
FRIDA: Data Availability Sampling from FRI
Mathias Hall-Andersen∗1 Mark Simkin 2 Benedikt Wagner† 3,4

February 15, 2024

1 Aarhus University
ma@cs.au.dk

2 Ethereum Foundation
mark.simkin@ethereum.org

3 CISPA Helmholtz Center for Information Security
benedikt.wagner@cispa.de

4 Saarland University

Abstract
As blockchains like Ethereum continue to grow, clients with limited resources can no longer store

the entire chain. Light nodes that want to use the blockchain, without verifying that it is in a good
state overall, can just download the block headers without the corresponding block contents. As
those light nodes may eventually need some of the block contents, they would like to ensure that they
are in principle available.

Data availability sampling, introduced by Bassam et al., is a process that allows light nodes to
check the availability of data without download it. In a recent effort, Hall-Andersen, Simkin, and
Wagner have introduced formal definitions and analyzed several constructions. While their work
thoroughly lays the formal foundations for data availability sampling, the constructions are either
prohibitively expensive, use a trusted setup, or have a download complexity for light clients scales
with a square root of the data size.

In this work, we make a significant step forward by proposing an efficient data availability sampling
scheme without a trusted setup and only polylogarithmic overhead. To this end, we find a novel
connection with interactive oracle proofs of proximity (IOPPs). Specifically, we prove that any IOPP
meeting an additional consistency criterion can be turned into an erasure code commitment, and then,
leveraging a compiler due to Hall-Andersen, Simkin, and Wagner, into a data availability sampling
scheme. This new connection enables data availability to benefit from future results on IOPPs. We
then show that the widely used FRI IOPP satisfies our consistency criterion and demonstrate that
the resulting data availability sampling scheme outperforms the state-of-the-art asymptotically and
concretely in multiple parameters.

Keywords: Data Availability Sampling, Interactive Oracle Proofs, FRI, Commitments, Reed-
Solomon Codes

∗Funded by the Concordium Foundation.
†Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 507237585.

mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here
mailto:mail here

Contents
1 Introduction 3

1.1 Our Contributions . 4
1.2 Related Work . 4
1.3 Technical Overview . 5

2 Preliminaries 6

3 From IOPPs to Data Availability Sampling 9

4 Instantiation from FRI 17
4.1 Construction . 17
4.2 Analysis . 18
4.3 Extensions: Batched FRI . 25

5 Efficiency Evaluation 25

A Background on Data Availability Sampling 32

B Merkle Trees 33

C Extension: Batched FRI 35
C.1 Construction . 36
C.2 Analysis . 36

D Script for Parameter Computation 40

2

1 Introduction
A blockchain is a distributed system, running among a set of parties known as full nodes. These parties
keep track of a large and continuously growing dataset by storing it redundantly on each node. This
provides high levels of fault tolerance, even if all but one nodes crash the data is preserved, but also
induces a large storage overhead on the network. The data is structured as sequence of blocks, which
themselves are comprised of a small block header and a larger block content. Full nodes store all blocks
and always ensure that both the headers and the contents are well-formed. As blockchains continue
to steadily gain more and more popularity, they are also required to store more and more data. For a
blockchain like Ethereum, a full node currently needs to continuously store hundreds of gigabytes of data.

To make blockchains more accessible to a wider public, who may not be willing to store this much
data, one can also participate in these distributed systems as a light node. Such nodes do not store the
block contents, but only keep track of the headers. Having access to only the block headers does not allow
them to verify the validity of the whole blockchain. Still, light nodes can performing basic operations,
such as sending and receiving digital currency, assuming that blockchain is indeed in a valid state and
assuming that the nodes can access whatever data they need. While light nodes may not be interested in
storing all the data, they still would like to ensure the data is in principle available in the network, in
case they do need to download parts of it. A naive way for the light nodes to check the availability of
data is to just download it, but this would be at odds with the goal of being a light node. Preferably,
they would like a means of checking the availability of all data that is more communication efficient than
this naive approach.
Data Availability Sampling. The concept of data availability sampling (DAS), originally introduced
by Bassam et al. [ASBK21], addresses the problem outlined above. In this setting we have a possibly
malicious block proposer, who encodes a bit string data, representing the block content, into a short
commitment com and a longer encoding string π. The commitment com can then be added to the
block header and allows light nodes to ensure the full availability of data via a communication-efficient
interactive protocol between them and the network that claims to store the data encoding π. We note that
clearly no individual light nodes can make sure that all the data is fully available, unless they download
it in full. However, multiple light nodes can separately query the network and if they individually all
like the responses they see, then they know that all of the data is available, despite no single light node
having downloaded all of it. Bassam et al. present a solution for DAS based on two-dimensional erasure
codes and Merkle trees. Their solution has been the basis for a similar construction that is soon going to
be deployed within the Ethereum blockchain1. For a cryptographic primitive that is being deployed in
the real world, in a system with millions of financial transactions per day2, it is undoubtedly of crucial
importance to understand both the precise security guarantees and the best possible constructions.
Foundations of Data Availability Sampling. A recent work by Hall-Andersen, Simkin, and Wag-
ner [HASW23] formally defines the concept of DAS schemes and provides several provably secure
construction with different trade-offs. An important insight from their work is a reduction from the DAS
problem to a conceptually simpler primitive they call erasure code commitments. Informally, an erasure
code is a function that takes a message as input and produces a codeword, which is a vector of symbols.
Even if some of the symbols are lost, one can still recover the original message from the remaining ones.
An erasure code commitment allows for taking an encoded message and committing to it in way that
ensures that any opened symbol for a given commitment is consistent with the same overall codeword.

To see why this is non-trivial, it is helpful to consider a simple, but flawed construction from vector
commitments. Naively, one could imagine using a vector commitment to commit to all the symbols of
a codeword, i.e. the i-th entry in the vector is the i-th symbol of the codeword. Opening individual
positions allows for checking individual symbols, but a vector commitment provides no guarantees that
all individual symbols will satisfy some overarching requirement like being consistent with a unique
codeword.
Existing Constructions. The work of Hall-Andersen, Simkin, and Wagner presents four constructions,
all of which have certain drawbacks. The first construction they consider combines an arbitrary vector
commitment with a succinct non-interactive argument of knowledge (SNARKs). Unfortunately, SNARKs

1https://ethereum.org/developers/docs/data-availability
https://ethereum.org/roadmap/danksharding

2https://etherscan.io/txs

3

https://ethereum.org/developers/docs/data-availability
https://ethereum.org/roadmap/danksharding
https://etherscan.io/txs

currently induce large computational overheads and require non-falsifiable assumptions [GW11]. The
second construction they consider is the one that is envisioned by Ethereum, which relies on two-
dimensional Reed-Solomon codes in combination with the polynomial commitment scheme of Kate,
Zaverucha, and Goldberg [KZG10]. Those commitments require a trusted setup, which is difficult to
realize in practice. Even for a blockchain as large as Ethereum, who recently ran such a modestly sized
setup, this took significant engineering and community efforts3. Other distributed systems may not have
the possibility of running such a large-scale distributed setup and ideally, we would like to just avoid such
setups. The third and fourth construction they consider rely on (homomorphic) collision-resistant hash
functions and the random oracle model. These constructions have asymptotically and concretely larger
commitments and bandwidth overheads than the first two. In a DAS scheme constructed from erasure
code commitments, the light nodes randomly probe symbols and verify them against the commitment,
meaning that they need to download both the commitment and some of the symbols. For an input data
of size D, the commitments in the last two constructions are of size Ω(λ

√
D) and each symbol is of size

Ω(
√

D), where λ is the security parameter. Ideally, we would like to reduce the bandwidth overhead of
light nodes by having only a polylogarithmic dependency on D.

1.1 Our Contributions
In this work we propose a new data availability sampling scheme by constructing a new erasure code
commitment. Our construction has the following characteristics:

Model and Assumptions: Our construction does not require a trusted setup and is information-
theoretically secure in the random oracle model.

Efficiency: For input data of size D, commitments of our scheme are of size O(λ2 log2(D)), the
encoding is of size λD log2(D), and each symbol is of size λ log2(D).

Compared to the previous state of the art for hashing-based constructions, this is a significant theoretical
improvement as we go from Ω(

√
D) to O(log2(D)) overheads. In the context of blockchains this means

that our construction is friendlier to light nodes, as these only retrieve the commitments and retrieve
symbols during the availability sampling. On the flip side, we induce a larger storage overhead on the
network that holds the encoded data. When supporting light nodes is the main goal, then our solution in
this work is preferable over previous hashing-based ones. When supporting light nodes efficiently without
a trusted setup is the main goal, our solution is preferable over all previous approaches.
DAS from Special IOPPs. On a technical level, we prove a formal connection between DAS and
interactive oracle proofs of proximity (IOPPs) [BBHR18] with certain additional properties. IOPPs have
recently received a large amount of interest, due to their applications in succinct proof systems [BCG+16,
BBHR18, BBHR19, BCR+19, BCG+19, BGKS20, BCI+20a, COS20]. Using the connection between
IOPPs and DAS established in this work, improvements on IOPPs can lead to better DAS schemes in the
future.
Special IOPPs from FRI. We show that the IOPPs with additional properties that we define in
this work can be instantiated. More concretely, we show that the fast Reed-Solomon (FRI) IOPP of
Ben-Sasson et al. [BBHR18] satisfies our IOPP notion and can, therefore, be used to instantiate our
framework. Proving that the construction of Ben-Sasson et al. satisfies our extended notion of an IOPP
constitutes the main technical contribution of this work. We call our FRI-based construction FRIDA4.
Benchmarks. Finally, we provide benchmarks in our work for various parameter ranges and compare
the construction in this work with those of Hall-Andersen, Simkin, and Wagner [HASW23] .

1.2 Related Work
Several existing cryptographic primitives appear superficially quite similar to DAS, but are actually
distinctly different. In the following we will briefly discuss the most important ones among them and we
refer the reader to the more elaborate comparison provided in the work of Hall-Andersen, Simkin, and
Wagner [HASW23].

3https://ceremony.ethereum.org
4Named in honor of Frida Lyngstad from the pop band ABBA, definitely nothing to do with the fact that it gives us a

FRI-based data availability sampling scheme.

4

https://ceremony.ethereum.org

Proofs of Retrievability. Proofs of retrievability [JK07, ABC+07, SW08, DVW09, CKW13, SSP13]
allow a client to encode some data and store it on a possibly untrusted server. In this setting the client is
trusted, meaning that encodings are always generated honestly, and availability of data is defined via an
extractor, which can recover the full encoded data from a polynomial number of interactions with the
server storing the data. In the case of DAS, we do not assume that the encoding is generated honestly
and the number of interactions with the encoding that are needed to recover the data is an efficiency
metric and not a proof artefact.
Verifiable Information Dispersal. In verifiable information dispersal [Rab89, CT05, NNT21] a possibly
malicious client encodes some data and then runs an interactive protocol with n server out of which at
most t are malicious to store the encoded data on them. In DAS, there is no need to run an interactive
protocol and one also does not need to know how or where exactly the encoded data is stored. This is
indeed important in real-world applications of DAS, where the storage servers may not be known upfront
and where they may change over time. As a cryptographic primitive DAS allows for more flexibility as it
is fully agnostic to the underlying networking.
Functional Commitments. Erasure code commitments can be seen as a special case of a more general
primitive known as functional commitments [LRY16]. It is natural to ask, whether one could simply use an
existing functional commitment as an erasure code commitment. This approach does currently not seem to
lead anywhere as existing functional commitment constructions [BNO21, CFT22, WW23, dCP23, BCFL23]
appear to be less efficient than existing erasure code commitments.

1.3 Technical Overview
Before proceeding with the technical content of this work, let us provide some high-level intuition for
what erasure code commitments are, what IOPPs are, and how we aim to construct one from the other.
Erasure Code Commitments. Let C : Γk → Λn be an erasure code and let us denote the image of
that code by C(Γk). An erasure code commitment for a code C takes a message m ∈ Γk as input and
produces a commitment com, which can be seen as a vector commitment to the symbols C(m) ∈ Λn with
an additional security guarantee. Similar to a standard vector commitment, it should be position-binding
in the sense that no index i ∈ [n] can be opened to two different symbols. Additionally, the commitment
should satisfy a notion called code-binding, which ensures that for any subset of positions I ⊆ [n], the
corresponding opened symbols at those positions are consistent with at least one codeword in the image
of C. For an erasure code, which ensures that any t symbols allow for reconstructing the original message,
code-binding means that any for subset I ⊆ [n] with |I| ≥ t the opened symbols must be consistent with
exactly one codeword. Note that this rules out naive constructions in which one simply applies a standard
vector commitment to the codeword.
IOPPs. An interactive oracle proof of proximity for some code C is a protocol between a prover and a
public-coin verifier. In this context, oracles can be thought of as vectors of symbols in the sky, which
can be accessed in arbitrary positions without needing to read the whole vector. Both parties start with
oracle access to a vector of symbols and the prover claims that this vector is close to the code C. By
close we mean that there is at least one codeword that does not differ from the vector in the oracle in too
many positions. We say that the vector in the oracle is within the the unique decoding radius, if there is
exactly one such codeword, i.e., the closest codeword is unique. The verifier wants to be convinced that
the prover’s statement is true, but wants to read as few symbols as possible from the oracle. Towards
this goal, the prover and the verifier engage in multiple rounds of interactions. In each round the prover
will provide a new oracle to the verifier, who may read some positions in the given oracle and provide the
prover with fresh random coins. At the end of the interaction, the verifier will output a bit, indicating
whether they believe the prover’s claim or not. IOPPs should satisfy a standard completeness notion as
well as a soundness notion, which states that no malicious prover can falsely convince the verifier of a
codeword being close to the code, despite it being far away. Since the verifier is a public-coin algorithm,
one can use the Fiat-Shamir transformation and replace them by a random oracle, thereby making the
proof non-interactive. To avoid relying on the idealized model with oracles in the sky, one can use Merkle
trees and let the prover commit to the vectors it would have placed in the oracles.
From IOPP to Erasure Code Commitment. Conceptually, IOPPs have some semblance of erasure
code commitments. The initial oracle can be seen as a commitment to some encoded message and the
remaining IOPP transcript can be seen as a proof of “well-formedness” for that commitment. To open

5

a symbol in the committed vector of symbols, one can provide a Merkle path consistent with the root
node value for the first oracle. If, during the IOPP, we require the prover to convince the verifier that the
codeword in that oracle is close in the sense of being within the unique decoding radius, then intuitively
it may appear to directly give us a valid erasure code commitment construction.

Unfortunately, this approach is flawed. Note that a codeword being close to a code does not mean
being exactly a valid codeword. The vector in the initial oracle may agree with some unique valid
codeword on most positions, but may still be erroneous in a few other positions. Let us again assume
that the used code ensures that any t symbols allow for recovering the original message. The prover could
open t− 1 valid positions and 2 erroneous ones, which would violate code-binding as those t + 1 points
are not consistent a unique codeword.

To get around this issue, we define a new notion of opening-consistency for IOPPs, which basically
prevents this bad event from happening. It ensures that, given a valid proof transcript, one cannot open
any of the symbols in the initial oracle that are not consistent with the unique closest codeword.

We then formally prove that FRI, the IOPP construction of Ben-Sasson et al. [BBHR18], has this new
property. On an intuitive level, FRI achieves opening-consistency by not only opening symbols in the
initial oracle, but also opening correlated additional symbols in all subsequent oracles. These additionally
revealed symbols from the other oracles ensure that the opened symbol in the initial oracle is well-formed.

Proving that FRI has opening-consistency is surprisingly difficult and requires a rather involved
technical proof. It requires us to redo part of the original FRI analysis and then some more. We believe
that the notion of opening-consistency as well as our proof that FRI satisfies this property may be of
independent interest, beyond their applications in this work.
Why Not Use FRI as a Polynomial Commitment? The astute reader may notice that one can
construct polynomial commitments from FRI [VP19], which can be seen as erasure code commitments
for Reed-Solomon codes. This is indeed possible and would result in a valid construction, albeit at the
cost of being both asymptotically and concretely less efficient. Concretely, the construction would have
openings that are larger by a λ multiplicative factor. The difference between this approach and ours has
to do with the openings that are supported: a polynomial commitment can be opened over the entire
field, but erasure code commitments for the Reed-Solomon code only need to support openings over the
evaluation domain. This difference allows us to obtain a more efficient that does not require the generic
approach via generic polynomial commitments.

2 Preliminaries
In this section, we recall some necessary background and fix notation.
Notation. The set of the first L natural numbers is denoted as [L] = {1, . . . , L} ⊆ N. Let S be a finite
set. Then we write s ← S to say that s is sampled uniformly at random from S. We always assume
algorithms to be probabilistic unless stated otherwise. Let Alg be an algorithm. We denote the (upper
bound on the) running time of Alg by T(Alg). If Alg is deterministic, then y := Alg(x) means that we run
Alg on input x and y is assigned to the output. If Alg is probabilistic, then we instead write y := Alg(x; ρ)
to make the random coins ρ of Alg explicit. When we write y ← Alg(x), then ρ should be understood as
uniform. If we write y ∈ Alg(x), we mean that y is a possible output of Alg on input x. We use standard
cryptographic notions such as a security parameter λ, PPT (probabilistic polynomial-time) algorithms,
and negligible functions.
Codes and Distance. An erasure code is a mapping C : Γk → Λn. It maps a message of length k
over alphabet Γ to a codeword of length n over alphabet Λ. The code has reception efficiency t if any t
symbols of a codeword are sufficient to reconstruct the message. Throughout, we will not only identify
the code with the mapping, but also with the image C(Γk) and simply write c ∈ C to state that c is in
image of C. For strings x ∈ Σℓ and y ∈ Σℓ with the same length ℓ over the same alphabet Σ, we write
δ (x, y) to denote the relative Hamming distance, i.e., δ (x, y) := |{i ∈ [ℓ] | xi ≠ yi}|/ℓ. A code C as above
has minimum distance δ if δ = min{δ (x, y) | x, y ∈ C, x ̸= y}. The unique decoding radius of C is the
maximum distance δ∗ such that for every x with δ (x, C) ≤ δ∗, then there is a unique closest codeword for
x. One can see that δ∗ = ⌊(δn− 1)/2⌋/n.
Erasure Code Commitments. We recall the definition of erasure code commitments from [HASW23].
In a nutshell, such a commitment scheme allows to commit to codewords c ∈ C in some code C.

6

Definition 1 (Erasure Code Commitment Scheme). Let C : Γk → Λn be an erasure code. An erasure
code commitment scheme for C is a tuple CC = (Setup, Com, Open, Ver) of PPT algorithms, with the
following syntax:

• Setup(1λ)→ ck takes as input the security parameter and outputs a commitment key ck.

• Com(ck, m)→ (com, St) takes as input a commitment key ck and a string m ∈ Γk, and outputs a
commitment com and a state St.

• Open(ck, St, i) → τ takes as input a commitment key ck, a state St, and an index i ∈ [n], and
outputs an opening τ .

• Ver(ck, com, i, m̂i, τ)→ b is deterministic, takes as input a commitment key ck, a commitment com,
and index i ∈ [n], a symbol m̂i ∈ Λ, and an opening τ , and outputs a bit b ∈ {0, 1}.

Further, we require that the following completeness property holds: For every ck ∈ Setup(1λ), every
m ∈ Γk, and every i ∈ [n], we have

Pr

Ver(ck, com, i, m̂i, τ) = 1

∣∣∣∣∣∣
(com, St)← Com(ck, m),
m̂ := C(m),
τ ← Open(ck, St, i)

 = 1.

Most importantly, erasure code commitments should be position-binding and code-binding, as defined
next. Informally, position-binding ensures that no adversary can open the codeword at one position to
two different values. Code-binding states that whatever an adversary opens is consistent with the code,
i.e., the objects to which one commits are really codewords.

Definition 2 (Position-Binding of CC). Let CC = (Setup, Com, Open, Ver) be an erasure code commitment
scheme for an erasure code C. We say that CC is position-binding, if for every PPT algorithm A, the
following advantage is negligible:

Advpos-bind
A,CC (λ) := Pr

 m̂ ̸= m̂′

∧ Ver(ck, com, i, m̂, τ) = 1
∧ Ver(ck, com, i, m̂′, τ ′) = 1

∣∣∣∣∣∣ ck← Setup(1λ),
(com, i, m̂, τ, m̂′, τ ′)← A(ck)

 .

Definition 3 (Code-Binding of CC). Let CC = (Setup, Com, Open, Ver) be an erasure code commitment
scheme for an erasure code C. We say that CC is code-binding, if for every PPT algorithm A, the following
advantage is negligible:

Advcode-bind
A,CC (λ) := Pr

[
¬

(
∃c ∈ C(Γk) : ∀i ∈ I : ci = m̂i

)
∧ ∀i ∈ I : Ver(ck, com, i, m̂i, τi) = 1

∣∣∣∣ ck← Setup(1λ),
(com, I, (m̂i, τi)i∈I)← A(ck)

]
.

Data Availability Sampling. One of the main observations of Hall-Andersen, Simkin, and Wag-
ner [HASW23] is that erasure code commitments that are position-binding and code-binding can be
generically and efficiently transformed into data availability sampling schemes. A data availability sam-
pling scheme, as defined in [HASW23], allows constrained clients to verify that some data is available when
having oracle access to an encoding provided by an untrusted party. The precise meaning of available is
specified below. More concretely, in the honest setting, a party encodes some data data into an encoding
π and a short commitment com. The clients download π and want to verify that some data is available.
To do so, they can query π at arbitrary positions and then decide whether to accept or reject. We say that
data is available if it can be extracted from the resulting transcripts. Completeness requires that, given all
parties are honest and there are enough clients, the original data data is extracted. Soundness ensures that
if enough clients accept, then some data is available, i.e., one can extract something from the transcripts.
This should hold if the commitment and all responses provided to the clients are determined by the
adversary, meaning we make no assumption about the network that stores the encoding. Furthermore,
we require consistency: no two sets of transcripts for the same commitment result in different data.

In [HASW23], it has been shown that one can obtain a data availability sampling scheme as follows:
the data data is encoded using an erasure code. The commitment com is an erasure code commitment.
The encoding π contains the symbols of the codeword along with the corresponding openings for the

7

commitment. Clients sample random positions, query them, and check that the opening verifies. How to
sample positions is studied extensively in [HASW23], but for simplicity the reader may think of sampling
positions uniformly and independently at random. Reconstructing the data from enough transcripts is
possible by the properties of an erasure code. That is, the parameters for completeness and soundness
depend on the parameters of the code. Further, one can show that consistency follows from position-
binding and code-binding. We give an informal summary in the following theorem. For completeness, we
give more detailed background,including the formal definition of data availability sampling schemes in
Appendix A.

Theorem 1 ([HASW23], Informal). Any erasure code commitment scheme that is position-binding
and code-binding can be transformed into secure data availability sampling scheme.

Interactive Oracle Proofs of Proximity. In a (public-coin) interactive oracle proof (IOP) [BCS16] a
prover and a verifier are interacting in a number of rounds. In each round i, the verifier first sends a
random challenge ρi, and the prover responds with a proof string πi, to which the verifier has random
(also known as oracle) access. The verifier finally makes queries to the πi and decides to accept (output
1) or reject (output 0). In this work, we consider IOPs of proximity (IOPPs), which are closely related to
IOPs. Namely, in an IOPP for a code5 C, the first oracle given to the verifier is an alleged codeword c
claimed to be in C. The IOPP convinces the verifier that c is close to C. In the following definition, we
restrict ourselves to public coin IOPPs, where all challenges sent by the verifier are sampled uniformly at
random. With this, we can model the verifier by a single deterministic algorithm V that gets as explicit
input all challenges ρi sent to the prover and a final random tape ρr+1. It gets oracle access to all proof
strings (aka oracles) and outputs 1 (for accept) or 0 (for reject).

Definition 4 (IOP of Proximity). Let C be a code. An interactive oracle proof of proximity (IOPP) for
C with r rounds and proximity error β is a pair (P, V) of algorithms such that the following hold:

• Completeness. For every c ∈ C, we have

Pr
ρ1,...,ρr+1

Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) = 1

∣∣∣∣∣∣∣
π1 := P(c, ρ1),

...
πr := P(c, ρ1, . . . , ρr)

 = 1.

• Proximity. For every 0 ≤ δ ≤ 1 and every c for which δ (C, c) > δ, and every (unbounded) P̃, we
have

Pr
ρ1,...,ρr,ρr+1

Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) = 1

∣∣∣∣∣∣∣
π1 := P̃(c, ρ1),

...
πr := P̃(c, ρ1, . . . , ρr)

 ≤ β(δ).

The definition of proximity is merely given for completeness. For our transformation, we will need
a more fine-grained notion which is not satisfied (with meaningful parameters) by every IOPP. The
following two definitions introduce notation and terminology for IOPPs. Namely, we define what
constitutes transcripts, and we introduce a notation to denote the queries made by the verifier.

Definition 5 (Transcripts). Let (P, V) be an IOPP with r rounds for a code C. We define:

• Complete Transcripts. A sequence T = (c, ρ1, π1, . . . , ρr, πr, ρr+1) containing an alleged codeword
c, verifier messages ρi, and proof strings πi is called a complete transcript.

• Partial Transcript. Let T be a complete transcript. Any prefix T ′ of T is called a partial
transcript, where T ′ is called a prover-turn (resp. verifier-turn) transcript if T ′ contains an even
(resp. odd) number of elements.

• Transcript Extension. Let T be a partial transcript and m be any message. Then, T◦m denotes
the unique partial transcript that ends with m, contains one element more than T , and has T as a
prefix, i.e., the concatenation of T and m.

5Usually, IOPPs are defined for families of codes. We assume the code is fixed.

8

Definition 6 (Query Sets of IOPP). Let C be a code, and let (P, V) be an IOPP for C with r rounds.
Let T = (c, ρ1, π1, . . . , ρr, πr, ρr+1) be any complete transcript. We define the following sets:

Q0(T) := {j ∈ |c| | Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) queries cj} ,

Qi(T) := {j ∈ |πi| | Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) queries πi,j} for all i ∈ [r].

An important class of IOPPs is the class of non-adaptive IOPPs. Informally, an IOPP is said to be
non-adaptive, if the queries that the verifier issues do not depend on previous responses. A prominent
example of such a non-adaptive IOPP is the FRI IOPP [BBHR18] which we will explore in Section 4.

Definition 7 (Non-Adaptive IOPP). Let C be a code, and let (P, V) be an IOPP for C with r rounds.
We say that (P, V) is non-adaptive, if for any two complete transcripts T = (c, ρ1, π1, . . . , ρr, πr, ρr+1)
and T ′ = (c′, ρ1, π′

1, . . . , ρr, π′
r, ρr+1) with the same verifier challenges, we have

∀i ∈ {0, . . . , r} : Qi(T) = Qi(T ′).

Merkle Trees. To transform IOPPs to erasure code commitments, we use (a variant of) the BCS
transformation [BCS16]. For that, we use Merkle trees [Mer88] instantiated with a random oracle6. To
this end, let H : {0, 1}∗ → {0, 1}λ be a random oracle. We denote by RootH the algorithm that takes
as input a sequence x1, . . . , xℓ ∈ Σ of ℓ symbols over some alphabet Σ, and outputs the Merkle root
root ∈ {0, 1}λ. We denote by PathH the algorithm that takes as input x1, . . . , xℓ ∈ Σ as above and an
index j ∈ [ℓ], and outputs an authentication path path for the jth position, i.e., for xj . We assume that
path contains the length ℓ of the underlying sequence, the position j, and the value xi, and denote these by
LengthOfH, PositionOfH, and ValueOfH, respectively. Finally, we denote by RootFromPathH the algorithm
that takes as input a path path recomputes the Merkle root. We postpone the detailed definitions to
Appendix B. There, we also show that Merkle trees (in the random oracle model) are extractable. That
is, a reduction can extract parts of the underlying sequence of values from a given Merkle root, such
that every opening is then consistent with these parts. This is folklore and has been used (implicitly)
in several works, e.g., [Val08, BCS16, HKLN20]. We make it explicit, which could be useful in other
contexts as well.

3 From IOPPs to Data Availability Sampling
In this section, we present our transformation turning an (non-adaptive) IOPP into an erasure code
commitment. With the transformation in [HASW23], this yields a data availability sampling scheme. For
our construction to work, we require the IOPP to satisfy a certain soundness property, which we call
opening-consistency.
Required Properties of IOPPs. We start with the definition of query-selection. Informally, it states
that one can efficiently force the verifier to query a specific position of the codeword by deriving a
corresponding random tape. In other words, one can open a specific position of the codeword.

Definition 8 (Query-Selection of IOPP). Let C be a code, and let (P, V) be an IOPP for C with r rounds.
We say that (P, V) is query-selectable if there is a deterministic algorithm QSelect, such that for any
partial transcript of the form T ′ = (c, ρ1, π1, . . . , ρr, πr) and any j ∈ |c|, we have

j ∈ Q0(T ′◦ρr+1) for ρr+1 := QSelect(ρ1, . . . , ρr, j).

As our main new notion, we introduce opening-consistency. Intuitively, we want to ensure that (1) if
the verifier accepts, then the alleged codeword is within the unique decoding radius, and (2) one can
never open any position for which the alleged codeword disagrees with its unique closest codeword. Here,

6Actually, one could use any extractable vector commitment scheme instead of a Merkle tree. We stick to Merkle trees.

9

by opening a position we mean providing a final randomness ρr+1 such that the verifier queries this
position. We also want to (3) characterize our notion in a fine-grained way where we define certain
events over the verifier’s randomness in individual rounds. This is essential when we want to compile
the interactive IOPP to a non-interactive scheme. With this motivation in mind, let us now explain our
notion of opening-consistency. First, to tackle (3), we introduce the notion of suitable transcripts. This
notion is defined with respect to two sets of partial transcripts, namely, a bad set Bad and a lucky set
Lucky. In each round in which the verifier sends a challenge ρi, i ≤ r, we assume that the prover can be
lucky, i.e., the partial transcript ending with ρi is in Lucky. However, we require that the probability that
this happens is small, where the probability is only taken over the random choice of ρi. Further, when the
prover has sent all of its messages, i.e., the partial transcript ends with πr, then the transcript can be in a
bad state, i.e., it is in Bad. In this case, we want that the probability that the verifier accepts – taken over
the random choice of its final randomness ρr+1 – can be upper bounded. Now, we say that a transcript is
suitable, if it is not in the bad set and in no round it was in the lucky set. With this, we know that if we
see an accepting transcript that came from a malicious prover interacting with an honest verifier, then
with high probability it is suitable. This definition addresses (3) but is not very meaningful on its own.
Namely, setting Bad = Lucky = ∅ would be a valid choice, and all transcripts would be suitable. We want
that suitable transcripts guarantee something meaningful which we can use for proving code-binding,
namely, (1) and (2). For (1), we require that any suitable transcript satisfies that the alleged codeword c
is within the unique decoding radius, i.e., a unique closest codeword c∗ ∈ C exists. We highlight that this
is no probabilistic statement. For (2), we require that – for a suitable transcript – it is not possible to
find a randomness ρr+1 for which the verifier queries a position at which c and c∗ disagree. Now, setting
Bad = Lucky = ∅ is not a valid choice anymore. Indeed, defining the right sets Bad and Lucky is one of
the main challenges when proving opening-consistency for a given IOPP.

Definition 9 (Suitable Transcripts). Let C be a code, and let (P, V) be an IOPP for C with r rounds.
Let Bad be a set containing partial transcripts, and let Lucky be a set containing non-empty partial
prover-turn transcripts. Assume that T = (c, ρ1, π1, . . . , ρr, πr) is a partial verifier-turn transcript. We
say that T is a suitable transcript with respect to Bad and Lucky, if T /∈ Bad and any prover-turn prefix
T ′ of T satisfies T ′ /∈ Lucky.

Definition 10 (Opening-Consistency of IOPP). Let C be a code, and let (P, V) be an IOPP for C with r
rounds. Then, (P, V) is said to be opening-consistent with errors ε1, ε2 if there is are sets Bad and Lucky,
such that the following properties hold:

• No Luck. For every i ∈ [r], and any partial verifier-turn transcript T that contains 2i− 1 elements,
we have

Pr
ρi

[T◦ρi ∈ Lucky] ≤ ε1.

• Bad is Rejected. Let T = (c, ρ1, π1, . . . , ρr, πr) be a transcript with T ∈ Bad. Then, we have

Pr
ρr+1

[Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) = 1] ≤ ε2.

• Suitable is Close. Let T = (c, ρ1, π1, . . . , ρr, πr) be a suitable transcript with respect to Bad and
Lucky (see Definition 9). Then, c is within the unique decoding radius δ∗ of C, i.e., δ (C, c) ≤ δ∗.

• Inconsistent is Rejected. Let T = (c, ρ1, π1, . . . , ρr, πr) be a suitable transcript with respect to
Bad and Lucky (see Definition 9). Let c∗ ∈ C denote the unique closest codeword7. Let ρr+1 such
that there is a position j ∈ Q0(T◦ρr+1) with cj ̸= c∗

j . For any such transcript, it holds that

Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) = 0.

Remark 1 (Round-By-Round Soundness). A notion that is related to opening-consistency is round-by-
round soundness [CCH+19]. It states that there is a set of partial transcript called the doomed set. If the
alleged codeword c is far from the code, then the transcript (c) is doomed. Further, in every round the
probability to leave the doomed set is small, where probability is taken over the verifier’s challenge in that

7The unique closest codeword exists because of the suitable is close property.

10

round. Finally, a complete transcript in the doomed set is always rejected. While being useful for many
applications, we have found that this notion is not sufficient in our context. Especially, round-by-round
soundness gives no guarantee similar to the inconsistent is rejected property we demand.

Remark 2 (List Decoding). By our definition of opening-consistency, we are interested primarily in
soundness when the proximity parameter is δ∗, i.e., we want to be convinced that the alleged codeword is
within the unique decoding radius. On the other hand, when using IOPPs to construct arguments of
knowledge, the proximity parameter can be chosen larger then δ∗, potentially leading to more efficient
instantiations. This is because a knowledge extractor can rely on decoding and identify a witness for
the given statement in the list. In the context of code-binding, it is essential that the adversary can not
arbitrarily pick openings consistent with one of many distinct close codewords. Hence, we do not see a
way to leverage a proximity parameter larger than δ∗.

Commitment Construction. Using a variant of the transformation in [BCS16], we construct an
erasure-code commitment scheme CC = (Setup, Com, Open, Ver) for a code C : Γk → Λn from a given
IOPP (P, V) for C. We assume that the IOPP has r rounds, the length of codewords is n, and each
proof string πi of the IOPP has length ℓi. For convenience, we set ℓ0 := n. We further assume that
IOPP is non-adaptive and query-selectable with algorithm QSelect. For the construction, we use Merkle
trees over a random oracle H : {0, 1}∗ → {0, 1}λ (see Appendix B). We further use a random oracle
H′ : {0, 1}∗ → {0, 1}λ and a random oracle Ĥ : {0, 1}∗ → {0, 1}z, where we assume that all challenges
ρ1, . . . , ρr, ρr+1 of the IOPP have length z. Before we describe the actual scheme CC, we define two
subroutines that we will be using: the algorithm OpenAuth computes Merkle path for each query that
the IOPP verifier issues for a given transcript; algorithm CheckAuth verifies that a transcript is accepting,
where the proof strings in the transcript are given as Merkle roots and queries are answered using Merkle
paths.

• Subroutine OpenAuth(c, (πi)r
i=1, (ρi)r

i=1, ρr+1)→ auth:

1. Set T := (c, ρ1, π1, . . . , ρr, πr, ρr+1).
2. For each query j ∈ Q0(T), set path0,j := PathH(c, j).

3. For each i ∈ [r] and each query j ∈ Qi(T), set pathi,j := PathH(πi, j).
4. Set and return auth := ((pathi,j)j∈Qi)r

i=0.

• Subroutine CheckAuth((rooti)r
i=0, (ρi)r

i=1, ρr+1, auth)→ b:

1. Parse auth = ((pathi,j)j∈Qi
)r
i=0.

2. If there is an i ∈ {0, . . . , r} and a j ∈ Qi such that PositionOfH(pathi,j) ̸= j, return b := 0.

3. If there is an i ∈ {0, . . . , r} and a j ∈ Qi such that LengthOfH(pathi,j) ̸= ℓi, return b := 0.

4. If there is an i ∈ {0, . . . , r} and a j ∈ Qi such that RootFromPathH(pathi,j) ̸= rooti, return
b := 0.

5. Run bV := Vc,π1,...,πr (ρ1, . . . , ρr, ρr+1) not knowing c and πi. Answer queries as follows:
– If V queries a position of c which is not in Q0, return 0.
– Answer any query of position j in c with ValueOfH(path0,j).
– If V queries a position of πi for some i which is not in Qi, return 0.
– Answer any query of position j in πi with ValueOfH(pathi,j).

6. If there is a j ∈ Q0 such that V never queried position j of c, return 0.
7. If there is a j ∈ Qi for some i such that V never queries position j of πi, return 0.
8. Return b := bV.

Let L ∈ N be a repetition parameter. Intuitively, we can think of L as being (proportial) to the number
of queries that the verifier of the IOPP makes in total. With that, the erasure code commitment
CC = (Setup, Com, Open, Ver) is given as follows:

• Setup(1λ)→ ck: Return ck := ⊥.

11

• Com(ck, m)→ (com, St):

1. Compute c := C(m) and root0 := RootH(c).
2. Set hst−1 := 1λ, hst0 := H′(root0, hst−1, 0) and for each i ∈ [r], do the following:

(a) Derive ρi := Ĥ(hsti−1).
(b) Compute πi := P(c, ρ1, . . . , ρi).
(c) Commit to πi using a Merkle tree, i.e., rooti := RootH(πi).
(d) Update the state hsti := H′(rooti, hsti−1, i).

3. For l ∈ [L] do the following:

(a) Derive ρ
(l)
r+1 := Ĥ(hstr, l).

(b) Run auth(l) := OpenAuth(c, (πi)r
i=1, (ρi)r

i=1, ρ
(l)
r+1).

4. Set com :=
(

(rooti)r
i=0, (auth(l))L

l=1

)
and St := (c, (πi)r

i=1, (ρi)r
i=1).

• Open(ck, St, j)→ τ :

1. Parse St = (c, (πi)r
i=1, (ρi)r

i=1).
2. Derive ρr+1 := QSelect(ρ1, . . . , ρr, j).
3. Run τ := auth := OpenAuth(c, (πi)r

i=1, (ρi)r
i=1, ρr+1).

• Ver(ck, com, j, c, τ)→ b:

1. Parse com =
(

(rooti)r
i=0, (auth(l))L

l=1

)
and τ = auth.

2. Set hst−1 := 1λ, hst0 := H′(root0, hst−1, 0) and for each i ∈ [r], do the following:
(a) Derive ρi := Ĥ(hsti−1).
(b) Update the state hsti := H′(rooti, hsti−1, i).

3. For l ∈ [L] do the following:

(a) Set ρ
(l)
r+1 := Ĥ(hstr, l).

(b) If CheckAuth((rooti)r
i=0, (ρi)r

i=1, ρ
(l)
r+1, auth(l)) = 0, return b := 0.

4. Set ρr+1 := QSelect(ρ1, . . . , ρr, j).
5. If CheckAuth((rooti)r

i=0, (ρi)r
i=1, ρr+1, auth) = 0, return b := 0.

6. Parse auth = ((pathi,j′)j′∈Qi
)r
i=0.

7. If j /∈ Q0 or c ̸= ValueOfH(path0,j), return b := 0. Otherwise, return b := 1.

Completeness of the scheme can easily be verified.
Security. We show position-binding and code-binding. Intuitively, position-binding follows directly from
position-binding of Merkle trees and the query-selection property of the IOPP.

Lemma 1. Let H : {0, 1}∗ → {0, 1}λ be a random oracle. Then, for every algorithm A that makes at
most QH queries to random oracle H, we have

Advpos-bind
A,CC (λ) ≤ Q2

H
2λ

.

Proof. Let A be an adversary against position-binding of CC. By definition of position-binding, A gets
as input a commitment key ck = ⊥ of CC and ouptuts a commitment com =

(
(rooti)r

i=0, (auth(l))L
l=1

)
,

a position j ∈ [n], and two alleged openings c, τ = auth and c′, τ ′ = auth′ for position j. If A breaks
position-binding, then c ̸= c′ and Ver(ck, com, j, c, τ) = 1 and Ver(ck, com, j, c′, τ ′) = 1. We will argue that
this implies a collision in the random oracle H used to define Merkle trees, which occurs with probability
at most Q2

H/2λ. To this end, recall that both invocations of Ver first compute the same ρ1, . . . , ρr

12

and ρ
(l)
r+1 (for l ∈ [L]) from com by invoking Ĥ properly. Then, both invocations compute the same

ρr+1 = QSelect(ρ1, . . . , ρr, j). Write auth = ((pathi,j′)j′∈Qi)r
i=0 and auth′ = ((path′

i,j′)j′∈Q′
i
)r
i=0. Then, we

know that CheckAuth((rooti)r
i=0, (ρi)r

i=1, ρr+1, auth) = 1 and CheckAuth((rooti)r
i=0, (ρi)r

i=1, ρr+1, auth′) =
1. In particular, in both of these invocations of CheckAuth, V is run on input ρ1, . . . , ρr+1, and by
the query-selection property of the IOPP, we know that it must query the jth position of its first
oracle, which is answered by ValueOfH(path0,j) and ValueOfH(path′

0,j), respectively. As Ver checks that
c = ValueOfH(path0,j) (resp. c′ = ValueOfH(path′

0,j)), we know that

ValueOfH(path0,j) = c ̸= c′ = ValueOfH(path′
0,j).

By definition of CheckAuth, we also know that

RootFromPathH(path0,j) = root0 = RootFromPathH(path′
0,j).

Thus, we have Merkle paths for different openings but the same root, which implies a collision for H.

Theorem 2. Let C be a code with unique decoding radius δ∗ ∈ [0, 1]. Assume that (P, V) is a non-
adaptive query-selectable IOPP for C, and assume that it is opening-consistent with errors ε1, ε2. Let
H : {0, 1}∗ → {0, 1}λ

, H′ : {0, 1}∗ → {0, 1}λ, and Ĥ : {0, 1}∗ → {0, 1}z be random oracles.
Then, for every algorithm A that makes at most QH, QH′ , QĤ queries to random oracles H, H′, Ĥ,

respectively, we have

Advcode-bind
A,CC (λ) ≤

2Q2
H′ + QH′QĤ + 2Q2

H + QHQH′

2λ
+ QH′ max{ε1, εL

2 }.

Proof Strategy. In the code-binding game, adversary A has access to random oracles H, H′, Ĥ which are
simulated by the game lazily via maps h[·], h′[·], ĥ[·], respectively. The adversary outputs a commitment
com =

(
(rooti)r

i=0, (auth(l))L
l=1

)
, a set J ⊆ [n] of indices, and a list (cj , τj)j∈J of alleged openings at

positions j ∈ J . It breaks code-binding if all openings verify, i.e., Ver(ck, com, j, cj , τj) = 1 for all j ∈ J ,
and there is no codeword c ∈ C such that c is consistent with all c, i.e., for any c ∈ C there is a j ∈ J
with cj ̸= cj .

To argue that this can not happen, we want to use opening-consistency of the underlying IOPP.
However, opening-consistency defines properties of transcripts of the IOPP, whereas the commitment
construction CC only implicitly deals with transcripts. Abstractly, a Merkle root root and a state hst that
are submitted to random oracle H′ are meant to represent a transcript. Thus, our first step (games G0 to
G3) will be to extract such transcripts from triples (root, hst, i) submitted to H′. To be a bit more precise,
we use Merkle tree extraction (Appendix B, Lemma 13) to map such a triple to a partial verifier-turn
transcript of the form (c, ρ1, π1, . . . , ρi, πi). Then, we argue that all Merkle paths contained in A’s output
are consistent with the extracted transcripts.

In the second step of the proof, we want to apply opening-consistency. Namely, consider the case
where a transcript represented by (root, hst, i) is extended with a verifier challenge: this happens when
Ĥ(hst′) is queried for hst′ = H′(root, hst, i). Having ensured that these two queries occur in order, opening-
consistency (no luck property) tells us that, except with probability ε1, the extended transcript is not
in the lucky set. So, if ε1 is sufficiently small, we can assume that no partial transcript induced by
the adversary’s commitment is in the lucky set. Additionally, by opening-consistency (bad is rejected
property), we can assume, except with probability εL

2 , that the almost complete transcript induced by
the adversary’s commitment is not in the bad set. These two steps are done in G4.

In our final step, we apply the inconsistent is rejected property of opening-consistency. For that, note
that every opening cj , τj submitted by A defines a transcript, precisely, a completion of T . Further, at
least one of the openings j∗ has to be inconsistent with the unique closest codeword of c. We then use
the inconsistent is rejected property of opening-consistency to argue that this opening must be rejected.
We continue with the formal proof.

Proof. Let A be an adversary against code-binding of CC. We now formally prove the statement by
presenting a sequence of games.

13

Game G0: Game G0 is the code-binding game of CC for adversary A, as recalled in the proof strategy
above. By definition, we have

Advcode-bind
A,CC (λ) = Pr [G0 ⇒ 1].

Game G1: In this game, we introduce some bad events related to random oracle queries and let the
game abort if any of these events occurs. The events are defined as follows:

• Event Coll: This event occurs, if H′(root, hst, i) = H′(root′, hst′, i′) for triples (root, hst, i) ̸=
(root′, hst′, i′) with root, root′ ∈ {0, 1}λ

, hst, hst′ ∈ {0, 1}λ
, i, i′ ∈ N0.

• Event Chain: This event occurs, if H′(root, hst, i) is queried for some root ∈ {0, 1}λ
, hst ∈ {0, 1}λ

,
i ∈ N0 for the first time, i.e., the hash value hst′ = h′[root, hst, i] is sampled uniformly at random
from {0, 1}λ, and at that time, we have h′[root′, hst′, i′] ̸= ⊥ for some root′ ∈ {0, 1}λ

, i′ ∈ N0 or we
have hst′ = hst.

• Event Cross: This event occurs, if H′(root, hst, i) is queried for some root ∈ {0, 1}λ
, hst ∈ {0, 1}λ

,
i ∈ N0 for the first time, i.e., the hash value hst′ = h′[root, hst, i] is sampled uniformly at random
from {0, 1}λ, and at that time, we have ĥ[hst′] ̸= ⊥ or ĥ[hst′, l] ̸= ⊥ for some l ∈ [L].

We can easily bound the probability of each Chain and Coll using a union bound of all pairs of queries to
H′. Namely, the probability of Chain (resp. Coll) is at most Q2

H′/2λ. Similarly, the probability of Cross is
at most QH′QĤ/2λ. Also, games G0 and G1 are identical unless one of the events occurs. In combination,
we get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
2Q2

H′ + QH′QĤ
2λ

.

Game G2: In this game, we introduce a map Tra[·] that maps triples of the form (root, hst, i) ∈
{0, 1}λ × {0, 1}λ × N0 to partial verifier-turn transcripts containing an alleged codeword, i proof strings,
and i challenges. We will then make some observations about this map.

Before reading how the map is defined, the reader may recall algorithm ExtLeafs for extracting leafs
from a Merkle root (see Appendix B, Figure 2). Informally, this algorithm takes as input root ∈ {0, 1}λ

and an integer ℓ ∈ N and extracts ℓ leafs leaf1, . . . , leafℓ represented by root. Some leafs may not be
extractable, which is indicated by leafj = ⊥.

Now, we define how map Tra is populated throughout the game. Initially, the map Tra[·] is empty, i.e.,
Tra[root, hst, i] for all triples (root, hst, i) ∈ {0, 1}λ×{0, 1}λ×N0. On a random oracle query H′(root, hst, i),
we distinguish three cases:

• If the hash value is already defined, i.e., h′[root, hst, i] ̸= ⊥, then Tra is not changed. Otherwise, we
distinguish the cases i = 0 and i > 0.

• In the case i = 0, the game runs (leaf1, . . . , leafℓ0) := ExtLeafs(root, ℓ0). It then defines the alleged
codeword c by

∀j ∈ [ℓ0] = [n] : cj :=
{

leafj if leafj ̸= ⊥
γ⊥ if leafj = ⊥

,

where we assume that all leafj are interpreted as symbols in Λ and γ⊥ ∈ Λ is an arbitrary but fixed
symbol in Λ. The game sets Tra[root, hst, i] := (c).

• In the case i > 0, the game runs (leaf1, . . . , leafℓi
) := ExtLeafs(root, ℓi). It then defines the proof

string πi by

∀j ∈ [ℓi] : πi,j :=
{

leafj if leafj ̸= ⊥
τ⊥ if leafj = ⊥

,

where we assume that all leafj are interpreted as symbols of the alphabet of the ith proof string,
and τ⊥ is an arbitrary but fixed symbol in that alphabet. Next, if there is no pair (root′, hst′) ∈
{0, 1}λ × {0, 1}λ such that h[root′, hst′, i − 1] = hst and Tra[root′, hst′, i − 1] ̸= ⊥, the game does
not change Tra. Otherwise, there can only be one such pair (see event Coll). Then, the game sets

Tra[root, hst, i] := Tra[root′, hst′, i− 1]◦ρi◦πi for ρi := Ĥ(hst′).

14

With this definition of the map Tra[·], we make the following observations:

• When A terminates and outputs com =
(

(rooti)r
i=0, (auth(l))L

l=1

)
, this commitment specifies

partial verifier-turn transcripts as follows: recall that algorithm Ver sets hst−1 := 1λ, hst0 :=
H′(root0, hst−1, 0) and for each i ∈ [r], it sets hsti := H′(rooti, hsti−1, i). Then, for each i ∈ {0}∪ [r],
we can define the partial verifier-turn transcript T ∗

i := Tra[rooti, hsti−1, i].

• All T ∗
i are defined, i.e., T ∗

i ̸= ⊥. This can be seen inductively using that Chain does not occur.

• The transcripts are consistent, namely, T ∗
i is a prefix of T ∗

i′ for any i < i′. This is by definition and
using that Coll does not occur.

It is clear that our changes do not change the view of A and do not affect the output of the game. Thus,
we have

Pr [G1 ⇒ 1] = Pr [G2 ⇒ 1].

Game G3: In this game, we ensure that whatever the adversary opens with a Merkle path is consistent
with the leafs extracted in G2. More precisely, we define the following bad event and let the game abort
if it occurs:

• Event BreakMerkle: This event occurs, if any of the Merkle paths that A submits is not consistent
with the transcript T ∗

r . More precisely, write T ∗
r = (π0 := c, ρ1, π1, . . . , ρr, πr) and recall that when

A terminates, it outputs a commitment com =
(

(rooti)r
i=0, (auth(l))L

l=1

)
and a list (cj , τj)j∈J . We

let P be the set of pairs (i, path) such that path is contained in an auth(l) for some l ∈ [L] or in an τj

for some j ∈ J for the ith proof string (or for the alleged codeword meaning i = 0). Then, the event
occurs if there is a pair (i, path) ∈ P such that ValueOfH(path) ̸= πi,k, where k := PositionOfH(path).

We can bound the probability of event BreakMerkle by giving a reduction that runs in the game in
Lemma 13. We sketch the reduction. It is run with oracle access to H, an oracle SubRoot, and an oracle
SubPath. It simulates G2 for A by forwarding the access to H and providing oracles H′ and Ĥ′ as in
G2. Note that the reduction can internally keep a copy of h by proper bookkeeping, and therefore it
can run ExtLeafs as in G2 (alternatively, the reduction could simulate G1 instead, which would also be
fine). Further, on every random oracle query H′(root, hst, i), the reduction calls SubRoot(root, ℓi). Then,
once A terminates and outputs a commitment com =

(
(rooti)r

i=0, (auth(l))L
l=1

)
and a list (cj , τj)j∈J , the

reduction constructs the set P as in the definition of BreakMerkle and calls SubPath(rooti, path) for each
pair (i, path) ∈ P . We see that the reduction makes at most QH many queries to H and at most QH′

many queries to SubRoot. It simulates game G2 perfectly for A. Further, if BreakMerkle occurs and the
game outputs 1, then bad = 1 in the game in Lemma 13, where we use the definition of CheckAuth. With
that, Lemma 13 yields

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ 2Q2
H + QHQH′

2λ
.

Game G4: In this game, we introduce two more bad events EvLucky and EvBadAcc, which may occur on
queries to random oracle H′, and let the game abort whenever they occur. For that, let Bad and Lucky
be the sets from the definition of opening-consistency (Definition 10). The bad event EvLucky occurs if a
partial verifier-turn transcript (represented by a triple (root, hst, i)) is queried to H′ and its extension is in
the lucky set Lucky. The bad event EvBadAcc occurs if all L extensions of an almost complete transcript
in Bad are accepting. More precisely:

• Event EvLucky: This event occurs, if there is an entry T = Tra[root, hst, i] in the map Tra such that
0 ≤ i < r and T◦ρi+1 ∈ Lucky, where hst′ = H′(root, hst, i) and ρi+1 = Ĥ(hst′).

• Event EvBadAcc: This event occurs, if there is an entry T = Tra[root, hst, r] in the map Tra such
that T ∈ Bad and for all l ∈ [L], we have

Vc,π1,...,πr (ρ1, . . . , ρr, ρ
(l)
r+1) = 1,

where T = (c, ρ1, π1, . . . , ρr, πr), hst′ = H′(root, hst, r) and ρ
(l)
r+1 = Ĥ(hst′, l).

15

First, fix i with 0 ≤ i < r and consider a fixed query (root, hst, i) to random oracle H′, adding an entry to
the map Tra. As we assume that Cross does not occur, the transcript T = Tra[root, hst, i] is fixed before
ρi+1 is sampled at random. So, it follows from the no luck property of opening-consistency that the
probability of EvLucky for this fixed query is at most ε1. Similarly, for a fixed query to H′, we can use the
bad is rejected property of opening-consistency to bound the probability for event EvBadAcc in a fixed
random oracle query by ε2. The only difference is that the bad event has to occur for all l ∈ [L]. As the
ρ

(l)
r+1 are all sampled independently, the probability of EvBadAcc in that fixed query is at most εL

2 . With
a union bound over all queries, we get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [Leave] ≤ QH′ max{ε1, εL
2 }.

In the final part of the proof, we bound the probability that G4 outputs 1. For that, first re-
call that δ∗ denotes the unique decoding radius of C. Further, recall the notation introduced in
G2. Namely, T ∗

i = Tra[rooti, hsti−1, i] for all i ∈ {0} ∪ [r], where the commitment output by A is
com =

(
(rooti)r

i=0, (auth(l))L
l=1

)
. We have also established that all T ∗

i are prefixes of each other and so
we can write them as

T ∗
i = (π0 = c, ρ1, π1, . . . , ρi, πi) for i ∈ {0} ∪ [r].

Also, recall that A not only submits the commitment com, but also a list (cj , τj)j∈J of alleged openings
at positions j ∈ J , where each j ∈ J defines a final verifier randomness ρj,r+1 = QSelect(ρ1, . . . , ρr, j) as
in algorithm Ver.
First Claim. If game G4 outputs 1, then T ∗

r is suitable with respect to Bad and Lucky (see Definition 9).
Proof of First Claim. To prove the claim, we need to argue that T ∗

r /∈ Bad and that no prover-turn prefix
of T ∗

r is in Lucky. First, because EvLucky does not occur (see G4), the latter claim holds. It remains to
argue that T ∗

r /∈ Bad. For that, assume towards contradiction that T ∗
r ∈ Bad and G4 outputs 1. Recall

that algorithm Ver defines L final verifier challenges ρ
(l)
r+1 by ρ

(l)
r+1 = Ĥ(hstr, l) for l ∈ [L]. As EvBadAcc

does not occur, we know that there is an l∗ ∈ [L] such that the complete transcript T ∗
r ◦ρ

(l∗)
r+1 is rejected,

i.e.,
Vc,π1,...,πr (ρ1, . . . , ρr, ρ

(l∗)
r+1) = 0.

We claim that algorithm CheckAuth as invoked in Ver with input ((rooti)r
i=0, (ρi)r

i=1, ρ
(l∗)
r+1, auth(l∗)) outputs

0. For that, note that CheckAuth internally runs V with explicit input (ρ1, . . . , ρr, ρ
(l∗)
r+1) and with access to

oracles simulated on the fly using the Merkle openings in auth(l∗). As we assume IOPP to be non-adaptive,
the queries that V issues are fixed given (ρ1, . . . , ρr, ρ

(l∗)
r+1), and because event BreakMerkle (see G3) does

not occur, we know that the queries are answered exactly as if we run the verifier with oracles c, π1, . . . , πr.
Therefore, CheckAuth returns 0, meaning that Ver returns 0, meaning that G4 does not output 1, a
contradiction.
Second Claim. Assume that game G4 outputs 1 and let c∗ ∈ C denote the unique closest codeword to c,
which exists due to the previous claim and the suitable is close property of opening-consistency. Then,
there is a j∗ ∈ J such that cj∗ ̸= c∗

j∗ and j∗ ∈ Q0(T ∗
r ◦ρj∗,r+1).

Proof of Second Claim. Assume that game G4 outputs 1. Recall that A outputs a list (cj , τj)j∈J of alleged
openings at positions j ∈ J . There is at least one j∗ ∈ J such that cj∗ ≠ c∗

j∗ , as otherwise, c∗ would be
consistent with the cj and A would not break code-binding, i.e., G4 would not output 1. Further, recall
that Ver internally parses τj∗ = auth = ((pathi,j′)j′∈Qi

)r
i=0 and asserts that j∗ ∈ Q0. Also, observe that

algorithm CheckAuth called in Ver ensures that Q0 = Q0(T ∗
r ◦ρj∗,r+1), and thus j∗ ∈ Q0(T ∗

r ◦ρj∗,r+1),
which is what we wanted to show.
Finishing the Proof. We conclude by applying the inconsistent is rejected property of opening-consistency:
we first assume towards contradiction that G4 outputs 1. Then, our claims show that the transcript
T ∗

r is a suitable transcript and that there is j∗ ∈ J such that cj∗ ̸= c∗
j∗ and j∗ ∈ Q0(T ∗

r ◦ρj∗,r+1). The
inconsistent is rejected property of opening-consistency now states that

Vc,π1,...,πr (ρ1, . . . , ρr, ρj∗,r+1) = 0.

Using that BreakMerkle does not occur, we see that Ver(ck, com, j∗, cj∗ , τj∗) = 0, similar to how we argued
in the proof of our first claim. This means that G4 does not output 1, a contradiction. We get

Pr [G4 ⇒ 1] = 0.

16

4 Instantiation from FRI
In this section, we instantiate our transformation from Section 3 with the FRI IOPP [BBHR18]. For
that, we first recall FRI, using notation inspired by [BBHR18] and [BGK+23]. It will be clear that it is
non-adaptive (see Definition 7) and query-selectable (see Definition 8). To apply the transformation from
Section 3, we need to show opening-consistency (see Definition 10).

4.1 Construction
Before we formally specify our construction, we recall background on Reed-Solomon codes and give an
informal overview.
Reed-Solomon Codes. Before recalling FRI, we define the codes that we consider, namely, Reed-
Solomon codes over evaluation domains of certain structure. To this end, let F be a finite field and
d ∈ N. Further, let L ⊆ F be a set. The Reed-Solomon code over F with evaluation domain L and
degree bound d, denoted by RS[d,L,F], is defined to be the set of all codewords of the form (f(x))x∈L,
where f ∈ F[X] is a polynomial of degree less than d. Note that we can naturally interpret codewords
f ∈ RS[d,L,F] as vectors in F|L| or as maps f : L → F. One can easily see that this code has minimum
distance (|L| − d + 1)/|L|, rate ρ = d/|L|, and unique decoding radius (1− ρ)/2.

For FRI, we make the following additional assumptions: we assume that L ⊆ F∗ is a multiplicative
subgroup, we assume that |L| = 2n and d = 2k for integers k, n with k ≤ n/2, meaning that the rate of
the code is ρ = 2k−n. Let ωk be a primitive kth root of unity in F. Then, we assume that for any x ∈ F∗,
we have x ∈ L if and only if ωi

kx ∈ L for all i ∈ [k]. Following earlier works [BBHR18, BGK+23], we call
L a smooth multiplicative subgroup.
Overview. Before formally defining the FRI IOPP, we summarize its main idea, thereby introducing
more notation. Assume that the prover wants to convince the verifier that the alleged codeword c is
close to the code C0 = RS[d0,L0,F] for a finite field F, a degree bound d0 = 2k ∈ N, and an evaluation
domain L0 with |L0| = 2n as above. We interpret c = G0 as a function G0 : L0 → F to which the verifier
has oracle access. In the first round, the verifier sends a random challenge ρ1 ← F to the prover. The
prover uses ρ1 to derive a new function G1 : L1 → F using a folding procedure which will be explained
below. We let F = 2η for an integer η > 0 be a parameter describing the fan-in of the folding. The prover
now claims that G1 is in a new Reed-Solomon code C1 = RS[d1,L1,F], where d1 = d0/F = 2k−η. Here,
L1 = {q(x) | x ∈ L0} is a new evaluation domain that relates to L0 via a fixed map q : F→ F which we
assume to be F -to-one on each Li, i.e., each element in Li+1 has exactly F preimages in Li under q. We
denote the set of preimages of s ∈ Li+1 in Li by q−1(s). For concreteness, let q(x) := xF . The function
π1 = G1 is sent as a new oracle to the verifier. This process is repeated, namely, in each round i, the
verifier sends ρi ← F, the prover derives Gi : Li → F from Gi−1 and claims that it is in Ci = RS[di,Li,F]
for Li = {q(x) | x ∈ Li−1} and di = di−1/F . Note that di = 2k−i·η for each i. The process is repeated
until the final round r, in which the verifier checks that Gr ∈ Cr by querying Gr entirely. For example, we
can set r = k/η (ignoring divisibility issues) such that dr = 20 = 1, i.e., the verifier would expect πr = Gr

to be a constant. The phase until now is sometimes called the commit phase or the folding phase. Finally,
the verifier runs a so-called query phase8: it samples ρr+1 = s0 ← L0 and uses it to check consistency
between G0 and G1. Then, it uses s1 = q(s0) to check consistency between G1 and G2, and so on.
Algebraic Hash Function. We still need to explain how the prover derives Gi from Gi−1 and ρi, and
how the verifier checks consistency of this derivation in the query phase. This is done using a so-called
algebraic hash function Hρi following the terminology in [BGK+23]. This function is indexed by a verifier
challenge ρi ∈ F and maps a function Gi−1 : Li−1 → F to a function Hρi

[Gi−1] : Li → F. The honest
prover defines Gi := Hρi

[Gi−1]. The algebraic hash function has the following useful properties: first, if
Gi−1 ∈ Ci−1, then Hρi

[Gi−1] ∈ Ci for all ρi ∈ F. Second, for every s ∈ Li, one can efficiently compute
Hρi

[Gi−1](s) from Gi−1(q−1(s)), i.e., from the images under Gi−1 of the preimages of s under q in Li−1.
The verifier uses this to check consistency of Gi−1 and Gi.

8The query phase is usually repeated in parallel, but we include this repetition as part of the transformation in Section 3
instead of including it here.

17

To formally define the function H, we denote by Interpolate(z, S) the algorithm that takes as input
an element z ∈ F and a set S ⊆ F2, defines the unique polyomial P of degree less than |S| such that
P (x) = y for all (x, y) ∈ S, and outputs P (z). With this algorithm at hand, we define

Hρi
[Gi−1](si) := Interpolate

(
ρi, {(si−1, Gi−1(si−1)) | si−1 ∈ q−1(si)}

)
for all i ∈ r, all ρi ∈ F, all Gi−1 : Li−1 → F, and all si ∈ Li. We still need to argue that if Gi−1 ∈ Ci−1,
then Hρi

[Gi−1] ∈ Ci for all ρi ∈ F, which is important for completeness of the protocol. The reader
can also consult [BBHR18] for a proof. So, assume that Gi−1 ∈ Ci−1. Then, it is easy to see that
there are polynomials Gi−1,j of degree less than di−1/F = di such that for the bivariate polynomial
Ĝ(X, Y) :=

∑F −1
j=0 XjGi−1,j(Y), we have Gi−1(x) = Ĝ(x, xF) for all x ∈ Li−1. Now fix si ∈ Li. We get

Hρi
[Gi−1](si) = Interpolate

(
ρi, {(si−1, Gi−1(si−1)) | si−1 ∈ q−1(si)}

)
= Interpolate

(
ρi, {(si−1, Ĝ(si−1, sF

i−1)) | si−1 ∈ q−1(si)}
)

= Interpolate
(

ρi, {(si−1, Ĝ(si−1, si)) | si−1 ∈ q−1(si)}
)

= Ĝ(ρi, si),

where we have used that the degree of Ĝ(X, si) in X is less than F . This means that Hρi [Gi−1](si) =
Ĝ(ρi, si) is of degree less than di in si.
Construction. With the notation introduced above at hand, we can now formally describe the FRI
prover P and the verifier V, where ρ1, . . . , ρr ∈ F and ρr+1 ∈ L0.

• P(c = G0, ρ1, . . . , ρi)→ πi for i ∈ {1, . . . , r}:

1. Assume G0 : L0 → F and for each 1 ≤ i′ < i let Gi′ : Li′ → F be the output of P(c, ρ1, . . . , ρi′).
2. Let Gi = Hρi [Gi−1]. Note that Gi : Li → F. Set πi := Gi.

• Vc=G0,π1=G1,...,πr=Gr (ρ1, . . . , ρr, ρr+1 = s0)→ b:

1. If Gr ∈ Cr, set b0 := 1. Otherwise, set b0 := 0.
2. For each i ∈ [r], do the following:

(a) Set si := q(si−1).
(b) If Gi(si) = Interpolate

(
ρi, {(s′

i−1, Gi−1(s′
i−1)) | s′

i−1 ∈ q−1(si)}
)
, set bi := 1.

(c) Else, set bi := 0.
3. Set b := b0 ∧ · · · ∧ br.

4.2 Analysis
Completeness follows directly from our discussion above. It is also clear that the IOPP is non-adaptive
(see Definition 7) and query-selectable (see Definition 8).
Blockwise Distance. For some parts of our analysis, we use the notion of blockwise distance, as
introduced in [BBHR18]. However, we emphasize that when we refer to the unique closest codeword of
a function, we still refer to Hamming distance. Roughly speaking, blockwise distance of two functions
measures (as a relative portion) how many groups of preimages under the map q are different.

Definition 11 (Blockwise Distance). Let i ∈ [r] and let G, G′ : Li−1 → F. The blockwise distance
δB (G, G′) is defined as

δB (G, G′) := 1
|Li|
|{si ∈ Li | ∃si−1 ∈ Li−1 : q(si−1) = si ∧G(si−1) ̸= G′(si−1)}| .

The definition naturally extends to the distance of a function G : Li → F to the code Ci. Throughout
our analysis, we use the following lemma that relates the blockwise distance to Hamming distance and
the algebraic hash function H.

18

Lemma 2 (Properties of Blockwise Distance). Let i ∈ [r] and consider functions G, G′ : Li−1 → F. Then,
the following properties hold:

1. We have δ (G, G′) ≤ δB (G, G′).

2. We have δB (G, G′) ≤ F · δ (G, G′).

3. For any ρ ∈ F, we have δ (Hρ[G], Hρ[G′]) ≤ δB (G, G′).

Proof. To prove the first statement, define the following sets:

D := {si−1 ∈ Li−1 | G(si−1) ̸= G′(si−1)},
Dsi := {si−1 ∈ Li−1 | q(si−1) = si ∧G(si−1) ̸= G′(si−1)} for all si ∈ Li,

DB := {si ∈ Li | Dsi ̸= ∅}.

Note that the sets Dsi
partition the set D. Therefore, we have

δ (G, G′) = |D|
|Li−1|

= |D|
F |Li|

=
∑

si∈Li
|Dsi
|

F |Li|
.

Further, note that
∑

si∈Li
|Dsi | ≤ F |DB| as each non-empty set in the summation has at most F elements

and there are exactly |DB| non-empty sets. In combination, we get δ (G, G′) ≤ |DB|/|Li|, which is exactly
the definition of δB (G, G′), which finishes the proof of the first statement. The second claim follows
directly by noting that |DB| ≤ |D|. The third claim follows by noting that Hρ[G](si) and Hρ[G′](si) can
only differ if there is a preimage si−1 of si such that G(si−1) and G′(si−1) differ.

Correlated Agreement. In addition, we recall a correlated agreement lemma from [BCI+20a], Theorem
6.1 in the eprint version [BCI+20b], restated in our notation.

Lemma 3 (Correlated Agreement, Theorem 6.1 in [BCI+20b]). Let K ∈ N be an integer. Consider
the code V = RS[d,L,F] for some d,L,F, and let ρ = d/|L| denote its rate and let δ ≤ (1 − ρ)/2. Let
u0, . . . , uK−1 : L → F be functions. Then, one of the following two holds:

1. we have Prρ

[
δ

(∑K−1
j=0 ρjuj ,V

)
≤ δ

]
≤ (K − 1) · |L|/|F|, with probability taken over ρ← F, or

2. there exist v0, . . . , vK−1 ∈ V such that for

Disagree = {x ∈ L | (u0(x), . . . , uK−1(x)) ̸= (v0(x), . . . , vK−1(x))} ,

we have |Disagree| ≤ δ|L|.

Using correlated agreement, we show the following lemma. We note that in [BGK+23] a similar lemma
is stated and it is claimed that it follows from correlated agreement, without an explicit proof for that.
We, however, give a detailed proof for completeness.

Lemma 4. Let δ ≤ (1− ρ)/2 be within the unique decoding radius. Let i ∈ [r] and let Gi−1 : Li−1 → F
be such that δB (Gi−1, Ci−1) > δ. Then, we have

Pr
ρi←F

[δ (Hρi [Gi−1], Ci) ≤ δ] ≤ (F − 1)|Li|
|F|

.

Proof. We consider a function Gi−1 : Li−1 → F and the experiment of sampling ρi ← F. The proof
consists of two steps: (1) we find functions u0, . . . , uF −1 to apply correlated agreement, and (2) we apply
correlated agreement to conclude that we are in one of two cases. For one case, we get the desired bound
we need to show. For the other case, we argue that it contradicts our assumption that δB (Gi−1, Ci−1) > δ.

Let us start with our first step, namely, defining functions u0, . . . , uF −1. For each si ∈ Li, fix an
arbitrary ordering si−1,1, . . . , si−1,F ∈ Li−1 of its F preimages under q. Further, consider the Vandermonde

19

matrix Vsi
∈ FF ×F where the jth row is (1, si−1,j , . . . , sF −1

i−1,j). Note that this matrix is invertible. Define
the vector gsi

∈ FF where the jth coordinate of gsi
is Gi−1(si−1,j). With this notation, we have

Hρi [Gi−1](si) = (1, ρi, . . . , ρF −1
i) ·V−1

si
· gsi .

by definition of H. Now, for each j ∈ {0, . . . , F − 1}, let uj(si) denote the (j + 1)st entry of V−1
si
· gsi .

With this, we have functions u0, . . . , uF −1 : Li → F such that

Hρi
[Gi−1] =

F −1∑
j=0

ρj
i uj .

Our second step is to use the correlated agreement (Lemma 3) with K := F , code V := Ci and
functions u0, . . . , uF −1 and show how to finish the proof. The correlated agreement states that one of
two cases holds. In the simple case, we have

Pr
ρi

[δ (Hρi
[Gi−1], Ci) ≤ δ] ≤ (F − 1)|Li|

|F|
.

Then, we are done, as this is exactly what we have to show. In the other case, we want to derive a
contradiction to the assumption that δB (Gi−1, Ci−1) > δ. Hence, we could have never been in this case.
So, to derive the contradiction, consider this other case. The correlated agreement states that there are
polynomials v0, . . . , vF −1 ∈ F[X] of degree less than di such that |Disagree| ≤ δ|Li|, where

Disagree = {si ∈ Li | (u0(si), . . . , uF −1(si)) ̸= (v0(si), . . . , vF −1(si))} .

Define the vector vsi ∈ FF where the jth entry of vsi is vj−1(si). Using this and the definition of the uj ,
we get

Disagree =
{

si ∈ Li | V−1
si
· gsi ̸= vsi

}
= {si ∈ Li | gsi ̸= Vsi · vsi} .

Note that the jth entry of Vsi
· vsi

is
∑F −1

j=0 sj
i−1,jvj(si). Hence, there are at most |Disagree| F -tuples

for which Gi−1 disagrees with the polynomial v :=
∑F −1

j=0 Xjvj(XF) ∈ F[X]. The degree of v is less than
F · di = di−1. This is a contradiction to the assumption that δB (Gi−1, Ci−1) > δ, finishing the proof.

Proof of Opening-Consistency. We are now ready to prove the opening-consistency (see Definition 10)
of the FRI IOPP. For that, our first step is to define suitable sets Lucky (Definition 12) and Bad
(Definition 13). We start with the definition of the lucky set Lucky. Intuitively, Lucky contains transcripts
for which the oracle Gi−1 sent by the prover and its closest codeword G∗

i−1 collide under Hρi
. Additionally,

it contains transcripts for which the distance to the code when honestly folding decreases.

Definition 12 (Lucky Set for FRI). Consider the FRI IOPP and let δ∗ = (1 − ρ)/2 be the unique
decoding radius. We define the set Lucky = LuckyColl ∪ LuckyDist of partial prover-turn transcripts as
follows:

• Lucky Collision. A partial prover-turn transcript (G0, ρ1, . . . , Gi−1, ρi) is in LuckyColl, if and only
if the following two properties hold:

1. Gi−1 is within the unique decoding radius, i.e., δ (Gi−1, Ci−1) ≤ δ∗. Let G∗
i−1 ∈ Ci−1 be the

unique closest codeword.
2. There exists an si ∈ Li such that Hρi

[Gi−1](si) = Hρi
[G∗

i−1](si), but there is an si−1 ∈ Li−1
with q(si−1) = si and Gi−1(si−1) ̸= G∗

i−1(si−1).

• Lucky Distortion. A partial prover-turn transcript (G0, ρ1, . . . , Gi−1, ρi) is in LuckyDist if and only
if (a) δB (Gi−1, Ci−1) > δ∗ and δ (Hρi

[Gi−1], Ci) ≤ δ∗ or (b) δ (Hρi
[Gi−1], Ci) < δB (Gi−1, Ci−1) ≤ δ∗.

20

Next, we define the set Bad for FRI. The definition of this set is not obvious and is partially inspired
by the original analysis of FRI [BBHR18]. Concretely, a transcript can only be in the bad set if no prefix
was lucky, and if one of three bad properties hold. Either, the final oracle that the prover sends is not in
the code. In this case, it is clear that the verifier rejects so it is reasonable to mark such a transcript
as bad. Or, one of the oracles is too far away from its respective code. Intuitively, the analysis of FRI
should guarantee that such transcripts are rejected as well. The final case is where for one of the rounds,
taking the closest codeword and folding do not commute. Marking such transcripts as bad will turn out
to be crucial for proving the inconsistent is rejected property.
Definition 13 (Bad Set for FRI). Let δ∗ = (1− ρ)/2 be the unique decoding radius. We define the set
Bad of partial transcripts as follows. A partial transcript (G0, ρ1, G1, . . . , ρr, Gr) is in Bad, if and only if
no prover-turn prefix of it is in Lucky, and at least one of the following properties holds:

1. We have Gr /∈ Cr, or

2. There is an i ∈ {0, . . . , r − 1} such that δB (Gi, Ci) > δ∗, or

3. For all i ∈ {0, . . . , r − 1} we have δB (Gi, Ci) ≤ δ∗, but there is an i ∈ [r] such that G∗
i ̸= Hρi [G∗

i−1],
where the G∗

i ’s denote the unique closest codewords of the Gi’s respectively.

Now that these sets are defined, we can prove the four properties of opening-consistency, namely
the no luck property (Lemma 5), the bad is rejected property (Lemma 8), the suitable is close property
(Lemma 9), and the inconsistent is rejected property (Lemma 10). To make our analysis self-contained,
we give full proofs, even if variants of some statements needed on the way have been proven in the original
analysis of FRI [BBHR18] using a different notation.
Lemma 5 (No Luck). The FRI IOPP satisfies the no luck property of opening-consistency (Definition 10)
with Lucky as in Definition 12 and ϵ1 ≤ 2(F − 1)|L0|/|F|.

Proof. Let i ∈ [r], let T = (G0, ρ1, . . . , Gi−1) be a partial verifier-turn transcript, and consider the
experiment of sampling ρi ← F. We need to bound the probability of the event T◦ρi ∈ Lucky. By a union
bound and the definition of Lucky = LuckyColl ∪ LuckyDist, we have

Pr
ρi

[T◦ρi ∈ Lucky] ≤ Pr
ρi

[T◦ρi ∈ LuckyColl] + Pr
ρi

[T◦ρi ∈ LuckyDist].

We bound these events separately.
Claim. We have Prρi

[T◦ρi ∈ LuckyColl] ≤ (F − 1)|L0|/|F|.
Proof of Claim. If δ (Ci−1, Gi−1) > δ∗, then we are done by definition of LuckyColl. Otherwise, let
G∗

i−1 ∈ Ci−1 be the unique closest codeword. For each si ∈ Li, denote by LuckyCollsi
the event that

T◦ρi ∈ LuckyColl because of si. With a union bound, we get

Pr
ρi

[T◦ρi ∈ LuckyColl] ≤
∑

si∈Li

Pr
ρi

[
LuckyCollsi

]
.

In the following, we fix an arbitrary si ∈ Li and bound the probability of LuckyCollsi
by (F −1)/|F|. Then,

as |Li| ≤ |L0|, we will get the desired bound. We now turn to bounding the probability of LuckyCollsi
. If

LuckyCollsi
occurs, we must have Hρi

[Gi−1](si) = Hρi
[G∗

i−1](si) and

{(si−1, Gi−1(si−1)) | si−1 ∈ q−1(s)} ≠ {(si−1, G∗
i−1(si−1)) | si−1 ∈ q−1(s)}.

The expressions Hρi
[Gi−1](si) and Hρi

[G∗
i−1](si) that must be equal if LuckyCollsi

occurs are both
polynomials of degree (at most) F − 1 in the variable ρi. Denote the vectors of their coefficients by
p ∈ FF and p∗ ∈ FF , respectively. If we can argue that they are different, then we are done. To argue
that they are different, first fix some notation. Namely, fix an arbitrary ordering si−1,1, . . . , si−1,F ∈ Li−1
of the F preimages of si under q. Consider the Vandermonde matrix Vsi

∈ FF ×F where the jth row is
(1, si−1,j , . . . , sF −1

i−1,j). This matrix is invertible. Define the vector gsi
∈ FF where the jth coordinate is

Gi−1(si−1,j), and define the vector g∗
si
∈ FF where the jth coordinate is G∗

i−1(si−1,j). If LuckyCollsi
, we

know gsi ̸= g∗
si

. But then, using invertibility of Vsi , we also know that p = V−1
si

gsi ̸= V−1
si

g∗
si

= p∗.

Claim. We have Prρi
[T◦ρi ∈ LuckyDist] ≤ (F − 1)|L0|/|F|.

Proof of Claim. The claim follows directly from Lemma 4 and from |Li| ≤ |L0|.

21

To prove the bad is rejected property, we first prove two statements that appear (with variations) in
the original FRI paper [BBHR18].

Lemma 6 (Variant of Lemma 4.4 in [BBHR18]). Let δ∗ = (1− ρ)/2 be the unique decoding radius. Let
T = (G0, ρ1, G1, . . . , ρr, Gr) be a partial transcript. Let i∗ ∈ {0, . . . , r − 1} be fixed and assume that the
following properties hold:

1. No prover-turn prefix of T is in Lucky.

2. We have Gr ∈ Cr.

3. For every i ∈ {i∗, . . . , r}, we have δ (Gi, Ci) ≤ δ∗. Let the G∗
i ’s denote the unique closest codewords

of the Gi’s respectively.

4. For every i ∈ {i∗ + 1, . . . , r}, we have G∗
i = Hρi

[G∗
i−1].

Then, we have
Pr

s0←L0

[
VG0,G1,...,Gr (ρ1, . . . , ρr, s0) = 0 | Gi∗(si∗) ̸= G∗

i∗(si∗)
]

= 1,

where si∗ ∈ Li∗ is defined as in algorithm V.

Proof. Consider the transcript T = (G0, ρ1, G1, . . . , ρr, Gr). Further, consider the experiment of sampling
s0 ← L0 and running the verifier. To recall, the verifier defines a sequence s0, . . . , sr, where each si

individually follows a uniform distribution over Li. We condition on Gi∗(si∗) ̸= G∗
i∗(si∗) as in the statement

and want to show that the verifier rejects. To this end, fix the index i to be the maximum i such that
Gi(si) ̸= G∗

i (si). Note that this maximum exists because we condition on Gi∗(si∗) ̸= G∗
i∗(si∗), and note

that it satisfies i < r because G∗
r = Gr. To finish the proof, we claim that Gi+1(si+1) ̸= Hρi+1 [Gi](si+1),

making the verifier reject. We now prove the claim by contradiction. Assume towards contradiction
that Gi+1(si+1) = Hρi+1 [Gi](si+1). By the choice of i, we have G∗

i+1(si+1) = Gi+1(si+1). By our
assumption in the lemma, we have Hρi+1 [G∗

i] = G∗
i+1. In combination, this yields Hρi+1 [G∗

i](si+1) =
Hρi+1 [Gi](si+1). Therefore, the prover-turn prefix (G0, ρ1, G1, . . . , ρi+1) is in Lucky (concretely, in
LuckyColl), a contradiction.

Lemma 7 (Variant of Soundness in [BBHR18]). Let δ∗ = (1− ρ)/2 be the unique decoding radius. Let
T = (G0, ρ1, G1, . . . , ρr, Gr) be a partial transcript and assume that the following properties hold:

1. No prover-turn prefix of T is in Lucky.

2. We have Gr ∈ Cr.

Further, assume that at least one of the following holds:

1. There is an i ∈ {0, . . . , r − 1} such that δB (Gi, Ci) > δ∗, or

2. For all i ∈ {0, . . . , r − 1} we have δB (Gi, Ci) ≤ δ∗, but there is an i ∈ [r] such that G∗
i ̸= Hρi [G∗

i−1],
where the G∗

i ’s denote the unique closest codewords of the Gi’s respectively.

Then, we have
Pr

s0←L0

[
VG0,G1,...,Gr (ρ1, . . . , ρr, s0) = 1

]
≤ 1− δ∗.

Proof. To prove the lemma, we fix a partial transcript T = (G0, ρ1, G1, . . . , ρr, Gr) as above, and define
the following sets Far and Incons:

Far := {i ∈ {0, . . . , r − 1} | δB (Gi, Ci) > δ∗},
Incons := {i ∈ {0, . . . , r − 1} | i /∈ Far ∧ i + 1 /∈ Far ∧G∗

i+1 ̸= Hρi+1 [G∗
i]}.

Note that G∗
i and G∗

i+1 in the definition of Incons are uniquely defined, due to the definition of Far. By
our assumptions, we know Far ∪ Incons ≠ ∅. Thus, the maximum i := max Far ∪ Incons exists. We also

22

know that i < r. Further, by definition of i, we have i + 1 /∈ Far. Therefore, the unique closest codeword
G∗

i+1 ∈ Ci+1 for Gi+1 exists. Define the sets Dis and Find as follows:

Dis := {x ∈ Li+1 | G∗
i+1(x) ̸= Gi+1(x)},

Find := {x ∈ Li+1 | Hρi+1 [Gi](x) ̸= Gi+1(x)}.

Intuitively, Dis is the set of positions for which Gi and its closest codeword disagree, and Find is the set
of positions for which the consistency check in the verifier would fail. Now that this notation is fixed, the
lemma by combining the following three claims.

Claim. We have δ
(
G∗

i+1, Hρi+1 [Gi]
)
≥ δ∗.

Proof of Claim. To prove the claim, we consider two cases. In the first case, we have i ∈ Far.
Then, δ (Gi, Ci) > δ∗. By our assumption that no prover-turn prefix of T is in Lucky, we get that
δ

(
G∗

i+1, Hρi+1 [Gi]
)
≥ δ

(
Ci+1, Hρi+1 [Gi]

)
≥ δ∗, finishing the proof of the claim for this case. In the second

case, we have i /∈ Far. Therefore, i + 1 /∈ Far and G∗
i+1 ≠ Hρi+1 [G∗

i] by definition of Far ∪ Incons. Recall
that both G∗

i+1 and Hρi+1 [G∗
i] are in the code Ci+1. This yields

1− ρ ≤ δ
(
G∗

i+1, Hρi+1 [G∗
i]

)
≤ δ

(
G∗

i+1, Hρi+1 [Gi]
)

+ δ
(
Hρi+1 [Gi], Hρi+1 [G∗

i]
)

≤ δ
(
G∗

i+1, Hρi+1 [Gi]
)

+ δB (Gi, G∗
i)

≤ δ
(
G∗

i+1, Hρi+1 [Gi]
)

+ δ∗,

where we used Lemma 2 and i /∈ Far. By rearranging, we get δ
(
G∗

i+1, Hρi+1 [Gi]
)
≥ 1− ρ− δ∗ = δ∗ ≥ δ∗,

finishing the proof of the claim.

Claim. We have |Dis ∪ Find|/|Li+1| ≥ δ
(
G∗

i+1, Hρi+1 [Gi]
)
.

Proof of Claim. Note that for every x ∈ Li+1 \ (Dis ∪ Find), we have G∗
i+1(x) = Gi+1(x) = Hρi+1 [Gi](x).

Hence, the set of positions for which G∗
i+1 and Hρi+1 [Gi] disagree can have size at most |Dis ∪ Find|. The

claim follows.

Claim. We have Pr
s0←L0

[
VG0,G1,...,Gr (ρ1, . . . , ρr, s0) = 1

]
≤ 1− (|Dis ∪ Find|/|Li+1|).

Proof of Claim. To prove the claim, we consider two cases. In the first case, we have i + 1 = r. Then, by
assumption we have Dis = ∅, and by definition of the verifier, if it accepts, we know si+1 /∈ Find, i.e.,

Pr
s0←L0

[
VG0,G1,...,Gr (ρ1, . . . , ρr, s0) = 1

]
≤ Pr

s0←L0

[si+1 /∈ Find]

= 1− |Find|
|Li+1|

= 1− |Dis ∪ Find|
|Li+1|

.

In the second case, we have i + 1 < r. Again, we know that if the verifier accepts, then si+1 /∈ Find. We
now invoke Lemma 6 with i∗ := i + 1. Note that the conditions for Lemma 6 are satisfied due to the
definition of i and the assumptions in the lemma we are about to prove. By Lemma 6 with i∗ := i + 1,
we know that if the verifier accepts, then si+1 /∈ Dis. Therefore, we get

Pr
s0←L0

[
VG0,G1,...,Gr (ρ1, . . . , ρr, s0) = 1

]
≤ Pr

s0←L0

[si+1 /∈ Find ∧ si+1 /∈ Dis]

= 1− |Dis ∪ Find|
|Li+1|

,

finishing the proof of the claim.

Lemma 8 (Bad is Rejected). The FRI IOPP satisfies the bad is rejected property of opening-consistency
(Definition 10) with Bad as in Definition 13 and ϵ2 ≤ 1− δ∗.

Proof. Let T = (G0, ρ1, G1, . . . , ρr, Gr) be a partial transcript such that T ∈ Bad, where Bad is as defined
in Definition 13. We consider the experiment of sampling ρr+1 = s0 ← L0 and running the verifier on
the complete transcript T◦s0. We have to upper bound the probability of the event that the verifier
accepts. Consider two cases. In the first case, Gr /∈ Cr. In this case, it is clear that the verifier rejects.

23

So, assume Gr ∈ Cr. Then, by definition of Bad, there is an i ∈ {0, . . . , r − 1} such that δB (Gi, Ci) > δ∗,
or for all i ∈ {0, . . . , r − 1} we have δB (Gi, Ci) ≤ δ∗, but there is an i ∈ [r] such that G∗

i ̸= Hρi
[G∗

i−1],
where the G∗

i ’s denote the unique closest codewords of the Gi’s respectively. This means that we can
apply Lemma 7 and the lemma follows.

Lemma 9 (Suitable is Close). The FRI IOPP satisfies the suitable is close property of opening-consistency
(Definition 10) with Bad as in Definition 13 and Lucky as in Definition 12.

Proof. Let T = (G0, ρ1, . . . , Gr) be a suitable transcript (see Definition 9) with respect to the sets Bad as
in Definition 13 and Lucky as in Definition 12. To recall, suitable means that T /∈ Bad and no prefix of T
is in Lucky. By the specific definition of Bad and Lucky, we especially have that for all i ∈ {0, . . . , r − 1},
it holds that δB (Gi, Ci) ≤ δ∗, which implies δ (Gi, Ci) ≤ δ∗ by Lemma 2. Especially, this holds for G0,
which is what we had to show.

Lemma 10 (Inconsistent is Rejected). The FRI IOPP satisfies the inconsistent is rejected property of
opening-consistency (Definition 10) with Bad as in Definition 13 and Lucky as in Definition 12.

Proof. Let T = (G0, ρ1, . . . , Gr) be a suitable transcript (see Definition 9) with respect to the sets Bad
as in Definition 13 and Lucky as in Definition 12. To recall, suitable means that T /∈ Bad and no prefix
of T is in Lucky. We have seen in the proof of Lemma 9 that – by definition of Bad and Lucky – for
each i ∈ {0, . . . , r}, the distance of Gi to its respective code Ci is at most δ∗. For each i ∈ {0, . . . , r}, let
G∗

i ∈ Ci denote the unique closest codeword for Gi. By definition of Bad, we know that for every i ∈ [r], it
holds that G∗

i = Hρi
[G∗

i−1]. We now consider completing the transcript T with ρr+1 = s0 ∈ L0. For each
i ∈ [r], let si be as in the FRI verifier, i.e., si = q(si−1). Now, recalling the definition of the inconsistent
is rejected property (Definition 10), we need to assume that there is a query x ∈ Q0(T◦s0) ⊆ L0 such
that G∗

0(x) ̸= G0(x), and we need to show that the complete transcript T◦s0 is rejected. We define
the index i0 to be the minimum i ∈ {0, . . . , r} such that for every query s′

i ∈ Li made by the verifier it
holds that Gi(s′

i) = G∗
i (s′

i). Note that this index exists because Gr = G∗
r . Also, because there is a query

x ∈ Q0(T◦s0) ⊆ L0 such that G∗
0(x) ̸= G0(x), we know that i0 > 0. Now, assume towards contradiction

that T◦s0 is accepted. Then, we know that

∀i ∈ [r] : Gi(si) = Interpolate
(
ρi, {(si−1, Gi−1(si−1)) | si−1 ∈ q−1(s)}

)
.

This yields the following equation:

Hρi0
[Gi0−1](si0) = Gi0(si0) = G∗

i0
(si0).

Here, the first equality is because we assume the verifier accepts and the second equality follows from the
definition of i0. Further, we have

G∗
i0

(si0) = Hρi0
[G∗

i0−1](si0),

due to G∗
i = Hρi [G∗

i−1] for all i. So, we get Hρi0
[Gi0−1](si0) = Hρi0

[G∗
i0−1](si0). By definition of i0, we

also know that there is an s′
i0−1 ∈ Li0−1 with q(s′

i0−1) = si and Gi0−1(s′
i0−1) ̸= G∗

i0−1(s′
i0−1). Therefore,

we get
(G0, ρ1, . . . , Gi0−1, ρi0) ∈ LuckyColl ⊆ Lucky,

contradicting the assumption that the transcript T is suitable.

The following theorem summarizes what we have shown.

Theorem 3 (Opening-Consistency of FRI). The FRI IOPP is opening-consistent with errors ε1, ε2
with respect to the sets Bad and Lucky as defined in Definitions 12 and 13, where

ε1 ≤
2(F − 1)|L0|

|F|
, ε2 ≤ 1− δ∗.

24

4.3 Extensions: Batched FRI
Using FRI as analyzed above would result in a small commitment but in a large encoding. To reduce this
size, we split the data into several polynomials and then do the encoding using the batched variant of
FRI [BCI+20a]. In our terminology, batched FRI with batch size B ∈ N is an IOPP for the interleaved
Reed-Solomon code. This code contains codewords of the form G = (Gj)B

j=1 where each Gj is in the
Reed-Solomon code. The main idea is to run FRI on a random linear combination of the Gj . Namely, in an
initial folding round, the verifier sends ξ ← F to the prover. The prover responds with G0 =

∑B
j=1 ξj−1Gj .

Then, prover and verifier engage in the FRI protocol for codeword G0. In the query phase, the verifier
samples s0 ← L0 performs the consistency checks as in FRI. In addition, the verifier checks consistency of
G and G0 by checking G0(s0) =

∑B
j=1 ξj−1Gj(s0). We refer to Appendix C for the detailed description

of the construction and its full analysis. Especially, we prove the following theorem, which summarizes
the opening-consistency of batched FRI.

Theorem 4 (Opening-Consistency of Batched FRI). The batched FRI IOPP is opening-consistent
with errors ε1, ε2 with respect to the sets BadBatch and LuckyBatch as defined in Definitions 18 and 19,
where

ε1 ≤
2(max{F, B} − 1)|L0|

|F|
, ε2 ≤ 1− δ∗.

To prove opening-consistency, we need to define a suitable lucky set LuckyBatch and a bad set
BadBatch. Roughly, we take the respective sets Lucky and Bad from our analysis of the non-batched
version (Section 4) and add suitable conditions to account for the initial batching round. To understand
what we need to change, it is instructive to view the mapping from G to G0 (parameterized by ξ) as a
algebraic hash function. That is, we can think of the protocol as essentially being FRI but in the initial
round a different algebraic hash function is used. Our analysis follows this intuition and naturally applies
the strategy from our proof for the non-batched version. For details, we refer to Appendix C.

5 Efficiency Evaluation
We now discuss the efficiency of our FRI-based data availability sampling scheme and compare it to
existing schemes9. To recall, we first obtain an erasure code commitment scheme for the (interleaved)
Reed-Solomon code by applying the compiler in Section 3 to the (batched) FRI IOPP that we have
analyzed. Applying the transformation from [HASW23], we then obtain a data availability sampling
scheme, which we call FRIDA.
Efficiency Metrics. We follow the evaluation framework in [HASW23]. That is, we compare the size
of commitments as clients always need to download the commitment. We also evaluate the size of an
encoding symbol. To recall (see also Appendix A), a symbol of the encoding consists of one symbol of
the codeword of the erasure code and the respective commitment opening. We may also consider the
communication per query, which is the size of an index in the encoding (client upload) plus the size of an
encoding symbol (client download). In natural cases, however, communication per query and size of an
encoding symbol is almost the same. We also evaluate the total size of the encoding, which is what has to
be stored in the network. The encoding contains one symbol per symbol of the codeword. As the final
metric, we consider the total communication cost. For that, we first evaluate how many random queries
clients need to issue before we can be sure that the probability of reconstructing the data is asymptotically
overwhelming, or concretely, at least 1 − 2−40. This is done following the methodology in [HASW23]
using a generalized coupon collector bound, where we assume clients sample their queries uniformly with
replacement. We then multiply this number of samples with the communication per query.
Existing Constructions. We compare data availability schemes which are based purely on hash
functions, where we assume SHA-256 for our concrete efficiency evaluation. As a baseline, we consider the
trivial schemes Naive, Merkle as done in [HASW23]. To recall, in Naive the entire data is put into a single
symbol of the encoding, and the commitment is simply a hash of the data. This scheme is ideal in terms
of total communication but disqualifies because of its huge communication complexity per query, namely,
clients need to download the entire data. Scheme Merkle is uses the identity code (i.e., the codeword is

9All numbers, tables, and graphs are computed using the Python scripts given in Appendix D.

25

Scheme Commitment Encoding Symbol Samples
Naive λ D D 1
Merkle λ Dλ log D λ log(D) Dλ + D log D

Hash λ
√

D D
√

D λ +
√

D

FRIDA λ2 log2(D) Dλ log2(D) λ log2(D) λ + D

Table 1: Asymptotic efficiency comparison of different data availability sampling schemes based on hash
functions. Here, D = |data| denotes the size of the encoded data, λ denotes the security parameter.
We compare the size of commitments, encodings, the size of a symbol in the encoding determining the
communication complexity per query, and the number of samples such that data can be reconstructed
with overwhelming probability in λ. For all codes that are used, we treat the rate and field as a constant
to avoid clutter.

the data) and Merkle trees [Mer88] as a vector commitment. This scheme disqualifies in terms of total
communication, because we would need to collect all symbols of the encoding to reconstruct. The main
competitor of our new scheme FRIDA is the hash-based construction Hash introduced in [HASW23]. We
instantiate Hash exactly as in [HASW23]. For completeness, we also consider the concrete efficiency
of the scheme Tensor from [HASW23], which relies on polynomial commitments and the tensor code
of two Reed-Solomon codes with rate 1/2. While this scheme relies on pairings, the algebraic group
model [FKL18], and stronger assumptions, it is the most relevant scheme in practice, due to its envisioned
use in Ethereum. Note that we can not implement this scheme using hash-based polynomial commitments,
as it requires that the commitments are homomorphic.
Setting FRIDA’s Parameters. To evaluate the concrete efficiency for our scheme FRIDA, we need
to set parameters, e.g., the fan-in F or the batch size B. We also need to decide at which level we
stop folding, i.e., how to set the number of rounds r or equivalently, the dimension of Cr. To find good
parameters, we first fix the same rate as for Hash, namely, ρ = 1/4 and a field size of 2128. Then, we
implement the following strategy: we iterate through reasonable choices for F , e.g., F ∈ {4, 8, 16} and
the dimension of Cr. For each such choice, we first determine a good batch size B by minimizing the
size of an opening while iterating over different choices of B. Then, we compute the gap between the
number of field elements we could maximally represent with this fan-in, dimension, and batch size and
the number of field elements needed to represent the data. We pick the choice that minimizes this gap.
To determine the number of the repetitions L of the query phase (see Theorem 2), we aim for 40 bits
statistical security while accounting for 260 random oracle queries. We additionally increase the security
level by 20 bits using grinding techniques [Sta21, Hab22].
Asymptotic Efficiency. In Table 1, we compare the asymptotic efficiency of data availability sampling
schemes based only on hash functions. This includes our scheme FRIDA, the scheme Hash from [HASW23]
and the two baseline schemes Naive and Merkle. To avoid clutter, we assume Reed-Solomon codes with
constant rate and field sizes for both Hash and FRIDA. We set the repetition parameters for Hash
accordingly. Moreover, for FRIDA construction, we assume constant fan-in F and batch size B. Assuming
constant rate, setting the number of repetitions of the query phase to L = Θ(λ) is sufficient. With this,
we get bounds that only depend on the data size D = |data| and the security parameters λ. Comparing
the results, we see that while Hash is optimal in terms of encoding size, in terms of commitment size
and the size of a single encoding symbol, FRIDA is an exponential improvement. In terms of the number
of samples needed to reconstruct, FRIDA performs slightly worse than Hash. Note that we could also
set the batch size to B = Θ(

√
D), which would result in an encoding length of Θ(

√
D) symbols and to

the same number of samples as in Hash. However, this would also result in encoding symbols of size
Ω(
√

D). Computing the encoding takes O(λD) time for Naive (the cost of hashing the data), it takes
O(λD log(D)) time for Merkle (dominated by writing down authentication paths), O(D log(D) + λD)
for Hash (dominated by computing and hashing the Reed-Solomon codewords), and O(λD log2(D)) for
FRIDA (dominated by writing down the opening proofs).
Concrete Efficiency. In Table 2, we compare the concrete efficiency of data availability sampling
schemes, including FRIDA. We also show how efficiency metrics develop when increasing the data size in
Figure 1. While FRIDA’s main drawback is the total size of the encoding, it outperforms Hash in terms of
commitment size and communication per query. From the perspective of a single client, these are the

26

Communication Costs
Scheme Commitment [KB] Encoding [MB] Per Query [KB] Total [MB]

D
=

1
M

B Naive 0.03 1.00 1000.00 1.00
Merkle 0.03 4.25 0.55 156.40
Tensor 6.96 8.07 0.10 15.70
Hash 256.00 4.00 2.00 1.76
FRIDA 255.10 17.56 2.15 7.60

D
=

32
M

B Naive 0.03 32.00 32000.00 32.00
Merkle 0.03 176.00 0.71 7089.80
Tensor 39.22 256.32 0.10 456.52
Hash 1448.45 128.05 11.32 55.32
FRIDA 464.83 1031.80 3.94 444.34

D
=

12
8

M
B Naive 0.03 128.00 128000.00 128.00

Merkle 0.03 768.00 0.77 32007.29
Tensor 78.38 1024.01 0.10 1807.95
Hash 2896.38 512.03 22.63 220.78
FRIDA 495.81 4395.63 4.19 1892.81

Table 2: Concrete efficiency comparison of data availability sampling schemes. For given sizes D = |data|
of the encoded data, we compare the commitment size, the encoding size, the communication complexity
per query, and the total communication complexity such that data can be reconstructed with probability
at least 1− 2−40.

metrics of interest. We see that this improvement over Hash becomes significant especially for large data
sizes, matching our asymptotic comparison. On the other hand, the main advantage of Hash is the total
communication complexity, which is also in line with our asymptotic bounds. For all metrics, we see that
FRIDA gets us closer to the efficiency of Tensor.

27

0 50 100 150
0

1

2

3

|data| [MB]

C
om

m
itm

en
t

[M
B

]

0 50 100 150
0

2

4

D = |data| [MB]

E
nc

od
in

g
[G

B
]

0 50 100 150
0

10

20

D = |data| [MB]

Q
ue

ry
[K

B
]

0 50 100 150
0

1

2

D = |data| [MB]

To
ta

l[
G

B
]

Tensor Hash FRIDA

Figure 1: Plot of the efficiency of data availability sampling schemes. We plot the commitment size,
encoding size, communication per query, and total communication needed to reconstruct data with
probability at least 1− 2−40 depending on the size of the encoded data D = |data|. We omit the trivial
baseline schemes Naive and Merkle.

28

References
[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary

N. J. Peterson, and Dawn Song. Provable data possession at untrusted stores. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
598–609. ACM Press, October 2007. (Cited on page 5.)

[ASBK21] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud and data
availability proofs: Detecting invalid blocks in light clients. In Nikita Borisov and Claudia
Díaz, editors, Financial Cryptography and Data Security - 25th International Conference,
FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II, volume 12675 of
Lecture Notes in Computer Science, pages 279–298. Springer, 2021. (Cited on page 3.)

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages
14:1–14:17. Schloss Dagstuhl, July 2018. (Cited on page 4, 6, 9, 17, 18, 21, 22.)

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge
with no trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg, August 2019. (Cited
on page 4.)

[BCFL23] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional
commitments for unbounded-depth circuits. In Guy N. Rothblum and Hoeteck Wee, editors,
Theory of Cryptography - 21st International Conference, TCC 2023, Taipei, Taiwan, November
29 - December 2, 2023, Proceedings, Part III, volume 14371 of Lecture Notes in Computer
Science, pages 363–393. Springer, 2023. (Cited on page 5.)

[BCG+16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
Short interactive oracle proofs with constant query complexity, via composition and sumcheck.
Cryptology ePrint Archive, Report 2016/324, 2016. https://eprint.iacr.org/2016/324.
(Cited on page 4.)

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas
Spooner. Linear-size constant-query IOPs for delegating computation. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 494–521. Springer,
Heidelberg, December 2019. (Cited on page 4.)

[BCI+20a] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for reed-solomon codes. In 61st FOCS, pages 900–909. IEEE Computer Society Press,
November 2020. (Cited on page 4, 19, 25, 35.)

[BCI+20b] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for reed-solomon codes. Cryptology ePrint Archive, Report 2020/654, 2020. https:
//eprint.iacr.org/2020/654. (Cited on page 19.)

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, Heidelberg, May 2019. (Cited on page 4.)

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60.
Springer, Heidelberg, October / November 2016. (Cited on page 8, 9, 11, 34.)

[BGK+23] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari,
and Michał Zając. Fiat-shamir security of fri and related snarks. Cryptology ePrint Archive,
Paper 2023/1071, 2023. https://eprint.iacr.org/2023/1071. (Cited on page 17, 19.)

29

https://eprint.iacr.org/2016/324
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2023/1071

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling
outside the box improves soundness. In Thomas Vidick, editor, ITCS 2020, volume 151, pages
5:1–5:32. LIPIcs, January 2020. (Cited on page 4.)

[BNO21] Dan Boneh, Wilson Nguyen, and Alex Ozdemir. Efficient functional commitments: How to
commit to private functions. Cryptology ePrint Archive, Report 2021/1342, 2021. https:
//eprint.iacr.org/2021/1342. (Cited on page 5.)

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and
Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on
page 10.)

[CFT22] Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments
and applications to homomorphic signatures. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 159–188. Springer, Heidelberg,
December 2022. (Cited on page 5.)

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability via oblivious
RAM. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 279–295. Springer, Heidelberg, May 2013. (Cited on page 5.)

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.
(Cited on page 4.)

[CT05] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In Pierre
Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer
Science, pages 503–504. Springer, 2005. (Cited on page 5.)

[dCP23] Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent
setup and from SIS. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III,
volume 14006 of LNCS, pages 287–320. Springer, Heidelberg, April 2023. (Cited on page 5.)

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 109–127.
Springer, Heidelberg, March 2009. (Cited on page 5.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 26.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011. (Cited on page 4.)

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint Archive, Report
2022/1216, 2022. https://eprint.iacr.org/2022/1216. (Cited on page 26.)

[HASW23] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. Foundations of data availability
sampling. Cryptology ePrint Archive, Paper 2023/1079, 2023. https://eprint.iacr.org/
2023/1079. (Cited on page 3, 4, 6, 7, 8, 9, 25, 26, 32, 33, 40.)

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind
signatures, revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 500–529. Springer, Heidelberg, August 2020. (Cited on
page 9, 34.)

30

https://eprint.iacr.org/2021/1342
https://eprint.iacr.org/2021/1342
https://eprint.iacr.org/2022/1216
https://eprint.iacr.org/2023/1079
https://eprint.iacr.org/2023/1079

[JK07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
584–597. ACM Press, October 2007. (Cited on page 5.)

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010. (Cited on page 4.)

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP
2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016. (Cited on page 5.)

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg,
August 1988. (Cited on page 9, 26.)

[NNT21] Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups. Cryptology ePrint Archive, Report 2021/1544, 2021. https:
//eprint.iacr.org/2021/1544. (Cited on page 5.)

[Rab89] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM, 36(2):335–348, 1989. (Cited on page 5.)

[SSP13] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of
retrievability. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 325–336. ACM Press, November 2013. (Cited on page 5.)

[Sta21] StarkWare. ethSTARK documentation. Cryptology ePrint Archive, Report 2021/582, 2021.
https://eprint.iacr.org/2021/582. (Cited on page 26.)

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107. Springer, Heidelberg, December
2008. (Cited on page 5.)

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, March 2008. (Cited on page 9, 34.)

[VP19] Alexander Vlasov and Konstantin Panarin. Transparent polynomial commitment scheme with
polylogarithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020,
2019. https://eprint.iacr.org/2019/1020. (Cited on page 6.)

[WW23] Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments
from lattices. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III,
volume 14006 of LNCS, pages 385–416. Springer, Heidelberg, April 2023. (Cited on page 5.)

31

https://eprint.iacr.org/2021/1544
https://eprint.iacr.org/2021/1544
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2019/1020

A Background on Data Availability Sampling
Here, we recall the formal definition of data availability sampling and the transformation from erasure
code commitments to data availability sampling. The reader may consult [HASW23] for more background.
We first present the definition of data availability sampling, taken verbally from [HASW23].

Definition 14 (Data Availability Sampling Scheme). A data availability sampling scheme (DAS) with
data alphabet Γ, encoding alphabet Σ, data length K ∈ N, encoding length N ∈ N, query complexity
Q ∈ N, and threshold T ∈ N is a tuple DAS = (Setup, Encode, V, Ext) of algorithms with the following
syntax:

• Setup(1λ)→ par is a PPT algorithm that takes as input the security parameter, and outputs system
parameters par. All algorithms get par implicitly as input.

• Encode(data) → (π, com) is a deterministic polynomial time algorithm that takes as input data
data ∈ ΓK and outputs an encoding π ∈ ΣN and a commitment com.

• V = (V1, V2) is a pair of algorithms, where

– Vπ,Q
1 (com)→ tran is a PPT algorithm that has Q-time oracle access to an encoding π ∈ ΣN ,

gets as input a commitment com, and outputs a transcript tran, containing the Q queries to π
and the respective responses.

– V2(com, tran)→ b is a deterministic polynomial time algorithm that takes as input a transcript
tran, and outputs a bit b ∈ {0, 1}.

• Ext(com, tran1, . . . , tranℓ) → data/⊥ is a deterministic polynomial time algorithm that takes as
input a commitment com, a list of transcripts trani, and outputs data data ∈ ΓK or an abort symbol
⊥.

We require that the following properties are satisfied:

• Completeness. For any par ∈ Setup(1λ) and any integer ℓ = poly(λ) with ℓ ≥ T , and all data ∈ ΓK ,
we have

Pr

 ∀i ∈ [ℓ] : bi = 1 ∧ data′ = data

∣∣∣∣∣∣∣∣
(π, com) := Encode(data),
∀i ∈ [ℓ] : trani ← Vπ,Q

1 (com),
bi := V2(com, trani),

data′ := Ext(com, tran1, . . . , tranℓ)

 ≥ 1− negl(λ).

• Soundness. For any stateful PPT algorithm A and any integer ℓ = poly(λ) with ℓ ≥ T , the
following advantage is negligible:

Advsound
A,ℓ,DAS(λ) := Pr

 ∀i ∈ [ℓ] : bi = 1 ∧ data′ = ⊥

∣∣∣∣∣∣∣∣
par← Setup(1λ), com← A(par),
(trani)ℓ

i=1 ← Interact [V1,A]Q,ℓ (com),
∀i ∈ [ℓ] : bi := V2(com, trani),
data′ := Ext(com, tran1, . . . , tranℓ)

 .

• Consistency. For any PPT algorithm A and any ℓ1, ℓ2 = poly(λ), the following advantage is
negligible:

Advcons
A,ℓ1,ℓ2,DAS(λ) := Pr

 data1 ̸= ⊥
∧ data2 ̸= ⊥
∧ data1 ̸= data2

∣∣∣∣∣∣∣∣
par← Setup(1λ),
(com, (tran1,i)ℓ1

i=1 , (tran2,i)ℓ2
i=1)← A(par),

data1 := Ext(com, tran1,1, . . . , tran1,ℓ1),
data2 := Ext(com, tran2,1, . . . , tran2,ℓ2)

 .

Hall-Andersen, Simkin, and Wagner [HASW23] show how to generically turn an erasure code commit-
ment for a code C into a data availability sampling scheme. For the formal transformation and its analysis,
we refer to [HASW23]. Here, we only informally discuss this transformation how its resulting efficiency
relates to the efficiency of the underlying erasure code commitment scheme. Intuitively, Encode(data)

32

encodes data using the code C and commits to it using the erasure code commitment scheme. That is,
the algorithm outputs an erasure code commitment com for data and an encoding π, where each symbol
of π consists of a symbol of the codeword and the respective opening for the erasure code commitment.
Clients determine a set of indices to query and accept if all openings are valid. For this work, we assume
that indices are sampled uniformly and independently without replacement, while other variants of index
sampling are also analyzed in [HASW23]. Given a set of transcripts, the extractor Ext first checks if
all transcripts are accepting and enough indices are covered. More precisely, if the code has reception
efficiency t and at least t symbols of the codeword have to be contained in the transcripts. If this is the
case, the data can be reconstructed by the properties of the code. We informally summarize the efficiency
of the sketched transformation in the following lemma.

Lemma 11 (Informal). Let C : Γk → Λn be an erasure code and let CC be an erasure code commitment
for C with reception efficiency t ≤ n. Then, one can construct a data availability sampling scheme with
the following characteristics:

• Commitment. The commitment is as output by CC.

• Encoding. The encoding contains n symbols and each symbol contains an element in Λ and an
opening output by CC.

• Threshold. To reconstruct the data with overwhelming probability, one needs at least Ω(t + λ)
samples of clients in total if t/n is constant. If C is the identity, one needs at least Ω(kλ + k log k)
samples.

B Merkle Trees
Here, we make our definition of Merkle trees explicit. To recall, let H : {0, 1}∗ → {0, 1}λ be a random
oracle. We denote by RootH the algorithm that takes as input a sequence x1, . . . , xℓ ∈ Σ of ℓ symbols
over some alphabet Σ, and outputs the Merkle root root ∈ {0, 1}λ.

Definition 15 (Merkle Root). Let Σ be a finite set (possibly depending on λ) and H : {0, 1}∗ → {0, 1}λ

be a random oracle. We define

RootH(x1) := H(x1),
RootH(x1, . . . , xℓ) := H(RootH(x1, . . . , x⌈ℓ/2⌉), RootH(x⌈ℓ/2⌉+1, . . . , xℓ)),

for any ℓ ∈ N and any x1, . . . , xℓ ∈ Σ.

Further, we denote by PathH the algorithm that takes as input x1, . . . , xℓ ∈ Σ as above and an index
j ∈ [ℓ], and outputs an authentication path path for the jth position, i.e., for xj . We assume that path
contains the length ℓ of the underlying sequence, the position j, and the value xi, and denote these by
LengthOfH, PositionOfH, and ValueOfH, respectively.

Definition 16 (Merkle Paths). Let Σ be a finite set (possibly depending on λ) and H : {0, 1}∗ → {0, 1}λ

be a random oracle. For any x1, x2 ∈ Σ, we define

cop(x1, 1) := ⊥, cop((x1, x2), 1) := (H(x2)), cop((x1, x2), 2) := (H(x1)).

For any ℓ ∈ N and any x1, . . . , xℓ ∈ Σ, we define

cop((x1, . . . , xℓ), j) := (RootH(x⌈ℓ/2⌉+1, . . . , xℓ), cop(x1, . . . , x⌈ℓ/2⌉, j))

if 1 ≤ j ≤ ⌈ℓ/2⌉. Otherwise, if ⌈ℓ/2⌉+ 1 ≤ j ≤ ℓ, we define

cop((x1, . . . , xℓ), j) := (RootH(x1, . . . , x⌈ℓ/2⌉, cop(x⌈ℓ/2⌉+1, . . . , xℓ, j − ⌈ℓ/2⌉)).

Further, for any ℓ ∈ N and any x1, . . . , xℓ ∈ Σ, we define

PathH((x1, . . . , xℓ), j) := (ℓ, j, xj , cop((x1, . . . , xℓ), j)).

For any such tuple path = (ℓ, j, xj , cop) we define PositionOfH(path) := j, ValueOfH(path) := xj , and
LengthOfH(path) := ℓ.

33

We denote by RootFromPathH the algorithm that takes as input a path path recomputes the Merkle
root as defined next.

Definition 17 (Recomputing Merkle Roots). Let Σ be a finite set (possibly depending on λ) and
H : {0, 1}∗ → {0, 1}λ be a random oracle. For any x ∈ Σ and h ∈ {0, 1}λ, we define

RootFromPathH(path) := H(x) for path = (1, 1, x,⊥),
RootFromPathH(path) := H(H(x), h) for path = (2, 1, x, (h)),
RootFromPathH(path) := H(h, H(x)) for path = (2, 2, x, (h)).

Let ℓ ∈ N, j ∈ [ℓ], x ∈ Σ, h1, . . . , hr ∈ {0, 1}λ, and path = (ℓ, j, x, (h1, . . . , hr)). For 1 ≤ j ≤ ⌈ℓ/2⌉, we
define

RootFromPathH(path) := H(RootFromPathH(path′), h1) for path′ := (⌈ℓ/2⌉, j, x, (h2, . . . , hr)).

For ⌈ℓ/2⌉+ 1 ≤ j ≤ ℓ, we define

RootFromPathH(path) := H(h1, RootFromPathH(path′)) for path′ := (ℓ− ⌈ℓ/2⌉, j − ⌈ℓ/2⌉, x, (h2, . . . , hr)).

The next lemma states the correctness of these algorithms. We omit a proof as it follows easily by
inspection.

Lemma 12. Let Σ be a finite set (possibly depending on λ) and H : {0, 1}∗ → {0, 1}λ be a random oracle.
For any ℓ ∈ N, any j ∈ [ℓ], and any x1, . . . , xℓ ∈ Σ, we have

RootH(x1, . . . , xℓ) = RootFromPathH(PathH((x1, . . . , xℓ), j)).

In the following, we show that Merkle trees (in the random oracle model) are extractable, i.e., one
can extract the underlying sequence of values from a given Merkle root, under certain conditions. This
technique is (implicitly) used in several works, e.g., [Val08, BCS16, HKLN20].

Alg ExtLeafs(root, ℓ)
01 if h−1[root] = ⊥ :
02 (leaf1, . . . , leafℓ) := (⊥, . . . ,⊥)
03 return (leaf1, . . . , leafℓ)
04 if ℓ = 1 : return h−1[root]
05 parse (root0, root1) := h−1[root]
06 leaf0 := ExtLeafs(root0, ⌈ℓ/2⌉)
07 leaf1 := ExtLeafs(root1, ℓ− ⌈ℓ/2⌉)
08 return (leaf0, leaf1)

Oracle H(x)
09 if h[x] = ⊥ : h[x]← {0, 1}λ

10 h−1[h[x]] := x
11 return h[x]

Oracle SubRoot(root, ℓ)
12 if (root, ℓ) ∈ Sub : return
13 (leaf1, . . . , leafℓ) := ExtLeafs(root, ℓ)
14 Leafs[root, ℓ] := (leaf1, . . . , leafℓ)

Oracle SubPath(root, path)
15 parse path = (ℓ, j, x, cop)
16 if (root, ℓ) /∈ Sub : return
17 if root ̸= RootFromPathH(path) :
18 return
19 (leaf1, . . . , leafℓ) := Leafs[root]
20 if leafj = ⊥ ∨ leafj ̸= x : Bad := 1

Figure 2: Components used in Lemma 13: algorithm ExtLeafs for extraction of leafs from a given Merkle
root, random oracle H, and the oracles SubRoot and SubPath.

Lemma 13. Let Σ be a finite set (possibly depending on λ) and H : {0, 1}∗ → {0, 1}λ be a random
oracle. Consider algorithm ExtLeafs and oracles SubRoot and SubPath in Figure 2. For any algorithm
A, consider the experiment of running A with oracle access to H, SubRoot, and SubPath, assume that
oracle H is queried at most Q times in total, and assume that SubRoot is queried at most R times in
total. Then, we have

Pr [Bad = 1] ≤ 2Q2 + QR

2λ
.

34

Proof. For simplicity, we denote by Bad the event that Bad = 1. Now, we define three events:

• Event Coll: This event occurs, if on a query H(x) for which h[x] = ⊥, h[x] is sampled and we have
h−1[h[x]] ̸= ⊥.

• Event Chain: This event occurs, if on a query H(x) for which h[x] = ⊥, h[x] is sampled and there
exists a v ∈ {0, 1}λ such that h[h[x], v] ̸= ⊥ or h[v, h[x]] ̸= ⊥.

• Event RootGuess: This event occurs, if A makes a query SubRoot(root, ℓ) such that at that time
h−1[root] = ⊥, but later, a query H(x) evaluates to root.

We bound the probability of these events: First, notice that Coll occurs if two queries to H collide. This
happens with probability at most 1/2λ for each fixed pair of queries to H, and so the probability of Coll
is at most Q2

H/2λ by a union bound. Second, Chain occurs if there is a query H(x) such that a later query
H(x′) evaluates to a length λ prefix or suffix of x. Again, for each fixed pair of queries, this happens
with probability at most 1/2λ. Third, for each fixed query to SubRoot and each fixed query to H(x), the
probability that RootGuess occurs for this pair is 1/2λ. A union bound yields

Pr [Coll ∨ Chain ∨ RootGuess] ≤ 2Q2 + QR

2λ
.

In the following let root∗ and path∗ = (ℓ∗, j∗, x∗, cop∗) be the (first) Merkle root and Merkle path that
made the game set Bad = 1, i.e., A first made a query SubRoot(root∗, ℓ∗) and at that point the game
executed (leaf∗

1, . . . , leaf∗
ℓ∗) := ExtLeafs(root∗, ℓ∗), and later A made a query SubPath(root∗, path∗) with

leaf∗
j∗ = ⊥ or leaf∗

j∗ ̸= x∗. We define three more events:

• Event RootBot: This event occurs, if during the query SubRoot(root∗, ℓ∗), we have h−1[root∗] = ⊥.

• Event LeafBot: This event occurs, if we have leaf∗
j∗ = ⊥.

• Event Incons: This event occurs, if we have leaf∗
j∗ ̸= ⊥ and leaf∗

j∗ ̸= x∗.

Note that

Pr [Bad] ≤ Pr [Bad ∧ RootBot] + Pr [Bad ∧ LeafBot] + Pr [Bad ∧ Incons],

and the same holds if we condition on ¬(RootGuess ∨ Coll ∨ Chain). We bound the probability of these
terms individually. First, if Bad ∧ RootBot occurs, it is easy to see that RootGuess has to occur, and thus

Pr [Bad ∧ RootBot | ¬(RootGuess ∨ Coll ∨ Chain)] = 0.

Second, if Bad ∧ LeafBot occurs, we can observe that Chain has to occur, and thus

Pr [Bad ∧ LeafBot | ¬(RootGuess ∨ Coll ∨ Chain)] = 0.

Third, if Bad ∧ Incons occurs, we know that Coll has to occur, and thus

Pr [Bad ∧ Incons | ¬(RootGuess ∨ Coll ∨ Chain)] = 0.

In combination, we get what we wanted to show.

C Extension: Batched FRI
To reduce the encoding size of our data availability sampling scheme from FRI, we extend our analysis to
batched FRI [BCI+20a]. In this setting, a batch of functions is first folded into a single function G0, to
which regular FRI is then applied. We encourage the reader to first study Section 4 before reading this
section.

35

C.1 Construction
We describe batched FRI using interleaved Reed-Solomon codes, which we first recall. Then, we give an
informal overview and present the formal construction.
Interleaved Reed-Solomon Codes. Batched FRI is an IOPP for an interleaved Reed-Solomon code,
which we define next. First, consider the Reed-Solomon code RS[d,L,F] as in Section 4, where F is
a finite field, d ∈ N is a (strict) degree upper bound, and L ⊆ F is an evaluation domain. Then, a
tuple G = (Gj)B

j=1 of B ∈ N functions G1, . . . , GB : L → F is in the interleaved Reed-Solomon code
RS[d,L,F]≡B if and only if Gj ∈ RS[d,L,F] for all j ∈ [B]. We emphasize that in the context of the
interleaved code, a symbol of such a word G = (Gj)B

j=1 is given as (Gj(s))B
j=1 ∈ FB where s ∈ L, i.e.,

the code RS[d,L,F]≡B has length |L| and each symbol consists of B field elements. Observe that with
this, the Hamming distance of two such words G = (Gj)B

j=1 and G′ = (G′
j)B

j=1 is given as

δ (G, G′) = 1
|L|
{s ∈ L | ∃j ∈ [B] : Gj(s) ̸= G′

j(s)}.

Especially, the distance of G to RS[d,L,F]≡B can in general be larger than the maximum over all
individual distances δ (Gj ,RS[d,L,F]). Finally, one can see that if RS[d,L,F] has rate ρ and unique
decoding radius δ∗ = (1− ρ)/2, then the code RS[d,L,F]≡B also has rate ρ and unique decoding radius
δ∗.
Overview. Let B ∈ N be a batching parameter. Batched FRI is an IOPP for the interleaved code
RS[d0,L0,F]≡B = C0

≡B , where we rely on the same notation and conditions as in Section 4. That is, the
prover claims that G = (Gj)B

j=1 is in the interleaved code RS[d0,L0,F]≡B, where Gj : L0 → F for all
j ∈ [B]. In the first step, the verifier sends a random ξ ← F as an initial challenge. The prover responds
with G0 : L0 → F where G0 =

∑B
j=1 ξj−1Gj . Then, the prover and verifier run the FRI IOPP with G0.

As an additional consistency check in the query phase, the verifier checks that G0(s0) =
∑B

j=1 ξj−1Gj(s0),
where – to recall – s0 ∈ L0 is the random point that the FRI verifier samples in the query phase. The
reader shall also recall the definition of the domains Li and codes Ci = RS[di,Li,F] from Section 4. With
this in mind, a transcript of the batched FRI IOPP has the form T = (G, ξ, G0, ρ1, G0, . . . , Gr, s0), where
ρ1, . . . , ρr ∈ F and Gi : Li → F.
Construction. To formally specify the IOPP, let P and V be the FRI prover and verifier from Section 4.
We specify the batched FRI prover PBatch and the batched FRI verifier VBatch as follows, where ξ ∈ F,
ρ1, . . . , ρr ∈ F, and s0 ∈ L0:

• PBatch(G, ξ)→ G0 for i ∈ {1, . . . , r}:

1. Set G0 : L0 → F where G0 :=
∑B

j=1 ξj−1Gj .

• PBatch(G, ξ, G0, ρ1, . . . , ρi)→ Gi for i ∈ {1, . . . , r}:

1. Run Gi ← P(G0, ρ1, . . . , ρi).

• VG,G0,G1,...,Gr

Batch (ξ, ρ1, . . . , ρr, s0)→ b:

1. Run b0 := VG0,G1,...,Gr (ρ1, . . . , ρr, s0).
2. If G0(s0) =

∑B
j=1 ξj−1Gj(s0), set b1 := 1. Otherwise, set b1 := 0.

3. Set b := b0 ∧ b1.

C.2 Analysis
The reader can easily verify completeness, and that batched FRI is non-adaptive (see Definition 7) and
query-selectable (see Definition 8).
Proof of Opening-Consistency. Our goal is to prove opening-consistency for batched FRI, as stated
in Theorem 4. For that, we first define a suitable lucky set LuckyBatch and a bad set BadBatch. And
then prove the properties needed for opening-consistency in Lemmata 14 to 17. Combining Lemmata 14
to 17, we get Theorem 4.

36

Definition 18 (Lucky Set for Batched FRI). Consider the batched FRI IOPP and let δ∗ = (1− ρ)/2 be
the unique decoding radius. We define the set LuckyBatch = Lucky′ ∪ LuckyBatchColl∪ LuckyBatchDist of
partial prover-turn transcripts as follows:

• Inherited. A partial prover-turn transcript (G, ξ, G0, ρ1, . . . , Gi−1, ρi) is in Lucky′, if and only if
(G0, ρ1, . . . , Gi−1, ρi) ∈ Lucky, where Lucky is defined as in Definition 12.

• Lucky Batch Collision. A partial prover-turn transcript (G, ξ) with G = (Gj)B
j=1 is in

LuckyBatchColl if and only if the following two properties hold:

1. G is within the unique decoding radius, i.e., δ
(
G, C0

≡B
)
≤ δ∗. Let G∗ = (G∗

j)B
j=1 ∈ C0

≡B be
the unique closest codeword.

2. There is an s0 ∈ L0 such that (G∗
j (s0))B

j=1 ̸= (Gj(s0))B
j=1 but

B∑
j=1

ξj−1G∗
j (s0) =

B∑
j=1

ξj−1Gj(s0).

• Lucky Batch Distortion. A partial prover-turn transcript (G, ξ) with G = (Gj)B
j=1 is

in LuckyBatchDist if and only if (a) δ
(
G, C0

≡B
)

> δ∗ and δ
(∑B

j=1 ξj−1Gj , C0

)
≤ δ∗ or (b)

δ
(∑B

j=1 ξj−1Gj , C0

)
< δ

(
G, C0

≡B
)
≤ δ∗.

Definition 19 (Bad Set for Batched FRI). Consider the batched FRI IOPP and let δ∗ = (1 − ρ)/2
be the unique decoding radius. We define the set BadBatch of partial transcripts as follows. A partial
transcript (G, ξ, G0, ρ1, G0, . . . , Gr) with G = (Gj)B

j=1 is in Bad, if and only if no prover-turn prefix of it
is in LuckyBatch, and at least one of the following properties holds:

1. We have (G0, ρ1, G0, . . . , Gr) ∈ Bad, where Bad is defined as in Definition 13, or

2. We have δ
(
G, C0

≡B
)

> δ∗, or

3. We have δ
(
G, C0

≡B
)
≤ δ∗ and δB (G0, C0) ≤ δ∗, but G∗

0 ̸=
∑B

j=1 ξj−1G∗
j , where G∗

0 ∈ C0 and
G∗ = (G∗

j)B
j=1 ∈ C0

≡B denote the unique closest codewords of G0 and G, respectively.

Lemma 14 (No Luck). The batched FRI IOPP satisfies the no luck property of opening-consistency
(Definition 10) with LuckyBatch as in Definition 18 and ϵ1 ≤ 2(max{F, B} − 1)|L0|/|F|.

Proof. Consider a partial verifier-turn transcript T and the experiment of sampling a random verifier
challenge. We have to give an upper bound on the probability that extending T with this challenge is
in the lucky set LuckyBatch as in Definition 18. By definition of LuckyBatch, we can consider two cases
depending on the structure of T . Then, we can take the maximum of the two bounds.

Case 1: Inherited. In the first case, we have T = (G, ξ, G0, ρ1, . . . , Gi−1) and the challenge ρi ← F is
sampled. Then T◦ρi ∈ LuckyBatch if and only if T ′◦ρi ∈ Lucky, where T ′ = (G0, ρ1, . . . , Gi−1) and Lucky
is defined as in Definition 12. Using the analysis in Lemma 5, we get that the probability that the
extension is in LuckyBatch is at most 2(F − 1)|L0|/|F|.

Case 2: Batching Step. In the second case, we have T = (G) and the challenge ξ ← F is sampled, i.e., we
consider the initial batching step. We have to bound the probability that T◦ξ is in LuckyBatchColl or
LuckyBatchDist. Using a union bound, we get

Pr
ξ

[(G, ξ) ∈ LuckyBatchColl ∪ LuckyBatchDist] ≤ Pr
ξ

[(G, ξ) ∈ LuckyBatchColl]

+ Pr
ξ

[(G, ξ) ∈ LuckyBatchDist].

Claim. We have Prξ [(G, ξ) ∈ LuckyBatchColl] ≤ (B − 1)|L0|/|F|.

37

Proof of Claim. If G is not within the unique decoding radius from C0
≡B , then we are done by definition of

LuckyBatchColl. So, assume δ
(
G, C0

≡B
)
≤ δ∗. Let G∗ = (G∗

j)B
j=1 ∈ C0

≡B be the unique closest codeword.
Now, we have to bound the probability that there is an s0 ∈ L0 such that (G∗

j (s0))B
j=1 ̸= (Gj(s0))B

j=1

but
∑B

j=1 ξj−1G∗
j (s0) =

∑B
j=1 ξj−1Gj(s0). We do this using a union bound over all s0 ∈ L0. Hence, let

s0 ∈ L0 be fixed and assume that (G∗
j (s0))B

j=1 ̸= (Gj(s0))B
j=1. Now, consider the process of sampling

ξ ← F at random. As (G∗
j (s0))B

j=1 ̸= (Gj(s0))B
j=1, the expressions

∑B
j=1 ξj−1G∗

j (s0) and
∑B

j=1 ξj−1Gj(s0)
are two different polynomials of degree at most B− 1 in ξ, which means that their evaluation at a random
ξ is equal with probability at most (B − 1)/|F|, finishing the proof of this claim.

Claim. We have Prξ [(G, ξ) ∈ LuckyBatchDist] ≤ (B − 1)|L0|/|F|.
Proof of Claim. This follows directly from the correlated agreement lemma (Lemma 3) with K := B,
code V := C0, and functions u0 := G1, . . . , uB−1 := GB .

Lemma 15 (Bad is Rejected). The batched FRI IOPP satisfies the bad is rejected property of opening-
consistency (Definition 10) with BadBatch as in Definition 19 and ϵ2 ≤ 1− δ∗.

Proof. We consider a partial transcript T = (G, ξ, G0, ρ1, G0, . . . , Gr) such that T ∈ BadBatch, with
BadBatch as in Definition 19. For the random experiment of sampling s0 ← L0 and completing T with
s0, we need to upper bound the probability that the verifier VBatch accepts the completed transcript T◦s0.
Let T ′ := (G0, ρ1, G0, . . . , Gr) and let Bad be as defined as in Definition 13. According to the definition
of BadBatch, we can consider two cases, depending on whether T is in the bad set because of T ′ ∈ Bad.
In both cases, we show that the probability that the verifier accepts (over the random choice of s0) is at
most 1− δ∗.

Case 1. T ′ ∈ Bad. By definition, if the batched verifier VBatch accepts T , then in particular the verifier V
accepts T ′. Therefore, we can apply the bad is rejected property of the non-batched FRI (Lemma 8) to
get the desired bound.

Case 2. T ′ /∈ Bad. For this case, we closely follow the proof strategy used to prove Lemma 7. To this end,
we first fix notation. Let G∗

0 ∈ C0 be the unique closest codeword for G0, which exists as T ′ /∈ Bad. Write
G = (Gj)B

j=1. Further, define the following sets:

Dis := {s0 ∈ L0 | G∗
0(s0) ̸= G0(s0)}

and

Find :=

s0 ∈ L0

∣∣∣∣∣∣
B∑

j=1
ξj−1Gj(s0) ̸= G0(s0)

 .

Now, we show three claims which in combination give the desired bound.

Claim. We have δ
(

G∗
0,

∑B
j=1 ξj−1Gj

)
≥ δ∗.

Proof of Claim. Recall that T ∈ BadBatch but T ′ /∈ Bad. By definition of BadBatch, we know that no prefix
of T is in LuckyBatch and we are in one of two cases holds: in the first case, we have δ

(
G, C0

≡B
)

> δ∗.
Then, by definition of LuckyBatch (specifically, LuckyBatchDist), we have

δ

 B∑
j=1

ξj−1Gj , G∗
0

 ≥ δ

 B∑
j=1

ξj−1Gj , C0

 > δ∗,

finishing the proof of the claim for this case. In the second case, we have δ
(
G, C0

≡B
)
≤ δ∗ but

G∗
0 ̸=

∑B
j=1 ξj−1G∗

j , where G∗ = (G∗
j)B

j=1 ∈ C0
≡B is the unique closest codeword of G. As both G∗

0 ∈ C0

38

and
∑B

j=1 ξj−1G∗
j ∈ C0, we know that

1− ρ ≤ δ

G∗
0,

B∑
j=1

ξj−1G∗
j

 ≤ δ

G∗
0,

B∑
j=1

ξj−1Gj

 + δ

 B∑
j=1

ξj−1Gj ,

B∑
j=1

ξj−1G∗
j


≤ δ

G∗
0,

B∑
j=1

ξj−1Gj

 + δ (G, G∗)

≤ δ

G∗
0,

B∑
j=1

ξj−1Gj

 + δ∗.

By rearranging this inequality and using 1− ρ− δ∗ = δ∗, we obtain the claimed bound.

Claim. We have |Dis ∪ Find|/|L0| ≥ δ
(

G∗
0,

∑B
j=1 ξj−1Gj

)
.

Proof of Claim. To prove the claim, we argue that every position s ∈ |L0| for which G∗
0 and

∑B
j=1 ξj−1Gj

disagree must be in Dis or in Find. This can be seen as follows: if s0 /∈ Dis and s0 /∈ Find then by definition
of these sets we have

G∗
0(s0) = G0(s0) =

B∑
j=1

ξj−1Gj(s0).

Claim. We have Pr
s0←L0

[
VG,G0,G1,...,Gr

Batch (ξ, ρ1, . . . , ρr, s0) = 1
]
≤ 1− (|Dis ∪ Find|/|L0|).

Proof of Claim. If the event we have to bound occurs, i.e., the verifier VBatch accepts, then clearly s0 /∈ Find.
Further, we claim that s0 /∈ Dis. This is because we can invoke Lemma 6 with i∗ = 0. All conditions of
Lemma 6 are satisfied as we assume T ′ /∈ Bad. Now, Lemma 6 states that if s0 /∈ Dis, then the verifier
rejects. So, we have

Pr
s0←L0

[
VG,G0,G1,...,Gr

Batch (ξ, ρ1, . . . , ρr, s0) = 1
]
≤ Pr

s0←L0

[s0 /∈ Dis ∧ s0 /∈ Find]

≤ 1− |Dis ∪ Find|
|L0|

.

Lemma 16 (Suitable is Close). The batched FRI IOPP satisfies the suitable is close property of opening-
consistency (Definition 10) with BadBatch as in Definition 19 and LuckyBatch as in Definition 18.

Proof. Consider a suitable transcript T = (G, ξ, G0, ρ1, G0, . . . , Gr) with respect to sets BadBatch as
in Definition 19 and LuckyBatch as in Definition 18. To recall, according to the definition of suitable
transcripts (Definition 9), this means that T is not in BadBatch and no prefix of T is in LuckyBatch.
By definition of BadBatch, we therefore know that δ

(
G, C0

≡B
)
≤ δ∗, which is exactly what we have to

show.

Lemma 17 (Inconsistent is Rejected). The batched FRI IOPP satisfies the inconsistent is rejected
property of opening-consistency (Definition 10) with BadBatch as in Definition 19 and LuckyBatch as in
Definition 18.

Proof. We consider a suitable transcript T = (G, ξ, G0, ρ1, G0, . . . , Gr) with respect to sets BadBatch as
in Definition 19 and LuckyBatch as in Definition 18. This means that T is not in BadBatch and no prefix
of T is in LuckyBatch. Recalling the definition of the inconsistent is rejected property (Definition 10), we
need to consider completing T with s0 ∈ L0 such that there is a query x ∈ Q0(T◦s0) = {s0} that the
verifier issues for the complete transcript T◦s0 such that G∗ and G differ on that query, where G∗ ∈ C0

≡B

is the unique closest codeword for G. We have seen in Lemma 16 that G∗ exists. Even more, by definition
of BadBatch, we also know that a unique closest codeword G∗

0 ∈ C0 for G0 exists. Writing G∗ = (G∗
j)B

j=1

39

and G = (Gj)B
j=1, this means we assume that there is a j ∈ [B] such that G∗

j (s0) ̸= G∗
j (s0). Now, we

need to show that the verifier VBatch rejects the transcript. For that, we consider two cases.

Case 1. G0(s0) ̸= G∗
0(s0). In this case, note that the transcript (G0, ρ1, G0, . . . , Gr) is suitable with

respect to the sets Bad as in Definition 13 and Lucky as in Definition 12 and satisfies the conditions to
apply the inconsistent is rejected of the non-batched FRI. Therefore, we can apply Lemma 10 to finish
the proof of this case.

Case 2. G0(s0) = G∗
0(s0). In this case, assume towards contradiction that the verifier VBatch accepts the

transcript. Then, we have

B∑
j=1

ξj−1Gj(s0) = G0(s0) = G∗
0(s0) =

B∑
j=1

ξj−1G∗
j (s0),

where the first equality follows from the definition of the verifier, the second equality is because we
are in Case 2, and the third equality is because T is not in BadBatch. Note that this means that
(G, ξ) ∈ LuckyBatchColl, a contradiction to the assumption that T is suitable.

D Script for Parameter Computation
Here, we give Python scripts used to compute tables and graphs in Section 5. We have used the scripts
in [HASW23] as a starting point.

Listing 1: Python script to compute the parameters for different codes. A discussion is given in Section 5.
from dataclasses import dataclass

import math

Statistical Security Parameter for Soundness
SECPAR_SOUND = 40

@dataclass
class Code:

size_msg_symbol : int # size of one symbol in the message
size_code_symbol : int # size of one symbol in the code
msg_len : int # number of symbols in the message
codeword_len : int # number of symbols in the codeword
reception : int # number of symbols needed to reconstruct (worst case)
samples : int # number of random samples to reconstruct with high probability

def interleave (self , ell):
return Code(

size_msg_symbol = self. size_msg_symbol * ell ,
size_code_symbol = self. size_code_symbol * ell ,
msg_len = self.msg_len ,
codeword_len = self. codeword_len ,
reception = self.reception ,
samples = self. samples

)

def tensor (self , col):
assert self. size_msg_symbol == col. size_msg_symbol
assert self. size_code_symbol == col. size_code_symbol
assert self. size_msg_symbol == self. size_code_symbol

row_dist = self. codeword_len - self. reception + 1
col_dist = col. codeword_len - col. reception + 1
codeword_len = self. codeword_len * col. codeword_len

’’’
Example :

D D | o o
D D | o o
----+----
o o | o o
o o | o o

Where D is the data.
The reception is 8, since 7 is not enough to reconstruct :

o o | o x
o o | o x
----+----
o o | o x
x x | x x

Given the symbols marked with x, I cannot reconstruct the data.
’’’
reception = codeword_len - row_dist * col_dist + 1
’’’
To determine the number of samples , we have multiple options .
we can use the minimum of all resulting number of samples

Option 1: use reception and generalized coupon collector
As reception is a " worst case bound ", this may not be tight

Option 2: use a more direct analysis .

40

not being able to reconstruct
-> there is a row we can not reconstruct
-> union bound over all rows
-> for fixed row , assume we can not reconstruct
-> there is a set of t_r - 1 positions (t_r = reception in rows)
such that all queries in that row are in that set
-> we union bounding over all of these sets
-> for each fixed set , the probability that
all queries in that row are in that set is
(1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
so the total probability of not being able to reconstruct is at most
n_c * (n_r choose t_r - 1) * (1 -((n_r - t_r + 1) /(n_r*n_c)))^{ number of samples }
and (n_r choose t_r - 1) <= (n_r * e / (t_r - 1))^(t_r - 1)

Option 3: same as Option 2 but reversed roles

Asymptotic example : Tensor C: F^k -> F^{2k} with itself
Option 1 -> Omega (k^2 + sec_par) samples
Option 2/3 -> Omega (k^2 + sec_par * k) samples

Concretely , Option 2/3 will be tighter , especially for large k
’’’
samples_via_reception = samples_from_reception (SECPAR_SOUND , reception , codeword_len)

loge = math.log2(math.e)
lognc = math.log2(col. codeword_len)
lognr = math.log2(self. codeword_len)
logbinomr = (self. reception - 1) * (lognr + loge - math.log2(self. reception - 1))
loginnerr = math.log2 (1.0 - (self. codeword_len - self. reception + 1)/ codeword_len)
logbinomc = (col. reception - 1) * (lognc + loge - math.log2(col. reception - 1))
loginnerc = math.log2 (1.0 - (col. codeword_len - col. reception + 1)/ codeword_len)

samples_direct_via_rows = int(math.ceil (-(lognc + logbinomr + SECPAR_SOUND)/ loginnerr))
samples_direct_via_cols = int(math.ceil (-(lognr + logbinomc + SECPAR_SOUND)/ loginnerc))

samples_direct = min(samples_direct_via_rows , samples_direct_via_cols)
samples = min(samples_direct , samples_via_reception)

return Code(
size_msg_symbol = self. size_msg_symbol ,
msg_len = self. msg_len * col.msg_len ,
size_code_symbol = self. size_code_symbol ,
codeword_len = codeword_len ,
reception = reception ,
samples = samples

)

def __eq__ (self , other):
return (

self. size_msg_symbol == other . size_msg_symbol
and self. size_code_symbol == other . size_code_symbol
and self. msg_len == other . msg_len
and self. codeword_len == other . codeword_len
and self. reception == other . reception

)

def is_identity (self):
return (

self. size_msg_symbol == self. size_code_symbol
and self. msg_len == self. codeword_len

)

def samples_from_reception (sec_par , reception , codeword_len):
’’’
Compute the number of samples needed to reconstruct
data with probability at least 1 -2^{ - sec_par } based on
the reception efficiency and a generalized coupon collector .
Note: this may not be the tightest for all schemes (e.g. Tensor)
’’’
special case: if only one symbol is needed , we are done
if reception == 1:

return 1

special case: if all symbols are needed : just regular coupon collector
if reception == codeword_len :

n = codeword_len
s = math.ceil ((n / math.log(math.e, 2)) * (math.log(n, 2) + sec_par))
return int(s)

generalized coupon collector
delta = reception - 1
c = delta / codeword_len
s = math.ceil(- sec_par / math.log2(c) + (1.0 - math.log(math.e,c))* delta)
return int(s)

Identity code
def makeTrivialCode (chunksize , k):

return Code(
size_msg_symbol = chunksize ,
msg_len = k,
size_code_symbol = chunksize ,
codeword_len = k,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, k)

)

Reed - Solomon Code
Polynomial of degree k -1 over field with field element length fsize
Evaluated at n points
def makeRSCode (fsize , k, n):

assert k <= n
assert 2** fsize >= n, ’no such reed - solomon code :(’
return Code(

size_msg_symbol = fsize ,
msg_len = k,
size_code_symbol = fsize ,
codeword_len = n,
reception = k,
samples = samples_from_reception (SECPAR_SOUND , k, n)

)

41

tests
assert makeRSCode (5, 2, 4). tensor (makeRSCode (5, 2, 4)). reception == 8
assert makeRSCode (5, 2, 4). reception == 2

Listing 2: Python script to compute the parameters for different data availability sampling schemes. A
discussion is given in Section 5.
#!/ usr/bin/env python

import math

Some constants .
Sizes of group elements , field elements , and hashes in bits
BLS_FE_SIZE = 48.0 * 8.0
BLS_GE_SIZE = 48.0 * 8.0

Let ’s say we use the SECP256_k1 curve
PEDERSEN_FE_SIZE = 32.0 * 8.0
PEDERSEN_GE_SIZE = 33.0 * 8.0

Let ’s say we use SHA256
HASH_SIZE = 256

from dataclasses import dataclass

from codes import *

@dataclass
class Scheme :

code: Code # code that is used
com_size : int # size of commitment in bits
opening_overhead : int # overhead of opening a symbol in the encoding

def samples (self):
’’’
i.e. the number of random samples needed to collect
enough symbols except with small probability
’’’
return self.code. samples

def total_comm (self):
’’’
Compute the total communication in bits.
’’’
return self. comm_per_query () * self. samples ()

def comm_per_query (self):
’’’
Compute the communication per query in bits.
’’’
return math.log2(self.code. codeword_len) + self. opening_overhead + self.code. size_code_symbol

def encoding_size (self):
’’’
Compute the size of the encoding in bits.
’’’
return self.code. codeword_len * (self. opening_overhead + self.code. size_code_symbol)

def reception (self):
’’’
Compute the reception of the code.
’’’
return self.code. reception

def encoding_length (self):
’’’
Compute the length of the encoding .
’’’
return self.code. codeword_len

Naive scheme
Put all the data in one symbol , and let the commitment be a hash
def makeNaiveScheme (datasize):

return Scheme (
code = Code(

size_msg_symbol = datasize ,
msg_len = 1,
size_code_symbol = datasize ,
codeword_len = 1,
reception = 1,
samples = 1

),
com_size = HASH_SIZE ,
opening_overhead = 0

)

Merkle scheme
Take a merkle tree and the identity code
def makeMerkleScheme (datasize , chunksize =1024) :

k = math.ceil(datasize / chunksize)
return Scheme (

code = makeTrivialCode (chunksize , k),
com_size = HASH_SIZE ,
opening_overhead = math.ceil(math.log(k, 2))* HASH_SIZE

)

KZG Commitment , interpreted as an erasure code commitment for the RS code
The RS Code is set to have parameters k,n with n = invrate * k
def makeKZGScheme (datasize , invrate =4):

k = math.ceil(datasize / BLS_FE_SIZE)
return Scheme (

code = makeRSCode (
BLS_FE_SIZE ,
k,

42

k * invrate
),
com_size = BLS_GE_SIZE ,
opening_overhead = BLS_GE_SIZE ,

)

Tensor Code Commitment , where each dimension is expanded with inverse rate invrate .
That is , data is a k x k matrix , and the codeword is a n x n matrix , with n = invrate * k
Both column and row code are RS codes .
def makeTensorScheme (datasize , invrate =2):

m = math.ceil(datasize / BLS_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k

rs = makeRSCode (BLS_FE_SIZE , k, n)

return Scheme (
code = rs. tensor (rs),
com_size = BLS_GE_SIZE * k,
opening_overhead = BLS_GE_SIZE ,

)

Hash - Based Code Commitment , over field with elements of size fsize ,
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHashBasedScheme (datasize , fsize =32 , P=8, L=64 , invrate =4):

m = math.ceil(datasize / fsize)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (fsize , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * HASH_SIZE + P * n * fsize + L * k * fsize ,
opening_overhead = 0,

)

Homomorphic Hash - Based Code Commitment
instantiated with Pedersen Hash
parallel repetition parameters P and L. Data is treated as a k x k matrix ,
and codewords are k x n matrices , where n = k* invrate .
def makeHomHashBasedScheme (datasize , P=2, L=2, invrate =4):

m = math.ceil(datasize / PEDERSEN_FE_SIZE)
k = math.ceil(math.sqrt(m))
n = invrate * k
rs = makeRSCode (PEDERSEN_FE_SIZE , k, n)

return Scheme (
code = rs. interleave (k),
com_size = n * PEDERSEN_GE_SIZE + P * n * PEDERSEN_FE_SIZE + L * k * PEDERSEN_FE_SIZE ,
opening_overhead = 0,

)

Listing 3: Python script to compute the parameters for our FRI-based data availability sampling scheme
FRIDA. A discussion is given in Section 5.
#!/ usr/bin/env python
import math
from schemes import *

GRINDING = 20
RO_QUERIES = 60
STATISTICAL_SECURITY = 40
FRI_SOUNDNESS = STATISTICAL_SECURITY + RO_QUERIES - GRINDING

assume a Merkle tree that represents numleafs tuples of elements
where each element has size fsize and one tuple contains tuplesize
many elements . Each leaf of the tree contains one such tuple .
size of one opening (i.e., Merkle path + element)
of a Merkle tree that represents n elements
and each element has size fsize .
def sizeMerkleOpening (numleafs , tuplesize , fsize):

tupleItself = tuplesize * fsize
sibling = tuplesize * fsize
treedepth = math.ceil(math.log2(numleafs))
copath = (treedepth - 1) * HASH_SIZE
return tupleItself + sibling + copath

size of the information needed to open one position
in the FRI base layer , including all Merkle paths
domainsize is the number of elements in the base layer
fsize is the field size , i.e., size of one element
def friAuthSize (domainsize , rate , fsize , batchsize , fanin , basedimension):

size = 0
batching phase if FRI_BATCH_SIZE > 1:
we need to open one symbol (= FRI_BATCH_SIZE field elements)
of the interleaved code , so one leaf of the Merkle tree
representing the batch
if batchsize > 1:

size += sizeMerkleOpening (domainsize , batchsize , fsize)

now assume that we have already opened the batching
i.e., it remains to open everything from oracle G_0
to oracle G_r. In every oracle , the FRI verifier
queries on a set of fanin positions .
We put this entire set into the same Merkle leaf.
We do not put the final oracle in a Merkle tree.
Instead , we put it in plain into the commitment .
This makes sense as we have to open it entirely .
ncurr = domainsize
while ncurr * rate > basedimension :

numleafs = ncurr // fanin
size += sizeMerkleOpening (numleafs , fanin , fsize)
ncurr = numleafs

43

return size

k = number of field elements to represent the data --> number of rounds
def friNumRounds (mink , fanin , basedimension):

if we do no round , we can represent basedimension many elements
if we do one round , we can represent basedimension * fanin many elements
if we do r rounds , we can represent basedimension * (fanin **r) many elements
dimension = basedimension
rnd = 0
while dimension < mink:

dimension *= fanin
rnd += 1

return rnd

rate , size of first evaluation domain LLL_0 , field size
--> number of repetitions of query phase
def friNumRepetitions (rate , domainsize , fsize , batchsize , fanin):

first make sure that the soundness error
induced by LuckySet (e.g., distortion) is small
maxbf = max(fanin , batchsize)
logeps1 = 1 + math.ceil(math.log2(domainsize * (maxbf - 1))) - fsize
assert (logeps1 <= - FRI_SOUNDNESS)

now determine number of repetitions such that the
soundness error related to the query phase is small
recall : the soundness error for L repetitions is
(1- delta ^*/F)^L, and we need to get it below 2^{ - FRI_SOUNDNESS }
deltastar = 0.5 * (1.0 - rate)
base = 1.0 - deltastar
logbase = math.log2(base)
assert (logbase < 0)
L = - FRI_SOUNDNESS / logbase
return math.ceil(L)

def makeFRIScheme (datasize , invrate = 4, fsize = 128 , verbose = False):
determine k. Should be " compatible " with the fan -in
we need k to be at least ceil(datasize / fsize)
minfe = math.ceil(datasize / fsize)
if verbose :

print ("Need at least dimension minfe = " + str(minfe) + " field elements to represent the data.")

call algorithm to find good batchsize , fanin , and base dimension
(batchsize , fanin , basedimension) = friGoodParameters (minfe , fsize , invrate)

mink = math.ceil(minfe / batchsize)
if verbose :

print ("With batch size B = " + str(batchsize) + ", we need at least dimension mink = " + str(mink))
print ("Use fanin F = " + str(fanin) + " and base dimension = " + str(basedimension))

now determine the number of rounds to get at least
dimension mink in the base layer
r = friNumRounds (mink , fanin , basedimension)
if verbose :

print ("Need " + str(r) + " rounds .")
with that , we get the actual k and n
k = basedimension * (fanin ** r)
n = invrate * k
rate = 1.0 / invrate
if verbose :

print ("Need dimension k = " + str(k) + " and evaluation domain size n = " + str(n) + ".")
determine the number of repetitions we need
to get good soundness guarantees
L = friNumRepetitions (rate , n, fsize , batchsize , fanin)
if verbose :

print ("Need " + str(L) + " repetitions of the query phase .")

determine the size of one opening
authsize = friAuthSize (n, rate , fsize , batchsize , fanin , basedimension)

now compile the scheme
rs = makeRSCode (fsize , k, n)

we include all openings for the final layer in the commitment , and no Merkle root for it
if we do batching , we need one root more
final = basedimension * fsize
openings = L * authsize
roots = r * HASH_SIZE + (batchsize > 1) * HASH_SIZE

return Scheme (
com_size = roots + final + openings ,
code = rs. interleave (batchsize),
opening_overhead = authsize - batchsize *fsize ,

)

--#
OPTIMIZATION SECTION
--#

given the minimum number of field elements we need to represent (minfe),
the field size (fsize), the inverse rate (invrate), the basedimension , and
the fanin , this function computes a good batchsize . Good means that the
batchsize minimizes (in a certain range) the size of a single opening
def friGoodBatchsize (minfe , fsize , invrate , basedimension , fanin):

batchsizerange = range (1 ,257)
batchsize = 1
mink = math.ceil(minfe / batchsize)
r = friNumRounds (mink , fanin , basedimension)
minauthsize = friAuthSize (basedimension * (fanin **r) * invrate , 1.0 / invrate , fsize , batchsize , fanin , basedimension)
for b in batchsizerange :

mink = math.ceil(minfe / b)
r = friNumRounds (mink , fanin , basedimension)
currauthsize = friAuthSize (basedimension * (fanin **r) * invrate , 1.0 / invrate , fsize , b, fanin , basedimension)
if currauthsize <= minauthsize :

batchsize = b
minauthsize = currauthsize

return batchsize

given the minimum number of field elements we need to represent (minfe),

44

the field size (fsize) and the inverse rate (invrate), this function
computes (batchsize , fanin , basedimension) for FRI that works reasonably
well. This is for sure not always the optimal setting , especially if a
specific metric should be optimized , e.g., communication per query
def friGoodParameters (minfe , fsize , invrate):

overall idea is to minimize the gap between the dimension on the largest layer
and the dimension we would actually need to represent minfe elements . That is ,
we minimimize gap = basedimension * fanin ^ rounds - minfe / batchsize , ensuring
that gap >= 0. To do so , we try a few reasonable fanins and base dimensions
faninrange = [4, 8, 16]
basedimensionrange = [2, 4, 6, 8, 16, 32, 64, 128]

start minimazation loop. Iterate over all combinations (fanin , basedimension)
optfanin = 0
optbasedimension = 0
optbatchsize = 0
mingap = -1
for fanin in faninrange :

for basedimension in basedimensionrange :
if we want to compute the gap for the pair (fanin , basedimension),
we need to know a suitable batchsize first . To find it , we want
to minimize the size of an opening , i.e., minimize friAuthSize
batchsize = friGoodBatchsize (minfe , fsize , invrate , basedimension , fanin)
mink = math.ceil(minfe / batchsize)

determine the number of rounds that we need now
r = friNumRounds (mink , fanin , basedimension)
compute gap for this fanin , basedimension , and batchsize
gap = basedimension * (fanin **r) - mink
update if it is better
if mingap == -1 or (gap >= 0 and gap <= mingap):

mingap = gap
optfanin = fanin
optbasedimension = basedimension
optbatchsize = batchsize

return (optbatchsize , optfanin , optbasedimension)

Listing 4: Python script to compute the tables in Section 5.
#!/ usr/bin/env python

import math
import sys
from tabulate import tabulate

from schemes import *
from fri import *

def makeRow (name ,scheme ,tex):
comsize = ’{:.2f}’. format (round (scheme . com_size /8000.0 ,2))
encodingsize = ’{:.2f}’. format (round (scheme . encoding_size () / 8000000.0 ,2))
commpqsize = ’{:.2f}’. format (round (scheme . comm_per_query () / 8000.0 ,2))
reception = scheme . reception ()
encodinglength = scheme . encoding_length ()
samples = scheme . samples ()
commsize = ’{:.2f}’. format (round (scheme . total_comm () / 8000000.0 ,2))
if tex:

row = ["\Inst"+name ,comsize , encodingsize , commpqsize , commsize]
else:

row = [name ,comsize , encodingsize , commpqsize ,(reception , encodinglength),samples , commsize]
return row

##

opts = [opt for opt in sys.argv [1:] if opt. startswith ("-")]
args = [arg for arg in sys.argv [1:] if not arg. startswith ("-")]

if len(args) == 0:
print (" Missing Argument : Datasize in Megabytes .")
print ("Hint: To print the table in LaTeX code , add the option -l.")
sys.exit (-1)

datasize = int(args [0]) *8000000

Print to LaTeX
tex = "-l" in opts

if tex:
table = [["Name","|com|","| Encoding |","Comm. p. Q.","Comm Total "]]

else:
table = [["Name","|com| [KB]","| Encoding | [MB]","Comm. p. Q. [KB]"," Reception "," Samples ","Comm Total [MB]"]]

scheme = makeNaiveScheme (datasize)
table . append (makeRow (" Naive ",scheme ,tex))

scheme = makeMerkleScheme (datasize)
table . append (makeRow (" Merkle ",scheme ,tex))

scheme = makeKZGScheme (datasize)
table . append (makeRow ("RS",scheme ,tex))

scheme = makeTensorScheme (datasize)
table . append (makeRow (" Tensor ",scheme ,tex))

scheme = makeHashBasedScheme (datasize)
table . append (makeRow ("Hash",scheme ,tex))

scheme = makeHomHashBasedScheme (datasize)
table . append (makeRow (" HomHash ",scheme ,tex))

scheme = makeFRIScheme (datasize)
table . append (makeRow ("FRI",scheme ,tex))

45

if tex:
print (tabulate (table , headers =’firstrow ’,tablefmt =’latex_raw ’,disable_numparse =True))

else:
print (tabulate (table , headers =’firstrow ’,tablefmt =’fancy_grid ’))

Listing 5: Python script to compute the graphs in Section 5.
#!/ usr/bin/env python

import math
import sys
import csv
import os

from schemes import *
from fri import *

DATASIZEUNIT = 8000*1000 # Megabytes
DATASIZERANGE = range (1 ,156 ,15)

def writeCSV (path ,d):
with open(path , mode="w") as outfile :

writer = csv. writer (outfile , delimiter =’,’)
for x in d:

writer . writerow ([x,d[x]])

Writes the graphs for a given scheme
into a csv file
def writeScheme (name , makeScheme):

commitment = {}
commpq = {}
commtotal = {}
encoding = {}

for s in DATASIZERANGE :
datasize = s* DATASIZEUNIT
scheme = makeScheme (datasize)
commitment [s] = scheme . com_size / 8000000 # MB
commpq [s] = scheme . comm_per_query () /8000 # KB
commtotal [s] = scheme . total_comm () /8000000000 # GB
encoding [s] = scheme . encoding_size () /8000000000 # GB

if not os.path. exists ("./ csvdata /"):
os. makedirs ("./ csvdata ")

writeCSV ("./ csvdata /"+name+"_com.csv",commitment)
writeCSV ("./ csvdata /"+name+" _comm_pq .csv",commpq)
writeCSV ("./ csvdata /"+name+" _comm_total .csv",commtotal)
writeCSV ("./ csvdata /"+name+" _encoding .csv",encoding)

###
writeScheme ("rs",makeKZGScheme)
writeScheme (" tensor ",makeTensorScheme)
writeScheme ("hash",makeHashBasedScheme)
writeScheme (" homhash ",makeHomHashBasedScheme)
writeScheme ("fri",makeFRIScheme)

46

	Introduction
	Our Contributions
	Related Work
	Technical Overview

	Preliminaries
	From IOPPs to Data Availability Sampling
	Instantiation from FRI
	Construction
	Analysis
	Extensions: Batched FRI

	Efficiency Evaluation
	Background on Data Availability Sampling
	Merkle Trees
	Extension: Batched FRI
	Construction
	Analysis

	Script for Parameter Computation

