
Adaptive Security in SNARGs via iO and Lossy Functions

Brent Waters

NTT Research & UT Austin

bwaters@cs.utexas.edu

Mark Zhandry

NTT Research

mzhandry@gmail.com

Abstract

We construct an adaptively sound SNARGs in the plain model with CRS relying on the assumptions

of (subexponential) indistinguishability obfuscation (iO), subexponential one-way functions and a notion

of lossy functions we call length parameterized lossy functions. Length parameterized lossy functions

take in separate security and input length parameters and have the property that the function image

size in lossy mode depends only on the security parameter. We then show a novel way of constructing

such functions from the Learning with Errors (LWE) assumption.

Our work provides an alternative path towards achieving adaptively secure SNARGs from the recent

work of Waters and Wu [WW24]. Their work required the use of (essentially) perfectly re-randomizable

one way functions (in addition to obfuscation). Such functions are only currently known to be realizable

from assumptions such as discrete log or factoring that are known to not hold in a quantum setting.

1 Introduction

A Succinct Non-interactive Argument (SNARG) forNP are an important foundational object in cryptography.

A SNARG allows a computationally bounded prover to convince a verifier of some NP statement by sending

only a single short message, much shorter than the statement and witness size. Succinct arguments were first

constructed in the random oracle model (ROM) [Kil92, Mic94]. This was followed by numerous constructions

in the plain model assuming a CRS; such a CRS is likely inherent to the plain model [BP04, Wee05]. In the

CRS model, the CRS is allowed to be longer than the instance and witness size, but the prover’s message

must still remain short.

In the plain model with a CRS, an important security goal is that of adaptive soundness, which allows the

bounded prover to choose the instance being proved adaptively after seeing the CRS. Adaptive soundness

in the plain model has been very difficult to achieve.

Our Work. In this work, we construct adaptively sound SNARGs in the plain model with CRS, assuming

(subexponential) indistinguishability obfuscation (iO) plus sufficiently lossy functions (as well as subexpo-

nential one-way functions). We can instantiate the necessary lossy functions using LWE, which in turn can

be based on the worst-case hardness of lattice assumptions. Previous lossy functions from LWE were not

sufficiently lossy for our needs, so we designed a new lossy function from LWE which may be useful in

other contexts.

Our work complements a very recent result of [WW24], which constructs the first adaptively sound

SNARGs, using (subexponential) iO plus sufficiently strong rerandomizeable one-way functions (OWFs).

They instantiated the needed rerandomizeable OWFs from the discrete logarithm or factoring assumptions.

Importantly, even though LWE is rerandomizeable, the statistical error in the rerandomization process is

1

too great for the reduction in [WW24] to go through, so their result cannot be instantiated using LWE. In

particular, their claimed security proof requires pre-quantum assumptions, leaving open the existance of

post-quantum secure SNARGs from falsifiable assumptions.

As a technical contribution crucial to obtaining our result, we construct lossy trapdoor functions (LTDFs)

from LWE. While such functions were previously known, ours achieve a very strong form of lossiness

in the lossy mode. In more detail, we allow the input length to be an arbitrarily large polynomial in the

security parameter. But we require that the number of bits of information about the input that is present

in the output of the lossy mode is a fixed polynomial in the security parameter, independent of the input

length. Previous lossy functions based on LWE did not achieve this level of lossiness.

1.1 Motivation and Challenges

Challenges in proving SNARGs in the standard model. When reducing to falsifiable assump-

tions, [GW11, CGKS23] argue that adaptive SNARGs require the reduction to run in time larger than

the statement size. One can try to compensate for such an inefficient reduction by incurring a loss

of 2
|𝑥 |

in the security reduction, where 𝑥 is the statement, and making subexponential hardness as-

sumptions. However, in order to accommodate a 2
|𝑥 |

security loss, the security parameter needs to be

set somewhat larger than |𝑥 |. Consequently, the proof size grows with the security parameter, mean-

ing the proof size ends up growing with the instance size, making the protocol no longer succinct.

As a result, it may seem that provable adaptive soundness for SNARGs under falsifiable assumptions

is not possible. Indeed, many constructions in the literature use non-falsifiable assumptions instead

(e.g. [Gro10, BCCT12, DFH12, Lip13, GGPR13, BCI
+
13, BCC

+
17, ACL

+
22, CLM23]).

Very recently, [WW24] overcome this challenge. Their key idea is to actually have two security

parameters. One security parameter will absorb the 2
|𝑥 |

loss of the inefficient reduction and will therefore

be large, while the other security parameter will remain small; the arguments of [GW11, CGKS23] only

imply that one of the two security parameters needs to be large. Importantly, the proof size only depends on

the small security parameter, meaning it can remain small. Meanwhile, the CRS will depend on both security

parameters and will therefore grow with the instance size, as expected. Even with this idea, executing a

security proof that prevents the small security parameter from incurring the 2
|𝑥 |

loss is tricky and requires a

careful proof. The main issue is that typical hybrid arguments end up requiring the subexponential security

of all primitives involved, in which case all security parameters would need to be made large.

What about LWE? The construction in [WW24] uses iO, as well as rerandomizeable one-way functions.

Importantly for their proof, rerandomization must produce a distribution that is identical to the original

distribution, or a slight generalization allows for the rerandomized distribution to be made 2
−ℓ

close, where

ℓ needs to be much larger than the image size of the one-way function. The authors show how to instantiate

such a function using either discrete logarithms or factoring.

A natural question is whether the existing adaptive SNARGs can be instantiated using LWE (in addition

to iO). For example, using an alternative to discrete logarithms or factoring would be necessary if one wants

post-quantum security. Along similar lines, perhaps some day it will be discovered that iO can be built

from LWE; following [WW24] would require making assumptions in addition to LWE, whereas our work

would then only require LWE.

Unfortunately, while LWE is rerandomizeable, rerandomization introduces noise, so the rerandomized

distribution is only statistically close to the original distribution. Importantly, for LWE the closeness 2
−ℓ

must always have ℓ be much smaller than the instance size, meaning LWE cannot be used in the proof

of [WW24].

2

Assumptions in Obfustopia. Indistinguishability obfuscation can be used to achieve many crypto-

graphic applications. However, iO alone is almost never enough: indeed, if P = NP, then iO exists

unconditionally, but most of the cryptosystems we would like to build from iO cannot exist. As a result,

some extra computational assumption is typically required. The minimal extra assumption is often a one-

way function, which, in a world where iO exists, can in turn can be replaced with a worst-case complexity

assumption [KMN
+
14].

However, it turns out that even iO plus one-way functions are often not enough to achieve various

structured primitives. For example, iO and one-way functions are not enough for collision resistance [AS15]

(and therefore anything that implies collision resistance such as homomorphic encryption), one-way

permutations [AS18], or even any hard problem in NP ∩ co-NP [BDV17]. A natural theoretical question is

then to explore what structured assumptions are needed in addition to iO to achieve these applications.

The work of [WW24] shows that sufficiently strong rerandomizeable one-way functions plus (subex-

ponential) iO are enough to achieve SNARGs. Rerandomizeablility is a kind of structure that is typically

not achievable with iO and one-way functions alone. For example, (subexponential) rerandomizeable

encryption and iO gives fully homomorphic encryption [CLTV15], which as discussed above likely cannot

be achieved from iO and one-way functions.

Our work therefore complements [WW24], by showing that a different structure, namely lossiness,

can be used in conjunction with iO to achieve SNARGs. Given the state-of-the-art, lossy functions and

rerandomizeable one-way functions seem incomparable, though we note that other rerandomizeable

primitives imply types of lossiness
1
, suggesting that losiness may typically be a milder structure.

1.2 Technical Overview

The [SW14] SNARG. We start by briefly recalling the obfuscation-based SNARG of [SW14], which was

the first SNARG with provable security under falsifiable assumptions.

The prover’s message in [SW14] is simply a signature on the statement being proved, using an appropri-

ate signature scheme. The verifier can easily verify these signatues, and signatures can be made very short,

much shorter than the instace size. In order to allow the honest prover to actually compute the signature,

the CRS contains an obfuscated program 𝑃 which has the signing key hard-coded. 𝑃 takes as input the

statement 𝑥 and witness 𝑤 , and signs 𝑥 if and only if the witness 𝑤 is a valid witness for 𝑥 . To prove

security, [SW14] argue that for false statements 𝑥∗, one can move to a hybrid game where the program 𝑃

contains a “punctured” signing key that is incapable of signing 𝑥∗. Generating a proof for 𝑥∗ then means

generating a signature on 𝑥∗, despite not having the ability to sign 𝑥∗, which violates the security of the

punctured signature scheme.

Puncturing the signing key at 𝑥∗ requires fully specifying 𝑥∗ in the program 𝑃 , meaning the adversary

needs to commit to 𝑥∗ before seeing the CRS. This is why [SW14] are limited to selective security. One

could attempt to guess 𝑥∗ and incur a loss of 2
−|𝑥∗ |

, and then set the security parameter to be much larger

than |𝑥∗ | to compensate (assuming subexponential security). The problem is that the signature scheme

incurs this loss as well, meaning that signatures need to be made larger than the instance length, violating

succinctness.

The [WW24] SNARG. To get around this challenge, [WW24] use a trick where they actually have

two valid signatures for each statement, but the program 𝑃 only outputs one of them, the choice of which

1
For example, [CLTV15] explain that rerandomizeable encryption gives lossy encryption. Rerandomizeable pseudorandom

generators with sufficient stretch are also give simple constructions of lossy functions.

3

signature being pseudorandomly determined based on the instance. The authors first argue that, for false

statements, the signature produced by any computationally bounded prover must, with non-negligible

probability, be the signature that 𝑃 does not produce. This step requires an exponential number of hybrids,

one per false statement. This in turn means making subexponential assumptions and setting certain security

parameters to be large. But importantly, the security parameter that effects the signature length is not used

in this step of the proof, meaning the signature length can still be small.

We now need a way to argue that any signature not produced by 𝑃 is hard to compute. [WW24]

accomplish this by embedding a single one-way function challenge into every possible signature not

produced by 𝑃 . It is important that a single challenge is embedded into all the signatures, since we want any

possible signature to allow us to break the one-way function. The primary obstacle is that embedding the

same challenge into many different signatures would seem to make the signatures correlated. In contrast,

the signatures in the [WW24] construction are essentially uncorrelated
2
. To get around this issue, the

authors assume a rerandomizeable one-way function. They then, for each signature, rerandomize the

original one-way function and embed the now-independent challenge into the signature, maintaining the

uncorrelated structure of the signatures. This embedding step also requires an exponential number of

hybrid steps. However, as long as the rerandomization is perfect (or very near perfect), it does not affect

the security parameter of the one-way function, allowing signatures to remain small. After this embedding

is achieved, any attacker that signs a false statement leads directly to an inversion of the one-way function.

Our Idea. Abstractly, rerandomization is used in order to embed a single challenge into an exponential

number of signatures without introducing correlations. This is required since the original construction has

uncorrelated signatures.

Our insight is that we can, instead of preserving uncorrelated signatures, try to move to a hybrid where

the signatures are very correlated. Once the signatures are corerlated, it may be possible to embed one or

several challenges into all the signatures without needing the challenges to be rerandomizeable.

Concretely, we will assume a lossy function. Recall that a lossy function [PW08] is a function that

comes in two modes: an injective mode and a lossy mode. The injective mode is injective, while the lossy

mode has a number of outputs that is much smaller than the number of inputs. Despite being very different

functions, the two modes are required to be computationally indistinguishable. Note that lossy functions

are typically assumed to have a trapdoor in the inejctive mode to allow inversion; we will not need such a

trapdoor.

Suppose we first sample an injective mode function 𝑓 , and then have the signature on an instance

𝑥 be derived from 𝑓 (𝑥). In the injective mode, each 𝑥 maps to a unique 𝑓 (𝑥), so the signatures remain

uncorrelated. However, we now switch to 𝑓 being lossy. Now many 𝑥 map to the same value 𝑓 (𝑥). Since
signatures are derived from 𝑓 (𝑥), the signatures are now correlated.

Remark 1.1. Note that we only derived signatures from 𝑓 (𝑥) in the proof: the construction remains

unchanged, but we perform a hybrid argument where we switch from uncorrelated signatures being derived

from 𝑥 to uncorrelated signatures being derived from 𝑓 (𝑥) when 𝑓 is injective. This step requires making

subexponential hardness assumptions, but importantly this does not affect the security parameter of the

lossy function or the length of the signatures.

Let 2
𝑝
be the number of possible values of 𝑓 (𝑥). We will now embed an independent challenge into

each of the 2
𝑝
possible signatures derived from 𝑓 (𝑥). We then know that an adversary which breaks the

2
They are the outputs a pseudorandom function (PRF). They are certainly correlated through having a common PRF key. However,

aside from being generated pseudorandomly from a common PRF key, there are no correlations. Embedding a common challenge

into all the signatures would seem to require even more correlations.

4

SNARG must break one of the 2𝑝 challenges, but we don’t know which until the end of the experiment.

We therefore simply guess which one will be broken, incurring a 2
𝑝
loss. This requires subexponential

assusmptions and the security showing up in the signature to grow with 𝑝 . But importantly, 𝑝 is a fixed

polynomial independent of the instance size, meaning we maintain succinctness.

Executing the above blueprint requires a careful hybrid argument, which we show how to perform in

the body. In particular we wish to avoid any additional assumptions beyond a bound on the image size of

the lossy function, such as regularity or ability to sample from the images. At some hybrid we will actually

run the forgeability game on the attacker twice where in the first run the attacker wins on some statement

𝑥 ′. Then on the next run we use the same lossy function and make the guess on the output 𝑓 (𝑥 ′).

Remark 1.2. One technical issue we encounter is the following. We need to embed our challenge into a

random choice among the 2
𝑝
challenges that the adversary may break. This requires the ability to sample

uniformly from among the 2
𝑝
possible outputs of the lossy-mode lossy function. While we can certainly

sample from the image space by just evaluating on a random input, this distribution may be far from

uniform. The adversary could in principle always solve instances that we “miss” by this simple sampling

procedure, which would break the reduction. We show that it is possible to get around this issue by running

the adversary twice, once to learn the relevant image, and once again to actually embed the challenge in that

image. With this process, the reduction loss is equal to the collision probability of the adversary’s distribution,

which is always bounded by 2
−𝑝
. We note that similar issues have come up in applications of Extremely

Lossy Functions (ELFs) [Zha16], leading works in this space (e.g. [Zha16, Zha19, ACH20, AWZ23a]) to

assume a strong regularity condition on the ELFs, which in particular implies that the image of uniform

inputs is uniform over the images. Our technique also gets around this issue, meaning that we can remove

the regularity requirement from prior works. While the only known ELFs are regular, our technique may

be used if other ELFs are discovered that are not guaranteed to be regular.

Lossy Functions from LWE. We now turn to instantiating the needed lossy functions. DDH-based

lossy functions can readily be adapted to give the level of lossiness we need, though this will not result in

an improvement to [WW24] which could be based on discrete logarithms. Instead, here we construct lossy

functions from LWE. Lossy functions from LWE are already known [PW08, AKPW13, DGI
+
19, HHK

+
24],

but they do not have the needed lossiness, as we will now explain.

We start from the construction of lossy functions from LWE due to [AKPW13]. The injective mode

is described by a uniformly chosen tall skinny matrix 𝐴 ∈ Z𝑚×ℓ𝑞 where ℓ is the desired input length. To

evaluate the function on an input 𝑥 ∈ {0, 1}ℓ , we compute 𝐴 · 𝑥 mod 𝑞, and then round the output to an

appropriately coarse rounding.

In the lossy mode, we switch to sampling 𝐴 as 𝐴 = 𝐴0 ·𝐴1 + 𝐸 where 𝐴0, 𝐴1 are random matrices except

that 𝐴0 only has 𝜆 columns while 𝐴1 has 𝜆 rows. Here, 𝐸 is a matrix with small entries sampled from a

discrete Gaussian.

Indisitnguishability of modes follows from the LWE assumption. Injectivity (with high probability)

follows from simple statistical arguments and the fact that 𝐴 is a tall skinny matrix.

Lossiness follows from the following argument. Since 𝑥 ∈ {0, 1}ℓ is short (its entries are only in 0/1), we

have that 𝐴 · 𝑥 = 𝐴0 · 𝐴1 · 𝑥 + 𝐸 · 𝑥 . Here, 𝐸 · 𝑥 is short, and hopefully gets rounded away by the rounding,

meaning the function is only a function of 𝐴0 · 𝐴1 · 𝑥 . But as there are only 𝑞𝜆 values for 𝐴1 · 𝑥 , the total
number of images is small. In particular, we will typically have 𝑞 bounded by 2

𝜆
, in which case the number

of images is bounded by 2
𝜆2
, independent of the input length.

The above works, except that for some 𝑥 , 𝐴0 · 𝐴1 · 𝑥 will be close to a rounding boundary, meaning

the error term 𝐸 · 𝑥 can actually change the outcome of the rounded value. We can ensure that “most” 𝑥

5

end up far from a rounding boundary by setting 𝑞 to be very large. But even if the fraction of 𝑥 that have

components close to the rounding boundary is small, the number of them is very large. The issue is that we

can no longer say that there are only 𝑞𝜆 possible outputs. Even with a negligibly fraction of 𝑥 being close

to a rounding boundary, since there are 2
ℓ
different 𝑥 , we will still have 2ℓ × negl ≫ 𝑞𝜆 different outputs.

While this amount of lossiness is enough for many of the applications considered in [PW08], this will not

be lossy enough for our proof. This is because, as discussed above, our proof size grows with the (logarithm

of the) number of possible outputs in the lossy mode. With all known LWE-based lossy functions, the proof

size will end up being at least Θ(ℓ), which is not succinct. We therefore need a vastly more lossy function.

Our insight is to observe that we can actually tell (with some false positives) when 𝐴0 · 𝐴1 · 𝑥 will be

close to a rounding boundary: namely, when 𝐴 · 𝑥 is close to a rounding boundary. Thus, if we exclude all 𝑥

such that 𝐴 · 𝑥 is close to a rounding boundary, then the lossy mode function actually will have the desired

image size 𝑞𝜆 which is vastly less than 2
ℓ
.

In order to accommodate all 𝑥 as inputs, we simply sample many 𝐴. To evaluate, iterate through the

different 𝐴, finding the first one where 𝐴 · 𝑥 is far from a rounding boundary. For that function, output the

rounding of 𝐴 · 𝑥 . A union-bound argument shows that, with high probability, there will exist some 𝐴 for

each 𝑥 , meaning the function is well-defined. This slightly blows up the image size, but since the number

of 𝐴 is polynomial, the image size stays very small.

There are a handful of subtle issues that we need to take care of to get the lossy function to be sufficiently

lossy for our proof. In particular, the injective mode actually needs to be injective with certainty. This is

because in the steps where we rely on injectivity, we step through 2
ℓ
hybrids, and each one (at least if done

straightforwardly) would incur a statistical loss if there was some probability of being non-inejective. Thus,

the statistical loss gets blown up by 2
ℓ
.

We make sure the inejctive mode is actually injective by ensuring we sample 𝐴 in a way that the lossy

function can actually be inverted. This uses techniques from the literature for generating lattice trapdoors.

These trapdoors actually turn our lossy function into a lossy trapdoor functions with a large lossiness.

While we do not actually need the trapdoor functionality in this work (beyond using it to justify injectivity),

lossy trapdoor functions in general have many applications such as CCA-security [PW08].

1.3 Other Related Work

Other SNARG Constructions. Aside from the random-oracle constructions of SNARGs [Kil92, Mic94],

there are a number of constructions based on non-falsifiable knowledge assumptions, e.g. [Gro10, BCCT12,

DFH12, Lip13, GGPR13, BCI
+
13, BCC

+
17, ACL

+
22, CLM23]. There are also SNARGs for subsets of NP,

e.g. [KR09, KP16, BHK17, JKKZ21]. The only known SNARGs for all of NP from falsifiable assumptions

are those based on iO, namely [SW14] in the static setting, and the very recent work of [WW24] in the

adaptive setting.

Lossiness and Obfuscation. Lossy functions were originally introduced by [PW08]. The variant usually

considered in the literature additionally has a trapdoor int he injective mode. This variant has many

applications, such as CCA-secure encryption. More recently, lossy functions without a trapdoor have been

used in conjunction with iO in several contexts [Zha16, ACH20, AWZ23b].

6

2 Preliminaries

In this section we give the preliminaries for our work. All of our components besides our notion of

length parameterized lossy functions are the same as that of Waters and Wu[WW24]. In order to facilitate

consistency between the works we take from their material[WW24] the definitions provided in this section.

Throughout this work, we write 𝜆 to denote the security parameter. We write poly(𝜆) to denote a

fixed polynomial in the security parameter 𝜆. We say a function 𝑓 (𝜆) is negligible in 𝜆 if 𝑓 (𝜆) = 𝑜 (𝜆−𝑐)
for all 𝑐 ∈ N and denote this by writing 𝑓 (𝜆) = negl(𝜆). When 𝑥,𝑦 ∈ {0, 1}𝑛 , we will view 𝑥 and 𝑦 as both

bit-strings of length 𝑛 as well as the binary representation of an integer between 0 and 2
𝑛 − 1. We write

“𝑥 ≤ 𝑦” to refer to the comparison of the integer representations of 𝑥 and 𝑦. We say an algorithm is efficient

if it runs in probabilistic polynomial time in the length of its input.

Our construction will rely on sub-exponential hardness assumptions, so we will formulate some of

our security definitions using (𝑡, 𝜀)-notation. Generally, we say that a primitive is (𝑡, 𝜀)-secure, if for all
adversaries A running in time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , the
adversary’s advantage is bounded by 𝜀 (𝜆). We say a primitive is polynomially-secure if it is (1, negl(𝜆))-
secure for some negligible function negl(·) and we say that it is sub-exponentially secure if it is (1, 2−𝜆𝑐)-
secure for some constant 𝑐 ∈ N. We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI
+
01]). An indistinguishability obfuscator for Boolean

circuits is an efficient algorithm 𝑖O(·, ·, ·) with the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, circuit size parameters 𝑠 ∈ N, all Boolean circuits 𝐶

of size at most 𝑠 , and all inputs 𝑥 ,

Pr[𝐶′(𝑥) = 𝐶 (𝑥) : 𝐶′ ← 𝑖O(1𝜆, 1𝑠 ,𝐶)] = 1.

• Security: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the program indistinguishability

game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary outputs a size parameter 1

𝑠
and two Boolean

circuits 𝐶0,𝐶1 of size at most 𝑠 .

– If there exists an input 𝑥 such that 𝐶0(𝑥) ≠ 𝐶1(𝑥), then the challenger halts with output ⊥.
Otherwise, the challenger replies with 𝑖O(1𝜆, 1𝑠 ,𝐶𝑏).

– The adversary A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that 𝑖O is (𝑡, 𝜀)-secure if for all adversaries A running in time at most 𝑡 (𝜆) · poly(𝜆), there
exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , we have that

iOAdvA (𝜆) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the program indistinguishability game defined above.

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists

of a tuple of efficient algorithms ΠPPRF = (KeyGen, Eval, Puncture) with the following syntax:

• KeyGen(1𝜆, 1ℓin, 1ℓout) → 𝑘 : On input the security parameter 𝜆, an input length ℓin, and an output

length ℓout, the key-generation algorithm outputs a key 𝑘 . We assume that the key 𝑘 contains an

implicit description of ℓin and ℓout.

7

• Puncture(𝑘, 𝑥∗) → 𝑘 (𝑥
∗)
: On input a key 𝑘 and a point 𝑥∗ ∈ {0, 1}ℓin , the puncture algorithm outputs

a punctured key 𝑘 (𝑥
∗)
. We assume the punctured key also contains an implicit description of ℓin and

ℓout (same as the key 𝑘).

• Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 and an input 𝑥 ∈ {0, 1}ℓin , the evaluation algorithm outputs a value

𝑦 ∈ {0, 1}ℓout :

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For all 𝜆, ℓin, ℓout ∈ N, every input𝑥 ∈ {0, 1}ℓin , and every𝑥 ∈ {0, 1}ℓin\ {𝑥∗},

Pr

[
Eval(𝑘, 𝑥) = Eval(𝑘 (𝑥∗) , 𝑥) : 𝑘 ← KeyGen(1𝜆)

𝑘 (𝑥
∗) ← Puncture(𝑘, 𝑥∗)

]
= 1.

• Punctured pseudorandomness: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the

(selective) punctured pseudorandomness game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary A outputs the input length 1

ℓin
, the output

length 1
ℓout

, and commits to a point 𝑥∗ ∈ {0, 1}ℓin .
– The challenger samples 𝑘 ← KeyGen(1𝜆, 1ℓin, 1ℓout) and gives 𝑘 (𝑥

∗) ← Puncture(𝑘, 𝑥∗) to A.

– If 𝑏 = 0, the challenger gives 𝑦∗ = Eval(𝑘, 𝑥∗) to A. If 𝑏 = 1, then it gives 𝑦∗ r← {0, 1}ℓout to A.

– At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

We say that ΠPPRF satisfies (𝑡, 𝜀)-punctured pseudorandomness if for all adversaries A running in

time at most 𝑡 (𝜆) · poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , it holds that

PPRFAdvA (𝜆) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the punctured pseudorandomness security game.

Theorem 2.3 (Puncturable PRFs [GGM84, BW13, KPTZ13, BGI14]). Assuming the existence of polynomially-
secure (resp., sub-exponentially-secure) one-way functions, then there exists a selective polynomially-secure
(resp., sub-exponentially-secure) puncturable PRF.

Succinct non-interactive arguments. We now recall the definition of a succinct non-interactive argu-

ment for the language of Boolean circuit satisfiability. We start by defining the language of Boolean circuit

satisfiability:

Definition 2.4 (Boolean Circuit Satisfiability). We define the circuit satisfiability language LSAT as

LSAT =

{
(𝐶, 𝑥)

��� 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, 𝑥 ∈ {0, 1}𝑛
∃𝑤 ∈ {0, 1}ℎ : 𝐶 (𝑥,𝑤) = 1

}
.

Definition 2.5 (Succinct Non-Interactive Argument). A succinct non-interactive argument (SNARG) in

the preprocessing model for Boolean circuit satisfiability is a tuple ΠSNARG = (Setup, Prove,Verify) with
the following syntax:

• Setup(1𝜆,𝐶) → crs: On input the security parameter 𝜆 and a Boolean circuit 𝐶 , the setup algorithm

outputs a common reference string crs.

8

• Prove(crs, 𝑥,𝑤) → 𝜋 : On input a common reference string crs, a statement 𝑥 , and a witness𝑤 , the

prove algorithm outputs a proof 𝜋 .

• Verify(crs, 𝑥, 𝜋) → 𝑏: On input a common reference string crs, a statement 𝑥 and a proof 𝜋 , the

verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠSNARG should satisfy the following properties:

• Completeness: For all security parameters 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
all instances (𝑥,𝑤) where 𝐶 (𝑥,𝑤) = 1,

Pr

[
Verify(crs, 𝑥, 𝜋) = 1 :

crs← Setup(1𝜆,𝐶)
𝜋 ← Prove(crs, 𝑥,𝑤)

]
= 1.

• Adaptive soundness: For a security parameter 𝜆, we define the adaptive soundness game between

an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary A starts by outputting a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.
– The challenger replies with crs← Setup(1𝜆,𝐶).
– The adversary outputs a statement 𝑥 ∈ {0, 1}𝑛 and a proof 𝜋 .

– The output is 𝑏 = 1 if (𝐶, 𝑥) ∉ LSAT and Verify(crs, 𝑥, 𝜋) = 1. The output is 𝑏 = 0 otherwise.

We say that ΠSNARG is adaptively sound if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the adaptive soundness game.

• Succinctness: There exist a polynomial 𝑝 such that for all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, and all crs in the support of Setup(1𝜆,𝐶), all statements 𝑥 ∈ {0, 1}𝑛 , and all witnesses 𝑤 ∈
{0, 1}ℎ , the size of the proof 𝜋 output by Prove(crs, 𝑥,𝑤) satisfies |𝜋 | ≤ 𝑝 (𝜆 + log |𝐶 |).

Definition 2.6 (Perfect Zero-Knowledge). A preprocessing SNARG ΠSNARG = (Setup, Prove,Verify) for
Boolean circuit satisfiability satisfies perfect zero-knowledge if there exists an efficient simulator S =

(S0,S1) such that for all adversaries A, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and all (𝑥,𝑤) ∈
{0, 1}𝑛 × {0, 1}ℎ where 𝐶 (𝑥,𝑤) = 1, we have that{

(crs, 𝑥, 𝜋) : crs← Setup(1𝜆,𝐶)
𝜋 ← Prove(crs, 𝑥,𝑤)

}
≡
{
(crs, 𝑥, 𝜋) : (crs, stS) ← S0(1

𝜆,𝐶)
𝜋 ← S1(stS, 𝑥)

}
.

We next define one way functions. Intuitively our definition is simply a one way function where there

is first a setup algorithm producing a CRS. In order for our construction to notationally match [WW24] we

retain their notation. This includes the somewhat atypical notion of a verify algorithm.

Definition 2.7 (One-Way Functions with Setup). A rerandomizable one-way function is a tuple of efficient

algorithms ΠOWF = (Setup,GenInstance,Verify) with the following syntax:

• Setup(1𝜆) → crs: On input a security parameter 𝜆 the setup algorithm outputs a common reference

string crs.

• GenInstance(crs) → (𝑦, 𝑧): On input the common reference string crs, the instance-generator

algorithm outputs an instance 𝑦 together with a solution 𝑧.

9

• Verify(crs, 𝑦, 𝑧) → 𝑏: On input the common reference string crs, an instance 𝑦, and a solution 𝑧, the

verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

We require that ΠOWF satisfy the following properties:

• Correctness: For all 𝜆,𝑚 ∈ N, it holds that

Pr

[
Verify(crs, 𝑦, 𝑧) = 1 :

crs← Setup(1𝜆, 1𝑚)
(𝑦, 𝑧) ← GenInstance(crs)

]
= 1.

• One-wayness: For an adversary A, a security parameter 𝜆, and a rerandomization parameter𝑚, we

define the one-wayness security game as follows:

– On input the security parameter 1
𝜆
, algorithm A outputs the rerandomization parameter 1

𝑚
.

– The challenger samples crs← Setup(1𝜆, 1𝑚) and (𝑦∗, 𝑧∗) ← GenInstance(crs). It gives (crs, 𝑦∗)
to A.

– Algorithm A outputs a solution 𝑧. The challenger outputs a bit 𝑏 = Verify(crs, 𝑦∗, 𝑧).

We say that ΠOWF satisfies (𝑡, 𝜀)-onewayness if for all adversaries A running in time at most 𝑡 (𝜆) ·
poly(𝜆), there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A , it holds that

OWFAdvA (𝜆) := Pr[𝑏 = 1] ≤ 𝜀 (𝜆)

in the one-wayness game.

• Succinctness: There exists a polynomial 𝑝 such that for all 𝜆 ∈ N, all crs in the support of

Setup(1𝜆, 1𝑚), and all (𝑦, 𝑧) in the support of GenInstance(crs), it holds that |𝑧 | ≤ 𝑝 (𝜆).

3 Length Parameterized Lossy Functions

In the section we give the definition of length parameterized lossy functions and follow it with a construction

from the LWE assumption. Length parameterized lossy functions follow the concept of lossy functions

introduced in [PW08] with the distinction that the setup algorithm takes as input a security parameter 𝜆

along with an explicit input length parameter ℓin. As in [PW08] there is both an injective and a lossy mode

of setup and these should be computationally indistinguishable. However, image size of the function in

lossy mode should be a polynomial that depends only on the security parameter 𝜆 and is independent of ℓin.

Definition 3.1 (Length Parameterized Lossy Functions). A Length Parameterized Lossy Function a tuple

of efficient algorithms ΠLossyF = (SetupInj, SetupLossy, Eval) with the following syntax:

• SetupInj(1𝜆, 1ℓin) → 𝑘 : On input the security parameter 𝜆, an input length ℓin outputs a key 𝑘 . We

assume that the key 𝑘 contains an implicit description of ℓin.

• SetupLossy(1𝜆, 1ℓin) → 𝑘 : On input the security parameter 𝜆, an input length ℓin outputs a key 𝑘 . We

assume that the key 𝑘 contains an implicit description of ℓin.

• Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 and an input 𝑥 ∈ {0, 1}ℓin , the evaluation algorithm outputs a value

𝑦 ∈ {0, 1}ℓout , for some output length ℓout that is determined during function setup.

10

In addition, ΠLossyF should satisfy the following properties:

• Injectivity in Injective Mode: For all 𝜆, ℓin ∈ N, every pair of inputs 𝑥0, 𝑥1 ∈ {0, 1}ℓin if 𝑘 ←
SetupInj(1𝜆, 1ℓin) and Eval(𝑘, 𝑥0) = Eval(𝑘, 𝑥1), then 𝑥0 = 𝑥1.

• Lossiness in Lossy Mode: There exists a (single variate) polynomial 𝑝 such that for all 𝜆, ℓin ∈ N the

following holds. Let 𝑘 ← SetupLossy(1𝜆, 1ℓin) then define 𝑆𝑘 to be the set where 𝑦 ∈ {0, 1}ℓout ∈ 𝑆𝑘
if and only if there exists an 𝑥 ∈ {0, 1}ℓin where Eval(𝑘, 𝑥) = 𝑦. (I.e. 𝑆𝑘 is the image of the function

Eval(𝑘, ·).) Then |𝑆𝑘 | ≤ 2
𝑝 (𝜆)

. Thus, the image size is bounded by a polynomial in 𝜆 which is

independent of ℓin.

Remark 3.2. As a technicality the image size is not necessarily independent of ℓin, it is there exists a

bound on it that is independent of ℓin. In addition, it might be the case that for certain combinations

of 𝜆, ℓin that in lossy mode the function does not loose information on the input. The definition only

guarantees lossiness when ℓin > 𝑝 (𝜆). Nonetheless, this is what we will need for our applications.

• Mode indistinguishability: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the mode

indistinguishability game between an adversary A and a challenger as follows:

– On input the security parameter 1
𝜆
, the adversary A outputs the input length 1

ℓin
.

– If 𝑏 = 0, the challenger gives 𝑘 ← SetupInj(1𝜆, 1ℓin) to A. If 𝑏 = 1, then it gives 𝑘 ←
SetupLossy(1𝜆, 1ℓin) to A.

– At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

We say that ΠLossyF satisfies mode indistinguishability if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N, it holds that

PPRFAdvA (𝜆) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ negl(𝜆)

in the mode indistinguishability security game.

We will also consider a slightly weaker version of lossiness, which we call Almost Perfect Lossiness.
This states that the lossy condition only holds with probability at least 1 − negl(𝜆) over the choice of lossy
key 𝑘 ← SetupLossy(1𝜆, 1ℓin).
Remark 3.3. Suppose we have a length parameterized lossy function system where |𝑆𝑘 | is bounded by

2
𝑞 (𝜆,lg(ℓin))

for some bivariate polynomial 𝑞. Then we have a length parameterized system that meets our

single variate condition above. Consider the transformation (which is considered folklore in many other

settings). If ℓin > 2
𝜆
, then go into a degenerative setup where SetupInj(1𝜆, 1ℓin) produces a key where

evaluation will be the identity function. And SetupLossy(1𝜆, 1ℓin) produces a key where evaluation will

always output an all 0’s string. Whenever the degenerative condition is triggered we will clearly have the

lossiness and injective conditions. Whenever it isn’t we can bound 𝑞(𝜆, lg(ℓin)) by 𝑞(𝜆, 𝜆) which gives us a

single variate polynomial in 𝜆. Moreover, adding this condition does not impact mode indistinguishability

security as any polynomial time adversary will only be capable of triggering it for a finite number of

security parameters.

In the next subsections, we will construct lossy functions satisfying Definition 3.1, namely the variant

with almost perfect lossiness. Our construction will work in two parts. First, we will explain how to realize

Definition 3.1 from a weaker notion of lossiness. Then we will show a simple way to achieve this weaker

lossiness directly from LWE.

11

3.1 Boosting Lossiness

Approximate Lossiness. Consider the following approximate lossiness condition, which relaxes “Lossi-

ness in Lossy Mode” in Definition 3.1:

• There is a deterministic procedure VerLossy(𝑘, 𝑥) which outputs either 1 or 0.

• For any 𝜆, ℓin and 𝑥 ∈ {0, 1}ℓin , Pr[VerLossy(SetupLossy(1𝜆, 1ℓin), 𝑥) = 1] ≥ 1/2. Here, the constant
1/2 is arbitrary.

• Let 𝑆𝑘 be the set of images of Eval(𝑘, ·) restricted to the points 𝑥 such that VerLossy(𝑘, 𝑥) = 1. Then
we require that |𝑆𝑘 | ≤ 2

𝑝 (𝜆)
.

In other words, there is a reasonably dense recognizable set (those 𝑥 such that VerLossy(𝑘, 𝑥) = 1) such

that on this recognizable set, Eval(𝑘, ·) achieves the desired lossiness. We allow for the overall function,

however, to be not lossy once 𝑥 such that VerLossy(𝑘, 𝑥) = 0 are taken into account. Even if strengthened

the conditions so that 𝑥 constituted a negligible fraction of the domain, such functions would only be lossy

in a very weak sense, losing only a few bits of information about 𝑥 . But we desire very strong lossiness

where the all but a few bits of information are lost, and specifically the amount of information left is

essentially independent of the input size. Note that standard lossiness simply has VerLossy accept all inputs.

Lemma 3.4. If there exists ΠLossyF = (SetupInj, SetupLossy, Eval,VerLossy) satisfying Definitino 3.1 except
with approximate lossiness, then there exists a protocol Π′LossyF = (SetupInj′, SetupLossy′, Eval′) satisfying
Definition 3.1 with almost perfect lossiness.

Proof. Π′LossyF = (SetupInj
′, SetupLossy′, Eval′) works as follows:

• SetupInj′(1𝜆, 1ℓin): Let 𝑟 = ℓin + 𝜆. For 𝑖 ∈ [𝑟], sample 𝑘𝑖 ← SetupInj(1𝜆, 1ℓin). Output 𝑘 = (𝑘𝑖)𝑖∈[𝑟] .

• SetupLossy′(1𝜆, 1ℓin): Let 𝑟 = ℓin + 𝜆. For 𝑖 ∈ [𝑟], sample 𝑘𝑖 ← SetupLossy(1𝜆, 1ℓin). Output 𝑘 =

(𝑘𝑖)𝑖∈[𝑟] .

• Eval′(𝑘, 𝑥): parse 𝑘 = (𝑘1, · · · , 𝑘𝑟). Let 𝑖 be the smallest value in [𝑟] such that VerLossy(𝑘𝑖 , 𝑥) = 1; if

no such value exists, let 𝑖 = 0. If 𝑖 ≠ 0, let 𝑦𝑖 ← Eval(𝑘, 𝑥); if 𝑖 = 0, let 𝑦0 = 𝑥 , appropriately padded to

match the output length of Eval. Output (𝑖, 𝑦𝑖).

Indistinguishability of injective and lossy modes for Π′LossyF follows from the indistinguishability for

ΠLossyF by a simple hybrid over the keys.

In the injective mode suppose there was a collision Eval′(𝑘, 𝑥) = Eval′(𝑘, 𝑥 ′) = (𝑖, 𝑦𝑖) for 𝑥 ≠ 𝑥 ′. This
in particular means that Eval(𝑘𝑖 , 𝑥) = Eval(𝑘𝑖 , 𝑥 ′) = 𝑦𝑖 , contradicting the (perfect) injectiveness of the key

𝑘𝑖 . This we see that the injective mode for Π′LossyF is indeed injective. We note that in the case that there is

no 𝑖 such that VerLossy(𝑘𝑖 , 𝑥) = 1 the output of setting 𝑦0 = 𝑥 is trivially injective.

For the lossy mode, let 𝑝′ = 𝑝 + log
2
𝑟 , which is a polynomial in 𝜆 under the assumption that 𝑟 ≤ 2

𝜆 + 𝜆,
or equivalently, that ℓin ≤ 2

𝜆
.

Let 𝑆𝑘 denote the set of images (𝑖, 𝑦𝑖) of Eval′ with 𝑖 ≠ 0. Observe that since such values are only

outputted on inputs 𝑥 such that VerLossy(𝑘𝑖 , 𝑥) = 1, we must have that 𝑆𝑘 is the union of {𝑖} × 𝑆𝑘𝑖 . Each
𝑆𝑘𝑖 has size at most 2

𝑝
, meaning that 𝑆𝑘 has size at most 2

𝑝 × 𝑟 = 2
𝑝+log

2
(𝑟) = 2

𝑝′
. It therefore suffices to

show that the image of Eval′ is exactly 𝑆𝑘 (or equivalently that there is no image of Eval′ with 𝑖 = 0) with

overwhelming probability.

12

Toward that end, fix an 𝑥 , and consider choosing a random key 𝑘 ← SetupLossy′(1𝜆, 1ℓin) and letting

Eval′(𝑘, 𝑥) = (𝑖, 𝑦𝑖). If 𝑖 = 0, we say that 𝑥 is “bad.” We are interested in the probability that 𝑥 is bad. Having

𝑖 = 0 means that VerLossy(𝑘 𝑗 , 𝑥) = 0 for all 𝑗 ∈ [𝑟]. Since the 𝑘 𝑗 are independent, and for each 𝑗 we have

that Pr[VerLossy(𝑘 𝑗 , 𝑥) = 0] ≤ 1/2, we therefore have that Pr[𝑖 = 0] ≤ 2
−𝑟
.

A union bound over all 2
ℓin

inputs gives an overall probability of there existing some bad 𝑥 is at most

2
ℓin−𝑟 = 2

−𝜆
, which is negligible, as desired. Thus we see that the lossy mode for Π′LossyF is indeed almost

perfectly lossy. □

3.2 Approximate Lossiness from LWE

Here, we describe how to achieve approximate lossiness from Learning With Errors (LWE).

Lattice Background. Here we recall some basic lattice background. Let 𝜒𝜎 be the distribution over Z

where Pr[𝑥 ← 𝜒𝜎] ∝ 𝑒2𝜋𝑥
2/𝜎2

. Let 𝜒𝜎,𝐵 be the bounded version of 𝜒𝜎 , namely the distribution over [−𝐵, 𝐵]
where Pr[𝑥 ← 𝜒𝜎,𝐵] ∝ 𝑒2𝜋𝑥

2/𝜎2

.

Fact 3.5. For 𝜎 ≥ 𝜔 (log 𝜆) and 𝐵 ≥ 𝜎 × 𝜔 (log 𝜆), the distributions 𝜒𝜎 and 𝜒𝜎,𝐵 are negligibly close in 𝜆.

Definition 3.6. Let𝑚,𝑞, 𝜎 be functions in 𝜆 where𝑚, log(𝑞), and log(𝜎) are bounded by polynomials

in 𝜆. The (𝑚,𝑞, 𝜎)-LWE assumption holds if, for any polynomial-time (in 𝜆) adversary A, there exists a

negligible function 𝜖 = 𝜖 (𝜆) such that

�����Pr[A(𝐴, 𝑣) = 1 :
𝐴←Z𝑚×𝜆𝑞

𝑣←Z𝑚𝑞
] − Pr[A(𝐴, 𝑣) = 1 :

𝐴←Z𝑚×𝜆𝑞

𝑠←Z𝜆𝑞 ,𝑒←𝜒𝑚𝜎
𝑣←𝐴·𝑠+𝑒 mod 𝑞

]
����� ≤ 𝜖 (𝜆)

We can also consider a matrix variant of LWE where instead of a vector 𝑉 , the adversary is given

𝑉 ∈ Z𝑚×ℓ𝑞 , where either 𝑉 is uniform in Z𝑚×ℓ𝑞 , or 𝑉 ← 𝐴 · 𝑆 + 𝐸 mod 𝑞, where 𝑆 is uniform in Z𝜆×ℓ𝑞 , and

𝐸 ← 𝜒𝑚×ℓ𝜎 . This matrix version follows from the plain version by a simple hybrid argument.

Theorem 3.7 ([AP11]). There exists a PPT algorithm TrapGen(𝑞, ℓ,𝑚),𝑚 ≥ Ω(ℓ log𝑞), that samples a pair
(𝐴, 𝑆) with 𝐴 ∈ Z𝑚×ℓ𝑞 and 𝑆 ∈ Z𝑚×𝑚 such that:

• 𝑆 · 𝐴 mod 𝑞 = 0

• 𝐴 is full rank (rank ℓ) over Z𝑞 and 𝑆 has rank𝑚 over Z

• There is a polynomial𝑀 (ℓ,𝑚, log𝑞) which bounds all entries in 𝑆 .

• 𝐴 is statistically close (in ℓ) to uniform over Z𝑚×ℓ𝑞 .

Let 𝑞, 𝑡 be integers with 𝑡 ≤ 𝑞. We associate Z𝑞 with the interval [−⌊(𝑞 − 1)/2⌋, ⌈(𝑞 − 1)/2⌉] in the

natural way. We then partition Z𝑞 into 𝑡 intervals 𝐼0 = [𝑢0, 𝑢1), 𝐼1 = [𝑢1, 𝑢2), · · · , 𝐼𝑡−1 = [𝑢𝑡−1, 𝑢𝑡] where
𝑢0 = −⌊(𝑞 − 1)/2⌋ and 𝑢1 = ⌈(𝑞 − 1)/2⌉. We will choose the intervals so that each has size ⌊𝑞/𝑡⌋ or ⌈𝑞/𝑡⌉.
We also specify a point 𝑐𝑖 for each interval 𝐼𝑖 , where 𝑐𝑖 = ⌊(𝑢𝑖+1 + 𝑢𝑖)/2⌋. Then define ⌊𝑥⌉𝑡 to be 𝑐𝑖 where 𝑖

is such that 𝑥 ∈ 𝐼𝑖 . Observe that | ⌊𝑥⌉𝑡 − 𝑥 | ≤ (𝑞/𝑡) + 1

LWE implies Approximate Lossiness. We now show how to construct lossy functions from LWE by

adapting existing techniques.

Lemma 3.8. Assuming (𝑚,𝑞, 𝜎)-LWE is hard for 𝜎 = 𝜔 (log 𝜆) and for all polynomials𝑚,𝑞, there exists a
lossy function ΠLossyF = (SetupInj, SetupLossy, Eval,VerLossy) that is approximately lossy.

13

As an immediate corollary by combining with Lemma 3.4, we obtain that:

Corollary 3.9. Under the same assumption as Lemma 3.8, there exists a length parameterized lossy function
with almost perfect lossiness.

We now prove Lemma 3.8:

Proof. Let𝑚, 𝑡, 𝜎, 𝐵, 𝑞 be polynomials in 𝜆, ℓin satisfying:

𝑚 ≥ Ω(ℓin log𝑞)
𝑡 > 𝑀 (ℓin,𝑚, log𝑞) ×𝑚
𝜎 ≥ 𝜔 (log 𝜆)
𝐵 ≥ 𝜎 × 𝜔 (log 𝜆)
𝑞 ≥ 3𝑡 × (2ℓin𝐵 + 3)

For example, set𝑚 = Θ(ℓin × 𝜆), 𝑡 = Θ(𝑀 (ℓin,𝑚, 𝜆) ×𝑚), 𝜎 = 𝜆, 𝐵 = 𝜎 × 𝜆, and 𝑞 = Θ(𝑡ℓin𝐵). We then

observe that log𝑞 ≤ 𝜆, and so all the desired inequalities hold.

Now ΠLossyF will work as follows:

• SetupInj(1𝜆, 1ℓin): Sample a pair (𝐴, 𝑆) ← TrapGen(𝑞, ℓin,𝑚). Output 𝑘 = 𝐴.

• SetupLossy(1𝜆, 1ℓin): Sample uniform matrices 𝐴0 ∈ Z𝑚×𝜆𝑞 and 𝐴1 ∈ Z𝜆×ℓin𝑞 . Also sample 𝐸 ← 𝜒
𝑚×ℓin
𝜎,𝐵

.

Let 𝐴 = 𝐴0 · 𝐴1 + 𝐸 ∈ Z𝑚×ℓin𝑞 . Output 𝑘 = 𝐴

• Eval(𝑘, 𝑥): interpret 𝑘 as 𝐴. Let 𝑡 be a polynomial to be discussed later. Output 𝑦 = ⌊𝐴.𝑥⌉𝑡 .

• VerLossy(𝑘, 𝑥): interpret𝑘 as𝐴. Output 0 if there exists a 𝑖, 𝑗 such that | (𝐴·𝑥) 𝑗−𝑢𝑖 mod 𝑞 |∞ ≤ 𝐵×ℓin+1.
If no such 𝑖, 𝑗 exists, output 1.

We now prove that ΠLossyF is actually an approximately lossy function.

Indistinguishability of Modes. We consider four hybrid distributions over 𝑞,𝑚,𝐴: Hyb
0
is the case

where 𝐴 is generated from TrapGen(𝑞, ℓin,𝑚). Hyb1 is the case where 𝐴 is uniform in Z𝑚×ℓin𝑞 . Hyb
2
is the

case where 𝐴 = 𝐴0 ·𝐴1 + 𝐸 where 𝐴0, 𝐴1 are uniform in Z
𝑚×𝑝
𝑞 and Z

𝑝×ℓ𝑖𝑛
𝑞 , respectively, and 𝐸 ← 𝜒

𝑚×ℓin
𝜎 , the

unbounded discrete Gaussian. Finally Hyb
3
is the case where 𝐴 = 𝐴0 ·𝐴1 + 𝐸 and 𝐸 ← 𝜒

𝑚×ℓin
𝜎,𝐵

, the bounded

discrete Gaussian. Our goal is to prove the indistinguishability of Hyb
0
(the injective mode) and Hyb

3
(the

lossy mode).

We first see that the distinguishing advantage between Hyb
0
and Hyb

1
bounded by Theorem 3.7 to

be negligible in ℓin, which is also negligible in 𝜆. We then see that Hyb
1
and Hyb

2
are exactly the cases

in the matrix version of LWE, with 𝜆 for the LWE assumption matching 𝜆 for ΠLossyF. Thus by the LWE

assumption, the distinguishing advantage between Hyb
1
and Hyb

2
is negligible in 𝜆. Next, the difference

between Hyb
2
and Hyb

3
is simply whether or not 𝐸 is sampled from 𝜒𝜎 or 𝜒𝜎,𝐵 . By our assumption that 𝜎

and 𝐵/𝜎 are 𝜔 (log 𝜆), these distributions are negligibly close. This shows the indistinguishability of Hyb
0

and Hyb
3
, as desired.

14

Injectivity. We explain that, information-theoretically, it is possible to recover 𝑥 from Eval(𝑘, 𝑥) when 𝑥

is sampled in the injective mode. This implies injectivity.

To recover 𝑥 , we assume we have knowledge of 𝑆 that was sampled with 𝐴 by TrapGen. Then given

𝑦 = Eval(𝑘, 𝑥), we compute 𝑧 = 𝑦 − 𝑆−1 · (𝑆 · 𝑦 mod 𝑞). Here, 𝑆−1 is the inverse over the integers. We now

prove that 𝑧 = 𝐴 · 𝑥 .
First, we observe that 𝑦 = ⌊𝐴 · 𝑥⌋𝑡 = 𝐴 · 𝑥 + 𝑒 where 𝑒 ∈ [−(𝑞/𝑡 + 1), 𝑞/𝑡 + 1]. Then 𝑆 · 𝑦 mod 𝑞 =

𝑆 · 𝐴 · 𝑥 + 𝑆 · 𝑒 mod 𝑞 = 𝑆 · 𝑒 mod 𝑞. The entries in 𝑆 are bounded by 𝑀 = 𝑀 (ℓin,𝑚, log𝑞). Therefore, the
entries in 𝑆 · 𝑒 are bounded by𝑀 ×𝑚 × (𝑞/𝑡 + 1) < 𝑞/2. As such, 𝑆 · 𝑒 mod 𝑞 = 𝑆 · 𝑒 , where the right-hand
side is not reduced mod 𝑞. We thus see that 𝑧 = 𝑦 − 𝑆−1 · (𝑆 ·𝑦 mod 𝑞) = 𝑦 − 𝑆−1 · 𝑆 · 𝑒 = 𝑦 − 𝑒 = 𝐴 · 𝑥 . Since
𝐴 is full rank, we know that given 𝑧 = 𝐴 · 𝑥 we can recover 𝑥 . Thus, injectivity holds.

Lossiness. Consider a lossy mode key 𝑘 containing matrix𝐴 = 𝐴0 ·𝐴1+𝐸 where 𝐸 ← 𝜒
𝑚×ℓin
𝜎,𝐵

. Let 𝑆𝑘 be the

set of images of Eval(𝑘, ·) restricted to 𝑥 such that VerLossy(𝑘, 𝑥) = 1. In other words, | (𝐴 ·𝑥) 𝑗 −𝑢𝑖 mod 𝑞 | >
𝐵 × ℓin + 1 for all 𝑖, 𝑗 . Let Eval′(𝑥) denote ⌊𝐴0 · 𝐴1 · 𝑥⌉𝑡 .

Observe that since𝐴1 ∈ Z𝜆×ℓin𝑞 and Eval′(𝑥) is a function of𝐴1 ·𝑥 , its image size is only𝑞𝜆 = 2
𝜆 log

2
𝑞 ≤ 2

𝜆2
,

where we use that log
2
𝑞 ≤ 𝜆. Thus setting 𝑝 (𝜆) = 𝜆2 a fixed polynomial in 𝜆 independent of ℓin, we have

that the image of Eval′ has size at most 2
𝑝 (𝜆)

.

We now claim that Eval′(𝑥) = Eval(𝑘, 𝑥) for all 𝑥 ∈ 𝑆𝑘 , and thus that the images of 𝑥 ∈ 𝑆𝑘 have size at

most 2
𝑝 (𝜆)

. Indeed, since 𝑥 ∈ 𝑆𝑘 , we have that all coordinates of 𝐴 · 𝑥 are at least 𝐵 × ℓin + 1 far from any 𝑢𝑖 .

Meanwhile, 𝐴0 · 𝐴1 · 𝑥 = 𝐴 · 𝑥 − 𝐸 · 𝑥 and since the entries of 𝐸 are bounded by 𝐵, the entries of 𝐸 · 𝑥 are

bounded by ℓin × 𝐵. This means that 𝐴0 ·𝐴1 · 𝑥 lies in the same interval 𝐼𝑖 as 𝐴 · 𝑥 for every coordinate, and

thus the rounding function ⌊·⌉𝑡 gives the same result on both vectors.

Finally, we want that for any given 𝑥 , the probability over 𝑘 that VerLossy(𝑘, 𝑥) = 1 is at least 1/2. Fix
𝐸. We first observe that 𝐴1 · 𝑥 = 0 with probability 𝑞−𝜆 , which is negligible in 𝜆. We therefore fix an 𝐴1

such that 𝐴1 · 𝑥 ≠ 0. Let 𝑟 = 𝐴1 · 𝑥 . Now consider sampling a uniform 𝐴0. For our fixed 𝑥,𝐴1, 𝐸, each entry

of 𝐴 · 𝑥 = 𝐴0 · 𝑟 + 𝐸 · 𝑥 is therefore a uniform random value in Z𝑞 . The number of points in Z𝑝 that are

within ℓin ×𝐵 + 1 of one of the 𝑢𝑖 is 𝑡 × (2ℓin𝐵 + 3) 3
. Thus, for this fixed 𝑥,𝐴1, 𝐸, the probability over𝐴0 that

VerLossy(𝑘, 𝑥) = 1 is at least 1 − 𝑡 × (2ℓin𝐵 + 3)/𝑞 ≥ 2/3. Then the overall probability VerLossy(𝑘, 𝑥) = 1 is

at least 2/3 − negl ≥ 1/2. □

3.3 Extension to Lossy Trapdoor Functions

The lossy functions originally proposed by [PW08] were lossy trapdoor functions (LTDFs), where the

injective mode comes with a secret trapdoor that allows for inverting the function. Such LTDFs have

numerous additional applications, such as CCS-secure public key encryption.

Here, we briefly explain how to extend the definition of length parameterized lossy functions and our

construct to have a trapdoor.

Definition 3.10 (Length Parameterized LTDFs). A Length Parameterized Lossy Trapdoor Function (LTDF)

is an ordinary Length Parameterized lossy function, except that:

• SetupInj(1𝜆, 1ℓin) outputs a pair (𝑡, 𝑘) instead of just 𝑘

• There is an additional function Invert(𝑡, 𝑦) → 𝑥

3
Observe that even though there are 𝑡 + 1 of the 𝑢𝑖 , we only care about half of the points near 𝑢0 and 𝑢𝑡 , since they are on the

edges of Z𝑞 = [−⌊(𝑞 − 1)/2⌋, ⌈(𝑞 − 1)/2⌉].

15

• Correct Inversion: For any 𝜆, ℓin, for any 𝑥 ∈ {0, 1}ℓin and any (𝑡, 𝑘) produced by SetupInj(1𝜆, 1ℓin),
Invert(𝑡, Eval(𝑘, 𝑥)) = 𝑥 .

We can anlogously define the notion of an approximately lossy length parameterized LTDF.

Adding a trapdoor to Lemma 3.4. We see that Lemma 3.4 will also lift an approximately lossy LTDF

to an LTDF with almost perfect lossiness. The construction is the same, except that SetupInj samples

(𝑡𝑖 , 𝑘𝑖) ← SetupInj(1𝜆, 1ℓin) and outputs 𝑡 = (𝑡𝑖)𝑖∈[𝑟] in addition to 𝑘 = (𝑘𝑖)𝑖∈[𝑟] . Let Invert be the inversion
algorithm for ΠLossyF. Then Invert′(𝑡, 𝑦) works as follows:

• Parse 𝑡 as (𝑡𝑖)𝑖∈[𝑟] . Parse 𝑦 as (𝑖, 𝑦𝑖).

• If 𝑖 = 0, output 𝑦0.

• Otherwise, output 𝑥 ← Invert(𝑡𝑖 , 𝑦𝑖)

Correctness of inversion follows immediately from the correctness of inversion of ΠLossyF. Security is

identical.

Approximately Lossy LTDFs from LWE. We now explain that our construction of an approximately

lossy LTDF in Lemma 3.8 actually already has a trapdoor. In particular, we set 𝑡 = 𝑆 . In order to prove

injectivity in Lemma 3.8, we actually proved that knowledge of 𝑆 allows for efficient inversion. This efficient

inversion now becomes the algorithm Invert. As a result, we obtain the following:

Theorem 3.11. Assuming (𝑚,𝑞, 𝜎)-LWE is hard for 𝜎 = 𝜔 (log 𝜆) and for all polynomials𝑚,𝑞, there exists a
LTDF ΠLossyF = (SetupInj, SetupLossy, Eval, Invert) that is almost perfectly lossy.

4 The Waters-Wu [WW24] SNARG

The novelty in our work is to present a novel security analysis of the Waters and Wu [WW24] SNARG

construction. Our analysis follows a lossy function paradigm that does not require a one way function

that is perfectly rerandomizable; thus untethering us from the discrete log or other non post quantum

assumptions. Since the novelty of our work is centered in the analysis of the construction we will provide the

description of theWaters andWu construction below and intentionally take care to follow their presentation

style and description as closely as possible. The construction as presented will have the following minor

modifications:

• Unlike Waters and Wu [WW24] we do not require the one way function will to be re-randomizable.

• We will require the one way function to have sub-exponential hardness. We note that [WW24] (as

well as this work) require puncturable PRFs subexponential hardness. Since these imply one way

functions with subexponential hardness, this won’t add additional assumptions to our theorem.

• The size padding for obfuscation will depend on the programs which are obfuscated as part of our

security analysis.

• While we do employ length parameterized lossy functions for our analysis, these are not used in

the construction itself other than impacting the aforementioned size padding in one way functions.

However, we list Lossy Functions as one of the primitives so it can be referenced later in the analysis.

16

Construction 4.1 (Adaptively-Sound SNARGs). The construction relies on the following primitives:

• Let 𝑖O be a indistinguishability obfuscator for Boolean circuits.

• Let ΠOWF = (OWF.Setup,OWF.GenInstance,OWF.Verify,) be a one-way function with setup.

• Let ΠPPRF = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF. For a key 𝑘 and an input 𝑥 , we

will write F(𝑘, 𝑥) to denote F.Eval(𝑘, 𝑥).

• Let ΠLossyF = (SetupInj, SetupLossy, Eval) be a length parameterized lossy function with function

output length ℓout(1𝜆, 1ℓin) for security parameter 𝜆 and input length ℓin.

The construction will leverage sub-exponential hardness of 𝑖O, ΠPPRF and ΠLossyF. In the following, let

𝜆obf = 𝜆obf (𝜆, 𝑛), 𝜆PRF = 𝜆PRF(𝜆, 𝑛), be fixed polynomials in the scheme’s security parameter 𝜆 and the

statement length 𝑛. Let 𝜆owf = 𝜆owf (𝜆) be a fixed polynomial in the just the scheme’s security parameter

𝜆. We describe how to define the polynomials 𝜆obf , 𝜆PRF, and 𝜆owf in the security analysis. We construct

a (preprocessing) succinct non-interactive argument ΠSNARG = (Setup, Prove,Verify) for Boolean circuit

satisfiability as follows:

• Setup(1𝜆,𝐶): On input the security parameter 𝜆 and a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
the setup algorithm does the following:

– Let crsOWF ← OWF.Setup(1𝜆owf).
– Sample a “selector” PRF key 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11).
– Let 𝜌 be a bound on the number of bits of randomness theOWF.GenInstance(crsOWF) algorithm

takes. Sample two additional PRF keys 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌).
– Define the following programs GenProof and GenInst:

Input: statement 𝑥 and witness𝑤

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsOWF for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1

On input a statement 𝑥 ∈ {0, 1}𝑛 and a witness𝑤 ∈ {0, 1}ℎ :

∗ If 𝐶 (𝑥,𝑤) = 0, output ⊥.

∗ If 𝐶 (𝑥,𝑤) = 1, then compute 𝑏 = F(𝑘sel, 𝑥) and (𝑦𝑏, 𝑧𝑏) =

OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)). Output (𝑏, 𝑧𝑏).

Figure 1: The proof-generation program GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1].

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsOWF for the rerandomizable one-way function, puncturable PRF keys 𝑘0, 𝑘1

On input a statement 𝑥 ∈ {0, 1}𝑛 :

∗ Compute (𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)) for 𝑏 ∈ {0, 1}. Output

(𝑦0, 𝑦1).

Figure 2: The instance-generation program GenInst[𝐶, crsOWF, 𝑘0, 𝑘1].

17

Let 𝑠 = 𝑠 (𝜆, 𝑛, |𝐶 |) be the maximum size of the GenProof and GenInst programs as well as those

appearing in the proof of security in Section 5. By construction, we note that 𝑠 = poly(𝜆, |𝐶 |) is
polynomially-bounded.

– Construct the obfuscated programs ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1])
and ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst[𝐶, crsOWF, 𝑘0, 𝑘1]). Output the common reference string

crs = (crsOWF,ObfProve,ObfVerify).

• Prove(crs, 𝑥,𝑤): On input the common reference string crs = (crsOWF,ObfProve,ObfVerify), the
prove algorithm outputs the proof 𝜋 = (𝑏, 𝑧𝑏) = ObfProve(𝑥,𝑤).

• Verify(crs, 𝑥, 𝜋): On input the common reference string crs = (crsOWF,ObfProve,ObfVerify), the
statement 𝑥 ∈ {0, 1}𝑛 , and the proof 𝜋 = (𝑏, 𝑧), the verification algorithm runs (𝑦0, 𝑦1) = ObfVerify(𝑥).
It outputs OWF.Verify(crsOWF, 𝑦𝑏, 𝑧).

Theorem 4.2 (Completeness [WW24]). If 𝑖O and ΠOWF are correct, then Section 4 is complete.

Correctness follows exactly as the argument of correctness from [WW24]. As stated above the only

differences are the amount of 𝑖O padding which will not impact correctness along with the fact that we

employ a OWF that is not necessarily re-randomizable. However, the re-randomization property is not

employed in the completeness proof of [WW24].

5 Adaptive Proof of Security

In this section we provide our security proof which proceeds via a sequence of hybrid games. The first two

hybrid transitions establish that if an attacker wins in the game with non-negligible probability, then it will

win with an “off-path” proof with non-negligible probability. By off path we mean that it produces a valid

proof for statement 𝜋 = (𝑏, 𝑧) for statement 𝑥 where 𝑏 ≠ F(𝑘sel, 𝑥). This argument follows identically to

[WW22] and we are able to cite their lemmas.

Next, we wish to plant challenges at all 2
𝑛
off path locations. We do this in Hyb

3
by first sampling

a lossy function key in injective mode as SetupInj(1𝜆, 1𝑛) → 𝑘lf . Then in a modified GenInst1 we add
the computation: compute (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))) where
𝑘replace is a new puncturable PRF key which is introduced for this planting step. We insert this change

on each of the 2
𝑛
inputs one at a time using punctured programs techniques. Our ability to execute the

substitutions relies critically on the fact that the lossy function is in injective mode at this juncture.

After this planting is complete we can switch the lossy function to lossy mode by sampling 𝑘lf ←
SetupLossy(1𝜆, 1𝑛). At this point there are at most 2

𝑝 (𝜆)
output values of LossyF.Eval(𝑘lf, 𝑥) and corre-

spondingly at most 2
𝑝 (𝜆)

output of 𝑦1−𝑏 from OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))).
Ideally, we could take a one way function challenge 𝑦∗ and embed it randomly at one of these possible

outputs in order to get a one way function attacker with 2
𝑝 (𝜆)

loss which we could absorb via subexponential

hardness. However, this argument implicitly imposes an additional property on our hash function that we

can sample uniformly among the possible outputs in lossy mode.

We avoid introducing such an assumption with the following technique which is captured in Hyb
6
.

Here we first run the security experiment and obtain a proof on statement 𝑥 ′ from the attacker. Then we

re-run the experiment, but with the same lossy key 𝑘lf . In this second time we consider the attacker to only

win if it proves on statement 𝑥 where LossyF.Eval(𝑘lf, 𝑥 ′) = LossyF.Eval(𝑘lf, 𝑥). We show this incurs a loss

proportional to 2
𝑝 (𝜆)

.

18

In this way we will let the attacker itself guide us to where to embed the one way function challenge 𝑦∗.
In subsequent experiments we embed this one way function challenge in the second run of the game.

Theorem 5.1 (Adaptive Soundness). Suppose 𝑖O is (1, 2−𝜆obf𝜀obf)-secure, ΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-

punctured security, ΠOWF is (1, 2−𝜆PRF𝜀owf)-secure and that ΠLossyF is mode indistinguishability secure for
constants 𝜀obf, 𝜀PRF, 𝜀owf ∈ (0, 1).

In addition, suppose 𝑖O is correct, ΠPPRF satisfies punctured correctness, and ΠLossyF satisfies the injectivity
in injective mode and with all but negligible probability image sizes are bound by 2

𝑝 (𝜆) for some polynomial
𝑝 (·) in lossy mode. Let 𝜆obf = (𝜆 +𝑛 + 𝑝 (𝜆))1/𝜀obf , 𝜆PRF = (𝜆 +𝑛 + 𝑝 (𝜆))1/𝜀PRF , and 𝜆owf = (𝜆 + 𝑝 (𝜆))𝜀owf . Then,
Section 4 is adaptively sound.

We begin our proof by defining a sequence of hybrid experiments beginning with the actual security

game. LetA be an efficient adversary for the adaptive soundness game for Section 4.
4
We define a sequence

of hybrid games:

• Hyb
0
: This is the real adaptive soundness experiment. Namely, the adversary starts by outputting a

Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}. The challenger then constructs the CRS as follows:

– Sample crsOWF ← OWF.Setup(1𝜆owf).
– Sample PRF keys 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11) and 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌).
– The challenger then constructs ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and

ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst[𝐶, crsOWF, 𝑘0, 𝑘1]) where GenProof and GenInst on the pro-

grams from Figs. 1 and 2, and 𝑠 is the same size parameter from Section 4.

The challenger gives the crs = (crsOWF,ObfProve,ObfVerify) to A. Algorithm A then outputs a

statement 𝑥 and a proof 𝜋 = (𝑏, 𝑧). The challenger then computes (𝑦0, 𝑦1) = ObfVerify(𝑥) and the

output is 1 if

(𝐶, 𝑥) ∉ LSAT and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1.

• Hyb
1
: Same as Hyb

0
except the output of the experiment is 1 if the following hold:

(𝐶, 𝑥) ∉ LSAT and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥) .

• Hyb
2
: Same as Hyb

1
except when computing the output, the challenger no longer checks that

(𝐶, 𝑥) ∉ LSAT. Namely, the output of the experiment is 1 if

OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥) .

• Hyb
3
: Same as Hyb

2
, except the challenger changes how it constructs ObfVerify. During setup, the

challenger now does the following:

– Sample a lossy function key in injective mode as SetupInj(1𝜆, 1𝑛) → 𝑘lf . And let ℓout =

ℓout(1𝜆, 1𝑛) denote the output length associated with the keyed function.

4
As in [WW24] we will assume without loss of generality that for each security parameter 𝜆, algorithm A always outputs a

Boolean circuit 𝐶 with statements of length 𝑛 = 𝑛(𝜆), for some fixed (and known) polynomial 𝑛.

19

– Sample a PRF key 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌). Define the following program GenInst1 :

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsOWF for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, 𝑘replace
and lossy key 𝑘lf

On input a statement 𝑥 ∈ {0, 1}𝑛 :

∗ Compute 𝑏 = F(𝑘sel, 𝑥).

∗ Compute (𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)).

∗ Compute (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))).

∗ Output (𝑦0, 𝑦1).

Figure 3: The instance-generation program GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf].

The challenger sets ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf]) in crs.
The rest of the experiment proceeds exactly as in Hyb

2
.

• Hyb
4
: Same asHyb

3
, except the challenger samples the lossy function in lossy mode intead of injective

mode. In particular it samples 𝑘lf ← SetupLossy(1𝜆, 1𝑛).

• Hyb
5
: Same as Hyb

4
, except we let 𝑆𝑘lf be the image size of LossyF.Eval(𝑘lf, ·). The game aborts,

outputs 0 and the attacker looses if |𝑆𝑘lf | > 2
𝑝 (𝜆)

. Otherwise it proceeds as in Hyb
4
.

• Hyb
6
: This game intuitively runs the experiment of Hyb

5
twice, but with the same lossy function

key 𝑘lf across both experiments. The adversary will output a statement and proof 𝑥 ′, 𝜋 ′ from the

first run and then a second statement and proof 𝑥, 𝜋 from the second run. We declare the attacker to

have won if and only if both proofs verify and LossyF.Eval(𝑘lf, 𝑥) = LossyF.Eval(𝑘lf, 𝑥). We include

a complete description below to ensure precision in communicating our game.

– The challenger samples 𝑘lf ← SetupLossy(1𝜆, 1𝑛). Let 𝑆𝑘lf be the image size of LossyF.Eval(𝑘lf, ·).
The game aborts, outputs 0 and the attacker looses if |𝑆𝑘lf | > 2

𝑝 (𝜆)
.

– The first run begins with the adversary starts by outputting a Boolean circuit 𝐶′ : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}.

– Sample crs′OWF ← OWF.Setup(1𝜆owf).
– Sample PRF keys 𝑘 ′sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘 ′

0
, 𝑘 ′

1
← F.Setup(1𝜆PRF, 1𝑛, 1𝜌) and 𝑘 ′replace ←

F.Setup(1𝜆PRF, 1ℓout, 1𝜌).
– The challenger then constructs ObfProve′ ← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and

ObfVerify′ ← 𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf])whereGenProof andGenInst1
are the programs from Figs. 1 and 3, and 𝑠 is the same size parameter from Section 4.

– The challenger gives the crs′ = (crs′OWF,ObfProve
′,ObfVerify′) to A. Algorithm A then

outputs a statement 𝑥 ′ and a proof 𝜋 ′ = (𝑏′, 𝑧′).
– The second run begins with the adversary starts by outputting a Boolean circuit 𝐶′ : {0, 1}𝑛 ×
{0, 1}ℎ → {0, 1}.

20

– Sample crsOWF ← OWF.Setup(1𝜆owf).
– Sample PRF keys 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌) and 𝑘replace ←

F.Setup(1𝜆PRF, 1ℓout, 1𝜌).
– The challenger then constructs ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and

ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf])whereGenProof,GenInst1
are the programs from Figs. 1 and 3, and 𝑠 is the same size parameter from Section 4.

– The challenger gives the crs = (crsOWF,ObfProve,ObfVerify) to A. Algorithm A then outputs

a statement 𝑥 ′ and a proof 𝜋 = (𝑏, 𝑧).

The challenger then computes (𝑦′
0
, 𝑦′

1
) = ObfVerify(𝑥 ′) and (𝑦0, 𝑦1) = ObfVerify(𝑥). The output is 1

if

𝑏′ = 1 − F(𝑘 ′sel, 𝑥
′) and OWF.Verify(crs′OWF, 𝑦

′
𝑏′, 𝑧

′) = 1

and𝑏 = 1 − F(𝑘sel, 𝑥) and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1

and LossyF.Eval(𝑘lf, 𝑥 ′) = LossyF.Eval(𝑘lf, 𝑥).

• Hyb
7
: Same asHyb

6
, except we remove the winning restriction on the image size of LossyF.Eval(𝑘lf, ·)

where 𝑘lf is the sampled lossy function key. Thus the attacker can now win even if |𝑆𝑘lf | > 2
𝑝 (𝜆)

,

• Hyb
8
: Follows the same as Hyb

7
with the following changes.

– After the first run concludes sets𝑤∗ = LossyF, Eval(𝑘lf, 𝑥 ′) where 𝑥 ′ is the statement from the

first run.

– On the second run after 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌) is sampled do the following. Set 𝑦∗ =

OWF.GenInstance(crsOWF; F(𝑘replace,𝑤∗)). And compute 𝑘
(𝑤∗)
replace ← F.Puncture(𝑘replace,𝑤∗).

– Define the following program GenInst3 : 5

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsOWF for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, punc-

tured key 𝑘
(𝑤∗)
replace, lossy key 𝑘lf and values 𝑦∗,𝑤∗

On input a statement 𝑥 ∈ {0, 1}𝑛 :

∗ Compute 𝑏 = F(𝑘sel, 𝑥).

∗ Compute (𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)).

∗ If LossyF.Eval(𝑘lf, 𝑥) ≠ 𝑤∗

compute (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘 (𝑤
∗)

replace, LossyF.Eval(𝑘lf, 𝑥))).

∗ If LossyF.Eval(𝑘lf, 𝑥) = 𝑤∗ set 𝑦1−𝑏 = 𝑦∗.

∗ Output (𝑦0, 𝑦1).

Figure 4: The instance-generation program GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘
(𝑤∗)
replace, 𝑘lf, 𝑦

∗,𝑤∗].

5
We note that the program GenInst2 is defined in the proofs of Appendix A.1. So we are actually not skipping over an index.

21

– On the second run constructs

ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and
ObfVerify ← 𝑖O(1𝜆obf , 1𝑠 ,GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘

(𝑤∗)
replace, 𝑘lf], 𝑦

∗,𝑤∗) where GenProof
and GenInst1 are the programs from Figs. 1 and 4, and 𝑠 is the same size parameter from

Section 4.

• Hyb
9
: Follows the same as Hyb

8
except that on the second run it chooses 𝑟 ∗ ← {0, 1}𝜌 and sets

𝑦∗ = OWF.GenInstance(crsOWF; 𝑟
∗). (I.e. 𝑦∗ is an fresh and independently sampled image of a one

way function.)

5.1 Proofs of Closeness of Hybrids

We write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with the adversary A.

We now analyze each adjacent pair of hybrid distributions.

Lemma 5.2. Suppose 𝑖O is (1, 2−𝜆obf𝜀obf)-secure and suppose ΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-punctured

security for constants 𝜀obf, 𝜀PRF ∈ (0, 1). In addition, suppose that 𝜆obf = (𝜆 + 𝑛)1/𝜀obf and 𝜆PRF = (𝜆 + 𝑛)1/𝜀PRF .
Finally, suppose ΠPPRF satisfies punctured correctness. Then,

Pr[Hyb
1
(A) = 1] ≥ 1

2

Pr[Hyb
0
(A) = 1] − 2−Ω (𝜆) .

The proof of this lemma is the same as the corresponding one in [WW24] as the proof does not depend

on in any way the re-randomization property of the one way function.

Lemma 5.3. It holds that Pr[Hyb
2
(A) = 1] ≥ Pr[Hyb

1
(A) = 1].

Proof. As in [WW24] this holds trivially for the reason that the conditions for outputting one inHyb
1
are a

subset of those for outputting 1 in Hyb
2
. □

Lemma 5.4. Suppose 𝑖O is (1, 2−𝜆obf𝜀obf)-secure, ΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-punctured security. Let

𝜆obf = (𝜆 +𝑛)1/𝜀obf , 𝜆PRF = (𝜆 +𝑛)1/𝜀PRF . Finally, suppose ΠPPRF satisfies punctured correctness and and ΠLossyF

satisfies the injectivity property. Then,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 2

−Ω (𝜆) .

The proof of this lemma sequences through each possible statement 𝑥 ∈ {0, 1}𝑛 and replaces the line

OWF.GenInstance(crsOWF; F(𝑘𝑏−1, 𝑥))withOWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))). The
execution of this proof follows from standard punctured programming techniques originated in [SW14], but

with the adaptations of [WW24] in the analysis to handle stepping through all 2
𝑛
inputs. However, our proof

for the key 𝑘replace does not puncture at each index 𝑖 . Instead it punctures at LossyF.Eval(𝑘lf, 𝑖). During these
steps it is critical that 𝑘lf is sampled to be an injective key so that LossyF.Eval(𝑘lf, 𝑥) ≠ LossyF.Eval(𝑘lf, 𝑖)
when 𝑥 ≠ 𝑖 . Otherwise, we would not be able to use indistinguishability obfuscation as programs would

not be functionally equivalent. We defer the proof to Appendix A.1.

Lemma 5.5. Suppose ΠLossyF is mode indistinguishability secure. Then for all PPT A there exists a negligible
function negl(·) such that,

| Pr[Hyb
3
(A) = 1] − Pr[Hyb

4
(A) = 1] | ≤ negl(𝜆) .

22

The proof is a basic application of mode changing. We defer it to Appendix A.2.

Lemma 5.6. Suppose ΠLossyF is has lossiness in lossy mode with all but negligible probability. Then there
exists a negligible function negl(·) such that,

| Pr[Hyb
4
(A) = 1] − Pr[Hyb

5
(A) = 1] | ≤ negl(𝜆) .

Proof. The only difference betweenHyb
5
fromHyb

4
is that whenwe let 𝑆𝑘lf be the image size of LossyF.Eval(𝑘lf, ·)

the game aborts and outputs 0 if |𝑆𝑘lf | > 2
𝑝 (𝜆)

. However, since the scheme has almost perfect lossiness, this

event occurs with at most negligible probability and the difference in advantages between the two games

must be negligibly close. □

Lemma 5.7. Suppose ΠLossyF is a lossy function with lossiness function 𝑝 (·), then

Pr[Hyb
6
(A) = 1] ≥ Pr[Hyb

5
(A) = 1]2/2𝑝 (𝜆) .

The game in Hyb
5
begins with the challenger sampling a value 𝑡 ∈ {0, 1}𝜏 and then sampling 𝑘lf ←

SetupLossy(1𝜆, 1𝑛 ; 𝑡) where 𝜏 is the number of random bits used by calling SetupLossy with parameters 1
𝜆

and 1
𝑛
. For this proof we call out the randomness to this function explicitly.

Proof. Let 𝜀 = 𝜀 (𝜆) denote the probability of the game outputting 1 in Hyb
5
. We then let 𝜇𝑡 the probability

(over the attacker’s randomness and rest of the challengers coins) that the game outputs 1 given that 𝑡 was

chosen as the randomness for SetupLossy. It follows that

𝜀 =
∑︁

𝑡 ∈{0,1}𝜏
2
−𝜏𝜇𝑡

We next define 𝜇𝑡,𝑖 for 𝑡 ∈ {0, 1}𝜏 , 𝑖 ∈ [1, 2𝑝 (𝜆)]. Let 𝑘lf𝑡 ← SetupLossy(1𝜆, 1𝑛; 𝑡) and let 𝑆𝑘lf𝑡 be the

image size of LossyF.Eval(𝑘lf, ·). We tackle two cases.

Case 1: We have |𝑆𝑘lf𝑡 | > 2
𝑝 (𝜆)

. In this case let 𝜇𝑡,𝑖 = 0 ∀𝑖 ∈ [1, 2𝑝 (𝜆)]. Since the game aborts and outputs 0

when |𝑆𝑘lf𝑡 | > 2
𝑝 (𝜆)

we have that 𝜇𝑡 = 0. It follows by our setting that 𝜇𝑡 =
∑

𝑖∈[1,2𝑝 (𝜆)] 𝜇𝑡,𝑖 .

Case 2: We have |𝑆𝑘lf𝑡 | ≤ 2
𝑝 (𝜆)

. For 𝑖 ∈ [1, |𝑆𝑘lf𝑡 |] set 𝜇𝑡,𝑖 to be the probability the challenger outputs

1 in Hyb
5
and the attacker outputs a statement 𝑥 where LossyF.Eval(𝑘lf𝑡 , 𝑥) is the 𝑖-th image in the

set 𝑆𝑘lf𝑡 (relative to some ordering) when the string 𝑡 is used as the randomness to SetupLossy. For

𝑖 ∈ [|𝑆𝑘lf𝑡 | + 1, 2𝑝 (𝜆)] set 𝜇𝑡,𝑖 = 0. Here it also follows by our setting that 𝜇𝑡 =
∑

𝑖∈[1,2𝑝 (𝜆)] 𝜇𝑡,𝑖 .
We can now begin to analyze Hyb

6
. Each string 𝑡 will be selected with probability exactly 2

−𝜏
. Once a

particular string 𝑡 is selected the attacker will need to win the Hyb
5
experiment twice in a row and with

LossyF.Eval(𝑘lf𝑡 , 𝑥 ′) = LossyF.Eval(𝑘lf𝑡 , 𝑥). Thus the probability the attacker wins for a particular string 𝑡

is

∑
𝑖∈[1,2𝑝 (𝜆)] 𝜇

2

𝑡,𝑖 . And its total advantage is

2
−𝜏

∑︁
𝑡 ∈{0,1}𝜏 ,𝑖∈[1,2𝑝 (𝜆)]

𝜇2𝑡,𝑖 .

We next state a basic claim that will help us prove our lemma.

Claim 5.8. Let 𝑎1, . . . , 𝑎𝐿 ∈ R𝐿 be a sequence of 𝐿 real numbers then∑︁
𝑗∈𝐿

𝑎2𝑗 ≥
1

𝐿

(∑︁
𝑗∈𝐿

𝑎 𝑗
)
2

.

23

Proof. Recall the 𝐿1-𝐿2 norm inequality, which is that for any vector of dimension 𝐿, |a|1 ≤ |a|2 ×
√
𝐿 where

| · |𝑝 is the 𝐿𝑝 norm. Rearranging gives |a|2
2
≥ |a|2

1
/𝐿. If we write a = (𝑎1, · · · , 𝑎𝐿), we see that the 𝐿1-𝐿2

norm inequality is equivalent to the claim. □

For any 𝑡 we can apply Claim 5.8 with setting 𝐿 = 2
𝑝 (𝜆)

and 𝑎𝑖 = 𝜇𝑡,𝑖 . We then have that

∑
𝑖∈[1,2𝑝 (𝜆)] 𝜇

2

𝑡,𝑖 ≥
2
−𝑝 (𝜆)𝜇2𝑡 . It follows that the total advantage is at least

2
−𝑝 (𝜆)

2
−𝜏

∑︁
𝑡 ∈{0,1}𝜏

𝜇2𝑡 .

We next recall that from our settings that 𝜖 =
∑

𝑡 ∈{0,1}𝜏 2
−𝜏𝜇𝑡 . We then apply Claim 5.8 once again. This

time setting 𝐿 = 2
𝜏
and 𝑎𝑖 = 2

−𝜏𝜇𝑡 . Plugging things in we get∑︁
𝑡 ∈{0,1}𝜏

2
−2𝜏𝜇2𝑡 ≥ 2

−𝜏 (∑︁
𝑡 ∈{0,1}𝜏

𝜇𝑡
)
2

.

If we multiply both sides of the equation by 2
𝜏
and substitute in 𝜀 =

∑
𝑡 ∈{0,1}𝜏 2

−𝜏𝜇𝑡 then we have

2
−𝜏

∑︁
𝑡 ∈{0,1}𝜏

𝜇2𝑡 ≥ 𝜀2.

Finally, we can plug this into our bound for the total advantage and now see that the total advantage is at

least

2
−𝑝 (𝜆)𝜀2

which concludes the proof.

□

Lemma 5.9. It holds that Pr[Hyb
7
(A) = 1] ≥ Pr[Hyb

6
(A) = 1].

Proof. As in Lemma 5.3 this holds trivially for the reason that the conditions for outputting one in Hyb
6

are a subset of those for outputting 1 in Hyb
7
. □

Lemma 5.10. Suppose 𝑖O is (1, 2−𝜆𝜀obf)-secure for some constant 𝜀obf ∈ (0, 1) and suppose 𝜆obf = (𝜆 + 𝑛 +
𝑝 (𝜆))1/𝜀obf . Suppose ΠPPRF satisfies punctured correctness. Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb
7
(A) = 1] − Pr[Hyb

8
(A) = 1] | ≤ 1/2𝜆+𝑝 (𝜆) .

This is another example of an indistinguishablity obfuscation proof where a value is hardwired into a

program. The proof will proceed along similar lines to Claim A.1. One difference is that this case we aim to

show that the difference in advantage is 2
−𝑝 (𝜆)

times a negligible function instead of 2
−𝑛

times a negligible

function. This is because we want to match the fact that a successful attacker that wins with non-negligible

probability in Hyb
0
will only be guaranteed to win with 2

−𝑝 (𝜆)
times a non-negligible value by Hyb

7
. Thus

we need that bound on the invariant going at this stage. A second difference is that in order to figure out

what to hardwire we will first need to run the first half of Hyb
7
to determine 𝑤∗ = LossyF, Eval(𝑘lf, 𝑥 ′)

where 𝑥 ′. This value 𝑤∗ will then determine where to puncture the next 𝑘replace and how to modify the

next obfuscated program.

The proof is given in Appendix A.3

24

Lemma 5.11. SupposeΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-punctured security for some constant 𝜀PRF ∈ (0, 1)

and 𝜆PRF = (𝜆 + 𝑛 + 𝑝 (𝜆))1/𝜀PRF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,
it holds that

| Pr[Hyb
8
(A) = 1] − Pr[Hyb

9
(A) = 1] ≤ 1/2𝜆+𝑝 (𝜆

This proof will use the security of the punctured PRF and proceed along similar lines to that of Claim A.3.

Like the previous lemma there will be differences centered on needing to first learn𝑤∗ from the first half of

the experiment which the reduction uses to learn where to puncture.

The proof is given in Appendix A.4.

Lemma 5.12. Suppose there is a probabilistic polynomial time attacker A that wins with non-negligible
probability in Hyb

0
. And suppose 𝑖O is (1, 2−𝜆obf𝜀obf)-secure, ΠPPRF satisfies selective (1, 2−𝜆PRF

𝜀PRF)-punctured
security, ΠOWF is (1, 2−𝜆PRF𝜀owf)-secure and that ΠLossyF is mode indistinguishability secure for constants
𝜀obf, 𝜀PRF, 𝜀owf ∈ (0, 1). In addition, suppose 𝑖O is correct, ΠPPRF satisfies punctured correctness, and ΠLossyF

satisfies the injectivity in injective mode and with all but negligible probability image sizes are bound by
2
𝑝 (𝜆) for some polynomial 𝑝 (·) in lossy mode. Let 𝜆obf = (𝜆 + 𝑛 + 𝑝 (𝜆))1/𝜀obf , 𝜆PRF = (𝜆 + 𝑛 + 𝑝 (𝜆))1/𝜀PRF , and
𝜆owf = (𝜆 + 𝑝 (𝜆))𝜀owf .

Then for some non-negligible function 𝜀 (𝜆)

Pr[Hyb
9
(A) = 1] ≥ 2

−𝑝 (𝜆)𝜀 (𝜆) .

Proof. By Lemmas 5.2 to 5.6 we have that if A has non-negligible advantage in Hyb
0
it will also have

non-negligible advantage in Hyb
5
. By Lemmas Lemmas 5.7 and 5.9 if A has non-negligible advantage in

Hyb
5
then it will have 2

−𝑝
times a non-negligible advantage in Hyb

7
. And by Lemmas 5.10 and 5.11 if A

has 2
−𝑝

times a non-negligible advantage in Hyb
7
it will also have 2

−𝑝
times a non-negligible advantage in

Hyb
9
. This follows from the fact that these lemmas show the difference in advantage is at most negligible

time 2
−𝑝 (𝜆)

. □

Lemma 5.13. Suppose ΠOWF satisfies (1, 2−𝜆PRF
𝜀owf)-onewayness security for some constant 𝜀owf ∈ (0, 1) and

𝜆owf = (𝜆 + 𝑝 (𝜆))1/𝜀owf and 𝑖O satisfies correctness. Then, there exists a negligible function negl(·) such that
for all 𝜆 ∈ N,

Pr[Hyb
9
(A) = 1] ≤ 2

−𝑝 (𝜆)negl(𝜆) .
We prove the lemma in Section A.5.

We finally conclude by observing that Theorem 5.1 follows directly from Lemmas 5.12 and 5.13. Other-

wise if there existed a poly-time attacker in Hyb
0
these two lemmas would contradict each other.

5.2 Succinctness and Zero Knowledge

Theorem 5.14 (Succinctness). If ΠOWF is succinct, then Section 4 is succinct.

Proof. A proof 𝜋 in Section 4 consists of a bit 𝑏 ∈ {0, 1} and an element 𝑧 output by the algorithm

OWF.GenInstance(crsOWF). The output length of ΠOWF depends only a polynomial 𝑝 (𝜆owf). Since 𝜆owf is
itself a polynomial in 𝜆, this means there exists a polynomial 𝑝′ where the length is 𝑝′(𝜆) which meets the

requirements for succinctness.

□

Theorem 5.15 (Perfect Zero-Knowledge). If 𝑖O is correct, then Section 4 satisfies perfect zero-knowledge.

This proof follows from the corresponding one in [WW24] as it did not depend on the re-randomization

of the one way function.

25

References

[ACH20] Thomas Agrikola, Geoffroy Couteau, and Dennis Hofheinz. The usefulness of sparsifiable

inputs: How to avoid subexponential io. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,

and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 187–219, Cham, 2020.

Springer International Publishing.

[ACL
+
22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krish-

nan Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively

composable - (extended abstract). In CRYPTO, pages 102–132, 2022.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding,

revisited. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
pages 57–74, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of
Computing Systems, 48(3):535–553, 2011.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and

functional encryption. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 191–209, 2015.

[AS18] Gilad Asharov and Gil Segev. On constructing one-way permutations from indistinguishability

obfuscation. Journal of Cryptology, 31(3):698–736, 2018.

[AWZ23a] Damiano Abram, Brent Waters, and Mark Zhandry. Security-preserving distributed samplers:

How to generate any crs in one round without random oracles. In Helena Handschuh and

Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 489–514. Springer
Nature Switzerland, 2023.

[AWZ23b] Damiano Abram, Brent Waters, and Mark Zhandry. Security-preserving distributed samplers:

How to generate any crs in one round without random oracles. In Helena Handschuh and

Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 489–514, Cham,

2023. Springer Nature Switzerland.

[BCC
+
17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,

and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326–349, 2012.

[BCI
+
13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct

non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BDV17] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure vs. hardness through

the obfuscation lens. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, pages 696–723, Cham, 2017. Springer International Publishing.

26

[BGI
+
01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom

functions. In PKC, pages 501–519, 2014.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and

batch NP verification from standard computational assumptions. In STOC, pages 474–482, 2017.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In TCC,
pages 121–132, 2004.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In

ASIACRYPT, pages 280–300, 2013.

[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities

in succinct arguments: Black-box extraction and more. In AFRICACRYPT, pages 465–489, 2023.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from

vanishing polynomials - (extended abstract). In CRYPTO, pages 72–105, 2023.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of proba-

bilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of
Cryptography, pages 468–497, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low

communication. In TCC, pages 54–74, 2012.

[DGI
+
19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.

Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,

editors, Advances in Cryptology – CRYPTO 2019, pages 3–32, Cham, 2019. Springer International

Publishing.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of

random functions. In CRYPTO, pages 276–288, 1984.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs

and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,
pages 321–340, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all

falsifiable assumptions. In STOC, pages 99–108, 2011.

[HHK
+
24] Dennis Hofheinz, Kristina Hostáková, Kastner, Karen Klein, and Akin Ünal. Compact selective

opening security from lwe. In PKC 2024, 2024.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for

bounded depth computations and PPAD hardness from sub-exponential LWE. In STOC, pages
708–721, 2021.

27

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In

STOC, pages 723–732, 1992.

[KMN
+
14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-way

functions and (im)perfect obfuscation. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 374–383, 2014.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC, pages 91–118,
2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-

able pseudorandom functions and applications. In ACM CCS, pages 669–684, 2013.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO, pages
143–159, 2009.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and

linear error-correcting codes. In ASIACRYPT, pages 41–60, 2013.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453, 1994.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC,
pages 187–196, 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,

and more. In STOC, pages 475–484, 2014.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In ICALP, pages 140–152, 2005.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group

assumptions. In CRYPTO, pages 433–463, 2022.

[WW24] BrentWaters and David J.Wu. Adaptively-sound succinct arguments for np from indistinguisha-

bility obfuscation. STOC 2024 (To Appear), 2024. https://eprint.iacr.org/2024/165.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,

CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August
2016.

[Zha19] Mark Zhandry. On ELFs, deterministic encryption, and correlated-input security. In Yuval

Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages
3–32. Springer, Heidelberg, May 2019.

A Proofs of Missing Lemmas

A.1 Proof of Lemma 5.4

Proof. We define a sequence of intermediate hybrids indexed by 𝑖 ∈ {0, . . . , 2𝑛}:

28

https://eprint.iacr.org/2024/165

• Hyb(0)
2,𝑖

: Same as Hyb
2
, except the challenger defines the following program GenInst2:

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string crsOWF

for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, lossy key 𝑘lf
instance 𝑦∗, index 𝑖 ∈ {0, 1}𝑛

On input a statement 𝑥 ∈ {0, 1}𝑛 :

– Compute 𝑏 = F(𝑘sel, 𝑥).

– Compute (𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)).

– Compute 𝑦1−𝑏 as follows:

∗ If 𝑥 < 𝑖 , let (𝑦1−𝑏, st) = OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))).
∗ If 𝑥 = 𝑖 , let 𝑦1−𝑏 = 𝑦∗.

∗ If 𝑥 > 𝑖 , let (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘1−𝑏, 𝑥)).

– Output (𝑦0, 𝑦1).

Figure 5: The instance-generation program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 𝑖].

Then, the challenger samples crsOWF ← OWF.Setup(1𝜆owf , 1𝑛) and PRF keys𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11),
𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌). The challenger also samples the

following additional components:

– Sample 𝑘lf ← SetupInj(1𝜆, 1𝑛).
– Let 𝑏∗ = 1 − F(𝑘sel, 𝑖). Compute 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) ← OWF.GenInstance(crsOWF; 𝑟

∗).

The challenger computesObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) andObfVerify←
𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦

∗, 𝑖]) where GenProof and GenInst2 are the

programs from Figs. 1 and 5 and 𝑠 is the bound on the program size from Section 4. Algorithm B gives

crs = (crsOWF,ObfProve,ObfVerify) to A. After A outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧),
the challenger computes (𝑦0, 𝑦1) = ObfVerify(𝑥) and outputs 1 if

OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥) .

• Hyb(1)
2,𝑖

: Same as Hyb(0)
2,𝑖

, except after computing 𝑏∗ = 1 − F(𝑘sel, 𝑖), the challenger punctures 𝑘𝑏∗ at
input 𝑖 and 𝑘replace at input LossyF.Eval(𝑘lf, 𝑖). Namely, it computes 𝑘

(𝑖)
𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖) and

𝑘
(LossyF.Eval(𝑘lf,𝑖))
replace ← F.Puncture(𝑘replace, LossyF.Eval(𝑘lf, 𝑖)) It still sets 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) =
OWF.GenInstance(crsOWF; 𝑟

∗). Then, it uses the punctured keys 𝑘 (LossyF.Eval(𝑘lf,𝑖))
𝑏∗ and 𝑘

(𝑖)
replace in place

of 𝑘𝑏∗ and 𝑘replace in ObfProve and ObfVerify. Specifically, ObfProve and ObfVerify are now defined

as follows:

– If 𝑏∗ = 0, then the challenger sets ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1])

and ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(LossyF.Eval(𝑘lf,𝑖))
replace , 𝑘lf, 𝑦

∗, 𝑖]).

29

– If 𝑏∗ = 1, then the challenger sets ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗])

and ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗ , 𝑘

(LossyF.Eval(𝑘lf,𝑖))
replace , 𝑘lf, 𝑦

∗, 𝑖]).

• Hyb(2)
2,𝑖

: Same as Hyb(1)
2,𝑖

, except the challenger samples 𝑟 ∗ r← {0, 1}𝜌 .

• Hyb(3)
2,𝑖

: Same as Hyb(2)
2,𝑖

, except the challenger sets 𝑟 ∗ = F(𝑘replace, LossyF.Eval(𝑘lf, 𝑖)).

We now show that each pair of adjacent experiments are indistinguishable.

Claim A.1. Suppose 𝑖O is (1, 2−𝜆𝜀obf)-secure for some constant 𝜀obf ∈ (0, 1) and suppose 𝜆obf = (𝜆 + 𝑛 +
𝑝 (𝜆))1/𝜀obf . Suppose ΠPPRF satisfies punctured correctness. Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb(0)

2,0
(A) = 1] | ≤ 1/2𝜆+𝑛 .

The proof of this claim follows almost identically to [WW24] with just the syntactic changes of what
hardwired values the program GenInst is given. However, we include it here for completeness.

Proof. We start by showing that the program GenInst[𝐶, crsOWF, 𝑘0, 𝑘1] in Hyb
2
and the corresponding

program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 0] in Hyb(0)

2,0
compute identical functionalities. Take

any input 𝑥 ∈ {0, 1}𝑛 , and consider the program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 0] in Hyb(0)

2,0
:

• Let 𝑏 = F(𝑘sel, 𝑥). Then GenInst2 computes (𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥)), which is

exactly how the program GenInst computes (𝑦𝑏, 𝑧𝑏).

• Consider the distribution of 𝑦1−𝑏 . In Hyb(0)
2,0

, when 𝑥 satisfies 𝑥 > 0, the program GenInst2 com-

putes (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘1−𝑏, 𝑥))), which matches the behavior ofGenInst.
When 𝑥 = 0, GenInst2 sets 𝑦1−𝑏 = 𝑦∗, where (𝑦∗, 𝑧∗) = OWF.GenInstance(crsOWF; 𝑟

∗) and 𝑟 ∗ =

F(𝑘1−𝑏, 𝑥). Once again, this is the behavior of GenInst.

We conclude that on all inputs 𝑥 , the verification programs GenInst and GenInst2 in Hyb
2
and Hyb(0)

2,0
have

identical input/output behavior. The claim now holds by security of 𝑖O. Formally, suppose there exists an

infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb(0)

2,0
(A) = 1] | > 1/2𝜆+𝑛 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑛(𝜆) + 𝑝 (𝜆))1/𝜀obf : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for

all 𝜆obf ∈ ΛB , iOAdvB (𝜆obf) > 1/2−𝜆obf𝜀obf . For each value of 𝜆obf ∈ ΛB , we provide the associated value of

𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we

pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆obf

(and advice string 1
𝜆
), algorithmB runsA on security parameter

𝜆 to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).
It also samples 𝑘lf ← SetupInj(1𝜆, 1𝑛).

3. AlgorithmB then computes𝑏∗ = 1−F(𝑘sel, 0), 𝑟 ∗ = F(𝑘𝑏∗, 0) and (𝑦∗, 𝑧∗) = OWF.GenInstance(crsOWF; 𝑟
∗).

30

4. Algorithm B computes the parameter 𝑠 as in Section 4 and gives 1
𝑠
, GenInst[𝐶, crsOWF, 𝑘0, 𝑘1], and

GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 0] to the challenger. The challenger replies with an

obfuscated program ObfVerify.

5. Algorithm B computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and gives the com-

mon reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

6. After A outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), the challenger computes (𝑦0, 𝑦1) =

ObfVerify(𝑥) and outputs 1 if OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

If the challenger obfuscates the program GenInst[𝐶, crsOWF, 𝑘0, 𝑘1], then algorithm B perfectly simulates

Hyb
2
. If the challenger obfuscates the program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑦base, 𝑦

∗, 0], then
algorithm B perfectly simulates Hyb(0)

2,0
. Correspondingly, iOAdvB (𝜆obf) > 2

−(𝜆+𝑛 (𝜆)) > 2
−𝜆obf𝜀obf

. □

Claim A.2. Suppose 𝑖O is (1, 2−𝜆𝜀obf)-secure for some constant 𝜀obf ∈ (0, 1) and suppose 𝜆obf = (𝜆 + 𝑛 +
𝑝 (𝜆))1/𝜀obf . Suppose ΠPPRF satisfies punctured correctness. Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists 𝜆A ∈ N
such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(1)

2,𝑖
(A) = 1] | ≤ 2/2𝜆+𝑛 .

The proof of this claim is also similar to [WW24], but with one critical difference. We need to argue that
the program GenInst when given a punctured key 𝑘 (LossyF.Eval(𝑘lf,𝑖))replace at input LossyF.Eval(𝑘lf, 𝑖) is functionally
equivalent to when it is given an unpunctured version. The key 𝑘replace is used at inputs 𝑥 < 𝑖 . This would
be problematic if LossyF.Eval(𝑘lf, 𝑥) = LossyF.Eval(𝑘lf, 𝑖) for any 𝑥 < 𝑖 . However, this is guaranteed not to
happen due to the fact that the function is injective. It is for this reason that we introduce the lossy function
first in injective mode and will only later on move it to lossy mode.

Proof. Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1}. Consider an execution of Hyb(0)
2,𝑖

and Hyb(1)
2,𝑖

. Let 𝑏∗ = 1 − F(𝑘sel, 𝑖).
We first show that if 𝑏∗ = 0, then the program GenProof [𝐶, crsOWF, 𝑘sel, 𝑘𝑏∗, 𝑘1] in Hyb(0)

2,𝑖
has the same

functionality as the program GenProof [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] in Hyb(0)

2,𝑖
:

• First, the key 𝑘
(𝑖)
𝑏∗ is punctured on input 𝑖 , so it follows that F(𝑘 (𝑖)

𝑏∗ , 𝑥) = F(𝑘𝑏∗, 𝑥) for all 𝑥 ≠ 𝑖 . Thus,

on all inputs (𝑥,𝑤) where 𝑥 ≠ 𝑖 , the two programs behave identically.

• Consider an input (𝑥,𝑤) where 𝑥 = 𝑖 . In this case, both programs first computes 𝑏 = F(𝑘sel, 𝑖) and then
evaluate OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑖)). However, by definition, 𝑏∗ = 1 − F(𝑘sel, 𝑖) = 1 − 𝑏 ≠ 𝑏.

In this case, both programs derive the randomness using F(𝑘1−𝑏∗, 𝑥) = F(𝑘1, 𝑥) if 𝑏∗ = 0 and F(𝑘0, 𝑥)
if 𝑏∗ = 1. Once again, the two programs have identical functionality.

Next, we show that the program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 𝑖] in Hyb(0)

2,𝑖
has the same

functionality as the program GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
replace, 𝑦base, 𝑘lf, 𝑦

∗, 𝑖] in Hyb(1)
2,𝑖

:

• By punctured correctness, for all 𝑥 ≠ 𝑖 , it follows that

F
(
𝑘
(𝑖)
𝑏∗ , 𝑥

)
= F(𝑘𝑏∗, 𝑥) and F

(
𝑘
(LossyF.Eval(𝑘lf,𝑖))
replace , 𝑥

)
= F(𝑘replace, 𝑥) .

For the latter to hold it is important to observe that there are no collisions when the function is in injective
mode. Since 𝑘lf was sampled to be an injective key (and the function has the injectivity in injective mode)

31

for all 𝑥 ≠ 𝑖 we have LossyF.Eval(𝑘lf, 𝑥) ≠ LossyF.Eval(𝑘lf, 𝑖). Thus the punctured key never has to
evaluate on the punctured input for any 𝑥 ≠ 𝑖 .

Thus, for all inputs 𝑥 ≠ 𝑖 , the two programs have identical behavior.

• Suppose 𝑥 = 𝑖 . Then, both programs compute 𝑏 = F(𝑘sel, 𝑖) and OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑖)).
By definition, 𝑏∗ = 1 − F(𝑘sel, 𝑖) = 1 − 𝑏 ≠ 𝑏. In this case, both programs derive the randomness using

F(𝑘1−𝑏∗, 𝑥) = F(𝑘1, 𝑥). Once again, the two programs have identical functionality.

An analogous argument shows that theGenProof andGenInst programs inHyb(0)
2,𝑖

andHyb(1)
2,𝑖

have identical

behavior when 𝑏∗ = 1. To complete the proof, we first introduce an intermediate hybrid:

• iHyb𝑖 : Same as Hyb(1)
2,𝑖

except the challenger computes the ObfVerify as in Hyb(0)
2,𝑖

. Namely, it

computes ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 𝑖]).

Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | > 1/2𝜆+𝑛 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑛(𝜆) + 𝑝 (𝜆))1/𝜀obf : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for

all 𝜆obf ∈ ΛB , iOAdvB (𝜆obf) > 1/2−𝜆obf𝜀obf . For each value of 𝜆obf ∈ ΛB , we provide the associated value of

𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we

pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆obf

(and advice 1
𝜆
), algorithm B runs algorithm A on input 1

𝜆
to

get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and samples PRF keys

𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), and 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌). It
also samples 𝑘lf ← SetupInj(1𝜆, 1𝑛).

3. AlgorithmB then computes𝑏∗ = 1−F(𝑘sel, 𝑖), 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) = OWF.GenInstance(crsOWF; 𝑟
∗).

4. Algorithm B computes the parameter 𝑠 as in Section 4. It then constructs its challenge as follows:

• If 𝑏∗ = 0, it gives 1
𝑠
, GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1], and GenProof [𝐶, crsOWF, 𝑘sel, 𝑘

(𝑖)
𝑏∗ , 𝑘1] to

the challenger.

• If 𝑏∗ = 1, it gives 1
𝑠
, GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1], and GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘

(𝑖)
𝑏∗] to

the challenger.

The challenger replies with an obfuscated program ObfProve.

5. Algorithm B computes ObfVerify ← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 𝑖])

and gives the common reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

6. After A outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), the challenger computes (𝑦0, 𝑦1) =

ObfVerify(𝑥) and outputs 1 if OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

32

If the challenger obfuscates the program GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1], then algorithm B perfectly simu-

lates Hyb(0)
2,𝑖

. If the challenger obfuscates the program GenProof [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] (in the case where

𝑏∗ = 0) or GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗] (in the case where 𝑏∗ = 1), algorithm B perfectly simulates

iHyb𝑖 . Correspondingly, iOAdvB (𝜆obf) > 2
−(𝜆+𝑛 (𝜆)) = 2

−𝜆obf𝜀obf
. As such, algorithm B breaks (1, 2−𝜆𝜀obf)-

security of 𝑖O. Thus, for all sufficiently-large 𝜆 ∈ N,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | ≤ 1/2𝜆+𝑛 (𝜆) . (A.1)

By an analogous argument (where the reduction algorithm obtains ObfVerify from the challenger), we can

show that for all sufficiently-large 𝜆 ∈ N, it holds that

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | ≤ 1/2𝜆+𝑛 (𝜆) . (A.2)

Combining Eqs. (A.1) and (A.2), we conclude that for all sufficiently-large 𝜆 ∈ N,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(1)

2,𝑖
(A) = 1] | ≤ 2/2𝜆+𝑛 (𝜆) . □

Claim A.3. Suppose ΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-punctured security for some constant 𝜀PRF ∈ (0, 1)

and 𝜆PRF = (𝜆 + 𝑛 + 𝑝 (𝜆))1/𝜀PRF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,
it holds that

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[Hyb(2)

2,𝑖
(A) = 1] ≤ 1/2𝜆+𝑛

This proof follows very closely to [WW24] with the exception of syntax changes to accommodate the lossy
function. We include it for completeness.

Proof. Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1} and suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[Hyb(2)

2,𝑖
(A) = 1] | > 1/2𝜆+𝑛 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑛(𝜆) + 𝑝 (𝜆))1/𝜀PRF : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for

all 𝜆PRF ∈ ΛB , PPRFAdvB (𝜆PRF) > 1/2−𝜆PRF𝜀PRF . For each value of 𝜆PRF ∈ ΛB , we provide the associated
value of 𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular

𝜆PRF, we pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆PRF

(and advice string 1
𝜆
), algorithm B runs algorithm A on input

1
𝜆
to obtain a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf) and 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11). It then evalu-

ates 𝑏∗ = 1−F(𝑘sel, 𝑖). It samples 𝑘1−𝑏∗ ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌) and 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).
Algorithm B also computes 𝑘

(𝑖)
replace ← F.Puncture(𝑘replace, 𝑖). It also samples 𝑘lf ← SetupInj(1𝜆, 1𝑛).

3. AlgorithmB submits the input length 1
𝑛
, the output length 1

𝜌
, and a point 𝑖 ∈ {0, 1}𝑛 to the punctured

PRF challenger. It receives the punctured key 𝑘
(𝑖)
𝑏∗ as well as the challenge value 𝑟 ∗ ∈ {0, 1}𝜌 .

4. Algorithm B now samples (𝑦∗, 𝑧∗) ← OWF.GenInstance(crsOWF; 𝑟
∗). Then, algorithm B sets 𝜆obf =

𝜆obf (𝜆, 𝑛) and constructs the programs ObfProve and ObfVerify as follows:

• If 𝑏∗ = 0, then it computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1−𝑏∗]) and

ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1−𝑏∗, 𝑘

(𝑖)
replace, 𝑘lf, 𝑦

∗, 𝑖]).

33

• If 𝑏∗ = 1, then it computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘1−𝑏∗, 𝑘
(𝑖)
𝑏∗]) and

ObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘1−𝑏∗, 𝑘
(𝑖)
𝑏∗ , 𝑘

(𝑖)
replace, 𝑘lf, 𝑦

∗, 𝑖]).

Algorithm B gives the common reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

5. After algorithmA outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) ←
ObfVerify(𝑥) and outputs 1 if OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

By definition, the punctured PRF challenger constructs key𝑘
(𝑖)
𝑏∗ by first sampling𝑘𝑏∗ ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌)

and setting 𝑘
(𝑖)
𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖). This matches the specification in Hyb(1)

2,𝑖
to Hyb(2)

2,𝑖
. Consider now

the distribution of the challenge value 𝑟 ∗:

• Suppose 𝑟 ∗ = F(𝑘𝑏∗, 𝑖). Then, algorithm B perfectly simulates an execution of Hyb(1)
2,𝑖

and outputs 1

with probability Pr[Hyb(1)
2,𝑖
(A) = 1].

• Suppose 𝑟 ∗ r← {0, 1}𝜌 . Then, algorithm B perfectly simulates an execution of Hyb(2)
2,𝑖

and outputs 1

with probability Pr[Hyb(2)
2,𝑖
(A) = 1].

Then PPRFAdvB (𝜆PRF) > 2
−(𝜆+𝑛 (𝜆)) > 2

−𝜆PRF𝜀PRF
, and the claim follows. □

Claim A.4. Suppose ΠPPRF satisfies selective (1, 2−𝜆PRF
𝜀PRF)-punctured security for some constant 𝜀PRF ∈ (0, 1)

and 𝜆PRF = (𝜆 + 𝑛 + 𝑝 (𝜆))1/𝜀PRF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,
it holds that

| Pr[Hyb(2)
2,𝑖
(A) = 1] − Pr[Hyb(3)

2,𝑖
(A) = 1] ≤ 1/2𝜆+𝑛

Proof. This follows by a similar argument as in the proof of Claim A.3, except the reduction algorithm

provides a punctured PRF with input length 1
ℓout

where ℓout is the output length of the lossy function. This

reflects the fact that the output of the lossy function serves as the input to the punctured PRF. The reduction

then programs 𝑘
(LossyF.Eval(𝑘lf,𝑖))
replace to be the punctured key (and samples 𝑘0, 𝑘1 itself). We note this difference

is a departure from [WW24]. The rest of the argument proceeds analogously. □

Claim A.5. Suppose 𝑖O is (1, 2−𝜆𝜀obf)-secure for some constant 𝜀obf ∈ (0, 1) and suppose 𝜆obf = (𝜆 + 𝑛 +
𝑝 (𝜆))1/𝜀obf . Suppose ΠPPRF satisfies punctured correctness. Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists 𝜆A ∈ N
such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb(3)
2,𝑖
(A) = 1] − Pr[Hyb(0)

2,𝑖+1(A) = 1] | ≤ 2/2𝜆+𝑛 .

Proof. This follows by a similar argument as the proof of Claim A.2. For completeness, we show that the

programs associated with ObfProve and ObfVerify have identical behavior in the two experiments. The

claim then follows by security of 𝑖O (as in the proof of Claim A.2). Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1} and consider
an execution of Hyb(3)

2,𝑖
and Hyb(0)

2,𝑖+1. Let 𝑏
∗ = 1 − F(𝑘sel, 𝑖). First, consider the case where 𝑏∗ = 0.

The GenProof programs. When 𝑏∗ = 0, by the identical analysis as in the proof of Claim A.2, the

programs GenProof [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] in Hyb(3)

2,𝑖
computes the same functionality as the program

GenProof [𝐶, crsOWF, 𝑘sel, 𝑘𝑏∗, 𝑘1] in Hyb(0)
2,𝑖+1.

34

TheGenInstprograms. Consider the programsGenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
replace, 𝑘lf, 𝑦

∗, 𝑖] inHyb(4)
2,𝑖

and GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf, 𝑦
∗, 𝑖 + 1] in Hyb(0)

2,𝑖+1. Again, suppose 𝑏
∗ = 0:

• By punctured correctness, for all 𝑥 ≠ 𝑖 , it follows that

F
(
𝑘
(𝑖)
𝑏∗ , 𝑥

)
= F(𝑘𝑏∗, 𝑥) and F

(
𝑘
(LossyF.Eval(𝑘lf,𝑖))
replace , 𝑥

)
= F(𝑘replace, 𝑥) .

Again this requires that when𝑘lf is sampled to be in injectivemode LossyF.Eval(𝑘lf, 𝑥) ≠ LossyF.Eval(𝑘lf, 𝑖)
when 𝑥 ≠ 𝑖 . Thus, for all inputs 𝑥 ∉ {𝑖, 𝑖 + 1}, the two programs have identical behavior.

• Suppose 𝑥 = 𝑖 . In this case, the GenInstance2 program in Hyb(3)
2,𝑖

sets 𝑦1−𝑏 = 𝑦∗ where 𝑦∗ =

OWF.GenInstance(crsOWF; 𝑟
∗) and 𝑟 ∗ = F(𝑘replace, LossyF.Eval(𝑘lf, 𝑖)). This coincides with the be-

havior of the program in Hyb(0)
2,𝑖+1.

• Suppose 𝑥 = 𝑖 + 1. Let 𝑏 = F(𝑘sel, 𝑖 + 1). Then, the program in Hyb(3)
2,𝑖

sets 𝑦1−𝑏 as follows:

– If 1 − 𝑏 = 𝑏∗ = 0, it computes (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance
(
crsOWF; F

(
𝑘
(𝑖)
𝑏∗ , 𝑖 + 1

))
. By

punctured correctness, F
(
𝑘
(𝑖)
𝑏∗ , 𝑖 + 1

)
= F(𝑘𝑏∗, 𝑖 + 1) = F(𝑘0, 𝑖 + 1).

– If 1 − 𝑏 = 1 − 𝑏∗ = 1, it computes (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘1, 𝑖 + 1)).

In particular, the program inHyb(3)
2,𝑖

sets𝑦1−𝑏 = OWF.GenInstance(crsOWF; F(𝑘1−𝑏, 𝑖+1)). InHyb(0)2,𝑖+1,
the challenger sets 𝑦1−𝑏 = 𝑦∗, where 𝑦∗ = OWF.GenInstance(crsOWF; F(𝑘1−𝑏, 𝑖 + 1)). Once more, the

two programs have identical behavior.

Completing the proof of Claim A.5. The above analysis shows that when 𝑏∗ = 0, the GenProof and
GenInst programs in Hyb(3)

2,𝑖
and Hyb(0)

2,𝑖+1 compute identical functionality. An analogous argument applies

when 𝑏∗ = 1. The claim now follows by security of 𝑖O (following the exact same structure as in the proof of

Claim A.2). □

Claim A.6. Suppose 𝑖O is (1, 2−𝜆obf𝜀obf)-secure for some constant 𝜀obf ∈ (0, 1) and suppose 𝜆obf = (𝜆 + 𝑛 +
𝑝 (𝜆))1/𝜀obf . Suppose ΠPPRF satisfies punctured correctness. Then, there exists 𝜆A ∈ N such that for all 𝜆 ≥ 𝜆A ,

| Pr[Hyb(0)
2,2𝑛
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 1/2𝜆+𝑛 .

Proof. This follows by a similar argument as the proof of Claim A.1. We first show that the programs

GenInst2 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑦base, 𝑘lf, 2
𝑛] andGenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf] in hybrids

Hyb(0)
2,2𝑛

and Hyb
3
, respectively, compute identical functionalities. Take any input 𝑥 ∈ {0, 1}𝑛 . Let

𝑏 = F(𝑘sel, 𝑥).

• Consider the behavior of GenInst2. Since 𝑥 ∈ {0, 1}𝑛 , it follows that 𝑥 < 2
𝑛
. In this case, GenInst2

computes

(𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥))
(𝑦1−𝑏, st) = OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))).

• Consider the behavior of GenInst1. By definition, GenInst1 sets

(𝑦𝑏, 𝑧𝑏) = OWF.GenInstance(crsOWF; F(𝑘𝑏, 𝑥))
(𝑦1−𝑏, st) = OWF.GenInstance(crsOWF; F(𝑘replace, LossyF.Eval(𝑘lf, 𝑥))).

35

Both experiments sample the quantities crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, and 𝑘lf using identical procedures. We

conclude that the two programs compute identical functionality. The claim now follows via 𝑖O security (as

in the proof of Claim A.1). □

We now return to the proof of Lemma 5.4. By Claims A.2 to A.5, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, and all

sufficiently-large 𝜆 ∈ N, it follows that

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(0)

2,𝑖+1(A) = 1] | ≤ 6/2𝜆+𝑛 (𝜆) .

By the triangle inequality, this means that

| Pr[Hyb(0)
2,0
(A) = 1] − Pr[Hyb(0)

2,2𝑛
(A) = 1] | ≤ 2

𝑛 (𝜆) · 6

2
𝜆+𝑛 (𝜆) =

6

2
𝜆
.

Combined with Claims A.1 and A.6, we conclude that

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 𝑂 (1)

2
𝜆

= 2
−Ω (𝜆) . □

A.2 Proof of Lemma 5.5

Proof. Suppose there exists an infinite set ΛA ⊆ N and polynomial 𝑞(·) such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[Hyb(2)

2,𝑖
(A) = 1] | > 1/𝑞(𝜆) .

We useA to construct an efficient adversaryB such that for all 𝜆 ∈ ΛA , LossyAdvB (𝜆) > 1/𝑞(𝜆). Algorithm
B works as follows:

1. On input the security parameter 1
𝜆
, algorithm B runs algorithm A on input 1

𝜆
to obtain a circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf) and 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11). It samples

𝑘0 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌) and 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).

3. Algorithm B submits the input length 1
𝑛
, to the lossy function mode indistinguishability challenger.

It receives the lossy key 𝑘lf .

4. Algorithm B sets 𝜆obf = 𝜆obf (𝜆, 𝑛) and constructs the programs ObfProve and ObfVerify as follows:

It computesObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) andObfVerify← 𝑖O(1𝜆obf , 1𝑠 ,
GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf]).
Algorithm B gives the common reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

5. After algorithmA outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) ←
ObfVerify(𝑥) and outputs 1 if OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

Consider now the distribution of the challenge value 𝑘lf :

• Suppose 𝑘lf ← SetupInj(1𝜆, 1𝑛). Then, algorithm B perfectly simulates an execution of Hyb
3
and

outputs 1 with probability Pr[Hyb
3
(A) = 1].

• Suppose 𝑘lf ← SetupLossy(1𝜆, 1𝑛). Then, algorithm B perfectly simulates an execution of Hyb
3
and

outputs 1 with probability Pr[Hyb
3
(A) = 1].

Then LossyAdvB (𝜆) ≥ 1/𝑞(𝜆), and the claim follows. □

36

A.3 Proof of Lemma Lemma 5.10

Proof. We start by showing that the programGenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf] inHyb7 and the cor-
responding program GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘

(𝑤∗)
lf , 𝑦∗,𝑤∗] in Hyb

8
compute identical func-

tionalities. Take any input𝑥 ∈ {0, 1}𝑛 , and consider the programGenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘
(𝑤∗)
replace, 𝑘lf, 𝑦

∗,𝑤∗]
in Hyb

8
:

• When LossyF.Eval(𝑘lf, 𝑥) ≠ 𝑤∗ it computes (𝑦1−𝑏, 𝑧1−𝑏) = OWF.GenInstance(crsOWF; F(𝑘 (𝑤
∗)

replace,

LossyF.Eval(𝑘lf, 𝑥))). This is exactly as before except the punctured key 𝑘
(𝑤∗)
replace is used in GenInst3

instead of the unpunctured key 𝑘replace. However, by punctured key correctness, this will compute

the same value due to the premise that the function is not evaluated on𝑤∗.

• When LossyF.Eval(𝑘lf, 𝑥) = 𝑤∗ it lets 𝑦1−𝑏 = 𝑦∗ where 𝑦∗ was set as 𝑦∗ = OWF.GenInstance(crsOWF;

F(𝑘replace,𝑤∗)). However, this is exactly the way the output would have been computed in GenInst1.
Therefore the outputs are the same.

We conclude that on all inputs 𝑥 , the verification programs GenInst1 and GenInst3 in Hyb
7
and Hyb

8
have

identical input/output behavior. The lemma now holds by security of 𝑖O. Formally, suppose there exists an

infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb
7
(A) = 1] − Pr[Hyb

8
(A) = 1] | > 1/2𝜆+𝑝 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑛(𝜆) + 𝑝 (𝜆))1/𝜀obf : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for

all 𝜆obf ∈ ΛB , iOAdvB (𝜆obf) > 1/2−𝜆obf𝜀obf . For each value of 𝜆obf ∈ ΛB , we provide the associated value of

𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆obf , we

pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆obf

(and advice string 1
𝜆
), algorithmB runsA on security parameter

𝜆. It begins by sampling 𝑘lf ← SetupLossy(1𝜆, 1𝑛).

2. Next it starts the first run of A to get a circuit 𝐶′ : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

3. Algorithm B samples crs′OWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘 ′sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘 ′
0
, 𝑘 ′

1
← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘 ′replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).

4. AlgorithmB then constructsObfProve′ ← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
]) andObfVerify′ ←

𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
, 𝑘 ′replace, 𝑘lf]) where GenProof and GenInst1 are the pro-

grams from Figs. 1 and 3, and 𝑠 is the same size parameter from Section 4.

5. Algorithm B gives the crs′ = (crs′OWF,ObfProve
′,ObfVerify′) to A. Algorithm A then outputs a

statement 𝑥 ′ and a proof 𝜋 ′ = (𝑏′, 𝑧′).

6. Algorithm B then sets𝑤∗ = LossyF, Eval(𝑘lf, 𝑥 ′) where 𝑥 ′ is the statement from the first run.

7. Next it starts the second run of A to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

8. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).

37

9. Algorithm B computes 𝑘
(𝑤∗)
replace ← F.Puncture(𝑘replace,𝑤∗).

10. Algorithm B computes the parameter 𝑠 as in Section 4 and gives 1
𝑠
, GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0,

𝑘1, 𝑘replace, 𝑘lf], and GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘
(𝑤∗)
lf , 𝑦∗,𝑤∗] to the challenger. The chal-

lenger replies with an obfuscated program ObfVerify.

11. Algorithm B computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and gives the com-

mon reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

12. AfterA outputs the statement𝑥 and the proof𝜋 = (𝑏, 𝑧) algorithmB computes (𝑦′
0
, 𝑦′

1
) = ObfVerify(𝑥 ′)

and (𝑦0, 𝑦1) = ObfVerify(𝑥). Algorithm B outputs 1 if:

𝑏′ = 1 − F(𝑘 ′sel, 𝑥
′) and OWF.Verify(crs′OWF, 𝑦

′
𝑏′, 𝑧

′) = 1

and 𝑏 = 1 − F(𝑘sel, 𝑥) and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1

and LossyF.Eval(𝑘lf, 𝑥 ′) = LossyF.Eval(𝑘lf, 𝑥).

If the challenger obfuscates the program GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘lf], then algorithm B
perfectly simulatesHyb

7
. If the challenger obfuscates the programGenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘

(𝑤∗)
lf ,

𝑦∗,𝑤∗], then algorithm B perfectly simulates Hyb
8
. Correspondingly, iOAdvB (𝜆obf) > 2

−(𝜆+𝑝 (𝜆)) >

2
−𝜆obf𝜀obf

. □

A.4 Proof of Lemma Lemma 5.11

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

| Pr[Hyb
8
(A) = 1] − Pr[Hyb

9
(A) = 1] | > 1/2𝜆+𝑝 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑛(𝜆) + 𝑝 (𝜆))1/𝜀PRF : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for

all 𝜆PRF ∈ ΛB , PPRFAdvB (𝜆PRF) > 1/2−𝜆PRF𝜀PRF . For each value of 𝜆PRF ∈ ΛB , we provide the associated
value of 𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular

𝜆PRF, we pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆PRF

(and advice string 1
𝜆
), algorithmB runsA on security parameter

𝜆. It begins by sampling 𝑘lf ← SetupLossy(1𝜆, 1𝑛).

2. Next it starts the first run of A to get a circuit 𝐶′ : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

3. Algorithm B samples crs′OWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘 ′sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘 ′
0
, 𝑘 ′

1
← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘 ′replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).

4. AlgorithmB then constructsObfProve′ ← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
]) andObfVerify′ ←

𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
, 𝑘 ′replace, 𝑘lf]) where GenProof and GenInst1 are the pro-

grams from Figs. 1 and 3, and 𝑠 is the same size parameter from Section 4.

5. Algorithm B gives the crs′ = (crs′OWF,ObfProve
′,ObfVerify′) to A. Algorithm A then outputs a

statement 𝑥 ′ and a proof 𝜋 ′ = (𝑏′, 𝑧′).

6. Algorithm B then sets𝑤∗ = LossyF, Eval(𝑘lf, 𝑥 ′) where 𝑥 ′ is the statement from the first run.

38

7. Next it starts the second run of A to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

8. Algorithm B samples crsOWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌).

9. Algorithm B submits the input length 1
ℓout

, the output length 1
𝜌
, and the point 𝑤∗ ∈ {0, 1}𝑛 to

the punctured PRF challenger. It receives the punctured key 𝑘
(𝑤∗)
replace as well as the challenge value

𝑟 ∗ ∈ {0, 1}𝜌 .

10. Algorithm B now samples (𝑦∗, 𝑧∗) ← OWF.GenInstance(crsOWF; 𝑟
∗).

11. AlgorithmB then constructsObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) andObfVerify←
𝑖O(1𝜆obf , 1𝑠 ,GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘

(𝑘∗)
replace, 𝑘lf, 𝑦

∗,𝑤∗]) where GenProof and GenInst1 are the
programs from Figs. 1 and 4, and 𝑠 is the same size parameter from Section 4.

12. Algorithm B computes the parameter 𝑠 as in Section 4 and gives 1
𝑠
, GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0,

𝑘1, 𝑘replace, 𝑘lf], and GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘
(𝑤∗)
lf , 𝑦∗,𝑤∗] to the challenger. The chal-

lenger replies with an obfuscated program ObfVerify.

13. Algorithm B computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and gives the com-

mon reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

14. AfterA outputs the statement𝑥 and the proof𝜋 = (𝑏, 𝑧) algorithmB computes (𝑦′
0
, 𝑦′

1
) = ObfVerify(𝑥 ′)

and (𝑦0, 𝑦1) = ObfVerify(𝑥). Algorithm B outputs 1 if:

𝑏′ = 1 − F(𝑘 ′sel, 𝑥
′) and OWF.Verify(crs′OWF, 𝑦

′
𝑏′, 𝑧

′) = 1

and 𝑏 = 1 − F(𝑘sel, 𝑥) and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1

and LossyF.Eval(𝑘lf, 𝑥 ′) = LossyF.Eval(𝑘lf, 𝑥).

By definition, the punctured PRF challenger constructs key𝑘
(𝑤∗)
replace by first sampling𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌)

and setting 𝑘
(𝑤∗)
replace ← F.Puncture(𝑘𝑏∗, 𝑖). This matches the specification both in Hyb

8
and Hyb

9
. Consider

now the distribution of the challenge value 𝑟 ∗:

• Suppose 𝑟 ∗ = F(𝑘replace,𝑤∗). Then, algorithm B perfectly simulates an execution of Hyb
8
and outputs

1 with probability Pr[Hyb
8
(A) = 1].

• Suppose 𝑟 ∗ r← {0, 1}𝜌 . Then, algorithm B perfectly simulates an execution of Hyb
9
and outputs 1

with probability Pr[Hyb
9
(A) = 1].

Then PPRFAdvB (𝜆PRF) > 2
−(𝜆+𝑝 (𝜆)) > 2

−𝜆PRF𝜀PRF
, and the claim follows.

□

39

A.5 Proof of Lemma Lemma 5.13

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all 𝜆 ∈ ΛA ,

Pr[Hyb
9
(A) = 1] > 1/2𝜆+𝑝 (𝜆) .

Let ΛB =
{
(𝜆 + 𝑝 (𝜆))1/𝜀owf : 𝜆 ∈ ΛA

}
. We use A to construct an efficient adversary B such that for all

𝜆owf ∈ ΛB , OWFAdvB (𝜆owf) > 1/2−𝜆owf𝜀owf . For each value of 𝜆owf ∈ ΛB , we provide the associated value

of 𝜆 ∈ ΛA to B as non-uniform advice (if there are multiple such 𝜆 ∈ ΛA associated with a particular 𝜆owf ,

we pick the largest such 𝜆). Algorithm B works as follows:

1. On input the security parameter 1
𝜆owf

(and advice string 1
𝜆
), algorithm B receives a one way function

challenge (crsOWF, 𝑦
∗).

2. Next the algorithmB runsA on security parameter 𝜆. It begins by sampling𝑘lf ← SetupLossy(1𝜆, 1𝑛).

3. Next it starts the first run of A to get a circuit 𝐶′ : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

4. Algorithm B samples crs′OWF ← OWF.Setup(1𝜆owf). It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF

keys 𝑘 ′sel ← F.Setup(1𝜆PRF, 1𝑛, 11), 𝑘 ′
0
, 𝑘 ′

1
← F.Setup(1𝜆PRF, 1𝑛, 1𝜌), 𝑘 ′replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌).

5. AlgorithmB then constructsObfProve′ ← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
]) andObfVerify′ ←

𝑖O(1𝜆obf , 1𝑠 ,GenInst1 [𝐶′, crsOWF, 𝑘
′
sel, 𝑘

′
0
, 𝑘 ′

1
, 𝑘 ′replace, 𝑘lf]) where GenProof and GenInst1 are the pro-

grams from Figs. 1 and 3, and 𝑠 is the same size parameter from Section 4.

6. Algorithm B gives the crs′ = (crs′OWF,ObfProve
′,ObfVerify′) to A. Algorithm A then outputs a

statement 𝑥 ′ and a proof 𝜋 ′ = (𝑏′, 𝑧′).

7. Algorithm B then sets𝑤∗ = LossyF, Eval(𝑘lf, 𝑥 ′) where 𝑥 ′ is the statement from the first run.

8. Next it starts the second run of A to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

9. It sets 𝜆PRF = 𝜆PRF(𝜆, 𝑛) and then samples PRF keys𝑘sel ← F.Setup(1𝜆PRF, 1𝑛, 11),𝑘0, 𝑘1 ← F.Setup(1𝜆PRF, 1𝑛, 1𝜌),
𝑘replace ← F.Setup(1𝜆PRF, 1ℓout, 1𝜌). Note it does not sample OWF.Setup in this stage as it already has
crsOWF and 𝑦∗ from the OWF challenger at the beginning of the reduction.

10. Algorithm B computes 𝑘
(𝑤∗)
replace ← F.Puncture(𝑘replace,𝑤∗).

11. AlgorithmB then constructsObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) andObfVerify←
𝑖O(1𝜆obf , 1𝑠 ,GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘

(𝑘∗)
replace, 𝑘lf, 𝑦

∗,𝑤∗]) where GenProof and GenInst1 are the
programs from Figs. 1 and 4, and 𝑠 is the same size parameter from Section 4.

12. Algorithm B computes the parameter 𝑠 as in Section 4 and gives 1
𝑠
, GenInst1 [𝐶, crsOWF, 𝑘sel, 𝑘0,

𝑘1, 𝑘replace, 𝑘lf], and GenInst3 [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘replace, 𝑘
(𝑤∗)
lf , 𝑦∗,𝑤∗] to the challenger. The chal-

lenger replies with an obfuscated program ObfVerify.

13. Algorithm B computes ObfProve← 𝑖O(1𝜆obf , 1𝑠 ,GenProof [𝐶, crsOWF, 𝑘sel, 𝑘0, 𝑘1]) and gives the com-

mon reference string crs = (crsOWF,ObfProve,ObfVerify) to A.

40

14. AfterA outputs the statement𝑥 and the proof𝜋 = (𝑏, 𝑧) algorithmB computes (𝑦′
0
, 𝑦′

1
) = ObfVerify(𝑥 ′)

and (𝑦0, 𝑦1) = ObfVerify(𝑥). Algorithm B outputs 1 if:

𝑏′ = 1 − F(𝑘 ′sel, 𝑥
′) and OWF.Verify(crs′OWF, 𝑦

′
𝑏′, 𝑧

′) = 1

and 𝑏 = 1 − F(𝑘sel, 𝑥) and OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1

and LossyF.Eval(𝑘lf, 𝑥 ′) = LossyF.Eval(𝑘lf, 𝑥).

In order for the game to output 1 it must be the case that LossyF.Eval(𝑘lf, 𝑥) = LossyF.Eval(𝑘lf, 𝑥 ′) = 𝑤∗.
And that its second proof 𝜋 = (𝑏, 𝑧) must have that 𝑏 = 1 − F(𝑘sel, 𝑥). However, on any input 𝑥 where

LossyF.Eval(𝑘lf, 𝑥) = 𝑤∗ the obfuscated program ObfVerify outputs 𝑦1−F(𝑘sel,𝑥) = 𝑦∗. This means that

OWF.Verify(crsOWF, 𝑦𝑏, 𝑧) = 1 and 𝑧 is a solution to the one way function.

Then PPRFAdvB (𝜆owf) > 2
−(𝜆+𝑝 (𝜆)) > 2

−𝜆owf𝜀owf
, and the claim follows.

□

41

	Introduction
	Motivation and Challenges
	Technical Overview
	Other Related Work

	Preliminaries
	Length Parameterized Lossy Functions
	Boosting Lossiness
	Approximate Lossiness from LWE
	Extension to Lossy Trapdoor Functions

	The Waters-Wu WW24 SNARG
	Adaptive Proof of Security
	Proofs of Closeness of Hybrids
	Succinctness and Zero Knowledge

	Proofs of Missing Lemmas
	Proof of Lemma 5.4
	Proof of lem:hyb-3-4
	Proof of Lemma lem:hyb-7-8
	Proof of Lemma lem:hyb-8-9
	Proof of Lemma lem:hyb-final

