OCash: Fully Anonymous Payments between Blockchain Light Clients

Adam Blatchley Hansen\textsuperscript{1*}, Jesper Buus Nielsen\textsuperscript{1**}, and Mark Simkin\textsuperscript{2}

\textsuperscript{1} Aarhus University
\textsuperscript{2} Ethereum Foundation

Abstract. We study blockchain-based provably anonymous payment systems between \textit{light clients}. Such clients interact with the blockchain through full nodes, who can see what the light clients read and write. The goal of our work is to enable light clients to perform anonymous payments, while maintaining privacy even against the full nodes through which they interact with the blockchain. We formalize the problem in the universal composability model and present a provably secure solution to it. In comparison to existing works, we are the first ones that simultaneously provide strong anonymity guarantees, provable security, and anonymity with respect to the full nodes. Along the way, we make several contributions that may be of independent interest.

We define and construct efficient compressible randomness beacons, which produce unpredictable values in regular intervals and allow for storing all published values in a short digest. We define and construct anonymous-coin friendly encryption schemes and we show how they can be used within anonymous payment systems. We define and construct strongly oblivious read-once map, which can be seen as a special data structure that needs to satisfy a stronger notion of obliviousness than what is usually considered. We present a new approach, which is compatible with light clients, for mitigating double-spending attacks in anonymous cryptocurrencies.

\textsuperscript{*} Partially funded by the Concordium Blockchain Research Center, Aarhus University and The Danish Independent Research Council under Grant-ID DFF-3103-00077B (CryptoDigi).

\textsuperscript{**} Founded by the Danish Independent Research Council under Grant-ID DFF-3103-00077B (CryptoDigi).
Table of Contents

1 Introduction ................................................................. 4
   1.1 Our Contribution .................................................. 5
   1.2 Related Work ..................................................... 7
   1.3 Technical Overview .............................................. 10
2 Preliminaries ............................................................. 19
   2.1 Commitment Scheme .............................................. 20
   2.2 Symmetric and Public Key Encryption .............. 20
   2.3 Σ-Protocols ....................................................... 20
   2.4 Simulation-Sound NIZK Arguments .................. 22
   2.5 Simulation-Extractable NIZK Arguments .......... 24
3 Ideal Functionality for Anonymous Cryptocurrency .... 26
4 Modelling the Blockchain World ......................... 32
5 Anonymous Coin Friendly Encryption (ANCOs) ........ 35
6 Compressible Randomness Beacons (CRaBs) .................. 37
7 Strongly Oblivious Read-Once Maps (SOROMs) .............. 38
8 OCash: Anonymous Transfers from Oblivious RAM .... 40
   8.1 Stateful Blockchains .............................................. 40
   8.2 Overview .............................................................. 41
   8.3 Anonymous Coin-Flip on the Blockchain .......... 43
   8.4 Relations for Zero-Knowledge ....................... 44
   8.5 OCash Protocol ..................................................... 45
   8.6 Proving Security in the UC Framework .......... 48
9 Instantiating the Building Blocks ................................. 50
   9.1 Commitment Scheme .............................................. 50
   9.2 Anonymous Coin Friendly Encryption Scheme (ANCO) ........ 50
   9.3 Compressible Randomness Beacon .................. 52
   9.4 Strongly Oblivious Read-Once Maps .............. 55
10 Adding Strong Anonymity ............................................. 56
   10.1 PRF Key Registration ........................................... 56
   10.2 Hashed Identifier ............................................... 57
   10.3 Rerandomized TID ................................................ 58
   10.4 Pseudonymous Hashed Identifier .............. 58
   10.5 Improved Reduction to DHI ....................... 58
   10.6 Extending the Relations and ZK Proofs .......... 59
A Generalised Dodis-Yampolskiy Theorem ..................... 62
B Proof of Theorem 2 ...................................................... 67
   B.1 Observations .......................................................... 67
   B.2 Simulator ............................................................. 74
   B.3 Analysis .............................................................. 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Proof System Instantiations</td>
<td>85</td>
</tr>
<tr>
<td>C.1 Discussion of GUC NIZK PoK Definitions</td>
<td>85</td>
</tr>
<tr>
<td>C.2 Proofs for Group Homomorphisms</td>
<td>86</td>
</tr>
<tr>
<td>C.3 $\mathcal{V}$-Construction Maintains Strong Special Soundness</td>
<td>87</td>
</tr>
<tr>
<td>C.4 $\Sigma$-Protocols for Relations</td>
<td>88</td>
</tr>
<tr>
<td>C.5 Extended Proof Systems for Strong Anonymity</td>
<td>91</td>
</tr>
</tbody>
</table>
1 Introduction

Blockchains are structured decentralized databases, which are stored redundantly by network participants, known as full nodes. In the context of cryptocurrencies, the databases are ledgers, which keep track of all transactions of digital currency among all digital identities. When new transactions are submitted, the full nodes check the validity of those transactions, e.g. they check whether the payer has enough digital money, and if this is the case, the transaction is added to the ledger. Being a full node in real-world systems such as Bitcoin or Ethereum is a daunting task, as they are required to continuously store hundreds of gigabytes of data. Since regular users cannot be expected to run full nodes, they can alternatively join these distributed systems as light clients, who do not need to store all of the data, but can still perform transactions, i.e., send and receive money. Without direct access to the full ledger, however, light clients rely on benign full nodes to provide them with whatever data they may need.

Both Bitcoin and Ethereum are pseudonymous systems, meaning that the real identities of participants are hidden behind one or possibly even multiple pseudonymous aliases. Importantly though, since all transactions are public on the ledger, any observer may see which pseudonyms interacted with each other and what transactions were sent between them. It may seem that pseudonymy can provide a “reasonable amount of anonymity”, but it has been shown time and time again that this is not the case and that significant amounts of information about the real identities can be learned by carefully inspecting the transactions on the ledger \cite{RH13, MPJ13, HF16, JBWD18}.

Various cryptocurrencies, such as ZCash \cite{BCG14}, Mina \cite{BMRS20}, Dash, and Monero have been designed to provide some forms of anonymity for their users. The concrete guarantees that are provided by these schemes differ in their details, but they all have the same overarching goal of hiding which users have how much money and who interacts with whom. Unfortunately, these solutions are all currently somewhat unsatisfactory in one way or another, because they either require users to run full nodes, provide users with weak anonymity guarantees, or require users to give up anonymity towards the full nodes through which they interact with the ledger. As both usability and privacy are important for real-world cryptocurrencies, we ask the natural question of whether we can have the best of both worlds:

*Can we support light clients and at the same time provide strong anonymity guarantees?*

Answering this question is a challenging task, since the two goals may seem to be at odds with each other at first sight. Purely intuitively speaking, anonymity seems to require that users access large portions of the ledger to hide which data is relevant to them specifically, but light clients require the opposite, namely that accesses are highly localized. Nonetheless we will show in this work that, making some conservative assumptions, the question can be answered positively.
1.1 Our Contribution.

We introduce OCash, a cryptocurrency that provides strong anonymity guarantees and that supports light clients. Towards the goal of constructing OCash, we develop multiple tools that may be of independent interest, beyond their applications in this work. In more detail, we make the following contributions:

**Formal Model of Fully Anonymous Light Payments.** To set the stage for a rigorous formal analysis of claims about anonymity, we first propose a conceptually simple model, in the universal composability (UC) framework of Canetti [Can01], of what fully anonymous payment schemes are. The UC framework ensures that any protocol proven secure, will remain secure when run in a larger context, e.g. alongside other protocol executions.

We model the ledger as an append only list that can be accessed by full nodes. Light clients can read from and write to the ledger through full nodes, but any position they access and any message they post will be leaked to the adversary. Light clients will have accounts on the ledger that store encrypted amounts of currency and they can perform anonymous payments between each other. An adversary observing a payment on the blockchain, cannot connect the sending and the receiving accounts, nor can they see the amount that is being transferred. A bit more precisely, we will model payments as payers placing coins on the ledger, which can then be collected by the payees. We distinguish between weak and strong anonymity. In weak anonymity the payer can see when the payee claims a coin. In strong anonymity they cannot. Security notions related to strong anonymity have been proposed before, see [CHK23], but no formalization was provided.

**OCash.** We show that efficient payment schemes supporting light clients and satisfying strong anonymity can be constructed by using ideas from the oblivious RAM (ORAM) literature [Gol87, Ost90] in combination with several other tricks that we introduce in this work. Placing or collecting a payment, even as a light client, only requires writing and reading a polylogarithmic (in the total number of performed payments in the whole system) amount of data from the ledger. We stress that our work is the first solution that allows for strong anonymity with sublinear read and write overhead to the ledger.

Our construction will make two assumptions that are worth discussing. The first one is the existence of a private off-chain communication channel between the payer and the payee. As an example, the payer should be able to obtain the recipient’s account address without needing to ask a full node and without needing to read the whole ledger. In the physical world, a pizza shop accepting cryptocurrency payments could provide a QR code with its address to hungry customers.

The second assumption our construction will make, is the existence of an anonymizer service associated with the ledger, which can hold a private state and which regularly posts messages on the ledger. In the case of proof-of-stake blockchains, one already often assumes the existence of committees that post messages on the ledger regularly. Given such committees, one can realize the anonymizer service, which holds a private state, via secure multiparty
Computation \([\text{BGG}^{\pm 20}]\) \(\text{[GHK}^{+21}]\). While our second assumption is stronger than our first one, we still think that it can be reasonable in the context of proof-of-stake blockchains.

Compressible Randomness Beacons. Part of our construction will be a randomness beacon that regularly publishes independent, unpredictable samples. Looking ahead, payees will need to access certain beacon outputs for collecting coins that were paid to them. For anonymity reasons, payees will not want to reveal, which outputs are relevant to them, but if they are light clients, they can also not afford reading all of the outputs. We show how to construct compressible randomness beacons, which allow the payee to read the latest beacon output and from there they can derive all previous outputs. A very similar notion was recently introduced by Beaver et al. \([\text{BCK}^{+23}]\), but in their construction the computational overhead for computing a beacon value from the past is linear in the time between the latest and the desired beacon output. In our construction, the computational overhead for computing any value from the past is fixed and only amounts to a small number of symmetric key operations.

Anonymous Double-Spending Mitigation. A recurring attack vector that cryptocurrencies have to deal with are so called double spending attacks. The gist of these attacks is a malicious payer holding a single coin, trying to falsely convince two payees that they both received it. How full nodes can prevent these types of attacks from happening is pretty well understood, both in pseudonymous and anonymous cryptocurrencies. Making sure that light clients can detect double spending attacks in an anonymous cryptocurrency, however, is more challenging. Even if coins have identities and even if all spent coins’ identities are publicly visible, then a light client can still not afford to check whether the received coin is among all the already spent coins.

We propose a new method for mitigating double spending attacks that does not require the payee to access the ledger at all, when being paid. Conceptually, the idea behind our method is a two step approach. First, we assign a transaction identifier (\(\text{tid}\)) to each transaction and ensure that a double spending attack would require two transactions with the same \(\text{tid}\). Next, we ensure that the \(\text{tid}\) is uniquely bound to the payee, but at the same time looks pseudorandom to any outside observer. At this point, to prevent a double spending attack, the payee will only need to make sure that a transaction with a given \(\text{tid}\) is really bound to them and that it did not appear among their own transactions, rather than all transactions, previously.

Anonymous Coin Friendly Encryption. The anonymizer service will move around encrypted coins inside of some data structure. To be able to both prove efficiently that each individual movement was performed correctly and to also allow for an efficient and anonymous collection, the encryption scheme needs to satisfy certain additional properties. Additionally, it needs to be proof friendly in the sense that associated zero-knowledge proofs should ideally be simple and be concretely efficient. We abstract out the properties we need from the encryption scheme into a new notion of an anonymous coin friendly encryption
(ANCO) scheme. Our actual construction is similar to the one used in Quisquis [FMMO19], but in contrast to their work, we formalize and prove the properties that we require from the encryption scheme.

1.2 Related Work.

We are far from the first to consider anonymous cryptocurrencies or light clients. To better understand the challenges we need to overcome in our work, let us review existing anonymous cryptocurrencies and see what challenges they face, when trying to support light clients.

Cryptocurrencies Based on Accumulators. Anonymous electronic payments saw their birth in 1982 with David Chaum’s eCash system [Cha82]. His construction involves a bank, a user, and a pizza shop. The user picks a random transaction identifier $tid$ and asks the bank to sign $tid$ blindly, i.e., without actually seeing the signed message, in exchange for one pound. The user receives signature $\sigma = \text{Sign}(sk_B, tid)$, where $sk_B$ is the signing key of the bank. To pay the shop one pound, the user provides it with $(tid, \sigma)$. The shop can verify the validity of the signature $\sigma$ and then collect back one pound from the bank by providing it with $(tid, \sigma)$. If $tid$ was previously collected, the bank rejects the collection. Since the bank has signed $tid$ blindly, the original owner of this coin is anonymous among all parties that have received a coin from the bank.

Rather than relying on a specific number-theoretic assumption, Fischlin [Fis06] showed how to construct blind signatures from general assumptions. Combined with Chaum’s eCash idea above, Fischlin’s approach would proceed as follows. The user would pick $tid$ and send a commitment $c = \text{Commit}(tid; s)$ to the bank, which returns $\sigma = \text{Sign}(sk_B, c)$. Here $tid$ is the committed message and $s$ is the commitment randomizer. The user would then locally construct a non-interactive zero-knowledge proof of knowledge $\pi$ for statement $tid$ and witness $(\sigma, c, s)$, such that $\sigma$ is a signature on $c$ and $c = \text{Commit}(tid; s)$. They could then use $(tid, \pi)$ to pay the shop.

Zerocoin [BCG+14], later deployed under the name ZCash, further generalizes Chaum’s original eCash idea by replacing the centralized bank with a decentralized ledger. The user posts $c = \text{Commit}(tid; s)$ on the ledger and pays, with the currency of the ledger, for having minted a new coin. The presence of $c$ on the ledger is the authentication of $c$ being a coin. To collect a coin the shop computes a zero-knowledge proof of knowledge $\pi$ for the statement “I know $(c, w, s)$ such that $w$ is a witness that $c$ is in $ac$ and $c = \text{Commit}(tid; s)$” and post $(tid, \pi)$ to the ledger. If $tid$ was used before, then the collection is rejected.

To compute the proof efficiently, the user first aggregates all coins on the ledger into an accumulator value $ac$ via a public aggregation procedure and then provides a proof $\pi$ for the statement “I know $(c, w, s)$ where $w$ is a proof that $c$ is in $ac$ and where $c = \text{Commit}(tid; s)$”. The accumulator could, for example, be the root of a Merkle tree and $w$ a path in it. The size of the statement and proof would then be poly-logarithmic in size in the number of coins. How to make such proofs concretely efficient was recently shown in a series of works [CH22, CFH+22, ZBK+22, STW23].
Even though cryptocurrencies based on accumulators provide good anonymity guarantees, it is unfortunately not clear how to make them compatible with light clients. To collect a coin, a light client needs to aggregate all coins into the accumulated value $ac$ and prove that $c$ is among them. The light client could outsource this task to a full node, but this would reveal $c$ and thus the coin the client aims to collect towards the full node. Alternatively, the client could also ask the full node to not only compute the accumulator $ac$, but also an individual proof of membership for every single coin aggregated into $ac$. The client could then use private information retrieval [CGKS95] to obtain the one membership proof that is relevant to them. This solution would in principle work, but it would incur a prohibitive amount of computation on the full node, which renders this approach practically infeasible.

**Cryptocurrencies Based on Mixers and Tumblers.** A conceptually different approach was suggested by cryptocurrencies like Dash and Monero, where coins get repeatedly anonymized in small batches. In older systems like Dash this was done through the use of tumblers [Max13] that take $n$ coins as input, produce $n$ coins as output, and ensure that no external observer can link the owner of any input coin to any specific output coin. More recent systems, like Monero, rely on linkable ring signatures [RST01, LWW04], which enable signers to generate signatures for arbitrarily selected groups of $n$ verification keys, concealing the specific secret key used, while ensuring that the signing key belongs to one of the public keys. As all these approaches require linear in $n$ work for placing and collecting coins, their efficiency crucially relies on the value $n$ being not too large. In Monero [4], for instance, the value $n$ is chosen to be just 16 and even though each individual mixing step only provides a small amount of anonymity, the hope behind Monero and other systems of its kind is that eventually all coins get mixed enough to be completely untraceable.

While we have a reasonably good understanding of the relevant cryptographic primitives in isolation, we are currently lacking a solid understanding of the precise anonymity guarantees that cryptocurrencies like Dash and Monero provide, which is evidenced by the various attacks on these systems that have been found over the past years [KFTS17, YAY+19, DS21, Vij23].

**Intermezzo on Consensus and Long-Range Attacks.** Before discussing the next approach for constructing cryptocurrencies, we need to look a bit more closely at what a decentralized ledger really is and how it works from a consensus perspective. A ledger is, simply speaking, a growing chain of blocks. When new transactions appear on the network, they are placed into a new block, which is then appended to the end of the current chain. What is considered to be the true state of the ledger is decided by a consensus mechanism among the nodes, who are identified by their public signing keys, in the network [4]. A popular method for incentivizing the nodes on the network to behave honestly, is to use financial rewards and punishments. In Ethereum, for instance, nodes that want to play a role in reaching

---

2. In our discussion we focus on proof-of-stake blockchains as those are the focus of our work.
consensus, need to deposit a fixed amount of money that may be partially or fully slashed if they misbehave.

At some point in time, nodes that participate in the consensus may choose to get back their deposit and leave the system. When this happens, their public and private keys become worthless to them as they cannot be used to participate in any future consensus decision making and they are not tied to any financial stake any longer either. To an attacker, however, these keys may still be very valuable as they allow for key-buying long-range attacks. To perform such an attack, an adversary attempts to buy as many of those “worthless” keys as possible from nodes that used to participate in the consensus. Having acquired a sufficient amount of keys, the adversary may change previous consensus decisions, thereby forking the chain of blocks that used to be the true state of the ledger and creating an alternate chain, which may then be falsely accepted by users. This attack is a serious real-world problem as selling keys that are otherwise worthless is the financially rational thing to do.

A technique that aims to prevent this type of attack is checkpointing. Whereas classically a blockchain grows from its first block, the genesis block, by following some fixed hardcoded rules, the idea of checkpointing is to regularly accept intermediate blocks in the chain as unequivocal truths that cannot be changed. Once a block becomes a checkpoint, no adversarial behavior can produce a fork prior to this block, thus severely limiting the scope of possible key-buying long-range attacks.

**Cryptocurrencies Based on Recursive Proofs.** Armed with the above insights, the last type of cryptocurrency we want to discuss is based on the idea of always proving the validity of the latest block with respect to the genesis block using succinct proof systems. In other words, if γ is the genesis block, then each new block comes along with a succinct proof, attesting that the latest block is on a valid chain starting in γ. Computing such proofs can be done efficiently by extending the proof of the previous block using incrementally verifiable computation [Val08]. A bit more precisely, there exists an efficiently computable predicate \( \text{Ver} \) and efficiently computable proof \( \tau \) for message \( m \) and position \( p \), such that \( \text{Ver}(\gamma, p, m, \tau) = \top \), if and only if \( m \) is in position \( p \) on the ledger in a finalized block in a chain starting from \( \gamma \). A prominent example that relies on such an approach is the Coda blockchain [BMRS20], which was later launched as Mina.

Cryptocurrencies based on recursive proofs as described above have some advantages, when it comes to realizing anonymous payments. To place a coin on the ledger, we again pick a uniformly random \( \text{tid} \), randomizer \( s \), and compute \( c = \text{Commit}(\text{tid}; s) \). Once the coin is on the ledger in position \( p \), the user obtains a succinct proof \( \tau \) and they can then pay the shop by providing it with the tuple \( (p, c, \tau, s) \). To claim the coin, the shop simply computes a zero-knowledge proof of knowledge \( \pi \) for the statement “I know \( (p, c, \tau, s) \) such that \( \text{Ver}(\gamma, p, c, \tau) = \top \) and \( c = \text{Commit}(\text{tid}; s) \)” and posts \( (\text{tid}, \pi) \) on the ledger. Since the proof \( \pi \) hides both \( p \) and \( \tau \), the claimed coin is anonymous among all existing unclaimed coins.

There are also some challenges that would need to be overcome, if one wants to make the above approach work for light clients. The first issue is that light clients need a way of
efficiently making sure that tid is a fresh value that was not previously used. As part of our construction in this work, we show how this problem can be overcome and we think that our solution would also be applicable here. There is, however, a larger problem that does not have a clear solution. The approach towards anonymous payments we are currently discussing, inherently relies on the fact that we prove statements with respect to the genesis block $\gamma$, but if we want security against key-buying long-range attacks then we need to prove statements with respect to the latest checkpoint and not $\gamma$. If the proof $\tau$ that the user receives after minting a coin is relative to the latest checkpoint, then claiming the coin as above would reveal the checkpoint and thus reveal temporal information about which coin was claimed. If the shop wants to compute a proof $\pi$ that does not reveal the checkpoint, or which is relative to the latest check point, then it is not clear how to compute the proof efficiently. The shop may also try to outsource the proof computation to a full node, but similarly to what we have already discussed in the context of accumulator-based cryptocurrencies, this would incur a prohibitively high computational overhead on that full node.

1.3 Technical Overview.

Before discussing our construction, let us recall what we aim to construct. In our setting, we consider a ledger, modeled as an append-only list, which can be accessed by full nodes. Light clients can access the ledger through (possibly untrusted) full nodes and may want to either perform payments by placing coins intended for some recipient or they may want to collect coins that have been payed to them. In terms of anonymity, we would like to ensure that no external observer, not even the full node through which a light client communicates with the ledger, can determine who is paying who. We say that a construction satisfies strong anonymity, if the payer cannot see when a payee collects a coin. We assume that light clients have an off-chain communication channel between them and we also assume the existence of a trusted anonymizer service, which can hold a private state and can repeatedly post messages on the ledger. As mentioned before, the anonymizer service can be implemented via secure computation protocols, but for the sake of this work, we just assume a trusted party performing these actions. We note that the service never needs to interact with any of the parties directly and merely operates on the values that are posted on the blockchain.

In terms of efficiency, we would like all parties, i.e., anonymizer service, full nodes, and light clients, to do as little work as possible. More concretely, we would like them all to only perform a polylogarithmic (in the total number of coins in the system) amount of work for placing or collecting a coin.

High-Level Approach. On a conceptual level, our construction OCash uses the anonymizer service to maintain an ORAM [Gol87, Ost90, SCSL11], which can be accessed by light clients via full nodes for placing and collecting coins. Classically, ORAM can be thought of as an encrypted array stored on an untrusted server, which can be accessed via read and write operations by a data owner holding the corresponding secret key. The main security guarantee of an ORAM, known as obliviousness, dictates that the server, not knowing the secret key, cannot see which operations are performed at which locations. To achieve obliviousness the
data owner usually needs to perform dummy accesses along with the real operations and shuffle around elements in the encrypted array. Efficiency of an ORAM is measured in terms of how many dummy accesses are needed for each real operation and it is known that for an array of length $n$, it is both necessary \cite{LN18} and sufficient \cite{Ost90} to perform $\Theta(\text{polylog } n)$ dummy accesses. In our context, the ledger will play the role of the server, whereas the anonymizer service will play the role of the data owner. The anonymity guarantees of our payment system will heavily rely on the obliviousness guarantees of the underlying ORAM-like primitive, which we will make use of.

There are several important differences between what an ORAM provides and what we need. In terms of functionality, we do not strictly need an array with arbitrary read and write accesses, but just some data structure that allows for inserting coins and then retrieving them at most once. In terms of security, we will require a stronger notion than standard obliviousness, because payees will be able to track coins that have been paid to them in the data structure. This means that the adversary obtains additional leakage about the movements of some elements in the ORAM, which is not part of the regular ORAM obliviousness definition. Intuitively, we need to ensure that the movements of the adversarially tracked coins within the ORAM do not reveal any information about the movements of the honest users’ coins.

We call the cryptographic primitive we require a strongly oblivious read-once map (SOROM) and as we show in this work, there are existing ORAM constructions, which almost immediately provide us with our desired primitive. In particular, we will make use of the tree-based ORAM of Shi et al. \cite{SCSL11}. In their construction, an array of length $n$ is represented as a binary tree with $n$ leaves. Each node in the tree is a bucket, which can store a fixed number of data elements. The write operation inserts the new data elements into the root node bucket and assigns each of them a uniformly random leaf index. A maintenance operation is performed regularly and ensures that data elements are pushed down towards their assigned leaves, thereby making sure that no buckets at the top (or anywhere else for that matter) overflow with elements. The data structure obeys the invariant that each element is always in one of the buckets on the path between root node and assigned leaf. Reading an element is done by first magically determining the corresponding leaf index\footnote{Spending a coin will require reading it and since no coin can be spent twice, we never need to read an element in the map more than once.} and then retrieving all $\log n$ buckets on the path from root to leaf. To maintain obliviousness, the ORAM then places the read element in the root node bucket and assigns it a fresh random leaf index.\footnote{We will elaborate on how this works in our context below.}

In our context, we observe that no coin is spent twice and thus no coin is read more than once in the ORAM. This means that the coin does not need to be moved back to the root after being read and will always be on the path that it was assigned to upon its initial insertion in the data structure. This in turn will simplify finding the leaf index belonging to a specific data element. Additionally, we will show that using the maintenance operation from \cite{SCSL11}, all elements’ movements are independent of each other and thus the adversary does not learn anything about the positions of the honest coins by observing the movements.
of the adversarial coins. In summary, combining the above observations allows us to construct our SOROM by modifying the construction of Shi et al. appropriately.

**How to Place a Coin.** Before discussing how to place a coin in OCash, we first make two simplifying assumptions. We assume that all coins have a unit value and we only aim for weak anonymity, where the payer can see when the payee collects the coin. We discuss how we allow for placing arbitrary monetary values and achieve strong anonymity at the end of the technical overview.

Let us now look at how we can pay a coin with identifier \( \text{tid} \) to a shop \( S \), which is identified by a public encryption key \( \text{ek}_S \). For this purpose, we will use an encryption scheme that is both re-randomizable and key-indistinguishable. By re-randomizable we mean that ciphertexts can be re-randomized without knowing the public key under which the encryption was performed. By key-indistinguishability, which was originally introduced by Bellare et al. \cite{BBDP01}, we mean that a ciphertext cannot be linked to the public encryption key with which it was generated or, in other words, the ciphertext does not reveal who is the intended recipient. Concretely, the shop will have an ElGamal \cite{ElG85} public key \((g, h = g^x) \in G\) for a group \(G\), where the Diffie-Hellmann problem \cite{DH76} is hard, and the encryption of \( \text{tid} \in G \) will be

\[
\text{Enc}(\text{ek}_S, \text{tid}) = (g^\rho, h^\rho, g^\sigma, h^\sigma \cdot \text{tid})
\]

for uniformly random \( \rho \) and \( \sigma \). We note that the shop can use their secret key \( x \) to determine whether a ciphertext is for them, by checking whether \((g^\rho)^x \overset{?}{=} h^\rho \). The ciphertext can be re-randomized with values \( \rho' \) and \( \sigma' \) by computing

\[
\left( (g^\rho)^{\rho'}, (h^\rho)^{\rho'}, (g^\rho)^{\sigma'} \cdot g^\sigma, (h^\rho)^{\sigma'} \cdot (h^\sigma \cdot \text{tid}) \right) = \left( g^{\rho\rho'}, h^{\rho\rho'}, g^{\rho\sigma' + \sigma}, h^{\rho\sigma' + \sigma} \cdot \text{tid} \right).
\]

The coin will be placed in the top bucket of our SOROM with an associated label \( L \), chosen as described below, and whenever the maintenance operation of our data structure will move around these encrypted values it will also always re-randomize them.

**How to Find a Coin.** Before we can talk about how the shop can find coins they receive, we first need to talk about how the label \( L \) is chosen when a coin is inserted into our SOROM. When picking the label several things must be taken into account. The payer cannot choose it arbitrarily, as correctness properties of our SOROM rely on it being uniformly random. The label can also not be publicly known during coin placement as the shop will later reveal it during coin collection, which would lead to anonymity issues. Lastly, the payment process should be non-interactive in the sense that the payer can simply post a single message on the ledger, which means that the label can also not be chosen via a protocol that would require active interaction between anonymizer service and payer.

Our idea for choosing the label \( L \) is to let the user \( U \) and the anonymizer service perform a coin flip into the well \cite{Blu82}. When placing the coin at time \( t \), the user chooses a label \( L_U \) and provides it to both the shop and the anonymizer service. Providing \( L_U \) to the shop happens
off-chain and providing it to the anonymizer can be done by placing an encryption thereof, under the public key of the anonymizer service, on the ledger. The anonymizer service then publishes its label share $L_{A,t}$ for time $t$ and defines the coin’s label as $\text{Hash}(L_U || L_{A,t})$, where $\text{Hash}$ is modeled as a random oracle. This approach already gives us most of what we want. The label is uniformly random and if the $U$ was honest, then it is also unpredictable for any outside observer, who knows $L_{A,t}$.

There is, however, still one problem. How does the shop, which runs a light client learn $L_{A,t}$? Retrieving all labels ever published by the anonymizer is not feasible for a light client and asking a full node for the specific label would reveal the value $t$, which would in turn pose a problem for anonymity as $t$ would leak information about the time of the coin placement.

To circumvent this problem, we introduce the notion of a compressible randomness beacon. Rather than choosing the values $L_{A,1}, L_{A,2}, \ldots$ fully at random, we will let the anonymizer have a secret key $k$ and let them choose $L_{A,t} := \text{PRF}(k, t)$ using a special pseudorandom function (PRF), which is inspired by constrained PRFs [BW13, KPTZ13, BGI14]. Now rather than publishing $L_{A,t}$ at time step $t$, we will let the anonymizer publish a short constrained key $k_{\leq t}$, which allows anybody to compute $L_{A,t'}$ for any $t' \leq t$, but keeps any value larger than $t$ fully unpredictable. This allows the light client to simply retrieve the latest randomness beacon output and from there they can recompute whatever specific label they need locally.

**How to Collect a Coin.** At this point, we know how the coin is placed and we know how the shop can figure out the path in our SOROM on which the coin will be. Given the properties of our encryption scheme, the shop can also determine which specific ciphertext in the buckets on the path corresponds to the coin intended for them. The last question that remains is how the shop can collect the coin. For this, the shop simply posts $\text{tid}$ on the ledger and proves in zero-knowledge that one of the ciphertexts on the path in the SOROM opens to $\text{tid}$. The obliviousness guarantees of the SOROM ensure that revealing the path does not reveal anything about when the coin was inserted into our data structure.

If $\text{tid}$ was already posted on the ledger, then the collection of the coin is rejected. If the $\text{tid}$ is chosen arbitrary by the payer, then the shop has no way of verifying that the identifier is fresh and was not used before. The used $\text{tid}$ may already appear among the published identifiers on the ledger or maybe the same $\text{tid}$ was used to pay another shop, who also did not yet collect the coin.

To prevent these types of double-spending attacks, we endow the $\text{tid}$ with some more structure. We will assume that each user has a public nonce $n_U$. Whenever the user puts a new coin on the ledger, the nonce gets incremented. The transaction identifier chosen by $U$, when paying shop $S$ the amount $a$ is defined as the commitment $\text{tid} = \text{Commit}(U, S, n_U, a)$. Concretely, we will use $\text{tid} = g_\xi \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a$ as our commitment, where $\xi$ are the random coins and the values $U$ and $S$ are assumed to be the involved parties’ identifiers interpreted as finite field elements. When placing an encryption of this $\text{tid}$ on the ledger, the user $U$ proves in zero-knowledge that everything is well formed and that the $\text{tid}$ contains the correct $U$ and the correct value $n_U$. Computing these zero-knowledge proofs can be done very efficiently as
we show in our work. All in all, the encryption of this tid has the form

\[ c = \text{Enc}(e_k S, \text{tid}) = \left( g^\rho, h^\rho, g^\sigma, h^\sigma \cdot g_0^\xi \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \frac{g_{\text{hid}}}{5} \right). \]

If the coin is well formed, the ledger accepts it and provides a proof \( \tau \), which attests that the coin is on the ledger.

During payment, the user sends \((c, (\rho, \sigma, \xi, U, S, a), \tau)\) to the shop via their off-chain communication channel. The shop checks that the received coin \( c \) was correctly constructed using the values \((\rho, \sigma, \xi, U, S, a)\) and that \( \tau \) indeed attests that \( c \) is on the ledger. We stress that these checks do not require the shop to interact with the ledger or any full node. The binding property of the commitment scheme ensures that two valid coins for different shops cannot have the same identifier \( \text{tid} \). Thus the shop only needs to make sure that it did not already accept that exact coin itself.

**How to Achieve Strong Anonymity.** With the currently described approach, the shop needs to reveal \( \text{tid} \) during collection, which allows the payer to see when the coin is collected. To achieve strong anonymity, we need to hide \( \text{tid} \) during collection. For this purpose, we further extend the encryption that defines a coin by one component. Let \( \text{hid} = \text{Hash}(U, n_U) \) be the hashed identifier, where \( \text{Hash} \) is a collision-resistant hash function and let

\[ c = \text{Enc}(e_k S, \text{tid}) = \left( g^\rho, h^\rho, g^\sigma, h^\sigma \cdot g_0^\xi \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \cdot g_{\text{hid}}^5 \right). \]

When placing a coin, the user \( U \) proves that the ciphertext is well formed by proving in zero-knowledge that the components \( g_1, g_3, g_5 \) contain the correct \( U, n_U \), and \( \text{hid} \), where \( \text{hid} = \text{Hash}(U, n_U) \). During collection, the shop proves that the \( g_2 \)-component is \( S \). What remains to be proven is that the coin was not previously collected. For this we note that the value \((U, n_U)\) is unique as \( n_U \) is incremented for each payment of \( U \). By the collision-resistance of the hash function, this means that \( \text{hid} \) is also computationally unique.

The idea behind achieving strong anonymity is to extend the shop’s public key by including a commitment to a PRF key \( K \) and then, upon collection, letting it reveal an oblivious transaction identifier \( \text{otid} = \text{PRF}(K, \text{hid}) \) along with a proof that \( \text{otid} \) was correctly computed w.r.t. the claimed coin. If \( \text{hid} \) is used only once, then \( \text{otid} \) is pseudorandom and leaks no information, even w.r.t. the user knowing \( \text{hid} \). If the shop attempts to collect the same \( \text{hid} \) multiple times, then \( \text{otid} \) will repeat and the collection will be rejected.

To make this proof efficient, we will use a slight modification of the Dodis-Yampolskiy verifiable random function (VRF) \( [\text{DY}05] \). In general VRFs can be seen as commitments to random functions, which allow the committing party to open function evaluations at arbitrary points. We extend the shops public key by a component \( g_5^K \), where \( K \) is the corresponding secret key and the random function is defined as

\[ \text{PRF}(K, \text{hid}) = g_5^{1/(K+\text{hid})}. \]
During collection the shop reveals $\textsf{otid}$ and proves knowledge of a vector $(c, x, K, \textsf{hid}, \xi, a, U, S, n_U)$, where

$$c = \mathsf{Enc}(\textsf{ek}_S, \textsf{tid}) = \left( g^\rho, h^\sigma, g^\xi \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \cdot g_5^{\textsf{hid}} \right) =: (c_1, c_2, c_3, c_4),$$

such that

$$c_x = c_2 \wedge c_3 \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \cdot g_5^{\textsf{hid}} = c_4 \wedge \textsf{otid} = \mathsf{PRF}(K, \textsf{hid}) .$$

**What Happens When the Anonymizer Service is Compromised?** OCash relies on a trusted anonymizer service that regularly performs some actions. While realizing it through secure computation can remove the requirement of trusting any one single party and can make compromising this service practically very difficult, it is still sensible to ask what the worst thing that could happen upon compromise is. If one uses an MPC with public verifiability then the worst thing that can happen is full leakage of all values seen by the MPC and that the MPC stops performing its task. The compromised service could stop performing its duty of maintaining the SOROM, which would result in too many coins accumulating in the root node bucket. This would potentially prevent light clients from efficiently interacting with the ledger, but would still allow them to send and receive money, if they are willing to perform as much work as a full node as the coins could be collected from the ledger using for instance an accumulator based backup system.

A more efficient approach for implementing the anonymizer service would be to use a single semi-trusted party to do the routing of the coins. One could let this party prove that it is moving the coins correctly. We conjecture that the shuffling proofs used in Quisquis \[FMMO19\] might be adopted to prove correct movement according to a SOROM. If the party adds proofs that the routing is done correctly, then the worst that can happen, when the party is corrupted, is loss of liveness and loss of anonymity, as the they can see how coins are moving and thus learn who is paying whom. Both of these problems could possibly be mitigated by using several anonymizers \textit{a la} a mix net, but we leave the investigation of this to future work.

**Modelling and Analysis.** Lastly, let us now discuss how we define and prove security. By anonymity we will mean that after a sequence of payments and collections, an attacker gets no knowledge beyond some unavoidable leakage. As an example of unavoidable knowledge, imagine $S$ collects a payment at time $t$, then the coin was necessarily created at some earlier time $t' \leq t$. As another example, consider a shop that keeps querying the ledger to check whether it received a payment. Necessarily the shop will learn, when a payment was initiated. Besides this kind of unavoidable knowledge, the adversary should learn nothing. This should hold, even if they are given the $\textsf{tid}$'s of all payments in the system, to ensure that we do not rely on the secrecy of the $\textsf{tid}$'s in the security or anonymity of the system.

Defining anonymity using game-based definitions can be subtle and error prone, so we have opted for a simulation-based definition. We require that the view of a run of the system can be simulated given only the unavoidable knowledge. Since payment systems are designed
to be potentially used in other contexts and may possibly interact with many different other systems, it is natural to require general and concurrent composability. We therefore define security in the UC framework \cite{Can01} by giving an ideal functionality $F_{\text{AnonPay}}$, modeling an ideal payment system only leaking unavoidable information to the simulator. Then we say that $\Pi_{\text{AnonPay}}$ is a secure payment system, if $\Pi$ UC-securely realizes $F_{\text{AnonPay}}$.

Consider the ideal functionality $F_{\text{AnonPay}}$ in Fig. 1. It can interact with several users and several shops. Parties can have both roles, but for our explanation it is easier to think of users and shops as separate entities. We illustrate the ideal functionality with one user and one shop, but there can be any number of them. When $F_{\text{AnonPay}}$ gets a command from $U$ to pay $S$, then the ideal functionality will inform the adversary/simulator that $U$ initiated a payment but not to whom. This models the fact that we allow for leaking, say via traffic analysis, that $U$ is doing some payment, but we do not allow leaking any information about who is being payed or what the amount is. We let the adversary/simulator decide when the payment is completed. When this happens $U$ is informed and its account is deducted a monetary units. We let the adversary decide when events like payments happened to avoid explicitly modeling time. We do not explicitly consider any liveness guarantees and we believe it is better to analyze them separately for a concrete implementation of an anonymous payment system. All we require from our protocols at the present level of abstraction, is that they are non-trivial in the sense of \cite{Can01}, i.e., if all messages are delivered then the protocol produces outputs. Implementing $F_{\text{AnonPay}}$ then guarantees that these are the right outputs and that privacy is maintained.

When a payment is created then $F_{\text{AnonPay}}$ samples a random tid with a distribution independent of $U$ and $S$, i.e., the tids of all payments are sampled from the same distribution and hence they leak nothing about the payment they are associated to. tid is then output to $U$, but not the simulator/adversary. This means that when proving security, the simulator needs to simulate without knowing tid towards an environment which does know tid. This might look draconian, but is needed to ensure that tid can be used as desired in any context without hurting security of the system. Later, the simulator/adversary can inform $F_{\text{AnonPay}}$ that the payment has become observable, at which time $S$ is informed about the transaction identifier and the amount. In some implementations, it might be the case that the shop can observe that a payment happened, before it can actually collect it. We have therefore introduce another state called collectable. Again the adversary decides when a payment becomes collectable. The simulator/adversary is not informed about the identity of $S$ when making these decision. They are given a handle on the payment ($U : \text{Pay}$, ?) and can use this handle to say when the payment should become observable and collectable. Once a payment is collectable the shop might collect it. This will leak tid to the simulator/adversary to model the fact that the protocol is allowed to leak tid at this point. Note that this does not violate

---

7 When proving security of a protocol $\Pi_{\text{AnonPay}}$ relative to $F_{\text{AnonPay}}$, then $F_{\text{AnonPay}}$ interacts with the simulator on the top interface. When $F_{\text{AnonPay}}$ is being used as an ideal functionality in a hybrid world, then $F_{\text{AnonPay}}$ interacts with the adversary on the top interface.

8 This captures the fact that the timing of when a payment comes observable and collectable cannot depend on the identity of the shop, which could otherwise have been a covert leakage channel. This is an example of the simulation-based definition automatically capturing aspects one might not have explicitly thought about in game-based definitions.
Fig. 1. A sketch of the ideal functionality $F_{\text{AnonPay}}$ for anonymous payment. When strong anonymity is modelled then the ideal functionality does not leak tid during collection but only “S: Collect,?” anonymity as tid is random and independent of U and tid has so far not been leaked. From the point of view of the simulator/adversary tid can originate from any previous payment.\textsuperscript{9, 10} Again, the simulator/adversary decides when the collection completes and at this point the account of the shop is incremented. The non-triviality of $\Pi_{\text{ANONPAY}}$ will guarantee that once a payment is observable, it will always become collectable and once it is collectable any attempt to collect it will succeed.

Note that our notion of anonymity is a relative one. We prove that the system leaks no more information than the times at which payments are created and collected. To get a feeling for the anonymity provided by this relative notion, consider a setting with $n$ honest users $U_1, \ldots, U_n$ and $n$ honest shops $S_1, \ldots, S_n$. First, all users pay one unique shop in some arbitrary order. Then each shop collects their payment in some order. What the simulator/adversary will see is

\[(U_1: \text{Pay},?), \ldots, (U_n: \text{Pay},?), (S_1: \text{Collect}, \text{tid}_1), \ldots, (S_n: \text{Collect}, \text{tid}_n),\]

where the tid$_i$ are uniform and independently distributed. This leaks nothing about who paid whom. If, however, it is known that a shop always collects payments right after being paid,\textsuperscript{9} Again, it might look odd that we gave tid to the environment, but the crucial point is that we did not give it to the simulator. Giving it to the environment only gives stronger security: the simulator must simulate without tid and must fool even an environment who knows tid.\textsuperscript{9} Leaking tid models weak anonymity. We can model strong anonymity by not leaking tid. As discussed above this models that even the user cannot see when the shop collects its coin.
then we know they $U_i$ paid $S_i$. This means that, externally to the system, some measures need to be taken to mitigate traffic analysis. The payment system itself, however, is compatible with any way to mitigate the traffic analysis, thereby breaking up the system into very different problems, which can be handled using different tools.

![Diagram](Fig. 2. A sketch of our UC model of a ledger accessed via full nodes, anonymous off-ledger communication, and a service protocol updating the ledger. When writing $m$ the client learns the position $p$ and gets a proof $\tau$ that $m$ is on the ledger. The same is leaked to the adversary (upward arrows). When reading a position $p$ or using a general read function $L$ it is leaked who read what to the adversary.

We then address how we model the protocol. We will model the ledger using an ideal functionality, see [Fig. 2] Instead of explicitly modeling both full nodes and light nodes, we have absorbed the full nodes into the ideal functionality. All parties using the ideal functionality are consider light clients. When a party performs a given operation, $F_{\text{LEDGER}}$ leaks the identity of the light client and the information the full node would have learned
in the real-world setting to the adversary. This models the worst case, where there is only a single full node, which is used by all light clients in the anonymous payment scheme. The anonymous off-ledger communication is modeled using a separate ideal functionality called \( F_{\text{AAT}} \). Finally there might be a “service” protocol which helps update the ledger. This service is modeled as just another party and their access to the ledger is via the same interface as light clients.

We then prove our protocol secure by proving that it implements \( F_{\text{AnonPay}} \) in the hybrid model with \( F_{\text{Ledger}} \) and \( F_{\text{AAT}} \). We only give full simulation-based security proofs for the core features and weak anonymity. We then separately discuss how to extend the analysis to cover strong anonymity and some other extensions.

**Paper Outline** The remainder of the paper is structured as follows: We recall all relevant existing definitions in our preliminaries in Section 2. We provide ideal functionalities for anonymous cryptocurrencies in Section 3 and we provide the ideal functionalities that model the blockchain world within which we would like our cryptocurrency to exist in Section 4. We define our notion of an anonymous coin friendly encryption scheme, our compressible randomness beacon, and our strongly oblivious read-once maps in Sections 5, 6, and 7 respectively. Finally, in Section 8 we go on to construct OCash. All primitives that are defined and used are instantiated in Section 9. We show how to extend OCash to satisfy strong anonymity in Section 10.

## 2 Preliminaries

We use \( \lambda \) to denote the security parameter. When we work with lists, for instance a list \( \text{Ledger} \) to represent the ledger, we index from 1. We use \( \text{Ledger}[k] \) to denote position \( k \) and use \( \text{Ledger}[k] = \bot \) to denote that it is not the case that \( 1 \leq k \leq |\text{Ledger}| \).

We prove security in the UC framework [Can20]. We assume the reader is familiar with the UC framework. When we specify ideal functionalities all inputs will start with a command name, \( \text{CmdNAME} \). A canonical implementation of a command on an ideal functionality will be of the form. “On input \( (\text{CmdNAME}, x) \) from \( P \) do the following . . .” Such a command later gives an output \( y \) by outputting \( (\text{CmdNAME}, x, y) \) to \( P \). We output the command name and input \( x \) again to link \( (\text{CmdNAME}, x, y) \) uniquely to \( (\text{CmdNAME}, x) \). This allows us to use the following short hand notion for parties interacting with ideal functionalities: \( \mathcal{F}.\text{CmdNAME}(x) \rightarrow y \). It expands to mean “Input \( (\text{CmdNAME}, x) \) to \( \mathcal{F} \), wait for \( \mathcal{F} \) to return the first value of the form \( (\text{CmdNAME}, x, z) \), assign \( z \) to \( y \) and then proceed.”

We use \( \Pr[F|E] \) to denote conditional probability, i.e., the probability of event \( F \) given event \( E \) occurred. When \( A \) is an algorithm or process and \( E \) an event defined in that process we use \( \Pr[A : E] \) and \( \Pr[A \parallel E] \) to denote the probability that \( E \) occurs when executing experiment \( A \).
2.1 Commitment Scheme

Definition 1 (Commitment Scheme). A commitment scheme is a tuple of PPT algorithms \( \text{Com} = (\text{Gen}, \text{Commit}) \), which are defined as follows:

\[
\begin{align*}
\text{ck} & \leftarrow \text{Gen}(1^\lambda): \text{The key generation algorithm takes security parameter } \lambda \text{ as input and outputs commitment key } \text{ck}. \\
\text{com} & \leftarrow \text{Commit}(\text{ck}, \text{m}): \text{The randomized commitment algorithm takes commitment key } \text{ck} \text{ and message } \text{m} \text{ as input and outputs commitment } \text{com}.
\end{align*}
\]

Definition 2 (Perfect Hiding & Computational Binding). We say that \( \text{Com} = (\text{Gen}, \text{Commit}) \) is a perfectly hiding, computationally binding commitment scheme if it has the following properties:

**Perfect Hiding:** For all \( \lambda \in \mathbb{N} \), all correctly generated \( \text{ck} \leftarrow \text{Gen}(1^\lambda) \) and all messages \( m_0 \) and \( m_1 \) of the same length, it holds that \( \text{Commit}(\text{ck}, m_0) \) and \( \text{Commit}(\text{ck}, m_1) \) have the same distribution.

**Computational Binding:** For all \( \lambda \in \mathbb{N} \) and all PPT adversaries \( A \), it holds that

\[
\Pr \left[ (\text{ck} \leftarrow \text{Gen}(1^\lambda), \text{Commit}(\text{ck}, m_0; \rho_0) = \text{Commit}(\text{ck}, m_1; \rho_1) \land m_0 \neq m_1) \right] \leq \text{negl}(\lambda).
\]

2.2 Symmetric and Public Key Encryption

A symmetric-key encryption scheme is a tuple of PPT algorithms \( \text{SKE} = (\text{Gen}, \text{Enc}, \text{Dec}) \). We use the notion of IND-P2-C2 from [KY00] and will just denote it as IND-CCA. We also use an INC-CCA secure public key encryption scheme \( \text{PKE} = (\text{Gen}, \text{Enc}, \text{Dec}) \) see, e.g., [BDPR98].

2.3 \( \Sigma \)-Protocols

We will make use of several zero-knowledge proofs of knowledge and membership in our protocols. They will all be based on \( \Sigma \)-protocols [Cra97], which are three-move proof systems.

Definition 3 (\( \Sigma \)-Protocols). A \( \Sigma \)-protocol with challenge space \( \mathcal{E} \) for a relation \( \mathcal{R} \subseteq \{0, 1\}^* \times \{0, 1\}^* \) is a tuple of PPT algorithms \( (A, Z, V) \), which are defined as follows:

\[
\begin{align*}
a & \leftarrow A(x, w; \rho): \text{The algorithm takes statement } x, \text{ witness } w \text{ with } (x, w) \in \mathcal{R} \text{ and random coins } \rho \text{ as input and generates the prover’s first round message } a. \\
z & \leftarrow Z(x, w, e, \rho): \text{The algorithm takes statement } x, \text{ witness } w \text{ with } (x, w) \in \mathcal{R}, \text{ challenge } e \in \mathcal{E}, \text{ and auxiliary input } \rho \text{ as input and generates the prover’s third round message } z. \\
b & \leftarrow V(x, a, e, z): \text{The verification algorithm takes statement } x, \text{ prover’s messages } (a, z), \text{ and challenge } e \in \mathcal{E} \text{ as input and outputs a bit } b.
\end{align*}
\]

that are defined by tuples \( (\mathcal{R}, A, \mathcal{E}, Z, V, \text{Ext}, \text{Sim}, \mathcal{T}) \), where \( \mathcal{R} \subseteq \{0, 1\}^* \times \{0, 1\}^* \) is a poly-time binary relation, \( A, Z, V, \text{Ext}, \text{Sim} \) are poly-time algorithms, \( \mathcal{E} \) is the finite challenge space, and \( \mathcal{T} \) is a unary predicate used to recognize trapdoors when defining strong special soundness as explained below.

\( \Sigma \)-protocols are expected to be complete, special sound, and honest-verifier zero-knowledge as defined below.
Definition 4 (Completeness). A $\Sigma$-protocol $(A, Z, V)$ with challenge space $\mathcal{E}$ for relation $\mathcal{R}$ is said to be complete, if for any $(x, w) \in \mathcal{R}$, it holds that
\[
\Pr \left[ \begin{array}{c}
a \leftarrow A(x, w; \rho) \\
e \leftarrow \mathcal{E} \\
z \leftarrow Z(x, w, e, \rho)
\end{array} \right| V(x, a, e, z) = \top \right] = 1,
\]
where the probability is taken over the random coins of all involved algorithms.

Definition 5 (Special Soundness). A $\Sigma$-protocol $(A, Z, V)$ with challenge space $\mathcal{E}$ for relation $\mathcal{R}$ is said to be special sound, if there exists a PPT algorithm $\text{Ext}$, such that for any $(x, a, e, z, e', z')$ with $e \neq e'$, it holds that
\[
V(x, a, e, z) = \top \land V(x, a, e', z') = \top \implies (x, \text{Ext}(x, a, e, z, e', z')) \in \mathcal{R}.
\]

Definition 6 (Honest-Verifier Zero-Knowledge). A $\Sigma$-protocol $(A, Z, V)$ with challenge space $\mathcal{E}$ for relation $\mathcal{R}$ is said to be honest-verifier zero-knowledge, if there exists a PPT algorithm $\text{Sim}$, such that for any $(x, w) \in \mathcal{R}$, it holds that
\[
\begin{align*}
\begin{cases}
a \leftarrow A(x, w; \rho) \\
e \leftarrow \mathcal{E} \\
z \leftarrow Z(x, w, e, \rho) \\
\text{return } (x, a, e, z)
\end{cases} & \equiv \begin{cases}
e \leftarrow \mathcal{E} \\
(a, z) \leftarrow \text{Sim}(x, e) \\
\text{return } (x, a, e, z)
\end{cases}.
\end{align*}
\]

We will also require a notion of strong special soundness, as introduced by Kondi and Shelat [KS22], which asks for extraction to work even in the case where $e' = e$, but $z' \neq z$. Most $\Sigma$-protocols have this stronger property or can be massaged into having it. If extraction fails, the extractor is allowed to instead recover a “system parameter trapdoor”. We define PPT algorithm $\mathcal{T}$, which recognizes system parameter trapdoors, i.e., we call $t$ a system parameter trapdoor if and only if $\mathcal{T}(t) = \top$.

Definition 7 (Strong Special Soundness). A $\Sigma$-protocol $(A, Z, V)$ with challenge space $\mathcal{E}$ for relation $\mathcal{R}$ is said to be strong special sound with respect to trapdoor predicate $\mathcal{T}$, if there exists a PPT algorithm $\text{Ext}$, such that for any $(x, a, e, z, e', z')$ with $z \neq z'$, it holds that
\[
V(x, a, e, z) = \top \land V(x, a, e', z') = \top \implies (x, \text{Ext}(x, a, e, z, e', z')) \in \mathcal{R} \lor \mathcal{T}(\text{Ext}(x, a, e, z, e', z')) = 1.
\]

The idea is of course that when used in a protocol, it should be computationally hard to obtain a system parameter trapdoor. In that case, the extractor will return a witness for $x$ except with negligible probability.
2.4 Simulation-Sound NIZK Arguments

In our constructions we will need universally composable zero-knowledge proofs of membership (UC ZKM). For a PPT relation \( R \), the corresponding language is defined as

\[
L_R = \{ x \mid \exists w (x, w) \in R \}.
\]

A proof of membership for \( x \) is a proof that \( x \in L_R \). Both Camenisch, Krenn, and Shoup \([CKS11]\) as well as Nielsen \([Nie17]\) present (equivalent) definitions of UC ZKMs. An ideal functionality \( F_{ZKM} \), which is parameterized by a PPT relation \( R \), for ZKMs is specified. An honest prover \( P \) can prove statements \( x \) in front of a verifier \( V \) by providing \( (x, w) \) as input to the functionality. If \( (x, w) \in R \), then the functionality outputs \( (x, \top) \) to \( V \), signaling that \( x \) is in the language. When a corrupt prover \( P \) wants to prove a statement \( x \) in front of verifier \( V \), then the simulator/adversary only provides \( x \) to the ideal functionality, which will just output \( (x, \top) \) to \( V \). Importantly, the corrupt prover does not have to present a witness \( w \). At this point the two models of Camenisch, Krenn, and Shoup \([CKS11]\) and Nielsen \([Nie17]\) differ slightly.

In \([CKS11]\) the ideal functionality is called “gullibly” as it accepts \( x \) without a witness, so it could be the case that \( x \not\in L_R \). However, UC ZKM of a protocol is then defined as implementing \( F_{ZKM} \) using a simulator which only inputs \( x \not\in L_R \) with negligible probability. This means that if the real protocol accepts \( x \not\in L_R \) with non-negligible probability then the simulator cannot simulate, which guarantees soundness.

In \([Nie17]\), when the simulator/adversary inputs \( x \), the ideal functionality will check that \( x \in L_R \). If this is not the case, it outputs \( \text{FAIL} \) to the environment. Call this ideal functionality \( F_{ZKM}^{\text{FAIL}} \). A protocol is called a UC ZKM, if it implements \( F_{ZKM}^{\text{FAIL}} \), and now there is no explicit restriction on the simulator \[\text{If } x \not\in L_R \text{ with non-negligible probability, the simulator cannot simulate, which guarantees soundness.}\]

Nielsen \([Nie17]\) furthermore shows that a protocol is UC ZKM, if it is complete, zero-knowledge and weak simulation-sound against a PPT adversary running multiple sessions as defined below. Below we give the definitions specifically for NIZK proofs.

**Definition 8 (Non-Interactive Zero-Knowledge).** A NIZK is a tuple of PPT algorithms \( \text{NIZK} = (\text{Gen}, \text{Prv}, \text{Ver}) \), which are defined as follow:

\[
\text{crs} \leftarrow \text{Gen}(1^\lambda): \text{The public parameter generation algorithm takes security parameter } \lambda \text{ as input and returns common reference string } \text{crs}.
\]

\[
\pi \leftarrow \text{Prv}(\text{crs}, x, w): \text{The prover algorithm takes common reference string } \text{crs}, \text{ statement } x, \text{ and witness } w \text{ as input and returns a proof } \pi.
\]

\[\text{We stress, however, that the verifier is not guaranteed that the prover knows a witness } w, \text{ such that } (x, w) \in R.\]

\[\text{Note that } F_{ZKM}^{\text{FAIL}} \text{ is not PPT as the check } x \in L_R \text{ is not necessarily poly-time. However, it is shown in } [Nie17] \text{ that composition still works: in any PPT protocol using } F_{ZKM}^{\text{FAIL}} \text{ as a blackbox we can securely replace } F_{ZKM}^{\text{FAIL}} \text{ with a UC ZKM. After this the overall protocol is PPT.}\]
\[
\begin{align*}
\text{Definition 9 (Completeness).} & \quad \text{A non-interactive zero-knowledge proof } NIZK = (\text{Gen}, \text{Prv}, \text{Ver}) \\
& \text{for relation } R \text{ is said to be complete, if for any PPT adversary } A, \text{ it holds that}
\end{align*}
\]
\[
\Pr \left[ \begin{array}{c}
\text{crs} \leftarrow \text{Gen}(1^\lambda) \\
(x, w) \leftarrow A(\text{crs}) \\
\pi \leftarrow \text{Prv}(\text{crs}, x, w)
\end{array} \right] (x, w) \in R \land \text{Ver}(\text{crs}, x, \pi) \neq \top \leq \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the adversary and all involved algorithms.

\[
\begin{align*}
\text{Definition 10 (Zero-Knowledge).} & \quad \text{A non-interactive zero-knowledge proof } NIZK = (\text{Gen}, \text{Prv}, \text{Ver}) \\
& \text{for relation } R \text{ is said to be zero-knowledge, if there exists a pair of PPT algorithms } (\text{SimGen}, \text{Sim}), \\
& \text{such that for any PPT adversary } A, \text{ it holds that}
\end{align*}
\]
\[
\Pr \left[ \begin{array}{c}
(x, \pi) \leftarrow A(\text{crs}) \\
g \leftarrow \mathcal{O}_{\text{Sim},b}^{\text{Sim} \text{OR REAL}}(\cdot, \cdot)(\text{crs})
\end{array} \right] b \leftarrow \{0, 1\} \\
\leq \frac{1}{2} + \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the adversary and all involved algorithms and where the oracle \( \mathcal{O}_{\text{Sim},b}^{\text{Sim} \text{OR REAL}}(\cdot, \cdot) \) takes as input pairs \((x, w)\). If \((x, w) \notin R\), then the oracle returns \( \bot \). Otherwise, if \( b = 0 \), it returns \( \pi \leftarrow \text{Sim}(t_{\text{Sim}}, x) \) and if \( b = 1 \), it returns \( \pi \leftarrow \text{Prv}(\text{crs}, x, w) \).

\[
\begin{align*}
\text{Definition 11 (Weak Simulation-Soundness).} & \quad \text{A non-interactive zero-knowledge proof } NIZK = (\text{Gen}, \text{Prv}, \text{Ver}) \\
& \text{for relation } R \text{ is said to be weak simulation-sound, if there exists a pair of PPT algorithms } (\text{SimGen}, \text{Sim}), \\
& \text{such that for any PPT adversary } A, \text{ it holds that}
\end{align*}
\]
\[
\Pr \left[ \begin{array}{c}
(x, \pi) \leftarrow A(\text{crs}) \\
x \notin L_R \land \text{Ver}(\text{crs}, x, \pi) = \top
\end{array} \right] \leq \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the adversary and all involved algorithms and where the oracle \( \mathcal{O}_{t_{\text{Sim}}}^{\text{Sim}}(\cdot, \cdot) \) takes as input pairs \((x, w)\). If \((x, w) \notin R\), then the oracle outputs \( \bot \) and otherwise it computes \( \pi \leftarrow \text{Sim}(t_{\text{Sim}}, x) \) and returns \( \pi \).

\[
\begin{align*}
\text{Definition 12 (UC NIZK).} & \quad \text{A non-interactive zero-knowledge proof } NIZK = (\text{Gen}, \text{Prv}, \text{Ver}) \\
& \text{for relation } R \text{ with an associated pair of simulation algorithms } (\text{SimGen}, \text{Sim}), \text{ is said to be UC NIZK proof of membership, if it simultaneously satisfies completeness, zero-knowledge, and weak simulation-soundness as defined in Definitions } 9, 10, \text{ and } 11 \text{ respectively.}
\end{align*}
\]

Lindell [Lin15] presents a generic compiler that transforms \( \Sigma \)-protocols into NIZK proofs in the CRS model in the presence of a non-programmable random oracle. The transformation is proven to have the three properties defined above and therefore it actually produces a UC
NIZK. Since the random oracle is only used for soundness, we can apply the Fiat-Shamir heuristic and replace it by a real life hash function and get a UC NIZK in the random oracle devoid model. We use this to compile \( \Sigma \)-protocols into UC NIZKs in the CRS model without a random oracle.

We will not go into the details of how Lindell’s transformation works, but we want to highlight one of its main ideas, which will be relevant to our work. To show that their UC NIZK is sound, Lindell argues that one could hypothetically extract a witness from an adversarially generated, but accepting, proof by rewinding an entire UC execution, including the environment itself. Now clearly one is usually not allowed to rewind the entire UC execution, but the fact that one can in principle extract a witness means that it must exist, which is enough to show soundness. We refer to this proof strategy as global extraction.

Attema, Fehr, Klooß [AFK22] show that the Fiat-Shamir transformation applied to multi-round \( \Sigma \)-protocols results in proofs of knowledge. Since a witness can be extracted from a proof of knowledge, it must logically exist. This means that using Lindell’s approach in combination with global extraction, one can show that multi-round \( \Sigma \)-protocols can be transformed into UC NIZKs of membership as well. Note, however, that since extracting the witness can only happen using extraction, the resulting proof system is not a UC proof of knowledge, as the UC simulator cannot rewind its environment.

2.5 Simulation-Extractable NIZK Arguments

In some cases we will not just need non-interactive proofs of membership, but rather proofs of knowledge. Turning \( \Sigma \)-protocols into non-interactive proofs of knowledge via the Fiat-Shamir transformation [FS87] requires rewinding for extracting the witness and for this reason this transformation does not give us proofs of knowledge in the UC setting. Fischlin [Fis05] presents an alternative transformation, which has an online extractor, thus also works in the UC setting, but requires the \( \Sigma \)-protocols to have unique responses \( z \). Unfortunately, this property is not satisfied by some of the protocols we would like to use in our work.

Kondi and Shelat [KS22] present a randomized version of Fischlin’s transformation, which allows for online extraction and only requires the starting \( \Sigma \)-protocol to satisfy strong special soundness. Lysyanskaya and Rosenbloom [LR22] show that Kondi and Shelat’s transformation can transform \( \Sigma \)-protocols into non-interactive proofs of knowledge in the UC model with a so-called restricted, programmable, observable, random oracle \( G_{roRO} \). We point to the work of Lysyanskaya and Rosenbloom for a formalization of \( G_{roRO} \). For our purposes it suffices to know that \( G_{roRO} \) is one of the possible formalizations of the usual random oracle lifted to the UC model. The only technicality needed, is that the simulator is allowed to observe the queries made by the environment, but we do not allow the environment to observe queries made by the simulator, which would make it trivial for it to know that it is in the simulation. For more details on this, we refer the reader to the work of Lysyanskaya and Rosenbloom. In the descriptions below we will denote the random oracle by \( O \).

In our work, we will use a definition of GUC NIZK PoKs that is equivalent to the definition given by Lysyanskaya and Rosenbloom [LR22, Definition 11], but is more convenient to work
with. We will state our definition here and defer the discussion of why the two definitions are equivalent to Appendix C.1.

**Definition 13 (Non-Interactive Zero-Knowledge Proof of Knowledge).** A NIZK is a tuple of PPT algorithms \( \text{NIZKPoK} = (\text{Gen}, \text{Prv}, \text{Ver}) \), all with access to oracle \( \mathcal{O} \), which are defined as follow:

- \( \text{crs} \leftarrow \text{Gen}(1^\lambda) \): The public parameter generation algorithm takes security parameter \( \lambda \) as input and returns common reference string \( \text{crs} \).
- \( \pi \leftarrow \text{Prv}(\text{crs}, x, w) \): The prover algorithm takes common reference string \( \text{crs} \), statement \( x \), and witness \( w \) as input and returns a proof \( \pi \).
- \( b \leftarrow \text{Ver}(\text{crs}, x, \pi) \): The verification algorithm takes common reference string \( \text{crs} \), statement \( x \), and proof \( \pi \) as input and returns bit \( b \).

In all of the following security definitions related to \( \text{NIZKPoK} \), we will assume that the extractor \( \text{Ext} \) and simulator \( \text{Sim} \) can observe all queries made to the \( \mathcal{O} \) by the adversary but not vice versa.

**Definition 14 (Completeness).** A non-interactive zero-knowledge proof of knowledge \( \text{NIZKPoK} = (\text{Gen}, \text{Prv}, \text{Ver}) \) for relation \( \mathcal{R} \) is said to be complete, if for any PPT adversary \( \mathcal{A} \), it holds that

\[
\Pr \left[ \begin{array}{c}
\text{crs} \leftarrow \text{Gen}(1^\lambda) \\
(x, w) \leftarrow \mathcal{A}^{\mathcal{O}(\cdot)}(\text{crs}) \\
\pi \leftarrow \text{Prv}(\text{crs}, x, w)
\end{array} \right] (x, w) \in \mathcal{R} \land \text{Ver}(\text{crs}, x, \pi) \neq \top \leq \text{negl}(\lambda),
\]

**Definition 15 (Zero-Knowledge).** A non-interactive zero-knowledge proof of knowledge \( \text{NIZKPoK} = (\text{Gen}, \text{Prv}, \text{Ver}) \) for relation \( \mathcal{R} \) is said to be zero-knowledge, if there exists a pair of PPT algorithms \( (\text{SimGen}, \text{Sim}, \text{Ext}) \), such that for any PPT adversary \( \mathcal{A} \), it holds that

\[
\Pr \left[ \begin{array}{c}
\text{crs}, \text{tSim}, \text{tExt} \leftarrow \text{SimGen}(1^\lambda) \\
(b \leftarrow \{0, 1\}) \\
g \leftarrow \mathcal{A}^{\mathcal{O}(\text{SimOrReal}(\cdot, \cdot)), \mathcal{O}^{\text{Sim}(\cdot)}, \mathcal{O}(\cdot)}(\text{crs})
\end{array} \right] g = b \leq \frac{1}{2} + \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the adversary and all involved algorithms and where the oracles are defined as follows:

- \( \pi \leftarrow \mathcal{O}^{\text{SimOrReal}(\cdot, \cdot)}_{\text{SimOrReal}}(\cdot, \cdot) \): The oracle takes pairs \( (x, w) \) as input and if \( (x, w) \notin \mathcal{R} \), then it returns \( \bot \). Otherwise, if \( b = 0 \), it returns \( \pi \leftarrow \text{Sim}(\text{tSim}, x) \) and if \( b = 1 \), it returns \( \pi \leftarrow \text{Prv}(\text{crs}, x, w) \). It adds \( (x, \pi) \) to \( Q \).
- \( \top / \bot \leftarrow \mathcal{O}^{\text{Sim}(\cdot)}_{\text{Sim}(\cdot)}(x, \pi) \): The oracle takes \( (x, \pi) \) as input and checks whether \( \text{Ver}^{\mathcal{O}(\cdot)}(\text{crs}, x, \pi) = \top \). If not, it returns \( \bot \). Otherwise, it proceeds as follows. If \( (x, \pi) \in Q \), it returns \( \top \) or if \( (x, \pi) \notin Q \), it computes \( w \leftarrow \text{Ext}(\text{tExt}, x, \pi) \). If \( (x, w) \in \mathcal{R} \) it returns \( \top \), otherwise it returns \( \text{FAIL} \).
Definition 16 (Weak Simulation-Extractability). A non-interactive zero-knowledge proof of knowledge NIZKPoK = (Gen, Prv, Ver) for relation \( \mathcal{R} \) is said to be weak simulation-extractable, if there exists a pair of PPT algorithms \((\text{SimGen}, \text{Sim}, \text{Ext})\), such that for any PPT adversary \( \mathcal{A} \), it holds that

\[
\Pr \left[ \left( \text{crs}, \text{tSim}, \text{tExt} \right) \leftarrow \text{SimGen}(1^{\lambda}) \middle| \begin{array}{c}
\mathcal{A} \left( \text{Sim}^{\text{Sim}}(\cdot), \text{Sim}^{\text{Ext}}(\cdot), \text{Sim}^{\text{crs}}(\cdot) \right) \\
\end{array} \text{tSim} \left( \cdot, \cdot \right), \text{tExt} \left( \cdot, \cdot \right), \text{tExt} \left( \cdot \right)
\right\mid \text{tExt} \left( \cdot \right) \rightarrow \text{FAIL} \right] = \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the adversary and all involved algorithms and where the oracles are defined as follows:

\( \pi \leftarrow \text{Sim}^{\text{Sim}}(x, w) \): The oracle takes pairs \((x, w)\) as input and if \((x, w) \notin \mathcal{R}\), then it returns \( \perp \). Otherwise, it computes \( \pi \leftarrow \text{Sim}^{\text{Sim}}(x, \cdot) \), adds \((x, \pi)\) to \( Q \), and returns \( \pi \).

\( \top/\perp \leftarrow \text{Sim}^{\text{Sim}}(x, \pi) \): The oracle is as defined in Definition 15. We write \( \text{Sim}^{\text{Sim}} \left( \cdot, \cdot \right) \rightarrow \text{FAIL} \) to denote the event that \( \text{Sim}^{\text{Sim}} \) on some activation returned \( \text{FAIL} \).

Definition 17 (GUC NIZK PoK). A non-interactive zero-knowledge proof of knowledge NIZKPoK = (Gen, Prv, Ver) for relation \( \mathcal{R} \) with an associated pair of simulation algorithms \((\text{SimGen}, \text{Sim})\) and extractor \( \text{Ext} \) is said to be UC NIZK PoK, if it simultaneously satisfies completeness, zero-knowledge, and weak simulation-extractability as defined in Definitions 14, 15, and 16 respectively.

3 Ideal Functionality for Anonymous Cryptocurrency

We start by giving a security definition for anonymous cryptocurrency by an ideal functionality \( \mathcal{F}_{\text{AnonPay}} \). The model is very idealised and is not an attempt to model all aspects which would be relevant to a real-life implementation. The model is meant to capture the fundamental security properties that we want the system to have by giving an ideal functionality with these properties and then defining security via the UC framework.

We consider an account based setting as it makes our definitions of anonymity more intuitive. We assume accounts might have a known association with real world identities and that transactions are between accounts. The motivation for the first assumption is that once an account was used to pay for a good at an online shop and the shop shipped the good to the user, the shop will know who owns the account. Our constructions can be applied to a UTXO setting too, but would require a somewhat more involved modelling, so we pick an account based model for simplicity. To mitigate that the owner of accounts might not be fully anonymous we will require that the sending account and receiving account of a transfer cannot be linked. The only thing which leaks about an account is how many sends and receives it made. So anonymity is required at the level of transfers. We consider two levels of anonymity. When the flavour is weak then the sender of a transfer may learn when the receiver collects the transfer. When the flavour is strong then the sender is oblivious of when the receiver collects the transfer.

We use Accounts to denote the set of accounts. For concreteness think of the set of accounts as being the set of public keys for a signature scheme. We generally denote an
account by A. For concreteness think of each account having an associated key pair \((pk, sk)\) and \(A = pk\) being the name of the account. In the discussion below, when using A to name the account we use \(sk_A\) to name the secret key. The part of \(F_{\text{AnonPay}}\) related to account creation is given in Fig. 3.

**Parameters** The ideal functionality is parameterised by a flavour of anonymity \(fla \in \{\text{strong, weak}\}\) and an initial amount \(a_0 \in \mathbb{N}\). On the first activation it asks the adversary \(S\) for a TID distribution \(Tid\) which is used for sampling transfer identifiers. The adversary must give a distribution \(Tid\) back with exponential collision-entropy, i.e., if \(S\) is a set of payment identifiers, then \(\Pr[tid \in S | tid \leftarrow Tid] \leq |S|2^{-\lambda}\). This is to ensure that we can ignore the event that a randomly sampled transfer identifier will hit an already used one.

**Init** When activated for the first time, proceed as follows. Let \(\text{Accounts} = \{\}\) be the initial set of accounts.

Initialise a map \(\text{Balance} : \text{Accounts} \rightarrow \mathbb{N}\) with \(\text{Balance}[A] = 0\) for all \(A\). Initialise the abstract transfer identifier \(atid = 0\).

**Create Account** On input \((\text{CreateAccount})\) from a party \(P\), leak \((\text{CreateAccount}, P)\) to \(S\).

**Callback Account Observable** On a subsequent input \((\text{MakeAccountObservable}, P, A)\) from \(S\), where \(A \notin \text{Accounts}\), add \(A\) to \(\text{Accounts}\) and output \((\text{CreateAccount}, A)\) to \(P\). From now on let \(P_A\) denote \(P\) and if we say that \(A\) does something, we mean that \(P_A\) does that thing.

If this was the first account created, i.e., \(|\text{Accounts}| = 1\), then let \(FA = A\) and let \(\text{Balance}[FA] = a_0\).

**Remark 1 (Where is the secret key?).** When an account is created by party \(P\) the name \(A\) of the account is returned by the command, as opposed to letting \(P\) input the account name to the command. Another design choice is that only the account name is output, not any secret key material used for controlling the account. In terms of an implementation, think of the key material \((pk, sk)\) as being generated as part of the account creation command. After the account was created the command returns \(A = pk\) to the user on its API and the corresponding secret key \(sk_A\) is securely stored locally. When the party \(P_A\), having created \(A\), wants to use the account \(A = pk\) then the secret key \(sk_A\) is recovered from storage. This prevents that we give \(sk_A\) as output and have to give it as input. Since it is the environment which sees outputs and gives inputs in the UC model and the environment talks to the adversary, having made the secret key \(sk\) an output would have created problems.

One might then be worried about how to authenticate access to \(sk_A\). Since \(A = pk\) is public knowledge and one identifies the payer in a payment \((\text{Pay}, A, B, a)\) just by naming \(A\), cannot anyone walk up and ask to transfer in the name of \(A\)? The answer is no and is guaranteed by the party identifier logistics of the UC framework. In the UC framework, it is only the party with party identifier \(\text{pid}\) who can give inputs in the name of \(\text{pid}\) to an ideal functionality. In our case we call parties \(P\) which technically just means that the party identifier is \(\text{pid} = P\). The ideal functionality therefore by UC design remembers which \(P\) received \(A\), call it \(P_A\), and then only takes commands to control \(A\) from \(P_A\). In terms of an implementation, think of it as follows. Anyone can run the command \((\text{CreateAccount}, P)\). During this a key pair \((pk, sk)\) is generated. By doing this the party having run \((\text{CreateAccount}, P)\) learns
(pk, sk). It outputs $A = pk$ on the API so it can be used by outer protocols, but it stores $sk_A = sk$ locally. This is what implements that only $P$ can control $sk$. Since the standard corruption behaviour of the UC model is so-called *pid-wise corruption* it holds that the party $P_A$ in an implementation of $\mathcal{F}_{\text{AnonPay}}$ is corrupted if and only if the party calling party $P_A$ on $\mathcal{F}_{\text{AnonPay}}$ is corrupted. Therefore $sk_A$ becomes known to the adversary if and only if the party with party identifier $P_A$ is corrupted in the surrounding protocol.

**Remark 2 (Why does the adversary pick the account name?).** We discuss a final subtlety of the model of account creation. In the ideal functionality we let the adversary pick the name $A$ of the account. This might look weird, but it just models that the name of the account can be anything. In a proof of security it is the simulator which is the adversary towards $\mathcal{F}_{\text{AnonPay}}$ and the simulator will just set $A$ to be the public key that identifies the account in the implementation. If we did not allow the adversary to pick $A$ then the simulator could not do this alignment of account names in the implementation and the ideal functionality. In terms of using $\mathcal{F}_{\text{AnonPay}}$ as an ideal functionality in a larger construction the design choice means that an outer protocol should not rely on the account names having a particular form or distribution, which seems as a healthy design principle independently of the subtleties of UC modeling.

**Remark 3 (Could not the adversary steal the founding account?).** Yes! Note that we simply say that the first account created is the funding account and it gets the initial amount $a_0$. This in principle allows a corrupted party to open the funding account. We picked this model for simplicity. Who is allowed to open the funding account is decided non-algorithmically and will in practice typically be decided even before the blockchain exists. We see no advantage in attempting a detailed model of this genesis ceremony. When using $\mathcal{F}_{\text{AnonPay}}$ in some larger context one can simply assume that the environment only allows the intended party $P$ to open the funding account.

We now describe and discuss how we model anonymous transfer. A transfer consists of a payment and a collection.

**Transfer Anonymity.** We assume that accounts can be associated to users, or rather, we do not assume that the user-account association can be reliably hidden from the adversary. It is therefore a conservative model to just assume that the adversary knows who owns which accounts. Anonymity will therefore be implemented by ensuring that if a payment is made from account $A$ to account $B$, then $A$ and $B$ cannot be linked. When the amount is deducted from $A$ the identity of $B$ is hidden. When the amount is added to $B$ the identity of $A$ is hidden. We require a strong notion of anonymity which ensures that if an amount is deposited on $B$ then this could be from any previous outgoing payment from any other account in the system. The adversary might have prior knowledge on who pays who, but observing the communication of the payment system should give it no additional knowledge. More concretely we want to require the following. First of all, we assume that the receiver of a payment is hidden for anyone but the sender and the receiver. We require that transferred amounts are hidden from anyone but the sender and receiver: this prevents linking outgoing
and ingoing payments using the amounts. We allow that the receiver learns which account sent the payment and that the payer learns who is being payed.

**Collection.** In any anonymous payment system there will be some notion of the receiver “collecting” the payment later than when it is being made\(^\text{\textsuperscript{13}}\). We cannot have that the account of the receiver is updated at the same time as the payment is being made. This would allow trivial traffic analysis attacks. Hence the “collection” must happen later. We do not want to add to the ideal functionality how long a collection is delayed. We consider this an external choice. What the ideal functionality allows is to completely decouple the deduction and collection events. The only information any party, not being sender or receiver, may learn is that the collection was after the deduction, which is an *a priori* fact.

**Strong versus Weak Anonymity.** We consider two flavours of anonymity, *weak* and *strong*. With weak anonymity the payer can see when its own payment is being “collected”. This might not be tolerable in all cases as it allows timing attacks. Maybe the payer knows that the receiver collects coins only when at a specific location. With strong anonymity we also hide the time of collection from the payer.

**Observability.** The ideal functionality also has a notion of observability. Consider a customer paying anonymously in a pizza shop. There is a point where the customer initiates the payment, for instance by holding a smart phone next to a device in the shop and approving the amount. At some point the shop will learn that the payment went through. This might be well before it is collected, as discussed above. We therefore want to model explicitly this property that a payment has been observed to be “collectable”. At this point the shop can safely hand out the pizza. It then chooses to collect the coins later to preserve the anonymity of the payer.

**Transfer Identifiers.** Once a payment has been initiated it gets a transfer identifier (TID) \(\text{tid}\). This is just a common name the payer and collector can use to refer to the payment. If the same payer pays the same receiver the same amount twice about the same time, it is often necessary to have a way to distinguish the payments externally to the payment service. This is the role of \(\text{tid}\). Since \(\text{tid}\) is the same for the sender A and the payer B it could be used to break anonymity. Therefore we do not leak \(\text{tid}\). When considering only weak security we leak \(\text{tid}\) during collection. This will allow the sender to learn when the transfer was collected. Third parties learn nothing as we do not leak \(\text{tid}\) at the time of payment. To make it safe to use \(\text{tid}\) externally to the ideal functionality we want that \(\text{tid}\) in and of itself leaks nothing about the transfer, like the identifier of the parties, the amount, or time of payment or collection. A simple way to do this is to require that each \(\text{tid}\) is sampled from the same distribution \(\text{Tid}\). This is the design choice we took. To ensure that the \(\text{tid}\)'s are unique (except with negligible probability) we require that \(\text{Tid}\) has collision entropy \(\lambda\), where \(\lambda\) is the security parameter.

\(^{13}\) In a UTXO system this would correspond to when a UTXO is being spent in the future.
**Initiate Pay** On input (PAY, A, B, a) from PA where B ∈ Accounts and $a \leq \text{Balance}[A]$, let $\text{atid} = \text{atid} + 1$ and leak (PAY, A, $\text{atid}$) to $S$. Here A is the sender, B the receiver, $a$ is the amount, and $\text{atid}$ is an abstract transfer identifier used to refer to the transfer internally. If $\text{PA}$ or $\text{PB}$ is corrupted then instead leak (PAY, A, B, $\text{atid}$). If $\text{PA}$ or $\text{PB}$ is corrupted, then ask $S$ for a transfer identifier $\text{tid}$; It must specify a $\text{tid}$ not used between A and B before, i.e., $(A, B, \text{tid})$ must be unique. When $\text{PA}$ is corrupted, then $S$ knows the previous $\text{tid}$’s used, so it can pick a unique one. If $S$ specified a $\text{tid}$ used before, then $\mathcal{F}_{\text{AnonPay}}$ ignores it and samples a random identifier $\text{tid} \leftarrow \text{Tid}$. Add (PAY, $\text{atid}$, tid, A, B, a) to BeingDeducted. If $\text{PA}$ or $\text{PB}$ is corrupt, then leak (PAY, A, B, tid, a) to $S$.

**Callback Deduct** On input (MAKEDEDUCTED, $\text{atid}$) from $S$, where some (PAY, $\text{atid}$, tid, A, B, a) ∈ BeingDeducted, remove (PAY, $\text{atid}$, tid, A, B, a) from BeingDeducted. If $\text{Balance}[A] \geq a$, then let $\text{Balance}[A] = \text{Balance}[A] - a$ and add (PAY, $\text{atid}$, tid, A, B, a) to Deducted. Output (PAY, A, B, tid, a) to $\text{PA}$.

**Callback Observable** On input (MAKEOBSERVABLE, $\text{atid}$) from $S$, where some (PAY, $\text{atid}$, tid, A, B, a) ∈ Deducted, add (PAY, $\text{atid}$, tid, A, B, a) to Observable.

**Callback Collectable** On input (MAKECOLLECTABLE, $\text{atid}$) from $S$, where some (PAY, $\text{atid}$, tid, A, B, a) ∈ Observable, add (PAY, $\text{atid}$, tid, A, B, a) to Collectable.

**Observe** On input (OBSERVE, tid, A, B, a) from $\text{PB}$, let $J = \top$ if some (PAY, $\text{atid}$, tid, A, B, a) ∈ Observable and $J = \bot$ otherwise, and return (PAY, tid, A, B, a, J) to $\text{PB}$.

**Collect** On input (COLLECT, tid, A, B, a) from $\text{PB}$ proceed as follows.
- If (PAY, $\text{atid}$, tid, A, B, a) ∈ Observable ignore and return.
- If (PAY, $\text{atid}$, tid, A, B, a) ∈ Observable \ Collectable, leak (COLLECT, B, Too Early) to the adversary $S$ and return.
- If (PAY, $\text{atid}$, tid, A, B, a) ∈ Collectable, let $\text{atid} = \text{atid} + 1$, leak (COLLECT, B, $\text{atid}$) to $S$ (in case of fla = weak leak (COLLECT, B, $\text{atid}$) to $S$), and add (PAY, $\text{atid}$, tid, A, B, a) to BeingCollected.

**Callback Collected** On input (MAKECOLLECTED, $\text{atid}$) from $S$, where some (PAY, $\text{atid}$, tid, A, B, a) ∈ BeingCollected and (PAY, tid, A, B, a) \ Collectable remove (PAY, $\text{atid}$, tid, A, B, a) from BeingCollected and add (PAY, tid, A, B, a) to Collected and let $\text{Balance}[B] = \text{Balance}[B] + a$. Then output (COLLECT, tid, A, B, a) to $\text{PB}$.

**Fig. 4.** Functionality $\mathcal{F}_{\text{AnonPay}}$. Events related to payment and collection.
Under these restrictions we let the adversary pick the distribution. If the sender is corrupted we allow it to pick the payment identifier in a non-random manner. We enforce, however, that it cannot reuse a payment identifier, as this could lead to confusion and subtle attacks. We therefore make $F_{\text{AnonPay}}$ enforce that payment identifiers are unique even when picked by a corrupt sender. Note that this puts the same requirement on an implementation.

**Discussion of Commands.** The part of $F_{\text{AnonPay}}$ related to payment and collection is given in Fig. 4. We discuss some technicalities of how the ideal functionality is specified. We let $S$ denote the adversary. The value $\text{atid}$ is an abstract transfer identifier which is internal to the ideal functionality for book keeping only. This is just a way in which the adversary can denote a given payment for which it does not known the sender, receiver or amount. The value $\text{tid}$ is a transfer identifier used by the sender and receiver to refer to the transfer. It will identify the transfer, so it must be hidden from $S$ and cannot be used as a pointer for book keeping. We add a delay to some events to get a more realistic model. We let the adversary determine when events happen by giving a callback when the event should take place.

We now go over the commands and explain how they may relate to a real-life implementation. On input (CREATEACCOUNT) party $P$ would start making the key material for an account and post it on the blockchain. Once the account has been posted it would be observable by other parties. This corresponds to the (MAKEACCOUNTOBSERVABLE, $A$) event.

On input (PAY, $A$, $B$, $a$) party $P$ starts interacting with the blockchain to create the payment. The value $\text{atid}$ does not appear in the implementation, it is only a pointer used for bookkeeping in the ideal functionality. Since $P$ might have its secret key stored in several places and accidentally have different sites act at the same time, we do not assume that $P_A$ knows that it did not try to spend more than $\text{Balance}[A]$. We assume that it checks that for a given transfer of $a$ it holds that $a \geq \text{Balance}[A]$, but we allow that it might happen that several such payments are initiated concurrently and would create a negative balance if all were executed. We consider this possible honest behaviour and will not punish it. It seems a crucial security requirement that an honest party does not lose safety just because it accidentally attempts a “double spend”.

At some point the payment might get so far underway (if there are sufficient funds) that the account $A$ is deducted the amount $a$. This is the callback event MAKEDEDUCTED. Here we will do the check that the balance will not get negative, and reject deductions that would cause this. Further down the road the payment will reach a state where $B$ can observe that the payment was made and can be sure that it will eventually be able to collect it. This might happen before it is actually collectable, and it is an interesting event as it would allow the receiver to safely hand out goods or service. Therefore we make this a separate callback event MAKEOBSERVABLE. At the end of the payment process the transfer reaches a state where it can be collected at the discretion of the receiver. This is the callback event MAKECOLLECTABLE.

Finally, once a coin is collectable, the receiver might chose to collect it. This is done using the command (COLLECT, $\text{tid}$, $A$, $B$, $a$) from $P_B$. It is leaked to the adversary when this happens and who $B$ is. In case of weak anonymity we also leak the transfer identifier $\text{tid}$. But
the connection to the payment is not revealed, as we did not leak tid during payment. We also use independent values of atid during payment and collection so the adversary cannot link payment and collection via the interaction with $F_{\text{AnonPay}}$. Once collection has begun it will eventually terminate. We say that the collection terminated when the funds become available to the receiver. This is modelled using the callback event MakeCollected.

Remark 4 (Why does the adversary specify the distribution of transfer identifiers?). We want that the distribution of transfer identifiers can depend on the implementation. Allowing the adversary to specify it will allow the simulator to simply set it to be the one of the implementation.

Remark 5 (How does the receiver learn about the payment?). Note that to collect a payment the receiver has to input $(\text{Collect}, \text{tid}, A, B, a)$. This might raise the question of how it learns tid and a, and maybe even how it learns that $P_A$ wants to pay $P_B$ at all? Why not let $F_{\text{AnonPay}}$ signal these values to $P_B$ when the payment takes place? We have chosen not to do this to not enforce implementations where $P_B$ is online during payment or where $P_A$ knows how to contact $P_B$. It could be that $P_A$ wants to pay an anonymous account $B$ and does not know who the owner $P_B$ is. It could also be that $P_A$ wants to use a particular channel to inform $P_B$ of the payment that we do not model in our setting. This could for instance be a text message or a channel not leaking the physical identity of $P_A$ to $P_B$. We therefore assume that there is some out-of-band way that $P_A$ learns that a payment took place, and the workflow of the payment on $F_{\text{AnonPay}}$ resumes when $P_B$ learned about the payment and inputs $(\text{Collect}, \text{tid}, A, B, a)$.

4 Modelling the Blockchain World

We now describe how to model the setting in which we want to implement the anonymous cryptocurrency. We will call this the blockchain world. The blockchain world will contain a public ledger $F_{\text{Ledger}}$ and an authenticated anonymous channel $F_{\text{AAT}}$, both modelled as ideal functionalities.

The public ledger is an authenticated append-only ledger. We also assume it can do so-called filtering, i.e., a message can be posted along with a claim of having some given property $\phi$. The property might depend on the current state, Ledger, of the ledger. Technically we will append $(m, \phi)$ and we only add this message to Ledger if $\phi(\text{Ledger}, m) = \top$. We add $\phi$ to the ledger to model that it is known how a given $m$ was filtered. An example of a property could be that $m$ specifies a payment for which there currently is enough balance on Ledger.

The ideal functionality $F_{\text{AAT}}$ models an authenticated anonymous channel between payers and receivers. This is a means by which a payer can send a message to the receiver without this event becoming visible on the public ledger, or to other senders or receivers.

The blockchain world will always contain a protocol $\Pi_{\text{AnonPay}}$ for payment. This is a protocol using $F_{\text{Ledger}}$ and $F_{\text{AAT}}$. The blockchain world might also contain a protocol $\Pi_{\text{Service}}$ which has access to $F_{\text{Ledger}}$ and might do off-ledger computations and post messages to the ledger to aid the execution of the anonymous payment service. Concretely, in our implementation, they will perform the mixing of the coins. We can model this setting in the
UC framework by letting $\mathcal{F}_{\text{ledger}}$ be a global sub-routine of both $\Pi_{\text{service}}$ and the protocol $\Pi_{\text{anonpay}}$ (cf. [BCH+20]). We now describe $\mathcal{F}_{\text{AAT}}$ and then $\mathcal{F}_{\text{ledger}}$.

**Anonymous, Authenticated Channels.** We formalise a notion of anonymous, authenticated channels where the sender can send a message to a receiver without anyone else being aware that a message is being sent.

What we mainly want to model is that there is an off-chain way to deliver a message between Sender and Receiver without the parties running the blockchain learning about the communication. This is a tricky notion to formalise, so for simplicity we assume the anonymity is perfect, i.e., no one learns anything about the transfer. In practice this is rarely possible to implement. Imagine for instance a setting where you are in a shop and bring your credit card close to a reader using Near Field Communication to read a message from the card. Or consider a situation where you send an e-mail to the address of the Receiver using a Tor like solution. In both these situation there are parties which learn some leakage. Another customer in the shop might know that the shop uses a blockchain based payment system and inspect the blockchain to see which payments were made at the particular point in time of your purchase. This might allow them to link the purchase to a particular account on the blockchain and thereby you. You do not necessarily want other customers to learn your identity. The Tor servers at the edge do learn some information on when certain entities were active and hence also learn some, possibly vague, information about the communication. But in both cases we can allow ourselves to ignore the leakage of the off-chain channel with open eyes and keep in mind that a scheme proven secure in our model would therefore have to be analysed for traffic analysis attacks when implemented in practice and using concrete real-world channels.

We believe that a very precise and detailed model of these settings which would allow to catch and quantify the above problems would hide the big picture of our model which is meant to be simple and foundational. We therefore went for the very abstract models of the off-chain channels. The model is given in Fig. 5.

![Functionality $\mathcal{F}_{\text{AAT}}$.](image)

![Fig. 5. Functionality $\mathcal{F}_{\text{AAT}}$.](image)

**Ledger.** At the most abstract level a blockchain is an append-only ledger with no associated secret state beyond the list of messages. It just allows several parties to broadcast messages and creates an agreed upon total order on the messages. This is also called total-ordered
broadcast and atomic broadcast. We model this as an ideal functionality \( F_{\text{Ledger}} \) in Fig. 6, where one can broadcast messages and lookup information on the ledger.

Any party can broadcast a message. A very unrealistic aspect of our model is that all parties see the same ledger at all times. This is physically impossible. There will always be some difference in the exact physical time at which two parties receive the message making them update their view. We have for simplicity chosen to not model time and liveness in detail. However, for our construction one can see by inspection that there is no use of this perfect synchronisation feature. Our protocols can also be proven secure in more realistic models of time.

When posting a message \( m \) we also assume that a filtering/validity predicate \( \phi \) is posted. It is used to reject invalid messages from being posted. When \( \phi(\text{Ledger}, m) = \top \) then we say that \( m \) is valid to be appended to \( \text{Ledger} \), otherwise it is invalid. We assume that the ledger only post message in valid positions, i.e., for all ways to write the ledger as \( \text{Ledger} = \text{Ledger}' \| (m, \phi) \| \text{Ledger}'' \) it holds that \( \phi(\text{Ledger}', m) = \top \). If we post a message without mentioning \( \phi \), then we are tacitly using the constantly true \( \phi = \top \). We note that not all blockchains allow filtering. However, most modern blockchain allows some notion of smart contract. One can implement filtering by inputting the message to a smart contract which accept the message only if it is valid. The filtering functions we use are relatively simple, so it could be practical on most blockchains.

We have a read command, where an account holder can choose to read only part of the blockchain. This is done by submitting a function \( R \) and getting back \( R(\text{Ledger}) \). The function \( R \) will be leaked to the adversary. In practice this could be implemented by the account holder submitting \( R \) to one or more reader nodes of the blockchain and getting back (an authenticated version of) \( R(\text{Ledger}) \). For this implementation to be secure it is important that we let \( F_{\text{Ledger}} \) leak \( R \). We require that \( R \) is monotone in the following sense. The output of \( R \) is \( \bot \) or a bit-string. If \( R(\text{Ledger}) \neq \bot \) then for all \( \text{Ledger}' \) which are extensions of \( \text{Ledger} \) it holds that \( R(\text{Ledger}') = R(\text{Ledger}) \). Think of \( \bot \) as having tried to read a part of the blockchain that did not exist yet. We call such \( R \) lookup functions.

### Main Theorem Statement

With the model in place we are ready to state our main theorem. Our protocol \( \Pi_{\text{AnonPay}} \) follows the technical overview in the introduction. It uses several standard primitives formalised in Section 2 for completeness, including commitments, encryption, and zero-knowledge. It also uses several new primitives, namely a strongly oblivious read-once memory (SOROM), a compressible random beacon (CRaB), and an anonymous coin-friendly encryption scheme (ANCO) which we formalise in the full version.

**Theorem 1 (informal).** Under the security of the primitives SOROM SOROM, UC ZK proof of knowledge NIZKPoK, UC ZK proof of membership NIZK, perfectly hiding commitment scheme Com, IND-CCA secure public-key encryption scheme PKE, IND-CCA secure secret-key encryption scheme SKE, ANCO RPKE, CRaB CRaB the protocol \( \Pi_{\text{AnonPay}} \) UC-securely implements \( F_{\text{AnonPay}} \) in the hybrid world with ideal functionalities \( F_{\text{Ledger}}, F_{\text{AAT}}, \) and \( F_{\text{Service}} \).
The ledger \( \mathcal{F}_{\text{Ledger}} \) interacts with parties \( P \) and the adversary \( A \).

**Init (Internal Command)** Initialize an empty list \( \text{Ledger} \) and empty sets \( \text{InTransit}, \text{Proven} \).

**Broadcast** On input \((\text{Broadcast}, m, \phi)\) from \( P \), where \( m \in \{0,1\}^* \) is the message and \( \phi : (\{0,1\}^*)^* \rightarrow \{\top, \bot\} \) is a PPT filtering predicate, leak \((\text{Broadcast}, P, m, \phi)\) to the adversary and add \((P, m, \phi)\) to \( \text{InTransit} \). We assume \( \phi \) is given in some representation ensuring that it is PPT.

**Callback Broadcast** On input \((\text{Broadcast}, P, m, \phi)\) from \( A \), where \((P, m, \phi) \in \text{InTransit} \) and \( \phi(\text{Ledger}, m) = \top \) and \((P, m, \phi) \notin \text{Ledger} \), append \((m, \phi)\) to \( \text{Ledger} \).

**Read** On input \((\text{Read}, R)\) from \( P \), where \( R \) is a lookup function, leak \((\text{Read}, P, R)\) to the adversary and return \((\text{Read}, R, R(\text{Ledger}))\) to \( P \).

**Prove Valid** On input \((\text{ProveValid}, p)\) from \( P \), where \( \text{Ledger}[p] \neq \bot \), send \((\text{ProveValid}, P, p)\) to \( A \) and get back \( \text{TxProof} \in \{0,1\}^\lambda \). Add \((p, \text{Ledger}[p], \text{TxProof})\) to \( \text{Proven} \) and return \((\text{ProveValid}, p, \text{TxProof})\) to \( P \).

**Verify Valid** On input \((\text{VerValid}, p, (m, \pi), \text{TxProof})\) from \( P \) return \((\text{VerValid}, p, (m, \pi), J \in \{\top, \bot\})\) to \( P \) where \( J = \top \) if and only if \((p, (m, \phi), \text{TxProof}) \in \text{Proven} \).

\[ \text{This command by design does not leak information to the adversary.} \]

Unfortunately the page limit does not allow us to formalise all the new primitives nor their implementations. Their formalisations are given in the supplementary material. Here we formalise only the notion of SOROM which is central for giving anonymity against an adversary who can follow its own elements in an oblivious data structure and ANCO which specifies the encryption scheme for encrypting coins.

### 5 Anonymous Coin Friendly Encryption (ANCOs)

We now introduce some tools we need for building OCash. The first is a anonymous coin friendly encryption scheme.

**Definition 18 (Rerandomizable Public Key Encryption).** A rerandomizable public key encryption (RPKE) scheme is a tuple of PPT algorithms \( \text{RPKE} = (\text{Params}, \text{Gen}, \text{Enc}, \text{Dec}, \text{Ran}) \), which are defined as follows:

\[
\text{pp} \leftarrow \text{Params}(1^\lambda): \quad \text{The parameter generation algorithm takes security parameter } \lambda \text{ as input and outputs public parameters pp}.
\]

\[
(ek, dk) \leftarrow \text{Gen(pp)}: \quad \text{The key generation algorithm takes public parameters pp as input and returns public key pk and corresponding secret key sk}.
\]

\[
ct \leftarrow \text{Enc(ek, m)}: \quad \text{The encryption algorithm takes public key pk and message } m \in M \text{ as input and returns ciphertext ct} \in C.
\]

\[
m \leftarrow \text{Dec(dk, ct)}: \quad \text{The decryption algorithm takes decryption key dk and ciphertext ct} \in C \text{ as input and returns plaintext } m \in M.
\]

\[
ct' \leftarrow \text{Ran(pp, ct)}: \quad \text{The rerandomization algorithm takes public parameter pp and ciphertext ct as input and returns ciphertext ct’.}
\]
For an integer \( k \in \mathbb{N} \), we write \( \text{Ran}^k(pp, ct) \) to denote the \( k \)-fold application of the randomization procedure to ciphertext \( ct \).

We will consider encryption schemes in the presence of a relation \( \mathcal{R}_{\text{Enc}} \) for statements \( x = (pp, ct, m) \) and witnesses \( w = \rho \). The pair \( (x, w) \) is in \( \mathcal{R}_{\text{Enc}} \) if and only if, there exists a key pair \((ek, dk)\) in the support of \( \text{Gen}(pp) \), such that \( ct = \text{Enc}(ek, m; \rho) \). We require the relation to be efficiently checkable, when given only \( x \) and \( w \), meaning that one can efficiently check whether a ciphertext is indeed a valid encryption without knowing the actual encryption or decryption key. Looking ahead, this property will be crucial for allowing us to place and spend coins securely and anonymously. The property is not as mysterious as it first appears. In our scheme \( ct = \text{Enc}(ek, m; \rho) \) contains a perfectly binding committing to \( ek \) and \( w \) contains the opening. What is crucial for anonymity is that \( ek \) is not mentioned in the instance \( x \), which will be put on the ledger.

We will also require our encryption scheme to satisfy several other properties that we state in the following. We require honestly generated ciphertexts \( ct \) to decrypt to the correct plaintext.

**Definition 19 (Correctness).** We say an encryption scheme \( \text{RPKE} = (\text{Params}, \text{Gen}, \text{Enc}, \text{Dec}, \text{Ran}) \) is correct, if for all \( \lambda \in \mathbb{N} \), all \( k \in \mathbb{N} \) and all \( m \in \mathcal{M} \), it holds that

\[
\Pr\left[ \begin{array}{c}
pp \leftarrow \text{Params}(1^\lambda) \\
(ek, dk) \leftarrow \text{Gen}(pp) \\
ct \leftarrow \text{Ran}^k(\text{Enc}(ek, m)) \\
\text{Dec}_{dk}(c) = m
\end{array} \right] = 1,
\]

where the probability is taken over the random coins of all involved algorithms.

The next property, called key-indistinguishability under rerandomization, requires that no adversary can determine under which key a given ciphertext was encrypted. Our notion is stronger than the classical notion of key-indistinguishability as originally formalized Bellare et al. [BBDP01], since we allow the adversary to rerandomize the ciphertext an adversarially chosen amount of times.

**Definition 20 (Key-Indistinguishability Under Rerandomization).** We say encryption scheme \( \text{RPKE} = (\text{Params}, \text{Gen}, \text{Enc}, \text{Dec}, \text{Ran}) \) is key-indistinguishable under rerandomization, if for any PPT adversary \( \mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2) \) and any \( \lambda \in \mathbb{N} \), it holds that

\[
\Pr\left[ \begin{array}{c}
pp \leftarrow \text{Params}(1^\lambda) \\
(ek_0, \cdot) \leftarrow \text{Gen}(pp); (ek_1, \cdot) \leftarrow \text{Gen}(pp) \\
(m_0, m_1, k_0 \geq 1, k_1 \geq 1, st) \leftarrow \mathcal{A}_1(pp, ek_0, ek_1) \\
b \leftarrow \{0, 1\} \\
ct_b = \text{Ran}^{k_b}(\text{Enc}(ek_b, m_b)) \\
b' \leftarrow \mathcal{A}_2(st, ct_b)
\end{array} \right] b = b' = 1/2 \pm \text{negl}(\lambda),
\]

where the probability is taken over the random coins of the involved algorithms and the adversary.
We will require our encryption scheme to message binding in the sense that any ciphertext can decrypt to at most one message, no matter which decryption key is used.

**Definition 21 (Strong Message Binding).** We say encryption scheme \( \text{RPKE} = (\text{Params}, \text{Gen}, \text{Enc}, \text{Dec}, \text{Ran}) \) with associated relation is strongly message binding, if for any PPT adversary \( \mathcal{A} \) and any \( \lambda \in \mathbb{N} \), it holds that

\[
\Pr \left[ \left( \mathcal{A} \left( pp \right) \right) \left( pp, ct, m, w \right) \in \mathcal{R}_{\text{ENC}} \Rightarrow \text{Dec} \left( \cdot, ct \right) \in \{ m, \perp \} \right] = 1 - \text{negl} \left( \lambda \right).
\]

We will call encryption schemes that satisfy the above properties anonymous coin friendly encryption schemes (ANCOs)

**Definition 22 (Anonymous Coin Friendly Encryption Schemes).** We say a rerandomizable encryption scheme \((\text{Params}, \text{Gen}, \text{Enc}, \text{Dec}, \text{Ran})\) is an anonymous coin friendly encryption scheme, if it simultaneously satisfies correctness, key-indistinguishability under rerandomization, and strong message binding as defined in Definitions 19, 20 and 21.

### 6 Compressible Randomness Beacons (CRaBs)

In this section, we formally introduce the notion of compressible randomness beacons. We refer the reader to the technical overview in Section 1.3 for a discussion of what this primitive is and why we need it.

**Definition 23.** A compressible randomness beacon (CRaB) with input domain \([T]\) and range \(\mathcal{Y}\) is defined by a tuple of PPT algorithms \(\text{CRaB} = (\text{Gen}, \text{Eval}, \text{Prefix})\), which are defined as follows:

- \(k \leftarrow \text{Gen}(1^\lambda)\): The key generation algorithm takes the security parameter as input and returns a key \(k\).
- \(v \leftarrow \text{Eval}(k, i)\): The evaluation algorithm takes the key \(k\) and index \(i \in [T]\) as input and returns an evaluation \(v \in \mathcal{Y}\).
- \(k^* \leftarrow \text{Prefix}(k, 1^i)\): The prefix algorithm takes a key \(k\) and index \(1^i \in [T]\) in unary as input and returns a key \(k^*\).

**Remark 6.** We note that our prefix algorithm takes the index as a unary input, which may seem odd at first. This is done for technical reasons and will later on allow us to both instantiate and use our construction in OCash. In our main protocol, the polynomially bounded parties will only run for a polynomial number of time steps and therefore only input a polynomially large index, thus the provided interface of the prefix algorithm is sufficient. Looking ahead, in the proof of our compressible randomness beacon construction, we will need to guess the largest index provided by the adversary, but because there are only polynomially many that the adversary could query, we will be able to do this with a polynomial loss, instead of a super-polynomial loss.
We would like our randomness beacon to be correct in the sense that the prefix keys produce evaluations that are consistent with the master secret key.

**Definition 24 (Correctness).** We say $B = (\text{Gen}, \text{Eval}, \text{Prefix})$ with input domain $[T]$ is correct, if for all $i, j \in [T]$ with $i \leq j$ it holds that

$$\Pr \left[ k \leftarrow \text{Gen}(1^\lambda) \mid k^* \leftarrow \text{Prefix}(k, 1^j) \middle| \text{Eval}(k, i) = \text{Eval}(k^*, i) \right] = 1,$$

where the probability is taken over the algorithm’s random coins.

From a security perspective, we want keys for prefixes to not reveal anything about outputs on indices outside that prefix. Given keys for prefixes up to index $j$, the adversary should not be able to predict any value at any index $i$ with $i > j$. Conceptually, our notion is reminiscent of notions for constrained PRFs [BW13, KPTZ13, BGI14].

**Definition 25 (Unpredictability).** We say $B = (\text{Gen}, \text{Eval}, \text{Prefix})$ with input domain $[T]$ and output domain $[N]$ is unpredictable, if for any PPT adversary $A$ it holds that

$$\Pr \left[ (k, v) \leftarrow A^{\text{Eval}(k, \cdot), \text{Prefix}(k, \cdot)}(1^\lambda) \middle| \text{Eval}(k, i) = v \wedge \max Q_P < i \wedge i \notin Q_E \right] \leq \frac{1}{N} + \text{negl}(\lambda),$$

where the randomness is taken over the coins of all algorithms and the adversary, $Q_E$ is the set of inputs queried by the adversary to the oracle $\text{Eval}(k, \cdot)$, and $Q_P$ is the set of inputs to oracle $\text{Prefix}(k, \cdot)$.

The property that makes CRaBs non-trivial to construct and interesting for our application is the $\delta$-compressibility requirement, which states that prefix keys should be of size at most $\delta$.

**Definition 26 (Compressibility).** We say $B = (\text{Gen}, \text{Eval}, \text{Prefix})$ with input domain $[T]$ and range $\mathcal{Y}$ is $\delta$-compressing for some $\delta = \delta(T)$, if for all $k \leftarrow \text{Gen}(1^\lambda)$ and $i \in [T]$ it holds that

$$|\text{Prefix}(k, i)| \leq \delta.$$

Constructing CRaBs that are $\tilde{O}(T)$-compressing is trivial, but also not particularly interesting, so our focus lies on building CRaBs that are $o(T)$-compressing.

### 7 Strongly Oblivious Read-Once Maps (SOROMs)

In this section, we formally introduce the notion of strongly oblivious read-once maps (SOROMs), which are defined by a tuple of PPT algorithms $\text{SOROM} = (\text{Pos}, \text{Route}, \text{Read})$. For a high-level discussion of what this primitive is and how it will be used in our context, we refer the reader to the technical overview in Section [1.3].
We model SOROMs as encrypted memory arrays. When inserting an element into the data structure, a random label $L$ is chosen and assigned to the element. The element along with the label are encrypted and are always initially placed into position 0 of the memory.

To make sure that we can always insert new elements into position 0 and to ensure our strong oblivious guarantees, we need to route elements around in the memory after each insertion. For each $i \in \mathbb{N}$, after the $i$-th insertion operation, the memory positions indicated by $\text{Pos}(i)$ will be the ones that are touched for routing purposes. Data in these positions may be moved around and data outside these positions stays where it is for the moment. The positions returned by $\text{Pos}(i)$ and the labels of elements in those positions are given as input to $\text{Route}$, which determines how these elements should be moved around. More precisely, $\text{Route}$ outputs a permutation $\pi$ on $|\text{Pos}(i)|$ specifying how data elements are permuted within the positions from $\text{Pos}(i)$. Since the actual data elements are just dragged along with their corresponding labels and not important for the routing we completely leave them out of the definition. Only labels are routed around. The function $\text{Read}(L)$ returns a set of memory positions, ensuring that one of those positions stores label $L$.

Informally, we define strong obliviousness to mean that $L$ leaks nothing about when the data was inserted, even if the adversary gets to see the movements of a set of adversarially corrupted labels. This means one can retrieve data by reading at locations returned by $\text{Read}(L)$ without leaking which was the corresponding write operation.

**Definition 27.** A read-one map with label space $\mathcal{L}$ and memory size $N$ is a tuple of PPT algorithms $(\text{Pos}, \text{Route}, \text{Read})$, which are defined as follows:

$S \leftarrow \text{Pos}(i)$: The positions algorithm takes an index $i \in \mathbb{N}$ as input and returns a set of memory positions $S \subset [N]$.

$\pi \leftarrow \text{Route}(j_1, \ldots, j_\ell, L_1, \ldots, L_\ell)$: The routing algorithm takes memory indices $j_1, \ldots, j_\ell \in [N]$ and labels $L_1, \ldots, L_\ell \in \mathcal{L}$ as input and returns a permutation $\pi : [\ell] \rightarrow [\ell]$.

$S \leftarrow \text{Read}(L)$: The read algorithm takes a label $L \in \mathcal{L}$ as input and returns a set of memory locations $S \subset [N]$.

In the following security definitions, we view the memory $\mathcal{M}$ as a function mapping indices to labels, i.e. $\mathcal{M} : [N] \rightarrow \mathcal{L}$. For notational convenience for a set $S \subset [N]$, we write $\mathcal{M}(S) := \{L \mid \exists i \in S : \mathcal{M}(i) = L\}$.

**Definition 28 (Correctness).** We say a read-one map $(\text{Pos}, \text{Route}, \text{Read})$ with label space $\mathcal{L}$ and memory size $N$ is correct, if at the end of an execution of running $\text{ExecSOROM}$ with final insertion counter $i \in \mathbb{N}$, it holds that

$$\Pr[\forall i' < i \ (L_{i'} \in \mathcal{M}[\text{Read}(L_{i'})])] \geq 1 - \operatorname{negl}(\lambda) .$$

We define the strong obliviousness property that we require from our data structure through the game depicted in Figure 7. In this game, the adversary is allowed to adaptively insert honest or corrupted data elements. The movements of the corrupt ones they can track, those of the honest ones they cannot. For the honest ones, the adversary either always gets the real corresponding labels or independent random labels. By just seeing the movements
1. Initialise an insertion counter $\iota = 0$, a set of corrupt insertions $C$ and a set of honest insertions $H$. Let $M$ be the initial memory with $M[j] = 0^\lambda$ for all $j$. Sample a uniformly random challenge bit $b$.

2. Run $A$ to get an output $o$ where $o \in \{\text{honest}, \text{corrupt}\}$ or $o = (\text{done}, g \in \{0, 1\})$.

3. If $o \in \{\text{honest}, \text{corrupt}\}$, proceed as follows:
   (a) Sample uniformly random $L_i \leftarrow L$. If $L_i = L_i'$ for any $i' < i$ then stop the game with output 0 (meaning that the adversary wins).
   (b) If $o = \text{corrupt}$ then add $i$ to $C$ and give $L_i$ to $A$.
   (c) If $o = \text{honest}$ then add $i$ to $H$. Furthermore, if $b = 0$ give $L_i$ to $A$. If $b = 1$ sample uniformly random $L_i^* \leftarrow L$ and give $L_i^*$ to $A$.
   (d) Update $M[0] = L_i$.
   (e) Compute the positions to route among $(j_1, \ldots, j_\ell) = \text{Pos}(i)$.
   (f) For $h = 1, \ldots, \ell$ let $L_h = M[j_h]$.
   (g) Sample $\pi \leftarrow \text{Route}(j_1, \ldots, j_\ell, L_1, \ldots, L_\ell)$.
   (h) For $h = 1, \ldots, \ell$ let $M[j_h] = L_{\pi(h)}$.
   (i) For all $i \in C$ tell $A$ the new position of $L_i$.
   (j) Let $i = i + 1$ and go to step 2.

4. If $o = (\text{done}, g)$ then terminate with output $g \oplus b$.

---

This is a technicality allowing us to proceed below under the assumption that all labels are unique.

Note that output 0 means that the adversary guessed $b$ correctly.

Fig. 7. Security game for SOROMs.

of the corrupt labels, the adversary then needs to decide in which of those two worlds it lives in.

Definition 29 (Strong Obliviousness). We say a read-one map $(\text{Pos}, \text{Route}, \text{Read})$ with label space $L$ and memory size $N$ is strongly oblivious, if for any adversary $A$, it holds that $\Pr[\text{ExecSOROM}_A(1^\lambda) = 1] \leq \frac{1}{2} + \text{negl}(\lambda)$, where $\text{ExecSOROM}_A(1^\lambda)$ is defined in Figure 7 and the probability is taken over the random coins of the experiment and the adversary.

8 OCash: Anonymous Transfers from Oblivious RAM

We are now finally ready to present OCash. We describe a version of our construction that satisfies weak anonymity here and discuss how to achieve strong anonymity in Section 10.

8.1 Stateful Blockchains

We model a blockchain as an append-only datastructure, which in the following descriptions is a bit cumbersome. We note that we can talk about a blockchain containing a state or datastructure as follows. Consider a datastructure with dataspace $D$ and initial state $d_0 \in D$, and update space $U$, and read space $R$. For a datastructure $d$ and an update $u \in U$ we let $d' = \text{Update}(d, u)$ be the datastructure obtained from $d$ by applying $u$. For a datastructure $d$ and a read $r \in R$ we let $v = \text{Read}(d, r)$ be the value obtained by performing read operation
For a sequence \( u = (u_1, \ldots, u_m) \) we let \( d = \text{Update}(u) \) be \( d = d_m \), where \( d_i = \text{Update}(d_{i-1}, u_i) \) for \( i = 1, \ldots, m \).

To put a datastructure \( d \) on the blockchain we simply post the updates \( u_1, \ldots, u_m \) as they are made, with appropriate meta data to signal which data structure they are updating. To perform read \( r \in R \), read the blockchain with operation \((\text{Read}, L)\) where \( L \) is the following lookup function: Retrieve from the blockchain the sequence of updates \( u = (u_1, \ldots, u_m) \) performed. Compute \( d = \text{Update}(u) \). Return \( \text{Read}(d, r) \). In practice one would of course not recompute \( d \) on each read. If many reads are performed by the same full node on the network it can maintain \( d \). One can also imagine reading through a reader node which keeps \( d \) and returns \( r \), possibly along with a proof that \( r \) is the correct value relative to some block on the blockchain. This could significantly reduce the communication complexity of the receiver. This would also be a secure implementation if the reader node is semi-honest, as a read operation \((\text{Read}, L)\) leaks \( L \) and the identity of the reader to the adversary. It is therefore simulatable to tell the reader node what read operation is being performed on which datastructure. To implement this efficiently will vary between concrete blockchains and is not in scope for present paper.

### 8.2 Overview

We run in a hybrid model with a ledger \( \mathcal{F}_{\text{LEDGER}} \) and anonymous, authenticated transfer \( \mathcal{F}_{\text{AAT}} \). For now \( \Pi_{\text{SERVICE}} \) is implemented as an ideal functionality \( \mathcal{F}_{\text{SERVICE}} \). We later discuss how to implement it using an MPC protocol. We also assume a random oracle \( \mathcal{O} = \mathcal{G}_{\text{BRO}} \) as formalised in [LR22].

Transfer will be done by sending coins (which are just commitments) containing amounts. When a coin of amount \( a \) is created the sender \( A \) deducts \( a \) from its account. When a coin of amount \( a \) is collected the receiver \( B \) adds \( a \) to its account.

Accounts will be of the form \((A, c_A, e_k_A, \text{nonce}_A)\), where the account holder knows the corresponding secret key \((b_A, \rho_A, d_k_A)\). The value \( A \) is the public identifier of the account and \( c_A = \text{Com.Commit}_{ck}(b_A; \rho_A) \) is a perfectly hiding commitment to account balance \( b_A \) using randomness \( \rho_A \) and commitment key \( ck \). The value \( e_k_A \) is the encryption key of an ANCO scheme \( \text{RPKE} \) (Definition 22), \( d_k_A \) is the corresponding decryption key, and \( \text{nonce}_A \) is a nonce incremented for each payment done from account \( A \).

Transfer identifiers will be of the form

\[
\text{tid} = \text{Commit}_{ck}((A, B, a, \text{nonce}_A); s),
\]

where \( A \) is the account of the payer, \( B \) is the account of the receiver, \( ck \) is the global commitment key, \( a \) is the amount, \( \text{nonce}_A \) is the unique nonce of the sender incremented whenever \( A \) does a payment, and \( s \) is a randomiser for the commitment algorithm.

Recall that we want \( \text{tid} \)'s to be unique, which we ensure by enforcing that \( \text{nonce}_A \) is fresh in each payment from \( A \) and that \( A \) actually knows an opening of \( \text{tid} \). So, if \( A \) manages to use the same \( \text{tid} \) twice, then it must be the case that

\[
\text{Commit}_{ck}((A, B, a, \text{nonce}_A), s) = \text{Commit}_{ck}((A, B', a', \text{nonce}'_A), s')
\]
for nonce_A ≠ nonce_A' and thus A would have broken the commitment’s binding property. Similarly, if two different parties used the same tid, a collision must have been found as the account identifiers are in the commitment.

A coin will be an encryption of the tid under the receiver’s public key. Each receiver B has an encryption key ek_B on the ledger. A coin is of the form

$$\text{coin} \leftarrow \text{RPKE.Enc}(ek_B, \text{tid}).$$

The payer will put coin on the ledger and deduct its account by a. It proves in ZK that coin contains a tid which opens to a vector of the form (A', B', a', nonce) where a' is the amount it deducted from its account and where A' = A, and nonce = nonce_A. It then increments nonce_A on the ledger. Since the commitment is perfectly hiding the proof that it contains consistent values need to be a proof of knowledge. A proof of membership for the statement would be trivial, as tid can in principle be opened to any value.

The key-indistinguishability property of the ANCO scheme RPKE ensures that encryptions under different encryption keys have indistinguishable distributions, thereby ensuring that coin does not leak B. Note that during payment, the payer does not prove that it used the correct key ek_B as this is not needed. If a malicious payer uses the incorrect key, then it simply burned a units. The amount will be deducted from the payer’s account, but the receiver will not accept the payment.

To collect a payment the receiver B will put tid on the ledger and prove that some coin on the chain contains tid. This proof only needs to be a proof of membership, as the encryptions are perfectly binding. It adds a to its own account and then it shows in zero-knowledge that tid opens to a vector of the form (A', B', a', nonce) where a' is the amount a they just added to its account and where B' = B. Showing that some coin contains tid, shows that at some previous point in time that amount a was paid by some other account. To prevent double spending we post tid during collections and only allow a given tid to be collected once. Since tid’s are computationally unique, an honest receiver cannot be prevented from collecting a coin by some other parties using the same tid.

Up to this point, our design does not deviate that much from existing constructions like ZeroCash [BCG+14]. The big deviation is in how one proves that some coin on the chain contains tid, which is a priori a complicated statement that may naively involve all existing coins. As already outlined in Section 1.3, we rely on techniques from oblivious data structures literature to reduce the statement size. In OCash, a service will regularly mix coins by moving them around inside a SOROM. The service will regularly taking small sets of coins from the ledger, permuting them according to the SOROM, randomizing their encryptions, and writing them back to the ledger. When collecting a coin, we will only touch a small set of coins, instead of touching all of them, as is done by currencies like ZerOCash. The receiver will use their knowledge of a label associated to the coin they are looking for to determine the positions specified by SOROM.Read and collect the rerandomized coin coin' by revealing the identifier tid inside coin'. The collector then proves that tid is inside one of the coins specified by the label. The receiver now just has to prove in zero-knowledge that tid contains B and that the amount in the coin matches the amount added to the receiver’s account. This last proof needs to be a proof of knowledge as tid is perfectly hiding.
8.3 Anonymous Coin-Flip on the Blockchain

Using an SOROM for shuffling, leaves a technical issue to be solved. For the security of a SOROM, it is important that the labels are chosen at random, meaning that we cannot let any one single party pick these labels. In fact, we cannot even let the sender and receiver pick the label jointly as they might both be corrupted. We therefore need that \( \Pi_{\text{SERVICE}} \) is involved in picking the label. At the same time, we would like to avoid that the payer \( A \) needs to wait for the service to come online and act to be able to pay. Ideally, payments should be as quick as posting a single message to the blockchain. Additionally, we ideally would also like a passive receiver. If Alice pays Bob, then Bob need not be online while Alice is. This is important for applications like anonymously paying to a smart contract. We also want Bob to be anonymous in the sense that one cannot link \( A \) and \( B \) by observing the ledger. Finally, we also do not want Bob to run a full node to receive a payment. Bob should be able to learn the label associated to the coin it receives by reading as little as possible from the blockchain. Let us now sketch the protocol flow of the coin flip protocol that we will use.

1. Initially service samples and stores \( k \leftarrow \text{CRaB.Gen}(1^\lambda) \). It also samples \((e_k, d_k) \) for a PKE scheme and makes \( e_k \) public on the ledger.
2. To initiate a coin-flip Alice samples \( L_A \leftarrow \{0,1\}^\lambda \) and broadcasts \( d \leftarrow \text{PKE.Enc}(e_k, (A, L_A); \rho_4) \).
   Alice waits for \( d \) to appear in some position \( p \) on the ledger and anonymously sends \((d, L_A, \rho_4)\) along with a proof that \( d \) was posted in position \( p \) to Bob.
3. Bob rejects Alice’s message, if \( d \neq \text{PKE.Enc}_e((A, L_A); \rho_4) \) or if the proof that \( d \) is in position \( p \) is not valid. Note that Bob does not need to access the ledger for this.
4. Once \( d \) appears on the ledger in position \( p \), the service broadcasts \( k^*_p \leftarrow \text{CRaB.Prefix}(k, p) \) on the ledger.
5. The service computes \( L_S = \text{CRaB.Eval}(k, p) \), decrypts \((A, L_A) = \text{PKE.Dec}_{d_k}(d)\), and determines the label \( L = L_A \oplus L_S \).
6. Alice waits for \( k^*_p \) to appear on the ledger and computes \( L_S = \text{CRaB.Eval}(k^*_p, p) \). Since Alice also knows \( L_A \), she can also determine \( L = L_A \oplus L_S \).
7. When Bob wants to learn some value \( L \), he retrieves the latest \( k^*_p \) with \( p' > p \) posted on the ledger. Bob can then compute \( L_S = \text{CRaB.Eval}(k^*_p, p) \) and since he received \( L_A \) from Alice, he can also compute \( L = L_A \oplus L_S \). Note that Bob reads the latest \( k^*_p \) and not \( k^*_p \), thereby ensuring that the position \( p \) cannot be linked to Bob.

The above protocol has all the properties we need. Alice, Bob, and the service learn \( L \), whereas any external observer does not. The coin-flip is random, even when both Alice and Bob are corrupt. Bob does not need to be active while Alice and the service are. Bob can learn the desired label \( L \) by reading the latest succinct prefix key from the ledger.

We note that in our formal description, we do not prove any properties of the above protocol in isolation, but rather as part of the overall security proof of OCash. We also note that the parties cannot learn a coin, until the service was active. In our payment application, this means Bob cannot collect a coin, until the service was active. This might seem disappointing, since we wanted to avoid that the service was active before the payment was done. There is, however, no avoiding this, as we want the outcome to be random, even
if Alice and Bob are corrupt. It is therefore optimal to only have *collection* and not *payment* be blocked by a slow service. This is particularly the case, because anonymity requires that Bob waits some time before picking up the coin.

### 8.4 Relations for Zero-Knowledge

Our construction will make use of zero-knowledge proofs for several distinct relations. In the following, let us formally define those relations. The relation $R_{\text{ISZERO}}$ is for proving that a commitment indeed commits to 0, i.e.,

$$(x = (ck, c), w = \rho) \in R_{\text{ISZERO}} \iff c = \text{Com}
\cdot\text{Commit}_{ck}(0, \rho)$$

and the relation $R_{\text{ISFUND}}$ is a generalization thereof that allows for proving that a commitment commits to a specific (non-zero) amount $a$, i.e.,

$$(x = (ck, c), w = \rho) \in R_{\text{ISFUND}} \iff c = \text{Com}
\cdot\text{Commit}_{ck}(a, \rho).$$

The relation $R_{\text{ORDEC}}$ is for showing that one out of several ciphertexts contains a given plaintext:

$$(x = (pp, ek, \{c_j\}_{j \in [1, m]}, w = dk) \in R_{\text{ORDEC}} \iff \bigvee_{j=1}^{\ell} \text{RPKE}.\text{Dec}_{dk}(c_j) = m.)$$

The relation $R_{\text{COLLECT}}$ is for proving that the receiver updated their account correctly during collection. This is done by showing that a commitment $c_B'$ is a valid commitment to the sum of the previous account balance committed in $c_B$ and the amount of money committed in transaction $\text{tid}$, i.e.,

$$(x = (ck, c_B, \text{B}, \text{tid}, c_B'), w = (b_B, (\text{A}, a, \text{nonce}_A, \rho_1), \rho_B, \rho_B')) \in R_{\text{COLLECT}} \iff$$

$$c_B = \text{Com}
\cdot\text{Commit}_{ck}(b_B, \rho_B) \land$$

$$\text{tid} = \text{Com}
\cdot\text{Commit}_{ck}(\text{A}, \text{B}, a, \text{nonce}_A, \rho_1) \land$$

$$c_B' = \text{Com}
\cdot\text{Commit}_{ck}(b_B + a, \rho_B').$$

Lastly, the relation $R_{\text{PAY}}$ allows for proving correctness of a payment by showing that the payer’s account balance $c_A$ is being correctly updated to $c_A'$ with respect to the amount of money $a$ tied up in the generated coin $\text{coin}$, i.e.,

$$(x = (\text{A}, \text{nonce}_A, \text{ck}, c_A, \text{coin}, c_A'), w = ((b_A, \rho_A), (\text{B}, a, \rho_1, \rho_2), \rho_A')) \in R_{\text{PAY}} \iff$$

$$c_A = \text{Com}
\cdot\text{Commit}_{ck}(b_A, \rho_A) \land$$

$$((\text{coin}, \text{Com}
\cdot\text{Commit}_{ck}(\text{A}, \text{B}, a, \text{nonce}_A; \rho_1)), \rho_2) \in R_{\text{ENC}} \land$$

$$c_A' = \text{Com}
\cdot\text{Commit}_{ck}(b_A - a, \rho_A') \land b_A \geq a \geq 0.$$

We provide concretely efficient proof systems, satisfying the properties we need, for all these relations in Appendix C.
8.5 O Cash Protocol

We now proceed to provide pseudocode for the O Cash protocol. In our pseudocode we will assume that one can see who posts which messages on the ledger. In practice this would involve putting a public key of a signature scheme in each account and signing messages from the account using the corresponding secret key. For the sake of clarity, we do not deal with this explicitly in our pseudocode. We will use both a GUC proof of knowledge NIZKPoK and a UC proof of membership NIZK. We have a single crs which is the pair of CRSs implicitly. We let both schemes use crs and tacitly assume they pick the part they need.

In Figure 8, we show how the initialization part of the anonymizer service is done. In Figure 9, we provide the pseudocode for creating accounts. Initially, there are no accounts and there is no money on the blockchain. For the sake of simplicity, we simply provide the first party that generates an account with an initial account balance of $a_0$. Once this account is created, all other parties can only create accounts that have an account balance of 0 initially. How money is bootstrapped into a blockchain in the real world is a non-cryptographic process and using our formal modeling outlined above, we have abstracted this process away in our work.

In Figure 10, we give the pseudocode for initiating a payment by putting a coin on the ledger. In Figure 11, we give the pseudocode for the part of the service doing the mixing of the coins. Finally, in Figure 12, we give the code for observing and collecting a payment.

---

**Init** When activated the first time do the following:

1. Let $\text{crs}^{\text{now}} \leftarrow \text{NIZKPoK.Gen}(1^\lambda), \text{crs}^{\text{mem}} \leftarrow \text{NIZK.Gen}(1^\lambda)$, and $\text{crs} = (\text{crs}^{\text{now}}, \text{crs}^{\text{mem}})$. This is the setup for proving statements to the ledger in ZK.

2. $\text{ck} \leftarrow \text{Com.Gen}(1^\lambda)$. This is the key for creating transfer IDs and committing to balances.

3. $(\text{ek}, \text{dk}) \leftarrow \text{PKE.Gen}(1^\lambda)$ and save $\text{dk}$. This is the key for sending secret messages to the committee.

4. $\text{pp} \leftarrow \text{RPKE.Params}(1^\lambda)$ This is the public parameters for the randomisable public-key encryption used for encrypting coins.

5. Initialise an empty set $\text{Spent}$ on $\mathcal{F}_\text{LEDGER}$. This is the set of spent transaction identifiers.

6. Set up the key material for anonymous coin-flip on the blockchain.
   (a) $k \leftarrow \text{CRaB.Gen}(1^\lambda)$ and save $k$.
   (b) $k^* \leftarrow \text{Prefix}(k, 0)$.
   (c) Let $p_{\text{updated}} = 0$ be the last updated position.

7. Post $(\text{crs}, \text{ck}, \text{ek}, \text{pp}, k^*, p_{\text{updated}})$ on $\mathcal{F}_\text{LEDGER}$.

8. Set up the key material for running the SOROM on the blockchain.
   (a) $i = 0$.
   (b) $K \leftarrow \text{SKE.Gen}(1^\lambda)$ and save $K$. This is the key under which the service encrypt labels for the SOROM.
   (c) Let $N = 2^\lambda$ and initialise on the blockchain an oblivious map $\text{OM}$ where for each $i \in [N]$ the service store $\text{OM}[i] = (\text{lab}_i, \text{coin}_i)$ where $\text{lab}_i$ is an encryption under $K$ or $\bot$ and $\text{coin}_i$ is a coin or $\bot$. Initially let $\text{OM}[i] = (\bot, \bot)$ for all $i$.

---

Fig. 8. Ideal Functionality $\mathcal{F}_{\text{SERVICE}}$. 
Create Account  On input (CREATEACCOUNT) from P, where there are already other accounts on the ledger, it proceeds as follows.

1. Wait until \(ck, crs\) and \(pp\) appear on \(\mathcal{F}_{\text{Ledger}}\).
2. \(c_A \leftarrow \text{Com.Commit}_{\text{A}}(0; \rho)\).
3. \(\pi \leftarrow \text{NIZKPoK.Priv}_{\text{crs}}(R_{\text{isZero}}, (ck, c_A), \rho_A)\).
4. \((e_{k_A}, d_{k_A}) \leftarrow \text{RPKE.Gen}(pp)\).
5. Let nonce_A = 0.
6. Run \(\mathcal{F}_{\text{Ledger}}.\text{Broadcast}(Tx, \phi_{Tx})\) with \(Tx = (c_A, e_{k_A}, \text{nonce}_A, \pi)\) and

\[ \text{Filtering Function } \phi_{Tx}(\text{ledger}, Tx) \equiv \text{Parse } (c_A, e_{k_A}, \text{nonce}_A, \pi) = Tx, \text{ fetch } (crs, ck) \text{ from Ledger} \]

and check that \(\text{NIZKPoK.Ver}_{\text{crs}}(R_{\text{isZero}}, (ck, c_A), \pi) = \top\), that \(\text{nonce}_A = 0\), and that some other account already appears in Ledger.
7. When \(Tx = (c_A, e_{k_A}, \text{nonce}_A, \pi)\) appears on \(\mathcal{F}_{\text{Ledger}}\) in some position \(p\), compute \(\mathcal{F}_{\text{Ledger}}.\text{ProveValid}(p) \rightarrow \text{TxProof} \) and let \(A = (e_{k_A}, \phi_{\text{Acc}}, p, \text{TxProof})\). Then output \((\text{CreateAccount}, A)\) to \(P\) and save \((A, b_A = 0, c_A, \rho_A, e_{k_A}, d_{k_A}, \text{nonce}_A)\). This is the initial secret state of the account. This establishes the invariant that for the current balance \(b_A\) of account \(A\) party \(P\) knows \(\rho_A\) such that \(c_A = \text{Com.Commit}_{\text{A}}(b_A, \rho_A)\).
Store the updated account \((A, c_A, e_{k_A}, \text{nonce}_A, \pi)\) on \(\mathcal{F}_{\text{Ledger}}\).

Create Account (Initial Funding Account)  On input (CREATEACCOUNT) from \(P\), where so far there are no other accounts on the ledger, it proceeds as above with the following changes.

2. \(c_A \leftarrow \text{Com.Commit}_{\text{A}}(a_0; \rho)\).
3. \(\pi \leftarrow \text{NIZKPoK.Priv}_{\text{crs}}(R_{\text{isFund}}, (ck, c_A), \rho_A)\).
6. Use

\[ \text{Filtering Function } \phi_{Tx}(\text{ledger}, Tx) \equiv \text{Parse } (c_A, e_{k_A}, \text{ nonce}_A, \pi) = Tx, \text{ fetch } (crs, ck) \text{ from Ledger} \]

and check that \(\text{NIZKPoK.Ver}_{\text{crs}}(R_{\text{isFund}}, (ck, c_A), \pi) = \top\), that \(\text{nonce}_A = 0\), and that until now no other account appears in Ledger.
7. Save \((A, b_A = a_0, c_A, \rho_A, e_{k_A}, d_{k_A}, \text{nonce}_A)\).

\[ a \text{ When we say that we store a value which can already be computed from the values on the ledger, we mean that we use the “stateful ledger” abstraction from Section 8.1 to define and later fetch the value.} \]

Fig. 9. Pseudocode of creator \(P\). Part of \(\Pi_{\text{ANONPAY}}\).
**Initiate Pay** On input \((\text{PAY}, A, B, a)\) to \(P_A\) proceeds as follows.

1. Fetch \((A, b_A, c_A, \rho_A, e_kA, d_kA, \text{nonce}_A)\) from local storage and terminate if \(a > b_A\). Get \((A, b_A, c_A, \rho_A, e_kA, d_kA, \text{nonce}'_A)\) from \(F_{\text{Ledger}}\) and terminate if \(\text{nonce}'_A \neq \text{nonce}_A\). Check that there is balance and that the local information is up to date. This can happen not to be the case if two payments were started in parallel.

2. Get the public values \((\text{crs, ek, ck, k}')\) of the service from \(F_{\text{Ledger}}\).

3. Parse \((e_kB, \phi_{\text{acc}}, p, \text{TxProof}_B) = B\) and run \(F_{\text{Ledger}}, \text{VERValid}(p, (e_kB, \phi_{\text{acc}}), \text{TxProof}_B) \rightarrow J\). If \(J = \perp\), then abort. Check B’s account exists.

4. Compute the transfer identifier \(\text{tid} = \text{Com.Commit}_{A}(A, B, a, \text{nonce}_A; \rho_1)\).

5. Compute the coin \(\text{coin} = \text{RPKE.Enc}_A(\text{tid}; \rho_2)\).

6. Let \(b_A' = b_A - a\), compute \(c_A' = \text{Com.Commit}_{A}(b_A', \rho_A)\).

7. \(\pi \leftarrow \text{NIZKPoK.Prov}_{\text{acc}}(R_{\text{PAY}}, (c_A, \text{coin}, c_A', A, \text{nonce}_A), ((b_A, \rho_A), (b_A', \rho_A), (B, a, \rho_1, \rho_2), \rho_A'))\).

8. Sample \(L_A \leftarrow \{0, 1\}^λ\), compute \(d \leftarrow \text{PKE.Enc}_A((A, L_A); \rho_4)\).

9. Run \(F_{\text{Ledger}}, \text{Broadcast}(\text{Tx}, \phi_{\text{PAY}})\) with \(\text{Tx} = (A, c_A', \text{coin}, \pi, d)\) and Filtering Function \(\phi_{\text{PAY}}(\text{Ledger}, \text{Tx}) \equiv \text{Parse} (A, c_A', \text{coin}, \pi, d) = \text{Tx}, (\text{crs, ek, k}')\) and \((A, c_A, e_kA, \text{nonce}_A)\) from Ledger and check that \(\text{NIZKPoK.Ver}_{\text{acc}}(R_{\text{PAY}}, (c_A, \text{coin}, c_A', A, \text{nonce}_A), \pi) = \top\).

10. Wait for \((\text{Tx}, \phi_{\text{PAY}})\) to appear on \(F_{\text{Ledger}}\) in some position \(p\). When this happens the blockchain stateful abstraction layer replaces \((A, c_A, e_kA, \text{nonce}_A)\) by \((A, c_A', e_kA, \text{nonce}'_A = \text{nonce}_A + 1)\). Note that if \(\text{Tx}\) is rejected or never posted, the transaction deadlocks here.

11. The first time when \(P_A\) is activated again, store \((A, b_A', c_A', \rho_A', e_kA, d_kA', \text{nonce}'_A = \text{nonce}_A + 1)\).

12. Run \(F_{\text{Ledger}}, \text{ProveValid}(p) \rightarrow \text{TxProof}\).

13. Run \(F_{\text{AAT}}, \text{DROPOff}(P_A, P_B, \text{tid}, m)\) where \(m = ((\text{Tx}, p, \text{TxProof}, (\text{nonce}_A, \rho_1, \rho_2)), (L_A, \rho_4))\).

14. Output \((\text{PAY}, A, B, a, \text{tid})\) to \(P_A\).

**Fig. 10.** Pseudocode of payer A. Part of \(Π_{\text{AORPAY}}\).
Receive Coin Whenever a new payment \((\text{Tx}, \phi_{\text{pay}})\) appears in some position \(p\), proceed as follows. Transactions must be consumed in order of increasing \(p\).

1. Parse \((A, c', \text{coin}, \pi, d) \leftarrow \text{Tx}\).
2. Keep track of the number of payments so far: \(\iota = \iota + 1\).
3. Compute \(P_A\)'s contribution to the coinflip: \((C, L_A) = \text{PKE}.\text{Dec}_d(d)\). If \(C \neq A\) then terminate.
4. Service's contribution to the coinflip: \(L_S = \text{CRaB.Eval}(k, p)\), where \(p\) is the position of \(\text{Tx}\) on the ledger.
5. Coinflip: \(L = \text{Hash}(L_A \oplus L_S)\).
6. Encrypted coinflip: \(\text{lab} = \text{SKE}.\text{Enc}_K(L)\).
7. Updated \(\text{CRaB}\) key: \(k^* \leftarrow \text{CRaB}.\text{Prefix}(k, p)\) and \(p_{\text{updated}} = p\).
8. Update \(k^*\), \(p_{\text{updated}}\), and \(\text{OM}[0] = (\text{lab, coin})\) on \(\mathcal{F}_{\text{ledger}}\).
9. Go to Route

Route

1. Compute \((j_1, \ldots, j_\ell) = \text{SOROM}\).Pos(\(\iota\)).
2. For \(k = 1, \ldots, \ell\) read \((\text{lab}_k, \text{coin}_k) \leftarrow \text{OM}[j_k]\) from \(\mathcal{F}_{\text{ledger}}\).
3. For \(k = 1, \ldots, \ell\) let \(L_k = \text{SKE}.\text{Dec}_K(\text{lab}_k)\).
4. Compute the routing permutation: \(\pi = \text{SOROM}.\text{Route}(\iota, L_1, \ldots, L_\ell)\).
5. For \(k = 1, \ldots, \ell\) let \(L'_k = \text{SKE}.\text{Dec}_K(L_{\pi(k)})\).
6. For \(k = 1, \ldots, \ell\) let \(\text{coin}'_k = \text{RPKE}.\text{Ran}(\text{coin}_\pi(k))\).
7. For \(k = 1, \ldots, \ell\) update \(\text{OM}[j_k] \leftarrow (\text{lab}'_k, \text{coin}'_k)\) on \(\mathcal{F}_{\text{ledger}}\).

\(a\) This prevents replay attacks with the \(d\)'s.

---

**Fig. 11.** Pseudocode of service \(\mathcal{F}_{\text{service}}\)

### 8.6 Proving Security in the UC Framework

We will prove the following statement:

**Theorem 2.** Under the security of the primitives SOROM (Section 7), NIZKPoK (Section 2.5), NIZK (Section 2.4), Com (Section 2.1), PKE (Section 2.2), RPKE (Section 5), CRaB (Section 6), and SKE (Section 2.2) the protocol \(\Pi_{\text{AnonPay}}\) UC-securely implements \(\mathcal{F}_{\text{AnonPay}}\) with weak anonymity in the hybrid world with ideal functionalities \(\mathcal{F}_{\text{ledger}}, \mathcal{F}_{\text{AAT}}\), and \(\mathcal{F}_{\text{service}}\).

The design rational for the protocol has already been discussed above. The proof of security follows the intuition fairly closely, but via an intricate sequence of hybrids. As TID distribution the simulator uses random commitments to 0, i.e., \(\text{Tid} \leftarrow \text{Commit}_{\text{ck}}(0)\). This will give honest \text{Tid} the same distribution as in the protocol. During the simulation the simulator will simulate the proofs that the honest \text{Tid} contain the right values. For corrupted parties the simulator uses the \text{Tid} produced in the simulated protocol. The use of binding commitments to compute \text{Tid} ensures that \text{Tid}'s cannot be reused. This in turn ensures that if \(B\) observes a payment it will also eventually be able to pick it up. The correctness of SOROM ensures that no encryptions of new \text{Tid}'s can be introduced. Therefore each \text{Tid} collected can be linked to a unique payment. The proofs ensure that it is of the same amount \(a\). We can use extractability of the proofs to extract the link between payments and let the simulator input these to \(\mathcal{F}_{\text{AnonPay}}\) in the simulation to make it do the same transfers as the simulated protocol. The fact that \text{Tid} is perfectly hiding ensures that \text{Tid} cannot be linked to \(A\) or \(a\).
Collect

On input \((\text{Observe, tid, A, B, a})\) to \(P_B\) it proceeds as follows. Run \(\mathcal{F}_{\text{LAAT}}.\text{COLLECT}(P_A, P_B, \text{tid}) \rightarrow m\). If

\[ m = ((\text{Tx} = (A, \cdot, \text{coin}, \cdot, d), p, \text{TxProof}, (\text{nonceA}, \rho_1, \rho_2)), (L_A, \rho_A)) \]

where

\[ \mathcal{F}_{\text{LENDER, VALID}}((\text{Tx}, p, \phi_{\text{PAY}}), \text{TxProof}) \rightarrow \top \]

\[ \text{tid} = \text{Com}.\text{Commit}_b((A, B, a, \text{nonceA}), \rho_1) \]

\[ \text{coin} = \text{RPKE}.\text{Enc}_{ek_b}(\text{tid}, \rho_2) \]

\[ d = \text{PKE}.\text{Enc}_{ek_b}((A, L_A), \rho_A) \]

then return \((\text{Observe, tid, A, B, a, } \top)\).

Collect

On input \((\text{Collect, tid, A, B, a})\) to \(P_B\) it proceeds as follows.

1. First run \((\text{Observe, tid, A, B, } \top)\) if this was not already done. If the result is \((\text{Observe, tid, A, B, } \top)\), then proceed as below, using the values defined while running \((\text{Observe, tid, A, B, a})\).

2. Fetch the \(L_A\) where \(d = \text{PKE}.\text{Enc}_{ek_b}((A, L_A), \rho_1)\) and the position \(p\).

3. From \(\mathcal{F}_{\text{LENDER}}\) fetch the most recent CRaB key \(k^*\) and position \(p_{\text{updated}}\). If \(p_{\text{updated}} < p\) terminate.

4. Let \(L_S = \text{CRaB}.\text{Eval}(k^*, p)\).

5. Let \(L = \text{Hash}(L_A \oplus L_S)\).

6. Compute \(\text{pos} = \text{SOROM}.\text{Pos}(L)\).

7. Fetch the data at positions \(j \in \text{pos}\) in \(\text{OM}\) from \(\mathcal{F}_{\text{LENDER}}\) and for \(j \in \text{pos}\) let \(\text{OM}[j] = (\cdot, \text{coin}_j)\). Let \(j_0 \in \text{pos}\) be the position where \(\text{OM}[j_0] = (\cdot, \text{coin}')\) and \(\text{RPKE}.\text{Dec}_{ek_b}(\text{coin}') = \text{tid}\).

8. \(\pi_1 \leftarrow \text{NIZK}.\text{Prv}_{\text{crs}}(\mathcal{R}_{\text{OrDec}}, (ck, \{\text{coin}_j\}_{j \in \text{pos}}, \text{tid}), \text{dk}_B)\).

9. Let \(b'_0 = b_0 + a\), compute \(c'_B = \text{Com}.\text{Commit}(b'_0, \rho'_B)\).

10. \(\pi_2 \leftarrow \text{NIZKPoK}.\text{Prv}_{\text{crs}}(\mathcal{R}_{\text{Collect}}, (ck, c_B, B, \text{tid}, c'_B), ((b_B, \rho_B), (A, a, \text{nonceA}, \rho_1), \rho_B'))\).

11. Run \(\mathcal{F}_{\text{LENDER, BROADCAST}}(\text{Tx}, \phi_{\text{Collect}})\) with \(\text{Tx} = (B, L, \text{tid}, \pi_1, \pi_2)\) and Filtering Function \(\phi_{\text{Collect}}(\text{Ledger, Tx}) \equiv \text{Parse}(B, L, \text{tid}, \pi_1, \pi_2) = \text{Tx}, \text{ fetch } \text{Spent, OM, } (\text{crs, ek, ck, } k^*) \) and \((B, c_B, e_k, \text{nonceB})\) from Ledger along with \(\{\text{coin}_j\}_{j \in \text{pos}}\) for \(\text{pos} = \text{SOROM}.\text{Pos}(L)\) and check that

\[
\text{NIZK}.\text{Ver}_{\text{crs}}(\mathcal{R}_{\text{OrDec}}, (ck, \{\text{coin}_j\}_{j \in \text{pos}}, \text{tid}), \pi_1) = \top
\]

\[
\text{NIZKPoK}.\text{Ver}_{\text{crs}}(\mathcal{R}_{\text{Collect}}, (ck, c_B, B, \text{tid}, c'_B), \pi_2) = \top
\]

\[(\text{B, tid}) \not\in \text{Spent}\]

12. When the transaction is posted the blockchain stateful abstraction layer replaces \((B, c_B, e_k, \text{nonceB})\) by \((B, c'_B, e_k, \text{nonceB})\) and \(\text{Spent} = \text{Spent} \cup \{\text{tid}\}\).

13. Store \((B, b'_0, c'_B, \rho'_B, e_k, \text{dk}_B, \text{nonceB})\) on local storage.

\(^a\) If the result \((\text{Observe, tid, A, B, } \top)\) is not returned it corresponds to the case where \(\mathcal{F}_{\text{AnonPay}}\) aborts the collection.

\(^b\) This corresponds to the case where \(\mathcal{F}_{\text{AnonPay}}\) returns Too Early.

Fig. 12. Pseudocode of receiver B. Part of \(\Pi_{\text{AnonPay}}\).
The security of the coin-flip into the well ensures that the labels are random, which ensures the correctness and strong obliviousness of the SOROM. In proving the coin-flipping secure it is crucial that the PKE is IND-CPA and that the encryption contains the name of A as it ensures that A’s contribution \( L_A \) is independent of the contribution of other parties. Therefore the label are random and independent. In doing the reduction to the strong obliviousness of the SOROM we model Hash as a random oracle in \( L = Hash(L_A \oplus L_S) \), which allows us to embed the label we get from to SOROM game into the simulation by programming Hash. The strong obliviousness of the SOROM ensures that the label \( L \) posted in collection does not leak anything about when the collected coin was added to the SOROM. In the simulation we can therefore for transfers between honest parties make dummy payments and collections of 0 and randomly map collections to payments. This will have the same distribution in the view of the environment. We defer the full proof to Appendix B.

9 Instantiating the Building Blocks

In this section, we will now instantiate all the building blocks that our OCash in Section 8 construction relied upon.

9.1 Commitment Scheme

Our commitment scheme for constructing transaction identifiers and accounts is a Pedersen commitment \[\text{Ped92} \] in a group \( G \) of prime order \( q \) where the discrete logarithm problem is hard. Specifically we assume that five uniformly random, independent generators \( c_k = (g_0, g_1, g_2, g_3, g_4) \) have been chosen. We assume that \( q \) has been chosen large enough that account names, nonces and amounts can be represented bijectively in \( \mathbb{Z}_q \). To commit to \((A, B, nonce, a) \in \mathbb{Z}_q \) using randomness \( s \in \mathbb{Z}_q \) we compute

\[
\text{tid} = \text{Commit}_{ck}(A, B, nonce, a; s) = g_0^s g_1^A g_2^B g_3^{nonce} g_4^a.
\]

This scheme is perfectly hiding and is computationally binding is the DL problem is hard in \( G \text{ [Ped92]} \). When using the commitment scheme to commit to account balances we let \( \text{Commit}_{ck}(a) = \text{Commit}_{ck}(0, 0, 0, a; s) = g_0^s g_4^a \).

9.2 Anonymous Coin Friendly Encryption Scheme (ANCO)

We give our instantiation of a rerandomisable public key encryption scheme

\[
\text{RPKE} = (\text{Params, Gen, Enc, Ver, Dec, Ran})
\]

and prove that it is an ANCO. Let \( G \) be a group of prime order \( q \) where the DDH problem is hard. The public parameters will be of the form \( g_0 \in G \), where \( g_0 \) is a generator. A public key will be of the form \( h = g_0^x \) where \( x \in \mathbb{Z}_q \) is the secret key. A ciphertext will be of the form \( \text{ct} = (A, B, C, D) \) where \( A \neq 1 \) and \( B = A^x \) for the unique secret key for which the ciphertext is intended and \( m = DC^{-x} \) is the message. Note that the part \((A, B)\) of
 ciphertext uniquely fixes the secret key \( x \) and the part \((C, D)\) is a normal ElGamal encryption for that secret key. The reason why we carry \((A, B)\) along is to be able to rerandomise a ciphertext without knowing the public key: \((C', D') = (A^p C, B^{p^e} D)\). The part \((A, B)\) will simply be a rerandomized version of the receivers public key and will be rerandomized as \((A', B') = (A^p, B^{p^e})\). To decrypt \((A, B, C, D)\) using \( x \) we define the output to be \( \bot \) if \( B \neq A^x \). If \( B = A^x \) the output is \( m = DC^{-x} \). The scheme is summarised in Fig. 13. The ciphertext space is the set of all \( ct = (A, B, C, D) \in G^4 \) where \( A \neq 1 \). Note that this implies that \( A \) has order \( q \) and therefore the discrete logarithm \( DL_A : G \rightarrow \mathbb{Z}_q \) is well-defined. We call \( x = DL_A B \) the secret key of the ciphertext. This defines the keyless decryption \( \text{RPKE}.\text{Dec}(ct) \) as follows. Let \( x = DL_A B \) and then return \( \text{RPKE}.\text{Dec}_x(ct) \). Note that \( \text{RPKE}.\text{Dec}(ct) \) is well defined but not poly-time.

<table>
<thead>
<tr>
<th>( \text{Params}(1^n) )</th>
<th>( \text{Dec}(dk, ct) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sample ( (G, g_0, q) ), where ( G ) is a group with prime order ( q ) where DDH is hard and ( (g_0) = G ).</td>
<td>1. Input: ( pp = (g_0, q) ), ( sk = x ), ( ct = (A, B, C, D) )</td>
</tr>
<tr>
<td>2. Output ( pp = (g_0, q) )</td>
<td>2. If ( B = A^x ) let ( m = DC^{-x} ), otherwise let ( m = \bot ).</td>
</tr>
<tr>
<td>( \text{Gen}(pp) )</td>
<td>3. Output ( m )</td>
</tr>
<tr>
<td>1. Input ( pp = (g_0, q) )</td>
<td>( \text{Ran}(ct) )</td>
</tr>
<tr>
<td>2. ( x \leftarrow \mathbb{Z}_q )</td>
<td>1. Input: ( pp = (g_0, q) ), ( ct = (A, B, C, D) )</td>
</tr>
<tr>
<td>3. ( h = g_0^x )</td>
<td>2. ( \rho \leftarrow \mathbb{Z}_q^\ast )</td>
</tr>
<tr>
<td>4. Output ( (ek = (g_0, h), dk = x) )</td>
<td>3. ( \rho' \leftarrow \mathbb{Z}_q )</td>
</tr>
<tr>
<td>( \text{Enc}(ek, m) )</td>
<td>4. Output ( ct' = (A^p, B^{p^e}, A^p C, B^{p^e} D) )</td>
</tr>
<tr>
<td>1. Input: ( pp = (g_0, q) ), ( ek = h, m )</td>
<td>( \mathcal{R}_{\text{Enc}}(x = (pp, ct, m), w = (\rho, \rho')) )</td>
</tr>
<tr>
<td>2. ( \rho \leftarrow \mathbb{Z}_q^\ast )</td>
<td>1. ( (A, B, C, D) \leftarrow ct )</td>
</tr>
<tr>
<td>3. ( \rho' \leftarrow \mathbb{Z}_q )</td>
<td>2. ( (g, h) = ek \leftarrow (A^{p^{-1}}, B^{p^{-1}}) )</td>
</tr>
<tr>
<td>4. Output ( ct = (g_0^x, h^p, g_0^{p^e}, h^{p^e} m) )</td>
<td>3. Output ( q \leftarrow g_0 \land ct = \text{Enc}(ek, m; (\rho, \rho')) )</td>
</tr>
</tbody>
</table>

Fig. 13. The ANCO RPKE

**Theorem 3.** The scheme \( \text{RPKE} \) in Fig. 13 is IND-CKMA according to Section 5 if DDH is hard in \( G \).

**Proof.** We have to prove that \((x, w)\) is in \( \mathcal{R}_{\text{ENC}} \) if and only if there exists a key pair \((ek, dk)\) in the support of \( \text{Gen}(pp) \), such that \( ct = \text{Enc}(ek, m; w) \). This is easy to see, as \((A, B, C, D) = \text{Enc}(ek, m; (\rho, \rho'))\) implies that \((A, B) = (g_0^x, h^p)\), so \( ek = (A^{p^{-1}}, B^{p^{-1}}) \).

It is clear that if \( ct \) is in the ciphertext space then \( \text{Ran}_{pp}(ct) \) is also in the ciphertext space as \( \rho \neq 0 \) so \( A^p \neq 1 \). Finally, it follows that \( \text{Dec} (\text{Ran}(ct)) = \text{Dec}(ct) \) as \( DL_A B^p = DL_A B \) and \( B^{p^e} D (A^p C)^{-x} = D C^{-x} \) when \( B = A^x \). From this it also follows that \( \text{Dec}_x (\text{Ran}(ct)) = \text{Dec}_x (ct) \), and we get **Correctness.**
To show **Strong Message Binding** we have to assume that \((pp, ct, m), w) \in \mathcal{R}_{\text{Enc}}\) and show that \(\text{Dec}(\cdot, ct) = m\). This is clear as \((pp, ct, m), w) \in \mathcal{R}_{\text{Enc}}\) implies that \(ct = \text{Enc}(ek, m; (\rho, \rho'))\) so we can appeal to correctness.

Finally we have to prove that **Key-Indistinguishability Under Rerandomization**. We are given any PPT adversary \(A_1\) and runs \((m_0, m_1, r_0 \geq 1, r_1 \geq 1, st) \leftarrow A_1(pp, ek_0, ek_1)\) for uniformly random public keys \(ek_0\) and \(ek_1\). Then we compute \(ct_0 = \text{Ran}^{\rho_0}(\text{Enc}_{ek_0}(m_0))\) and \(ct_1 = \text{Ran}^{\rho_1}(\text{Enc}_{ek_1}(m_1))\) and have to argue that \(A_1\) cannot guess \(b\) given \(ct_b\).

We have that the distribution of \(ct_0 = \text{Enc}_{ek_0}(m_0)\) and \(ct_1 = \text{Enc}_{ek_1}(m_1)\) is given by

\[
ct_0 = (g_0^{\rho_0}, h_0^{\rho_0}, g_0^{\rho_0'}, h_0^{\rho_0'}m_0)
\]

\[
ct_1 = (g_1^{\rho_1}, h_0^{\rho_1}, g_1^{\rho_1'}, h_1^{\rho_1'}m_1)
\]

for uniformly random \(\rho_0, \rho_1 \in \mathbb{Z}_q^*\) and \(\rho_0', \rho_1' \in \mathbb{Z}_q\). It is easy to see that because rerandomization uses a uniformly random \(\rho \in \mathbb{Z}_q^*\) and uniformly random \(\rho \in \mathbb{Z}_q\) the exact same distributions described \(\text{Ran}^{\rho_0}(ct_0)\) and \(\text{Ran}^{\rho_1}(ct_1)\). It is therefore sufficient to prove that \(ct_0 \approx ct_1\), where \(\approx\) denotes computational indistinguishability. This clearly holds under the DDH assumption in \(G\), and follows using essentially the same proof as the proof of IND-CPA of ElGamal encryption. Namely, assume we get \((A, B, C, D) \in \mathbb{G}^4\) which in case A are four independent uniformly random elements and which in case B are three independent uniformly random elements \(A, B, C\) and \(D = C^{DL_A}B\). These two distributions are by definition computationally indistinguishable under the DDH assumption. Now output input \(ct = (A, B, C, Dm_b)\) to \(A\) in the game instead of \(ct_b\). In case A this information theoretically hides \(b\), so the adversary guesses \(b\) with probability exactly \(\frac{1}{2}\). In case B this gives \(ct\) exactly the same distribution as \(ct_b\). Since cases A and B are indistinguishable it follows that the adversary guesses \(b\) with probability negligibly close to \(\frac{1}{2}\). Otherwise we could use \(g \oplus b\) to distinguish case A or case B. \(\square\)

### 9.3 Compressible Randomness Beacon

Our construction of a compressible randomness beacon is a conceptually simple adaptation of existing approaches that construct puncturable PRFs \[\text{BW13, KPTZ13, BGI14}\] from the PRF construction of Goldreich, Goldwasser, and Micali (GGM) \[\text{GGM84}\].

Before explaining our construction, let us first recall the GGM construction, which constructs a PRF \(F : \{0,1\}^\ell \rightarrow \{0,1\}^\lambda\) from a PRG \(G : \{0,1\}^\lambda \rightarrow \{0,1\}^{2\lambda}\). For notational convenience, let us define \(G_0\) and \(G_1\) to be functions that output the first and second half of the output of \(G\), i.e. \(G(s) = G_0(s) || G_1(s)\). On input \(x = x_1 || \ldots || x_\ell \in \{0,1\}^\ell\), the output of \(F\) with key \(k\) is defined to be \(G_{x_\ell}(\ldots G_{x_2}(G_{x_1}(k)) \ldots )\). Pictorially, one can view the evaluation of \(F\) as traversing a binary tree of depth \(\ell\) from top to bottom via a route that is determined by input \(x\) and then returning the value of the leaf node that is reached. The root node’s value is \(k\) and for any (non-leaf) node with value \(v\), the left child’s value is \(G_0(v)\) and the right child’s value is \(G_1(v)\). On input \(x = x_1 || \ldots || x_\ell \in \{0,1\}^\ell\), one traverses the tree by iterating over the bits and going left if the current bit is zero and right if the current bit is one.
Our construction of a compressible randomness beacon will be based on the GGM PRF construction and will make use of a simple, but very powerful observation, which was already exploited in works that constructed puncturable PRFs [BW13, KPTZ13, BGI14]. The observation is that one can take the PRF key $k$ and produce a key, which only allows evaluating the PRF on a subset of inputs. Note that computing a certain leaf’s value, i.e. a PRF output, requires knowing the value of at least one node between that leaf and the root node and if no such value is known, then the leaf’s value is computationally hidden. As an example, one could provide the left child of the root node as a constrained key, which would allow for evaluating the PRF on all inputs starting with a zero bit, but prevent anybody from predicting the output values for any inputs that start with a one bit.

The idea behind our compressible randomness beacon is to view the $i$-th leaf (counted from the left) as the $i$-th random beacon output. Along with the random output, we will provide a small constrained key, which will allow for computing all previous outputs, but not any future ones. In the setting of puncturable PRFs based on the GGM construction, one can generally not reveal multiple arbitrary constrained keys as this would allow the adversary more outputs than they should. The main additional observation behind our construction, when compared to existing puncturable PRF construction, is that one can repeatedly output constrained keys in the GGM construction without leaking too much information, when the sequence of revealed keys is fixed to be the sequence which allows for evaluating the first leaf and iteratively allows evaluating more leaves to the right of it.

To formally present our construction, let us introduce some notation. We assume all nodes the binary tree can be addressed by bit-strings, where the string $x_1\|\ldots\|x_k$ would point to the node that is reached by starting at the root node and going left or right depending on $x_1$, then making the same decision based on $x_2$ and so on. The root node has address $\perp$. For a node with address $v$, we refer to the node’s value by $\text{Value}(v)$. The parent of that node is $\text{Parent}(v)$, the left child is $\text{Left}(v)$, and the right child is $\text{Right}(v)$. Let $\text{Pred}(v)$ be the set of predecessors (along with their values) of $v$, i.e. the parent of $v$ and the parent of the parent of $v$ and so on. Let $\text{Span}(v)$ be the set of all nodes addresses (and their values) that has $v$ as a predecessor. For a given node $v$ and a leaf index $i \in \text{Span}$, let $\text{Compute}(v,i)$ be the function that computes the value of node $i$ according to the GGM construction by appropriately cutting off the prefix bits of $i$ that would be “above” node $v$.

**Theorem 4.** Let $\lambda, \ell \in \mathbb{N}$ with $\ell = \text{poly}(\lambda)$. Let $G : \{0,1\}^{\lambda} \rightarrow \{0,1\}^{2\lambda}$ with $G_0 : \{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda}$ and $G_1 : \{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda}$, such that for all $s \in \{0,1\}^{\lambda}$, it holds that $G(s) = G_0(s)\|G_1(s)$, be a secure pseudorandom generator. Then the construction in Figure 14 is a correct, unpredictable and $O(\ell \cdot \lambda)$-compressing randomness beacon.

**Proof (Sketch).** Let us start with observing that our construction is correct. Let $k$ be an arbitrary key, let $i \in [2^\ell - 1]$, and let $S := \text{Prefix}(k, 1^i)$. If $i = 2^\ell - 1$, then the algorithm just returns the root and from there clearly any leaf can be computed. So assume $i < 2^\ell - 1$ and let $j < i$ as the $i$-th leaf is always included in $S$ by construction. Let $v$ be the lowest common ancestor of node $i$ and $j$. Since $i > j$, we know that reaching $i$ requires going down the right and reaching $j$ requires going down the left path. This means that during the computation.
of \( \text{Prefix}(k, i) \), the left child of \( v \) was included in \( S \) from which one can compute the value of node \( j \).

To see that the construction is \( \mathcal{O}(\ell \cdot \lambda) \)-compressing, we observe that at each layer, we include at most one \( \lambda \)-bit long string into \( S \). Since the depth of the tree is \( \ell \), the compression follows.

To argue unpredictability, we would like to follow the proof strategy of Goldreich, Goldwasser, and Micali [GGM84], which reduces the security of their PRF to the security of a PRG, but we face an additional challenge. The adversary against randomness beacon’s unpredictability is additionally allowed to query the \( \text{Prefix}(k, \cdot) \) oracle and we thus may need to provide internal nodes of the tree, which allow for computing certain evaluations of the beacon. This means that during the proof, we cannot just simulate leaves by random values as this may then end up being inconsistent with the internal nodes we would need to provide.

Let \( \mathcal{A} \) be a polynomial time adversary that runs in time \( q(\lambda) \). By the bound on the runtime on \( \mathcal{A} \), we know that any index queried to the prefix oracle is of size at most \( q(\lambda) \).

We consider a modified unpredictability experiment, where the challenger initially guesses the largest index \( i^* \in [q(\lambda)] \), which the adversary \( \mathcal{A} \) against the unpredictability will query to the prefix oracle. Since \( \mathcal{A} \) is PPT, it means that the guess will be correct with an inverse polynomial probability. The challenger honestly picks uniformly random node values for the nodes in the set that would be returned by \( \text{Prefix}(k, i^*) \). Note that for any \( i \leq i^* \) this allows consistently answering any query \( \text{Prefix}(k, i) \) or \( \text{Eval}(k, i^*) \) as both responses can be computed from the output of \( \text{Prefix}(k, i^*) \). For any \( i > i^* \), any query to the \( \text{Eval} \) oracle with index \( i \), we let the challenger pick a fresh uniformly random value (unless it was previously already picked in which case we use the already selected value) and return that value. Finally, at some point the adversary \( \mathcal{A} \) will output a pair \((i, v)\). If our guess for \( i^* \) was incorrect, then the challenger in our hybrid simply aborts and makes a random guess. If the challenger’s guess was correct, then clearly the adversary can do no more than guess an output, since they are all uniformly random and independently chosen values.

---

**Fig. 14.** Compressible randomness beacon construction.
What remains to show is that this modified experiment and the original experiment are indistinguishable from $A$’s perspective. This is done by an argument that is essentially identical to the one of the GGM PRF, just applied to a part of the tree and not the full tree itself. Due to the guessing, our proof incurs an additional polynomial security loss. Since the proofs from this point on are virtually identical, we refer the interested reader to the original proof of Goldreich, Goldwasser, and Micali [GGM84].

9.4 Strongly Oblivious Read-Once Maps

Our construction of a strongly oblivious read-once map closely follows the ORAM construction of Shi et al. [SCSL11]. As outlined in Section 1.3, their construction arranges their memory of size $2^n$ in a full binary tree of depth $n$, where each node can store up to $B$ data items. If we ever try to insert more than $B$ items into a node, we assume that the data structure simply aborts and outputs $\bot$. As discussed in Section 7, we will view this data structure as a storage for uniformly random labels and omit explicitly mentioning the associated data items as they are simply dragged along with their respective labels.

We will consider a tree of depth $\lambda$ and we define the label space to be $\mathcal{L} = \{0, 1\}^\lambda$, where we interpret a label as a pointer to a leaf in the tree and the data structure will maintain the invariant that a label is always stored in some node between the root node and the leaf node that the label points to. Note that there are are exponentially many leaves in the tree, but we only need to explicitly store those that have been touched at least once during the lifetime of the data structure. For a node $v$, we write $\text{ToLeft}(v)$ and $\text{ToRight}(v)$ to refer to the subset of labels stored in $v$ that point to the left child and right child respectively. We refer to the root node as $\text{root}$. For a label $L$, we write $\text{Path}(L)$ to denote set of nodes that are on the path between the root node and the leaf indicated by $L$.

After each insertion of a label into the memory, an eviction procedure is invoked, which goes through the tree top to bottom, selects $\nu$ nodes at random in each layer, and pushes all labels into the child that is indicated by the label. Formally, both $\text{Route}$ and $\text{Read}$ operate on memory addresses, but for notational convenience we will let them operate on node addresses and labels. In the case of $\text{Route}$, this means that instead of memory locations for labels, we get the node that contains the label instead. Given a canonical representation of a binary tree in a memory array, this could in principle then be mapped to memory addresses as well, but we will omit this step.

**Theorem 5.** The construction in Figure 15 with label space $\mathcal{L} = \{0, 1\}^\lambda$ with a bucket size of $B = \Theta(\text{polylog}(\lambda))$ is a strongly oblivious read-once map and for any polynomial number of operations is correct with probability $1 - \text{negl}(\lambda)$. Furthermore, each invocation of $\text{Route}$ needs to touch $O(\lambda \cdot B)$ labels.

**Proof (Sketch).** Let us start by arguing correctness of our construction. For this we need to show that we will never attempt to store more than $B$ items in any one node at a time. Concretely, this requires showing that the root node will never overflow and that we will never try to push more than $B$ elements into any node during our eviction procedure. As already previously alluded to, our construction is closely related to the ORAM construction.
of Shi et al. \cite{SCSL11} and indeed their analysis for showing that no node overflows is directly applicable to our construction.

The main differences between our constructions are that we never move elements from internal nodes of the tree back to the root node and that we do not need to store a position map recursively, since we access data elements by their uniformly random labels and do not actually consider a memory array. Never moving elements back to the root node is identical to only considering access sequences that perform write operations to distinct addresses in the ORAM of Shi et al.

What remains to show is that our construction satisfies strong obliviousness. This, however, is easy to see. All elements move towards the leaf indicated by their uniformly random label. All elements move independently of each other and thus seeing the movement of some corrupted elements, provides no information about the movement of other elements. □

10 Adding Strong Anonymity

In this section, we sketch how to extend our OCash construction to satisfy strong anonymity. OCash, as described in Section 8, currently leaks \( \text{tid} \) during payment. This allows the user, who knows \( \text{tid} \), to learn when the shop collected its coin. To mitigate this we will instead let the shop post what is essentially \( \text{PRF}_K(\text{tid}) \) for a key \( K \) bound to the shop. When \( K \) is fixed then \( \text{PRF}_K(\text{tid}) \) repeats whenever \( \text{tid} \) repeats. Furthermore, if the shop is honest then \( K \) is random and unknown and therefore \( \text{PRF}_K(\text{tid}) \) leaks nothing about \( \text{tid} \).

10.1 PRF Key Registration

To make this proof concretely efficient, we use a PRF which is a slightly modified version of the Dodis-Yampolskiy VRF \cite{DY05}. We extend the public parameters of the commitment
scheme with an independent generator $g_5$. Each shop commits to a key $K = s$ by putting

$$\nu_k = g_5^K$$

in its account information. Then, during Create Account they give a proof using NiZKPoK for the relation $R_{\text{key}}(\nu_k, K) \equiv \nu_k = g_5^K$. Clearly $\Phi(K) = g_5^K$ is a group homomorphism, so we can use the proofs described in Section C.2 to make this proof efficient. During simulation, the simulator will for honest parties not learn $K$, but instead use $g_5^\rho$ for uniformly random $\rho$. This will be indistinguishable by the DDH assumption. It then uses the NiZKPoK simulator to simulate the proof for $\nu_k$, which will again be indistinguishable. For the corrupted parties, it will use the NiZKPoK extractor to learn $K$.

The key $K$ defines a pseudorandom function

$$\text{PRF}_K : \mathbb{Z}_q \to G, \quad y = \text{PRF}_K(x) = g_5^{1/(K+x)}.$$  \hspace{1cm} (2)

Using the Diffie-Hellman inversion (DHI) assumption, one can show that the function is a PRF, even if one is given $\nu_k$. This was proven by Dodis and Yampolskiy [DY05], but their reduction runs in exponential time. The specific reduction in [DY05] runs in time $2^{160}$ and asymptotically runs in time $2^\lambda$, where $\lambda$ is the output length of a collision resistant hash function.\footnote{Observe that $a(k)$ in Theorem 1 in [DY05] needs to be $\lambda$ and also see also Remark 1 [DY05].} To withstand an adversary running in time $2^\tau$ we must have $\lambda > 2\tau$ because of the birthday bound. In our setting this is not satisfactory, as it would force us to use a group $G$ of size $2^{2\tau}$, where in practice one would hope to get by using a group of size about $2^\tau$. In Appendix A we give a more fine grained reduction allowing us to do a poly-time reduction for our use of DY. The reduction is not novel, but formalizes what seem to be folklore in the way DY is used in the literature.

### 10.2 Hashed Identifier

We furthermore add a new component $\text{hid} = \text{Hash}(m_U, n_U)$, called the hashed identifier, to the commitment $\text{tid}$. Here $m_U$ is the user number of $U$. Each registration appears on the total ordered ledger, so we can order the users as $1, 2, \ldots$ according to when their registration appears. We need that $\text{Hash}$ maps two polynomially large $m$ and $n$ collision resistantly into $\mathbb{Z}_q$. In fact, since $q$ is exponential the map is easy to make injective. When the coin is posted it has the form

$$c = (G = g^\rho, H = h^\rho, G^\tau, H^\tau \cdot g_6^s \cdot g_1^u \cdot g_2^s \cdot g_3^u \cdot g_4^a \cdot g_5^\text{hid}).$$  \hspace{1cm} (3)

The user will prove that $\text{hid}$ was computed as $\text{hid} = \text{Hash}(m_U, n_U)$. This can be done basically by opening the $g_5$ component and checking. We discuss how to extend $R_{\text{PAY}}$ in Section C.5. This is then maintained during re-randomizations and therefore does not have to be reproven when the coin is collected. The current proof already proves that when a coin is collected, then the committed values are the same as in some coin constructed during a payment,
cf. Lemma 9]. Therefore, when the coin is collected a rerandomized version is posted of the following form:

\[ c' = (G = g^{\rho'}, H = h^{\rho'}, G^{r'}, H^{r'} \cdot g_0^s \cdot g_1^{u} \cdot g_2^s \cdot g_3^{n_u} \cdot g_4^a \cdot g_5^{\text{hid}}) \]

where hid = Hash(m_U, n_U).

### 10.3 Rerandomized TID

The next modification we make is that the shop will put

\[ \text{tid}' = \text{tid} \cdot g_0^s \]

and

\[ h = g_1^\rho \]

on the ledger instead of tid, as tid is known by the user. Here \( \rho \) is uniform in \( \mathbb{Z}_q \). Therefore, by DDH, (tid', h) is indistinguishable from (tid', h') for uniformly random \( h' \in \mathbb{G} \). And in this distribution tid' is uniform in \( \mathbb{G} \) and independent of tid and h', which can easily be seen to give strong anonymity. Note that after this

\[ \text{tid}' = g_0^{s'} \cdot g_1^{u} \cdot g_2^s \cdot g_3^{n_u} \cdot g_4^a \cdot g_5^{\text{hid}} \]

for \( s' = s + \rho \mod q \).

### 10.4 Pseudononymous Hashed Identifier

What remains is to prove that the coin was not collected before. Note that the value \((m_U, n_U)\) is unique as \( n_U \) is incremented for each payment by \( U \). It is therefore sufficient to check that \((m_U, n_U)\) was not used before by the shop. By collision resistance of Hash and the fact that hid was computed correctly, this is the same as checking that hid was not used before. Let \( vK \) be the public key of the shop and let \( K \) be its key such that \( vK = g^K \). Since PRF \( K : \mathbb{Z}_q \rightarrow \mathbb{G} \) is an injective function and \( K \) is bound to the shop it is therefore enough to check that the pseudonymous hashed identifier \( \text{otid} = \text{PRF}_K(\text{hid}) \) was not used before. We check this simply by letting the shop post

\[ \text{otid} = g_5^{1/(K+\text{hid})} \]

and prove that this value was constructed correctly. The collection is ignored if this proof fails or \( \text{otid} \) was used before.

### 10.5 Improved Reduction to DHI

Let us return to the security loss in the reduction to DHI. In Appendix A we provide an improved analysis for the PRF, using a reduction to DHI with running time \( |X| \cdot \text{poly}(\lambda) \), where \( X \) is a set which can be computed before the PRF key \( K \) is sampled and where it
is guaranteed that all queries to $\text{PRF}_K$ will be from $X$. The reduction essentially does $|X|$ group operations in $\mathbb{G}$.

Note that in our construction we only need $\text{PRF}_K$ to be a PRF when the collector is honest. Furthermore, in this case we apply it to $\text{Hash}(m,n)$ where $m \in [U]$ and $n \in [P]$, where $U$ is a upper bound on the maximal number of users in the lifetime of the system and $P$ an upper bound on the number of payments per user. So we set $X = \text{Hash}([U],[P])$. These bounds are both polynomial and we do not need to estimate them for the construction, only the reduction. In the reduction we can set $U = P$ to be the running time of the environment. A poly-time environment can start at most poly-many collections, so the reduction is asymptotically poly-time.

Our construction seems to be the first to use the DY PRF for strong anonymity while applying it only to a polynomial domain. For instance [CHK23] applies the PRF to the coins $c$, which are harder to control as they can be constructed by the adversary. Constructions, like [CHK23], apply it to an exponential domain and therefore a priori suffer the exponential security loss. We note, however, that the complexity of the reduction seems to be controllable using a programmable random oracle. In [CHK23], the PRF is applied to $\text{Hash}(c)$, where $\text{Hash}$ could be modelled as a programable random oracle. Before the reduction is run one could then sample a large set $X$ of uniformly random values and then when the random oracle is queried by the adversary return a fresh value from $X$. Now it is known that the PRF will only be applied to elements from $X$. However, at the time of writing the SHA256 hash function is being computed about $2^{75}$ times per second by the Bitcoin network. Over a ten year period this is more than $2^{100}$ hashes. This approach therefore still gives a substantial security loss, though still asymptotically polynomial.

### 10.6 Extending the Relations and ZK Proofs

We show how to extend our proof systems to the new coin format in Section C.5.

### References


59


A Generalised Dodis-Yampolskiy Theorem

In this section we give a generalised proof of the security of the Dodis-Yampolskiy VRF without using a random oracle. In our work, we only treat it as a PRF as this is all we need from it. Dodis and Yampolskiy [DY05] prove their VRF construction secure under the Diffie-Hellman inversion (DHI) problem, but their reduction has an exponential security loss, meaning that the DHI assumption needs to hold with exponential security. More concretely this means that the DHI problem needs to be secure against an adversary making $2^\lambda$ queries, where $\lambda$ is the output length of a collision-resistant hash function. The reduction at some point iterates over all possible output of the hash function used.

At the time of writing, most groups used in practice for DHI are shorter than the length of hash functions that are considered collision resistant. Because of the birthday paradox this would appear to be a staying situation. Here we do a more fine grained version of the DY reduction which allows us to avoid the exponential security assumption on DHI. We emphasize that we are not adding anything fundamentally different, we merely squeeze concretely better parameters out of the existing proof technique by iterating only over some controlled subsets of the outputs of the hash function.
Definition 30 (DHI). We say that $G$ is $(\epsilon, \ell)$-DHI against $A$ if $\text{Adv}^{\text{DHI}}_A \leq \epsilon$, where

$$\text{Adv}^{\text{DHI}}_{A,\ell} := \text{Pr} \left[ \begin{array}{l} g \leftarrow G \\ \beta \leftarrow \mathbb{Z}_q \\ G_0 \leftarrow g^{\beta^{-1} \text{mod} \ q} \\ G_1 \leftarrow G \\ b \leftarrow \{0, 1\} \\ c \leftarrow \mathcal{A}(g, g^\beta, \ldots, g^{\beta^\ell}, G_b) \end{array} \right| c = b \right] - \frac{1}{2}.$$

We make a definition which is equivalent to the DY VRF being adaptive secure.

Definition 31 (DY). We say that $G$ is $\epsilon$-DY secure against $A$ if $\text{Adv}^{\text{DY}}_A \leq \epsilon$, where

$$\text{Adv}^{\text{DY}} := \text{Pr} \left[ \begin{array}{l} h \leftarrow G \\ \alpha \leftarrow \mathbb{Z}_q \\ G \leftarrow h^\alpha \\ x^* \leftarrow \mathcal{A}_O^0(h, G) \\ X_1 \leftarrow \begin{cases} X_1 & \text{if } x^* \in Q \\ h_{(x^* + \alpha)}^{-1} \text{mod q} & \text{otherwise} \end{cases} \\ b \leftarrow \{0, 1\} \\ c \leftarrow \mathcal{A}_O^1(h, G, X_b) \end{array} \right| c = b \right] \leq \frac{1}{2} \pm \text{negl}(\lambda)$.$$

Our goal is to reduce DY to DHI. As a stepping stone we use another assumption which we call DYZ (Dodis-Yampolskiy with Zero challenge). It is equivalent to the DY VRF being secure if the adversary is always challenging on $m^* = 0$. 
Definition 32 (DY zero). We say that \( G \) is \( \epsilon \)-DY zero against \( A \) if \( \text{Adv}_A^{\text{DYZ}} \leq \epsilon \), where

\[
\text{Adv}_A^{\text{DYZ}} := \Pr \left[ \begin{array}{c}
h \leftarrow \mathbb{G} \\
\beta \leftarrow \mathbb{Z}_q \\
H \leftarrow h^\beta \\
H_0 \leftarrow h^{\beta^{-1} \mod q} \\
H_1 \leftarrow \mathbb{G} \\
g \leftarrow \mathbb{Z}_q \\
g = b \end{array} \right] - \frac{1}{2}.
\]

Let \( X \) be a set such that we are guaranteed that \( Q \subseteq X \). Ultimately we could set \( X = \mathbb{Z}_q \) but we might be in a setting where we can limit the query set further. Let \( Y \) be a set such that it is guaranteed that \( x^* \in Y \) in the DY game. We call \( A \) for the DY game \( (\ell_X, \ell_Y) \)-limited if it starts by outputting \( (X, Y) \) which limits it as above and where \( |X| \leq \ell_X \) and \( |Y| \leq \ell_Y \). We call \( A \) for the DYZ game \( \ell_X \)-limited if it starts by outputting \( X \) with \( |X| \leq \ell_X \).

Theorem 6. For all \( (\ell_X, \ell_Y) \)-limited adversary \( A \) for the DY game there exists an adversary \( B \) for the \( \xi \)-DHI game, with \( \xi = \ell_X + 1 \), which runs \( A \) once plus some \( \tilde{O}(\ell_X) \) operations in the group \( \mathbb{G} \), and such that

\[
\text{Adv}_A^{\text{DY}} \leq \ell_Y \cdot \text{Adv}_B^{\text{DHI}}.
\]

Lemma 1. For all \( (\ell_X, \ell_Y) \)-limited adversary \( A \) for the DY game there exists an \( \ell_X \)-limited adversary \( B \) for the DYZ game, which runs \( A \) once and such that

\[
\text{Adv}_A^{\text{DY}} \leq \ell_Y \cdot \text{Adv}_B^{\text{DYZ}}.
\]

Proof. Assume we have an adversary \( A \) for the DY game. We construct \( B \) for the DYZ game.

First run \( A \) to get \( (X, Y) \). Sample a uniformly random \( x_0 \leftarrow Y \). This is our guess at what \( x^* \) will be. Output \( X' = \{x - x_0 | x \in X\} \). Now we receive \( (h, H, H_b) \) from the DYZ game where \( H = h^\beta \), \( H_0 \leftarrow h^{\beta^{-1} \mod q} \), and \( H_1 \leftarrow \mathbb{G} \). Define

\[
\alpha := \beta - x_0 \mod q
\]

such that \( \beta = x_0 + \alpha \mod q \). Compute

\[
G \leftarrow h^{-x_0} = h^\beta h^{-x_0} = h^{\beta-x_0} = h^\alpha.
\]

Let

\[
O_0(x) = \mathcal{O}(x - x_0).
\]

Note that if \( x \in X \) then \( x - x_0 \in X' \), so \( B \) is also \( \ell_X \)-limited. Note also that

\[
\mathcal{O}_0(x) = \mathcal{O}(x - x_0) = h^{((x-x_0)+\beta)^{-1} \mod q} = h^{(x+\alpha)^{-1} \mod q}.
\]
Run
\[ x^* \leftarrow A^{\mathcal{O}_0}(h, G). \]
If \( x^* \neq x_0 \) then output a random guess \( c \overset{\$}{\leftarrow} \{0, 1\} \). Otherwise, proceed as follows. Below we assume \( x^* \) is fresh, i.e., \( x^* \notin Q \). This is without loss of generality. Let \( \mathcal{O}_1(x) = \bot \) if \( x = x^* \) and let \( \mathcal{O}_1(x) = \mathcal{O}(x - x_0) \) otherwise. For \( d = 0, 1 \) define
\[ X_d = H_d. \]
Note that we know \( X_b \) and that \( X_0 = h^{\alpha \beta - 1} \mod q = h^{(x_0 + \alpha)^{-1} \mod q} = h^{(x^* + \alpha)^{-1} \mod q} \)
\[ X_1 = H_1 \overset{\$}{\leftarrow} G. \]
By construction, when \( x^* = x_0 \) then the values shown to \( A \) are exactly as in the DY game. Since \( x^* \in Y \) we have that \( x_0 = x^* \) correctly with probability \( 1/\ell_Y \). Therefore
\[ \text{Adv}_{DYZ}^B = \text{Adv}_{DY}^A / \ell_Y. \]

**Lemma 2.** For all \( \ell_X \)-limited adversary \( A \) for the DYZ game there exists an adversary \( B \) for the \( \xi \)-DHI game, with \( \xi = \ell_X + 1 \), which runs \( A \) once plus some \( \widetilde{O}(\ell_X) \) operations in the group \( \mathbb{G} \) and such that
\[ \text{Adv}_{DYZ}^A \leq \text{Adv}_{DHI}^B, \xi. \]

**Proof.** We are given \( A \) for the DYZ game and describe \( B \) for the DHI game. Run \( A \) to get \( X \) such \( |X| \leq \ell_X \) and such that all queries to \( \mathcal{O} \) are in \( X \) and \( 0 \notin X \). Let \( \xi = \ell_X + 1 \) and be given
\[ g, g_1 = g^\beta, g_2 = g^{\beta^2}, \ldots, g_\xi = g^{\beta^\xi}, G_b, \]
where \( G_0 = g^{\beta - 1} \mod q \) and \( G_1 \overset{\$}{\leftarrow} \mathbb{G} \). Define
\[ f(x) := \prod_{z \in X} (x + z). \]
Compute coefficients \( c_0, c_1, \ldots, c_{\ell_X} \) such that
\[ f(x) = \sum_{i=0}^{\ell_X} c_i x^i. \]
Define
\[ h := \prod_{i=0}^{\ell_X} g_i^{c_i} = g^{\sum_{i=0}^{\ell_X} c_i \beta^i} = g^{f(\beta)}. \]
Note that
\[ h^\beta = g^{\left( \sum_{i=0}^{\ell_X} c_i \beta^i \right) \beta} = g^{\sum_{i=0}^{\ell_X} c_i \beta^{i+1}}. \]

65
So, we can compute $H$ as in the DYZ game as follows:

$$H = \prod_{i=0}^{\ell_X} g_{c_i}^{c_{i+1}} = h^\beta.$$  

This is the place where we use $\xi = \ell_X + 1$. To answer $O(x)$ as in the DYZ game we proceed as follows. Define the polynomial

$$f_x(x) := \prod_{z \in X \setminus \{x\}} (x + z) = f(x)/(x + x).$$

Compute coefficients $d_0, d_1, \ldots, d_{\ell_X-1}$ such that

$$f_x(x) = \sum_{i=0}^{\ell_X-1} d_i x^i.$$  

As above we can compute

$$O(x) = \prod_{i=0}^{\ell_X-1} g_{c_i}^{d_i} = g^{\sum_{i=0}^{\ell_X-1} d_i \beta^i} = g^{f_x(\beta)} = g^{f(\beta)/(\beta+x)} = h^{(\beta+x)^{-1} \text{mod } q}.$$  

Finally we address how to compute the challenges. Define

$$f_0(x) := f(x)/x.$$  

We have that

$$f_0(x) = c_0/x + \sum_{i=1}^{\ell_X} c_i x^{i-1},$$  

$$f_0(\beta) \text{ mod } q = f(\beta)\beta^{-1} \text{ mod } q.$$  

Compute

$$H_b \leftarrow G_b^{c_0} \prod_{i=1}^{\ell_X} g_{c_i}^{c_{i+1}}.$$  

Note that

$$H_0 = G_0^{c_0} \prod_{i=1}^{\ell_X} g_{c_i}^{c_{i+1}} = g^{c_0 \beta^{-1} + \sum_{i=1}^{\ell_X} c_i \beta^{i-1}} = g^{f_0(\beta)} = g^{f(\beta)/\beta} = h^{\beta^{-1} \text{mod } q},$$  

as in the DY game. Since $x \notin X$ we have that $c_0 \neq 0$. Therefore it follows from $G_1$ being uniform that

$$H_1 = G_1^{c_0} \prod_{i=1}^{\ell_X} g_{c_i}^{c_{i+1}}$$

is uniform, as desired. We compute $c = A^O(h, H, H_b)$ and return $c$. It is easy to see that all values by construction are as in the DY game, so $\text{Adv}_{B, g}^{\text{DHI}} = \text{Adv}_A^{\text{DYZ}}.$  

66
B Proof of Theorem 2

In this section, we provide the full proof of Theorem 2. Recall that to prove security in the UC framework we need to construct a simulator $S$ such that for all environments $E$ it holds that

$$\text{Exec}_{\mathcal{F}_{\text{AnonPay}}, S, E}(1^\lambda) \approx \text{Exec}_{\Pi_{\text{ANONPAY}}, \mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}, \mathcal{F}_{\text{SERVICE}}, E}(1^\lambda).$$ (5)

Note that we prove security for the dummy adversary and therefore leave it out of the notation.

In $\text{Exec}_{\mathcal{F}_{\text{AnonPay}}, S, E}(1^\lambda)$ it is the environment which gives inputs to $\mathcal{F}_{\text{AnonPay}}$ and receives outputs from $\mathcal{F}_{\text{AnonPay}}$. In $\text{Exec}_{\Pi_{\text{ANONPAY}}, \mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}, \mathcal{F}_{\text{SERVICE}}, E}(1^\lambda)$ the inputs from $E$ go to $\Pi_{\text{ANONPAY}}$ and the outputs of the parties go back to $E$. In $\text{Exec}_{\Pi_{\text{ANONPAY}}, \mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}, \mathcal{F}_{\text{SERVICE}}, E}(1^\lambda)$ the leakage of $\mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}$, and $\mathcal{F}_{\text{SERVICE}}$ goes to $E$ and it is $E$ giving commands to these ideal functionalities as adversary. In $\text{Exec}_{\mathcal{F}_{\text{AnonPay}}, S, E}(1^\lambda)$ it is simulator $S$ which gets the leakage from $\mathcal{F}_{\text{AnonPay}}$ and which gives adversarial commands to $\mathcal{F}_{\text{AnonPay}}$. The simulator $S$ also interacts with $E$ and presents $E$ with the same adversarial interface as $\mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}$, and $\mathcal{F}_{\text{SERVICE}}$ have. It tries to convince $E$ that $E$ is observing a run of $\text{Exec}_{\Pi_{\text{ANONPAY}}, \mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}, \mathcal{F}_{\text{SERVICE}}, E}(1^\lambda)$. It must produce the same leakage to $E$ as the $\mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}$, and $\mathcal{F}_{\text{SERVICE}}$ would in

$$\text{Exec}_{\Pi_{\text{ANONPAY}}, \mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}, \mathcal{F}_{\text{SERVICE}}, E}(1^\lambda)$$

and it must receive adversarial commands from $E$ to $\mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAT}}$, and $\mathcal{F}_{\text{SERVICE}}$ and translate these into adversarial commands to $\mathcal{F}_{\text{AnonPay}}$ with the same effects. It must in particular make $\mathcal{F}_{\text{AnonPay}}$ give the same outputs as the protocol $\Pi_{\text{ANONPAY}}$. The main challenge in constructing $S$ is that in $\text{Exec}_{\mathcal{F}_{\text{AnonPay}}, S, E}(1^\lambda)$ it does not receive the inputs of honest parties, only the limited leakage provided by $\mathcal{F}_{\text{AnonPay}}$.

We only prove static security, i.e., it is decided before the execution which parties are corrupted.

In the simulation there are two types of differences from the protocol to handle. First of all, there is structural simulation, i.e., we construct the simulator to send values which are structured as in the protocol and are sent at the same time as the protocol, and construct it to give appropriate inputs to $\mathcal{F}_{\text{AnonPay}}$ to make it give the same outputs as the protocol at the same times. There is also content simulation, i.e., some of the values sent at the correct times during the simulation might have a different distribution than in the protocol, for instance an encryption of a dummy label instead of the correct label. We prove indistinguishability of structure and contents slightly differently. We argue during the presentation of the simulator, inside the pseudo-code, that the simulation has the correct temporal structure, as we think this helps to understand why the simulator is constructed as it is and therefore makes it easier to read. After that we then argue that the messages sent in the simulation are also indistinguishable from those of the protocol using a hybrids argument.

B.1 Observations

We first make some observations about the protocol which help better understand the structure of the simulator and prove it secure.
In the below we will change to a hybrid where the CRS $\text{crs}^{\text{KNOW}}$ for the proof of knowledge is generated by $F_{\text{SERVICE}}$ as follows:

$$(\text{crs}^{\text{KNOW}}, t_{\text{Sim}}, t_{\text{Ext}}) \leftarrow \text{NIZKPoK.SimGen}(1^\lambda).$$

By Zero-Knowledge in Section 2.5 it follows that this change will be indistinguishable to the adversary and environment. Furthermore, by Weak Simulation Extractability in Section 2.5 it follows that we can use $t_{\text{Ext}}$ to extract accepting proofs given by the adversary, and this will yield a witness except with negligible probability. This is because we are not using $t_{\text{Sim}}$ to simulate any proofs and therefore in particular are simulating no false statements. The reason why we need to extract some proofs from the adversary will become apparent by Definition 33 below.

**Lemma 3 (No Account Collisions).** If $F_{\text{Ledger}}$ accepts two accounts $A_1$ and $A_2$ then $A_1 \neq A_2$.

**Proof.** The position $p_i$ at which $A_i$ appears in Ledger is part of $A_i$ and $p_1 \neq p_2$.

Recall that we model $\text{Hash}$ as a random oracle.

**Lemma 4 (Hidden Query Point).** For all executions it holds except with negligible probability that whenever Step 5 Receive Coin in Fig. 11 is executed, then $\text{Hash}$ has not yet been queried on $L = L_A \oplus L_S$. Furthermore, if both $A$ and $B$ in a payment $(\text{PAY}, A, B, \cdots)$ are honest, then $\text{Hash}$ has not yet been queried on $L = L_A \oplus L_S$ by the adversary when Step 5 in Collect in Fig. 12 is executed.

**Proof.** We can set up the execution such that we only use the CRaB key $k$ via blackbox access to $\text{Eval}(k, \cdot)$ and $\text{Prefix}(k, \cdot)$. At a given point let $p_0$ be the maximal value we queried $\text{Eval}(k, \cdot)$ or $\text{Prefix}(k, \cdot)$ on. Let $p$ be the position of $(\text{Tx}, \phi_{\text{Tx}})$ in Fig. 11. It is not hard to see that just before we execute Step 5 in Fig. 11 we have that $p > p_0$. So if we can compute $(p, L_S)$ such that $\text{CRaB.Eval}(k, p) = L_S$ with probability non-negligibly better than $2^{-\lambda}$ then we can win Definition 25, which we have assumed that we cannot. Note that before Step 5 in Fig. 11 we can compute the, possibly corrupted, $P_A$’s contribution to the coinflip as $(A, L_A) = \text{PKE.Dec}_{\text{sk}}(d)$. Keep track of the points $Q$ on which $\text{Hash}$ was queried and compute $Q \oplus L_A = \{x \oplus L_A | x \in Q\}$. Assume for the sake of contradiction that $\text{Hash}$ was queried on $L = L_A \oplus L_S$. This is the same as $L_A \oplus \text{CRaB.Eval}(k, p) \in Q$ which is equivalent to $\text{CRaB.Eval}(k, p) \in Q \ominus L_A$. This allows us to guess $\text{CRaB.Eval}(k, p)$ with noticeable probability $|Q|^{-1}$ by outputting a uniformly random point from $Q \ominus L_A$. But we have argued that this cannot be the case. Then note that the adversary gets no additional information on $L$ until Step 5 in Collect in Fig. 12 when both the sender and receiver are honest.

When describing the simulator, and in the proofs, we will assume that whenever Step 5 in Receive Coin in Fig. 11 is executed then $\text{Hash}$ has not been queried on $L = L_A \oplus L_S$. Similarly for Step 5 in Collect in Fig. 12 when both the sender and receiver are honest. We can without loss of generality ignore the negligible probability that this is not the case.
We then prove a lemma about when an honest payment can fail. Let us first see that there is something to do. Note that in Step 9 in Fig. 10 the payer checks that \( a \leq b_A \). However, when the transaction is sent in Step 8 then the control goes back to the environment which may now initiate a new payment for the same \( A \). This payment would be made with the same nonce\(_A\) so it will be in contradiction to the previous payment. Assume for sake of argument that both payments are of the amount \( a = b_A \) and that \( a > 0 \). Then clearly it is a feature that at most one should go through. We could change the code to avoid that such parallel payments are done. The honest user could set a local bit indicating that a payment is in process. This is, however, not a practical solution. In practice keys often exist in several places, say in a mobile wallet and a desktop wallet, so it is hard to implement such a semaphore. Users also often make multiple retries on purpose. It can for instance happen that a user makes a payment, but during the payment the payment app crashes and/or the payment takes a very long time to arrive on the blockchain. The user in these cases often will try to make the payment again until it goes through. We therefore want to allow multiple payment takes a very long time to arrive on the blockchain. The user in these cases often will try to make the payment again until it goes through. We therefore want to allow multiple conflicting payments being in progress as a feature. The first to arrive on the chain will be the one accepted.

Notice that the payment transaction \((Tx, \phi_{Tx})\) contains nonce\(_A\). Call this value nonce\((Tx, \phi_{Tx})\).

**Lemma 5 (Unique NONCE).** If \( A \) is honest then for each nonce\(_A\) at most one payment \((Tx, \phi_{Tx})\) with nonce\((Tx, \phi_{Tx}) = \) nonce\(_A\) is posted. Furthermore, for each nonce\(_A\) it is always possible that some payment will go through for nonce\(_A\), at least as long as \( b_A > 0 \) and a covered payment is made (i.e., one where \( a \leq b_A \)) while nonce\(_A\) is the value stored on \( F_{\text{ledger}} \). Furthermore, the \((Tx, \phi_{Tx})\) to go through for nonce\(_A\) is the first covered one to be scheduled by the adversary for which nonce\((Tx, \phi_{Tx}) = \) nonce\(_A\).

*Proof.* We first prove that at most one transaction is posted for each nonce\(_A\). Note that if any \((Tx, \phi_{Tx})\) initiated with nonce\(_A = \) nonce is posted on \( F_{\text{ledger}} \), then nonce is part of \((Tx, \phi_{Tx})\). Let us write nonce\((Tx, \phi_{Tx}) = \) nonce. Assume \((Tx, \phi_{Tx})\) is posted on \( F_{\text{ledger}} \). Let nonce\(_A\) be the value on \( F_{\text{ledger}} \) when \((Tx, \phi_{Tx})\) is posted. It is easy to see that by construction of \( \phi_{Tx} \) and soundness of NIZKPoK it holds that nonce\((Tx, \phi_{Tx}) = \) nonce\(_A\) when \((Tx, \phi_{Tx})\) is posted. And by construction it will hold that nonce\(_A = \) nonce\((Tx, \phi_{Tx}) + 1 \) right after. So for each \( A \) and each nonce\(_A\) at most one \((Tx, \phi_{Tx})\) with nonce\((Tx, \phi_{Tx}) = \) nonce\(_A\) is posted.

We then prove that for each nonce\(_A\) it is always possible that some covered payment will go through for nonce\(_A\) and that it is the first one scheduled by the adversary for which nonce\((Tx, \phi_{Tx}) = \) nonce\(_A\). Say that \( A \) is locally consistent when the values stored locally by \( A \) match the values on the ledger, i.e., \( c_A = \text{Commit}_{\psi_k}(b_A; \rho_A) \) and the value of nonce\(_A\) in local storage is the same as the one on \( F_{\text{ledger}} \). There is only one period of time where \( A \) is not locally consistent and that is from when \( Tx \) is posted on \( F_{\text{ledger}} \) in Step 10 and \( A \) updates its state in Step 11. In Step 10 the blockchain stateful layer updates to nonce\(_A = \) nonce\(_A\) + 1 and this is only done by \( A \) in Step 11. We show that if a covered payment is made for nonce\(_A\) then one will eventually go through. Assume first the payment is made when \( A \) is not locally consistent. Note that any payment initiated when \( A \) is not locally consistent will terminate already in Step 11 as the check nonce\(_A \neq \) nonce\(_A\) will be true. This can only happen if already some other payment with nonce\(_A\) was initiated. And this payment will terminate when \( A \)
is again scheduled to run from Step $[\Box]$ and then a payment was made for $\text{nonce}_A$. Assume then the payment is made when $A$ is locally consistent. Then by construction of $(\text{Tx}, \phi_{\text{Tx}})$ with $\text{nonce}(\text{Tx}, \phi_{\text{Tx}}) = \text{nonce}_A$ is posted. Furthermore, when the first such $(\text{Tx}, \phi_{\text{Tx}})$ is scheduled, then the ledger updates $\text{nonce}'_A = \text{nonce}_A + 1$ and no other such payment can now get posted. Once $A$ is scheduled again it will execute from Step $[\Box]$ and the payment has gone through. □

We now define the “information inside a transfer”, which is not a straight-forward notion as the commitments are information theoretically hiding. We instead use extraction of the proof system to get the information. This is the first place where we use that we set up $\text{crs}^{\text{KNOW}}$ with known $t_{\text{Ext}}$.

**Definition 33 (Transfer Information).** In the protocol we can inspect $F_{\text{SERVICE}}$ to learn $t_{\text{Ext}}$. This allows us to define what information is in the coin of a payment as follows. When during a payment a $(\text{Tx}, \phi_{\text{Pay}})$ appears on the ledger in position $p$, get the proof $\pi$ from $\text{Tx}$. By construction of $\phi_{\text{Pay}}$ we know that $\text{NIZKPoK}.\text{Ver}_{\text{crs}}(R_{\text{Pay}}, (c_A, \text{coin}, c_A', A, \text{nonce}_A), \pi) = T$. By definition of $R_{\text{Pay}}$ we can therefore use $t_{\text{Ext}}$ to compute a witness $w = ((b_A, \rho_A), (B, a, \rho_1, \rho_2), \rho'_A)$ such that $c_A = \text{Com}.\text{Commit}_{\text{ck}}(b_A, \rho_A)$ and $((\text{coin}, \text{Com}.\text{Commit}_{\text{ck}}(A, B, a, \text{nonce}_A; \rho_1)), \rho_2) \in \mathcal{R}_{\text{ENC}}$ and $c'_A = \text{Com}.\text{Commit}_{\text{ck}}(b_A - a, \rho'_A)$, and $b_A \geq a \geq 0$. We say that coin is a payment from $A$ to $B$ of amount $a$ with transfer identifier $t_{\text{id}} = \text{Com}.\text{Commit}_{\text{ck}}(A, B, a, \text{nonce}_A; \rho_1)$, nonce $\text{nonce}_A$ and appearing in position $p$. We write $\text{PayInfo}_{t_{\text{Ext}}}(\text{Tx}) = (A, B, \text{tid}, a, \text{nonce}_A, p)$. Similarly for a collection $(\text{Tx}, \phi_{\text{Collect}})$ in position $p$. By construction of $\phi_{\text{Collect}}$ we have that

$$\text{NIZKPoK}.\text{Ver}_{\text{crs}}(R_{\text{Collect}}, (c_k, c_B, B, \text{tid}, c'_B), \pi_2) = T,$$

so we can use $t_{\text{Ext}}$ to compute an opening $t_{\text{id}} = \text{Com}.\text{Commit}_{\text{ck}}(A, B, a, \text{nonce}_A, \rho_1)$. We write $\text{ColInfo}_{t_{\text{Ext}}}(\text{Tx}) = (A, B, \text{tid}, a, \text{nonce}_A, p)$.

Note that the extractions needed in the above definition will indeed succeed by weak simulation extraction. Since we do not simulate any false statements or extract any simulated proofs, the failure of an extraction would allow us to win the game in **Weak Simulation Extraction** in $[\text{Definition 16}]$.

Note that $\text{PayInfo}_{t_{\text{Ext}}}(\text{Tx})$ can be computed in PPT given $t_{\text{Ext}}$. We can assume without loss of generality that $\text{NIZKPoK}.\text{Extract}^O$ is deterministic, making $\text{PayInfo}_{t_{\text{Ext}}}(\text{Tx})$ a function. Even if $\text{NIZKPoK}.\text{Extract}^O$ was randomised it is easy to see that if different computations of $\text{PayInfo}_{t_{\text{Ext}}}(\text{Tx})$ would lead to different information, then we would have broken computational binding of $\text{Com}.\text{Commit}_{\text{ck}}$. Similarly for $\text{ColInfo}$.

**Lemma 6 (Correct Nonce).** Let $(\text{Tx}, \phi_{\text{Pay}})$ be a payment on $F_{\text{Ledger}}$. Let $\text{PayInfo}_{t_{\text{Ext}}}(\text{Tx}) = (A, B, \text{tid}, a, \text{nonce}_A, p)$. Then except with negligible probability $\text{nonce}_A$ is the value of $\text{nonce}_A$ from $A$’s account on $F_{\text{Ledger}}$ just before $(\text{Tx}, \phi_{\text{Pay}})$ was posted.

**Proof.** This follows by the fact that $\text{NIZKPoK}.\text{Ver}_{\text{crs}}(R_{\text{Pay}}, (c_A, \text{coin}, c_A', A, \text{nonce}_A), \pi) = T$, soundness of $\text{NIZKPoK}$ and construction of $R_{\text{Pay}}$. □
Lemma 7 (Unique Coins and Identifiers). The following holds in all executions except with negligible probability. Let \((\text{Tx}^1, \phi_{\text{PAY}}^1)\) and \((\text{Tx}^2, \phi_{\text{PAY}}^2)\) be two payments on \(\mathcal{F}_{\text{LEDDER}}\) containing coins \(\text{coin}^1\) and \(\text{coin}^2\) respectively. Then \(\text{coin}^1 \neq \text{coin}^2\). Furthermore, if we let \(\text{PayInfo}_{\text{tExt}}(\text{Tx}^1) = (\cdot, \cdot, \text{tid}^1, \cdot, \cdot)\) and \(\text{PayInfo}_{\text{tExt}}(\text{Tx}^2) = (\cdot, \cdot, \text{tid}^2, \cdot, \cdot)\), then \(\text{tid}^1 \neq \text{tid}^2\).

Proof. Let \(\text{RPKE-DEC}(\text{coin}^i) = \text{tid}^i\) define the transfer identifier \(\text{tid}^i\) inside \(\text{coin}^i\). Note that if \(\text{coin}^1 = \text{coin}^2\) then \(\text{tid}^1 = \text{tid}^2\), so it is enough to prove that \(\text{tid}^1 \neq \text{tid}^2\). Assume for the sake of contradiction that \(\text{tid}^1 = \text{tid}^2 =: \text{tid}\). As in Definition 33 we can use \(\text{tExt}\) to open \(\text{coin}\) from the proofs posted on \(\mathcal{F}_{\text{LEDDER}}\) in PPT. This allows us to compute \(\text{tid}\) in PPT and by definition of \(\mathcal{R}_{\text{ENC}}\) we get that \(\text{tid} = \text{Com.CEmit}_{\text{ck}}(\text{A}, \text{B}, \text{a}, \text{nonce}_\text{A}; \rho_1)\). So \(\text{PayInfo}_{\text{tExt}}(\text{Tx}^1) = (\text{A}, \text{B}, \text{tid}, \text{a}, \text{nonce}_\text{A}, \cdot, \cdot)\) and \(\text{PayInfo}_{\text{tExt}}(\text{Tx}^2) = (\text{A}, \text{B}, \text{tid}, \text{a}, \text{nonce}_\text{A}, \cdot, \cdot)\). This, however, cannot be the case. One of the two payments were posted first, say \(\text{Tx}^1\). When this happened \(\text{nonce}_\text{A}\) was the value of \(\text{nonce}_\text{A}\) from \(\text{A}\)’s account on \(\mathcal{F}_{\text{LEDDER}}\) just before \(\text{Tx}^1\) was posted (by Lemma 6). By inspection of Fig. 10 it can be seen that when \(\text{Tx}^1\) was posted \(\mathcal{F}_{\text{LEDDER}}\) the value of \(\text{nonce}_\text{A}\) from \(\text{A}\)’s account on \(\mathcal{F}_{\text{LEDDER}}\) was incremented to \(\text{nonce}_\text{A} + 1\). And this value never decreases. Therefore \(\text{PayInfo}_{\text{tExt}}(\text{Tx}^2) = (\text{A}, \text{B}, \text{tid}, \text{a}, \text{nonce}_\text{A})\) is in contradiction with Lemma 6.

From Lemma 7 we get that if there is a coin \(\text{coin}\) appearing in a payment then except with negligible probability it appears in a unique \(\text{Tx}\). We can therefore make the definition

\[
\text{PayInfo}(\text{coin}) = (\text{A}, \text{B}, \text{tid}, \text{a}),
\]

where \(\text{PayInfo}_{\text{tExt}}(\text{Tx}) = (\text{A}, \text{B}, \text{tid}, \text{a}, \text{nonce}_\text{A})\) and \(\text{Tx}\) is the unique \(\text{Tx}\) in which \(\text{coin}\) appears.

This definition is well-formed except with negligible probability. We will tacitly ignore the executions where this definition is not well-defined.

Lemma 8 (TID Distribution). Consider the distribution \(\text{Tid}\) obtained by sampling \(\text{tid} \leftarrow \text{Com.CEmit}_{\text{ck}}(0)\). All \(\text{tid}\) produced by honest parties have this distribution. Furthermore, for all transfers \(\text{Tx}\) produced by corrupted parties and \(\text{PayInfo}_{\text{tExt}}(\text{Tx}) = (\text{A}, \text{B}, \text{tid}, \cdot, \cdot)\) it holds that \(\text{tid}\) is different from all other \(\text{tid}\) used by honest or corrupt parties, except with negligible probability.

Proof. The transfer identifier used by an honest party is computed as

\[
\text{tid} = \text{Com.CEmit}_{\text{ck}}((\text{A}, \text{B}, \text{a}, \text{nonce}_\text{A}); \rho_1)
\]

for a uniformly random \(\rho_1\). It follows from perfect hiding that this has the same distribution as \(\text{Tid}\). The second part of the lemma follows from Lemma 7.

Definition 34 (Account Information). For an account \(\text{Account} = (\text{A}, \text{c}_\text{A}, \text{ek}_\text{A}, \text{nonce}_\text{A})\) on \(\mathcal{F}_{\text{LEDDER}}\) we let \(\text{AccountInfo}(\text{Account}) = (\text{A}, \text{b}_\text{A}, \rho_\text{A})\) where \(\text{c}_\text{A} = \text{Com.CEmit}_{\text{ck}}(\text{b}_\text{A}; \rho_\text{A})\). Note that if \(\text{A}\) is honest then \(\text{AccountInfo}(\text{Account})\) can be read from the local storage of \(\text{F}_\text{A}\). In the protocol we can inspect \(\mathcal{F}_{\text{SERVICE}}\) to learn \(\text{tExt}\). This allows us to compute \(\text{AccountInfo}(\text{Account})\) for corrupt \(\text{A}\) in PPT as follows. In Create Account use \(\text{tExt}\) to extract the proof \(\pi\) for
\( R_{\text{IsZero}} \) to learn \( b_A = 0 \) and \( \rho_A \) such that \( c_A = \text{Com} \).Commit\(_{\text{ck}}(b_A; \rho_A) \). Similarly if the account is the funding account. In \textbf{Initiate Pay} use \( \text{tExt} \) to extract the proof \( \pi \) for \( R_{\text{Pay}} \) to learn \( b'_A \) and \( \rho'_A \) such that \( c'_A = \text{Com} \).Commit\(_{\text{ck}}(b'_A; \rho'_A) \). In \textbf{Collect} use \( \text{tExt} \) to extract the proof \( \pi \) for \( R_{\text{Collect}} \) to learn \( b'_A \) and \( \rho'_A \) such that \( c'_A = \text{Com} \).Commit\(_{\text{ck}}(b'_A; \rho'_A) \). All these proofs can be extracted as they were given using \text{NIZKPoK}.

Since \( A \) is unique for the accounts, as the position \( p \) is part of \( A \), we have a well-defined map from \( A \) to \( \text{Account} = (A, c_A, e_{k_A}, \text{nonce}_A) \) on \( \mathcal{F}_{\text{Ledger}} \). We therefore also have a well-defined map from to \( A \) to the balance \( b_A \), computed as follows. Given \( A \), find \( \text{Account} = (A, c_A, e_{k_A}, \text{nonce}_A) \), compute \( \text{AccountInfo} \.(\text{Account}) = (A, b_A, \rho_A) \), and output \( b_A \). We call this map \( \text{Balance}^{\text{REAL}} \) below.

**Lemma 9 (Coin Matching).** Any collection can be matched to a unique, earlier payment with the same transfer information about parties, amount and nonce. In a bit more detail, let \( P \) be the set of payments, i.e., all transactions \( \text{Tx} \) which appear as part of some \( (\text{Tx}, \phi_{\text{Pay}}) \) on \( \mathcal{F}_{\text{Ledger}} \). Similarly let \( C \) be the set of collections, i.e., transactions \( \text{Tx} \) appearing as part of some \( (\text{Tx}, \phi_{\text{Collect}}) \) on \( \mathcal{F}_{\text{Ledger}} \). Then except with negligible probability we can use \( \text{tExt} \) to efficiently compute a map \( \text{CoinMap} : C \rightarrow P \) such that \( \text{CoinMap} \) is injective and for all \( \text{Tx} = (\cdot, \cdot, \text{tid}, \cdot, \cdot) \) and \( \text{CoinMap}(\text{Tx}) = \text{Tx}' = (\cdot, \cdot, \text{coin}, \cdot, \cdot) \) it holds that \( \text{RPKE}.\text{Dec}_{\text{dk}}(\text{coin}) = \text{tid} \). Furthermore, if \( \text{CollInfo}_{\text{Ext}}(\text{Tx}) = (A, B, \text{tid}, a, \text{nonce}_A, p) \) and \( \text{PayInfo}_{\text{Ext}}(\text{Tx}') = (A', B', \text{tid}', a', \text{nonce}'_A, p') \) then \( p' < p \) and \( (A', B', \text{tid}', a', \text{nonce}'_A) = (A, B, \text{tid}, a, \text{nonce}_A) \).

**Proof.** Let \( \text{Tx} = (B, L, \text{tid}, \pi_1, \pi_2) \) be any collection. By construction of \( \phi_{\text{Collect}} \) if we fetch the coins \( \{\text{coin}_j\}_{j \in \text{pos}} \) for \( \text{pos} = \text{SOROM}.\text{Pos}(L) \) then

\[
\text{NIZK}.\text{Ver}_{\text{crs}}(\mathcal{R}_{\text{OrDec}}, (ck, \{\text{coin}_j\}_{j \in \text{pos}}, \text{tid}), \pi_1) = T
\]

\[
\text{NIZKPoK}.\text{Ver}_{\text{crs}}(\mathcal{R}_{\text{Collect}}, (ck, c_B, B, \text{tid}, c'_B), \pi_2) = T
\]

\[\text{tid} \notin \text{Spent}.\]

From \( \text{NIZK}.\text{Ver}_{\text{crs}}(\mathcal{R}_{\text{OrDec}}, (ck, \{\text{coin}_j\}_{j \in \text{pos}}, \text{tid}), \pi_1) = T \) and simulation soundness of \( \text{NIZK} \) we get that for some \( j \) it holds that \( \text{tid} = \text{RPKE}.\text{Dec}_{\text{dk}}(\text{coin}_j) \). By inspection of \( \mathcal{F}_{\text{Service}} \) it can be seen that each \( \text{coin}_j \) is either a coin posted in a payment transaction or such a coin rerandomized some number of times using \( \text{RPKE}.\text{Ran} \). By correctness of \( \text{RPKE} \) this means that we can find an earlier payment \( \text{Tx}' = (A, c'_A, \text{coin}, \pi, d) \) such that \( \text{RPKE}.\text{Dec}_{\text{dk}}(\text{coin}) = \text{RPKE}.\text{Dec}_{\text{dk}}(\text{coin}_j) = \text{tid} \). By Unique Coins and Identifiers there is in fact a unique such \( \text{Tx}' \), but this is not central to the proof. We can pick any such \( \text{Tx}' \) and let \( \text{CoinMap}(\text{Tx}) = \text{Tx}' \). Then we have that \( \text{RPKE}.\text{Dec}_{\text{dk}}(\text{coin}) = \text{tid} \) as desired.

That the map is injective except with negligible probability follows from the fact that \( \phi_{\text{Collect}} \) checks that \( \text{tid} \notin \text{Spent} \), so for each collection \( \text{Tx} \) the value \( \text{Tx}.\text{tid} \) is unique. Therefore two different collections \( \text{Tx}_1 \) and \( \text{Tx}_2 \) will also map to different payments \( \text{Tx}'_1 = \text{CoinMap}(\text{Tx}_1) \) and \( \text{Tx}'_2 = \text{CoinMap}(\text{Tx}_2) \) as \( \text{RPKE}.\text{Dec}_{\text{dk}}(\text{Tx}'_1.\text{coin}) = \text{Tx}_1.\text{tid} \neq \text{Tx}_2.\text{tid} = \text{RPKE}.\text{Dec}_{\text{dk}}(\text{Tx}'_2.\text{coin}) \). Now let \( \text{CollInfo}_{\text{Ext}}(\text{Tx}) = (A, B, \text{tid}, a, \text{nonce}_A, p) \) and \( \text{PayInfo}_{\text{Ext}}(\text{Tx}') = (A', B', \text{tid}', a', \text{nonce}'_A, p') \). The fact that \( p' < p \) follows from \( \text{coin}_j \) being a coin already on the ledger when \( \text{Tx} \) was posted, so it is a rerandomization of an earlier payment. Finally,
(A', B', tid', a', nonce'_{A}) = (A, B, tid, a, nonce_{A}) follows from tid' = RPKE.Dec_{ck} (Tx'.coin) = tid, computational binding of Commit_{ck} and the fact that we can compute openings tid = Commit_{ck} (A, B, tid, a, nonce_{A}; \rho_{1}) and tid' = Commit_{ck} (A', B', tid', a', nonce'_{A}; \rho'_{1}), cf. the definition of Transfer Information.

Since each collection Tx has a unique tid we can define a function CoinMap(tid) = CoinMap_{Ext}(Tx) giving for each tid in a collection the corresponding payment.

Lemma 10 (Balance Correctness). Except with negligible probability balances, as defined by AccountInfo, are updated according to the logic of \mathcal{F}_{\text{AnonPay}} as if run on the payment information PayInfo in the protocol. In a bit more detail, consider a run of the protocol \Pi_{\text{ANONPAY}} and keep a copy for \mathcal{F}_{\text{AnonPay}} synchronised with it as follows. Whenever there is an account A created in the protocol by P ask P to create an account on \mathcal{F}_{\text{AnonPay}} and reply on behalf of S with the account name A. Whenever there is a payment Tx in \Pi_{\text{ANONPAY}} with PayInfo (Tx) = (A, B, tid, a, \ldots) ask P_{A} on \mathcal{F}_{\text{AnonPay}} to do the same payment using input (PAY, A, B, a) and make the payment deducted. Then remember that this is the payment corresponding to tid. Note that it might get some other tid' on \mathcal{F}_{\text{AnonPay}}, which does not matter. Whenever there is a collection Tx in the protocol with transfer identifier tid let Tx' = CoinMap(tid) be the corresponding payment. Find the corresponding payment in \mathcal{F}_{\text{AnonPay}}, make it observable, let pid' be the payment identifier it has in \mathcal{F}_{\text{AnonPay}}, input (COLLECT, tid', A, B, a) to P_{B} and then use the callback MAKECOLLECTED to make the call collected. For all accounts A let \mathcal{F}_{\text{AnonPay}}.Balance[A] be the balance in \mathcal{F}_{\text{AnonPay}}. Recall that we defined the map \text{Balance}^{\text{REAL}} (A) above giving the balance in the protocol via the account information function AccountInfo. Except with negligible probability it holds for all points of time in the execution and all A that \text{Balance}^{\text{REAL}} (A) = \mathcal{F}_{\text{AnonPay}}.Balance[A].

Proof. It can be seen that in both \mathcal{F}_{\text{AnonPay}} and \Pi_{\text{ANONPAY}} the first account will have balance a_{0} and all other accounts will have balance 0. We then show that payments and collections move the balances in synchrony. This follows by the fact that NIzkposk is simulation extractable, Coin Matching, the proofs for \mathcal{R}_{\text{COLLECT}} and \mathcal{R}_{\text{PAY}}, and the binding of Com. Commit_{ck}. We give a bit more details for payment and collection separately.

During payment, in the proof of \mathcal{R}_{\text{PAY}} we get a witness opening the old c_{A} to some b_{A}. This must be the b_{A} = \text{Balance}^{\text{REAL}} (A) or we broke binding of the commitment scheme. By induction we can assume that b_{A} = \mathcal{F}_{\text{AnonPay}}.Balance[A]. Furthermore, the coin is opened to the a in PayInfo (coin), or we broke binding of the commitment scheme. This is the a that we use when doing the corresponding payment (PAY, A, B, a) on \mathcal{F}_{\text{AnonPay}}. The relation \mathcal{R}_{\text{PAY}} then ensures that the balance b'_{A} in the new c'_{A} will be b'_{A} = b_{A} - a, or we broke binding of the commitment scheme. I.e., in the new state of \Pi_{\text{ANONPAY}} we have that \text{Balance}^{\text{REAL}} (A) = b_{A} - a. The same update will happen to \mathcal{F}_{\text{AnonPay}}.Balance[A] when we make the payment deducted.

During collection, in the proof of \mathcal{R}_{\text{COLLECT}} we get a witness opening the old c_{A} to some b_{A}. This must be the b_{A} = \text{Balance}^{\text{REAL}} (A) or we broke binding of the commitment scheme. By induction we can assume that b_{A} = \mathcal{F}_{\text{AnonPay}}.Balance[A]. Furthermore, the transfer identifier tid is opened to the a in CollectInfo (tid), or we broke binding of the commitment scheme. This is also the a that we used when doing the corresponding payment on \mathcal{F}_{\text{AnonPay}} by Coin Matching.
The relation $R_{\text{Collect}}$ then ensures that the balance $b'_A$ in the new $c'_A$ will be $b'_A = b_A + a$, i.e., in the new state of $\Pi_{\text{AnonPay}}$ we have that $\text{Balance}^{\text{REAL}}(A) = b_A + a$, or we broke the binding of the commitment scheme. The same update will happen to $F_{\text{AnonPay}}\cdot \text{Balance}[A]$ when we make the payment collected, as it uses the $a$ from the corresponding payment $(\text{PAY}, A, B, a)$. □

The following lemma follows form Coin Matching.

**Lemma 11 (UCHP).** Let $I$ be the number of payments initiated from an honest $A$ to an honest $B$ and let $C$ be the number of payments collected from an honest $A$ to an honest $B$. Then it is always the case that $C \leq I$.

Finally we prove a helping lemma about when a coin is collectable. First a definition.

**Definition 35 (Observable, Collectable).** If $B$ is honest and there is a coin in position $p$ on $F_{\text{Ledger}}$ with $\text{PayInfo}(\text{coin}) = (A, B, \text{tid}, a)$ then we call it observable if a call to $(\text{Observe}, \text{tid}, A, B)$ would make $B$ return $(\text{Observe}, \text{tid}, A, B, \top)$. We call it collected if $F_{\text{Ledger}}$ contains $(\text{Tx}, \phi_{\text{Collect}})$ with $\text{tid}$ in $\text{Tx}$. We call it collectable if it is collected or a call to $(\text{Collect}, \text{tid}, A, B)$ would make $B$ post $(\text{Tx}, \phi_{\text{Collect}})$ with $\text{tid}$ in $\text{Tx}$ and which would be accepted by $F_{\text{Ledger}}$ if scheduled by the adversary.

**Lemma 12 (Observable implies Collectable).** If $B$ is honest and there is a coin in position $p$ on $F_{\text{Ledger}}$ with $\text{PayInfo}(\text{coin}) = (A, B, \text{tid}, a)$ and the current value of $p_{\text{updated}}$ on $F_{\text{Ledger}}$ is such that $p_{\text{updated}} \geq p$, then coin is collectable whenever it is observable.

**Proof.** If $p_{\text{updated}} \geq p$ then coin has been added to $\text{OM}$ so by completeness it can be found at one of the positions $\text{SOROM}$.And if $\text{Observe}$ returns $\top$ then $B$ can learn all the values needed to construct the proofs for $\text{Tx}$.

Note that the above lemma shows that if a coin is observable, then it eventually becomes collectable as the service will eventually ensure that $p_{\text{updated}} \geq p$.

**B.2 Simulator**

We first construct $S$ and then analyse it to prove (5). Our strategy will be to run a copy of

$$\text{Exec}_{\Pi_{\text{AnonPay}}\cdot F_{\text{Ledger}}\cdot F_{\text{AAT}}\cdot F_{\text{Service}}}(1^\lambda)$$

inside $S$ and present the adversarial interface of $F_{\text{Ledger}}$, $F_{\text{AAT}}$, $F_{\text{Service}}$ to $E$. We call this the dummy execution. Note that since it is $S$ running $F_{\text{Ledger}}$, $F_{\text{AAT}}$, $F_{\text{Service}}$ it will see all inputs to these and may run them in deviation from their real code, as long as this it not noticed by $E$. Note that $O$ is a global ideal functionality, as formalised in [LR22], so it is not the simulator running it. However, the simulator has access to programming it and seeing all queries made by the environment so it can extract all the proofs made by the environment (by definition of the proof being a GUC NIZK PoK).

When an honest party does a transfer to an honest party we will not learn the amount nor the receiver. We will therefore run on dummy inputs and use the ZK simulator to cheat with
the proofs. The simulator $S$ runs $\mathcal{F}_{\text{SERVICE}, \text{Init}}$ as in the protocol and saves all values, with the one difference that it computes $\text{crs}^{\text{ KNOW}}$ as $(\text{crs}^{\text{ KNOW}}, t_{\text{Sim}}, t_{\text{Ext}}) \leftarrow \text{NIZKPoK.SimGen}(1^\lambda)$. Note in particular that $S$ learns the simulation trapdoor $t_{\text{Sim}}$ of $\text{crs}^{\text{ KNOW}}$ along with the extraction trapdoor $t_{\text{Ext}}$. Note also that this allows us to apply the observations in the previous section to the simulation.

### Init
The simulator runs a copy of $\mathcal{F}_{\text{Ledger}}, \mathcal{F}_{\text{AAAT}}$ and $\mathcal{F}_{\text{SERVICE}}$. These ideal functionalities are mostly run honestly with some deviations described below. Notice that hereby the simulator knows all secret keys generated by the service. It also runs a simulated version of $\Pi_{\text{AnonPay}}$ with many deviations described below. When $\mathcal{F}_{\text{AnonPay}}$ asks for a distribution $\text{Tid}$ on transaction identifiers return the following distribution:

$\text{tid} \leftarrow \text{Com.Commit}(0)$.

### Create Account
On input $(\text{CreateAccount}, P)$ from $\mathcal{F}_{\text{AnonPay}}$ for an honest $P$ run $\Pi_{\text{AnonPay}}, \text{CreateAccount}$ honestly. This is possible as there are no secret inputs to $P$. Store all secrets generated in $\Pi_{\text{AnonPay}}, \text{CreateAccount}$ for later use in the simulation. Let $A$ be the generated account name. When $(A, \ldots)$ appears on the simulated $\mathcal{F}_{\text{Ledger}}$ input $(\text{MakeAccountObservable}, P, A)$ to $\mathcal{F}_{\text{AnonPay}}$, this will be a perfect simulation unless $A \in \text{Accounts}$ already, but this cannot happen by Lemma 3.

### Honest/Corrupt Payment
We call a payment honest when both the sender and receiver are honest. We call it corrupt if either the sender or the receiver is corrupt. Note that if the payment is corrupt then the ideal functionality leaks some $(\text{Pay}, A, B, \text{atid}, a)$. We therefore know all inputs and can run the honest party (if there is any) according to the protocol. We will do this. We therefore only specify how to simulate honest parties in honest payments and corrupted parties in corrupted payments.

We let $\text{UCHP}$ be the set of uncollected, collectible honest payments, initially empty. These will be used for simulating collection of honest payments, where we do not know the sender. We learn in the ideal functionality that some collectible payment was collected by $B$, but not which one. We will therefore in the simulation let $B$ collect some payment from $\text{UCHP}$.

### Service
Simulate $\mathcal{F}_{\text{SERVICE}}$ by running it honestly as in Fig. 11.

---

**Fig. 16.** Simulator $S$ (Init, Creation, Service)

The simulation of initialisation, account creation and the service is given in Fig. 16. The simulation of payment by an honest sender is given in Fig. 17. If the receiver is corrupt we learn the information to do the payment honestly. If the receiver is honest we do not learn the payment information, so we use ZK to just do a dummy payment of 0. The simulation of observation of a payment is given in Fig. 18, but there is not really anything to simulate as the protocol does not generate communication during observation. The simulation of collection between honest sender and honest receiver is given in Fig. 19. This is the interesting case as it is not known to the simulator which payment is collected. We simply collect some previously uncollected and currently collectible payment by some honest party. The simulation of a corrupted payment is given in Fig. 20. Here we use extraction to find the payment information and ask $\mathcal{F}_{\text{AnonPay}}$ do the same payment on behalf of the corrupt sender. The collection of a corrupt payment by an honest receiver is given in Fig. 21 by just following the protocol. Finally, collection by a corrupt party is simulated in Fig. 22. We just run the protocol honestly, but introduce a few cases where we abort the simulation for use in the following hybrid arguments. All these cases occur with negligible probability.
Observe (Corrupt Receiver) Here there is nothing to simulate. In the simulation the command does not affect the state of \( F_{\text{AnonPay}} \) and in the (simulated) protocol there is no notion of the adversary having carried out this command. It can do this simply by looking at Ledger.

Observe (Honest Receiver) Here there is nothing to simulate. The cases Callback Observable (Honest Sender, Honest Receiver) and Callback Observable (Corrupt Sender, Honest Receiver) are constructed to make the protocol and \( F_{\text{AnonPay}} \) give the same replies.

Initiate Pay (Honest Sender, Corrupt Receiver) On leakage \((\text{PAY}, A, B, a, \text{atid})\) from \( F_{\text{AnonPay}} \), i.e., where B is corrupted, simulate by running A according to the protocol in Fig. 10. Once \( \text{tid} \) has been computed, specify this \( \text{tid} \) to \( F_{\text{AnonPay}} \) as the one to use for \( \text{atid} \).

Initiate Pay (Honest Sender, Honest Receiver) On input \((\text{PAY}, A, \text{atid})\) from \( F_{\text{AnonPay}} \) proceed as below. In this case both A and the unknown B are honest. We know that some \((\text{PAY}, A, B, a)\) was input to \( P_A \) on \( F_{\text{AnonPay}} \) but we do not get a nor B. Simulate as follows.

1. Fetch \((A, b_A, c_A, p_A, e_A, \text{dk}_A, \text{nonce}_A)\) from local storage.
2. Get the public values \((\text{crs}, e_k, c_k, k')\) of the service from \( F_{\text{Ledger}} \).
3. If not done before generate \((e_k, d, \text{dk}_A) \leftarrow \text{RPKE.Gen}(pp)\) and let \( e_k = e_k' \).
4. Let \( a' = 0 \) and \( B' = A \) and let \( \text{tid}' = \text{Com.\text{Commit}}_A((A, B', a', \text{nonce}_A); \rho_1) \).
5. Compute the coin \( \text{coin} = \text{RPKE.Enc}_e(t'_A)(\text{tid}'; \rho_2) \).
6. Let \( b'_A = b_A - a' \), compute \( c'_A = \text{Com.\text{Commit}}_A(b'_A, \rho'_A) \).
7. \( \pi \leftarrow \text{NIZKPoK.Sim}_A(\text{RPKE}, (c_A, \text{coin}, c_A, A, \text{nonce}_A)) \).
8. Sample \( L_A \leftarrow \{0, 1\}^3 \), compute \( d \leftarrow \text{PKE.Enc}_A((A, L_A); \rho_4) \).
9. Run \( F_{\text{Ledger}}.\text{Broadcast}(\text{Tx}, \phi_{\text{PAY}}) \) with \( \text{Tx} = (A, c'_A, \text{coin}, \pi, d) \) and the same \( \phi_{\text{PAY}} \) as the protocol.
10. Wait for \( (\text{Tx}, \phi_{\text{PAY}}) \) to appear on \( F_{\text{Ledger}} \) in some position \( p \). When this happens the blockchain stateful abstraction layer replaces \((A, c_A, e_k, \text{nonce}_A)\) by \((A, c'_A, e_k, \text{nonce}'_A = \text{nonce}_A + 1)\).
11. Store \((A, b'_A, c'_A, \rho'_A, e_A, \text{dk}_A, \text{nonce}'_A = \text{nonce}_A + 1)\).
12. Run \( F_{\text{Ledger}}.\text{ProveValid}(p) \) to \( \text{TxProof} \).
13. Run \( F_{\text{ATT}}.\text{DropOff}(\text{PAY}, P, \text{atid}, m) \), where \( m = ((\text{Tx}, p, \text{TxProof}, (\text{nonce}_A, \rho_1, \rho_2)), (L_A, \rho_4)) \).
14. Input \((\text{MAKEDEDUCTED}, \text{atid})\) to \( F_{\text{AnonPay}} \).

Callback Collect (Honest Sender, Honest Receiver) When the \( m \) sent via \( F_{\text{ATT}}.\text{DropOff} \) gets delivered by the adversary input \((\text{MAKECOLLECTABLE}, \text{atid})\) to \( F_{\text{AnonPay}} \).

Callback Collect (Corrupt Sender, Honest Receiver) When it happens on \( F_{\text{Ledger}} \) that \( \text{p}_{\text{updated}} \geq p \). Input \((\text{MAKEOBSERVABLE}, \text{atid})\) to \( F_{\text{AnonPay}} \) and add \( \text{atid} \) to \( \text{UCHP} \).

\( a \) Note that at this step the protocol terminates if \( a > b_A \). In the simulation we would never make it here when \( a > b_A \) as we only get \((\text{PAY}, A, \text{atid})\) from \( F_{\text{AnonPay}} \) if \( a \leq b_A \). So the protocol and simulation check \( a \leq b_A \) at the same time and behave the same when \( a > b_A \).

\( b \) In this step the protocol retrieves \( e_k \) and we know this would work as the ideal functionality checked \( B \in \text{Accounts} \). However, we do not know \( e_k \) in the simulation. To mitigate this we generate a set of keys for the simulator and use the simulators key for all unknown receivers.

\( c \) Here the protocol computes \( \text{tid} \). Instead now \( \text{tid} \) is generated by \( F_{\text{AnonPay}} \) using the distribution \( \text{Tid} \) that we gave. We do not learn \( \text{tid} \), so we use a dummy transfer identifier \( \text{tid}' \) committing to dummy values.

\( d \) Here the protocol outputs \((\text{PAY}, A, B, a, \text{atid})\) to \( P_A \) if the payment was accepted by the blockchain and in the simulation we only reach this step if \( (\text{Tx}, \phi_{\text{PAY}}) \) appeared on \( F_{\text{Ledger}} \). Inputting \((\text{MAKEDEDUCTED}, \text{atid})\) to \( F_{\text{AnonPay}} \) makes it also output \((\text{PAY}, A, B, a, \text{atid})\) to \( P_A \).

\( e \) This is a perfect simulation as the protocol when the \( m \) is delivered for an honest-honest payment then a call to \text{Observe} on the receiver will return \((\text{Observe}, \text{tid}, A, B, a, \ell)\). Inputting \((\text{MAKEOBSERVABLE}, \text{atid})\) to \( F_{\text{AnonPay}} \) makes it behave the same.

\( f \) This is a perfect simulation as in the protocol the party B rejects if and only if \( \text{p}_{\text{updated}} < p \), cf. [Lemma 12]
Collect (Honest Sender, Honest Receiver, Too Early) On input (Collect, B, atid, Too Early) simulate as follows.
1. Simulate the run of Observe by doing nothing. This is a perfect simulation as $F_{AAT}$ does not leak anything on collection.
2. Simulate the fetching of the unknown $L_A$ and $p$ by doing nothing.
3. From $F_{Ledger}$ fetch the most recent CRaB key $k^*$ and position $p_{updated}$. Then simulate that we learned that $p_{updated} < p$ by terminating, as would the protocol.

Collect (Honest Sender, Honest Receiver, Timely) On input (Collect, B, atid, tid) simulate as follows.
1. If UCHP is empty then terminate the simulation. By Lemma 11 this happens with negligible probability, so we can ignore it. Otherwise, pick the lexicographically smallest $atid' \in$ UCHP and remove it from UCHP.
2. Let (PAY, $A'$, $atid'$) be the input from $F_{AnonPay}$ that made $S$ add $atid'$ to UCHP and $m' = (\langle Tx = (A', \cdot, coin, \cdot, d'), p', TxProof', \langle nonce_{A'}, \rho_1, \rho_2 \rangle, (L_{A'}, \rho_1) \rangle)$ be the message sent in that payment.
3. Fetch the $L'_{A'}$ where $d' = PKE.Enc_{k_{CRaB}}((A', L_{A'}), \rho_1')$ and the position $p'$ from $m'$.
4. From $F_{Ledger}$ fetch the most recent CRaB key $k^*$ and position $p_{updated}$. Since $atid' \in$ UCHP we have that $p_{updated} \geq p'$.
5. Let $L''_A = CRaB.Eval(k^*, p')$.
6. Let $L' = Hash(L''_A \oplus L''_A)$.
7. Compute $pos = SOROM.Pos(L')$.
8. Fetch the data at positions $j \in pos$ in OM from $F_{Ledger}$ and for $j \in pos$ let $OM[j] = (\cdot, coin_j)$.
9. $\pi_1 \leftarrow NIZK.Sim_{Sim}(R_{ObjDec}, (ck, \{coin_j\}_j \in pos, tid))$.
10. Let $a' = 0$ and let $b'_b = b_b + a'$, compute $c'_b = Com.Coin(b'_b, \rho'_b)$
11. Run $F_{Ledger}, Broadcast(Tx, \phi_{Collect})$ with $Tx = (B, L', tid, \pi_1, \pi_2)$ and the same $\phi_{Collect}$ as in the protocol.
12. When the transaction is posted the blockchain stateful abstraction layer replaces $(B, c_b, ek_b, nonce_b)$ by $(B, c'_b, ek_b, nonce_b)$ and lets $\text{Spent} = \text{Spent} \cup \{tid\}$.
13. Store $(B, b'_b, c'_b, \rho'_b, ek_b, dk_b, nonce_b)$ on local storage.

\(a\) Since we get input (Collect, B, Too Early) we know that we are in the case where (PAY, $atid$, tid, A, B, a) $\in$ Observable \ Collectable. Note that by construction of Callback Collect we have that (PAY, $atid$, tid, A, B, a) $\in$ Collectable if and only if (PAY, $atid$, tid, A, B, a) $\in$ Observable and $p_{updated} \geq p$, where $p$ is the position of the payment on $F_{Ledger}$. So we conclude that $p_{updated} < p$. But we do not know $p$ nor which simulated payment is being collected.

\(b\) Since we get input (Collect, B, atid, tid) (as opposed to (Collect, B, Too Early)) we know that we are in the case where (PAY, $atid$, tid, A, B, a) $\in$ Collectable. Note that by construction of Callback Collect we have that (PAY, $atid$, tid, A, B, a) $\in$ Collectable if and only if (PAY, $atid$, tid, A, B, a) $\in$ Observable and $p_{updated} \geq p$. By inspection of Steps 1-3 in Collect in Fig. 12 we see that the protocol will proceed to collect a coin in this case. The simulation should do the same, but we do not know A or which simulated payment corresponds to tid. So we collect some other collectible coin instead.

Fig. 19. Simulator $S$ (Collect, Honest Sender / Honest Receiver)
**Initiate Pay (Corrupt Sender)** If in the simulation $(\text{Tx}, \phi_{\text{PAY}})$ appears on $F_{\text{Ledger}}$ in some position $p$ where $\text{Tx} = (A, c'_A, \text{coin}, \pi, d)$ and where $P_A$ is corrupted, then proceed as follows.

1. Use the extraction trapdoor $t_{\text{Ext}}$ for NIZKPoK to compute a witness $w = ((b_A, \rho_A), (B, a, \rho_1, \rho_2), \rho'_A)$ such that $((c_A, \text{coin}, c'_A, A, \text{nonce}_A, w) \in R_{\text{PAY}}$. This is possible by construction of $\phi_{\text{PAY}}$ and simulation extraction of NIZKPoK. Note that this in particular means that $c_A = \text{Com}.\text{Commit}_{ck}(b_A, \rho_A) \land ((\text{coin}, \text{Com}.\text{Commit}_{ck}(A, B, a, \text{nonce}_A; \rho_1)), \rho_2) \in R_{\text{ENC}} \land c'_A = \text{Com}.\text{Commit}_{ck}(b_A - a, \rho'_A) \land b_A \geq a \geq 0$

2. Input $(\text{PAY}, A, B, a)$ to $F_{\text{AnonPay}}$ and get back $(\text{PAY}, A, \text{atid})$. In response to this $F_{\text{AnonPay}}$ will ask $S$ for a transfer identifier. Use $\text{tid} = \text{Com}.\text{Commit}_{ck}(A, B, a, \text{nonce}_A; \rho_1)$.

If $F_{\text{AnonPay}}$ rejects $\text{tid}$ because $\text{tid}$ was not fresh, then abort the simulation. By Lemma 8 we can ignore this event.

3. Input $(\text{MAKEDEDUCTED}, \text{atid})$ to $F_{\text{AnonPay}}$ to add $(\text{PAY}, \text{atid}, A, B, a)$ to Deducted.

**Callback Observable (Corrupt Sender, Honest Receiver)** If $\text{Initiate Pay (Corrupt Sender)}$ was executed and $B$ is honest and the adversary delivers on $F_{\text{AAT}}$ to $B$ a message $m$ with message identifier $\text{tid}$ such that the check in $\text{Observe}$ in Fig. 12 would go through, then input $(\text{MAKEOBSERVABLE}, \text{atid})$ to $F_{\text{AnonPay}}$.

**Callback Collectable (Corrupt Sender, Honest Reiver)** If $\text{Initiate Pay (Corrupt Sender)}$ and $\text{Callback Observable (Corrupt Sender, Honest Receiver)}$ was executed and $\text{Tx}$ appears in position $p$ and it happens that $p_{\text{UPDATED}} \geq p$ then input $(\text{MAKECOLLECTABLE}, \text{atid})$ to $F_{\text{AnonPay}}$.

---

*a* This is a perfect simulation as $F_{\text{AnonPay}}$ and the protocol would now respond identical.

*b* This is a perfect simulation as $F_{\text{AnonPay}}$ and the protocol would now respond identical, cf. Lemma 12

---

**Fig. 20.** Simulator $S$ (Pay, Corrupt Sender).

**Collect (Corrupt Sender, Honest Receiver, Too Early)** As in the protocol.

**Collect (Corrupt Sender, Honest Receiver, Timely)** As in the protocol. This will be a perfect simulation by Lemma 12

---

**Fig. 21.** Simulator $S$ (Collect, Corrupt Sender / Honest Receiver)
Collect (Corrupt Receiver) If \((Tx, \phi_{\text{Collect}})\) appears on \(F_{\text{Ledger}}\) with \(Tx = (B, L, tid, \pi_1, \pi_2)\) then simulate as follows.

1. Use the extraction trapdoor \(t_{\text{Ext}}\) to extract witnesses such that

\[
((\mathbb{c}, c_B, B, tid, c'_B), ((b_B, \rho_B), (A, a, nonce_A, \rho_1), \rho'_B)) \in R_{\text{Collect}},
\]

and \(tid \not\in \text{Spent}\).

2. Abort the simulation if the following happens: 1) \(A\) is corrupt and there was no previous execution of \(\text{Initiate Pay (Corrupt Sender)}\) where \(S\) input \((\text{Pay}, A, B, a)\) to \(F_{\text{AnonPay}}\) got back some atid and then specified the transfer identifier tid to be used by \(F_{\text{AnonPay}}\) or 2) \(A\) is honest and there was no previous execution of \(\text{Initiate Pay (Honest Sender, Corrupt Receiver)}\) where \(S\) got input \((\text{Pay}, A, B, a, \text{atid})\) from \(F_{\text{AnonPay}}\) and then specified tid. This happens with negligible probability by Lemma 10.

3. Input \((\text{MakeObservable}, \text{atid})\) followed by \((\text{MakeCollectable}, \text{atid})\) to \(F_{\text{AnonPay}}\), and then input \((\text{Collect}, tid, A, B, a)\) to \(F_{\text{AnonPay}}\) on behalf of \(P_B\). This is allowed as \(B\) is corrupted.

This maintains the amount invariant if \((\text{Pay}, \cdot, tid, A, B, a) \not\in \text{Collected}\). This is the case as \(tid \not\in \text{Spent}\).

Fig. 22. Simulator \(S\) (Collect, Corrupt Receiver).

B.3 Analysis

We now prove (5). We do the proof by a hybrid argument where we define distributions \(H_1, \ldots, H_{11}\) and prove that

\[
\text{Exec}_{F_{\text{AnonPay}}, S, \mathcal{E}(1^\lambda)} \approx H_1
\]

and \(H_i \approx H_{i+1}\) for \(i = 1, \ldots, 10\), and

\[
H_{11} \approx \text{Exec}_{\Pi_{\text{AnonPay}}, F_{\text{Ledger}}, F_{\text{AAT}}, F_{\text{Service}}, O, \mathcal{E}(1^\lambda)}.
\]

Letting \(H_1 = \text{Exec}_{F_{\text{AnonPay}}, S, \mathcal{E}(1^\lambda)}\) and \(H_{11} = \text{Exec}_{\Pi_{\text{AnonPay}}, F_{\text{Ledger}}, F_{\text{AAT}}, F_{\text{Service}}, O, \mathcal{E}(1^\lambda)}\) makes the end cases trivial. We now look at the steps.

Hybrid 2 Let \(H_2\) be defined as the simulation \(\text{Exec}_{F_{\text{AnonPay}}, S, \mathcal{E}(1^\lambda)}\) except that:

Change 2.1. In Step 2 in Collect (Honest Sender, Honest Receiver, Timely) in Fig. 19, instead of getting \(L'_A\) from \(d'\) we use the atid' from UCHP to find the matching execution of \(\text{Initiate Pay (Honest Sender, Honest Receiver)}\) in Fig. 17 and then we fetch \(L'_A\) from Step 3 in that execution.

Change 2.2. Run the \(F^{(2)}_{\text{Service}}\) in Fig. 23 instead of \(F_{\text{Service}}\).

Lemma 13. \(H_2 \approx H_1\).

Proof. This follows from correctness of PKE. Whether we decrypt the ciphertexts \(d'\) and \(d\) or recall what plaintext we have put inside them does not matter. \(\square\)
Receive Coin  Whenever a new payment ($\text{Tx}, \phi_{\text{Pay}}$) appears in position $p$, proceed as follows. Transactions must be consumed in increasing order.
1. Same: Parse ($A, c'_A, \text{coin}, \pi, d$) $\leftarrow$ $\text{Tx}$.
2. Same: Let $\iota = \iota + 1$.
3. If $d$ comes from an execution of $\text{Initiate Pay (Honest Sender, Honest Receiver)}$ then inspect that execution and find the identity $C$ of the sender and the label $L_C$ encrypted in $d$. If $C \neq A$ then terminate. Otherwise let $L_A = L_C$. If $d$ does not come from an execution of $\text{Initiate Pay (Honest Sender, Honest Receiver)}$ then let ($C, L_A$) $=$ $\text{PKE.Dec}_d(d)$. If $C \neq A$ then terminate.
4. All other steps are as in $\mathcal{F}_{\text{SERVICE}}$.

![Fig. 23. The $\mathcal{F}_{\text{SERVICE}}^{(2)}$ used in $H_2$.](image)

Receive Coin  Whenever a new payment ($\text{Tx}, \phi_{\text{Pay}}$) appears in position $p$, proceed as follows. Transactions must be consumed in increasing order.
1. Parse ($A, c'_A, \text{coin}, \pi, d$) $\leftarrow$ $\text{Tx}$.
2. Let $\iota = \iota + 1$.
3. If $d$ comes from an execution of $\text{Initiate Pay (Honest Sender, Honest Receiver)}$ with sender $C$ where $d$ was supposed to contain ($C, L_C$), then proceed as follows. If $C \neq A$ then terminate. This prevents replay attacks if and when that protocols does the same. If $C = A$ then let $L_A = L_C$. When $d$ does not come from an execution of $\text{Initiate Pay (Honest Sender, Honest Receiver)}$ then let ($C, L_A$) $=$ $\text{PKE.Dec}_d(d)$. If $C \neq A$ then terminate.
4. Let $L_S = \text{CRaB.Eval}(k, p)$, where $p$ is the position of $\text{Tx}$ on the ledger.
5. Let $L = \text{Hash}(L_A \oplus L_S)$.
6. Let $\text{lab} = \text{SKE.Enc}_K(0^\lambda)$ and recall that $\text{lab}$ was supposed to encrypt using a map $\text{Plain}(\text{lab}) = L$.
7. Update CRaB key: $k^* \leftarrow \text{CRaB.Prefix}(k, p)$ and $\text{pUpdated} = p$.
8. Update $k^*, \text{pUpdated}$, and $\text{OM}[0] = (\text{lab}, \text{coin})$ on $\mathcal{F}_{\text{Ledger}}$.
9. Go to Route

Route
1. Compute ($j_1, \ldots, j_\ell$) $=$ $\text{SOROM.Pos}(\iota)$.
2. For $k = 1, \ldots, \ell$ read ($\text{lab}_k, \text{coin}_k$) $\leftarrow$ $\text{OM}[j_k]$ from $\mathcal{F}_{\text{Ledger}}$.
3. For $k = 1, \ldots, \ell$ let $L_k = \text{Plain}(\text{lab}_k)$.
4. Compute the routing permutation $\pi = \text{SOROM.Route}(\iota, L_1, \ldots, L_\ell)$.
5. For $k = 1, \ldots, \ell$ let $\text{lab}'_k \leftarrow \text{SKE.Enc}_K(0^\lambda)$ and $\text{Plain}(\text{lab}'_k) = L_{\pi(k)}$.
6. For $k = 1, \ldots, \ell$ let $\text{coin}'_k \leftarrow \text{RPKE.Ran}(\text{coin}_{\pi(k)})$.
7. For $k = 1, \ldots, \ell$ update $\text{OM}[j_k] \leftarrow (\text{lab}'_k, \text{coin}'_k)$ on $\mathcal{F}_{\text{Ledger}}$.

![Fig. 24. The $\mathcal{F}_{\text{SERVICE}}^{(3)}$ used in $H_3$ and $H_4$.](image)
Hybrid 3 Let $H_3$ be defined as $H_2$ except that:

**Change 3.1.** In Step 8 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 we let $d$ be an encryption of $\perp$ instead of $(A, L_A)$. However, recall that $d$ was supposed to contain $(A, L_A)$.

**Change 3.2.** In Step 5 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 we encrypt $\perp$ instead of $\operatorname{tid'}$.

**Change 3.3.** We replace the run of $F_{\text{SERVICE}}^{(2)}$ by $F_{\text{SERVICE}}^{(3)}$ in Fig. 24.

**Lemma 14.** $H_3 \approx H_2$.

**Proof.** Change 3.1 does not matter by IND-CCA security of PKE. We no longer decrypt the $d$’s from Step 8 in Initiate Pay (Honest Sender, Honest Receiver) anywhere in the simulation. So we could get them from an IND-CCA oracle encrypting either $\perp$ or $(A, L_A)$ and embed them in the simulation.

Change 3.2 does not matter by IND-CPA of RPKE as we do not decrypt $\operatorname{coin}$ anywhere. Whenever $\operatorname{coin}$ is used, we give simulated proofs. We could therefore get encryptions of either $\operatorname{tid'}$ or $\perp$ and embed them in the simulation.

After the above two changes Change 3.3 does not matter by correctness of SKE and IND-CPA of SKE. Whether we decrypt a ciphertext or recall what is it in does not matter by correctness. And after that we can change what it encrypts to $0^\lambda$ by IND-CPA.

Hybrid 4 Let $H_4$ be defined as $H_3$ except that:

**Change 4.1.** In Step 6 in Fig. 24 we do the following instead. Let $\operatorname{lab} = \text{SKE.Enc}_K(0^\lambda)$.

Then if the payment is from honest $A$ to some (unknown) honest $B$ sample a uniformly random $L^* \leftarrow \mathcal{L}$ and let $\operatorname{Plain}(\operatorname{lab}) = L^*$. Otherwise let $\operatorname{Plain}(\operatorname{lab}) = L$.

Note that this just means that for honest-honest payments we route a fresh uniformly random label and not the one returned by Hash.

**Lemma 15.** $H_4 \approx H_3$.

**Proof.** We can prove this via an easy reduction to the SOROM game. We play the role of adversary in the SOROM game. We then produce a version of the simulation via our blackbox access to the SOROM game. When $b = 0$ in the SOROM game we produce $H_3$. When $b = 1$ in the SOROM game we produce $H_4$. So, if $H_3$ and $H_4$ could be distinguished we could use this to win the SOROM game. This shows that $H_4 \approx H_3$ when the SOROM construction is secure.

Let $\operatorname{lab} = \text{SKE.Enc}_K(0^\lambda)$ and update the map $\operatorname{Plain}$ as follows. If the payment is honest-honest then let $\operatorname{Plain}(\operatorname{lab}) = \perp$. Otherwise let $\operatorname{Plain}(\operatorname{lab}) = L$. The reason for this definition is that for the corrupt $\operatorname{lab}$ we know the corresponding label $L$ being routed by the SOROM game. But for honest-honest labels we do not know the label being routed. If $b = 0$ it is the $L$ we were returned above. But if $b = 1$ it is another independent and uniformly random label. So, read $\operatorname{Plain}(\operatorname{lab}) = \perp$ as “label unknown”.

Then replace the Route part of $F_{\text{SERVICE}}^{(3)}$ by the following.
1. Compute \((j_1, \ldots, j_\ell) = \text{SOROM}. \text{Pos}(\iota)\). These will be the same as the positions used by the SOROM game as \(\text{Pos}\) is deterministic.

2. For \(k = 1, \ldots, \ell\) read \((\text{lab}_k, \text{coin}_k) \leftarrow \text{OM}[j_k] \) from \(\mathcal{F}_{\text{Ledger}}\).

3. For \(k = 1, \ldots, \ell\) let \(L_k = \text{Plain}(\text{lab}_k)\).

4. The routing permutation \(\pi = \text{SOROM}. \text{Route}(\iota, L_1, \ldots, L_\ell)\) is computed by the SOROM game. For the corrupted labels \(L_k\) it tells us where they are routed to, and we can compute \(\pi'\) moving the corrupted label correctly. It can move the honest labels in any way, say fill up empty slots in lexicographic order.

5. For \(k = 1, \ldots, \ell\) let \(\text{lab}_k' \leftarrow \text{SKE}. \text{Enc}_K(0^{\lambda})\) and \(\text{Plain}(\text{lab}_k') = \pi(k)\).

6. For \(k = 1, \ldots, \ell\) update \(\text{OM}[j_k] \leftarrow (\text{lab}_k', \text{coin}_k')\) on \(\mathcal{F}_{\text{Ledger}}\).

Notice that we can indeed run the above process in poly-time as to produce \(H_4\) we never used the value of \(\text{Plain}(\text{lab})\) anywhere except in \(\text{Route}\), so the fact that we do not know the value in the above will not become a problem. Note, in particular, that in Step 5 in Fig. 19 when we simulate picking up a coin we get the label from \(\text{Hash}\) and not from the SOROM.

It is easy to see that when \(b = 0\) we produce exactly \(H_3\) and when \(b = 1\) we produce exactly \(H_4\).

\[\square\]

**Hybrid 5** Let \(H_5\) be defined as \(H_4\) except that:

**Change 5.1.** In Step 1 in Collect (Honest Sender, Honest Receiver, Timely) in Fig. 19 we pick \(\text{atid}'\) from \(\text{UCHP}\) differently. We inspect \(\mathcal{F}_{\text{AnonPay}}\) to learn which payment \((\text{PAY}, A, B, a)\) created \(\text{tid}\) and then we find the \(\text{atid}\) in \(\mathcal{F}_{\text{AnonPay}}\) corresponding to this payment, i.e., the \(\text{atid}\) such that \((\text{PAY}, \text{atid}, \text{tid}, A, B, a) \in \text{Collectable}\). Then we let \(\text{atid}' = \text{atid}\). Note that this \(\text{atid}\) is in fact in \(\text{UCHP}\) by Lemma 10, as it cannot have been collected by another party and still has not been collected by \(B\).

\[\square\]

**Lemma 16.** \(H_5 \approx H_4\).

*Proof.* This holds information theoretically. At this point in the hybrids all uncollected honest-honest payments look exactly the same to the adversary. The SOROM are routing uniformly random labels independent of the labels \(\text{Hash}(L_A \oplus L_S)\) used by the transfers and these labels are not leaked anywhere else until used for collection. In more detail, after Change 3.1 where in Step 8 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 we let \(d\) be an encryption of \(L\) instead of \((A, L_A)\) we can defer even defining \(L_A\) until the payment is picked up. So as part of initializing the payment we do not sample \(L_A\). Only when we do the collection do we sample \(L_A\) and then we define \(\text{Hash}(L_A \oplus L_S) = L\). This is possible by Lemma 4. To do this we do not even have to decide on which corresponding payment \(L_A\) was made. Therefore the only thing connecting a collection to the corresponding payment is the point \(p\) that we use to compute \(L_S\). But information of \(p\) only goes into \(L_S\) and even if we gave \(L_A \oplus L_S\) to the adversary, this would be a one-time encryption of \(L_S\). Hence \(p\) is information theoretically hidden from the adversary. \[\square\]
Hybrid 6  In $H_6$ we reverse all changes again, except that we keep the change from $H_5$, i.e., we now have the following situation.

Change 6.1. Everything is run as in $H_1 = \text{Exec}_{\mathcal{F}_{\text{AnonPay}}, S, \mathcal{E}}(1^\lambda)$, except that:

Change 6.2. In Step 1 in Collect (Honest Sender, Honest Receiver, Timely) in Fig. 19 we pick $\text{atid}'$ from UCHP differently. We inspect $\mathcal{F}_{\text{AnonPay}}$ to learn which payment $(\text{PAY}, A, B, a)$ created $\text{tid}$ and then we find the $\text{atid}$ in $\mathcal{F}_{\text{AnonPay}}$ corresponding to this payment, i.e., the $\text{atid}$ such that $(\text{PAY}, \text{atid}, \text{tid}, A, B, a) \in \text{Collectable}$. Then we let $\text{atid}' = \text{atid}$. Note that this $\text{atid}$ is in fact in UCHP by Lemma 10, as it cannot have been collected by another party and still have not been collected by $B$.

The following holds by using the same arguments as when we introduced the changes that we now reversed.

Lemma 17. $H_6 \approx H_5$.

Hybrid 7  Let $H_7$ be defined as $H_6$ except that:

Change 7.1. In Fig. 17 Initiate Pay (Honest Sender, Honest Receiver) inspect the copy of $\mathcal{F}_{\text{AnonPay}}$ to find the correct value of the receiver $B$ and amount $a$. Note that the UC simulator is not allowed to do this, but we are describing a hybrid and is free to do as we please for sake of argument. Then in Step 3 we use $\text{ek}'_B = \text{ek}_B$ instead of $\text{ek}'_B = \text{ek}_S$. And in Step 3 we use $a' = a$ and $B' = B$ instead of $a' = 0$ and $B' = A$.

Lemma 18. $H_7 \approx H_6$.

Proof. The change is indistinguishable to the adversary by hiding of $\text{Com}$ and key anonymity of RPKE.  

The reason why we do not yet replace the second simulated proof is that the instance might not be true yet. We are still not updating accounts correctly when picking up payments, so the accounts might not have sufficient balance. We fix this in the next two hybrids.

Hybrid 8  Let $H_8$ be defined as $H_7$ except that:

Change 8.1. We change $\mathcal{F}_{\text{AnonPay}}$ such that when it picks $\text{tid}$ for an honest-honest payment then it uses $\text{tid} = \text{tid}'$ for the $\text{tid}' = \text{Com}.\text{Commit}_{\text{ck}}((A, B', a', \text{nonce}_A); \rho_1)$ computed in Step 4 in Fig. 17.

Lemma 19. $H_8 \approx H_7$.

Proof. This follows from hiding of $\text{Com}$. We could simply get $\text{tid}$ or $\text{tid}'$ from an oracle at this point. We do not use the opening of the transfer identifier anywhere, as collection is still simulated.
Hybrid 9 Let $H_9$ be defined as $H_8$ except that:

Change 9.1. In Fig. 19 in Step 8 compute

$$\pi_1 \leftarrow \text{NIZK.Prv}_{\text{crs}}(\mathcal{R}_{\text{OrDec}}, (\mathcal{C}, \{\mathcal{C}_{\text{coin}}\}_{j \in \text{pos}}, \text{tid}), d\mathcal{B})$$

instead of

$$\pi_1 \leftarrow \text{NIZK.Sim}_{\text{Sim}}(\mathcal{R}_{\text{OrDec}}, (\mathcal{C}, \{\mathcal{C}_{\text{coin}}\}_{j \in \text{pos}}, \text{tid})) .$$

This is possible as now the instance is true and we know the witness.

Change 9.2. In Step 9 use replace $a' = 0$ by $a' = a$ where $a$ is the correct value being transferred. We can learn this value by inspecting $\mathcal{F}_{\text{AnonPay}}$ and it is by the changes in Hybrid 7 also the value inside the coin we are picking up.

Change 9.3. In Fig. 19 in Step 10 compute

$$\pi_2 \leftarrow \text{NIZKPoK.Prv}_{\text{crs}}(\mathcal{R}_{\text{Collect}}, (\mathcal{C}, \mathcal{C}_{\mathcal{B}}, \text{tid}, \mathcal{C}_{\mathcal{B}}'), ((\mathcal{B}, \rho_{\mathcal{B}}), (A, a', \text{nonce}_{\mathcal{A}}, \rho_1), \rho'_{\mathcal{B}}))$$

instead of

$$\pi_2 \leftarrow \text{NIZKPoK.Sim}_{\text{Sim}}(\mathcal{R}_{\text{Collect}}, (\mathcal{C}, \mathcal{C}_{\mathcal{B}}, \text{tid}, \mathcal{C}_{\mathcal{B}}')) .$$

Note that by now the $\text{tid}$ given as input is the $\text{tid}'$ produced in Step 4 in Fig. 17, so we indeed know an opening of $\text{tid}$ to $a' = a$, so we have a true instance and we know the witness.

Lemma 20. $H_9 \approx H_8$.

Proof. The second change is indistinguishable to the adversary by hiding of Com. The two other changes are indistinguishable to the adversary using zero-knowledge of NIZKPoK. □

Hybrid 10 Finally let $H_{10}$ be like $H_9$ except that

Change 10.1. In Step 1 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 we inspect $\mathcal{F}_{\text{AnonPay}}$ and learn the amount $a$ being transferred. If $a > b_{\mathcal{A}}$ then we stop the simulation.

Change 10.2. In Step 7 in Initiate Pay (Honest Sender, Honest Receiver) in Fig. 17 we compute

$$\pi \leftarrow \text{NIZKPoK.Prv}_{\text{crs}}(\mathcal{R}_{\text{PAY}}, (\mathcal{C}_A, \mathcal{C}_{\text{coin}}, \mathcal{C}_{\mathcal{A}'}, A, \text{nonce}_{\mathcal{A}}), ((B, \rho_{\mathcal{A}}), (B, a', \rho_1, \rho_2), \rho'_{\mathcal{A}}))$$

instead of

$$\pi \leftarrow \text{NIZKPoK.Sim}_{\text{Sim}}(\mathcal{R}_{\text{PAY}}, (\mathcal{C}_A, \mathcal{C}_{\text{coin}}, \mathcal{C}_{\mathcal{A}'}, A, \text{nonce}_{\mathcal{A}})) .$$

Lemma 21. $H_{10} \approx H_9$.

Proof. After $H_9$ all commitments to account values are updated as in the protocol. Therefore, by Lemma 10, the balances committed to for honest parties is the same as the balances held by $\mathcal{F}_{\text{AnonPay}}$. And $\mathcal{F}_{\text{AnonPay}}$ would only have given the simulator input $(\text{PAY}, A, \text{atid})$ if $a \leq b_{\mathcal{A}}$ in $\mathcal{F}_{\text{AnonPay}}$. Hence the check $a \leq b_{\mathcal{A}}$ only fails with negligible probability in the (simulated) protocol. The second change is indistinguishable to the adversary by zero-knowledge of NIZKPoK, as we now know a correct witness. We clearly know the witnesses needed and they satisfy $\mathcal{R}_{\text{PAY}}$ as $a \leq b_{\mathcal{A}}$, so we can do a reduction to zero-knowledge. □
For clarity we did the changes in Hybrids 9 and 10 in two steps, but note that technically we need to give a single reduction to the ZK of the GUC NIZK PoK proof system, as the ZK notion does not allow to replace some simulated proofs with real proofs and some not. We can do this as follows. First we do the changes in Change 9.1, Change 9.2 and Change 10.1 and then we do the changes in Change 9.3 and Change 10.2 and prove indistinguishability of this step using a single reduction.

**Hybrid 10** Finally let \( H_{11} = \text{Exec}_{\text{AnonPay}, F_{\text{ledger}}, F_{\text{AAT}}, F_{\text{Service}}, \mathcal{E}}(1^\lambda) \) be the execution of the protocol.

**Lemma 22.** \( H_{11} \approx H_{10} \).

*Proof.* By \( H_{10} \) the honest parties are being run according to the protocol except for syntactical difference which do not matter. Furthermore, \( F_{\text{AnonPay}} \) and the simulated protocol have been aligned. We argued that structurally \( F_{\text{AnonPay}} \) and the protocol gives the same types of outputs at the same time. Collections are mapped to the correct payments. Furthermore, by **Lemma 10** the balances in \( F_{\text{AnonPay}} \) and in the protocol are now the same except with negligible probability. And the protocol now uses the same tid’s as the ideal functionality. Therefore the protocol and the ideal functionality gives exactly the same outputs at exactly the same times, except with negligible probability. The only difference is that in \( H_{10} \) we compute \( \text{crs}^{\text{KKnW}} \) using \( \text{NIZKPoK.SimGen} \) and in \( H_{11} \) we use \( \text{NIZKPoK.Gen} \), but this is indistinguishable by Zero Knowledge of \( \text{NIZKPoK} \). \( \square \)

**C Proof System Instantiations**

In this section, we show how to instantiate the proof systems that are needed for our OCash construction with weak and strong anonymity.

**C.1 Discussion of GUC NIZK PoK Definitions**

In Section 2.5 we gave a slight reformulation of the notion of GUC NIZK Proof of Knowledge in \( \text{LR}22 \). We here sketch why it is equivalent to Definition 11 in \( \text{LR}22 \).

In \( \text{LR}22 \) the definition of GUC NIZK PoK is given indirectly by letting the NIZK PoK Ideal Functionality from their Definition 8 generate simulated proofs for honest parties and generate a failure event observable by the environment if it cannot at the same time extract all accepting proofs (which are not among the simulated ones). In their Definition 11 it is then required that this ideal functionality is indistinguishable from the real protocol, where the honest proofs are generated correctly and there are no attempts at extracting accepting proofs and therefore no observable failure events. This implies that the failure event must be negligible. Namely, it never occurs in the real world, so if it occurred in the simulation with non-negligible probability simulation would be impossible. This gives what is normally called *simulation extractability*. At the same time, in the real world real proofs are given and in the simulation the proofs are simulated (see **Prove** in their Definition 8). This means
that it follows from their Definition 8 in conjunction with their Definition 11 that real proofs must be indistinguishable from simulated proofs. This gives what is normally called zero-knowledge. Finally, Prove in their Definition 8 creates an observable failure if a simulated proof does not verify. Since no such failure event is possible in the real world it follows from their Definition 8 in conjunction with their Definition 11 that simulated proofs verify except with negligible probability. Since simulated proofs are indistinguishable from real proofs, it follows that real proofs verify except with negligible probability, which is normally called completeness.

In Section 2.5 we explicitly state these three properties. They are equivalent to Definition 11 in [LR22] qua the above discussion.

C.2 Proofs for Group Homomorphisms

We will need several \( \Sigma \)-protocols with strong special soundness for relations defined via collision resistant group homomorphisms, and we describe the general theory here. We first present the canonical \( \Sigma \)-protocol for group homomorphisms. Let \((G, +)\) and \((H, \cdot)\) be Abelian groups, we write \(G\) additively and \(H\) multiplicatively. Assume \(G\) has a known prime order \(q\). For \(g, h \in G\) and \(e \in \mathbb{Z}\) let \(eg\) and \(h^e\) denote the usual group actions of adding/multiplying the element with itself \(e\) times.

The relation is given by \(R \subset H \times G\) with \(x = \Phi(w)\). The first message is computed as \(a = \Phi(r)\) for uniformly random \(r \in G\). The challenge is space is \(E = \mathbb{Z}_q\). The reply is computed as \(z = ew + r\), and the verification is \(\Phi(z) = x^a\). Completeness is clear: \(\Phi(ew + r) = \Phi(w)^e\Phi(r) = x^a\). To prove SHVZK we pick \(z \in G\) uniformly at random and let \(a = x^{-e}\Phi(z)\). This has a distribution identical to the basic run, as \(z\) is uniform in both distributions and \(a = x^{-e}\Phi(z)\) in both distributions.

For special soundness note that if \(\Phi(z) = x^e a\) and \(\Phi(z') = x^{e'} a\), then \(\Phi(z - z') = \Phi(z)/\Phi(z') = x^{e-e'}\). Therefore, if we let \(d = (e - e')^{-1} \mod q\) and \(w = d(z - z')\), then \(\Phi(w) = x^d = x\).

Now let a system parameter trapdoor be any element \(z \in G \setminus \{0\}\) such that \(\Phi(z) = 1 \in H\). Formally, \(T(t) \equiv t \in \Phi^{-1}(1) \setminus \{0\}\). We can then argue strong special soundness. Assume that \((e', z') \neq (e, z)\) and \(\Phi(z) = x^e a\) and \(\Phi(z') = x^{e'} a\). If \(e' \neq e\) then we get \(w\) such that \((x, w) \in R\) from special soundness. If \(e = e'\), then \(z' \neq z\) and therefore \(\Phi(z' - z) = (x^{e'} a)(x^e a)^{-1} = (x^{e} a)(x^e a)^{-1} = 1\) is a system parameter trapdoor.

To illustrate the definition, we consider Pedersen vector commitments. The system parameters are uniform and independent generators \(g_1, \ldots, g_\ell\) of a group \(H\) of order \(q\). We let \(G = (\mathbb{Z}_q^\ell)\) and \(\Phi(w_1, \ldots, w_\ell) = \prod_{i=1}^{\ell} g_i^{w_i}\). Clearly \(G\) has order \(q\) and \(\Phi\) is a group homomorphism \(G \to H\). A system parameter trapdoor is a non-zero element \((w_1, \ldots, w_\ell) \in \mathbb{Z}_q^\ell\) such that \(\prod_{i} g_i^{w_i} = 1\). It is well-known and straight-forward to verify that finding such a non-trivial representation of 1 is equivalent to the discrete logarithm problem in \(H\) under poly-time reduction.

Consider then a Pedersen vector commitment \(c = \prod_{i=1}^{\ell} g_i^{w_i}\), where for instance \(w_\ell\) is the randomizer. Proving knowledge of an opening of \(c\) is the same as proving knowledge of \(w \in G\) such that \(\Phi(w) = c\). By the above discussion, we have a strong special sound \(\Sigma\)-protocol for
This gives us that (compute \( w \) trapdoor. We prove in two cases

\[ e \]

above.

\[ b \]

for some such that (\( x \), \( e \), \( 0 \))

We now recall that the OR construction of \( \Sigma \)-protocols is strong special sound. Consider two transcripts (\( x, e, 0 \)). The input to the prover is (\( x, e, 0 \)), sample e1 \( \in \mathcal{E} \) uniformly at random, and let (\( a_1, z_1 \)) \( \leftarrow S_1(x_1, e_1) \).

3. The verifier samples and sends a uniformly random challenge \( e \) \( \in \mathcal{E} \).

4. The prover computes \( e_0 = e - e_1 \), computes \( z_0 \leftarrow Z_0(x_0, w, e_0, r) \) and sends \( z = ((e_0, e_1), (z_0, z_1)) \)

5. The verifier checks that \( e_0 + e_1 = e \) and \( V_1(x_0, a_0, e_0, z_0) = V_2(x_1, a_1, e_1, z_1) = \top \).

Completeness is straight-forward and SHVZK follows from just simulating both tracks, so we focus on strong special soundness. Consider two transcripts ((\( a_0, a_1 \), \( e, z \)) = ((\( e_0, e_1 \), (\( z_0, z_1 \))), where \( e_0 + e_1 = e \) and \( V_1(x_0, a_0, e_0, z_0) = V_2(x_1, a_1, e_1, z_1) = \top, \) and ((\( a_0, a_1 \), \( e', z' \)) = ((\( e_0', e_1' \), (\( z_0', z_1' \))), where \( e_0' + e_1' = e' \) and \( V_1(x_0, a_0, e_0', z_0') = V_2(x_1, a_1, e_1', z_1') = \top \).

We can assume that (\( e', z' \) \( \neq (e, z) \) and has to compute a witness or a system parameter trapdoor. We prove in two cases \( e' \neq e \) and \( e' = e \). If \( e' \neq e \) then \( e_0' \neq e_0 \) or \( e_1' \neq e_1 \).

This gives us that (\( e_0', z_0' \) \( \neq (e_0, z_0) \) or (\( e_1', z_1' \) \( \neq (e_1, z_1) \). This either allows to use \( W_0 \) to compute \( w_0 \) such that (\( x_0, w_0 \)) \( \in \mathcal{R}_0 \) or \( T_0(w_0) = \top \) or allows to use \( W_1 \) to compute \( w_1 \) such that (\( x_1, w_1 \)) \( \in \mathcal{R}_1 \) or \( T_1(w_1) = \top \). This gives use a witness \( w \in \{w_0, w_1\} \) for \( \mathcal{R}_v \) or \( t \) such that \( T(t) = \top \). If \( e = e' \) then it follows from (\( e', z' \) \( \neq (e, z) \) that \( z' \neq z \), i.e., ((\( e_0', e_1' \), (\( z_0', z_1' \))) \( \neq ((e_0, e_1), (z_0, z_1)) \)). If \( e' \neq e_0 \) then we are done by the above reasoning. If \( e_0' = e_0 \) then \( e' = e \) implies that \( e_1' = e_1 \). We must therefore have that (\( z_0', z_1' \) \( \neq (z_0, z_1) \). So for some \( b \) we have that \( z_0' \neq z_0 \), and then we are done by strong special soundness of \( \Sigma_b \) as above.
C.4 $\Sigma$-Protocols for Relations

We now give the $\Sigma$-protocols for the relations used in OCash. Note that for the relations where we give proof of knowledge (using NIZKPoS) we need the protocols to have strong special soundness (cf. Section 2.5). This is all relation but $R_{\text{ORDEC}}$.

We first consider the relation $(x = (ck, c), w = \rho) \in R_{\text{ISZERO}} \iff c = \text{Com.Commit}_c(0, \rho)$. Let $\Psi(\rho) = \text{Commit}_c(0; \rho)$. This is clearly a group homomorphism $\Psi(\rho_1 + \rho_2) = \Psi(\rho_1)\Psi(\rho_2)$, so we can use the $\Sigma$-protocol from Appendix C.2 which has strong special soundness.

Consider then the relation $(x = (ck, c), w = \rho) \in R_{\text{ISFUND}} \iff c = \text{Com.Commit}_c(a_0, \rho)$. We have that $c = \text{Commit}_c(a_0, \rho) \iff \text{Com.Commit}_c(0, \rho) = c \cdot g_4^{a_0}$, so we can use the $\Sigma$-protocol for $R_{\text{ISZERO}}$.

We then consider $(x = (pp, ek, \{c_j\}_{j \in \ell}, m), w = dk) \in R_{\text{ORDEC}} \iff \bigvee_{j=1}^\ell \text{RPKE}.\text{Dec}_{dk}(c_j) = m$. Note that here we do not need a proof of knowledge, just a proof of membership. We have that $ek = g_0^{sk}$ and for $c = (A, B, C, D)$ we have that $\text{RPKE}.\text{Dec}_{dk}(c) = 1$ if $B \neq A^k$, and otherwise $\text{RPKE}.\text{Dec}_{dk}(c) = DC^{-sk}$. Therefore $\text{RPKE}.\text{Dec}_{dk}(c) = m$ is equivalent to the existence of $x$ such that $ek = g_0^x$ and $B = A^x$ and $Dm^{-1} = C^x$. Consider the group $\mathbb{G} = \mathbb{G}_3$ and for fixed $g = (g_0, A, C) \in \mathbb{G}$ consider the group homomorphism $\Psi : \mathbb{G}_q \rightarrow \mathbb{G}$ given by $\Psi(w) = g^w = (g_0^w, A^w, C^w)$. Let $h = (ek, B, Dm^{-1})$. Then $\text{RPKE}.\text{Dec}_{dk}(c) = m$ is equivalent to $\exists w \Psi(w) = h$. So we can use the $\Sigma$-protocol from Appendix C.2. We could then use the $\lor$-construction from Appendix C.3 to get a $\Sigma$-protocol for $R_{\text{ORDEC}}$, but the communication would be linear in $\ell$. We can do better than this using [GK15] as discussed now. For $j = 1, \ldots, \ell$ let $c_j = (A_j, B_j, C_j, D_j), g_j = (g_0, A_j, C_j) \in \mathbb{G}$, and $h_j = (ek, B_j, D_jm^{-1}) \in \mathbb{G}$. Then

$$(x = (pp, ek, \{c_j\}_{j \in \ell}, m), w = dk) \in R_{\text{ORDEC}} \iff \bigvee_{j=1}^\ell h_j = g_j^w.$$  

We can therefore directly use the one-out-of-many DL $\Sigma$-protocol in [GK15]. The communication complexity is in the order of log $\ell$ times that of a single proof for $\Psi$.

Consider then

$$(x = (ck, c_B, tid, c'_B), w = ((b_B, \rho_B), (A, a, \text{nonce}_A, \rho_1), \rho_B)) \in R_{\text{COLLECT}}$$  

$\iff c_B = \text{Com.Commit}_c(b_B, \rho_B) \land \quad$  

tid $= \text{Com.Commit}_c(A, B, a, \text{nonce}_A, \rho_1) \land \quad$  

c'_B $= \text{Com.Commit}_c(b_B + a, \rho_B).$$

This is equivalent to

$$c_B = g_0^{\rho_B} g_4^{b_B} \land \text{tid} g_4^{-\text{nonce}_A} g_2^{-B} = g_0^{\rho_1} g_1^A g_2^a \land c'_B = g_0^{\rho_6} g_4^{b_B + a}.$$  

Let $h = (c_B, \text{tid} g_4^{-\text{nonce}_A} g_2^{-B}, c'_B)$ and consider the group homomorphism $\Psi : \mathbb{Z}_7^6 \rightarrow \mathbb{G}_3$ given by

$$\Psi(\rho_B, b_B, \rho_1, A, a, \rho_B') = (g_0^{\rho_B} g_4^{b_B} : g_0^{\rho_1} g_1^A g_2^a, g_0^{\rho_6} g_4^{b_B + a}).$$  

Let $w = (\rho_B, b_B, \rho_1, A, a, \rho_B')$. Then $R_{\text{COLLECT}}$ is equivalent to $\Phi(w) = h$, so we can use the $\Sigma$-protocol from Appendix C.2 which has strong special soundness.
We finally consider

\((x = (A, \text{nonce}_A, \text{ck}, c_A, \text{coin}, c_A'), w = ((b_A, \rho_A), (B, a, \rho_1, \rho_2), \rho_A')) \in \mathcal{R}_{\text{PAY}}\)

\[ c_A = \text{Com. Commit}_{\text{ck}}(b_A, \rho_A) \land \]

\[ ((\text{coin}, \text{Com. Commit}_{\text{ck}}(A, B, a, \text{nonce}_A; \rho_1)), \rho_2) \in \mathcal{R}_{\text{ENC}} \land \]

\[ c_A' = \text{Com. Commit}_{\text{ck}}(b_A - a, \rho_A') \land b_A \geq a \geq 0 . \]

Let \(\text{coin} = (A, B, C, D)\) and \(\text{tid} = \text{Com. Commit}_{\text{ck}}(A, B, a, \text{nonce}_A; \rho_1)\). As part of the proof we want to show that \(((\text{coin}, \text{tid}), \rho_2) \in \mathcal{R}_{\text{ENC}}\). We use that the sender knows \(r\) such that \(C = A^r\) and \(D = B^r \cdot \text{rid}\) (cf. Fig. 13) and let \(\rho_2 = r\). Then \(((\text{coin}, \text{tid}), r) \in \mathcal{R}_{\text{ENC}}\) is equivalent to \(C = A^r \land D = B^r g_0^a g_1^A g_2^B g_3^{\text{nonce}_A}\). What we want to prove is therefore knowledge of \(((b_A, \rho_A), (B, a, \rho_1, r), \rho_A')\) such that

\[ c_A = g_0^{\rho_A} g_4^{b_A} \land C = A^r \land D = B^r g_0^{\rho_A} g_1^A g_2^B g_3^{\text{nonce}_A} \land c_A' = g_0^{\rho_A} g_4^{b_A - a} \land b_A \geq a \geq 0 . \]  

Let \(h = (c_A, D g_1^{-A} g_4^{\text{nonce}_A}, c_A')\) and define the group homomorphism

\[ \Psi(\rho_A, b_A, r, \rho_1, B, a, \rho_A') = (g_0^{\rho_A} g_4^{b_A}, A^r, B^r g_0^{\rho_A} g_1^A g_2^B g_3^{\text{nonce}_A}, g_0^{\rho_A} g_4^{b_A - a}) , \]

then ignoring the condition \(b_A \geq a \geq 0\) we have to prove is knowledge of \((\rho_A, b_A, r, \rho_1, B, a, \rho_A') = h\). We do this using the \(\Sigma\)-protocol from Appendix C.2 which has strong special soundness.

We then focus on \(b_A \geq a \geq 0\). This is the same as showing knowledge of

\[ w' = (b_A', a, \rho_A', \rho_A'') \]

such that

\[ c_A' = g_0^{\rho_A'} g_4^{b_A'} \land c_A'/c_A = g_0^{\rho_A'} g_4^{a} \land b_A' \geq 0 \land a \geq 0 . \]  

It is sufficient to give a separate proof for this fact. I.e., we give one proof of knowledge of \(w = (\rho_A, b_A, r, \rho_1, B, a, \rho_A')\) such that \(\Psi(\rho_A, b_A, r, \rho_1, B, a, \rho_A') = h\) and at the same time we give a proof of knowledge for \(w'\) such satisfying Eq. (9) without, e.g., trying to prove that \(b_A' = b_A\). However, collision resistance will ensure that the shared values between \(w\) and \(w'\) will be identical. Assume namely that we have a witness \(w'\) for Eq. (9) and a witness \((\rho_A, b_A, r, \rho_1, B, a, \rho_A')\) such that \(\Psi(\rho_A, b_A, r, \rho_1, B, a, \rho_A') = h\). Under the DL assumption this implies that \(b_A \geq a \geq 0\). To see this, note that from \((\rho_A, b_A, r, \rho_1, B, a, \rho_A')\) such that \(\Psi(\rho_A, b_A, r, \rho_1, B, a, \rho_A') = h\) we can compute a potential witness

\[ \overline{w} = (b_A', \overline{a}, \overline{\rho_A'}, \overline{\rho_A''}) = (b_A - a, \rho_A', \rho_A/\rho_A') . \]

It follows from Eq. (8) that \(c_A' = g_0^{\rho_A'} g_4^{b_A'}\) and \(c_A' = g_0^{\rho_A'} g_4^{b_A - a}\) which implies that

\[ c_A' = g_0^{\rho_A'} g_4^{b_A'} \land c_A'/c_A = g_0^{\rho_A'} g_4^{a} . \]
From the DL assumption it then follows that $\bar{w} = w'$. Therefore it follows from $w'$ being a witness for Eq. (8) that

$$b'_A \geq 0 \land \bar{a} = a_0$$

By construction $\bar{b}'_A = b_A - a$ and $\bar{a} = a$ which gives us that

$$b_A - a \geq 0 \land a \geq 0,$$

which gives the desired conclusion that $b_A \geq a \geq 0$.

Then note that since a witness $w'$ for Eq. (9) can be computed from Eq. (8) we do not need that the proof for Eq. (9) can be extracted using tExt. If we can use tExt to extract a witness $(\rho_A, b_A, r, \rho_1, B, a, \rho'_A) = h$. From this it can compute $\bar{w}$ as above with $c'_A = g_0^{\rho_A} b_A$ and $c_A/c'_A = g_0^{\rho_A} \pi$. If in addition $b'_A \geq 0$ and $\bar{a} \geq 0$ then we have a witness for $R_{PAY}$ and is done. If it is not the case that $b'_A \geq 0$ and $\bar{a} \geq 0$ then we can break DL as follows. We can rewind the entire UC experiment to compute another witness $w'$ for Eq. (9). Since $b'_A \geq 0$ and $a \geq 0$ except with negligible probability by soundness of the proof it follows that $w' \neq \bar{w}$. But then we broke DL, a contradiction. We therefore except with negligible probability also get a witness for $R_{PAY}$ when we extract the witness for Eq. (8).

To recap, we give the proof for $R_{PAY}$ by giving a proof for

$$(x = (A, \text{nonce}_A, c_k, c_A, \text{coin}, c'_A), w = ((b_A, \rho_A), (B, a, \rho_1, \rho_2), \rho'_A) \in R_{PAY}^1) \iff c_A = \text{Com. Commit}_{ck}(b_A, \rho_A) \land (\text{(\text{coin}, Com. Commit}_{ck}(A, B, a, \text{nonce}_A; \rho_1), \rho_2) \in R_{ENC} \land c'_A = \text{Com. Commit}_{ck}(b_A - a, \rho'_A))$$

using NIZKPoK and giving a separate proof for

$$(x^2 = (ck, c_A, c'_A), w' = (b'_A, \rho'_A, a, \rho''_A) \in R_{PAY}^2) \iff c'_A = \text{Com. Commit}_{ck}(b'_A, \rho'_A) \land c_A/c'_A = \text{Com. Commit}_{ck}(a, \rho''_A) \land b'_A \geq 0 \land a \geq 0.$$}

using NIZK, letting the honest prover use $\rho''_A = \rho_A - \rho'_A$. Furthermore, a witness for $R_{PAY}^1$ will also be a witness for $R_{PAY}$ by global extractability of the proof for $R_{PAY}^2$ and the DL assumption.

We then turn to how we make a proof for $R_{PAY}^2$ for NIZK with global extraction. We will use that $a_0 \geq b'_A \geq 0$, where $a_0$ is the initial amount. This is maintained by invariant in the protocol. For the same reason on $a_0 \geq a \geq 0$ makes sense. We can therefore pick the order $q$ of $G$ such that $q > 2^{\lambda}a_0$. It is then sufficient to give a proof that $b'_A, a_0 \in [0, 2^\lambda a_0 - 1]$ where the honest prover always has $b'_A, a_0 \in [0, a_0]$. We can therefore in principle use any off-the-shelf range proof. However, using the range proof from [AC20] we can get a $\Sigma$-protocol secure under the DL assumption. We can then apply Section 2.4 to get a UC NIZK PoM NIZK for this $\Sigma$-protocol.

\footnote{Of course the UC simulator cannot rewind the UC execution, but we as the provers of security is allowed to do this as a Gedankenpiel.}
C.5 Extended Proof Systems for Strong Anonymity

We now discuss how to extend the relations $\mathcal{R}_{\text{PAY}}$, $\mathcal{R}_{\text{ORDEC}}$, $\mathcal{R}_{\text{COLLECT}}$, and their proofs to the case with strong anonymity.

We first look at payment. In the proof for $\mathcal{R}_{\text{PAY}}^1$ we simply use the target value

$$ h' = (c_A, C, Dg_1^{-A}g_4^{-\text{nonce}_A}g_5^{-\text{Hash}(m_A, \text{nonce}_A)}, c_A') $$

instead of

$$ h = (c_A, C, Dg_1^{-A}g_4^{-\text{nonce}_A}, c_A) . $$

This ensures that the correct hid was used. We then extend $\mathcal{R}_{\text{ORDEC}}$. Note that the $\rho$ used in $\text{tid}' = \text{tid} \cdot g_0^\rho$ used is fixed by $g_1$ and $h = g_0^\rho$. Therefore $\text{tid}$ is fixed by $g_1$ and $h$ and $\text{tid}'$. What remains is to prove that this well-defined $\text{tid}$ is in one of the encryptions. We can prove this with a proof for the relation

$$(x = (\text{pp}, \text{ek}, \{c_j\}_{j=1}^\ell, m), w = (\text{dk}, \rho)) \in \mathcal{R}_{\text{ORDEC}} \iff h = g_0^\rho \land \bigvee_{j=1}^\ell (\text{RPKE. Dec}_{\text{dk}}(c_j)) g_0^\rho = m ,$$

by using $m = \text{tid}'$ and $\rho$ being the witness that $m = \text{tid}g_0^\rho$. Note that here we do not need a proof of knowledge, just a proof of membership.

We have that $\text{ek} = g_0^{\text{sk}}$ so for a ciphertext $c = (A, B, C, D)$ we have that $\text{RPKE. Dec}_{\text{dk}}(c) = \bot$ if $B \neq A^{\text{sk}}$, and otherwise $\text{RPKE. Dec}_{\text{dk}}(c) = DC^{-\text{sk}}$. Therefore $\text{RPKE. Dec}_{\text{dk}}(c)g_1^\rho = m$ is equivalent to the existence of $\rho$ and $x$ such that $h = g_0^\rho$ and $\text{ek} = g_0^\rho$ and $B = A^x$ and $DC^{-x} = mg_0^\rho$, where the last equation can be rewritten as $Dm^{-1} = g_0^{-\rho}C^x$. Consider the group $\overline{G} = G^4$ and the group homomorphism $\Psi : \mathbb{Z}_q \times \mathbb{Z}_q \rightarrow \overline{G}$ given by $\Psi(w, \rho) = (g_1^\rho, g_0^w, A^w, g_0^{-\rho}C^w)$. Let $h = (h, \text{ek}, B, Dm^{-1})$. Then $\text{RPKE. Dec}_{\text{dk}}(c)C^\rho = m$ is equivalent to $\exists w \Psi(w) = h$. So we can use the $\Sigma$-protocol from Appendix C.2 and the one-out-of-many DL $\Sigma$-protocol in [GK15] to get communication complexity is in the order of $\log \ell$ times that of a single proof for $\Psi$.

We finally look at collection. During payment the shop posts

$$ y = \text{PRF}_K(\text{hid}) = g_5^{1/(K+\text{hid})} , \quad (10) $$

where $1/(K + \text{hid})$ denotes multiplicative inverse modulo the order of $G$. It then shows that it knows $(s', U, S, n_U, a, \text{hid}, K)$ such that

$$ \text{tid'} = g_0^{s'} \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \cdot g_5^{\text{hid}} \land \text{vk} = g_5^K \land y = g_5^{1/(K+\text{hid})} . \quad (11) $$

We do not know a $\Sigma$-protocol with strong special soundness for this relation, so we will use the same trick as for $\mathcal{R}_{\text{PAY}}$ where we gave a proof for $\mathcal{R}_{\text{PAY}}^1$ using NiZKPoK and gave a proof of $\mathcal{R}_{\text{PAY}}^2$ with global extraction using NiZK. In the present case we will give a proof for

$$ \text{tid'} = g_0^{s'} \cdot g_1^U \cdot g_2^S \cdot g_3^{n_U} \cdot g_4^a \cdot g_5^{\text{hid}} \land \text{vk} = g_5^K \quad (12) $$

91
using \textit{NIZKPoK} by using a straight-forward group homomorphism proof. In parallel we give a proof for Eq. (11) using a \textit{NIZK} proof with global extraction. This proof is about a multiplicative relation in the exponent and can therefore be constructed using \cite{AFK22}. If the witness extracted from \textit{NIZKPoK} for Eq. (12) by the UC simulator does not fulfill Eq. (11), then we can use global extraction of \textit{NIZK} to get another witness which \textit{does} fulfill Eq. (11) and therefore also Eq. (12). But clearly, computing two different openings of Eq. (12) in poly-time breaks DL using a stand poly-time reduction.