note that the adversary is in D because it does not need to evaluate h.
Claim 5.4. P ∗ can break (PFS , V FS) with probability 1. Formally, ∀n ∈ N, ∀x ∈ {0, 1}lx(n),

Pr[(P ∗, V FS)(x) = 1] = 1. ♦

Proof. Following V FS
n , parsing crs′ as h, f , parsing c as Ĉ, we can directly know that

• a = f(c),

• Ĉ can be calculated by the universal circuit.

• b = C(a) = h(x‖a),

which satisfies the requirement for V FS
n to accept. □

Till now, we prove the security before applying Fiat-Shamir transformation, and the insecurity
after applying Fiat-Shamir transformation, which completes the proof of theorem 5.2. □

Remark. Actually, the counter-example in our proof works even if we consider an arbitrary poly-
size Fiat-Shamir hash that is not necessarily computable in C. Recall that the prover after Fiat-
Shamir does not need to send the second message b = h(x‖a) since it is clear from h, x, and a.
Therefore, the cheating prover after Fiat-Shamir can simply copy the description of the Fiat-Shamir
hash from the CRS and evaluate the value of f on it – all are computable in D.

28

6 Stronger Impossibility Results: Universal Counter-Examples
for All Fiat-Shamir Hash Functions

In this section, we aim to prove stronger impossibility results by exchanging the order of quantifiers.
That is, we want to find a protocol that applying the Fiat-Shamir transformation with any function
ensemble cannot preserve the soundness, just like [GK03]. Following the main idea in the last
section, we let the adversary show his ability to predict the second message before the verifier
reveals it.

Theorem 6.1. For any circuit class C that AC0[2] ⊆ C, if there exists collision resistant hash
function family computable in C and collision resistant against C with arbitrary polynomial com-
pression, then there exists a 3-round public coin protocol with CRS (P, V) such that for all function
ensemble H computable in C the following conditions are satisfied:

• (P, V) is a 3-round public coin argument for some language L, that is computable in C and
secure against any adversary in C.

• Applying the Fiat-Shamir transformation on (P, V) with H results in a protocol (PFS , V FS)
that is insecure against some adversary in C. ♦

Notations Before starting the proof, we will first clarify some notations or conventions that we
will frequently use. Throughout the section, we assume C is fixed, F =

{
Fn : {0, 1}n

0.2

→ {0, 1}n
0.1
}
n∈N

is a collision resistant hash function family used in a tree commitment, which will be introduced
later, Comm =

{
Commn : {0, 1}5n → {0, 1}n

}
is a collision resistant hash function family which is

used for another commitment. When we use Comm to commit to some x, we will concatenate x
with the randomness r ∈ {0, 1}n and then apply Comm on (x, r). If the input of Comm is shorter
than 5n, we assume it is padded with 0s. Moreover, we will use G = {Gn}n∈N, H = {Hn}n∈N as
potential Fiat-Shamir hash function families. Typically, we will use H as the Fiat-Shamir hash
function for our whole protocol, while using G as the Fiat-Shamir hash function inside the con-
struction. G1,G2 will be used if there are more than one Fiat-Shamir hash functions used in the
construction. We require H,G,G1,G2 to be computable in C throughout the whole section. In the
whole section, all encodings of circuits and circuit sizes are considered under circuit class C.

Definition 6.2 (Tree Commitment). A tree-commitment to x ∈ {0, 1}∗, with respect to the
function f : {0, 1}n

0.2

→ {0, 1}n
0.1

, is defined as follows. Consider a n0.1-branch tree of depth
logn0.1(|x|), where each node has a label in {0, 1}n

0.1

. The leaves are labeled by the bits of x
(n0.1 bits per leaf). Each internal node is labeled by the string obtained by first concatenating
all labels of its children and applying f to it. More specifically, if the labels of its children is
a1, a2, · · · , an0.1 ∈ {0, 1}n

0.1

the label of this node is f(a1‖a2‖ · · · ‖an0.1). The tree commitment to
x, with respect to f , is denoted by TCf (x), and consists of the label of the root and the depth of
the tree. For a specific bit, suppose the leaf that contains this bit is l. Define the authentication
path for that bit to be the concatenation of all labels of nodes that lie between l and the root.
Note that the number of bits of an authentication path is logn0.1(|x|)n0.1. For x of length nc, the
authentication path is of length 10cn0.1 = O(n0.1) bits. ♦

Remark. The tree commitment itself can be used as a CRHF, with arbitrary polynomial input
size and n0.1 output size, when f is sampled from the CRHF family. The advantage of using tree

29

commitment instead of CRHF as commitment is that we can open the string locally on a bit by
outputting its authentication path. Also note that the verification of an authentication path can
be done in low depth regardless of the depth of the tree. The binding property is satisfied since if
an adversary outputs something different from the committed one, a collision can always be found
somewhere on the path.

Normally, tree commitment only needs 2n to n hash functions, but in low depth setting, this
is not enough to achieve constant depth. Thus we need the stretch to be polynomial. Any CRHF
with polynomial stretch can be used here, and the only reason for us to use n0.2 → n0.1 function is
to make the size of authentication path fit in O(n) and facilitate later analysis.

An important idea in this proof follows from the construction in the proof of Theorem 5.2.
That is, we want to modify the verifier so that the verifier accepts the view that convinces him
the prover knows his second message before it is revealed. In the previous construction, we let
the adversary prove this by first sending a commitment of circuit C, and then reveal that C can
output the second message b when taking the first message a as the input. This can be abstracted
as a relation, which we denote as the Central Relation. The Central Relation characterizes the fact
that the adversary wants to prove he has the witness for f‖a‖b that satisfies certain requirements,
where f is the function used for commitment and a, b is the first and second message respectively.
In the construction of the proof of theorem 5.2, the adversary directly shows the witness to prove
the knowledge, but we will use some succinct proof to achieve this goal later.

Definition 6.3 (Central Relation). For all n ∈ N. Define

R =

{
(f‖a‖b, Ĉ‖Π)

∣∣∣∣∣ TCf (C̃) = a ∧ C(a) = b ∧ |C̃| ≤ nlnn

Π is a computation history of TCf (C̃), C(a)

}

Here, a, b ∈ {0, 1}n , f ∈ Fn. C is a circuit and Ĉ is the encoding for C with input size n and
output size n regarding to C. C̃ is a special encoding of C that satisfies the following requirements:

• Transformation between Ĉ and C̃ can be computed in C.

• It has high minimum distance. That is for any different C1, C2, we require C̃1 and C̃2 differ
in at least polynomial fraction of all bits. ♦

Remark. Although verifying TCf (C̃) = a∧C(a) = b may be difficult as we do not limit the depth
of C for now, we can verify computation history to check those equations. Thus, the central relation
can be verified in constant depth. Also, the size of C is bounded by nlnn, which means the relation
is NTIME(nlnn) instead of NP, and we will address this problem with the PCP proof system that
we will introduce later.

Now, we will introduce the main process of our proof. We construct three protocols for the
empty language. We want to construct the protocol that the verifier only accepts some views that
occur with negligible probability, but the adversary can make these views occur frequently after
the Fiat-Shamir transform:

• The first protocol (P1, V1) follows the straightforward idea that implements a succinct 2-round
protocol with CRS for central relation after f, a, b is determined in the first two rounds, which
gives the adversary potential ability to show he knows the witness of f‖a‖b in central relation.

30

As the adversary can use the Fiat-Shamir hash function as the witness and can compute the
history Π itself, it can convince the verifier that he knows the witness, which implies the
insecurity after applying Fiat-Shamir. However, we do not know if such a 2-round protocol
satisfies the soundness we need, so we are not sure about the security.

• The second protocol (P2, V2) goes from a different way. After the verifier determines f , the
adversary can determine a, b1, b2 that b1 6= b2 and try to prove he knows the witness for both
instances (f, a, b1) and (f, a, b2) in central relation, with a 3-round secure protocol with CRS.
As a serves as the commitment of the witness, it is hard for the adversary to find two different
Cs, i.e., the witness for both (f, a, b1) and (f, a, b2), which indicates its security. But for this
protocol, the insecurity after applying Fiat-Shamir is hard to argue.

• Then, we find the third protocol that resides between the first one and the second one. We
can show the third protocol is secure if the second one is secure after applying Fiat-Shamir,
and we can show the third protocol after applying Fiat-Shamir is insecure if the first one is
insecure on its own.

With the existence of the third protocol, we can show at least one of the three protocols can be
used as a protocol required in the theorem.

The whole proof follows the idea in [GK03], but some technical problems need to be addressed:

• We need to fit all cryptographic tools into a low-depth circuit class. Some of them such as
the commitment scheme used in [GK03] are not known in low-depth circuit class currently.

• In the tree commitment scheme, we require the inner hash function to have polynomial stretch,
which is used to keep the depth constant.

• Since the circuit size in central relation is bounded by nlnn instead of a polynomial, super-
constant depth may still occur even with polynomial-stretch hash function. We resolve this
by requiring the prover to give all computation history to facilitate the verification. Due to
the fact that honest prover does not need to do anything, and malicious prover can have depth
depending on the Fiat-Shamir hash function, we can eventually achieve constant depth.

To start, we first introduce the 2-round protocol that is used in the first protocol but not
guaranteed to be secure, and the 3-round protocol used in the second protocol, as mentioned
above. Here, we require the protocol to be succinct, thus we cannot directly send the circuit
as the former construction. [Kil92] gives a 3-round argument with CRS for NEXP language that
satisfies knowledge extraction, which can be used for proving our central relation. To make it fit
in AC0[2], we need to use a specific PCP system.

Definition 6.4 (Probabilistic verifier in AC0[2]). A probabilistic verifier for an NEXP lan-
guage L is an AC0[2] circuit Vpcp that is given a input x, and oracle access to a proof π which
we will denote by V π

pcp. We say that Vpcp has randomness complexity r(n) and query complexity
q(n) with respect to polynomials r(n) and q(n) if for any input x such that |x| = lx(n),

1. V π
pcp(x) uses at most r(n) random bits.

2. V π
pcp(x) queries at most q(n) times to the oracle.

As a special note, Vpcp should only make non-adaptive queries, that is, there is an probabilistic
polynomial time algorithm Qpcp upon receiving the input x and the random tape γ for Vpcp, outputs
queries (ϕ1, ϕ2, · · · , ϕq(n)). ♦

31

Theorem 6.5. For the central relation R, there exists a PCP system (Ppcp, Vpcp) where Vpcp is a
probabilistic verifier in AC0[2] for R with randomness complexity O(log n) and query complexity
O(1). while Ppcp is an AC0[2] circuit. This system satisfies:

• Completeness: For all (x,w) ∈ R,

Pr
[
V π
pcp(x) = 1

∣∣ π ← Ppcp(x,w)
]
= 1.

This implies that there exists a polynomial p(·) such that the proof π generated is of length
p(|x|+ |w|).

• Soundness: For all x such that there does not exists w that (x,w) ∈ R, for any proof π∗,

Pr
[
V π∗
pcp(x) = 1

]
<

1

2
,

where the randomness is over the internal randomness of Vpcp.

• Knowledge extraction: there exists an extractor Epcp in AC0[2] such that for any input x
and proof π̃ if

Pr
[
V π̃
pcp(x) = 1

]
≥ 1− 1

log5 n
,

then
Pr [(x,w) ∈ R | w ← Epcp(x, π̃)] = 1. ♦

Theorem 6.5 essentially follows from the PCP construction in [Par21; CWY23], but we include
a proof in Appendix C that the prover can be implemented in AC0[2].

Recall that if we want to use a PCP system to prove the central relation we have to address the
problem that the witness is of super-polynomial size. But the above PCP system guarantees that
there exists a polynomial p(·) such that the proof π generated is of length p(|x| + |w|). In other
words, if the witness Ĉ‖Π in the central relation is of some fixed polynomial length (which is the
case in later applications), the proof π is also fixed polynomial size.

Later on we consider running n0.1 PCPs in parallel to make the probability of accepting a wrong
statement to negligible. When we say Vpcp later, we refer to the verifier that runs n0.1 PCPs in
parallel and accepts if and only if all verifications are passed.

In later protocols we use PCP together with the tree commitment technique. We first let
π ← Ppcp be the proof, then use a tree commitment to compress the proof into a length n message
β = TCfTC (π). Instead of outputting the queried bit later, we output the authentication path
on tree commitment. Since the tree is of constant depth with O(n0.2)-length authentication path
and we run n0.1 PCP verification in parallel, all queries and answers can be expressed by strings
γ, δ ∈ {0, 1}n, respectively.

6.1 Interactive Argument for Central Relation

According to [Kil92], there is an argument (PKil, VKil) for central relation R based on (Ppcp, Vpcp)
for R. Recall F is the CRHF used for tree commitment. The protocol is shown below:

• Common input: f‖a‖b.

• Auxiliary input for the prover: w = Ĉ‖Π.

32

1. VKil : Output crs = fTC ← Fn.

2. PKil : On input (f‖a‖b, w, crs) :

(a) Compute PCP proof π ← Ppcp(f‖a‖b, w).
(b) Compute β ← TCfTC (π) and output β.

3. VKil : On input (f‖a‖b, crs, β), select random tape γ for Vpcp and output γ.

4. PKil: On input (f‖a‖b, w, crs, β, γ), simulate Vpcp on random tape γ, record its queries and
let the authentication paths along with the answers to these queries be δ. Output δ.

5. VKil: On input (f‖a‖b, crs, β, γ, δ), accept iff:

(a) The authentication paths in δ are consistent under the tree commitment scheme.
(b) Vpcp accepts after receiving answers in δ.

PKil(f‖a‖b, w) VKil(f‖a‖b)

select crs = fTC ← Fn
crs

π ← Ppcp(f∥a∥b, w)

β ← TCfTC (π) β

select random γ for Vpcpγ

let δ be the authentication
paths and the answers to queries
by Vpcp with randomness γ

δ

Verify:
· The authentication paths in δ are
consistent under tree commitment scheme.
· Vpcp accepts after receiving answers in δ.

Figure 6: Interactive Argument for the Central Relation

Lemma 6.6. (PKil, VKil) is a 3-round argument in C with CRS for language R against C, that
satisfies knowledge extraction in AC0[2]. ♦

Proof. We can obtain completeness directly from the completeness of probabilistic verification.
For soundness and knowledge extraction we prove them together below.

We try to prove that there exists an extractor EP̃ such that for any prover P̃ and a polynomial
p(n), if for an x ∈ {0, 1}lx(n),

Pr
[
(P̃ , V)(x) = 1

]
≥ 1

p(n)

then with probability 1
2p(n) over the generation of proof π̃ ← EP̃ , the proof π̃ satisfies

Pr[V π̃
pcp(x) = 1] ≥ e− 2

4e
· 1

(p(n))2
.

33

Note that the probability here is the probability that π̃ passes all n0.1 parallel verification. Since
all verifications are independent, the probability that π̃ passes a single verification is greater than
1− 1

log5 n
. If such extractor exists, then we prove the knowledge extraction property. The extractor

calls EP̃ at first to obtain the proof π̃ and then calls the PCP extractor to obtain the witness
w ← Epcp(π̃) with probability 1. For soundness, if ¬∃w s.t. (x,w) ∈ R, then there is no way to
extract such w and thus no prover P̃ exists. To construct such extractor EP̃ , a key observation is
that the distributions of queries ξ = Qpcp(f‖a‖b, γ) are the same when the prover P̃ interacts with
the verifier VKil and when the PCP verifier queries its oracle. The proof idea is to repeatedly use
P̃ and find out all positions in π that would be queried with considerable probability. EP̃ on input
(f‖a‖b) works as follows:

1. Compute crs← VKil.

2. Run P̃ (f‖a‖b, crs) for the first round to obtain β.

3. Start with π̃ = 0ℓ where ℓ is the length of PCP proof. Let S be a empty set and j = k = 0
be two counters. Repeat the following steps with different random bits:

4. Choose γ ← {0, 1}n.

5. Run δ ← P̃ (f‖a‖b, crs, β, γ).

6. If VKil(f‖a‖b, crs, β, γ, δ) = 1,

(a) Increase the counter k ← k + 1, j ← j + 1.
(b) Record the queried positions ξk ← Qpcp(f‖a‖b, γ).
(c) Update π̃ to match δ on positions ξk. If this update contradict any previous update,

abort and output 0ℓ.
(d) Update the set of positions that are updated S ← S ∪ ξk.
(e) Halt if k = ℓ and output π̃.
(f) If j > (ℓp(n))2, abort and output 0ℓ.

This algorithm can be implemented in AC0[2]. We can run the loop simultaneously since they are
independent.
Suppose that the prover P̃ convinces VKil on input (f‖a‖b) with probability 1

p(n) . Define the state
after the first two steps to be good if

Pr

[
VKil(f‖a‖b, crs, β, γ, δ) = 1

∣∣∣∣ γ ← {0, 1}nδ ← P̃ (f‖a‖b, crs, β, γ)

]
≥ 1

2p(n)
,

where crs, β are generated in the first two steps.
By Markov inequality, the probability that the state is good is at least 1

2p(n) . Note that if the
state is good then the abort probability of EP̃ is negligible since:

• We find a collision for the tree commitment when we abort in 6(c).

• We abort in 6(f) with negligible probability by Chernoff bound.

34

Also, if the state is good then we have (ignore some negligible probability where EP̃ aborts),

Pr
[
V π̃
pcp(f‖a‖b) = 1

]
≥Pr

Qpcp(f‖a‖b, γ) ⊆ S

∣∣∣∣∣∣
γ ← {0, 1}n

δ ← P̃ (f‖a‖b, crs, β, γ)
VKil(f‖a‖b, crs, β, γ, δ) = 1


·Pr

[
VKil(f‖a‖b, crs, β, γ, δ) = 1

∣∣∣∣ γ ← {0, 1}nδ ← P̃ (f‖a‖b, crs, β, γ)

]

≥ 1

2p(n)
· Pr

Qpcp(f‖a‖b, γ) ⊆ S

∣∣∣∣∣∣
γ ← {0, 1}n

δ ← P̃ (f‖a‖b, crs, β, γ)
VKil(f‖a‖b, crs, β, γ, δ) = 1


≥ 1

2p(n)
·

1−
ℓ∑

i=1

ℓ∏
k=1

Pr [i /∈ ξk] · Pr

i ∈ Qpcp(f‖a‖b, γ)

∣∣∣∣∣∣
γ ← {0, 1}n

δ ← P̃ (f‖a‖b, crs, β, γ)
VKil(f‖a‖b, crs, β, γ, δ) = 1


The first inequality is by condition probability. Plug in the result that state is good we get the

second inequality. The last inequality is by union bound. Since we independently sample γ each
round in EP̃ , the probabilities that the i-th bit is queried in each round and by V π̃

pcp at last are the
same. That is,

Pr [i ∈ ξk] = Pr

i ∈ Qpcp(f‖a‖b, γ)

∣∣∣∣∣∣
γ ← {0, 1}n

δ ← P̃ (f‖a‖b, crs, β, γ)
VKil(f‖a‖b, crs, β, γ, δ) = 1

 .

Then we have,

Pr
[
V π̃
pcp(f‖a‖b) = 1

]
≥ 1

2p(n)
·

1−
ℓ∑

i=1

ℓ∏
k=1

Pr [i /∈ ξk] · Pr

i ∈ Qpcp(f‖a‖b, γ)

∣∣∣∣∣∣
γ ← {0, 1}n

δ ← P̃ (f‖a‖b, crs, β, γ)
VKil(f‖a‖b, crs, β, γ, δ) = 1


≥ 1

2p(n)
·
(
1− ℓ · 1

eℓ

)
=

e− 1

2e
· 1

p(n)
. (e is the natural constant)

Overall, we have
Pr

[
V π̃
pcp(x) = 1

∣∣∣ π̃ ← EP̃
]
≥ e− 2

4e
· 1

(p(n))2
. □

6.2 Reduced Argument for Central Relation

Now we introduce a reduced argument (PMic, VMic) for central relation that is similar to the previous
argument. This is a 2-round protocol with CRS. One can imagine it to be some kind of compressed
version of the previous argument by Fiat-Shamir-like transformation but there are some nuances:

• Two Fiat-Shamir transformations may be applied on the original protocol in parallel. That
means, in the reduced protocol, the prover will generate the verifier’s public coin message
twice with two different Fiat-Shamir hash functions, and need to pass the verification for
both messages.

35

• Instead of sending β in the first round, we send the commitment of β, denoted as β̂. This is em-
ployed to address some details in later proofs, especially the insecurity of (P2

FS , V2
FS), (P3

FS , V3
FS),

which will be introduced later.

• We separate the message from verifier as the CRS and the first message. The CRS can be
generated by a private coin generator, and the first message must be generated with public
coins. This distinction is made to facilitate the integration of the reduced protocol into later
3-round protocols. Specifically, our aim is to incorporate the CRS from this protocol into
the CRS of the 3-round protocol, while placing the first message from this protocol into the
second message (the one sent by the verifier) in the 3-round protocol.

Let F ,Comm be two CRHFs as mentioned in the beginning of this section. We will give two
versions of this argument (P 1

Mic, V
1
Mic) and (P 2

Mic, V
2
Mic). (P 1

Mic, V
1
Mic) only uses one Fiat-Shamir

hash function, while (P 2
Mic, V

2
Mic) uses two.

For the first version, let G be a Fiat-Shamir hash function which will be clear in the content when
we analyze or utilize the protocol. (P 1

Mic, V
1
Mic) works as follows:

• Common input: f‖a‖b.

• Auxiliary input for the prover: w = Ĉ‖Π.

1. V 1
Mic: Select fTC ← Fn , comm ← Commn, g ← G and output crs = (fTC , g, comm). Later,

we will denote this process as crs← GenGMic.

2. V 1
Mic: Select the randomness for comm, rc ← {0, 1}n and output rc.

3. P 1
Mic: On input (f‖a‖b, w, crs, rc):

(a) Compute PCP proof π ← Ppcp(f‖a‖b, w).
(b) Compute β ← TCfTC (π).

(c) Compute β̂ ← comm(β‖rc).
(d) Compute γ ← g(β̂).
(e) Simulate Vpcp on γ and let the authentication paths along with answers to queries from

Vpcp be δ.
(f) Output ans = (β, β̂, γ, δ).

4. V 1
Mic: On input (f‖a‖b, crs, ans), accept iff:

(a) β̂ = comm(β‖rc).
(b) γ = g(β̂).
(c) Vpcp accept with random tape γ and query responses δ.

For the second version, let G1,G2 be two Fiat-Shamir hash functions which will be clear in the
content. (P 2

Mic, V
2
Mic) works as follows:

• Common input: f‖a‖b.

• Auxiliary input for the prover: w = Ĉ‖Π.

36

P 1
Mic(f‖a‖b, w) V 1

Mic(f‖a‖b)

fTC ← Fn

comm← Commn.
g ← Gcrs = (fTC , g, comm)

rc ← {0, 1}nrc

π ← Ppcp(f∥a∥b, w)

β ← TCfTC (π)

β̂ ← comm(β∥rc)
γ ← g(β̂)

let δ be the authentication
paths and the answers to queries
by Vpcp with randomness γ

ans = (β, β̂, γ, δ)

Verify:
β̂ = comm(β∥rc)
γ = g(β̂)

Vpcp accept with random tape γ

and query responses δ

Figure 7: Reduced Argument for the Central Relation (P 1
Mic, V

1
Mic)

1. V 2
Mic: Select fTC ← Fn , comm← Commn, g1 ← G1, g2 ← G2 and output crs = (fTC , g1, g2, comm).

Later, we will denote this process as crs← GenG1,G2Mic .

2. V 2
Mic: Select the randomness for comm, rc ← {0, 1}n and output rc.

3. P 2
Mic: On input (f‖a‖b, w, crs, rc):

(a) Compute PCP proof π ← Ppcp(f‖a‖b, w).
(b) Compute β ← TCfTC (π).

(c) Compute β̂ ← comm(β‖rc).
(d) Compute γ1 ← g1(β̂) and γ2 ← g2(β̂).
(e) Simulate Vpcp on γ1, γ2 and let the authentication paths along with answers to queries

from Vpcp be δ1, δ2, respectively.
(f) Output ans = (β, β̂, γ1, γ2, δ1, δ2).

4. V 2
Mic: On input (f‖a‖b, crs, ans), accept iff:

(a) β̂ = comm(β‖rc).
(b) γ1 = g1(β̂) and γ2 = g2(β̂).
(c) Vpcp accept with random tape γ1, γ2 and query responses δ1, δ2, respectively.

Note that those two reduced protocols maintains the completeness of the previous protocol
(PKil, VKil), but there is no guarantee about the soundness. Our following proof will consider both
cases whether the protocol has soundness.

37

P 2
Mic(f‖a‖b, w) V 2

Mic(f‖a‖b)

fTC ← Fn

comm← Commn.
g1 ← G1, g2 ← G2crs = (fTC , g1, g2, comm)

rc ← {0, 1}nrc

π ← Ppcp(f∥a∥b, w)

β ← TCfTC (π)

β̂ ← comm(β∥rc)
γ1 ← g1(β̂) and γ2 ← g2(β̂)

let δ1, δ2 be the authentication
paths and the answers to queries
by Vpcp with randomness
γ1, γ2,respectively

ans = (β, β̂, γ1, γ2, δ1, δ2)

Verify:
β̂ = comm(β∥rc)
γ1 = g1(β̂) and γ2 = g2(β̂)

Vpcp accept with random tape γ1, γ2
and query responses δ1, δ2, respectively

Figure 8: Reduced Argument for the Central Relation (P 2
Mic, V

2
Mic)

6.3 Protocol 1

In the first protocol (P1, V1), the reduced protocol is applied to enable the prediction of the next
message of the verifier after the Fiat Shamir transformation. In the CRS we generate the function f
for central relation, then we let the prover send a and the verifier send b, to determine the instance
of central relation. After the instance is determined, we invoke (P 2

Mic, V
2
Mic) to prove it. Note

that although interaction of (P 2
Mic, V

2
Mic) starts after f, a, b is determined, the CRS of (P 2

Mic, V
2
Mic)

should be incorporated into the CRS of (P1, V1), because it may be generated with private coins.
Since the adversary can choose a after he learns the CRS of (P 2

Mic, V
2
Mic), it seems like we need

(P 2
Mic, V

2
Mic) to satisfy some strong soundness to keep (P1, V1) itself secure. Actually we will not

prove the exact soundness of (P 2
Mic, V

2
Mic), because we use the third protocol (P3, V3) to deal with

the situation that (P1, V1) is not secure.
With function ensemble G1,G2, which we determine later, protocol (P1, V1) is constructed as

follows:

• Common input: x ∈ {0, 1}lx(n).

• Auxiliary input to the prover: none.

1. V1:

(a) Compute f ← Fn.
(b) Compute crs′ = (fTC , g1, g2, comm)← GenG1,G2Mic .
(c) Let crs = (f, crs′) and output it.

38

2. P1: On input (x, crs), output an arbitrary a ∈ {0, 1}n.

3. V1: On input (x, crs, a), output random b, rc ← {0, 1}n.

4. P1: On input (x, crs, a, b‖rc), outputs ans.

5. V1: On input (x, crs, a, b‖rc, ans):

(a) Parse crs as f, crs′.
(b) Accept if and only if V 2

Mic(f‖a‖b, crs′, rc, ans) = 1.

P1(x) V1(x)

f ← Fn

crs′ ← GenG2,G2
Mic

crs = (f, crs′)

a

b, rc ← {0, 1}n

ans

Verify:
V 2
Mic(f∥a∥b, crs′, ans) =1

Figure 9: Protocol 1

Lemma 6.7. For all function ensemble H ∈ C, apply the Fiat-Shamir transform on (P1, V1) with
respect to H gives (P1

FS , V1
FS) that is not a non-interactive public coin argument for empty

language against C adversary. ♦

The insecurity of (P1
FS , V1

FS) is relatively straight-forward. As the adversary knows the witness
for the central relation.

Proof. Here we construct an adversary P ∗ for (P1
FS , V1

FS) as below:
On input (x, h‖crs):

1. Parse crs as f, crs′.

2. Hard-code x into the input of h and truncate the output to only contain b, to get C. Compute
the encoding C̃.

3. Compute a← TCf (C̃), b← C(a), and record the computation history Π.

4. Compute (b, rc)← h(x‖a).

5. Emulate (PMic, VMic|crs′) with input f‖a‖b and witness Ĉ‖Π, to produce ans.

6. Output a, ans.

Note that P ∗ is in C and it can always succeed due to the completeness of (P 2
Mic, V

2
Mic). □

39

The completeness of (P1, V1) is also trivial, as the language is empty and the honest prover can
just output some fixed strings. However, we cannot prove the security of (P1, V1) directly. Here,
we consider 2 cases:

• (P1, V1) is secure. In this case, (P1, V1) is the protocol that the theorem states.

• (P1, V1) is not secure. In this case, we want to prove the insecurity of (P3
FS , V3

FS), which
will be introduced later.

Instead of directly discussing the security of (P1, V1), we use another notation for this:

Definition 6.8 (IMPERSONATOR). For any Fiat-Shamir hash function family G1,G2 ∈ C,
define the statement ∃IMPERSONATOR to be the following. There exists a polynomial p(n) and
C circuit families P IMP =

{
P IMP
n

}
n∈N and F IMP =

{
F IMP
n

}
n∈N such that for infinite many

n ∈ N,

Pr

(P IMP (aux), V 2
Mic|crs)(f‖a‖b) = 1

∣∣∣∣∣∣∣
f ← Fn, b← {0, 1}n

crs← GenG1,G2Mic

a, aux← F IMP (f, crs)

 ≥ 1

p(n)
. ♦

We can observe that this is equivalent to the security of (P1, V1), as the IMPERSONATOR
P IMP , F IMP can be used as the adversary.

Lemma 6.9. If there exists G1,G2 ∈ C such that ¬∃IMPERSONATOR then with respect to G1,G2,
(P 1, V 1) is a 3-round public coin argument for empty language against adversary in C. ♦

Proof. It follows directly from the fact that the definition of ¬∃IMPERSONATOR is exactly the
soundness condition. □

6.4 Protocol 2

In the second protocol (P2, V2), we are not aiming to construct some protocol that is easy to break
after Fiat-Shamir transformation, but some protocol that is definitely secure. In the protocol, we
first generate function f for central relation in the CRS, then let the prover decide a, b1, b2 that
b1 6= b2 and use two parallel (PKil, VKil) to prove the knowledge of witness of f‖a‖b1 and f‖a‖b2.
It is impossible for the adversary to know the witnesses for both f‖a‖b1 and f‖a‖b2, due to the
collision resistance of the tree commitment, so it is definitely secure. In the protocol, although
a, b1, b2, β1, β2 are determined before sending the first message, we will not send all of them in
the first message. Instead, a special version of commitments of them will be sent, due to some
complicated details in the proof.

Protocol (P2, V2) is constructed as follows:

• Common input: x ∈ {0, 1}lx(n).

• Auxiliary input to the prover: none.

1. V2:

(a) Compute f, fTC ← Fn.
(b) Compute comm← Commn and rc, r

′ ← {0, 1}n.

40

(c) Compute γ′1 ← {0, 1}
n.

(d) Let crs = (f, fTC , comm, rc, r
′, γ′1) and output it.

2. P2: On input (x, crs):

(a) Decide a, b1, b2 ∈ {0, 1}n.
(b) Decide β1, β2 ∈ {0, 1}n.
(c) Compute β̂2 = comm(β2‖(comm(β1‖a‖b1‖b2‖rc)⊕r′)), the commitment of a, b1, b2, β1, β2.

Recall that shorter inputs can be padded to the correct length by padding 0s.
(d) Output β̂2.

3. V2: On input (x, crs, β̂2), output random γ′′1 , γ2 ∈ {0, 1}
n.

4. P2: On input (x, crs, β̂2, γ
′′
1‖γ2):

(a) Decide δ1, δ2 ∈ {0, 1}n.
(b) Output a, b1, b2, β1, β2, δ1, δ2.

5. V2: On input (x, crs, β̂2, γ
′′
1‖γ2, a‖b1‖b2‖β1‖β2‖δ1‖δ2),

(a) Parse crs as f, fTC , comm, rc, r
′, γ′1.

(b) Check b1 6= b2.
(c) Check β̂2 = comm(β2‖(comm(β1‖a‖b1‖b2‖rc)⊕ r′)).
(d) Check VKil(f‖a‖b1, fTC , β1, γ

′
1 ⊕ γ′′1 , δ1) = 1 .

(e) Check VKil(f‖a‖b2, fTC , β2, γ2, δ2) = 1 .
(f) Accept if and only if all checks are passed.

Here we first prove the security of (P2, V2). The intuition is to reduce the security to the
security of CRHF. If there is an adversary that breaks (P2, V2), due to the knowledge extraction
property of (PKil, VKil), we can actually get f, a, b1, b2, C1, C2 such as (f‖a‖b1, Ĉ1‖Π) ∈ R and
(f‖a‖b2, Ĉ2‖Π) ∈ R. Because C1(a) = b1 ∧ C2(a) = b2 ∧ b1 6= b2, we know C1, C2 must be two
different circuits, which breaks the collision resistant property of TCfTC .

Lemma 6.10. (P2, V2) is a 3-round public coin argument for empty language against adversary in
C. ♦

Proof. Completeness is trivially satisfied. Now we prove soundness by contradiction. Suppose
there exists an adversary circuit family P ∗ in C and a polynomial p(n) along with instance x such
that

Pr [(P ∗, V2)(x) = 1] ≥ 1

p(n)
.

Then we can construct circuit families F̃ , P̃1 and P̃2 in C such that there exists a polynomial p′(n)
and

Pr

[
(P̃1(aux), VKil|crs)(f‖a‖b1) = 1∧
(P̃2(aux), VKil|crs)(f‖a‖b2) = 1

∣∣∣∣∣ (crs, a, b1, b2, aux)← F̃ (f, fTC)

]
≥ 1

p′(n)

where the randomness is over f, fTC ← Fn and the randomness of all these circuits.

41

P2(x) V2(x)

f, fTC ← Fn

comm← Commn

γ′
1, rc, r

′ ← {0, 1}n

crs = (f, fTC , comm, rc, r
′, γ′

1)crs

Decide a, b1, b2, β1, β2

r′′ ← comm(β1∥a∥b1∥b2∥rc)
β̂2 ← comm(β2∥r′ ⊕ r′′) β̂2

γ′′1 , γ2 ← {0, 1}
n

Decide δ1, δ2 a, b1, b2, β1, β2, δ1, δ2

Verify:
b1 ̸= b2

β̂2 is a correct commitment
VKil(f∥a∥b1, fTC , β1, γ

′
1 ⊕ γ′′

1 , δ1) = 1

VKil(f∥a∥b2, fTC , β2, γ2, δ2) = 1

Figure 10: Protocol 2

• F̃ works as follows:

1. Select comm← Commn and rc, r
′, γ′1 ← {0, 1}

n.
2. Let crs′ = (f, fTC , comm, rc, r

′, γ′1).
3. Select a random tape rp for P ∗. Emulate the interaction

(β̂2, (γ
′′
1 , γ2), (a, b1, b2, β1, β2, δ1, δ2))← (P ∗, V2|crs′)(x)

where P ∗ uses rp as its randomness.
4. Let crs = fTC , aux = (β1, β2, rp, crs

′) and output (crs, a, b1, b2, aux).

• P̃1(aux) works as follows:

1. crs from VKil|crs and parse it as fTC .
2. Parse aux as (β1, β2, rp, crs

′).
3. Output β1.
4. Receive γ11 from VKil|crs.
5. Select γ12 ← {0, 1}

n and emulate the interaction

(β̂2, (γ
′
1 ⊕ γ11 , γ

1
2), (a

′, b′1, b
′
2, β
′
1, β
′
2, δ
′
1, δ
′
2))← (P ∗, V2|crs′,(γ′

1⊕γ1
1 ,γ

1
2)
)(x)

where P ∗ is invoked using the same random tape rp as the emulation in F̃ .
6. Output δ′1.

42

• P̃2(aux) works as follows:

1. crs from VKil|crs and parse it as fTC .
2. Parse aux as (β1, β2, rp, crs

′).
3. Output β2.
4. Receive γ22 from VKil|crs.
5. Select γ21 ← {0, 1}

n and emulate the interaction

(β̂2, (γ
2
1 , γ

2
2), (a

′′, b′′1, b
′′
2, β
′′
1 , β

′′
2 , δ
′′
1 , δ
′′
2))← (P ∗, V2|crs′,(γ2

1 ,γ
2
2)
)(x)

where P ∗ is invoked using the same random tape rp as the emulation in F̃ .
6. Output δ′′2 .

To see that F̃ , P̃1 and P̃2 satisfy the conditions above. Notice that

1. γ′1 ⊕ γ11 , γ
1
2 , γ

2
1 and γ22 are uniform random strings thus we can emulate these interaction

correctly.

2. Since we invoke P ∗ with the same randomness rp every time, the first output β̂2 will be the
same every time. And since Comm is collision resistant, we have

(a, b1, b2, β1, β2) = (a′, b′1, b
′
2, β
′
1, β
′
2) = (a′′, b′′1, b

′′
2, β
′′
1 , β

′′
2).

3. VKil|crs will accept the transcript (β1, γ
1
1 , δ
′
1) since it is exactly one of the accept condition

for V2. For the same reason VKil|crs will also accept the transcript (β2, γ
2
2 , δ
′′
2).

Given F̃ , P̃1 and P̃2 we can find a collision for f and thus contradict to our assumption that F is
collision resistant. By the proof of knowledge property, given oracle access to F̃ , P̃1 and P̃2, there
exists a extractor circuit family E = {En}n∈N such that:

Pr

[
((f‖a‖b1), w1) ∈ R∧
((f‖a‖b2), w2) ∈ R

∣∣∣∣∣ w1 ← EP̃1(aux)(f‖a‖b1)
w2 ← EP̃2(aux)(f‖a‖b2)

]
= 1.

Note that with non-negligible probability we obtain w1 and w2 simultaneously and we have TCf (w1) =
TCf (w2). Note that we use the encoding for the circuit with high minimum distance. To find a
collision of f , we select a random position i, the probability that the i-th position of w1 and w2

are different is non-negligible. This is because the history Π is of polynomial length of the circuit
encoding Ĉ and the encoding has high minimum distance (which means the witness itself has high
minimum distance). Thus by traversing the path from position i to the tree root on both tree
commitments we can obtain a collision for f . □

For (P2
FS , V2

FS), we do not know how to prove the insecurity. So, we also separate this situation
into 2 cases:

• (P3, V3), the protocol we will introduce later, is not secure. In this case, we can prove
(P2

FS , V2
FS) is also not secure.

• (P3, V3) is secure.

43

Here, we use strong-IMPERSONATOR to characterize the security of (P3, V3).
Definition 6.11 (strong-IMPERSONATOR). For any Fiat-Shamir hash function family G ∈
C, define statement ∃strong-IMPERSONATOR to be the following. There exists a polynomial p(n)
and C circuit families P sIMP

1 , P sIMP
2 and F sIMP such that for infinite many n ∈ N,

Pr

(P sIMP
1 (aux), VKil|fTC)(f‖a‖b1) = 1∧

(P sIMP
2 (aux), V 1

Mic|crs)(f‖a‖b2) = 1

∣∣∣∣∣∣∣
f ← Fn, b2 ← {0, 1}n

crs = (fTC , g, comm)← GenGMic

a, b1, aux← F sIMP (f, crs)

 ≥ 1

p(n)
♦

Lemma 6.12. If for any function ensemble H ∈ C there exists strong-IMPERSONATOR, then
applying the Fiat-Shamir transform on (P2, V2) with respect to H gives (P2

FS , V2
FS) that is not a

non-interactive public coin argument for empty language against C adversary. ♦

Proof. Assume h← H is the transformation function. The adversary P ∗ works as follows:
On input (x, h‖crs):

1. Parse crs as f, fTC , comm, rc, r
′, γ′1.

2. Hard-code x into the input of h, and truncate the output to only contain γ2, to get h′. Let
crs′ = (fTC , h′, comm).

3. Emulate
(a, b1, aux)← F sIMP

n (f, crs′)

4. Emulate
(fTC , β1, ∗, ∗)← (P sIMP

1 (aux), VKil|fTC)(f‖a‖b1)

5. Select b2 ← {0, 1}n and compute r′′ ← Comm(β1‖a‖b1‖b2‖rc)

6. Emulate

(crs, r′ ⊕ r′′, (β2, β̂2, γ2, δ2))← (P sIMP
2 (aux), V 1

Mic|crs′,r′⊕r′′)(f‖a‖b2)

7. (γ′′1 , ∗) = h(β̂2) and emulate

(β1, ∗, δ1)← (P sIMP
1 (aux), VKil|fTC ,γ′

1⊕γ′′
1
)

8. Output (β̂2, (a, b1, b2, β1, β2, δ1, δ2)).

Consider the conditions that V2 accepts:

1. Since b2 ← {0, 1}n is an independent random string, the condition b1 6= b2 holds with proba-
bility 1− 2−n.

2. γ′1 is uniformly random thus the call to VKil|fTC ,γ′
1⊕γ′′

1
is a valid call.

3. r′⊕r′′ is uniform random since r′ is uniform random, thus we can call V 1
Mic|crs′,r′⊕r′′ correctly

and obtain β̂2 = Comm(β2, r
′
c). Together with r′c = r′ ⊕ Comm(β1‖a‖b1‖b2‖rc), we pass

β̂2 = comm(β2‖(comm(β1‖a‖b1‖b2‖rc)⊕ r′)).

4. VKil(f‖a‖b1, fTC , β1, γ
′
1⊕γ′′1 , δ1) = 1 and VKil(f‖a‖b2, fTC , β2, γ2, δ2) = 1 are satisfied by the

definition of ∃strong-IMPERSONATOR.

Since P ∗ above is in C, (P2
FS , V2

FS) is not a non-interactive public coin argument for empty
language against C adversary. □

44

6.5 Protocol 3

In the third protocol (P3, V3), we first generate function f for central relation in the CRS, then let
the prover decide a, b1 while letting the verifier choose b2. One (PKil, VKil) is invoked on instance
f‖a‖b1, while one (P 1

Mic, V
1
Mic) is invoked on instance f‖a‖b2. Components used in (PKil, VKil)

are labeled with subscript 1, and components used in (P 1
Mic, V

1
Mic) are labeled with subscript 2.

Again, we use a commitment of a, b1, β1, instead of sending them in the first message, because it
is necessary if we want to use IMPERSONATOR to break (P3

FS , V3
FS). All the ⊕ here is used

to make the view of IMPERSONATOR same as an uniform distribution after the Fiat-Shamir
transformation.

With function ensemble G, which we determine later, protocol (P3, V3) is constructed as follows:

• Common input: x ∈ {0, 1}lx(n).

• Auxiliary input to the prover: none.

1. V3:

(a) Compute f ← Fn.
(b) Compute crs′ = (fTC , g, comm)← GenGMic.
(c) Compute b′2, rc,1, r

′
c,2, r

′ ← {0, 1}n.
(d) Let crs = (f, crs′, b′2, rc,1, r

′
c,2, r

′) and output it.

2. P3: On input (x, crs):

(a) Parse crs as f, fTC , g, comm, b′2, rc,1, r
′
c,2, r

′.
(b) Decide a, b1 ∈ {0, 1}n.
(c) Decide β1 ∈ {0, 1}n.
(d) Compute β̂1 ← comm(β1‖(comm(a‖b1‖rc,1)⊕ r′)), the commitment of a, b1, β1.
(e) Output β̂1.

3. V3: On input (x, crs, β̂1), output random b′′2, r
′′
c,2, γ1 ← {0, 1}

n.

4. P3: On input (x, crs, β̂1, b
′′
2‖r′′c,2‖γ1):

(a) Decide δ1 and ans.
(b) Output a, b1, β1, δ1, ans.

5. V3: On input (x, crs, β̂1, b
′′
2‖r′′c,2‖γ1, a‖b1‖β1‖δ1‖ans):

(a) Parse crs as f, crs′, b′2, rc,1, r
′
c,2, r

′.

(b) Parse crs′ as fTC , g, comm.
(c) Check β̂1 = comm(β1‖(comm(a‖b1‖rc,1)⊕ r′)).
(d) Check VKil(f‖a‖b1, fTC , β1, γ1, δ1) = 1 .
(e) Check V 1

Mic(f‖a‖(b′2 ⊕ b′′2), crs
′, r′c,2 ⊕ r′′c,2, ans) = 1 .

45

P3(x) V3(x)

f ← Fn

crs′ ← GenGMic

b′2, rc,1, r
′
c,2, r

′ ← {0, 1}n

crs = (f, crs′, b′2, rc,1, r
′
c,2, r

′)crs

Decide a, b1, β1

r′′ ← comm(a∥b1∥rc,1)
β̂1 ← comm(β1∥r′ ⊕ r′′) β̂1

b′′2, r
′′
c,2, γ1 ← {0, 1}

n

Decide δ1, ans a, b1, β1, δ1, ans

Verify:
β̂1 is correct commitment
VKil(f∥a∥b1, fTC , β1, γ1, δ1) = 1

V 1
Mic(f∥a∥(b′2 ⊕ b′′2), crs

′, r′c,2 ⊕ r′′c,2, ans) = 1

Figure 11: Protocol 3

In the second protocol, we have defined the strong-IMPERSONATOR, which is actually the ad-
versary for (P3, V3).

Lemma 6.13. If ∃G ∈ C, ¬∃strong-IMPERSONATOR, then there exists a function ensemble
G ∈ C such that (P3, V3) is a 3-round public coin argument for empty language against adversary
in C. ♦

Proof. It is trivial, since (¬(∀G ∃strong-IMPERSONATOR)) is exact the soundness condition.
Note that b′2, rc, r

′
c, r
′ do not help in breaking the protocol. □

After the Fiat-Shamir transformation, (P3
FS , V3

FS) is similar to a protocol that first runs
(P 1

Mic, V
1
Mic) with H for f‖a‖b1 and then runs (P 1

Mic, V
1
Mic) with G for f‖a‖b2. The IMPERSON-

ATOR can break (P 2
Mic, V

2
Mic), and we can use it to break two (P 1

Mic, V
1
Mic) with different hash

functions.

Lemma 6.14. If ∀G1,G2 ∈ C, there exists IMPERSONATOR, then for all function ensemble G,HC,
applying the Fiat-Shamir transformation on (P3, V3) with respect to H gives (P3

FS , V3
FS) that is

not a non-interactive public coin argument for empty language against C adversary. ♦

Proof. For any H and input x, let H′ be the function ensemble obtained by hard-coding x into
input of all h ∈ H and truncating all h ∈ H to only output last n bits, γ1.

By assumption, we know forH′,G, there exists IMPERSONATOR, denoted as P IMP and F IMP .
Without loss of generality, we assume that crs is included in aux where a, aux← F IMP (f, crs).

46

Claim 6.15. From P IMP , F IMP , we can construct P IMP
H′ and P IMP

G in C with polynomial p(n),
that for infinite many n ∈ N,

Pr

(P IMP
H′ (aux), V 1

Mic|crs1)(f‖a‖b1) = 1∧
(P IMP
G (aux), V 1

Mic|crs2)(f‖a‖b2) = 1

∣∣∣∣∣∣∣∣∣
f ← Fn

b1, b2 ← {0, 1}n

crs← GenH
′,G

Mic

a, aux← F IMP (f, crs)

 > 1/p(n),

Here, crs1, crs2 are the modified crs = (fTC , h′, g, comm) that g is removed and h′ is removed
respectively. ♦

Proof. We show the construction of P IMP
H′ below, P IMP

G can be constructed similarly:
On input (aux, f‖a‖b, crs1, rc):

1. Get crs from aux.

2. Parse crs as fTC , h′, g, comm.

3. Emulate
(crs, rc, (β̂, β, γ1, γ2, δ1, δ2))← (P IMP , V 2

Mic|crs,rc)(f‖a‖b)

4. Output ans = (β, β̂, γ1, δ1).

From the definition of P IMP , F IMP , we know there exists a polynomial q(n), with non-negligible
probability over choice of f, crs and a, aux← F (f, crs),

Pr
[
(P IMP (aux), V 2

Mic|crs)(f‖a‖b) = 1
∣∣ b← {0, 1}n] > 1

q(n)
.

From the construction above, we know with non-negligible probality over the choice of f, crs
and a, aux,

Pr

[
(P IMP
H′ (aux), V 1

Mic|crs1)(f‖a‖b1) = 1)∧
(P IMP
G (aux), V 1

Mic|crs2)(f‖a‖b2) = 1)

∣∣∣∣∣ b1, b2 ← {0, 1}n
]

=Pr
[
(P IMP (aux), V 2

Mic|crs)(f‖a‖b) = 1
∣∣ b← {0, 1}n]2

≥ 1

q2(n)
,

which proves the claim. □

Here, we use P IMP
H′ , P IMP

G , F IMP to construct an adversary P ∗ for (P3
FS , V3

FS) as below:
On input (x, h‖crs):

1. Parse crs as f, crs′, b′2, rc,1, r
′
c,2, r

′.

2. Parse crs′ as fTC , g, comm.

3. Compute a, aux← F IMP (f, crs′).

4. Compute b1 ← {0, 1}n and r′′ ← comm(a‖b1‖rc,1).

47

5. Let h′ be the corresponding function of h in H′, and emulate

(fTC‖h′‖comm, r′ ⊕ r′′, (β1, β̂1, γ, δ))← (P IMP
H′ (aux), V 1

Mic|fTC∥h′∥comm,r′⊕r′′)(f‖a‖b1)

6. Compute b′′2, r
′′
c,2, γ1 ← h(x‖β̂1) and b2 = b′2 ⊕ b′′2.

7. Emulate

(fTC‖g‖comm, r′c,2 ⊕ r′′c,2, ans)← (P IMP
G (aux), V 1

Mic|fTC∥g∥comm,r′c,2⊕r′′c,2)(f‖a‖b2)

8. Output β̂1, (a, b1, β1, δ1, ans).

Claim 6.16. There exists a polynomial p(n), that for infinite many n, for all x ∈ {0, 1}n,

Pr[(P ∗, V3)(x) = 1] ≥ 1

p(n)
,

where the probability is over P ∗ and V3. ♦

Proof. According to claim 6.15, we know for infinite many n ∈ N,

Pr

(P IMP
H′ (aux), V 1

Mic|crs1)(f‖a‖b1) = 1∧
(P IMP
G (aux), V 1

Mic|crs2)(f‖a‖b2) = 1

∣∣∣∣∣∣∣
f ← Fn, b1, b2 ← {0, 1}n

crs← GenH
′,G

Mic

a, aux← F IMP (f, crs)

 > 1/p(n).

Now we claim similarly that for infinite many n, for all x ∈ {0, 1}n,

Pr

(P IMP
H′ (aux), V 1

Mic|crs1,r′⊕r′′)(f‖a‖b1) = 1∧
(P IMP
G (aux), V 1

Mic|crs2,r′c,2⊕r′′c,2)(f‖a‖b
′
2 ⊕ b′′2) = 1

∣∣∣∣∣∣∣
crs = (f, crs′, b′2, rc,1, r

′
c,2, r

′)← V3

a, aux← F IMP (f, crs′)

r′′c,2, b
′′
2 ← P ∗(x, crs)

 > 1/p(n),

which is because b′2, r
′
c,2, r

′ is selected uniformly and independently in {0, 1}n. Here, crs1, crs2 is
the CRS that g is removed from crs′ and h′ is removed from crs′ respectively. As a result, with
non-negligible probability over interaction (P ∗, V3)(x), the verifier accepts because the following
conditions hold:

• V 1
Mic(f‖a‖b1, crs1, r′ ⊕ r′′, ans1) accepts, which indicates:

– (∗, ∗, γ1) = h(x‖β̂1).
– VKil(f

TC , β1, γ1, δ1) accepts.
– β̂1 = comm(β1‖(comm(a‖b1‖rc,1)⊕ r′))

• V 1
Mic(f‖a‖(b′2 ⊕ b′′2), crs2, r

′
c ⊕ r′′c , ans2) accepts. □

Finally, we conclude that one of these three protocols is the required protocol in Theorem 6.1.
There are three cases:

1. If ∃G1,G2 ∈ C that ¬∃IMPERSONATOR), then

48

• (P1, V1) is a 3-round public coin argument for empty language in C secure against any
adversary in C.

• Applying the Fiat-Shamir transformation on (P1, V1) with anyH ∈ C results in a protocol
(P1

FS , V1
FS) that is insecure against some adversary in C.

2. If ∀G ∈ C that ∃strong-IMPERSONATOR, then

• (P2, V2) is a 3-round public coin argument for empty language in C secure against any
adversary in C.

• Applying the Fiat-Shamir transformation on (P2, V2) with anyH ∈ C results in a protocol
(P2

FS , V2
FS) that is insecure against some adversary in C.

3. If ∃G ∈ C that ¬∃strong-IMPERSONATOR and ∀G1,G2 ∈ C that ∃IMPERSONATOR, then
with respect to this G,

• (P3, V3) is a 3-round public coin argument for empty language in C secure against any
adversary in C.

• Applying the Fiat-Shamir transformation on (P3, V3) with anyH ∈ C results in a protocol
(P3

FS , V3
FS) that is insecure against some adversary in C.

Acknowledgements

We thank Ran Canetti for reading earlier versions of this paper and giving helpful comments. We
also thank Leonid Reyzin for his help in finding the private-coin version of Goldwasser-Kalai’03.

References
[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended Abstract)”.

In: STOC. 1996, pp. 99–108 (cit. on pp. 5, 57).

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. “Cryptography in NC0”. In:
SIAM J. Comput. 36.4 (2006), pp. 845–888 (cit. on pp. 3, 54).

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009 (cit. on p. 11).

[Bar01] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In: FOCS.
IEEE Computer Society, 2001, pp. 106–115 (cit. on p. 2).

[BBHMR19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Roth-
blum. “On the (In)security of Kilian-Based SNARGs”. In: Theory of Cryptography
- 17th International Conference, TCC 2019, Nuremberg, Germany, December 1-5,
2019, Proceedings, Part II. Ed. by Dennis Hofheinz and Alon Rosen. Vol. 11892. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 522–551. doi: 10.1007/978-3-
030-36033-7_20. url: https://doi.org/10.1007/978-3-030-36033-7%5C_20
(cit. on p. 6).

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. “Multi-collision resistance: a
paradigm for keyless hash functions”. In: STOC. ACM, 2018, pp. 671–684 (cit. on
p. 2).

49

https://doi.org/10.1007/978-3-030-36033-7_20
https://doi.org/10.1007/978-3-030-36033-7_20
https://doi.org/10.1007/978-3-030-36033-7%5C_20

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. “NIZK from LPN and Trap-
door Hash via Correlation Intractability for Approximable Relations”. In: Advances
in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
III. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12172. Lecture Notes in
Computer Science. Springer, 2020, pp. 738–767. doi: 10.1007/978-3-030-56877-
1_26. url: https://doi.org/10.1007/978-3-030-56877-1%5C_26 (cit. on p. 2).

[CG18] Matteo Campanelli and Rosario Gennaro. “Fine-Grained Secure Computation”. In:
Theory of Cryptography - 16th International Conference, TCC 2018, Panaji, India,
November 11-14, 2018, Proceedings, Part II. Ed. by Amos Beimel and Stefan Dziem-
bowski. Vol. 11240. Lecture Notes in Computer Science. Springer, 2018, pp. 66–97.
doi: 10.1007/978-3-030-03810-6_3. url: https://doi.org/10.1007/978-3-
030-03810-6%5C_3 (cit. on p. 3).

[Can+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron
D. Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice to theory”. In: STOC.
ACM, 2019, pp. 1082–1090 (cit. on pp. 2, 6).

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. “On the Correlation Intractability of
Obfuscated Pseudorandom Functions”. In: Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part I. Ed. by Eyal Kushilevitz and Tal Malkin. Vol. 9562. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 389–415. doi: 10.1007/978-3-662-49096-9_17.
url: https://doi.org/10.1007/978-3-662-49096-9%5C_17 (cit. on p. 1).

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. “Fiat-Shamir and
Correlation Intractability from Strong KDM-Secure Encryption”. In: Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part I. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Vol. 10820. Lecture Notes in Computer Science. Springer, 2018, pp. 91–122. doi:
10.1007/978-3-319-78381-9_4. url: https://doi.org/10.1007/978-3-319-
78381-9%5C_4 (cit. on pp. 1, 4).

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology,
revisited”. In: J. ACM 51.4 (2004), pp. 557–594 (cit. on p. 8).

[CWY23] Lijie Chen, Ryan Williams, and Tianqi Yang. “Black-Box Constructive Proofs Are
Unavoidable”. In: 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023). Ed. by Yael Tauman Kalai. Vol. 251. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023, 35:1–35:24. isbn: 978-3-95977-263-1. doi: 10.4230/LIPIcs.ITCS.
2023.35. url: https://drops.dagstuhl.de/opus/volltexte/2023/17538 (cit.
on pp. 32, 58, 59).

[CLZ22] Yilei Chen, Qipeng Liu, and Mark Zhandry. “Quantum Algorithms for Variants of
Average-Case Lattice Problems via Filtering”. In: EUROCRYPT (3). Vol. 13277.
Lecture Notes in Computer Science. Springer, 2022, pp. 372–401 (cit. on p. 57).

50

https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-030-56877-1%5C_26
https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/978-3-030-03810-6%5C_3
https://doi.org/10.1007/978-3-030-03810-6%5C_3
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1007/978-3-662-49096-9%5C_17
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-78381-9%5C_4
https://doi.org/10.1007/978-3-319-78381-9%5C_4
https://doi.org/10.4230/LIPIcs.ITCS.2023.35
https://doi.org/10.4230/LIPIcs.ITCS.2023.35
https://drops.dagstuhl.de/opus/volltexte/2023/17538

[CLMQ21] Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. “Does Fiat-Shamir Require
a Cryptographic Hash Function?” In: Advances in Cryptology - CRYPTO 2021 -
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part IV. Ed. by Tal Malkin and Chris Peikert.
Vol. 12828. Lecture Notes in Computer Science. Springer, 2021, pp. 334–363. doi:
10.1007/978-3-030-84259-8_12. url: https://doi.org/10.1007/978-3-030-
84259-8%5C_12 (cit. on p. 2).

[CGJJZ23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. “Correlation Intractability and SNARGs from Sub-exponential DDH”. In:
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceed-
ings, Part IV. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14084. Lecture
Notes in Computer Science. Springer, 2023, pp. 635–668. doi: 10.1007/978-3-031-
38551- 3_20. url: https://doi.org/10.1007/978- 3- 031- 38551- 3%5C_20
(cit. on p. 2).

[Cho+19] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. “Finding a Nash equilibrium is no easier than breaking
Fiat-Shamir”. In: STOC. ACM, 2019, pp. 1103–1114 (cit. on p. 2).

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “Non-interactive Batch
Arguments for NP from Standard Assumptions”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part IV. Ed. by Tal Malkin and Chris Peik-
ert. Vol. 12828. Lecture Notes in Computer Science. Springer, 2021, pp. 394–423.
doi: 10.1007/978-3-030-84259-8_14. url: https://doi.org/10.1007/978-3-
030-84259-8%5C_14 (cit. on p. 2).

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “SNARGs for P from
LWE”. In: FOCS. IEEE, 2021, pp. 68–79 (cit. on p. 2).

[DVV16] Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. “Fine-
Grained Cryptography”. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9816.
Lecture Notes in Computer Science. Springer, 2016, pp. 533–562. doi: 10.1007/978-
3- 662- 53015- 3_19. url: https://doi.org/10.1007/978- 3- 662- 53015-
3%5C_19 (cit. on pp. 3, 4, 5, 19, 20, 55).

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. “Magic Func-
tions”. In: FOCS. IEEE Computer Society, 1999, pp. 523–534 (cit. on p. 2).

[EWT21] Shohei Egashira, Yuyu Wang, and Keisuke Tanaka. “Fine-Grained Cryptography
Revisited”. In: J. Cryptol. 34.3 (2021), p. 23. doi: 10.1007/s00145-021-09390-3.
url: https://doi.org/10.1007/s00145-021-09390-3 (cit. on pp. 3, 7, 21).

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems”. In: Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko. Vol. 263.
Lecture Notes in Computer Science. Springer, 1986, pp. 186–194. doi: 10.1007/3-
540- 47721- 7_12. url: https://doi.org/10.1007/3- 540- 47721- 7%5C_12
(cit. on p. 1).

51

https://doi.org/10.1007/978-3-030-84259-8_12
https://doi.org/10.1007/978-3-030-84259-8%5C_12
https://doi.org/10.1007/978-3-030-84259-8%5C_12
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1007/978-3-031-38551-3_20
https://doi.org/10.1007/978-3-031-38551-3%5C_20
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8%5C_14
https://doi.org/10.1007/978-3-030-84259-8%5C_14
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-662-53015-3%5C_19
https://doi.org/10.1007/978-3-662-53015-3%5C_19
https://doi.org/10.1007/s00145-021-09390-3
https://doi.org/10.1007/s00145-021-09390-3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7%5C_12

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”. In:
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. Ed. by Ran
Canetti and Juan A. Garay. Vol. 8042. Lecture Notes in Computer Science. Springer,
2013, pp. 75–92. doi: 10.1007/978-3-642-40041-4_5. url: https://doi.org/
10.1007/978-3-642-40041-4%5C_5 (cit. on pp. 4, 6).

[GW11] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive arguments
from all falsifiable assumptions”. In: STOC. ACM, 2011, pp. 99–108 (cit. on p. 6).

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-Shamir
Paradigm”. In: 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings. IEEE Computer Society,
2003, pp. 102–113. doi: 10.1109/SFCS.2003.1238185. url: https://doi.org/10.
1109/SFCS.2003.1238185 (cit. on pp. 2, 3, 4, 5, 7, 9, 10, 26, 29, 31).

[GK] Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-Shamir
Paradigm”. url: https://web.archive.org/web/20060823172040id_/http:
//www.mit.edu:80/~tauman/fiatshamirlong.pdf (cit. on p. 10).

[HV06] Alexander Healy and Emanuele Viola. “Constant-Depth Circuits for Arithmetic in
Finite Fields of Characteristic Two”. In: STACS 2006, 23rd Annual Symposium on
Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006,
Proceedings. Ed. by Bruno Durand and Wolfgang Thomas. Vol. 3884. Lecture Notes
in Computer Science. Springer, 2006, pp. 672–683. doi: 10.1007/11672142_55.
url: https://doi.org/10.1007/11672142%5C_55 (cit. on p. 59).

[HL18] Justin Holmgren and Alex Lombardi. “Cryptographic Hashing from Strong One-
Way Functions (Or: One-Way Product Functions and Their Applications)”. In: 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018. Ed. by Mikkel Thorup. IEEE Computer Society, 2018,
pp. 850–858. doi: 10.1109/FOCS.2018.00085. url: https://doi.org/10.1109/
FOCS.2018.00085 (cit. on p. 2).

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. “Fiat-Shamir via list-
recoverable codes (or: parallel repetition of GMW is not zero-knowledge)”. In: STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021. Ed. by Samir Khuller and Virginia Vassilevska Williams.
ACM, 2021, pp. 750–760. doi: 10.1145/3406325.3451116. url: https://doi.
org/10.1145/3406325.3451116 (cit. on p. 2).

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. “SNARGs
for P from Sub-exponential DDH and QR”. In: Advances in Cryptology - EURO-
CRYPT 2022 - 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-
ings, Part II. Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13276. Lecture
Notes in Computer Science. Springer, 2022, pp. 520–549. doi: 10.1007/978-3-031-
07085- 3_18. url: https://doi.org/10.1007/978- 3- 031- 07085- 3%5C_18
(cit. on p. 2).

52

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4%5C_5
https://doi.org/10.1007/978-3-642-40041-4%5C_5
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://web.archive.org/web/20060823172040id_/http://www.mit.edu:80/~tauman/fiatshamirlong.pdf
https://web.archive.org/web/20060823172040id_/http://www.mit.edu:80/~tauman/fiatshamirlong.pdf
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/11672142%5C_55
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3_18
https://doi.org/10.1007/978-3-031-07085-3%5C_18

[IK00] Yuval Ishai and Eyal Kushilevitz. “Randomizing Polynomials: A New Representa-
tion with Applications to Round-Efficient Secure Computation”. In: FOCS. IEEE
Computer Society, 2000, pp. 294–304 (cit. on p. 54).

[JJ21] Abhishek Jain and Zhengzhong Jin. “Non-interactive Zero Knowledge from Sub-
exponential DDH”. In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I. Ed. by Anne
Canteaut and François-Xavier Standaert. Vol. 12696. Lecture Notes in Computer
Science. Springer, 2021, pp. 3–32. doi: 10.1007/978-3-030-77870-5_1. url:
https://doi.org/10.1007/978-3-030-77870-5%5C_1 (cit. on p. 2).

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. “SNARGs
for bounded depth computations and PPAD hardness from sub-exponential LWE”.
In: STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021. Ed. by Samir Khuller and Virginia Vas-
silevska Williams. ACM, 2021, pp. 708–721. doi: 10.1145/3406325.3451055. url:
https://doi.org/10.1145/3406325.3451055 (cit. on p. 2).

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. “SNARGs and
PPAD Hardness from the Decisional Diffie-Hellman Assumption”. In: Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part II. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005.
Lecture Notes in Computer Science. Springer, 2023, pp. 470–498. doi: 10.1007/978-
3- 031- 30617- 4_16. url: https://doi.org/10.1007/978- 3- 031- 30617-
4%5C_16 (cit. on p. 2).

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. “From Obfuscation
to the Security of Fiat-Shamir for Proofs”. In: Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II. Ed. by Jonathan Katz and Hovav Shacham.
Vol. 10402. Lecture Notes in Computer Science. Springer, 2017, pp. 224–251. doi:
10.1007/978-3-319-63715-0_8. url: https://doi.org/10.1007/978-3-319-
63715-0%5C_8 (cit. on p. 1).

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. “Somewhere
Statistical Soundness, Post-Quantum Security, and SNARGs”. In: Theory of Cryp-
tography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November
8-11, 2021, Proceedings, Part I. Ed. by Kobbi Nissim and Brent Waters. Vol. 13042.
Lecture Notes in Computer Science. Springer, 2021, pp. 330–368. doi: 10.1007/978-
3- 030- 90459- 3_12. url: https://doi.org/10.1007/978- 3- 030- 90459-
3%5C_12 (cit. on p. 2).

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract)”. In: STOC. ACM, 1992, pp. 723–732 (cit. on pp. 6, 9, 31, 32).

[Kiy22] Susumu Kiyoshima. “Public-Coin 3-Round Zero-Knowledge from Learning with Er-
rors and Keyless Multi-Collision-Resistant Hash”. In: CRYPTO (1). Vol. 13507. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 444–473 (cit. on p. 2).

53

https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/978-3-030-77870-5%5C_1
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-031-30617-4%5C_16
https://doi.org/10.1007/978-3-031-30617-4%5C_16
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0%5C_8
https://doi.org/10.1007/978-3-319-63715-0%5C_8
https://doi.org/10.1007/978-3-030-90459-3_12
https://doi.org/10.1007/978-3-030-90459-3_12
https://doi.org/10.1007/978-3-030-90459-3%5C_12
https://doi.org/10.1007/978-3-030-90459-3%5C_12

[LV22] Alex Lombardi and Vinod Vaikuntanathan. “Correlation-Intractable Hash Functions
via Shift-Hiding”. In: ITCS. Vol. 215. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 102:1–102:16 (cit. on p. 2).

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. 30.4 (Oct.
2000), pp. 1253–1298. issn: 0097-5397. doi: 10.1137/S0097539795284959. url:
https://doi.org/10.1137/S0097539795284959 (cit. on p. 6).

[MP13] Daniele Micciancio and Chris Peikert. “Hardness of SIS and LWE with small param-
eters”. In: Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 21–39 (cit. on
p. 57).

[MR07] Daniele Micciancio and Oded Regev. “Worst-case to average-case reductions based
on Gaussian measure”. In: SIAM Journal on Computing 37.1 (2007), pp. 267–302
(cit. on p. 57).

[Par21] Orr Paradise. “Smooth and Strong PCPs”. In: Comput. Complex. 30.1 (2021), p. 1.
doi: 10.1007/s00037-020-00199-3. url: https://doi.org/10.1007/s00037-
020-00199-3 (cit. on pp. 32, 58).

[PS19] Chris Peikert and Sina Shiehian. “Noninteractive Zero Knowledge for NP from
(Plain) Learning with Errors”. In: Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2019, Proceedings, Part I. Ed. by Alexandra Boldyreva and Daniele Micciancio.
Vol. 11692. Lecture Notes in Computer Science. Springer, 2019, pp. 89–114. doi:
10.1007/978-3-030-26948-7_4. url: https://doi.org/10.1007/978-3-030-
26948-7%5C_4 (cit. on pp. 2, 3, 4, 6, 7, 15, 21, 22, 23).

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”. In:
Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding. Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes in Computer Science.
Springer, 1996, pp. 387–398. doi: 10.1007/3- 540- 68339- 9_33. url: https:
//doi.org/10.1007/3-540-68339-9%5C_33 (cit. on p. 1).

[WP22] Yuyu Wang and Jiaxin Pan. “Non-Interactive Zero-Knowledge Proofs with Fine-
Grained Security”. In: Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part II. Ed. by
Orr Dunkelman and Stefan Dziembowski. Vol. 13276. Lecture Notes in Computer
Science. Springer, 2022, pp. 305–335. doi: 10.1007/978-3-031-07085-3_11. url:
https://doi.org/10.1007/978-3-031-07085-3%5C_11 (cit. on pp. 3, 4, 6, 20).

A Detailed Proofs of Almost-Everywhere Security

To begin with, we state several properties of ZeroSamp and OneSamp that is implicit in [IK00] or
[AIK06].

Lemma A.1. For any function family {fλ} ∈ ⊕L/poly, there exists a randomized circuit family
{Fλ} ∈ AC0[2] and a polynomial n = n(λ) such that for any x ∈ {0, 1}λ,

• {Fλ(x)} ≡ ZeroSamp(n(λ)), if fλ(x) = 0;

54

https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7%5C_4
https://doi.org/10.1007/978-3-030-26948-7%5C_4
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9%5C_33
https://doi.org/10.1007/3-540-68339-9%5C_33
https://doi.org/10.1007/978-3-031-07085-3_11
https://doi.org/10.1007/978-3-031-07085-3%5C_11

• {Fλ(x)} ≡ OneSamp(n(λ)), if fλ(x) = 1. ♦

Lemma A.2. The following statements about matrix A ∈ Zn×n
2 are equivalent, and they are still

equivalent if all get modified by the texts in brackets:

• A is the output of ZeroSamp (OneSamp) using any randomness.

• A is in the form of 

a1,1 a1,2 a1,3 · · · a1,n−1 a1,n
1 a2,2 a2,3 · · · a2,n−1 a2,n

1 a3,3 · · · a3,n−1 a3,n
1 · · · a4,n−1 a4,n

.
...

1 an,n


,

and detA = 0 (detA = 1).

• The two distributions are equivalent:

{L(r(1))AR(r(2)) : r(1) ← {0, 1}∗, r(2) ← {0, 1}∗} ≡ ZeroSamp(n)(
{L(r(1))AR(r(2)) : r(1) ← {0, 1}∗, r(2) ← {0, 1}∗} ≡ OneSamp(n)

)
. ♦

With all these properties, we restate lemma 4.3 of [DVV16] after extending the adversary class.

Lemma A.3 (Minor extension of lemma 4.3 of [DVV16]). For any circuit class C ⊇ AC0[2],
assuming Assumption 4.8 holds for C, there is a polynomial n = n(λ) and a negligible function
negl(·) such that for any family F = {fλ} in C, for infinitely many λ,∣∣∣∣ Pr

M←ZeroSamp(n(λ))
[fλ(M) = 1]− Pr

M←OneSamp(n(λ))
[fλ(M) = 1]

∣∣∣∣ < negl(λ). ♦

The difference between this lemma and lemma 4.10 is the existence of the polynomial n = n(λ).
In fact this lemma trivially implies lemma 4.10, as for any infinitely long sequence λ1, λ2, . . . ∈ N,
n(λ1), n(λ2), . . . is also an infinitely long sequence.

Proof. The idea is by lemma A.1, any circuit that distinguishes ZeroSamp and OneSamp can be
used to compute any language in ⊕L/poly.

Assume for any polynomial n = n(λ), there exists a constant d > 0 and an adversary A =
{Aλ} ∈ C s.t. for all but finitely many λ, Aλ distinguishes ZeroSamp(n(λ)) and OneSamp(n(λ)) by
probability λ−d. By lemma A.1, we can directly link the output of the circuit Fλ (that computes
ZeroSamp or OneSamp) to Aλ to compute any language in ⊕L/poly. As Pr[Aλ(Fλ(x)) = 1|f(x) = 0]
and Pr[Aλ(Fλ(x)) = 1|f(x) = 1] only differs by λ−d, we need to do error reduction to enlarge this
gap to 1− poly(λ)−1.

Let p = Pr[Aλ(ZeroSamp) = 1] and q = Pr[Aλ(OneSamp) = 1], then the error reduction is done
by taking many samples and checking whether Aλ outputs 1 on more than p+q

2 of the samples. If
C can compute majority function, then the entire reduction is done in C; otherwise, for any c > 0,
we can complete the reduction in S̃um1/λc ◦ C, as taking polynomially many samples allows us
to approximate Pr[Aλ(Fλ) = 1] by error λ−c with exponentially small failure probability for any
c > 0. □

55

Although we can prove almost everywhere security under the strengthened assumption 4.11, we
cannot get rid of the polynomial n = n(λ) by directly using the same proof idea.

Lemma A.4. For any circuit class C ⊇ AC0[2], assuming Assumption 4.11 holds for C, there is a
polynomial n = n(λ) and a negligible function negl(·) such that for any family F = {fλ} in C, for
all but infinitely many λ,∣∣∣∣ Pr

M←ZeroSamp(n(λ))
[fλ(M) = 1]− Pr

M←OneSamp(n(λ))
[fλ(M) = 1]

∣∣∣∣ < negl(λ). ♦

In order to get rid of the polynomial n = n(λ), we use a simple observation that for any n′ > n
and any circuit that distinguishes ZeroSamp(n′) and OneSamp(n′), we can use the same circuit to
distinguish ZeroSamp(n) and OneSamp(n).

Lemma A.5. There exists a constant c, such that for any n′ > n and circuit C ′ with circuit size s
and depth d that distinguishes ZeroSamp(n′) and OneSamp(n′) by some probability, there exists a
circuit C that distinguishes ZeroSamp(n) and OneSamp(n) with the same probability, with circuit
size at most cs and depth at most cd. ♦

Proof. For any matrix M ∈ Zn×n
2 obtained from ZeroSamp(n) (or OneSamp(n)), we define

M ′ =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

0 0 1 1 0 · · · 0 0
0 0 0 1 1 · · · 0 0
...

...
...

...
0 0 0 0 0 0 1 1

M


=⇒ detM ′ = detM.

Therefore, by lemma A.2, since M ′ has the correct form and detM ′ = detM , M ′ is also an out-
put of ZeroSamp(n′) (or OneSamp(n′)); furthermore, by the same lemma, take r(1) ← {0, 1}∗, r(2) ←
{0, 1}∗, the distribution of {L(r(1))M ′R(r(2))} is exactly ZeroSamp(n′) (or OneSamp(n′)).

The circuit C is constructed by expanding M to M ′ and computing L(r(1))M ′R(r(2)) before
invoking C ′. The overhead is minor. □

Proof of lemma 4.12. If we have an adversary {An} ∈ C that distinguishes ZeroSamp and
OneSamp with non-negligible probability for infinitely many n, then for any polynomial p(n), we
can construct {Bn} ∈ C to break lemma A.4, i.e. ∃ a polynomial q(n), for infinitely many n,∣∣∣∣ Pr

M←ZeroSamp(p(n))
[Bn(M) = 1]− Pr

M←OneSamp(p(n))
[Bn(M) = 1]

∣∣∣∣ > 1

q(n)
.

By lemma A.5, if {An} distinguishes ZeroSamp and OneSamp for {ni}i∈N, we construct {Bn}
as:

• If n = max{n : p(n) ≤ ni} for some i, Bn is the distinguisher constructed from Ani .

• Otherwise, Bn outputs 0.

Then {Bn} ∈ C and we can easily see that for all n = max{n : p(n) ≤ ni}, Bn succeeds by
non-negligible probability. □

56

B Low Complexity CRHF

In this section we propose candidates for collision resistant hash functions with arbitrary polynomial
shrinkage computable in AC0[c] for some constant c ≥ 2 against p.p.t. adversaries.

Definition B.1 (SIS∞). For any n,m, q,B ∈ N+, q ≥ 4 define the short integer solution problem
SIS∞n,m,q,B as follows: Given A ∈ Zn×m

q , find a non-zero vector x ∈ {−B,−B + 1, ..., B − 1, B}m
such that

Ax = 0 mod q.

We are mostly interested in the case where B = 1 and q = 2k for some constant k ≥ 2. When
q = 2k for some constant k ≥ 2, the function f : {0, 1}m → Zn

q ,x 7→ A · x mod q is computable in
AC0[2]. Note that when m ≥ (n + 1)k, there is a polynomial time classical algorithm that solves
SIS∞n,m,2k,1, see [CLZ22, Appendix]. However, when m < nk, we do not know any polynomial time
algorithm. We thus make the following conjecture:

Conjecture B.2. For any constant ε > 0, for any 2 ≤ k ∈ O(1), q = 2k, for any n,m ∈ N+ such
that m ≤ nk−ε. There is no poly(n) time algorithm that solves SIS∞n,m,q,1. ♦

In fact, as long as for some constant δ > 0, for some constant k ≥ 2, SIS∞n,n1+δ ,2k,1 is hard,
then there exists CRHFs with arbitrary polynomial shrinkage computable in AC0[2], by stacking
constant levels of CRHFs with compression rates of n1+δ to n.

Let us remark that the hardness of the variant of SIS∞n,m,q,1 we conjectured in Conjecture B.2 is
not known to be as hard as worst-case lattice problems, as oppose to the “standard SIS” problem
(cf. Def 4.1) where the solution is bounded in its ℓ2 norm, for which we know worst-case to average
case reductions [Ajt96; MR07; MP13]. We recall the precise statement from [MP13].

Lemma B.3 (Theorem 3.8 of [MP13]). Let n, m ∈ N+, S = {z ∈ Zm \ {0} | ‖z‖ < β ∧ ‖z‖∞ < β∞}
for some real β ≥ β∞ > 0, and q ≥ β · nΩ(1) be an integer modulus with at most poly(n) inte-
ger divisors less than β∞. Then for some γ = max {1, ββ∞/q} · O(β

√
n), there is an efficient

quantum reduction from SIVPγ·ωn on n-dimensional lattices to solving SISn,m,q within set S with
non-negligible probability. ♦

We observe that to apply Lemma B.3, we must use q ≥
√
n, but then we do not know how to

compute the SIS function in AC0[c] for any constant c.
Although not used in our paper, we would also like to make a conjecture about the hardness of

SIS∞n,m,q,1 for possibly non-power-of-two moduli:

Conjecture B.4. For any constant ε ∈ (0, 0.99), for any 4 ≤ q ∈ O(1), for any n,m ∈ N+ such
that m ∈ O(n1+ε). There is no poly(n) time algorithm that solves SIS∞n,m,q,1. ♦

Note that if Conj. B.4 is true, then we have a CRHF family with arbitrary polynomial compression
computable in AC0[q]. The best classical and quantum algorithms against Conj. B.4 requires m to
be at least n2. Readers are referred to [CLZ22] for the details.

C AC0[2]-computable and AC0[2]-proof-of-knowledge PCP

In this section, we give a short sketch of how the PCP proof system in Theorem 6.5 is constructed.
We begin by recalling the theorem.

57

Theorem 6.5. For the central relation R, there exists a PCP system (Ppcp, Vpcp) where Vpcp is a
probabilistic verifier in AC0[2] for R with randomness complexity O(log n) and query complexity
O(1). while Ppcp is an AC0[2] circuit. This system satisfies:

• Completeness: For all (x,w) ∈ R,

Pr
[
V π
pcp(x) = 1

∣∣ π ← Ppcp(x,w)
]
= 1.

This implies that there exists a polynomial p(·) such that the proof π generated is of length
p(|x|+ |w|).

• Soundness: For all x such that there does not exists w that (x,w) ∈ R, for any proof π∗,

Pr
[
V π∗
pcp(x) = 1

]
<

1

2
,

where the randomness is over the internal randomness of Vpcp.

• Knowledge extraction: there exists an extractor Epcp in AC0[2] such that for any input x
and proof π̃ if

Pr
[
V π̃
pcp(x) = 1

]
≥ 1− 1

log5 n
,

then
Pr [(x,w) ∈ R | w ← Epcp(x, π̃)] = 1. ♦

Our PCP system follows from the canonical, smooth, and strong construction by Paradise
[Par21]. Chen, Williams, and Yang [CWY23] additionally proved that it is AC0[2]-locally decod-
able. Note that knowledge extraction in AC0[2] follows directly from strongness and AC0[2]-local-
decodability. So we only show that there is a prover in AC0[2] outputting the PCP proof π given a
witness w to the original relation R.

Below, we give a brief sketch of why the prover can be implemented in AC0[2], assuming the
familiarity of [CWY23]. In their terminology, we show that if the good predicate V (x, y) (which is
R in our paper) is an AC0[2] circuit, then the canonical mapping ΠV (which is Ppcp in our paper)
can also be computed by an AC0[2] circuit.

Proof sketch of Theorem 6.5 (AC0[2]-computability). Suppose that the relation R is com-
putable by an AC0[2] circuit of wire complexity s.

Our first step is to convert the relation R by a 3-CNF formula φ(x,w′) of size O(s), such that
for each x ∈ {0, 1}n,

∃w, (x,w) ∈ R ⇐⇒ ∃w′, φ(x,w′),

where a satisfying w′ can be computed by AC0[2] circuits given x and w where (x,w) ∈ R.
For P/poly circuits, this is the standard reduction from CktSAT to 3SAT, but we need to

be very careful for AC0[2] circuits to ensure that w′ can be computed in AC0[2]. To do so, we
define ℓ new variables for each gate of fan-in ℓ. Suppose, without loss of generality, that the gate
is H(g1, . . . , gℓ) = g1 ∧ g2 ∧ · · · ∧ gℓ, where g1, . . . , gℓ are outputs of lower gates (with possible
negations). Then we define

vi =

i∧
j=1

gj .

58

Then the 3-CNF contains clauses that describe v1 = g1 and vi = vi−1 ∧ gi. We then use vℓ as the
output as the gate H for further uses. Note that for H being an ⊕ gate, we can still use a constant
number of clauses to describe vi = vi−1⊕gi. In addition, we have a clause asserting that the output
gate of the circuit R evaluates to 1. This results in a 3-CNF of size O(s).

We still need to show that each vi can be computed in AC0[2]. This is true since we can evaluate
each vi by a single gate given g1, . . . , gℓ. For example, if H is an ∧-gate, then vi = g1 ∧ g2 ∧ · · · ∧ gi,
which is a single ∧-gate. Since the original circuit for R is of constant depth, we can also compute
each vi in AC0[2].

We then show that the canonical proof of the PCP in [CWY23] is computable in AC0[2] if the
predicate is a 3-CNF. Note that the PCP in [CWY23] is constructed by composing for several times
a robust PCP of proximity (PCPP) from low-degree extension, with a Hadamard PCP at the end.
The proof of each part is repeated for a polynomial number of times to ensure smoothness. The
proof of the Hadamard PCP is trivially computable in AC0[2] since each bit is just an inner-product7.

For the PCP based on low-degree extension, the proof π is constructed by first computing an
low-degree extension of w over a field F with |F| = 22·3

ℓ for some ℓ ∈ N and |F| ≤ polylog(s),
then encoding each value in the field F by a Boolean string of length b = O(log|F|) by a constant-
rate error-correcting code. The latter ECC can be easily computed by AC0[2] circuits since b =
O(log log s), so the ECC encoding can be implemented by a look-up table of size 2b = polylog(s).

We now describe the low-degree extension in more details. Suppose, w.l.o.g., that |w| = s. Let
m = dlog s/ log log se, and h be the smallest power of 2 such that hm ≥ s.8

We view the string w as a function [h]m → {0, 1} (we pad the string w with 0 when necessary).
Then we identify [h] with h distinct elements in F such that the 0 and 1 in [h] are mapped to the
0 and 1 in F, so w can be viewed as a partial function from Fm to F. We then compute the unique
polynomial Â : Fm → F with degree at most h − 1 in each variable, which agrees with w on all
inputs from [h]m. We will output (the ECC encoding of) the truth table of Â as the proof π, which
is Â(x) for all x ∈ Fm.

The translation of w to the function [h]m → {0, 1} can be easily done in AC0[2] given h as
a power of 2. We can also translate easily this into Fm since the mapping from [h] to F can be
arbitrary. The only hard part is the low-degree extension, where we need to evaluate a multi-variate
polynomial interpolation. Fortunately, the points given are the product set [h]m, so we can use
the Lagrange interpolation on each variable respectively. In particular, suppose that [h] is mapped
to a0, a1, . . . , ah−1 in F respectively, and by viewing w as a function [h]m → {0, 1}, w(y) is the
function value of y ∈ [h]m, then

Â(x) =
∑

y∈[h]m
w(y)

m∏
i=1

∏
j∈[h],j ̸=yi

xi − aj
ayi − aj

.

The denominator does not depend on x, so it can be hardwired into the circuit. Each enumerator
is an iterated multiplication of m · (h − 1) ≤ polylog(s) terms, so it can be computed in AC0[2] of
poly(s) size by [HV06]. So the polynomial Â(x) can be evaluated by AC0[2] circuits. □

7Technically speaking, it is not an inner-product since the PCP proof is the Hadamard code of the all constant-
degree monomials of the witness w. However, this is still computable in AC0[2] since all computations are on F2.

8Here we modify the construction in [CWY23] a little bit by taking h to be a power of 2. This is to ensure that any
integer in [s] can be easily encoded into [h]m. This will not change the complexity too much since hm ≤ 2m · s ≤ s2.

59

	Introduction
	The soundness of Fiat-Shamir
	Fiat-Shamir and cryptography against bounded-depth adversaries
	Our results
	Positive results
	Negative results

	Related works

	Technical Overview
	Positive results
	Negative results

	Preliminaries
	Circuit
	Interactive protocol
	Fiat-Shamir for 3-round public coin argument with common reference string

	Correlation Intractability Against Bounded-Depth Adversaries
	Backgrounds needed in this section
	Hard Lattice Problems
	Fully Homomorphic Encryption
	Inert Commitment
	Correlation intractability
	Cryptographic primitives against bounded-depth circuits

	CI from SIS against bounded-depth adversaries
	CI from worst-case complexity assumptions
	Adaptation of inert commitment to Z2
	Construction

	Impossibility Result for Universal FS Hash Functions
	Stronger Impossibility Results
	Interactive Argument for Central Relation
	Reduced Argument for Central Relation
	Protocol 1
	Protocol 2
	Protocol 3

	Detailed Proofs of Almost-Everywhere Security
	Low Complexity CRHF
	AC0[2]-computable and AC0[2]-proof-of-knowledge PCP

