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Abstract

Secure multiparty computation (MPC) allows a set of n parties to jointly compute a function on their
private inputs. In this work, we focus on the information-theoretic MPC in the asynchronous network
setting with optimal resilience (t < n/3). The best-known result in this setting is achieved by Choudhury
and Patra [J. Cryptol ’23], which requires O(n4κ) bits per multiplication gate, where κ is the size of a
field element.

An asynchronous complete secret sharing (ACSS) protocol allows a dealer to share a batch of Shamir
sharings such that all parties eventually receive their shares. ACSS is an important building block in
AMPC. The best-known result of ACSS is due to Choudhury and Patra [J. Cryptol ’23], which requires
O(n3κ) bits per sharing. On the other hand, in the synchronous setting, it is known that distributing
Shamir sharings can be achieved with O(nκ) bits per sharing. There is a gap of n2 in the communication
between the synchronous setting and the asynchronous setting.

Our work closes this gap by presenting the first ACSS protocol that achieves O(nκ) bits per sharing.
When combined with the compiler from ACSS to AMPC by Choudhury and Patra [IEEE Trans. Inf.
Theory ’17], we obtain an AMPC with O(n2κ) bits per multiplication gate, improving the previously
best-known result by a factor of n2. Moreover, with a concurrent work that improves the compiler by
Choudhury and Patra by a factor of n, we obtain the first AMPC with O(nκ) bits per multiplication
gate.

1 Introduction
Secure multiparty computation (MPC) enables a group of n parties to compute a public function on their
private inputs while protecting the secrecy of each party’s input. There are two main network settings
considered in the literature of MPC: the synchronous network setting and the asynchronous network setting.

Most of the existing works on MPC study in the synchronous network setting [BGW88, CCD88, GMW87,
RB89, Yao82], where a synchronized global clock exists and there is an upper bound on the network commu-
nication delay. In the synchronous network setting, every party can expect to receive messages from other
parties within a bounded amount of time, which makes it easier to construct MPC protocols. However, this
does not capture the network condition in the real world where there is no fixed time bound for the network
communication delay and all parties are asynchronous. This gave rise to the asynchronous network setting
where the messages may be arbitrarily delayed and delivered out of order with the only guarantee that all
messages will be eventually delivered. In particular, an MPC protocol in the asynchronous network setting
(or AMPC for short) does not rely on any assumption of timing.
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One of the main challenges in constructing an AMPC protocol is that one cannot distinguish between
a corrupted party not sending a message and an honest party that sent a message that is delayed by the
adversary. As a result, to achieve liveness, a party cannot expect or wait for messages from all other parties
and should proceed once he receives a certain number of messages. Typically, a party can only afford to
wait for messages from n− t parties, where t is the number of corrupted parties, since corrupted parties may
never send messages. On the other hand, in the worst case, the t missing messages may come from honest
parties due to the network delay, and t messages received from these n − t parties may be from corrupted
parties. Due to this challenge, protocols in the synchronous network completely fail since the security of
these protocols typically requires each party to receive messages from all other (honest) parties.

In this work, we focus on the communication complexity of AMPC in the information-theoretic setting.
Compared with MPC protocols in the synchronous setting, AMPC usually requires a smaller corruption
threshold. For example, it is known that in the synchronous setting, perfect security can be achieved
with t < n/3 corruption [BH08, BGW88] and guaranteed output delivery (with negligible error) can be
achieved with the honest majority (t < n/2) [RB89] assuming broadcast channels. On the other hand, in
the asynchronous setting, perfect security is only possible when t < n/4 [BOCG93] while guaranteed output
delivery (with negligible error) requires t < n/3 [ADS20, BOKR94]. Also, AMPC appears less efficient than
synchronous MPC in terms of asymptotic communication complexity: It has been known for a decade that
guaranteed output delivery with optimal resilience in the synchronous setting can be achieved with linear
communication complexity in the number of parties per multiplication gate. However, in the asynchronous
setting, the best-known result with optimal resilience [CP23] still requires O(n4κ) bits of communication per
multiplication gate, where κ is the size of a field element. A long-standing open question is whether we can
achieve linear communication complexity in the asynchronous setting with guaranteed output delivery and
optimal resilience.

1.1 Asynchronous Complete Secret Sharing
An asynchronous complete secret sharing (ACSS) protocol is a basic tool in building AMPC protocols. It
allows a dealer to share a group of degree-t Shamir sharings to all parties which ensures that (1) if the
dealer is honest, all (honest) parties will eventually receive correct shares, and (2) even if the dealer is
corrupted, either no honest party terminates or all honest parties terminate with correct shares. With an
ACSS protocol, a typical approach to achieving AMPC [CP17, CP23] is to first prepare random Beaver
triples in the offline phase, and then rely on the technique of circuit randomization [Bea92] to evaluate the
circuit in the online phase. Following this approach, the work [CP17] has shown that any circuit C can be
securely computed by using an ACSS protocol in a black-box way with O(n2κ) bits of communication plus
sharing O(n) degree-t Shamir sharings via ACSS per multiplication gate. Combining with the best-known
result of ACSS [CP23], which requires communicating O(n3κ) bits per sharing, it gives the best-known result
of AMPC which requires O(n4κ) bits per multiplication gate.

Thanks to the compiler in [CP17], any improvement in building ACSS protocols directly leads to im-
provement in AMPC. We note that in the synchronous setting, distributing degree-t Shamir sharings can
be done with linear communication complexity O(nκ) bits per sharing [BFO12]. This leads to our following
question.

Does there exist an optimal-resilient information-theoretic ACSS protocol with amortized communication
of O(nκ) bits per sharing?

1.2 Contributions
In this paper, we answer this question affirmatively. Our main contribution is an ACSS protocol with
O(Nnκ + n12κ2)-bit communication to share N degree-t Shamir sharings, where κ is the size of a field
element. As a result, our ACSS protocol achieves an amortized communication of O(nκ) bits per sharing.

Theorem 1. Let κ denote the security parameter. For a finite field F of size 2Θ(κ), there exists a fully
malicious information-theoretic ACSS protocol against t < n/3 corrupted parties that shares N degree-t
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Shamir sharings over F with communication of O(Nnκ+ n12κ2) bits.

To achieve our result,

• We extend the asynchronous information-checking protocol (AICP), which is introduced in [PCR09]
and is used as an information-theoretic signature scheme, to support linear operations over signatures
and verification by multiple receivers. This allows us to let each party efficiently verify the shares
received from the dealer. This tool may be of independent interest.

• We extend the technique of authentication tags [BFO12] to the asynchronous setting. With authentica-
tion tags, we show that a set of 2t+1 parties can help the rest of t parties recover their shares efficiently,
thus achieving asynchronous complete secret sharing. However, adapting the technique of authenti-
cation tags to the asynchronous setting is not an easy task due to the challenge in the asynchronous
setting we mentioned above.

In Section 2, we give an overview of our techniques.

Implications in AMPC. When applying the compiler from ACSS to AMPC in [CP17], we obtain an
AMPC protocol with O(n2κ) bits of communication per multiplication gate, which improves the best-known
result [CP23] by a factor of n2.

Theorem 2. ([CP17]) Let n = 3t+ 1. For any circuit C of size |C| and depth D, there is a fully malicious
asynchronous MPC protocol computing the circuit that is secure against at most t corrupted parties with
guaranteed output delivery in the FACSS-hybrid model. The achieved communication complexity is O(|C| ·
n2κ+ n5κ) bits plus O(n) invocations of FACSS to share O(|C| · n) degree-t Shamir sharings in total.

Corollary 1. Let n = 3t + 1. For any circuit C of size |C| and depth D, there is a fully malicious
information-theoretic asynchronous MPC protocol that is secure against at most t corrupted parties with
guaranteed output delivery. The total communication complexity is O(|C| · n2κ+ n13κ2) bits.

We note that a concurrent work [GLZS24] improves the compiler in [CP17] by a factor of n. I.e., the cost
per multiplication gate is reduced to O(nκ) bits plus sharing O(1) degree-t Shamir sharings via ACSS. When
applying the compiler in [GLZS24], we obtain an AMPC protocol with O(nκ) bits of communication per
multiplication gate, the first information-theoretic AMPC protocol with linear communication complexity
and optimal resilience.

Theorem 3. ([GLZS24]) Let n = 3t+1. For any circuit C of size |C| and depth D, there is a fully malicious
asynchronous MPC protocol computing the circuit that is secure against at most t corrupted parties with
guaranteed output delivery in the FACSS-hybrid model. The achieved communication complexity is O(|C| ·
nκ+D · n2κ+ n8κ) bits plus O(n2) invocations of FACSS to share O(|C|) degree-t Shamir sharings in total.

Corollary 2. Let n = 3t + 1. For any circuit C of size |C| and depth D, there is a fully malicious
information-theoretic asynchronous MPC protocol that is secure against at most t corrupted parties with
guaranteed output delivery. The total communication complexity is O(|C| · nκ+D · n2κ+ n14κ2) bits.

1.3 Related Works
The question of designing a communication-efficient ACSS protocol is also studied in other settings.

In the setting of perfect security, it is known that t < n/4 is necessary [BCG93]. A line of works [SR00,
BH07, CHP13, PCR15, CP17] has improved the communication complexity of perfect ACSS in this setting.
The best-known result [CP17] has achieved linear communication complexity O(nκ) bits per sharing.

In the setting of computational security against t < n/3 corrupted parties, ACSS with linear commu-
nication complexity is known in [AJM+23] relying on discrete logarithms and pairings. The work [SS23]
also tries to only use lightweight cryptography such as collision-resistant hash functions and pseudo-random
functions and achieves an amortized communication complexity of O(n2κ) bits per sharing.
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2 Technical Overview
We give a high-level overview of the main techniques used in this paper. In our setting, parties can access a
complete network of point-to-point asynchronous and secure channels. Asynchronous channels only guarantee
that messages sent by honest parties are eventually delivered, and the adversary can control the message
scheduling. Let P1, . . . , Pn denote the n parties in the protocol, who form a set P.

An Asynchronous Complete Secret Sharing (ACSS) protocol enables a dealer to share degree-t Shamir
secret sharings among n parties. Let F be a finite field and α0, . . . , αn ∈ F be distinct field elements. A
degree-t Shamir secret sharing of a secret ω ∈ F, denoted by [ω]t, is a vector (ω1, . . . , ωn) determined by a
degree-t polynomial f where f(α0) = ω and f(αi) = ωi for all i ∈ [n]. Each party Pi holds ωi as his share.
In our work, we use κ as the security parameter and assume that the size of F is 2Θ(κ). Then each field
element is of length Θ(κ) bits.

An ACSS protocol satisfies the following two properties:

1. When the dealer is honest, the protocol must terminate. All the honest parties will eventually receive
their shares of the degree-t Shamir secret sharing.

2. When the dealer is corrupted, either all honest parties terminate, or no honest party terminates. If all
honest parties terminate, then the shares of honest parties lie on a valid degree-t polynomial.

Our goal is to construct an ACSS protocol with optimal resilience n = 3t+ 1 and linear communication
complexity O(nκ) bits per sharing.

2.1 Overview of Previous Approaches
The previous works on optimal-resilient statistically secure ACSS [CP23, PCR09] provide ACSS through a
path AICP → AVSS1 → ACSS. We will introduce each notion below. Here X → Y denotes that X is used
as a sub-protocol in Y .

Asynchronous Information-Checking Protocol (AICP). The notion of AICP was first introduced
in [PCR09] and can be considered as a signature scheme among a dealer D, an intermediary I, and a
receiver R. It allows D to send a message to I with a signature on this message. When I passes the message
and signature to R, R can use the signature to check whether this message is from D. The amortized
communication complexity of AICP in [PCR09] is O(1) bits per bit of message, which is essentially at the
same cost as sending this message directly.

From AICP to Asynchronous Verifiable Secret Sharing (AVSS). AVSS enables a dealer to share
a secret among all parties which guarantees the success of the reconstruction of the secret. However, unlike
ACSS, AVSS does not guarantee that all (honest) parties eventually obtain their shares (if terminated).
Instead, in the worst case, only n− t parties can obtain their shares from an AVSS protocol.

In [CP23], an AVSS protocol is constructed as follows. Suppose the dealer D wants to share a degree-t
Shamir sharing [s]t. D first encodes [s]t into a random degree-(t, t) bivariate polynomials F (x, y) such that
the underlying polynomial of [s]t is stored at F (x, α0). The goal is to let each party Pi learn fi(x) = F (x, αi)
and gi(y) = F (αi, y). Note that if each party takes gi(α0), all parties together hold [s]t.

At a high level, the sharing of F (x, y) is achieved by the following three steps.

• Step 1: Committing Bivariate Polynomial via Column Polynomials. D sends the column
polynomial gi(y) = F (αi, y) to each Pi and receives Pi’s signature on gi = (gi(α1), . . . , gi(αn)) via
AICP. Upon receiving 2t+ 1 parties’ signatures, D broadcasts the set M of these parties.

1In [PCR09], the authors add an intermediate protocol called AWSS between AICP and AVSS. In [CP23], AVSS is called
AISS.
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Note that M contains at least t + 1 honest parties. The column polynomials of the first t + 1 honest
parties in M fully determine a bivariate polynomial F , which is viewed as the bivariate polynomial shared
by D. However, when M contains more than t+1 honest parties, the column polynomials of the remaining
honest parties may not lie on F .

• Step 2: Reconstructing Row Polynomials. Then, D sends fj(x) to Pj . In addition, for each
Pi ∈ M, D serves as the intermediary of AICP to send the signature of gi(αj) = fj(αi) to Pj . Now
each Pj verifies that for all Pi ∈ M, fj(αi) indeed comes from Pi. If true, Pj accepts fj(x) and
broadcasts a flag OKPj

. After 2t+ 1 parties accept their row polynomials, the sharing phase finishes.

Let W denote the set of parties that accept their row polynomials. By the property of AICP, each honest
Pi ∈ M and each honest Pj ∈ W satisfy that gi(αj) = fj(αi). In [CP23], the authors prove that in this case,
both the column polynomials of honest parties in M and row polynomials of honest parties in W lie on the
bivariate polynomial F determined in the first step.

• Step 3: Reconstruction. To reconstruct F (x, y) to a party Pr, each party Pj in W sends fj(x)
together with the signatures from parties in M. Pr accepts fj(x) if the signatures from parties in M
are all valid. Since W contains at least t + 1 honest parties, Pr will eventually receive at least t + 1
row polynomials and reconstruct the whole bivariate polynomial F .

Here following the same argument in [CP23], we can show that if Pr accepts fj(x), then fj(x) must lie
on the bivariate polynomial F . Thus, Pr will eventually reconstruct the correct bivariate polynomial F .

One subtlety in the above approach is that AICP is not transferable. I.e., the signature is tied with the
intermediary I and can only be used by I to convince a receiver R. In particular, the receiver R cannot use
the same signature to convince a new receiver R′. However, in the above approach, the same set of signatures
is used to first let D convince each Pj ∈ W about fj(x) in Step 2, and then let Pj ∈ W convince Pr about
fj(x) in Step 3, which cannot be achieved by AICP. The work [CP23] manages to resolve this issue without
introducing additional overhead in communication.

We note that in such an AVSS protocol, the dealer D needs to share a secret through a degree-(t, t)
bivariate polynomial, which requires communication of at least O(n2κ) bits.

From AVSS to ACSS. However, an AVSS protocol is not enough since in the worst case t honest parties
may not get their shares, while an ACSS protocol requires all honest parties to get their shares. Patra,
Choudhury, and Rangan [PCR09] provide a framework to construct ACSS by sharing and reconstructing
each party’s share via AVSS. Since the AVSS protocol needs to be executed n times, one time for each party,
and each time requires communication of O(n2κ) bits, the ACSS protocol has an amortized communication
complexity of at least O(n3κ) bits, as Choudhury and Patra reach in [CP23].

2.2 Our Solution to Achieve Linear Communication
In this part, we show how to build ACSS with linear communication complexity. At a nutshell, we manage to
adapt the approach in [CP23] by using degree-(t, 2t) bivariate polynomials, shaving the factor of n overhead
in AVSS. Then we show how to directly upgrade from AVSS to ACSS, avoiding the factor of n overhead
mentioned above. We elaborate how each step is achieved below.

An Initial Attempt. Following the previous works, we let the dealer share degree-t Shamir sharings
through bivariate polynomials. To reduce the amortized communication complexity, our starting point is to
use degree-(t, 2t) bivariate polynomials. Since each degree-(t, 2t) bivariate polynomial can be used to store
t + 1 = O(n) degree-t Shamir sharings, hopefully, we can reduce the amortized communication complexity
per sharing by O(n) in this way.

To this end, we try to follow the AVSS protocol in [CP23].
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1. D sends to each Pi the degree-2t column polynomial gi(y) = F (αi, y) and receives the signature on gi
from each Pi via AICP. After receiving signatures from 2t+1 parties, D broadcasts the set M of these
parties.

2. D sends the degree-t row polynomial fj(x) = F (x, αj) to Pj together with the signature on fj(αi) for
each Pi ∈ M. Then each party Pj accepts fj(x) if it is of degree t and all signatures are valid.

Let W be the set of parties that accept their row polynomials. As in [CP23], we can only expect |W| = 2t+1.
At this moment, each honest party Pi ∈ M and each honest party Pj ∈ W satisfy that gi(αj) = fj(αi).
However, unlike [CP23], we cannot prove that the column polynomials of honest parties in M and the row
polynomials of honest parties in W lie on a valid degree-(t, 2t) bivariate polynomial due to the larger degree.
What makes it even worse is that we cannot reconstruct this bivariate polynomial in the same way as [CP23]
since we need 2t+1 correct row polynomials to reconstruct the whole bivariate polynomial while at the end
of Step 2, only parties in W obtain their row polynomials which may only include t + 1 honest parties. In
fact, if we want to follow the same way as [CP23], we have to ensure that all (honest) parties can receive
their row polynomials! Unfortunately, this is impossible when using techniques in [CP23] since recovering
the row polynomial to a party requires the help of the dealer. When the dealer is corrupted, he may choose
to not send row polynomials to some honest parties.

Our Solution. Can we reconstruct the row polynomial without the help of the dealer? We note that
parties in M have received their column polynomials. To let a party Pj learn fj(x), we may ask each party
Pi in M to send fj(αi) = gi(αj) to Pj . Since there are at least t + 1 honest parties in M, Pj will receive
enough number of correct shares to reconstruct fj(x). However, the issue is that Pj may also receive up to t
incorrect shares. Pj can’t reconstruct fj(x) when t out of 2t+1 shares are incorrect unless Pj can distinguish
correct shares and incorrect shares.

Our idea is to establish a way to allow every party Pj to verify the shares from Pi. In this way, Pj will
only use correct shares to reconstruct fj(x). To this end, our idea is to make use of authentication tags
introduced in [BFO12]. At a high level, for a vector of values m ∈ Fk held by Pi, Pj will prepare a pair of
authentication keys (µ, ν) where µ ∈ Fk and ν ∈ F. The authentication tag is defined by τ = µ · m + ν,
where · denotes the inner-product operation, and we let Pi obtain τ . Later on, when Pi sends m to Pj , Pi

also sends τ to Pj so that Pj can verify the correctness of m. Note that when µ, ν are uniformly random,
the probability that Pi can find a different (m′, τ ′) such that τ ′ = µ ·m′ + ν is negligible.

So far the key size is linear in the message length. To reduce the key size, the authors in [BFO12] observe
that µ can be reused to authenticate multiple batches of messages as long as each time we use a uniformly
random ν. Thus, µ is first randomly sampled and used as the long-term key. For each batch of messages
m, a random ν is sampled and the tag of m is computed by τ = µ ·m+ ν. In this way to authenticate L
messages, the key size is reduced to k + L/k, which is sublinear in the message length.

Given the above, our idea is to compute authentication tags for every pair of parties (Pi, Pj) where
Pi ∈ M. With more details, we will compute authentication tags for Pi’s column polynomial gi(y) under
Pj ’s authentication keys. Later on, when reconstructing Pj ’s row polynomial fj(x), each party Pi ∈ M sends
gi(y) together with the authentication tags to Pj . Then Pj only uses shares with correct authentication tags
to reconstruct fj(x). We will elaborate on how to compute authentication tags in the next subsection. In
the following, we show that with the help of authentication tags, we can allow each (honest) party to obtain
both his row and column polynomials with sublinear communication overhead. As a result, we manage to
directly upgrade from AVSS to ACSS, avoiding the other O(n) overhead in [CP23].

Reconstructing Row Polynomials. A small issue in the above construction is that when reconstructing
Pj ’s row polynomial, Pj actually learns gi(y) for all Pi ∈ M, which allows him to recover not only fj(x),
but the whole bivariate polynomial as well.

Can we only let Pj obtain his shares rather than reconstructing the whole bivariate polynomial to him?
The issue is that the authentication tags only allow Pj to verify Pi’s whole column polynomial gi(y) while
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what Pj should learn is just a single point gi(αj). We note that the authentication tags are linearly homo-
morphic: For m,m′, if Pi holds τ = µ ·m+ ν and τ ′ = µ ·m′ + ν′, then τ + τ ′ is an authentication tag of
m+m′ under the keys (µ, ν + ν′). Utilizing this property, our solution is as follows.

1. Suppose D distributes L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y). We ask D to distribute
another random bivariate polynomial F (0)(x, y). Following the above steps, Pi holds g(0)i (y), . . . , g

(L)
i (y)

together with authentication tags τ (0), . . . , τ (L).

2. Pi sends g
(0)
i (αj), . . . , g

(L)
i (αj) to Pj , which are values Pj should learn.

3. To check the correctness of the values received from Pi, Pj samples a random challenge r and computes
gi(αj) = g

(0)
i (αj) + r · g(1)i (αj) + · · ·+ rL · g(L)

i (αj). Then Pj sends r to Pi.

4. Pi computes gi(y) = g
(0)
i (y) + r · g(1)i (y) + · · · + rL · g(L)

i (y) and the authentication tag of gi(y),
τ = τ (0) + r · τ (1) + · · ·+ rL · τ (L). Then Pi sends gi(y) and τ to Pj .

5. Pj verifies the correctness of gi(y) and τ , and checks whether gi(αj) computed by himself lies on gi(y).
If the check passes, Pj accepts the values from Pi.

The intuition is that if some of g
(0)
i (αj), . . . , g

(L)
i (αj) are incorrect, then with overwhelming probability,

gi(αj) computed by Pj does not lie on gi(y). Since Pi needs to provide the authentication tag associated
with gi(y), Pi cannot lie about gi(y). As a result, with overwhelming probability, the check fails and Pj rejects
Pi’s values. As for secrecy, since F (0)(x, y) is used as a random mask, Pj only learns g

(1)
i (αj), . . . , g

(L)
i (αj).

Now Pj runs the above steps to request his shares from each party in M. Each time, we will consume
a random bivariate polynomial F (0)(x, y) as the random mask (so we will consume O(n) random bivariate
polynomials to reconstruct Pj ’s row polynomials). When Pi and Pj are both honest, Pj will eventually
receive the correct shares from Pi. Thus, Pj will eventually receive enough number of correct shares and
reconstruct his row polynomials f

(1)
j (x), . . . , f

(L)
j (x).

Towards ACSS. So far, with the help of authentication tags, we have shown that each (honest) party
can eventually obtain his row polynomial. However, to achieve ACSS, we need to let each (honest) party Pj

obtain his column polynomial gj(y).
We can ask each party Pi sends fi(αj) to Pj . Since all honest parties will eventually send shares to Pj ,

Pj will receive at least 2t + 1 correct shares which allow him to reconstruct gj(y). However, similarly to
the reconstruction of row polynomials above, Pj may also receive up to t incorrect shares from corrupted
parties. To be able to reconstruct gi(y) which is of degree 2t, Pj needs to be able to distinguish correct shares
and incorrect shares. We again rely on authentication tags to achieve this task. However, the difference is
that this time Pi does not hold the authentication tag of fi(x). We observe that parties in M can help Pj

reconstruct the whole bivariate polynomial, thus allowing Pj to check the correctness of shares received from
Pi.

1. Suppose D distributes L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y). We ask D to distribute an-
other random bivariate polynomial F (0)(x, y). Following the above steps, Pi holds f (0)

i (x), . . . , f
(L)
i (x).

2. Pi sends f
(0)
i (αj), . . . , f

(L)
i (αj) to Pj , which are values Pj should learn.

3. To check the correctness of the values received from Pi, Pj samples a random challenge r and computes
fi(αj) = f

(0)
i (αj) + r · f (1)

i (αj) + · · ·+ rL · f (L)
i (αj). Then Pj broadcasts r to all parties.

4. Each party Pk ∈ M computes gk(y) = g
(0)
k (y) + r · g(1)k (y) + · · · + rL · g(L)

k (y) and the authentication
tag of gk(y), denoted by τk. Then Pk sends gk(y) and τk to Pj .
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5. Pj verifies the correctness of each gk(y) and τk, and uses the first t+1 correct polynomials to reconstruct
the bivariate polynomial F (x, y). Then Pj checks whether fi(αj) computed by himself lies on F (x, y).
If the check passes, Pj accepts the values from Pi.

Following the same intuition, with overwhelming probability, incorrect shares from Pi will be rejected by Pj .
Due to the random mask F (0)(x, y), Pj only learns f

(1)
i (αj), . . . , f

(L)
i (αj).

Now Pj runs the above steps to request his shares from each party. Each time, we will consume a random
bivariate polynomial F (0)(x, y) as the random mask (so we will consume O(n) random bivariate polynomials
to reconstruct Pj ’s column polynomials). When Pi and Pj are both honest, Pj will eventually receive the
correct shares from Pi. Thus, Pj will eventually receive enough number of correct shares and reconstruct his
column polynomials g

(1)
j (y), . . . , g

(L)
j (y).

Note that when reconstructing row polynomials and column polynomials, we only send shares that Pj

should learn together with verification whose communication cost is sublinear in the number of bivariate
polynomials shared by D. Thus, we manage to upgrade from AVSS to ACSS with sublinear overhead,
avoiding the other O(n) factor in [CP23].

2.3 Preparing Authentication Tags
In this section, we show how to compute authentication tags for every pair of parties (Pi, Pj).

Recall that in the beginning, we follow [CP23] and do the following:

• D sends to each Pi the degree-2t column polynomial gi(y) = F (αi, y) and receives the signature on gi
from each Pi via AICP. After receiving signatures from 2t+1 parties, D broadcasts the set M of these
2t+ 1 parties.

As [CP23], the column polynomials of the first t+1 honest parties in M fully determine a bivariate polynomial
F (x, y). We view this bivariate polynomial as the one D distributes. When D is corrupted, however, the
column polynomials of other honest parties may not lie on F .

Verifying Column Polynomials. Our first step is to let each (honest) party Pj check whether the column
polynomial gj(y) he received lies on F (x, y).

We observe that with the help of the dealer D, a party Pj can verifiably reconstruct the bivariate
polynomial F (x, y): D simply sends F (x, y) together with the signatures from Pi for all Pi ∈ M to Pj , and
Pj accepts F (x, y) if all signatures are valid. Note that if all signatures are valid, the column polynomials
of the first t + 1 honest parties in M agree with F (x, y) sent by D. In this case, F (x, y) must be the one
determined by the column polynomials of the first t+ 1 honest parties in M.

We note that Pj ’s column polynomial can be verified if we let D reconstruct F (x, y) to him. However,
this would reveal the whole bivariate polynomial to Pj as well. Our idea is to follow a similar idea to that in
Section 2.2 by letting Pj check a random linear combination of his column polynomials of a batch of bivariate
polynomials distributed by D.

1. Suppose D distributes L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y). We ask D to distribute
another random bivariate polynomial F (0)(x, y). Following the above steps, D obtains signatures
associated with each bivariate polynomial from parties in M.

2. After Pj receives g
(0)
j (y), . . . , g

(L)
j (y) from D, Pj samples a random challenge r and computes gj(y) =

g
(0)
j (y) + r · g(1)j (y) + · · ·+ rL · g(L)

j (y). Then Pj sends r to D.

3. D computes F (x, y) = F (0)(x, y) + r · F (1)(x, y) + · · · + rL · F (L)(x, y). To allow Pj verifies F (x, y),
our hope is that D can compute the signatures associated with F (x, y) from the signatures associated
with F (0)(x, y), . . . , F (L)(x, y). Then D sends F (x, y) as well as the signatures to Pj .

4. Pj verifies the signatures and checks whether gj(y) lies on F (x, y). If the check passes, Pj accepts his
column polynomials.
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We note that Step 3 cannot be achieved by standard signature schemes since it essentially asks the dealer
to forge signatures for messages that are not signed by the signer. However, in AICP, the verification of
a signature is done in a distributed way. In our work, we extend AICP to support linear operations over
signatures, making Step 3 possible. Another limitation of AICP is that the signature can only be verified
by a single receiver. In our case, we need each party Pj to check his column polynomial. This requires the
underlying AICP to support verification by multiple receivers. We refer the readers to Section 4 for our
extension of AICP (which we refer to as APICP) that supports both (1) linear operations over signatures
and (2) verification by multiple receivers.

In summary, after D distributes the bivariate polynomials to all parties, each party Pj runs the above
steps to check his column polynomials. This ensures that the column polynomials of all honest parties that
accept their checks lie on valid degree-(t, 2t) bivariate polynomials. In the following, only parties with correct
column polynomials participate. Note that if D is honest, all honest parties will accept the checks.

Computing Authentication Tags. For every pair of parties (Pi, Pj), we want to compute authentication
tags for the column polynomial gi(y) under Pj ’s authentication keys. We first review how this is achieved
in the synchronous setting [BFO12].

At a high level, the idea is to first secret-share the vector gi = (gi(α1), . . . , gi(αn)) by [gi]t, which is a
vector of n degree-t Shamir sharings, and secret-share the authentication keys (µ, ν) by [µ]t, [ν]2t respectively.
Here for simplicity, we assume that µ is of length n. Then all parties locally compute

[τ ]2t = [gi]t · [µ]t + [ν]2t,

and send their shares to Pi to let Pi reconstruct the tag τ . The authors in [BFO12] observed that the vector
gi has already been shared by (g1, g2, . . . , gn), where gk = (gk(α1), . . . , gk(αn)) is known by Pk, except that
the secrets are stored at position αi rather than α0. To utilize this observation, the authors in [BFO12]
introduced the notion of twisted secret sharings. A degree-t twisted secret sharing [x]it is a degree-t Shamir
sharing whose secret is stored at position αi and the i-th share is at position α0

2. Effectively, we switch
positions of the secret and the i-th share. Then all parties hold [gi]

i
t except that Pi does not know his share,

which should be g0. Now Pj shares his authentication keys by twisted secret sharings [µ]it, [ν]
i
2t such that

the shares of [µ]it of Pi are 0. In this way, even Pi does not know his share of [gi]it, he can still compute his
share of [τ ]i2t by following

[τ ]i2t = [gi]
i
t · [µ]it + [ν]i2t

since Pi’s shares of [gi]it should be multiplied by his shares of [µ]it, which are all 0. In this way, the commu-
nication cost of computing τ is only (1) sharing the authentication keys by Pj plus (2) reconstructing τ to
Pi. Recall that the long-term key µ can be reused. For each batch of messages, Pj only needs to share the
short-term key ν. As a result, the communication cost of computing τ is sublinear in the message length.

Now we try to follow the above approach in the asynchronous setting. The first issue is that in the asyn-
chronous setting, we cannot expect that each party Pj participates in the computation of the authentication
tags. To address this issue, our solution is to let all parties prepare twisted secret sharings of authentication
keys for Pj . Recall that a degree-t twisted secret sharing [x]it is just a standard degree-t Shamir sharing
except that the secret is stored at position αi while the i-th share is at position α0.

• For [µ]it, they are random degree-t Shamir sharings with the i-th shares to be 0. In Section 3.4 (see
F0

RandShare), we show that such random degree-t Shamir sharings can be efficiently prepared in the
FACSS-hybrid model.

• For [ν]i2t, it is just a random degree-2t Shamir sharing. The authors in [EGPS22] observed that the
preparation of a random degree-2t Shamir sharing can be reduced to preparing t+ 1 random degree-t
Shamir sharings. Then all parties can obtain a random degree-2t Shamir sharing via local computation.
We refer the readers to Section 5 (see ΠAuth) for more details. We note that random degree-t Shamir
sharings can be efficiently prepared in the FACSS-hybrid model as well.

2In [BFO12], the authors require that the share of Pi is always 0.
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Recall that the size of the authentication keys is sublinear in the message length. Thus, we could afford
to use the ACSS protocol in [CP23] to instantiate FACSS for preparing [µ]it and [ν]i2t. Note that a degree-t
Shamir sharing can be robustly reconstructed. To let Pj learn his authentication keys, all parties simply
send their shares of degree-t Shamir sharings to Pj .

The second issue is that, when reconstructing τ from [τ ]i2t, Pi receives not only 2t+1 correct shares from
honest parties, but also up to t incorrect shares from corrupted parties. To be able to reconstruct the correct
τ , Pi needs to distinguish correct shares from incorrect shares. To be more concrete, for each party Pk, after
Pk computes his share of [τ ]i2t and sends it to Pi, Pi needs to check whether the share from Pk is correct or
not. Our solution consists of two steps:

• We first consider a simple scenario where we do not need to protect the secrecy of the bivariate
polynomial F (x, y). In this case, we ask D to reconstruct F (x, y) to all parties. Now our idea is to let
all parties compute a degree-t Shamir sharing of the share of Pk. Then Pi can robustly reconstruct the
share of Pk and check whether it matches the value received from Pk.

• Then we reduce the original problem to the simple scenario above. At a high level, we let Pi check a
random linear combination of the shares from Pk for a batch of bivariate polynomials shared by D. By
adding a random bivariate polynomial as a random mask, it is safe to reveal the bivariate polynomial
after random linear combinations to all parties.

Step 1. For the first step, recall that the share of Pk is computed by following [τ ]i2t = [gi]
i
t · [µ]it + [ν]i2t.

Our goal is to let all parties compute a degree-t Shamir sharing of the k-th share of [τ ]i2t. This problem can
be reduced to compute

• a degree-t Shamir sharing of the k-th share of [gi]it · [µ]it,

• and a degree-t Shamir sharing of the k-th share of [ν]i2t.

For the k-th share of [gi]it · [µ]it, Pk will multiply gk, which is his share of [gi]it, with the k-th share of [µ]it.
We note that if all parties compute gk · [µ]it, the result is a degree-t Shamir sharing such that the k-th share
is equal to the k-th share of [gi]it · [µ]it. To obtain a degree-t Shamir sharing of the k-th share of [ν]i2t, we rely
on the observation in [EGPS22] again. Recall that [ν]i2t is prepared by first preparing t+1 random degree-t
Shamir sharings and then computing [ν]i2t via local computation. In particular, each party just computes a
linear combination of his shares. Now if all parties use the same coefficients as those used by Pk, they can
obtain a degree-t Shamir sharing whose k-th share is equal to the k-th share of [ν]i2t. In summary, when
we do not need to protect the secrecy of F (x, y), we can let D reconstruct F (x, y) to all parties. Then all
parties can compute a degree-t Shamir sharing of the k-th share of [τ ]i2t. Then Pi can robustly reconstruct
the share of Pk and check whether it matches the value received from Pk.

An omitted security issue above is that directly reconstructing such a degree-t Shamir sharing of Pk’s
share to Pi may leak information about the authentication keys of Pj . In our construction, we will add a
random mask, which is a random degree-t Shamir sharing with the k-th share to be 0.

Step 2. Now for the general case, suppose D distributes L bivariate polynomials F (1)(x, y), . . . , F (L)(x, y).
We ask D to distribute another random bivariate polynomial F (0)(x, y) as a random mask. Then all par-
ties hold [g

(0)
i ]it, . . . , [g

(L)
i ]it, the long-term key [µ]it, and the short-term keys [ν(0)]i2t, . . . , [ν

(L)]i2t. All parties
locally compute [τ (0)]i2t, . . . , [τ

(L)]i2t and each party Pk sends his shares to Pi.
To check Pk’s shares, Pi samples a random challenge r and broadcasts it to all parties. Let

F (x, y) = F (0)(x, y) + r · F (1)(x, y) + · · ·+ rL · F (L)(x, y),

[gi]
i
t = [g

(0)
i ]it + r · [g(1)i ]it + · · ·+ rL · [g(L)

i ]it,

[ν]i2t = [ν(0)]i2t + r · [ν(1)]i2t + · · ·+ rL · [ν(L)]i2t,

[τ ]i2t = [τ (0)]i2t + r · [τ (1)]i2t + · · ·+ rL · [τ (L)]i2t.

Then the problem becomes to check Pk’s share of [τ ]i2t. Due to the random bivariate polynomial F (0)(x, y),
we do not need to protect the secrecy of F (x, y). Thus, the problem is reduced to the simple scenario
considered in Step 1.
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Summary. In summary, the above approach allows all parties to prepare the authentication keys for Pj

and let Pi obtain the authentication tags of his column polynomials. We will do these steps for every pair
of parties (Pi, Pj). When Pi accepts his column polynomials and obtains authentication tags for all other
parties P1, . . . , Pn, Pi broadcasts Tagi. The sharing phase finishes after 2t+ 1 parties broadcast Tagi.

2.4 Brief Outline of Our ACSS Protocol
We give a brief outline of our ACSS protocol. We divide the whole protocol into four phases: the sharing
phase, the verification phase, the authentication phase, and the completion phase.

Sharing Phase. During the sharing phase, the dealer D distributes the shares to all parties. More con-
cretely, D encodes each batch of t+1 degree-t Shamir secret sharings into a degree-(t, 2t) bivariate polynomial.
Then we follow [CP23] to let D distribute the degree-2t column polynomials to all parties and wait to receive
signatures on these column polynomials (through our extension of AICP) from all parties. Upon receiving
2t + 1 parties’ signatures, D creates a set M containing these parties and broadcasts it. The bivariate
polynomials shared by D are fully determined by the column polynomials of the first t+ 1 honest parties in
M.

Verification Phase. During the verification phase, each party verifies whether his column polynomials are
consistent with the bivariate polynomials determined by the first t + 1 honest parties in M. We refer the
readers to Section 2.3 for the overview of the verification.

Authentication Phase. During the authentication phase, for every pair of parties (Pi, Pj), all parties help
prepare the authentication keys for Pj and compute the authentication tags for Pi. We refer the readers to
Section 2.3 for the overview of the computation of tags.

If an honest party Pi accepts his column polynomials and obtains authentication tags for all other parties
P1, . . . , Pn, Pi broadcasts a flag Tagi. Then D creates a set W containing parties whose Tagi are received.
Finally, D broadcasts W when |W| = 2t+ 1 for public verification.

Completion Phase. During the completion phase, with the help of authentication tags, each party recon-
structs his row polynomials first and then his column polynomials to get his shares. We refer the readers to
Section 2.2 for the overview of this step.

3 Preliminaries
Notation. For any N ∈ Z+, we denote [N ] = {1, . . . , N}. For a, b ∈ Z with a < b, we denote [a, b] =
{a, a+1, . . . , b}. We denote the security parameter by κ. F is used to denote a finite field where |F| = 2Θ(κ).
We denote the inner product of two vectors u,v ∈ FL by u · v.

We assume that n = poly(κ), where poly(κ) denotes a polynomial function of κ. We also use negl(κ) to
denote a negligible function to κ, which means the function is smaller than any 1/poly(κ) for sufficiently large
κ. All the polynomials we mention are over F. A degree-d polynomial is of the form f(x) = a0 + · · ·+ adx

d,
where each ai ∈ F. A degree-(ℓ,m) bivariate polynomial is of the form F (x, y) =

∑i=ℓ,j=m
i,j=0 rijx

iyj , where
each rij ∈ F.

3.1 The Security Model.
In our work, we follow the security model in [CP23, Coh16].

The UC Framework. We use the UC framework introduced by Canetti [Can01] to define the security of
our protocols, based on the real and ideal world paradigm [Can00]. Informally, we consider a protocol Π to
be secure if its execution in the real world can also be done in the ideal world.

Real World. In the real world, there exists a set of n parties P1, . . . , Pn, an adversary A, and an environment
Z. The environment provides inputs to the honest parties, receives their outputs, and communicates with
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the adversary A. We consider A to be fully-malicious. The adversary can corrupt up to t parties and
completely control the behavior of the corrupted parties, where t < n/3. The parties not controlled by A
are called honest. For simplicity, we consider a static adversary who selects the set of corrupted parties at
the beginning of the protocol.

The parties and the adversary are modeled as interactive Turing machines (ITM), initialized with the
random coins and their possible inputs. The protocol proceeds by a sequence of activations, where at each
point only a single ITM is active. When a party is activated, it can perform local computation and output
or send messages to other parties. And if the adversary is activated, it can send messages on behalf of the
corrupted parties.

Parties have access to a network of point-to-point asynchronous and secure channels. Asynchronous
channels guarantee eventual delivery [CR93], meaning that messages sent are eventually delivered. To model
the worst-case scenario, the adversary is given the provision to decide the arrival time of each message
exchanged between the parties. The adversary cannot drop, change, or inject messages from honest parties.
Such channels have been modelized in UC using the eventual-delivery secure message-transmission ideal
functionality, for example in [KMTZ13, CGHZ16]. The protocol completes once Z outputs a single bit.

We denote by REALΠ,A,Z(κ, z, r̄) the random variable containing the output of Z with input z, se-
curity parameter κ, and interacting with the parties P1, . . . , Pn and the adversary A with random tapes
r̄ = (r1, . . . , rn, rA, rZ). We denote the random variable REALΠ,A,Z(κ, z, r̄) for uniformly random r̄ by
REALΠ,A,Z(κ, z).

Ideal World. In the ideal world, there exists n dummy parties, a simulator/ideal adversary S, an envi-
ronment Z and the trusted party/ideal functionality F . The environment gives inputs to the honest parties,
receives outputs, and also interacts with the ideal adversary. As before, the computation finishes once Z
outputs a single bit.

The ideal functionality F models the desired behavior of the computation. F only receives inputs from
the parties and S and provides outputs to them. S cannot see or delay the communication between the
honest parties and F . In order to model the fact that the adversary can decide when each honest party
learns the output, we follow [KMTZ13] and model time via activations. We use a request-based delay output
to model the output delivery from F to the honest parties, which is used in [Coh16, CFG+23]. In this model,
the functionality F doesn’t directly send the output to the honest parties. Instead, honest parties need to
send a “request” to the functionality to get the output. Moreover, the adversary can instruct F to delay
the output for each party by ignoring the corresponding requests. The output can only be delayed for a
polynomial number of times, which ensures that the output will eventually be delivered if an honest party
sends sufficiently many requests.

We denote by IDEALF,S,Z(κ, z, r̄) the random variable containing the output of Z with input z, security
parameter κ, and interacting with the parties P1, . . . , Pn and the adversary S with random tapes r̄ = (rS , rZ).
We denote the random variable IDEALF,S,Z(κ, z, r̄) for uniformly random r̄ by IDEALF,S,Z(κ, z).

Perfect and Statistical Security. We say Π t-securely realizes F if for any adversary A there exists a
simulator S in the ideal model such that for any adversary controlling up to t parties and any environment
Z, it holds that:

REALΠ,A,Z(κ, z) ≡ IDEALF,S,Z(κ, z).

We say Π t-securely realizes F with statistical security if for any adversary A there exists a simulator S
in the ideal model such that for any adversary controlling up to t parties and any environment Z, it holds
that:

REALΠ,A,Z(κ, z) ≡ϵ IDEALF,S,Z(κ, z),

which means the output distributions of the real-world execution and the ideal-world execution are statisti-
cally close. I.e., the total variation distance between the two distributions is no more than ϵ = negl(κ).

The Hybrid Model. In a G-hybrid model, a protocol execution proceeds as in the real world except that
the parties have access to an ideal functionality G for some specific task. During the protocol execution, the
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parties can communicate with G as in the ideal world. The UC framework guarantees that an ideal func-
tionality in a hybrid model can be replaced with a protocol that UC-securely realizes G. This is guaranteed
by the following composition theorem from [Can00, Can01].

Theorem 4. ([Can00, Can01]) Let Π be a protocol that UC-securely realizes a functionality F in the G-
hybrid model and let ρ be a protocol that UC-securely realizes G. Moreover, let Πρ denote the protocol that is
obtained from Π by replacing every ideal call to G with the protocol ρ. Then protocol Πρ UC-securely realizes
F in the model where the parties do not have access to the ideal functionality G.

Hybrid Arguments. We use hybrid arguments to prove that the distributions of REALΠ,A,Z(κ, z) and
IDEALF,S,Z(κ, z) are identical (or statistically close). In each hybrid, we use output distribution to de-
note the distribution of the random variable containing what Z outputs on input z and uniformly random
r̄. We construct a group of hybrids between the real-world scenario and the ideal-world scenario. If the
output distributions of each two adjacent hybrids are identical (or statistically close), the distributions of
REALΠ,A,Z(κ, z) and IDEALF,S,Z(κ, z) are also identical (or statistically close).

3.2 Agreement Primitives
In our constructions of protocols, we need the agree on a common set (ACS) primitive to let the parties
agree on a set of at least n− t parties that satisfies a certain property Q (a so-called ACS property). Ben-
Or, Kelmer, and Rabin provide an efficient ACS protocol ΠQ

ACS in [BKR94], which achieves communication
complexity of O(n3).

We also need an A-Cast protocol to enable a party to broadcast a message in the asynchronous network.
From [Bra84], broadcasting an ℓ-bit message requires O(n2ℓ)-bit communication.

For completeness, additional definitions of the agreement primitives are provided in Appendix A.

3.3 Secret Sharing
For fixed (α0, α1, . . . , αn) ∈ Fn+1, we introduce the secret sharing schemes of a value ω ∈ F below.

• A degree-t (or 2t) Shamir sharing [Sha79] of ω ∈ F with respect to (α0, α1, . . . , αn) ∈ Fn+1 consists
of n shares ω1, . . . , ωn ∈ F of the following form: there exists a sharing polynomial f(X) ∈ F[X] of
degree at most t (or 2t) such that ω = f(α0) and ωj = f(αj) for j ∈ {1, . . . , n}. Furthermore, share
ωj is held by player Pj for j ∈ {1, . . . , n}. We denote such a sharing as [ω]t (or [ω]2t) with respect to
(α0, α1, . . . , αn).

• A degree-t (or 2t) twisted sharing [BFO12] of ω ∈ F with respect to Pi ∈ P is [ω]t (or [ω]2t) with
respect to (αi, α1, . . . , αi−1, α0, αi+1, . . . , αn), i.e. secret is now f(αi), Pi’s share is f(α0). We denote
this sharing by [ω]it (or [ω]i2t).

• We say a secret sharing [ω]t (or [ω]it) is a t-sharing if the sharing polynomial is of degree-t. A t-sharing
is called a complete t-sharing if every honest party holds his share of ω and all the parties’ shares of ω
lie on a degree-t polynomial.

• We denote a vector of degree-t sharings ([ω(1)]t, . . . , [ω
(m)]t) as [ω]t, where ω = (ω(1), . . . , ω(m)).

• For fixed (α−t, . . . , α−1), a degree-t packed secret sharing of (ω(0), . . . , ω(t)) ∈ Ft+1 with respect to
Pi ∈ P consists of n shares ω1, . . . , ωn ∈ F of the following form: there exists a sharing polynomial
f(X) ∈ F[X] of degree at most t such that ω(j) = f(α−j) for j ∈ [t], ω(0) = f(αi), ωi = f(α0)
and ωj = f(αj) for j ∈ [n]\{i}. Furthermore, share ωj is held by player Pj for j ∈ [n]. It’s easy
to see that ω uniquely determines the polynomial f(X), we denote such a sharing as [[ω]]it, where
ω = (ω(0), . . . , ω(t)).
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3.4 Sub-protocols
In this section, we introduce the sub-protocols we need in constructing our ACSS protocol. An ACSS
protocol should satisfy that, if the dealer is honest, the protocol must terminate and distribute a complete
t-sharing to all the honest parties. When the dealer is corrupted, once an honest party terminates the
protocol, each honest party must terminate the protocol and get his share of a t-sharing eventually. We give
the functionality of ACSS in Fig. 1.

For public value (α0, . . . , αn), upon receiving (Dealer,ACSS, {q1(·), . . . , qN (·)}) from D ∈ P, do the following:
• If all the polynomials q1(·), . . . , qN (·) are degree-t polynomials, the trusted party sends an request-based

delayed output {q1(αi), . . . , qN (αi)} to each party Pi ∈ P.
• If any of the {q1(·), . . . , qN (·)} is not a degree-t polynomial, the trusted party does nothing.

Functionality FACSS

Figure 1: Ideal functionality for asynchronous complete secret sharing

The state-of-the-art protocol that securely realizes FACSS is given in [CP23], with an amortized com-
munication cost of O(n3κ) to generate per sharing. Since we need to invoke FACSS in constructing our
sub-protocols, we state their result in Lemma 1.

Lemma 1. ([CP23]) There exists a protocol that t-securely realizes FACSS for any N ∈ Z+ with statistical
security and O(N · n3κ+ n4κ2 + n5)-bit communication.

Note that in an ACSS protocol, all the parties agree on α0, . . . , αn and generate sharing with respect to
these points. However, in sub-protocols, we may need to generate sharing with respect to different sets of
field elements, so we use β0, . . . , βn instead of α0, . . . , αn in constructing sub-protocols in this section.

Private Reconstruction. Given some complete t-sharings, all parties can reconstruct the secrets to a
single party privately through the online error-correction (OEC) process [Can96]. Besides, the OEC process
enables a party to reconstruct the whole sharings, which is useful in our construction of the remaining
protocols. We give the functionality of private reconstruction in Fig. 2. For completeness, we give the
construction and the security proof of ΠprivRec that realizes FprivRec in Appendix B.1. The communication
complexity of the protocol is O(Nnκ) bits.

For complete t-sharing [s1]t, . . . , [sN ]t and a public party R ∈ P:
1: The trusted party receives the number N of degree-t Shamir sharing to be reconstructed from all

parties and the set of corrupted parties C ⊂ P.
2: Upon receiving a request (Request, privRec, R) from an honest party, for all i ∈ [N ], the trusted party

receives the shares of [si]t from all honest parties and sends the whole sharing [si]t as a request-based
delayed output to R.

3: The trusted party sends the corrupted parties’ shares to S.

Functionality FprivRec

Figure 2: Ideal functionality for private reconstruction

Preparing Random Sharings. The description of functionality FRandShare is in Fig. 3. The functionality
can generate random degree-t sharings based on the corrupted parties’ shares and then distribute the honest
parties’ shares to them. This functionality can be securely computed by letting each party run an ACSS
protocol to randomly share some secrets. Then, the parties run an ACS protocol to decide a set in which each
party correctly shares the secrets. Then the random sharings can be extracted from the sharings generated
by these parties relying on known techniques in [DN07]. The concrete construction and security poof of
ΠRandShare to realize FRandShare is present in Appendix B.2. The communication complexity of the protocol is
O(N · n3κ+ n5κ2 + n6) bits.
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For public value (β0, . . . , βn):
1: The trusted party receives the set C of corrupted parties and waits to receive a request

(Request,RandShare, N) from an honest party, where N ∈ Z+.
2: For all ℓ ∈ [N ], the trusted party randomly samples rℓ ∈ F.
3: For all ℓ ∈ [N ], the trusted party receives a set of shares of corrupted parties from S and samples a

random degree-t sharing [rℓ]t with respect to (β0, . . . , βn) based on the shares of corrupted parties and
the secret rℓ. (If not received, the trusted party sets the shares of corrupted parties to be 0.)

4: For all ℓ ∈ [N ] and Pi ∈ P, the trust party sends Pi’s share of [rℓ]t as a request-based delayed output to
Pi.

Functionality FRandShare

Figure 3: Ideal functionality for preparing random t-sharings

Preparing Random Sharings with a Zero Share. We also need to prepare random sharings where
a specific party Pi’s shares are equal to 0. To prepare such random sharings, we provide a functionality
F0

RandShare in Fig. 4. The protocol that realizes this functionality is similar to ΠRandShare except that each
party needs to share secrets with Pi’s shares equal to 0. We provide the protocol Π0

RandShare to realize this
functionality and the security proof in Appendix B.3. The communication complexity of the protocol is
O(N · n3κ+ n5κ2 + n6) bits.

For public value (β0, . . . , βn):
1: The trusted party receives the set C of corrupted parties waits to receive a request

(Request,RandShare0, N, Pi) from an honest party, where N ∈ Z+ and Pi ∈ P.
2: For all ℓ ∈ [N ], the trusted party randomly samples rℓ ∈ F1.
3: For all ℓ ∈ [N ], the trusted party receives a set of shares of corrupted parties from S. Then the trusted

party sets Pi’s shares to be 0 and samples a random degree-t sharing [rℓ]t with respect to (β0, . . . , βn)
based on the shares of corrupted parties and the secret rℓ. If not received, the trusted party sets the
shares of corrupted parties to be 0.

4: For all ℓ ∈ [N ] and Pi ∈ P, the trust party sends Pi’s share of [rℓ]t as a request-based delayed output to
Pi.

1If the number of corrupted parties is equal to t and Pi is honest, the adversary knows the whole sharing based on
corrupted parties’ shares. In this case, we don’t need to sample this random value.

Functionality F0
RandShare

Figure 4: Ideal functionality for preparing random t-sharing with a zero share

4 The Asynchronous Packed Information-Checking Protocol (APICP)
In this section, we present our construction of APICP, which is extended from the previous work of
AICP [PCR09]. We attach extra properties over AICP, the linear homomorphic property, and the sup-
port of multiple revelations (see Section 2.3 for why we need these properties).

Overview of AICP. AICP is a signature scheme among a dealer D, an intermediary I, and a receiver R.
The dealer D wants to sign on a message he sends to I, and when I delivers this message together with the
signature to R, R can check the signature to know whether this message is from D.

We encode the message sent by D to a vector s ∈ FL. At a high level, the previous AICP [PCR09] is
achieved by the following three steps.

• Step 1: Generating a Signature on the Vector. D samples a random degree-(L + tκ) polyno-
mial f(x) whose L highest coefficients form the vector s. For each party Pi, D randomly samples
κ elements α

(i)
1 , . . . , α

(i)
κ in F as base points and computes their corresponding verification points

(α
(i)
1 , f(α

(i)
1 )), . . . , (α

(i)
κ , f(α

(i)
κ )) on f(x). Then, D sends f(x) to I and distributes the verification

points to each party.
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The polynomial f(x) together with the verification points can be considered as a signature on the vector
s. However, the signature may not be correctly sent, so I should run a verification process to verify the
validity of the signature.

• Step 2: Verifying the Validity of the Signature. Upon receiving verification points from D, each
party randomly sends half of them to I. When I receives f(x), for each party who sends verification
points to him, he checks whether all of the points lie on f(x). Once 2t+1 parties satisfy this condition,
I accepts f(x). Then, the signature is valid and can be sent to the receiver.

Since each honest party’s verification points are grouped into two sets randomly, if one of them consists
of all correct points, there will be a correct verification point in another set with high probability.

• Step 3: Revelation and Signature Checking. When I accepts f(x), he can send it to R. All
parties send the rest of their verification points to R. When R receives f(x), for each party who sends
verification points to him, he checks whether at least one of them lies on f(x). If t+ 1 parties satisfy
this condition, R obtains s from f(x) and believes that it comes from D.

Since at least t + 1 honest parties’ verification points are verified by I, their verification points can be
accepted by R with high probability if I doesn’t change the polynomial sent by D. This shows that once
I accepts the signatures, D can’t deny that the message is sent by him when I is honest. In addition, if
I reveals a different polynomial from what he receives from an honest dealer D, he must correctly guess a
verification point held by an honest party to ensure that there exists a point from an honest polynomial lies
on the polynomial he sends. This error probability is also negligible since the field is sufficiently large.

Note that each party only has two sets of verification points for a signature, one set for I and the other
set for the receiver. As a result, the signature can only be used to convince a single receiver.

The Functionality of APICP. Now we explain the two extra properties of APICP over AICP.

• Linear Homomorphism: A linear combination of the signatures can be used to check the same linear
combination of the messages.

• Multiple Revelations: A valid signature can be revealed to different receivers multiple times.

We give the functionality of our APICP in Fig. 5. We divide APICP into two phases, the initialization
phase and the revelation phase. Once the initialization phase is invoked by D, the revelation phase can be
invoked for at most T times.

For fixed dealer D and intermediary I:
Initialization Phase: Init(T, (s(1), . . . , s(m)))

1. The trusted party receives the identities of corrupted parties C ⊂ P.
2. Upon receiving (Init,APICP, T, (s(1), . . . , s(m))) from D, the trusted party sends a request-based delayed

output (D,APICP, (s(1), . . . , s(m))) to I and sets count = T .
Revelation Phase: Rev(R, c, (s(1), . . . , s(m)))

3. Each time the trusted party receives a request (Request,APICP, R, c) from an honest party, where
c = (c1, . . . , cm). If count > 0, the trusted party does the following things and replaces count by count− 1.
• If I ∈ C, the trusted party waits to receive an instruction from the ideal adversary S.

– If S sends Ignore, the trusted party does nothing.
– If S sends Proceed, if D ∈ C, the trusted party waits to receive s′ from S and sends a request-based

delayed output s′ to the receiver R. Otherwise, the trusted party sends a request-based delayed
output s =

∑m
k=1 ck · s(k) to the receiver R.

• If I /∈ C, the trusted party sends a request-based delayed output s =
∑m

k=1 ck · s(k) to the receiver R.
4. If R is honest, R outputs the results received from the trusted party. Corrupted parties may output

anything they want.

Functionality FAPICP
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Figure 5: Ideal functionality for APICP

Overview of Our APICP Construction. Now we explain the high-level ideas about how to realize the
APICP functionality.

In the beginning, like the previous AICP construction, D sends vectors together with the signatures. In
APICP, D should send a batch of m vectors. To let our protocol satisfy the property of linear homomor-
phism, for each party, we let D choose the same base points for each vector. If the m vectors are sent via
polynomials f (1)(x), . . . , f (m)(x) (where each vector is still the highest L coefficients of the corresponding
polynomial), each verification point is of the form (α, f (1)(α), . . . , f (m)(α)). Then, if we need I to reveal a
linear combination of the vectors, he just needs to send the linear combination of the polynomials. Each party
can compute the same linear combination of f (1)(α), . . . , f (m)(α) for each base point α of his verification
points and generate a new verification point for the linear combination of the polynomials.

To let our protocol support multiple revelations, we use the simple idea of letting D send more verification
points, and each party can divide them into more sets. To be more concrete, to support T times of revelations,
the verification points are randomly divided into T + 1 sets. The first set is used for verification of the
validity of the signatures. Then each time, we use a fresh set for the revelation. To maintain a negligible
error probability, we let D send (T +1)2κ verification points to each party. In Theorem 5, we show that this
allows us to achieve negligible error probability.

4.1 Our Instantiation of APICP
Our ΠAPICP consists of ΠInit and ΠRev, which correspond to the initialization phase and revelation phase
respectively.

ΠInit is present in Fig. 6. In this protocol, D samples the polynomials to store the vectors and creates
the signature by randomly sampling verification points on the polynomials and distributing them to all the
parties. D then sends the polynomials to I. Each party chooses a set of (T + 1)κ verification points and
sends it to I. When I receives the polynomials, he checks whether at least 2t+ 1 parties’ verification points
are on the polynomials. If true, I accepts the polynomials, which means that I receives the signatures on
the vectors. The communication complexity of ΠInit is O(mLκ+mnT 2κ2) bits.

Protocol Init(D, I, T, L, κ)
Parameter: The identity of D and I, revelation times T , constant L and security parameter κ.

1. D receives his input (s(1), . . . , s(m)) from the environment.
2. D picks n(T + 1)2κ random elements from F, denoted by αi

1, · · · , αi
(T+1)2κ, where i ∈ [n].

3. For each s(k) = (s
(k)
1 , · · · , s(k)L ), where k ∈ [m], D selects a random degree-(L+ t(T + 1)2κ) polynomial

f (k)(x) whose the L highest coefficients are elements in s(k).
4. D sends f (1)(x), . . . , f (m)(x) to I and verification point zij = (αi

j , f
(1)(αi

j), . . . , f
(m)(αi

j)) to party Pi for
j ∈

[
(T + 1)2κ

]
.

5. Each party Pi randomly divides {zij}j∈[(T+1)2κ] into T + 1 disjoint sets, where each set is of size (T + 1)κ,
denoted by Zi

1, . . . , Z
i
T+1.

6. Each party Pi sends Zi
T+1 to I.

7. I checks whether {f (k)(x)}k∈[m] are all of degree (L+ t(T +1)2κ). If true, I does the following computation:
(a) Upon receiving Zi

T+1 from Pi and |Zi
T+1| = (T + 1)κ, I checks whether the verification points in Zi

T+1

are all consistent with f (1)(x), . . . , f (m)(x).
(b) If for at least 2t+ 1 parties, the above condition is satisfied, then I accepts {f (k)(x)}k∈[m].

Protocol ΠInit

Figure 6: The protocol of the ΠInit

ΠRev is present in Fig. 7. All parties agree on the coefficients of a linear combination before the protocol
is executed. When the protocol begins, I sends the linear combination of the polynomials to R. Each party
sends the linear combination of (T + 1)κ verification points to R. R then checks the signature by checking
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each party’s verification points. If at least t+ 1 party sends a verification point that lies on the polynomial
he receives from I, he can believe that the linear combination of the vectors implied from the polynomial
is sent from D. ΠRev can be executed t times per initialization of APICP, the communication complexity is
O(Lκ+ nT 2κ2) bits for each execution.

Protocol Rev(I,R, c = (c1, . . . , cm), count, T, L, κ)
Parameter: The identity of I,R, vector c, counter count, revelation times T , constant L and security

parameter κ.
1. If I accepts {f (k)(x)}k∈[m], he sends f(x) =

∑m
k=1 ckf

(k)(x) to R.
2. Pi sends Zi,c

count = {(αi
j ,
∑m

k=1 ckf
(k)(αi

j))}zij∈Zi
count

to R, where j ∈ [(T + 1)κ].
3. R does the following computation:

(a) Upon receiving the set Zi,c
count from Pi and |Zi,c

count| = (T + 1)κ, R checks whether there exists at least one
point (αi

j , β
i
j) ∈ Zi,c

count satisfies f(αi
j) = βi

j .
(b) If for at least t+ 1 parties, the above condition is satisfied, let s be the L highest coefficients of f(x), R

outputs s.

Protocol ΠRev

Figure 7: The protocol of the ΠRev

ΠAPICP is present in Fig. 8. Its communication complexity is O(mLκ +mnT 2κ2 + LTκ + nT 3κ2) bits,
we will give a detailed complexity analysis in Appendix C.

Parameter: The identity of dealer D and intermediary I, constant L and security parameter κ:
Initialization Phase: Init(T )

1. All parties participate in ΠInit.
2. All parties initialize a counter count = T .

Revelation Phase: Rev(R, c)
3. All parties broadcast (Request, D, I, R, c).
4. For each party in P, upon receiving at least t+ 1 (Request, D, I, R, c) and count > 0, he participates in ΠRev

and replaces count by count− 1.

Protocol ΠAPICP

Figure 8: The protocol of the ΠAPICP

Theorem 5. The protocol ΠAPICP realizes FAPICP with statistically security and O(mLκ+mnT 2κ2+LTκ+
nT 3κ2)-bit communication.

We prove Theorem 5 in Appendix C.

5 The Asynchronous Secret Sharing Protocol (ACSS)
In this section, we provide our ACSS protocol ΠACSS with linear communication complexity. Recall that we
have present FACSS in Section 3.4. A dealer is allowed to send degree-t sharing polynomials q1(x), . . . , qN (x)
to FACSS, and FACSS will distribute each honest party’s shares if the polynomials are valid.

5.1 Our Instantiation of ACSS
All parties execute ΠSh, ΠVer, ΠAuth and ΠComp protocols in sequence to realize our ΠACSS. Our ΠACSS (see
Fig. 26) consists of four different phases as we have described in Section 2.4, and we present them one by
one. The parameters used in our protocols are defined at the beginning of the first phase.

The sharing phase ΠSh is present in Fig. 9. The dealer D distributes shares of secrets to all parties
in this phase. Firstly, D encodes each batch of t + 1 degree-t polynomials into a degree-(t, 2t) bivariate
polynomial and distributes the degree-2t column polynomials to all the parties. Each party’s shares of
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secrets are g(α−t), . . . , g(α0) for each column polynomial g held by him. Each party then invokes FAPICP to
create signatures on each of his column polynomials received from D and sends them to D together with his
column polynomials. If they are received, D includes the party into a set M. When the size of M reaches
2t+ 1, D broadcasts the set to let it be verified by all the parties. Regardless of the communication cost of
APICP, the communication complexity of ΠSh is O(mLnκ+ n3 log n) bits.

Parameter: All parties agree on distinct public field elements α−t, . . . , α−1, α0, α1, . . . , αn in F, number of
polynomials N . Let FAPICP(S, I) denote FAPICP with dealer S and intermediary I, and let L denote the
vector length in FAPICP.

Initialization: Let L′ = L/n be the number of polynomials packed in a single vector. All polynomials are
divided into m′ = N

L′(t+1)
groups of size L′(t+ 1).

Let T = n3 + n and T ′ = 2n2. Later on, T will be the number of revelations in FAPICP, and T ′ will be the
number of reconstruction times in the Completing Phase. Let m = m′ + T + T ′.

Sharing Phase
Distributing column polynomials: Upon receiving his input degree-t polynomials q1(x), . . . , qN (x) from

the environment, D executes the following code:
For each k ∈ [m] and ℓ ∈ [L′]:
1. Compute idx = ((k − 1) · L′ + ℓ− 1) · (t+ 1) + 1.
2. If k ∈ [m′], select a random degree-(t, 2t) bivariate polynomial F (k)

ℓ (x, y) s.t. for each i ∈ [0, t],
F

(k)
ℓ (x, α−i) = qidx+i(x). Otherwise, select a random degree-(t, 2t) bivariate polynomial F (k)

ℓ (x, y).
3. Send the column polynomial g(k)ℓ,i (y) = F

(k)
ℓ (αi, y) to each Pi ∈ P.

Signing the column polynomials: Each Pi ∈ P executes the following code:
1. Wait to receive {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] from D.
2. If {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] are all of degree 2t, broadcast OKi and set g

(k)
∗,i = (g

(k)
1,i , . . . , g

(k)

L′,i) for each

k ∈ [m]. Here we abuse the notation to also use g
(k)
ℓ,i to represent the evaluation vector

(g
(k)
ℓ,i (α1), . . . , g

(k)
ℓ,i (αn)). Then g

(k)
∗,i is a vector of size n · L′ = L.

3. Send (Init,APICP, T, (g
(1)
∗,i , . . . , g

(m)
∗,i )) to FAPICP(Pi, D).

Identifying column polynomials: D executes the following code:
1. Initialize a set M to ∅.
2. If |M| < 2t+ 1, include Pi into M when:

1) OKi is received from Pi.
2) (Pi,APICP, (g

(1)
∗,i , . . . , g

(m)
∗,i )) is received from FAPICP(Pi, D) and g

(k)
∗,i (y) = F

(k)
∗ (αi, y) for each

k ∈ [m]. Here F
(k)
∗ (αi, y) = (F

(k)
1 (αi, y), . . . , F

(k)

L′ (αi, y)).
3. Broadcast M when |M| = 2t+ 1.

Verifying the M set: Each party moves to the next phase if the following conditions are met:
(1). M is received from D and |M| = 2t+ 1.
(2). OKh is received from all Ph ∈ M.

Protocol ΠSh

Figure 9: The protocol of the ΠSh

The verification phase ΠVer is present in Fig. 10. In this phase, each party Pi does a verification on
his column polynomials. When Pi receives his column polynomials from D, he verifies a random linear
combination of the bivariate polynomials chosen by D to verify whether his column polynomials are consistent
with them. This is realized by the revelation phases of FAPICP(Ph, D) for all the parties Ph ∈ M. Regardless
of the communication cost of APICP, the communication complexity of ΠVer is O(n3κ) bits.

Verification Phase
For each Pi ∈ P:

1. Upon receiving {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] from D and these polynomials are all of degree 2t, Pi broadcasts a
random value ri ∈ F and computes gℓ,i(y) =

∑m
k=1 g

(k)
ℓ,i (y) · r

k
i for each ℓ ∈ [L′].

Protocol ΠVer
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2. Upon receiving ri from Pi, each party sends (Request,APICP, Pi, (ri, r
2
i , . . . , r

m
i )) to FAPICP(Ph, D) for

all Ph ∈ M.
3. Upon receiving g∗,h from FAPICP(Ph, D) for all Ph ∈ M, Pi accepts {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] if the following

hold for each ℓ ∈ [L′].
1) For each Ph ∈ M, parse g∗,h into {gℓ,h}ℓ∈[L′], each gℓ,h is a degree-2t polynomial.
2) There exists a degree-(t, 2t) bivariate polynomial Fℓ(x, y) s.t. Fℓ(αh, y) = gℓ,h(y) for all Ph ∈ M

and Fℓ(αi, y) = gℓ,i(y).

Figure 10: The protocol of the ΠVer

The authentication phase ΠAuth is present in Fig. 11. In this phase, each Pi who has accepted his column
polynomials prepares the authentication tags on them. The authentication tags are prepared for each pair of
(Pi, Pv). All the parties invoke the functionality of sub-protocols to prepare random shares of authentication
keys and random masks. Then, each Pi follows the process we have discussed in Section 2.3 to prepare the
tags. When Pi gets the authentication tags for all Pv ∈ P, he broadcasts Tagi. Each Pi who has broadcast
Tagi will be included in a set W created by D. Then, W will be publicly verified by all the parties. If the
public verification does not pass, the protocol won’t terminate in the end and all the honest parties won’t
get their shares. If the public verification passes, the ACSS protocol is guaranteed to terminate eventually,
and all the honest parties will obtain their shares. Regardless of the communication cost of APICP, the
communication complexity of ΠAuth is O(Ln5κ +mn6κ + n7κ2 + n8) bits (including the communication to
realize the functionalities of sub-protocols except for FAPICP).

Authentication Phase
For each Pi ∈ P and Pv ∈ P, do the following:

1. Preparing random shares: For public value (β0, . . . , βn) = (αi, α1, . . . , αi−1, α0, αi+1, . . . , αn),
Pi ∈ P executes the following code:

(1). Send (Request,RandShare0, L, Pi) to F0
RandShare to prepare [µi�v]

i
t where µi�v is a vector in FL.

(2). Send (Request,RandShare,m) to FRandShare to prepare [ν
(1)
i�v]

i
t, . . . , [ν

(m)
i�v ]

i
t.

(3). Send (Request,RandShare,m · t) to FRandShare to prepare [r
(k)
u ]it for each k ∈ [m] and u ∈ [t].

(4). Send (Request,RandShare0, n, Pj) to F0
RandShare to prepare [maskj ]

i
t for each j ∈ [n].

2. Preparing shares of tags {τ (k)
i�v}k∈[m] for Pi: For each Pj who has accepted {g(k)ℓ,j (y)}k∈[m],ℓ∈[L′]:

(1). For each k ∈ [m], Pj computes his share of [τ (k)
i�v]

i
2t (denoted by τ

(k)
i�v,j) by:

[τ
(k)
i�v]

i
2t = [g

(k)
∗,i ]

i
t · [µi�v]

i
t + [ν

(k)
i�v]

i
t +

t∑
u=1

[[eu]]
i
t · [r(k)u ]it

Here [[eu]]
i
t is the packed secret sharing of eu = (e

(i)
u , e

(1)
u , . . . , e

(t)
u ) with e

(u)
u = 1, e(i)u = 0 and

e
(k)
u = 0 for each k ∈ [t]\{u}. Here each Pj ∈ P except Pi has his share of [g(k)ℓ,i ]

i
t equals to g

(k)
ℓ,j for

each ℓ ∈ [L′]. Thus, each Pj who accepts his column polynomials gets his g
(k)
∗,j in the verification

phase, which is also his share of [g(k)
∗,i ]

i
t. Especially, Pi doesn’t have his share of [g∗,i]

i
t, but he can

still compute his share of [τ (k)
i�v]

i
2t because his share of [µi�v]

i
t is equal to 0.

(2). Pj sends {τ (k)
i�v,j}k∈[m] to Pi.

(3). Upon receiving {τ (k)
i�v,j}k∈[m] from Pj , Pi broadcasts a random element ri�v,j ∈ F and computes

τi�v,j =
∑m

k=1 r
k
i�v,j · τ

(k)
i�v,j .

• Verifying Pj’s shares of tags: Upon receiving ri�v,j from Pi, for each Pα ∈ P:
1). For each Ph ∈ M, all parties send (Request,APICP, Pα, (ri�v,j , r

2
i�v,j . . . , r

m
i�v,j)) to

FAPICP(Ph, D).
2). Upon receiving g∗,h from FAPICP(Ph, D) for each Ph ∈ M, Pα accepts {g∗,h}Ph∈M if the

following hold for each ℓ ∈ [L′]:
(a) For each Ph ∈ M, parse g∗,h into {gℓ,h}ℓ∈[L′], each gℓ,h is a degree-2t polynomial.
(b) There exists a degree-(t, 2t) bivariate polynomial Fℓ(x, y) s.t. Fℓ(αh, y) = gℓ,h(y) for all

Protocol ΠAuth
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Ph ∈ M.
3). Upon accepting {g∗,h}Ph∈M, Pα computes gℓ,j = (Fℓ(αj , α1), . . . , Fℓ(αj , αn)) for each ℓ ∈ [L′]

and g∗,j = (g1,j , . . . , gL′,j).
4). All the parties jointly prepare a sharing [γi�v,j ]

i
t. Pα computes his share by:

[γi�v,j ]
i
t = g∗,j · [µi�v]

i
t +

m∑
k=1

rki�v,j ·

(
[ν

(k)
i�v]

i
t +

t∑
u=1

eu,j · [r(k)u ]it

)
+ [maskj ]

i
t

Here eu,j is Pj ’s share of [[eu]]
i
t which is public. Notice that Pj ’s share of [γi�v,j ]

i
t should be

τi�v,j .
5). Pα sends his share of [γi�v,j ]

i
t and (Request, privRec, Pi) to FprivRec.

(4). Upon receiving the whole [γi�v,j ]
i
t from FprivRec, Pi accepts {τ (k)

i�v,j}k∈[m] if Pj ’s share of [γi�v,j ]
i
t is

equal to τi�v,j .
3. Reconstructing Pi’s tags:

(1). Upon accepting 2t+ 1 different Pj ’s {τ (k)
i�v,j}k∈[m], Pi reconstructs {τ (k)

i�v}k∈[m] with these shares.
Preparing the W set: D executes the following code:
(1). Each Pi ∈ P broadcasts Tagi after getting {τ (k)

i�v}k∈[m] for all Pv ∈ P and accepting {g(k)ℓ (y)}k∈[m],ℓ∈[L′]

during the verification phase.
(2). D initializes a set W to ∅.
(3). Upon receiving Tagi from Pi, D includes Pi into W.
(4). D broadcasts W when |W| ≥ 2t+ 1.
Verifying the W set: Each party executes the following code:
(1). W is received from D and |W| ≥ 2t+ 1.
(2). Tagi is received from all Pi ∈ W.
(3). Each party moves to the next phase if the above conditions are met.

Figure 11: The protocol of the ΠAuth

The completion phase ΠComp is present in Fig. 12. This protocol describes how each honest party even-
tually obtains his output shares. Each party first reconstructs his degree-t row polynomials and then recon-
structs his degree-2t column polynomials to obtain his shares. The communication complexity of ΠComp is
O(mLnκ+mn3κ+L′n3κ) bits (including the communication to realize the functionalities of sub-protocols).

Completion Phase
Reconstructing row polynomials:

For each Pv ∈ P, do the following:
1. Each Pi ∈ W sends {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] to Pv.
2. For each Pi ∈ W, do the following:

(1). Each party sends his shares of [µi�v]
i
t, [ν

(1)
i�v]

i
t, . . . , [ν

(m)
i�v ]

i
t and (Request, privRec, Pv) to FprivRec.

Upon receiving [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] from FprivRec, Pv reconstructs the secrets µi�v, {ν(k)

i�v}k∈[m].
(2). Upon receiving {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] from Pi, Pv sends a random element ri�v ∈ F to Pi.
(3). Upon receiving ri�v, Pi sends τi�v =

∑m
k=1 r

k
i�v · τ (k)

i�v and gℓ,i(y) =
∑m

k=1 r
k
i�vg

(k)
ℓ,i (y) for each

ℓ ∈ [L′] to Pv.
(4). Upon receiving τi�v and {gℓ,i(y)}ℓ∈[L′] from Pi, Pv computes gℓ,i = (gℓ,i(α1), . . . , gℓ,i(αn)) for each

ℓ ∈ [L′] and g∗,i = (g1,i, . . . , gL′,i).
(5). Pv accepts {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] if the following hold:

1) For each ℓ ∈ [L′], the degree of gℓ,i(y) is 2t and gℓ,i(αv) =
∑m

k=1 r
k
i�v · g(k)ℓ,i (αv).

2) τi�v = g∗,i · µi�v +
∑m

k=1 r
k
i�v · ν(k)

i�v.
3. Upon accepting t+ 1 different Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′], Pv reconstructs a degree-t polynomial f (k)

ℓ,v (x)

s.t. f
(k)
ℓ,v (αi) = g

(k)
ℓ,i (αv) for each ℓ ∈ [L′] and k ∈ [m].

Reconstructing column polynomials:

Protocol ΠComp
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For each Pw ∈ P, do the following:
1. Each Pv ∈ P sends {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′] to Pw.
2. For each Pv ∈ P:

(1). Upon receiving {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′] from Pv, Pw broadcasts a random value rv�w ∈ F.

(2). Upon receiving rv�w, each Pi ∈ W sends τi�w =
∑m

k=1 r
k
v�w · τ (k)

i�w and gℓ,i(y) =
∑m

k=1 r
k
v�wg

(k)
ℓ,i (y)

for each ℓ ∈ [L′] to Pw.
(3). Upon receiving {gℓ,i(y)}ℓ∈[L′], Pw computes gℓ,i = (gℓ,i(α1), . . . , gℓ,i(αn)) for each ℓ ∈ [L′] and

g∗,i = (g1,i, . . . , gL′,i).
(4). Pw accepts {gℓ,i(y)}ℓ∈[L′] if the following hold.

1) g1,i(y), . . . , gL′,i(y) are all of degree 2t.
2) τi�w = g∗,i · µi�w +

∑m
k=1 r

k
v�wν

(k)
i�w.

(5). Upon accepting t+ 1 different Pi’s {gℓ,i(y)}ℓ∈[L′], Pw reconstructs a degree-(t, 2t) bivariate
polynomial Fℓ(x, y) s.t. Fℓ(αi, y) = gℓ,i(y) for each ℓ ∈ [L′].

(6). Pw accepts {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′] if

∑m
k=1 r

k
v�wf

(k)
ℓ,v (αw) = Fℓ(αw, αv) for each ℓ ∈ [L′].

3. Upon accepting 2t+ 1 different {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′], Pw reconstructs a degree-2t polynomial g(k)ℓ,w(y)

s.t. g
(k)
ℓ,w(αv) = f

(k)
ℓ,v (αw) for each ℓ ∈ [L′] and k ∈ [m].

4. Pw outputs {g(k)ℓ,w(αi)}ℓ∈[L′],k∈[m′],i∈[−t,0].

Figure 12: The protocol of the ΠComp

Lemma 2. The protocol ΠACSS t-securely realizes FACSS in the (FAPICP,FprivRec, FRandShare,F0
RandShare)-hybrid

model with statistical security.

We now use the instances of FAPICP (ΠAPICP in section 4), FprivRec (ΠprivRec in Appendix B.1), FRandShare

(ΠRandShare in Appendix B.2), and F0
RandShare (Π0

RandShare in Appendix B.3) instead of the functionalities to
realize FACSS. Taking m = n4, we obtain our main Theorem 1.

Theorem 1. Let κ denote the security parameter. For a finite field F of size 2Θ(κ), there exists a fully
malicious information-theoretic ACSS protocol against t < n/3 corrupted parties that shares N degree-t
Shamir sharings over F with communication of O(Nnκ+ n12κ2) bits.

The proof of Lemma 2 is given in Appendix D.2. Detailed analysis of the communication complexity of
our ΠACSS is given in Appendix D.3.

Construction of AMPC. The previous work [CP17] presents a framework using FACSS to construct an
AMPC protocol ΠAMPC. We give the ideal functionality FAMPC in Appendix E.1 and an overview of how to
compile FACSS to ΠAMPC in Appendix E.2.

Theorem 2. ([CP17]) Let n = 3t+ 1. For any circuit C of size |C| and depth D, there is a fully malicious
asynchronous MPC protocol computing the circuit that is secure against at most t corrupted parties with
guaranteed output delivery in the FACSS-hybrid model. The achieved communication complexity is O(|C| ·
n2κ+ n5κ) bits plus O(n) invocations of FACSS to share O(|C| · n) degree-t Shamir sharings in total.

Replacing FACSS with our construction of ΠACSS, we get Corollary 1.

Corollary 1. Let n = 3t + 1. For any circuit C of size |C| and depth D, there is a fully malicious
information-theoretic asynchronous MPC protocol that is secure against at most t corrupted parties with
guaranteed output delivery. The total communication complexity is O(|C| · n2κ+ n13κ2) bits.
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A Additional Definitions of the Agreement Primitives
The agree on a common set (ACS) primitive allows the parties to agree on a set of at least n − t parties
that satisfies a certain property (a so-called ACS property). We give the formal definitions of agreement
primitives here.

Definition 1. Let P be a set of n parties and let Q be a property that can be influenced by multiple protocols
running in parallel. Every party Pi ∈ P can decide for every party Pj ∈ P based on the protocols running in
parallel whether Pj satisfies the property towards Pi or not. If it does, we say Pi likes Pj for Q or simply Pi

likes Pj if the property Q is clear from the context. We require that once a party likes another party, it cannot
unlike it. Such a property Q is called an ACS property if for every pair of uncorrupted parties (Pi, Pj) ∈ P
we have that Pi will eventually like Pj.

Definition 2. Let Π be an n-party protocol where all parties take as input a global ACS property Q and each
party Pi outputs a set Si of parties. We say that Π is a t-resilient ACS protocol for Q if the following holds
whenever up to t parties are corrupted:

– Consistency: Each honest party outputs the same set Si = S.
– Set quality: Each output set has size at least n− t, and for each Pi ∈ S there exists at least one honest

party Pj that likes Pi for Q.
– Termination: All honest parties eventually terminate.

Ben-Or, Kelmer, and Rabin provide an efficient ACS protocol in [BKR94]. We state their result as
follows.

Lemma 3. ([BKR94]) Given an ACS property Q, there exists a t-resilient ACS protocol ΠQ
ACS for Q with

communication complexity O(n3) bits, for t < n/3 active corruptions.

In [Bra84], an A-Cast protocol is provided, which enables a party to efficiently broadcast a message in
an asynchronous network. If a message is broadcast, each party will eventually receive this message, but the
arrival time is still controlled by the adversary. We state the formal functionality of A-Cast [Bra84] in Fig.
13. From [Bra84], broadcasting an ℓ-bit message requires O(n2ℓ)-bit communication.

Upon receiving (sender,ACast,m) from PS ∈ P, the trusted party sends an request-based delayed output
(PS ,ACast,m) to each Pi ∈ P.

Functionality FACast

Figure 13: Ideal functionality for broadcasting a message

B Constructions and Security Proofs for Sub-protocols

B.1 Construction of ΠprivRec

We give our construction of ΠprivRec in Fig. 14.

1. Upon receiving the input shares of [s1]t, . . . , [sN ]t from the environment, each party sends them to R.
2. For r = 0, . . . , t, R executes the following code in iterating r:

(a). Let W denote the set of parties in P from whom R has received the shares. Wait until |W| = 2t+ 1+ r.
(b). Check whether there exists degree-t sharing polynomials p1(·), . . . , pN (·), such that for 2t+ 1 parties in

W, their shares of [s1]t, . . . , [sN ]t are on these polynomials respectively. If so, output the whole
sharing [s1]t, . . . , [sN ]t. Otherwise, proceed to the next iteration.

Protocol ΠprivRec

Figure 14: The protocol for private reconstruction

26



Lemma 4. Protocol ΠprivRec t-securely realizes FprivRec.

Proof. We prove this lemma by constructing a simulator S. S needs to interact with the environment Z
and with the ideal functionalities. S constructs virtual real-world honest parties and runs the real-world
adversary A. For simplicity, we just let S communicate with A on behalf of honest parties and the ideal
functionality of sub-protocols in our proof. In order to simulate the communication with Z, every message
that S receives from Z is sent to A, and likewise, every message sent from A sends to Z is forwarded by S.
Each time an honest party needs to send a message to another honest party, S will tell A that a message has
been delivered such that A can tell S the arrival time of this message to help S instruct the functionalities
to delay the outputs in the ideal world. For each request-based delayed output that needs to be sent to an
honest party, we let S delay the output in default until we say S allows the functionality to send the output.
We will show that the output in the ideal world is identically distributed to that in the real world by using
hybrid arguments.

Construction of the ideal adversary S.
If R is corrupted:

• S receives the whole sharing [s1]t, . . . , [sN ]t from FprivRec. For each honest Pi, S sends the Pi’s shares of
[s1]t, . . . , [sN ]t to R on behalf of Pi.

Simulator S

Figure 15: Simulator for the FprivRec

Hybrid arguments:
Hyb0: In this hybrid, S learns honest parties’ inputs, and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, for each honest party, S doesn’t learn his shares of s1, . . . , sN from him. Instead,

he learns the shares from the output of FprivRec. Since [s1]t, . . . , [sN ]t are complete t-sharing, the honest
parties’ shares are contained in the whole sharing, so this doesn’t change the output distribution. Thus,
Hyb1 and Hyb0 have the same output distribution.

Note that Hyb1 is the ideal-world scenario, ΠprivRec securely computes FpricRec.
If R is honest:

1. For each corrupted Pi, S receives his shares of [s1]t, . . . , [sN ]t from FprivRec.
2. For each corrupted Pi, S receives their messages [s1]

′
t, . . . , [sN ]′t sent to R. When the message arrives, S

accept Pi’s shares if his share of sj equals to [sj ]
′
t for all j ∈ [N ]. For each honest Pi, S regards that he

accepts Pi’s shares when the shares arrive.
3. After accepting 2t+ 1 parties’ shares, S allows FprivRec to send the output to R.

Simulator S

Figure 16: Simulator for the FprivRec

Hybrid arguments:
Hyb0: In this hybrid, S learns honest parties’ inputs, and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, R gets his output from FprivRec instead of computing the output by himself. By

the error-correction property of Reed-Solomon Codes, R will eventually get the correct secrets s1, . . . , sN .
Note that R will also receive at least t + 1 honest parties’ shares, which fixes the whole sharing, so R can
compute the whole sharing by himself. This shows that R gets the output after receiving 2t + 1 parties’
correct shares. Thus, Hyb1 and Hyb0 have the same output distribution.

Note that Hyb1 is the ideal-world scenario, ΠprivRec securely computes FpricRec.
The protocol ΠprivRec requires O(Nnκ)-bit communication to send n parties’ shares of the N complete

t-sharing to R.
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B.2 Construction of ΠRandShare

We give our construction of ΠRandShare in the (FACSS,FprivRec)-hybrid model in Fig. 17.

On public parameters N, (β0, . . . , βn):
1. Each party Pj ∈ P samples L = N/(t+ 1) random value (s

(1)
j , . . . , s

(L)
j ) ∈ FL and chooses random

degree-t polynomials q
(1)
j (·), . . . , q(L)

j (·) such that for each ℓ ∈ [L], q(ℓ)j (β0) = s
(ℓ)
j .

2. Each party Pj sends (Dealer,ACSS, {q(1)j (·), . . . , q(L)
j (·)}) to FACSS.

3. Let the ACS property Q defined by Pj likes Pk if Pj terminates FACSS whose dealer is Pk. Then all
parties run ΠQ

ACS to get a set S of size 2t+ 1. Let the sharing generated by FACSS with dealers in S be
{[s(ℓ)aj ]t}j∈[2t+1],ℓ∈[L], where S = {Pa1 , . . . , Pa2t+1}.

4. Let M be the (t+ 1)× (2t+ 1) Vandermonde matrix
1 1 · · · 1
1 b1 · · · b2t
...

...
. . .

...
1 bt1 · · · bt2t

 ,

where 1, b1, . . . , b2t are 2t+ 1 distinct public elements in F.
Each party locally computes his shares by

[r
(1)
1 ]t, . . . , [r

(L)
1 ]t

...
[r

(1)
t+1]t, . . . , [r

(L)
t+1]t

 = M ·


[s

(1)
a1 ]t, . . . , [s

(L)
a1 ]t

...
[s

(1)
a2t+1 ]t, . . . , [s

(L)
a2t+1 ]t


5. Each party outputs his shares of {[r(ℓ)j ]t}j∈[t+1],ℓ∈[L].

Protocol ΠRandShare

Figure 17: The protocol to prepare random t-sharing

Lemma 5. Protocol ΠRandShare t-securely realizes FRandShare in the (FACSS,FprivRec)-hybrid model.

Proof. We prove this lemma by constructing a simulator S. S needs to interact with the environment Z
and with the ideal functionalities. S constructs virtual real-world honest parties and runs the real-world
adversary A. For simplicity, we just let S communicate with A on behalf of honest parties and the ideal
functionality of sub-protocols in our proof. In order to simulate the communication with Z, every message
that S receives from Z is sent to A, and likewise, every message sent from A sends to Z is forwarded by S.
Each time an honest party needs to send a message to another honest party, S will tell A that a message has
been delivered such that A can tell S the arrival time of this message to help S instruct the functionalities
to delay the outputs in the ideal world. For each request-based delayed output that needs to be sent to an
honest party, we let S delay the output in default until we say S allows the functionality to send the output.
We will show that the output in the ideal world is identically distributed to that in the real world by using
hybrid arguments.

Construction of the ideal adversary S.

1. For each honest Pi, S follows the protocol to emulate FACSS where the dealer is Pi such that corrupted
parties get their shares of [s(1)i ]t, . . . , [s

(L)
i ]t, where L = N/(t+ 1). For each corrupted Pi, S receives the

input of Pi from A and follows the protocol to simulate FACSS.
2. S follows the protocol to run ΠQ

ACS to get a set S = {Pa1 , . . . , Pa2t+1} (assume that Pa1 , . . . , Pak are
corrupted, where k ≤ t) and sends it to each party in P.

3. Suppose Paj ’s input polynomials to FACSS are q
(1)
j (·), . . . , q(L)

j (·) for j = 1, . . . , k. Take the share of

Simulator S
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[s
(ℓ)
aj ]t = [q

(ℓ)
j (β0)]t for each Pi as q

(ℓ)
j (βi) for all j ∈ [k], ℓ ∈ [L]

4. For each corrupted party, S follows the protocol to compute his shares by
[r

(1)
1 ]t, . . . , [r

(L)
1 ]t

...
[r

(1)
t+1]t, . . . , [r

(L)
t+1]t

 = M ·


[s

(1)
a1 ]t, . . . , [s

(L)
a1 ]t

...
[s

(1)
a2t+1 ]t, . . . , [s

(L)
a2t+1 ]t


and sends his shares of {[r(ℓ)j ]t}j∈[t+1],ℓ∈[L] to FRandShare.

5. For each honest Pi, when Pi gets the set S after running ΠQ
ACS, S allows FRandShare to send the output to Pi.

Figure 18: Simulator for the FRandShare

Hybrid arguments:
Hyb0: In this hybrid, S runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, honest parties get their shares from FRandShare instead of computing their shares by

themselves. Note that in both Hyb1 and Hyb0, the honest parties’ shares are on degree-t polynomials, so
we only need to show that in Hyb1, each r

(ℓ)
j is completely random. Take t+1 honest parties in S, let them

form a set H = {Ph1
, . . . , Pht+1

} and let S\H = {Pc1 , . . . , Pct}. For each Paj
∈ H, take the j-th column of

M out, and let the t+ 1 columns form a Vandermonde matrix MH, and let the other t columns of M form
a matrix MC . Note that

r
(1)
1 , . . . , r

(L)
1

...
r
(1)
t+1, . . . , r

(L)
t+1

 = M ·


s
(1)
a1 , . . . , s

(L)
a1

...
s
(1)
a2t+1 , . . . , s

(L)
a2t+1



= MH ·


s
(1)
h1

, . . . , s
(L)
h1

...
s
(1)
ht+1

, . . . , s
(L)
ht+1

+MC ·


s
(1)
c1 , . . . , s

(L)
c1

...
s
(1)
ct , . . . , s

(L)
ct

 .

Since MH is invertible and each s
(ℓ)
hj

where j ∈ [t+1], ℓ ∈ [L] is randomly sampled in F by S when emulating
FACSS where Phj

is the dealer,

MH ·


s
(1)
h1

, . . . , s
(L)
h1

...
s
(1)
ht+1

, . . . , s
(L)
ht+1


is completely random. Thus, 

r
(1)
1 , . . . , r

(L)
1

...
r
(1)
t+1, . . . , r

(L)
t+1


is also completely random. Thus, Hyb1 and Hyb0 have the same output distribution.

Note that Hyb1 is the ideal-world scenario, ΠRandShare securely computes FRandShare in the (FACSS,FprivRec)-
hybrid model.

We need to invoke FACSS L times for each party. Thus the protocol ΠRandShare requires O(L ·n4κ+n5κ+
n6) = O(N · n3κ+ n5κ+ n6)-bit communication.

B.3 Construction of Π0
RandShare

To construct our protocol Π0
RandShare, we first need a sub-protocol to prepare random coins in F. For this, all

parties can invoke FRandShare to generate a random share and then invoke FprivRec to reconstruct the random
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value to all parties. The functionality is given in Fig. 19. The amortized communication complexity of
generating per coin is FCoin is O(n3κ) bits.

1: Upon receiving (Request,Coin) from 2t+ 1 parties, the trusted party samples a random value r.
2: The trusted party sends a request based delayed output r to each Pi ∈ P.

Functionality FCoin

Figure 19: Ideal functionality for generating a random value

Remark 1. We need O(N ·n3κ+n5κ2+n6)-bit communication to generate N random sharings and O(Nn2κ)-
bit communication to reconstruct the N coins to all parties. Thus, we generate N coins with a communication
complexity of O(N · n3κ + n5κ2 + n6) bits. We use an amortized cost when generating random coins since
we can prepare a lot of random sharings first and reconstruct each coin when we need it.

We give our construction of Π0
RandShare in the (FACSS,FCoin,FprivRec)-hybrid model in Fig. 20.

On public parameters N,Pi, (β0, . . . , βn):
1. Each party Pj ∈ P samples L = N/(t+ 1) random value (s

(1)
j , . . . , s

(L)
j ) ∈ FL and chooses random

degree-t polynomials q
(1)
j (·), . . . , q(L)

j (·) such that for each ℓ ∈ [L], q(ℓ)j (β0) = s
(L)
j and q

(ℓ)
j (βi) = 0.

2. Each party Pj sends (Dealer,ACSS, {q(1)j (·), . . . , q(L)
j (·)}) to FACSS.

3. Upon terminating FACSS whose dealer is Pj , each party sends (Request,Coin) to FCoin to get a random
value rj . Then each party sends his share of [sj ]t =

∑L
ℓ=1 r

ℓ
j · [s

(ℓ)
j ]t and

(Request, privRec, P1), . . . , (Request, privRec, Pn) to FprivRec to reconstruct the whole sharing [sj ]t.
4. Let the ACS property Q defined by Pk likes Pk if Pj terminates FACSS whose dealer is Pk and Pi’s share

of sk is 0. Then all parties run ΠQ
ACS to get a set S of size 2t+ 1. Let the sharing generated by FACSS

with dealers in S be {[s(ℓ)aj ]t}j∈[2t+1],ℓ∈[L], where S = {Pa1 , . . . , Pa2t+1}.
4. Let M be the (t+ 1)× (2t+ 1) Vandermonde matrix

1 1 · · · 1
1 b1 · · · b2t
...

...
. . .

...
1 bt1 · · · bt2t

 ,

where 1, b1, . . . , b2t are 2t+ 1 distinct public elements in F.
Each party locally computes his shares by

[r
(1)
1 ]t, . . . , [r

(L)
1 ]t

...
[r

(1)
t+1]t, . . . , [r

(L)
t+1]t

 = M ·


[s

(1)
a1 ]t, . . . , [s

(L)
a1 ]t

...
[s

(1)
a2t+1 ]t, . . . , [s

(L)
a2t+1 ]t


5. Each party outputs his shares of {[r(ℓ)j ]t}j∈[t+1],ℓ∈[L].

Protocol Π0
RandShare

Figure 20: The protocol to prepare random t-sharing with a zero share

Lemma 6. Protocol Π0
RandShare t-securely realizes F0

RandShare in the (FACSS,FCoin, FprivRec)-hybrid model.

Proof. We prove this lemma by constructing a simulator S. S needs to interact with the environment Z
and with the ideal functionalities. S constructs virtual real-world honest parties and runs the real-world
adversary A. For simplicity, we just let S communicate with A on behalf of honest parties and the ideal
functionality of sub-protocols in our proof. In order to simulate the communication with Z, every message
that S receives from Z is sent to A, and likewise, every message sent from A sends to Z is forwarded by S.
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Each time an honest party needs to send a message to another honest party, S will tell A that a message has
been delivered such that A can tell S the arrival time of this message to help S instruct the functionalities
to delay the outputs in the ideal world. For each request-based delayed output that needs to be sent to an
honest party, we let S delay the output in default until we say S allows the functionality to send the output.
We will show that the output in the ideal world is identically distributed to that in the real world by using
hybrid arguments.

Construction of the ideal adversary S.

1. For each honest Pi, S follows the protocol to simulate FACSS where the dealer is Pi such that corrupted
parties get their shares of [s(1)i ]t, . . . , [s

(L)
i ]t, where L = N/(t+ 1). For each corrupted Pi, S receives the

input of Pi from A and follows the protocol to simulate FACSS.
2. For each honest Pj or corrupted Pj whose input polynomials q

(1)
j (·), . . . , q(L)

j (·) are all degree-t, S emulate
FCoin to sample random coin rj . Then S computes the shares of corrupted parties of sj =

∑L
ℓ=1 r

ℓ
j · s

(ℓ)
j and

emulates FprivRec to get the whole sharing [sj ]t.
3. If there exists a corrupted Pj such that Pi’s share of sj equals to 0 for each ℓ ∈ [L] but for some q

(ℓ)
j (·),

q
(ℓ)
j (βi) ̸= 0, then S aborts the simulation.

4. S follows the protocol to run ΠQ
ACS to get a set S = {Pa1 , . . . , Pa2t+1} (assume that Pa1 , . . . , Pak are

corrupted, where k ≤ t) and sends it to each party in P.
5. Suppose Paj ’s input polynomials to FACSS are q

(1)
j (·), . . . , q(L)

j (·) for j = 1, . . . , k. Take the share of
[s

(ℓ)
aj ]t = [q

(ℓ)
j (β0)]t for each Pi as q

(ℓ)
j (βi) for all j ∈ [k], ℓ ∈ [L]

6. For each corrupted party, S follows the protocol to compute his shares
[r

(1)
1 ]t, . . . , [r

(L)
1 ]t

...
[r

(1)
t+1]t, . . . , [r

(L)
t+1]t

 = M ·


[s

(1)
a1 ]t, . . . , [s

(L)
a1 ]t

...
[s

(1)
a2t+1 ]t, . . . , [s

(L)
a2t+1 ]t

 .

and sends his shares of {[r(ℓ)j ]t}j∈[t+1],ℓ∈[L] to F0
RandShare.

6. For each honest Pi, when Pi gets the set S after running ΠQ
ACS, S allows FRandShare to send the output to Pi.

Simulator S

Figure 21: Simulator for the F0
RandShare

Hybrid arguments:
Hyb0: In this hybrid, S runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, S aborts the simulation if there exists a corrupted Pj such that Pi’s share of sj

equals to 0 for each ℓ ∈ [L] but for some q
(ℓ)
j (·), q(ℓ)j (βi) ̸= 0. This happens only when the random rj satisfies∑L

ℓ=1 r
ℓ
j · s

(ℓ)
j = 0. Note that any non-zero polynomial

∑L
ℓ=1 s

(ℓ)
j xℓ has at most L roots in F, so the output

distribution only changes with probability

ϵ ≤ t · L

|F|
=

tL

2κ
,

which is negligible. Thus, the output distributions of Hyb1 and Hyb0 are statistically close.
Hyb2: In this hybrid, honest parties get their shares from FRandShare instead of computing their shares by

themselves. Note that in both Hyb1 and Hyb2, the honest parties’ shares are on degree-t polynomials and
Pi’s share is 0. If the number of corrupted parties is equal to t and Pi is honest, the security and correctness
are straightforward since A knows the random sharing of any honest party. For other cases, we only need
to show that in Hyb1, each r

(ℓ)
j is completely random if Pi is corrupted. Take t + 1 honest parties in S,

let them form a set H = {Ph1
, . . . , Pht+1

} and let S\H = {Pc1 , . . . , Pct}. For each Paj
∈ H, take the j-th

column of M out, and let the t + 1 columns form a Vandermonde matrix MH, and let the other t columns
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of M form a matrix MC . Note that
r
(1)
1 , . . . , r

(L)
1

...
r
(1)
t+1, . . . , r

(L)
t+1

 = M ·


s
(1)
a1 , . . . , s

(L)
a1

...
s
(1)
a2t+1 , . . . , s

(L)
a2t+1



= MH ·


s
(1)
h1

, . . . , s
(L)
h1

...
s
(1)
ht+1

, . . . , s
(L)
ht+1

+MC ·


s
(1)
c1 , . . . , s

(L)
c1

...
s
(1)
ct , . . . , s

(L)
ct

 .

Since MH is invertible and each s
(ℓ)
hj

where j ∈ [t+1], ℓ ∈ [L] is randomly sampled in F by S when emulating
FACSS where Phj

is the dealer,

MH ·


s
(1)
h1

, . . . , s
(L)
h1

...
s
(1)
ht+1

, . . . , s
(L)
ht+1


is completely random. Thus, 

r
(1)
1 , . . . , r

(L)
1

...
r
(1)
t+1, . . . , r

(L)
t+1


is also completely random. Thus, Hyb2 and Hyb1 have the same output distribution.

Note that Hyb2 is the ideal-world scenario, Π0
RandShare statistically-securely computes F0

RandShare in the
(FACSS,FCoin,FprivRec)-hybrid model.

Similar with ΠRandShare, the protocol Π0
RandShare requires O(N · n3κ+ n5κ+ n6)-bit communication.

C Security Proof of The Asynchronous Packed Information-Checking
Protocol

Proof. We prove the security of the APICP protocol by constructing an ideal adversary S. S needs to interact
with the environment Z and with the ideal functionalities. S constructs virtual real-world honest parties
and runs the real-world adversary A. For simplicity, we just let S communicate with A on behalf of honest
parties and the ideal functionality of sub-protocols in our proof. In order to simulate the communication
with Z, every message that S receives from Z is sent to A, and likewise, every message sent from A sends
to Z is forwarded by S. Each time an honest party needs to send a message to another honest party, S will
tell A that a message has been delivered such that A can tell S the arrival time of this message to help S
instruct the functionalities to delay the outputs in the ideal world. For each request-based delayed output
that needs to be sent to an honest party, we let S delay the output in default until we say S allows the
functionality to send the output. We will show that the output in the ideal world is identically distributed
to that in the real world by using hybrid arguments.

Construction of the ideal adversary S is as follows. If we say that S delivers a message, S just tells A
that the message has been delivered. S may not be able to know the context of the message.

When D and I are honest:
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1. For each corrupted party Pi, S randomly samples (T + 1)Tκ verification points z = (α, β1, . . . , βm) (each
verification point is corresponding to (α, f (1)(α), . . . , f (m)(α)), where f (1)(·), . . . , f (m)(·) are the
polynomials generated by D) from Fm+1 and send them to Pi on behalf of D. If the (T + 1)2tκ verification
points are not distinct, S aborts the simulation.

2. For each Pi ∈ P, if Pi is corrupted, S waits to receive a verification set Zi
T+1 from Pi and then checks

whether each verification point in this set is in the set of all verification points he sent to corrupted parties.
If Pi is honest, when I receives the verification set of Pi, S considers that I receives a correct verification
set.

3. When I receives at least 2t+ 1 correct verification sets, he initializes a counter count = T and a set W = ∅.
Then, S allows FAPICP to send the output to I.

4. For each revelation, if count > 0, S does the following things and replaces count by count− 1:
• If R is honest:

(a). For each verification point z = (α, β1, . . . , βm) S has sent to a corrupted party, S computes a new point
(α,
∑m

k=1 ckβk). Assuming all these new points form a set M. Then S checks
W = {(c1, f1(x)), . . . , (ck, fk(x))}, if c, c1, . . . , ck are linear dependent, assume c =

∑k
j=1 ajcj , then S

computes f(x) =
∑k

j=1 ajfj(x).
(b). ∀Pi ∈ P, if Pi is corrupted, S waits to receive a verification set Zi,c

count from A. If c, c1, . . . , ck are linear
independent, S checks whether at least one point in Zi,c

count is in M. Otherwise, S checks whether at
least one point in Zi,c

count on f(x). If the check passes, S considers that R receives a correct verification
set. If Pi is honest, S regards that R receives a correct verification set Zi,c

count from Pi when the set
arrives.

(c). After receiving t+ 1 correct verification sets, S allows FAPICP to send the output to R.
• If R is corrupted:

(a). S waits to receive s from FAPICP. For each verification point z = (α, β1, . . . , βm) S sent to corrupted Pi,
S computes a new point (α,

∑m
k=1 ckβk). Since the each α of these points are distinct, S has

(T + 1)2tκ new points. Then S checks W = {(c1, f1(x)), . . . , (ck, fk(x))}.
– If c, c1, . . . , ck are linear dependent, assume c =

∑k
j=1 ajcj , then S gets a new polynomial

f(x) =
∑k

j=1 ajfj(x).
– If c, c1, . . . , ck are linear independent, S samples a random degree-((T + 1)2tκ+ L) polynomial

f(x) whose L highest coefficients form vector s and all the (T + 1)2tκ new points are on this
polynomial.

(b). S reveals f(x) to R. For each honest Pi, S samples (T + 1)κ random points αi
1, . . . , α

i
(T+1)κ in F and

sends {((αi
1, f(α

i
1)), . . . , (α

i
(T+1)κ, f(α

i
(T+1)κ)))} to R on behalf of Pi.

Simulator S

Figure 22: Simulator for the FAPICP when both D and I are honest

Hybrid arguments:
Hyb0: In this hybrid, S receives honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, S first samples the verification points for corrupted parties randomly from Fm+1

and then sample the polynomials f (1)(x), . . . , f (m)(x) based on the (T + 1)2tκ verification points and the
secrets s(1), . . . , s(m). Since the polynomials are degree-(L+(T+1)2tκ) and each s(k) is in FL, the verification
points are ((T + 1)2tκ + 1)-wise independent in Hyb0, i.e. the (T + 1)2tκ verification points for corrupted
parties are uniformly random. So we only change the order of generating corrupted parties’ verification
points and the polynomials, which doesn’t change the output distribution. Thus, Hyb1 and Hyb0 have the
same output distribution.

Hyb2: In this hybrid, if the verification points for corrupted parties are not distinct, then S aborts the
simulation. Note that the probability that each two verification points are the same is 1/|F| and there are
(T + 1)2tκ points for corrupted parties, so the probability that the verification points are not distinct is

ϵ1 <
1

|F|
· ((T + 1)2tκ)((T + 1)2tκ− 1)

2
<

(T + 1)4t2κ2

2κ
,

which is negligible in κ. Thus, the output distributions of Hyb2 and Hyb1 are statistically close.
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Hyb3: In this hybrid, S doesn’t check the verification points sent from honest parties by himself on
behalf of I. Instead, S considers that I accepts Pi’s verification set when I receives it. Since D and Pi are
both honest, Pi always sends a correct verification set, so I always accepts it. Thus, Hyb3 and Hyb2 have
the same output distribution.

Hyb4: In this hybrid, S doesn’t check the verification points sent from corrupted parties by himself on
behalf of I. Instead, S checks if the verification points are among those generated from D sent to corrupted
parties. The distribution changes only when some verification point (α′, β′

1, . . . , β
′
m) (different from the veri-

fication points sent from D to corrupted parties) sent from corrupted to I is just (α′, f (1)(α′), . . . , f (m)(α′)).
Since corrupted parties only have (T + 1)2tκ verification points, so at any point α′ different from the first
element of any of them, (f (1)(α′), . . . , f (m)(α′)) is uniformly random in Fm. So the probability that the
verification point (α′, β′

1, . . . , β
′
m) will be accepted by I in Hyb2 is at most 1/|F|m and (T +1)tκ verification

points are sent from corrupted parties to I. This means the probability that the output distribution changes
is at most

ϵ2 <
(T + 1)tκ

2mκ
,

which is negligible in κ. Thus, the output distributions of Hyb4 and Hyb3 are statistically close.
Hyb5: In this hybrid, S generate a set W with each element (c, f(x)) as the adversary’s knowledge

of vectors c from previous revelations and their corresponding polynomial f(x) sent from I to R. W is
initialized to be ∅. For each revelation, if R is corrupted, S needs to add the c and the corresponding f(x)
to W if the c can’t be generated by doing a linear combination of the vectors used in previous revelation
to corrupted parties since f(x) can’t be determined based on previous polynomials revealed to corrupted
parties. On the other hand, if c can be generated by doing a linear combination of the vectors used in
previous revelation to corrupted parties, the adversary knows what polynomial will be sent from I from W,
so there is no need to add elements into W. That is to say, S checks W = {(c1, f1(x)), . . . , (ck, fk(x))},
if c, c1, . . . , ck are linear independent, S includes (c, f(x)) into W, where f(x) =

∑m
i=1 f

(i)(x). Generating
this W doesn’t change the output distribution. Thus, Hyb5 and Hyb4 have the same output distribution.

Hyb6: In this hybrid, S doesn’t sample f (1)(x), . . . , f (k)(x) at the beginning. Instead, S only com-
putes or samples f(x) corresponding to c during each revelation. If f(x) can be determined from W =
{(c1, f1(x)), . . . , (ck, fk(x))}, i.e. c can be computed by doing linear combination of c1, . . . , ck, S directly
computes f(x) by doing the same linear combination of f1(x), . . . , fk(x). Otherwise, S samples a random
degree-((T +1)2tκ+L) polynomial f(x) whose L highest coefficients form vector s =

∑m
i=1 cis

(i) and all the
(T + 1)2tκ new points (α,

∑m
i=1 ciβi) are on this polynomial. Since sampling each f (i)(x) based on s(i) and

those (α, βi) can be regard as sampling a point (α′
i, β

′
i) on f (i)(x) where α′

i is different from the α of any
corrupted parties’ verification points. Then S can compute f (i)(x) based on and s(i) and the (T +1)2tκ+1
distinct points on the polynomial. Since random sampling each β′

i in F and add up β =
∑m

i=1 ciβ
′
i can only

get a uniformly random β ∈ F when c can’t be computed by doing linear combination of c1, . . . , ck, which is
equivalent to directly sampling f(x) based on

∑m
i=1 cis

(i) and those (α,
∑m

i=1 ciβi). So this doesn’t change
the output distribution. Thus, Hyb6 and Hyb5 have the same output distribution.

Hyb7: In this hybrid, for each revelation if R is corrupted, for each honest party Pi, D doesn’t compute
(α,
∑m

k=1 ckβk) for each verification point Pi has. Instead, S sample (T +1)κ random points αi
1, . . . , α

i
(T+1)κ

in F and sends {((αi
1, f(α

i
1)), . . . , (α

i
(T+1)κ, f(α

i
(T+1)κ)))} to R on behalf of Pi. Since each α of the verification

points Pi is randomly sampled and each (α, β) sent from Pi to R must be on the f(x) sent from I to R. So
this doesn’t change the output distribution. Thus, Hyb7 and Hyb6 have the same output distribution.

Hyb8: In this hybrid, for each revelation if R is honest, for each honest Pi, S doesn’t follow the protocol
to check Pi’s verification set on behalf of R. Instead, S considers that R accepts Pi’s verification set when R
receives it. Since D and Pi are both honest, Pi always sends a correct verification set, so R always accepts
it. Thus, Hyb8 and Hyb7 have the same output distribution.

Hyb9: In this hybrid, for each revelation if R is honest, when c is not a linear combination of c1, . . . , ck
in W, S doesn’t check whether there exists an verification point sent from corrupted Pi to R on the f(x) sent
from I to R. Instead, S checks if there exists an verification point correctly computed from the verification
points sent from D to corrupted parties. The output distribution only changes when some verification

34



point (α′, β′) sent from corrupted Pi to R satisfies that α′ is different from any α of the corrupted parties’
verification points sent from D, but β′ = f(α). Since in this condition, even if A knows s(1), . . . , s(m), he
still need another point to compute f(x). Since f(x) is randomly generated based on s(1), . . . , s(m) and the
corrupted parties’ verification points, for any α′, F (α′) is uniformly random in F. Since there are (T + 1)tκ
points sent from corrupted parties to R, the probability that the output distribution changes is

ϵ3 =
(T + 1)tκ

2κ
,

which is negligible in κ. Thus, the distributions of Hyb9 and Hyb8 are statistically close.
Hyb10: In this hybrid, S doesn’t know s(1), . . . , s(m) at the beginning and use them to compute s for

each revelation to corrupted parties. Instead, S gets s from the functionality output if R is corrupted. Since
S doesn’t need to sample f (1)(x), . . . , f (m)(x) in Hyb7, he doesn’t need s(1), . . . , s(m) except using them to
compute s when R is corrupted. Thus, Hyb10 and Hyb9 have the same output distribution.

Note that Hyb10 is the ideal-world scenario, ΠAPICP statistically-securely computes FAPICP.

Remark 2. When D and I are both honest, R is corrupted, S may not be able to compute the polynomial
based on the verification points of the corrupted parties, the secret, and one other point on the polynomial if
there are less than t corrupted parties. In this case, we can generate the corrupted parties and (n− 1)/3− t
honest parties’ verification points, and then S can still compute the polynomials.

When D and I are corrupted:

1. For each honest Pi ∈ P, S receives (T + 1)2κ verification points on behalf of Pi. Then S randomly divides
them into T + 1 disjoint sets. Each set is of size (T + 1)κ, denoted by Zi

1, . . . , Z
i
T+1. Then S sends Zi

T+1 to
I on behalf of Pi.

2. S sets s(1) = · · · = s(m) = 0 and sends (Init,APICP, T, (s(1), . . . , s(m))) to FAPICP on behalf of D. Here 0 is
the zero vector in FL.

3. S initializes a counter count = T .
4. For each revelation, if count > 0, S does the following and replaces count by count− 1:

• If R is honest:
(a). S receives f ′(x) from I.
(b). For each corrupted Pi ∈ P, S waits to receive a verification set Zi,c

count. For each honest Pi ∈ P, S
uses Zi

count to compute Zi,c
count = {(r0,

∑m
k=1 ckrk) | (r0, . . . , rm) ∈ Zi

count}. In both cases, S checks
whether at least one point in Zi,c

count is consistent with f ′(x). If true, S considers that R receives a
correct verification set.

(c). When S receives t+ 1 correct verification sets, let s′ be the L highest coefficients of f ′(x), he sends
Proceed and s′ to FAPICP and allows FAPICP to send the output to R. When S receives 2t+ 1
incorrect verification sets, he send Ignore to FAPICP.

• If R is corrupted, for each honest Pi, S uses Zi
count to compute Zi,c

count and sends Zi,c
count to R on behalf of

Pi.

Simulator S

Figure 23: Simulator for the FAPICP when both D and I are corrupted

Hybrid arguments:
Hyb0: In this hybrid, S receives honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, we change how R receives s′. After receiving at least t + 1 correct verification

sets, S sends Proceed and s′ to FAPICP and lets R receives the output from FAPICP. The difference between
Hyb0 and Hyb1 is R will wait to receive s′ from S or FAPICP, which makes no difference to the output
distribution. Thus, Hyb1 and Hyb0 have the same output distribution.

Note that Hyb1 is the ideal-world scenario, ΠAPICP statistically-securely computes FAPICP.
When D is honest and I is corrupted:
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1. S waits to receive s(1), . . . , s(m) from FAPICP. For each k ∈ [m], S selects a random degree-(L+ t(T + 1)2κ)
polynomial f (k)(x) whose the L highest coefficients form vector s(k).

2. For each corrupted Pi, S randomly samples (T + 1)2κ elements from F. For each element α, S sends
verification point z = (α, f (1)(α), . . . , f (m)(α)) to corrupted Pi.

3. S sends f (1)(x), . . . , f (m)(x) to I. For each honest Pi, S randomly samples (T + 1)κ elements
αi
1, . . . , α

i
(T+1)κ in F. For each j ∈ [(T + 1)κ], S sends verification point {(αi

j , f
(1)(αi

j), . . . , f
(m)(αi

j))} to I
on behalf of Pi.

4. S initializes a counter count = T .
5. For each revelation, S computes f(x) =

∑m
k=1 ckf

(k)(x). If count > 0, S does the following things and
replaces count by count− 1:
• If R is honest:

(a). S receives f ′(x) from I.
(b). Let s be vector of the L highest coefficients of f(x). S checks whether f(x) = f ′(x). If so, S sends

Proceed and s to FAPICP. Otherwise, S sends Ignore to FAPICP.
(c). If f ′(x) = f(x), for each corrupted Pi ∈ P, S receives a verification set Zi,c

count from Pi and follows
the protocol to check the verification set from Pi on behalf of R. For each honest Pi, S considers
that R receives a correct verification set when R receives it.

(d). When S receives t+ 1 correct verification sets, he allows FAPICP to send the output to R.
• If R is corrupted, for each honest Pi, S samples (T + 1)κ random elements αi

1, . . . , α
i
(T+1)κ from F and

sends Zi,c
count = {(αi

j , f(α
i
j))}j∈[(T+1)κ] to R on behalf of Pi.

Simulator S

Figure 24: Simulator for the FAPICP when D is honest and I is corrupted

Hybrid arguments:
Hyb0: In this hybrid, S receives honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, S will change how to compute the corrupted parties’ verification points. Instead

of using honest D’s inputs, S waits to receive s(1), . . . , s(m) from FAPICP. The only difference between Hyb0

and Hyb1 is how S gets s(1), . . . , s(m), which doesn’t change the output distribution. Thus, Hyb1 and
Hyb0 have the same output distribution.

Hyb2: In this hybrid, for each honest party, S will not sample the whole (T + 1)2κ random elements
to compute verification points at the beginning. When each honest Pi needs to uses Zi

T+1 or Zi,c
count, S will

randomly samples (T + 1)κ elements from F to compute Zi
T+1 or Zi,c

count. We only changed the order of
creating random elements. Thus, Hyb2 and Hyb1 have the same output distribution.

Hyb3: In this hybrid, when R is honest, S adds an addition condition f ′(x) = f(x) to check whether
f ′(x) received from I is acceptable. If so, S sends Proceed and s to FAPICP. Otherwise, S sends Ignore to
FAPICP. The difference between Hyb3 and Hyb2 is when f ′(x) ̸= f(x), S can still receive t + 1 correct
Zi,c
count. When f ′(x) ̸= f(x) are accept by S, that means at least one point in honest Pi’s Zi,c

count is consistent
with f ′(x). For each honest Pi, in each revelation time, the probability ϵ4 that this happens is equal to I
correctly guesses one random element sampled by S.

ϵ4 = Pr [S accepts f ′(x)|f ′(x) ̸= f(x)] =

(T+1)κ−1∏
j=0

κ− j

|F| − j
≤ (

κ

2κ
)(T+1)κ

which is negligible.
Then we take the union bound for all honest parties and revelation times, the probability that I can

fake a f ′(x) is (2t + 1)Tϵ4, which is still negligible. Thus, the output distributions of Hyb2 and Hyb1 are
statistically close.

Hyb4: In this hybrid, for each revelation if R is honest, for each honest Pi, S doesn’t follow the protocol
to check Pi’s verification set on behalf of R. Instead, S considers that R accepts Pi’s verification set when
R receives it. Since D and Pi are both honest, f ′(x) = f(x), Pi always sends a correct verification set, so R
always accepts it. Thus, Hyb4 and Hyb3 have the same output distribution.
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Hyb5: In this hybrid, we change how R receives s. Upon receiving at least t + 1 correct Zi,c
count and

f ′(x) = f(x), S lets R receives the output from FAPICP. Besides, s computed by S is equal to s computed
by FAPICP. Thus, Hyb5 and Hyb4 have the same output distribution.

Note that Hyb5 is the ideal-world scenario, ΠAPICP statistically-securely computes FAPICP.
When D is corrupted and I is honest:

1. For each honest Pi, S waits to receive verification points from D. When Pi receives (T + 1)2κ verification
points, S randomly divides them into T + 1 disjoint sets, where each set is of size (T + 1)κ, denoted by
Zi

1, . . . , Z
i
T+1.

2. S receives f (1)(x), . . . , f (m)(x) from D and does the following:
(a). S checks whether all of these polynomials are degree-(L+ t(T + 1)2κ). If so, S lets s(1), . . . , s(m) be the

vector of the L highest coefficients of f (1)(x), . . . , f (m)(x). Otherwise, S aborts the simulation.
(b). For each Pi ∈ P:

• If Pi is corrupted, S waits to receive a verification set Zi
T+1. When verification points in Zi

T+1 are
all consistent with f (1)(x), . . . , f (m)(x), S considers that I receives a correct verification set.

• Otherwise, S uses the Zi
T+1 created by himself. When verification points in Zi

T+1 are all consistent
with f (1)(x), . . . , f (m)(x) and at least T (T + 1)κ+ 1 verification points among {Zi

j}j∈[T+1] are all
consistent with f (1)(x), . . . , f (m)(x), S considers that R receives a correct verification set.

(c). When I receives 2t+ 1 correct verification sets, he initializes a counter count = T and sends
(Init,APICP, T, (s(1), . . . , s(m))) to FAPICP. Then, S allows FAPICP to send the output to I. Otherwise,
S does not continue.

3. For each revelation, S computes f(x) =
∑m

k=1 ckf
(k)(x). When count > 0, S does the following things and

replaces count by count− 1:
• If R is honest:

(a). For each Pi ∈ P, if Pi is corrupted, S waits to receive a verification set Zi,c
count from Pi. If Pi is

honest, S uses Zi,c
count created by himself. In both cases, S checks whether at least one point in

Zi,c
count is consistent with f(x).

(b). When S receives at least t+ 1 correct verification sets, let s be the vector of the L highest
coefficients of f(x), he allows FAPICP to send the output to R.

• If R is corrupted, S sends f(x) to R on behalf of I. S uses Zi
count to compute Zi,c

count and sends Zi,c
count to

R on behalf of each honest Pi.

Simulator S

Figure 25: Simulator for the FAPICP when D is corrupted and I is honest

Hybrid arguments:
Hyb0: In this hybrid, S receives honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, we change how I receives s(1), . . . , s(m). After receiving at least 2t + 1 correct

verification sets, S sends (Init,APICP, T, (s(1), . . . , s(m))) to FAPICP. Then I will receive s(1), . . . , s(m) from
FAPICP instead of computing them by himself, which makes no difference to the output distribution. Thus,
Hyb1 and Hyb0 have the same output distribution.

Hyb2: In this hybrid, S adds an additional verification condition for honest Pi’s verification points. S will
also check at least (T+1)Tκ+1 verification points among {Zi

j}j∈[T+1] are consistent with f (1)(x), . . . , f (m)(x).
If true, S considers that Zi

T+1 is a correct verification set. The output distribution changes only when honest
Pi has less than (T + 1)2κ + 1 correct verification points but he still provides a correct Zi

T+1 to I. The
probability is

ϵ5 ≤
(T+1)κ−1∏

j=0

(T + 1)Tκ− j

(T + 1)2κ− j
≤ (1− 1

T + 1
)(T+1)κ ≤ e−κ

which is negligible. Since S needs to receive at least t+ 1 honest Pi’s correct Zi
T+1, the output distribution

only changes with probability (t+1)ϵ5, which is still negligible. Thus, the output distributions of Hyb2 and
Hyb1 are statistically close.
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Note that Hyb2 is the ideal-world scenario, ΠAPICP statistically-securely computes FAPICP.
Then we compute the communication complexity of our protocol.
ΠAPICP takes m vectors as inputs and each vector is of size L, T is an input parameter. All parties execute

the Initialization Phase only once, while the Revelation Phase can be executed for at most T times.
During the Initialization Phase: D sends m degree-(L + t(T + 1)2κ) polynomials to I, which requires

O(mLκ + mnT 2κ2)-bit communication. D also sends (m + 1)(T + 1)2κ evaluation points to each party,
resulting in a communication of O(mnT 2κ2). Each party sends a set of size (T + 1)κ2 to I, resulting in a
communication of O(nT 2κ2) bits. Therefore, the total communication cost is O(mLκ+mnT 2κ2) bits during
the Initialization Phase.

During the Revelation Phase: Each time sending a degree-(L + t(T + 1)2κ) polynomial from I to R
requires communication of O(Lκ + nT 2κ2) bits. Each party sends a set of (T + 1)κ field elements to I,
resulting in a communication of O(nT 2κ2) bits. Therefore, the total communication cost is O(Lκ+ nT 2κ2)
bits during the Revelation Phase. Since the Revelation Phase can be executed for at most T times, the total
communication cost is O(LTκ+ nT 3κ2) bits.

Therefore, ΠAPICP requires communication of O(mLκ+mnT 2κ2 + LTκ+ nT 3κ2) bits.

D Proof of the Main Theorem about Our ACSS Protocol

D.1 Construction of ΠACSS

We present our construction of ΠACSS as follows.

All parties execute ΠSh, ΠVer, ΠAuth and ΠComp in order.

Protocol ΠACSS

Figure 26: The protocol of the ΠACSS

D.2 Proof of Lemma 2
Proof. We prove this theorem by constructing a simulator S. S needs to interact with the environment Z
and with the ideal functionalities. S constructs virtual real-world honest parties and runs the real-world
adversary A. For simplicity, we just let S communicate with A on behalf of honest parties and the ideal
functionality of sub-protocols in our proof. In order to simulate the communication with Z, every message
that S receives from Z is sent to A, and likewise, every message sent from A sends to Z is forwarded by S.
Each time an honest party needs to send a message to another honest party, S will tell A that a message has
been delivered such that A can tell S the arrival time of this message to help S instruct the functionalities
to delay the outputs in the ideal world. For each request-based delayed output that needs to be sent to an
honest party, we let S delay the output in default until we say S allows the functionality to send the output.
We will show that the output in the ideal world is identically distributed to that in the real world by using
hybrid arguments.

Construction of the ideal adversary S.
When D is honest:

Sharing Phase
1. For each corrupted Pj , S receives {q1(αj), . . . , qN (αj)} from FACSS.
2. Define idx = ((k − 1) · L′ + ℓ− 1) · (t+ 1) + 1. For each ℓ ∈ [L′], k ∈ [m′] and corrupted Pj , S randomly

selects a degree-2t (column) polynomial g(k)ℓ,j (y) such that g
(k)
ℓ,j (α−i) = qidx+i(αj) for each i ∈ [0, t]. For each

ℓ ∈ [L′], k ∈ [m′ + 1,m] and corrupted Pj , S randomly samples a degree-2t polynomial as g
(k)
ℓ,j (y).

3. For each ℓ ∈ [L′], k ∈ [m] and corrupted Pi, S randomly selects a degree-t (row) polynomial f (k)
ℓ,i (y) such

Simulator S
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that f
(k)
ℓ,i (αj) = g

(k)
ℓ,j (αi) for each corrupted party Pj .

4. S sends the polynomials {g(k)ℓ,j }ℓ∈[L′],k∈[m] to each corrupted Pj .
5. S initializes a set M to ∅. For each Pi ∈ P:

• If Pi is honest, when Pi receives his column polynomials, S broadcasts OKi on behalf of Pi. Then S
delivers an initialization request to FAPICP(Pi, D) on behalf of Pi and emulates FAPICP(Pi, D) to deliver
the output to D. When D receives the output and OKi, S includes Pi into M.

• If Pi is corrupted, S emulates FAPICP(Pi, D) to receive (Init,APICP, T, (g
(1)
∗,i , . . . , g

(m)
∗,i )) from Pi. If OKi is

received from Pi, S checks if g(k)∗,i (y) = (g
(k)
1,i , . . . , g

(k)
ℓ,i ) for each k ∈ [m]. If so, S emulates FAPICP(Pi, D)

to send an output (Pi,APICP, (g
(1)
∗,i , . . . , g

(m)
∗,i )) to D and includes Pi into M when D receives the

output and OKi.
6. When |M| = 2t+ 1, S broadcasts M on behalf of D.
7. For each honest Pj , S waits until Pj receives M and {OKi}Pi∈M and then begins the simulation of Pj in

the next phase.

Figure 27: Part-(1/4) of the simulator for the FACSS when D is honest

Verification Phase
1. S initializes a set R = {(0,o)} where o is a vector of L′ bivariate polynomials that maps any (x, y) ∈ F2 to

0. Each element that will be included into R is of form (r,F ) ∈ F× (F[X,Y ])L
′
.

2. For each honest Pi ∈ P:
(1). When Pi receives the column polynomials from D, S broadcasts a random ri ∈ F on behalf of Pi.
(2). For each honest party Pj and Ph ∈ M, when Pj receives ri, S sends

(Request,APICP, Pi, (ri, r
2
i , . . . , r

m
i )) to FAPICP(Ph, D) on behalf of Pj .

(3). For each honest Ph ∈ M, S emulates FAPICP(Ph, D) to deliver an output to Pi. For each corrupted
Ph ∈ M, S faithfully emulates FAPICP(Ph, D).

(4). When Pi receives the output from FAPICP(Ph, D) for all Ph ∈ M, S considers that Pi accepts his
{g(k)ℓ,i }k∈[m],ℓ∈[L′] and begins the simulation of Pi in the next phase.

3. For each corrupted Pi ∈ P:
(1). For each honest Pj and Ph ∈ M, if S receives ri on behalf of Pj , S sends

(Request,APICP, Pi, (ri, r
2
i , . . . , r

m
i )) to FAPICP(Ph, D) on behalf of Pj .

(2). For each corrupted Ph ∈ M, S faithfully emulates FAPICP(Ph, D).
(3). For each honest Ph ∈ M,

• If (ri,F ) ∈ R for some F = (F1(x, y), . . . FL′(x, y)) ∈ (F[X,Y ])L
′
, S emulates FAPICP(Ph, D) to

send g∗,h to Pi, where g∗,h = (g1,h(y), . . . , gL′,h(y)) with each gℓ,h(y) = Fℓ(αh, y).
• Otherwise, S samples a random vector of L′ degree-(t, 2t) polynomial F = (F1(x, y), . . . , FL′(x, y))

with Fℓ(αj , y) =
∑m

k=1 r
k
i · g(k)ℓ,j (y) and Fℓ(x, αj) =

∑m
k=1 r

k
i · f (k)

ℓ,j (x) for each corrupted Pj and
ℓ ∈ [L′]. Then S emulates FAPICP(Ph, D) to send g∗,h to Pi for the corresponding g∗,h and
includes (ri,F ) into R.

Simulator S

Figure 28: Part-(2/4) of the simulator for the FACSS when D is honest

Authentication Phase
1. For each Pi ∈ P and Pv ∈ P:

(1). S follows the protocol to send requests to FRandShare,F0
RandShare on behalf of honest parties. Then S

emulates FRandShare,F0
RandShare to receive corrupted parties’ shares of

[µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m], {[r(k)u ]it}k∈[m],u∈[t], {[maskj ]

i
t}j∈[n] from A and sends them to corrupted parties.

(2). S follows the protocol to compute the corrupted parties’ shares of {[τ (k)
i�v]

i
2t}k∈[m].

(3). If Pi is honest:
1) For each honest Pj ∈ P, when Pi receives Pj ’s shares of tags, S broadcasts a random ri�v,j ∈ F on

behalf of Pi.

Simulator S
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2) For each corrupted Pj , S receives {τ̃ (k)
i�v,j}k∈[m] from Pj and broadcasts a random ri�v,j ∈ F on

behalf of Pi. Then S computes τ̃i�v,j =
∑m

k=1 r
k
i�v,j · τ̃

(k)
i�v,j and Pj ’s share of

[τi�v]
i
2t =

∑m
k=1 r

k
i�v,j · [τ

(k)
i�v]

i
2t. If there exists some k ∈ [m] such that τ̃

(k)
i�v,j is not equal to Pj ’s

share of [τ (k)
i�v]

i
2t but τ̃i�v,j is equal to Pj ’s share of [τi�v]

i
2t, S aborts the simulation.

If Pi is corrupted:
1) S randomly samples honest parties’ shares of {[τ (k)

i�v]
i
2t}k∈[m] based on the corrupted parties shares.

2) For each honest Pj , S sends Pj ’s shares of {[τ (k)
i�v]

i
2t}k∈[m] to Pi on behalf of Pj .

3) S receives ri�v,j from Pi.
(4). For each Pj ∈ P:

1) For each Pα and Ph ∈ M, after each honest party receives ri�v,j , S sends
(Request,APICP, Pα, (ri�v,j , r

2
i�v,j . . . , r

m
i�v,j)) to FAPICP(Ph, D) on behalf of this honest party.

2) For each honest Pα and Ph ∈ M:
• If Ph is honest, S emulates FAPICP(Ph, D) to deliver an output to Pα.
• If Ph is corrupted, S faithfully emulates FAPICP(Ph, D).

3) For each corrupted Pα and Ph ∈ M:
• If Ph is corrupted, S faithfully emulates FAPICP(Ph, D).
• If Ph is honest:

– If (ri�v,j ,F ) ∈ R for some F = (F1(x, y), . . . FL′(x, y)) ∈ (F[X,Y ])L
′
, S emulates

FAPICP(Ph, D) to send g∗,h to Pα, where g∗,h = (g1,h(y), . . . , gL′,h(y)) with each
gℓ,h(y) = Fℓ(αh, y).

– Otherwise, S samples a random vector of L′ degree-(t, 2t) polynomial
F = (F1(x, y), . . . , FL′(x, y)) with Fℓ(αj , y) =

∑m
k=1 r

k
i�v,j · g

(k)
ℓ,j (y) and

Fℓ(x, αj) =
∑m

k=1 r
k
i�v,j · f

(k)
ℓ,j (x) for each corrupted Pj and ℓ ∈ [L′]. Then S emulates

FAPICP(Ph, D) to send g∗,h to Pα for the corresponding g∗,h and includes (ri�v,j ,F ) into R.
4) S follows the protocol to compute corrupted parties’ shares of [γi�v,j ]

i
t. If Pi is corrupted, S

computes Pj ’s share τi�v,j and randomly samples the honest parties’ shares of [γi�v,j ]
i
t based on

the corrupted parties’ shares and Pj ’s share.
5) If Pi is corrupted, for each honest Pα, S sends Pα’s share of [γi�v,j ]

i
t and (Request, privRec, Pi) to

FprivRec on behalf of Pα. If Pi is honest, for each honest Pα, S sends a request to FprivRec on behalf
of Pα.

6) If S emulates FprivRec to send the corrupted parties shares of [γi�v,j ]
i
t to A. If Pi is corrupted, S

emulates FprivRec to send the whole sharing [γi�v,j ]
i
t to Pi. If Pi is honest, S emulates FprivRec to

deliver an output sharing [γi�v,j ]
i
t to Pi.

(5). If Pi is honest:
1) For each honest Pj , when Pi receives the sharing [γi�v,j ]

i
t, S considers that Pi accepts Pj ’s shares

{τ (k)
i�v,j}k∈[m].

2) For each corrupted Pj , S considers that Pi accepts Pj ’s shares {τ (k)
i�v,j}k∈[m] if Pj ’s share of

[γi�v,j ]
i
t is equal to τi�v,j .

3) When Pi accepts 2t+ 1 different parties’ shares, S reconstructs {τ (k)
i�v}k∈[m].

2. For each honest Pi, S broadcasts Tagi on behalf of Pi after reconstructing {τ (k)
i�v}k∈[m],v∈[n]. Then S follows

the protocol to prepare the set W and broadcasts it on behalf of D.
3. For each honest party Pj , S waits until Pj receives W and {Tagi}Pi∈W and then begins the simulation of

Pj in the next phase.

Figure 29: Part-(3/4) of the simulator for the FACSS when D is honest

Completion Phase

Reconstructing row polynomials:
For each Pv ∈ P:
• If Pv is honest:

Simulator S
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1. For each honest party, S follows the protocol to deliver his shares of [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] and

(Request, privRec, Pv) for each Pi ∈ W to FprivRec.
2. For each corrupted Pi ∈ W:

(1). S receives {g̃(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] from Pi.
(2). S emulates FprivRec to deliver the whole sharings [µi�v]

i
t, [ν

(1)
i�v]

i
t, . . . , [ν

(m)
i�v ]

i
t to Pv and sends

the corrupted parties’ shares of them to A.
(3). S randomly samples ri�v ∈ F and sends it to Pi on behalf of Pv.
(4). S receives τ̃i�v and {g̃ℓ,i}ℓ∈[L′] from Pi.

3. For each Pi ∈ W:
– If Pi is honest, when Pv receives Pi’s {gℓ,i}ℓ∈[L′] and τi�v, S considers that Pv accepts Pi’s

{g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′].
– If Pi is corrupted, S considers that Pv accepts Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] if

g̃ℓ,i(y) =
∑m

k=1 r
k
i�vg

(k)
ℓ,i (y) for all ℓ ∈ [L′], τ̃i�v =

∑m
k=1 r

k
i�vτ

(k)
i�v and g̃

(k)
ℓ,i (αv) = g

(k)
ℓ,i (αv) for

each k ∈ [m] and ℓ ∈ [L′].
4. When Pv accepts t+ 1 different Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′], S considers that Pv gets his

{f (k)
ℓ,v }k∈[m],ℓ∈[L′].

• If Pv is corrupted:
1. For each honest party S follows the protocol to deliver his shares of [µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] and

(Request, privRec, Pv) for each Pi ∈ W to FprivRec.
2. For each corrupted Pi ∈ W:

(1). S randomly samples µi�v ∈ FL and computes ν
(k)
i�v = τ

(k)
i�v − g

(k)
∗,i · νi�v.

(2). S randomly samples honest parties’ shares of [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] based on the corrupted

parties’ shares and the secrets µi�v, {ν(k)
i�v}k∈[m].

(3). S emulates FprivRec to send the whole sharings [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] to Pv.

3. For each honest Pi ∈ W:
(1). S sends {f (k)

ℓ,v (αi)}k∈[m],ℓ∈[L′] to Pv on behalf of Pi.
(2). S randomly samples honest parties’ shares of [µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] based on the corrupted

parties’ shares.
(3). S emulates FprivRec to send the whole sharings [µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] to Pv.

(4). S receives ri�v from Pv.
– If (ri�v,F ) ∈ R for some F = (F1(x, y), . . . FL′(x, y)) ∈ (F[X,Y ])L

′
, S sends

g∗,i = (g1,i(y), . . . , gL′,i(y)) with each gℓ,i(y) = Fℓ(αi, y) to Pv.
– Otherwise, S samples a random vector of L′ degree-(t, 2t) polynomial

F = (F1(x, y), . . . , FL′(x, y)) with Fℓ(αj , y) =
∑m

k=1 r
k
i�v · g(k)ℓ,j (y) and

Fℓ(x, αj) =
∑m

k=1 r
k
i�v · f

(k)
ℓ,j (x) for each corrupted Pj and ℓ ∈ [L′]. Then S sends g∗,i to Pv

and includes (ri�v,F ) into R.
(5). S computes τi�v = g∗,i · µi�v +

∑m
k=1 r

k
i�vν

(k)
i�v and sends it to Pv on behalf of Pi.

Reconstructing column polynomials:
For each Pw ∈ P:
• If Pw is honest:

1. For each honest Pv ∈ P, when Pw receives {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′], S randomly broadcasts rv�w ∈ F

on behalf of Pw.
2. For each corrupted Pv ∈ P:

(1). S receives {f̃ (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′] from Pv.

(2). S randomly broadcasts rv�w ∈ F on behalf of Pw.
(3). For each corrupted Pi ∈ W, S receives τ̃i�w and {g̃ℓ,i}ℓ∈[L′] from Pi.

3. For each Pv ∈ P:
(1). For each Pi ∈ W:

– If Pi is honest, when Pw receives Pi’s {gℓ,i}ℓ∈[L′] and τi�w, S considers that Pw accepts Pi’s
{gℓ,i}ℓ∈[L′].

– If Pi is corrupted, S considers that Pw accepts Pi’s {gℓ,i}ℓ∈[L′] if g̃ℓ,i(y) =
∑m

k=1 r
k
v�wg

(k)
ℓ,i (y)

for all ℓ ∈ [L′] and τ̃i�w =
∑m

k=1 r
k
v�wτ

(k)
i�w.
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(2) When Pw accepts t+ 1 different Pi’s {gℓ,i}ℓ∈[L′],
– If Pv is honest, S considers that Pw accepts Pv’s {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′].
– If Pv is corrupted, S considers that Pw accepts Pv’s {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′] if
f
(k)
ℓ,v (αw) = f̃

(k)
ℓ,v (αw) for each k ∈ [m] and ℓ ∈ [L′].

4. When Pw accepts 2t+ 1 different Pv’s {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′], S allows FACSS to send the output to

Pv.
• If Pw is corrupted:

1. For each honest Pv ∈ P:
(1). S sends {g(k)ℓ,w(αv)}k∈[m],ℓ∈[L′] to Pw on behalf of Pv.
(2). S receives rv�w from Pw.
(3). For each honest Pi ∈ W:

– If (rv�w,F ) ∈ R for some F = (F1(x, y), . . . FL′(x, y)) ∈ (F[X,Y ])L
′
, S sends {gℓ,i}ℓ∈[L′]

with each gℓ,i(y) = Fℓ(αi, y) to Pw.
– Otherwise, S samples a random vector of L′ degree-(t, 2t) polynomial

F = (F1(x, y), . . . , FL′(x, y)) with Fℓ(αj , y) =
∑m

k=1 r
k
v�w · g(k)ℓ,j (y) and

Fℓ(x, αj) =
∑m

k=1 r
k
v�w · f (k)

ℓ,j (x) for each corrupted Pj and ℓ ∈ [L′]. Then S sends
{gℓ,i}ℓ∈[L′] to Pw and includes (rv�w,F ) into R.

(4). For each honest Pi ∈ W, S computes τi�w = g∗,i · µi�w +
∑m

k=1 r
k
v�wν

(k)
i�w and sends it to Pw

on behalf of Pi, where g∗,i = (g1,i(y), . . . , gL′,i(y)).

Figure 30: Part-(4/4) of the simulator for the FACSS when D is honest

Hybrid arguments:
Hyb0: In this hybrid, S receives honest parties’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, during the Sharing Phase, S samples corrupted parties’ column polynomials

and row polynomials first and then samples the bivariate polynomials based on D’s input and corrupted
parties’ polynomials. We only change the order of generating bivariate polynomials and corrupted parties’
polynomials, which doesn’t change the output distribution. Thus, Hyb1 and Hyb0 have the same output
distribution.

Hyb2: In this hybrid, S initializes a set R = {(0,o)} to record each random value r and the corresponding
bivariate polynomials computed by Fℓ(x, y) =

∑m
k=1 r

k
i · F (k)

ℓ (x, y). Each time S needs to compute a linear
combination of some honest parties’ column polynomials, we regard S computes a linear combination of the
bivariate polynomials generated in the Sharing Phase and then take the corresponding column polynomial
as the result. Each time S needs to compute a linear combination of bivariate polynomials, if ri is recorded
before, S uses {Fℓ(x, y)}ℓ∈[L′] recorded before instead of computing them again. Initializing a set doesn’t
change the output distribution. Thus, Hyb2 and Hyb1 have the same output distribution.

Since S computes each Fℓ by computing the linear combination of m′ degree-(t, 2t) bivariate polynomials
and m − m′ = T + T ′ completely random degree-(t, 2t) bivariate polynomials. We claim that doing at
most m − m′ = T + T ′ times of linear combinations corresponding to T + T ′ different random values
r1, . . . , rT+T ′ ̸= 0. Their corresponding vectors F = (F1, . . . , Fℓ) of polynomials, denoted by F1, . . . ,FT+T ′ ,
are random with the corrupted parties’ row and column polynomials of each bivariate polynomial Fℓ given.
We prove this fact through hybrid arguments Hyb2.0, . . . ,Hyb2.(T+T ′+1).

Note that we need (2t+1)(t+1) evaluation points to determine each degree-(t, 2t) bivariate polynomial.
Given corrupted parties’ column and row polynomials, we have t′(2t + 1) + t′(t + 1) − t′2 < (2t + 1)(t + 1)
evaluation points. Let δ = L′ · ((2t+ 1)(t+ 1)− t′(2t+ 1)− t′(t+ 1) + t′2), we need another a randomness
r′ ∈ Fδ to determine each F . Here r′ determines the vector of L′ outputs of F with L′ fixed inputs. Then, we
can reconstruct F by r′ and the polynomials of corrupted parties. Picking random F with column and row
polynomials fixed is the same as randomly sampling r′ ∈ Fδ. Suppose that we need randomness r′1, . . . , r′T+T ′

to determine F(1), . . . ,F(T+T ′). For a part added in r′1, . . . , r
′
T+T ′ , we let r̂1, . . . , r̂T+T ′ be the randomness r′

of the linear combination of the T + T ′ vectors of completely random bivariate polynomials corresponds to
r1, . . . , rT+T ′ . Besides, we let the randomness r′ ∈ Fδ of the T + T ′ vectors of ℓ completely random degree-
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(t, 2t) bivariate polynomials be r̃(1), . . . , r̃(T+T ′), then (r̃(1), . . . , r̃(T+T ′)) is completely random in Fδ(T+T ′).
Hyb2.0: S computes r′1, . . . , rT+T ′ honestly, uses them to compute F1, . . . ,FT+T ′ and outputs them.
Hyb2.1: In this hybrid, for the first time S needs to compute a linear combination of bivariate polyno-

mials, he samples a random r̂1 ∈ Fδ as the randomness r′ of the linear combination of the T + T ′ vectors
of completely random bivariate polynomials. Then, S computes r′1 with r̂′1 and the bivariate polynomials
{F (k)

ℓ }k∈[m′],ℓ∈[L′]. S then determines F1 using r′1. r̂1 is computed by:

r̂(1) =
(
rm

′+1
1 rm

′+2
1 · · · rm1

)
·


r̃(1)

r̃(2)

...
r̃(T+T ′)

 .

Since r1 ̸= 0, (r̃(1), . . . , r̃(T+T ′)) is completely random in Fδ(T+T ′), r̂1 is completely random in F. Thus,
Hyb2.1 and Hyb2.0 have the same output distribution.

Hyb2.2: In this hybrid, for the second time S needs to compute a linear combination of bivariate
polynomials, he samples a random r̂2 ∈ Fδ as the randomness r′ of the linear combination of the T+T ′ vectors
of completely random bivariate polynomials. Then, S computes r′2 with r̂′2 and the bivariate polynomials
{F (k)

ℓ }k∈[m′],ℓ∈[L′]. S then determines F2 using r′2. Given r̂1, r̂2 is computed by:

r̂(2) =
(
rm

′+1
2 rm

′+2
2 · · · rm2

)
·


r̃(1)

r̃(2)

...
r̃(T+T ′)



=

(
rm

′+1
2

rm
′+1

1

rm
′+2

2 − rm
′+1

2 rm
′+2

1

rm
′+1

1

· · · rm2 − rm
′+1

2 rm1
rm

′+1
1

)
·


r̂1
r̃(2)

...
r̃(T+T ′)

 .

Since r1 ̸= r2,

Det

(
rm

′+1
1 rm

′+2
1

rm
′+1

2 rm
′+2

2

)
̸= 0,

we have
rm

′+2
2 − rm

′+1
2 rm

′+2
1

rm
′+1

1

̸= 0. Since (r̃(1), . . . , r̃(T+T ′)) is completely random in Fδ(T+T ′), given r̂1, S

can randomly sample r̃(2), . . . , r̃(T+T ′) and compute r̃(1) based on r̂1. This shows that r̃(2) is completely

random in F. Note that
rm

′+2
2 − rm

′+1
2 rm

′+2
1

rm
′+1

1

· r̃(2) is added to r̂2, r̂2 is also completely random in F. Thus,

Hyb2.2 and Hyb2.1 have the same output distribution.
Hyb2.i(i ∈ [3, T + T ′]): In this hybrid, for the i-th time S needs to compute a linear combination

of bivariate polynomials, he samples a random r̂i ∈ Fδ as the randomness r′ of the linear combination
of the T + T ′ vectors of completely random bivariate polynomials. Then, S computes r′i with r̂′i and
the bivariate polynomials {F (k)

ℓ }k∈[m′],ℓ∈[L′]. S then determines Fi using r′i. Given r̂1, . . . , r̂i−1, S can
sample r̃(i), . . . , r̃(T+T ′) randomly and compute r̃(1), . . . , r̃(i−1) based on r̂1, . . . , r̂i−1. This shows that r̃(i) is
completely random in F. Like in Hyb2.2, r̂i can be computed by a linear combination of r̂1, . . . , r̂i−1 and
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r̃(i), . . . , r̃(T+T ′), we only need to prove that the coefficient of r̃(i) is nonzero. Since
r̂(1)

r̂(2)

...
r̂(i)

 =


rm

′+1
1 rm

′+2
1 · · · rm1

rm
′+1

2 rm
′+2

2 · · · rm2
...

...
. . .

...
rm

′+1
i rm

′+2
i · · · rmi

 ·


r̃(1)

r̃(2)

...
r̃(T+T ′)

 ,

the coefficient of r̃(i) is nonzero if and only if

Det


rm

′+1
1 rm

′+2
1 · · · rm

′+i
1

rm
′+1

2 rm
′+2

2 · · · rm
′+i

2
...

...
. . .

...
rm

′+1
i rm

′+2
i · · · rm

′+1
i

 ̸= 0.

This is guaranteed because r1, . . . , rT+T ′ are all distinct. Hence, r̂i is completely random in F. Thus, Hyb2.i

and Hyb2.(i−1) have the same output distribution.
Hyb2.(T+T ′+1): In this hybrid, S samples random vectors of L degree-(t, 2t) polynomials as F1, . . . ,FT+T ′

based on corrupted parties’ polynomials instead of computing them based on r̂1, . . . , r̂T+T ′ . Since r̂1, . . . , r̂T+T ′

are all randomly sampled in Hyb2,(T+T ′), r′1, . . . , r
′
T+T ′ are also completely random. Thus, given cor-

rupted parties’ polynomials, F1, . . . ,FT+T ′ are random, as in Hyb2,(T+T ′+1). Thus, Hyb2.(T+T ′+1) and
Hyb2.(T+T ′) have the same output distribution.

Then we complete the proof that with no more than T + T ′ times of linear combinations with respect to
different r ̸= 0, we can sample random F based on corrupted parties’ polynomials.

Hyb3: In this hybrid, during the Verification Phase, S doesn’t compute the output of FAPICP(Ph, D) for
corrupted Pi if Ph is honest. Instead, he checks if ri is recorded in R. If ri is recorded before, S only needs to
use {Fℓ(x, y)}ℓ∈[L′] to compute the output of FAPICP(Ph, D). Otherwise S chooses random bivariate degree-
(t, 2t) polynomials that are consistent with corrupted parties’ polynomials as {Fℓ(x, y)}ℓ∈[L′] corresponding to
ri and includes them into R. Then S computes the output of FAPICP(Ph, D) with the bivariate polynomials.
As we have argued in Hyb2.0, . . . ,Hyb2.(T+T ′+1), with at most n < T + T ′ revelation requests for each
FAPICP(Ph, D) in the Verification Phase, if some ri hasn’t been recorded before, each Fℓ is random with
corrupted parties’ column and row polynomials given, as what S samples in Hyb3. Thus, Hyb3 and Hyb2

have the same output distribution.
Hyb4: In this hybrid, during the Authentication Phase, for each honest Pi and corrupted Pj , S aborts

the simulation if Pj ’s shares of [τ
(k)
i�v]

i
2t are not correctly sent for some Pv ∈ P and k ∈ [m] but τi�v,j is

correct. This happens only when the random ri�v,j satisfies
∑m

k=1 r
k
i�v,j · τ

(k)
i�v,j = τi�v,j where each τ

(k)
i�v,j

is the share of [τ (k)i�v]
i
2t received from Pj . Note that any non-zero polynomial

∑m
k=1 τ

(k)
i�v,jx

k − τi�v,j has at
most m roots in F, and there are at most t(2t + 1)n pairs of (Pi, Pj , Pv), so the output distribution only
changes with probability

ϵ1 ≤ mt(2t+ 1)n

|F|
<

m · n3

2κ
,

which is negligible. Thus, the output distributions of Hyb4 and Hyb3 are statistically close.
Hyb5: In this hybrid, during the Authentication Phase, for each Pv ∈ P and corrupted Pi, S samples

honest parties’ shares of {[τ (k)i�v]
i
2t}k∈[m] based on corrupted parties’ shares instead of computing them by

himself. Besides, S doesn’t sample the honest parties’ shares of {[ν(k)i�v]
i
t}k∈[m]. Instead, S computes them

by

[ν
(k)
i�v]

i
t = [τ

(k)
i�v]

i
2t − [g

(k)
∗,i ]

i
t · [µi�v]

i
t −

t∑
u=1

[[eu]]
i
t · [r(k)u ]it.

Since [[eu]]
i
t is a fixed packed secret sharing, we can denote its degree-t sharing polynomial by fu(x), where

fu(α−u) = 1 and fu(αj) = 0 for each j ∈ {−1,−2, . . . ,−t, i}\{−u}. Let the sharing polynomial of [r(k)u ]it
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be gu(x), then gu(x) is a random degree-t polynomial with {gu(αj)}Pj∈C fixed. Hence, gu(α−u) is random
in F. Thus, the sharing polynomial h(x) of

∑t
u=1[[eu]]

i
t · [r

(k)
u ]it is a degree-2t polynomial such that for each

u ∈ [t], h(α−u) =
∑t

j=1 fj(α−u)gj(α−u) = fu(α−u)gu(α−u) = gu(α−u) is a random value in F. Since honest

parties’ shares of [r(k)u ]it are randomly sampled based on corrupted parties’ shares and gu(α−u), the honest
parties’ shares of

∑t
u=1[[eu]]

i
t · [r

(k)
u ]it are also random with the corrupted parties’ shares and {h(α−u)}u∈[t]

given. Since each h(α−u) is also random, sampling the honest parties’ shares of
∑t

u=1[[eu]]
i
t · [r

(k)
u ]it based on

corrupted parties’ shares gives the same output distribution as computing them. Besides, since fu(αi) = 0

for all u ∈ [t], the secret of the 2t-sharing
∑t

u=1[[eu]]
i
t · [r

(k)
u ]it is 0, i.e. it can be regarded as a [0]i2t added

in {[τ (k)i�v]
i
t}j∈[m]. Note that the honest parties’ shares of [µi�v]

i
t {[ν(k)i�v]

i
t}j∈[m] are also randomly sampled

based on corrupted parties’ shares, {[τ (k)i�v]
i
t}j∈[m] is a random 2t-sharing given corrupted parties’ shares, so

sampling the honest parties’ shares of {[τ (k)i�v]
i
t}j∈[m] instead of computing them doesn’t change the output

distribution. Hence, we only change the order of sampling the honest parties’ shares of {[ν(k)i�v]
i
t}k∈[m] and

{[τ (k)i�v]
i
2t}k∈[m]. Thus, Hyb5 and Hyb4 have the same output distribution.

Hyb6: In this hybrid, during the Authentication Phase, for each Pj ∈ P, each corrupted Pα and each
honest Ph ∈ M, S doesn’t compute the output of FAPICP(Ph, D). Instead, S checks whether ri�v,j has
been recorded in R before. If ri�v,j is recorded before, S only needs to use {Fℓ(x, y)}ℓ∈[L′] to compute
the output of FAPICP(Ph, D). Otherwise S chooses random bivariate degree-(t, 2t) polynomials that are
consistent with corrupted parties’ polynomials as {Fℓ(x, y)}ℓ∈[L′] corresponding to ri�v,j and includes them
into R. Then, S computes the output of FAPICP(Ph, D) with the bivariate polynomials. As we have argued
in Hyb2.0, . . . ,Hyb2.(T+T ′+1), with at most n+n3 = T < T +T ′ revelation requests for each FAPICP(Ph, D)
in the Verification Phase and the Authentication Phase, if some ri�v,j hasn’t been recorded before, each Fℓ

is random with corrupted parties’ column and row polynomials given, as what S samples in Hyb6. Thus,
Hyb6 and Hyb5 have the same distribution.

Hyb7: In this hybrid, in the Authentication Phase, for each Pv, Pj ∈ P and corrupted Pi, S samples
honest parties’ shares of [γi�v,j ]

i
t based on corrupted parties’ shares instead of computing them by himself.

Since honest parties’ shares of [maskj ]
i
t are randomly sampled based on the corrupted parties’ shares and are

added in [γi�v,j ]
i
t as a mask, the honest parties’ shares of [γi�v,j ]

i
t are also random based on the corrupted

parties’ shares. Thus, Hyb7 and Hyb6 have the same output distribution.
Hyb8: In this hybrid, during the Authentication Phase, for each honest Pi and Pj , S doesn’t follow the

protocol to check Pj ’s shares. Instead, S considers that Pi accepts Pj ’s shares when Pi receives the sharing
[γi�v,j ]

i
t. Since D and Pj are both honest, Pj always sends correct shares, so Pi always accepts Pj ’s shares.

Thus, Hyb8 and Hyb7 have the same output distribution.
Hyb9: In this hybrid, during the Completion Phase, for each honest Pv and corrupted Pi ∈ W, S doesn’t

follow the protocol to check Pi’s polynomials {g̃ℓ,i}ℓ∈[L′] and the tag τ̃i�v. Instead, S checks whether the
polynomials are consistent with what S generates in the Sharing Phase and whether τ̃i�v is consistent with
the tags Pi gets in the Authentication Phase. This changes the output distribution only if Pi sends {g̃ℓ,i}ℓ∈[L′]

and τ̃i�v different from {gℓ,i}ℓ∈[L′] and τi�v but still satisfying τ̃i�v = g̃∗,i · µi�v +
∑m

k=1 r
k
i�v · ν

(k)
i�v, where

g̃∗,i = (g̃1,i, . . . , g̃L′,i). Then we know that (g̃∗,i − g∗,i) · µi�v − (τ̃i�v − τi�v) = 0. Since µi�v is random in
FL when Pi is corrupted and we don’t need it for any computation before Pv receives Pi’s polynomials and
tag, S can randomly sample it after {g̃ℓ,i}ℓ∈[L′] and τ̃i�v are received. Then, the output distribution changes
only when a random µi�v ∈ FL satisfies a linear equation a · µi�v + b = 0 with a ̸= 0 ∈ FL and b ∈ F.
This happens with probability 1/|F| = 1/2κ. Now we take the union bound for t corrupted Pi and 2t + 1
honest Pv, the probability is at most t(2t + 1)/|F| ≤ n2/|F|, which is negligible, which is negligible. Thus,
the output distributions of Hyb9 and Hyb8 are statistically close.

Hyb10: In this hybrid, during the Completion Phase, for each honest Pv and Pi ∈ W, S doesn’t follow the
protocol to check Pi’s polynomials and tags. Instead, S considers that Pv accepts Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′]

when Pv receives Pi’s polynomials. Since D and Pi are both honest, Pi always sends correct polynomials
and tags, so Pv always accepts Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′]. Thus, Hyb10 and Hyb9 have the same output
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distribution.
Hyb11: In this hybrid, for each corrupted Pv and Pi ∈ W, S doesn’t sample the honest parties’ shares

of [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] in the Authentication Phase. Instead, S samples µi�v in the Completion Phase

and computes {ν(k)i�v}k∈[m]} with µi�v and {τ (k)i�v}k∈[m]}. Then S samples the honest parties’ shares of
[µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] based on µi�v, {ν(k)i�v}k∈[m] and the corrupted parties’ shares. Since we don’t need µi�v

and the honest parties’ shares of [µi�v]
i
t we can sample them in the Completion Phase. Then {ν(k)i�v}k∈[m]}

is fixed and can be computed. For {[ν(k)i�v]
i
t}k∈[m], computing the honest parties’ shares of the 2t-sharing∑t

u=1[[eu]]
i
t · [r

(k)
i�v]

i
t is the same with sampling a random sharing based on corrupted parties’ shares and the

secret 0, as we argued in Hyb5. Hence, sampling the honest parties’ shares of {[ν(k)i�v]
i
t}k∈[m] based on the

secrets and the corrupted parties’ shares is the same as computing them. Thus, Hyb11 and Hyb10 have the
same output distribution.

Hyb12: In this hybrid, for each corrupted Pv and honest Pi ∈ W, S doesn’t sample the honest parties’
shares of [µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] in the Authentication Phase. Instead, S randomly samples them in the

Completion Phase and emulates FPrivRec to send them to Pv. Since when Pi is honest, the honest parties’
shares of [µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m] are not used to compute anything in the Authentication Phase, we can change

the order of simulating the Authentication Phase and generating the honest parties’ shares. Thus, Hyb12

and Hyb11 have the same output distribution.
Hyb13: In this hybrid, during the Completion Phase, for each corrupted Pv and honest Pi ∈ W, S doesn’t

follow the protocol to compute Pi’s g∗,i by doing a linear combination of polynomials and the corresponding
tag τi�v. Instead, S checks whether ri�v has been recorded in R. If it has been recorded, g∗,i can be computed
from the corresponding F . Otherwise, S generates a random F based on corrupted parties’ column and row
polynomials. As we have argued in Hyb2.0, . . . ,Hyb2.(T+T ′+1), with at most n + n3 + n2 < T + T ′ linear
combinations we need to do, if some ri�v hasn’t been recorded before, each Fℓ is random with corrupted
parties’ column and row polynomials given, as what S samples in Hyb13. Thus, Hyb13 and Hyb12 have
the same output distribution.

Hyb14: In this hybrid, during the Completion Phase, for each honest Pw and corrupted Pi ∈ W, S doesn’t
follow the protocol to check Pi’s polynomials {g̃ℓ,i}ℓ∈[L′] and the tag τ̃i�w. Instead, S checks whether the
polynomials are consistent with what S generates in the Sharing Phase and whether τ̃i�w is consistent with
the tags Pi gets in the Authentication Phase. This changes the output distribution only if Pi sends {g̃ℓ,i}ℓ∈[L′]

and τ̃i�w different from {gℓ,i}ℓ∈[L′] and τi�w but still satisfying τ̃i�v = g̃∗,i ·µi�w +
∑m

k=1 r
k
v�w · ν(k)i�w, where

g̃∗,i = (g̃1,i, . . . , g̃L′,i). Then we know that (g̃∗,i − g∗,i) ·µi�w − (τ̃i�w − τi�w) = 0. Since µi�w is random in
FL when Pi is corrupted and we don’t need it for any computation before Pw receives Pi’s polynomials and
tag, S can randomly sample it after {g̃ℓ,i}ℓ∈[L′] and τ̃i�w are received. Then the output distribution changes
only when a random µi�w ∈ FL satisfies a linear equation a ·µi�w + b = 0 with a ̸= 0 ∈ FL and b ∈ F. This
happens with probability 1/|F| = 1/2κ. Now we take the union bound for t corrupted Pi and 2t+ 1 honest
Pw, the probability is at most t(2t+ 1)/|F| ≤ n2/|F|, which is negligible. Thus, the output distributions of
Hyb14 and Hyb13 are statistically close.

Hyb15: In this hybrid, during the Completion Phase, for each honest Pw and Pi ∈ W, S doesn’t follow
the protocol to check Pi’s polynomials and tags. Instead, S considers that Pw accepts Pi’s {gℓ,i}ℓ∈[L′] when
Pw receives Pi’s polynomials. Since D and Pi are both honest, Pi always sends correct polynomials and tags,
so Pw always accepts Pi’s {gℓ,i}ℓ∈[L′]. Thus, Hyb15 and Hyb14 have the same output distribution.

Hyb16: In this hybrid, during the Completion Phase, for each honest Pw, S doesn’t compute the output
for Pw by himself. Instead, when Pw accepts 2t + 1 different Pv’s {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′], S lets Pw receive

the output from FACSS. Since the 2t+1 different Pv’s {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′] are accepted only if Pv is honest

or the values sent by Pv are consistent with what S generated on behalf of D in the Sharing Phase, Pw

must get 2t + 1 different points on each polynomial in {g(k)ℓ,w}k∈[m],ℓ∈[L′], which enables Pw to reconstruct

{g(k)ℓ,w}k∈[m],ℓ∈[L′] and compute the output correctly. Hence, changing how honest parties get outputs doesn’t
change the output distribution. Thus, Hyb16 and Hyb15 have the same output distribution.
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Hyb17: In this hybrid, during the Completion Phase, for each corrupted Pw and honest Pi ∈ W, S
doesn’t follow the protocol to compute Pi’s g∗,i by doing a linear combination of polynomials and the
corresponding tag τi�w. Instead, S checks whether rv�w has been recorded in R. If it has been recorded,
g∗,i can be computed from the corresponding F . Otherwise, S generates a random F based on corrupted
parties’ column and row polynomials. As we have argued in Hyb2.0, . . . ,Hyb2.(T+T ′+1), with at most
n+ n3 + 2n2 = T + T ′ linear combinations we need to do if some ri�w hasn’t been recorded before, each Fℓ

is random with corrupted parties’ column and row polynomials given, as what S samples in Hyb17. Thus,
Hyb17 and Hyb16 have the same output distribution.

Note that Hyb17 is the ideal-world scenario, ΠACSS statistically-securely computes FACSS when D is
honest.

When D is corrupted:

Sharing Phase
1. For each Pi ∈ P:

• If Pi is honest:
(1). When Pi receives {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] from D, if these polynomials are all of degree 2t, S

broadcasts OKi on behalf of Pi.
(2). S follows the protocol to compute g

(k)
∗,i for each k ∈ [m].

(3). S sends (Init,APICP, T, (g
(1)
∗,i , . . . , g

(m)
∗,i )) to FAPICP(Pi, D) on behalf of Pi.

(4). S faithfully emulates FAPICP(Pi, D).
• If Pi is corrupted, S faithfully emulates FAPICP(Pi, D).

2. For each honest party, upon this party receives M from D, S follows the protocol to verify the M set. If S
succeeds, he begins the next simulation phase of this honest party.

3. Let H be the first t+ 1 honest parties in M. For each ℓ ∈ [L′] and k ∈ [m], S reconstructs a degree-(t, 2t)
bivariate polynomial F (k)

ℓ (x, y) such that F
(k)
ℓ (αi, y) = g

(k)
ℓ,i (y) for each Pi ∈ H.

4. For each k ∈ [m] and ℓ ∈ [L′], S computes each corrupted Pj ’s ĝ
(k)
ℓ,j (y) = F

(k)
ℓ (αj , y). Then S sets

ĝ
(k)
∗,j = (ĝ

(k)
1,j , . . . , ĝ

(k)

L′,j) for each k ∈ [m].

Simulator S

Figure 31: Part-(1/4) of the simulator for the FACSS when D is corrupted

Verification Phase
For each Pi ∈ P:

• If Pi is honest:
(1). When Pi receives {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] from D and these polynomials are all of degree 2t, S

broadcasts a random value ri ∈ F and follows the protocol to compute {gℓ,i(y)}ℓ∈[L′] on behalf of
Pi.

(2). For each Ph ∈ M, when each honest party receives ri, S sends a request
(Request,APICP, Pi, (ri, r

2
i , . . . , r

m
i )) to FAPICP(Ph, D) on behalf of this party.

(3). For each Ph ∈ M, S faithfully emulates FAPICP(Ph, D).
(4). S does the following things:

(a). S checks whether F
(k)
ℓ (αi, y) = g

(k)
ℓ,i (y) for each ℓ ∈ [L′] and k ∈ [m].

(b). When Pi receives {g∗,h}Ph∈M, S follows the protocol to check {gℓ,i(y)}ℓ∈[L′].
(c). If both checks pass, S accepts {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m]. Otherwise, S rejects those polynomials.

• If Pi is corrupted:
(1). For each Ph ∈ M, when each honest party receives ri, S sends a request

(Request,APICP, Pi, (ri, r
2
i , . . . , r

m
i )) to FAPICP(Ph, D) on behalf of this party.

(2). For each Ph ∈ M, S faithfully emulates FAPICP(Ph, D).

Simulator S

Figure 32: Part-(2/4) of the simulator for the FACSS when D is corrupted
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Authentication Phase
1. For each Pi ∈ P and Pv ∈ P:
Preparing random shares:
(1). S follows the protocol to send requests to FRandShare,F0

RandShare on behalf of honest parties.
(2). S emulates FRandShare,F0

RandShare to receive corrupted parties’ shares of
[µi�v]

i
t, {[ν

(k)
i�v]

i
t}k∈[m], {[r(k)u ]it}k∈[m],u∈[t], {[maskj ]

i
t}j∈[n] from A and sends them to corrupted parties.

(3). For each corrupted Pj and k ∈ [m], S computes Pj ’s share of {[τ (k)
i�v]

i
2t}k∈[m] (denoted by τ̂

(k)
i�v,j) as

follows:

[τ
(k)
i�v]

i
2t = [ĝ

(k)
∗,i ]

i
t · [µi�v]

i
t + [ν

(k)
i�v]

i
t +

t∑
u=1

[[eu]]
i
t · [r(k)u ]it

Preparing shares of tags {τ (k)
i�v}k∈[m] for Pi:

• If Pi is honest:
(1). For each Pj ∈ P:

1). If Pj is honest, S honestly executes the protocol. If Pj is corrupted, when Pi receives
{τ (k)

i�v,j}k∈[m] from Pj , S broadcasts a random element ri�v,j ∈ F and computes
τi�v,j =

∑m
k=1 r

k
i�v,j · τ

(k)
i�v,j on behalf of Pi.

Verifying Pj’s shares of tags:
2). For each Pα ∈ P:

(a) For each honest party and Ph ∈ M, when this honest party receives ri�v,j , S sends
(Request,APICP, Pα, (ri�v,j , r

2
i�v,j . . . , r

m
i�v,j)) to FAPICP(Ph, D) on behalf of this honest

party.
(b) For each Ph ∈ M, S faithfully emulates FAPICP(Ph, D).
(c) If Pα is honest, when Pα receives {g∗,h}Ph∈M, S follows the protocol to check these

polynomials. If true, then S delivers Pα’s share of [γi�v,j ]
i
t and sends (Request, privRec, Pi)

to FprivRec on behalf of Pα.
3). If Pj is honest, S faithfully emulates FprivRec. Otherwise, S emulates FprivRec as follows:

(a). Upon receiving a request from an honest party, S follows the protocol to compute each
corrupted Pα’s share of [γi�v,j ]

i
t with ĝ∗,h.

(b). S randomly samples the whole [γi�v,j ]
i
t based on corrupted parties’ shares.

(c). S sends corrupted parties’ shares to A.
(d). S sends the whole [γi�v,j ]

i
t to Pi.

4). When Pi receives the output, if Pj is honest, S considers that Pi accepts Pj ’s shares. If Pj is
corrupted, for each k ∈ [m], S checks whether τ̂

(k)
i�v = τ

(k)
i�v. If true, S accepts Pj ’s shares.

(2). Upon accepting 2t+ 1 different Pj ’s {τ (k)
i�v,j}k∈[m], S considers that Pi reconstructs {τ (k)

i�v}k∈[m].
• If Pi is corrupted:

(1). S randomly samples elements from F as honest parties’ shares of {[τ (k)
i�v]

i
2t}k∈[m], these honest

parties’ shares are consistent with the corrupted parties shares. Then S computes τ
(k)
i�v based on

these shares.
(2). For each honest Pj , if S accepts {g(k)ℓ,j (y)}k∈[m],ℓ∈[L′], S sends Pj ’s shares of {[τ (k)

i�v]
i
2t}k∈[m]

(denoted each one by τ̃
(k)
i�v,j) to Pi on behalf of Pj .

(3). For each Pα ∈ P:
(a) For each honest party and Ph ∈ M, when this honest party receives ri�v,j , S sends

(Request,APICP, Pα, (ri�v,j , r
2
i�v,j . . . , r

m
i�v,j)) to FAPICP(Ph, D) on behalf of this honest

party. S computes τ̃i�v,j =
∑m

k=1 r
k
i�v,j · τ̃

(k)
i�v,j for each honest Pj .

(b) For each Ph ∈ M, S faithfully emulates FAPICP(Ph, D).
(c) If Pα is honest, when Pα receives {g∗,h}Ph∈M, S considers that Pα accepts these polynomials.

Then S delivers Pα’s share of [γi�v,j ]
i
t and sends (Request, privRec, Pi) to FprivRec on behalf of

Pα. If Pα is corrupted, S faithfully emulates FprivRec to wait for Pα’s request.
(4). S emulates FprivRec as follows:

(a) For each Pj ∈ P, if Pj is honest, S randomly samples the whole [γi�v,j ]
i
t based on corrupted

parties’ shares and Pj ’s τ̃i�v,j . If Pj is corrupted, S randomly samples the whole [γi�v,j ]
i
t

based on corrupted parties’ shares.

Simulator S
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(b) S sends the whole [γi�v,j ]
i
t to Pi.

2. For each honest Pi, when Pi reconstructs {τ (k)
i�v}k∈[m] for all Pv ∈ P and Pi accepts his column

polynomials, S broadcasts Tagi on behalf of Pi.
3. For each honest party, when this honest party receives W, S follows the protocol to verify the W set. If S

succeeds, he begins the next simulation phase of this honest party.
4. For each k ∈ [m], ℓ ∈ [L′], S sets idx = ((k− 1) ·L′ + ℓ− 1) · (t+ 1) + 1. Then for each i ∈ [0, t], S computes

qidx+i(x) = F
(k)
ℓ (x, α−i). Finally, S sends (Dealer,ACSS, {q1(x), . . . , qN (x)}) to FACSS on behalf of D.

Figure 33: Part-(3/4) of the simulator for the FACSS when D is corrupted

Completion Phase
Reconstructing row polynomials:

1. For each Pv ∈ P, S does the following things:
• If Pv is honest:

(1). For each honest party, S delivers his shares of [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] and sends

(Request, privRec, Pv) to FprivRec on behalf this honest party.
(2). S emulates FprivRec and delivers an output to Pv.
(3). For each Pi ∈ W:

– If Pi is honest, S honestly executes the protocol.
– If Pi is corrupted, S does the following things on behalf of Pv:

1). When Pv receives {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] from Pi, S sends a random element ri�v ∈ F to Pi.
2). When Pv receives τi�v and {gℓ,i(y)}ℓ∈[L′] from Pi, S does the following things:

(a). S checks whether τi�v =
∑m

k=1 r
k
i�v · τ̂ (k)

i�v.
(b). For each ℓ ∈ [L′], S checks whether the degree of gℓ,i(y) is 2t and

gℓ,i(y) =
∑m

k=1 r
k
i�v · ĝ(k)ℓ,i (y).

(c). For each k ∈ [m] and ℓ ∈ [L′], S checks whether ĝ
(k)
ℓ,i (αv) = g

(k)
ℓ,i (αv).

(d). If (a), (b), (c) are true, when Pv receives the output from FprivRec, S accepts Pi’s
{g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′].

(4). When Pv accepts t+ 1 different Pi’s {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′], S follows the protocol to reconstruct
{f (k)

ℓ,v (x)}ℓ∈[L′],k∈[m] on behalf of Pv.
• If Pv is corrupted:

(1). For each honest party, S delivers his shares of [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] and sends

(Request, privRec, Pv) to FprivRec on behalf this honest party.
(2). S emulates FprivRec as follows:

(a) If Pi is honest, S randomly samples the whole [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] based on corrupted

parties’ shares. If Pi is corrupted, S randomly samples the whole [µi�v]
i
t based on corrupted

parties’ shares, then S computes ν
(k)
i�v = τ̂

(k)
i�v − ĝ

(k)
∗,i · µi�v for each k ∈ [m]. Finally, for each

k ∈ [m], S samples the whole [ν
(k)
i�v]

i
t based on corrupted parties’ shares and ν

(k)
i�v.

(b) S sends the whole [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] to Pv.

(2). S sends {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] to Pv on behalf of each honest Pi ∈ W.
(3). For each honest Pi ∈ W, when Pi receives ri�v from Pv, S computes

τi�v = g∗,i · µi�v +
∑m

k=1 r
k
i�v · ν(k)

i�v. S follows the protocol to compute {gℓ,i(y)}ℓ∈[L′].
(4). S sends τi�v and {gℓ,i(y)}ℓ∈[L′] to Pv on behalf of each honest Pi ∈ W.

Reconstructing column polynomials:
2. For each Pw ∈ P, S does the following things:

• If Pw is honest:
(1). For each Pv ∈ P:

1). S does the following things:
– If Pv is honest, S honestly executes the protocol.
– If Pv is corrupted, when Pw receives {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′] from Pv, S broadcasts a random
value rv�w ∈ F on behalf of Pw.

Simulator S
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2). For each Pi ∈ W:
– If Pi is honest, when Pi receives rv�w, S delivers τi�w and {gℓ,i(y)}ℓ∈[L′] to Pw on behalf of

Pi. When Pw receives them, S considers that Pw accepts {gℓ,i(y)}ℓ∈[L′].
– If Pi is corrupted, when Pw receives τi�w and {gℓ,i(y)}ℓ∈[L′] from Pi, S does the following

things:
(a). S checks whether τi�w =

∑m
k=1 r

k
v�w · τ̂ (k)

i�w.
(b). For each ℓ ∈ [L′], S checks whether the degree of gℓ,i(y) is 2t and

gℓ,i(y) =
∑m

k=1 r
k
v�w · ĝ(k)ℓ,i (y).

(c). If both (a) and (b) are true, S accepts Pi’s {gℓ,i(y)}ℓ∈[L′].
3). When Pw accepts t+ 1 different Pi’s {gℓ,i(y)}ℓ∈[L′], S follows the protocol to check

{f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′].

(2). When Pw accepts 2t+ 1 different Pv’s {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′], S allows FACSS to send the output to

Pw.
• If Pw is corrupted:.

(1). S sends {f (k)
ℓ,v (αw)}k∈[m],ℓ∈[L′] to Pw on behalf of each honest Pv.

(2). For each honest Pi ∈ W, when Pi receives rv�w from Pw, S computes
τi�w = g∗,i · µi�w +

∑m
k=1 r

k
i�w · ν(k)

i�w. S follows the protocol to compute {gℓ,i(y)}ℓ∈[L′].
(3). S sends τv�w and {gℓ,i(y)}ℓ∈[L′] to Pw on behalf of each honest Pi ∈ W.

3. S outputs what A outputs.

Figure 34: Part-(4/4) of the simulator for the FACSS when D is corrupted

Hybrid arguments:
Hyb0: In this hybrid, S runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, during the Sharing Phase, S additionally does the following things. Let H be

the first t + 1 honest parties in M, for each k ∈ [m] and ℓ ∈ [L′], S reconstructs a bivariate polynomial
F

(k)
ℓ (x, y) such that F

(k)
ℓ (αi, y) = g

(k)
ℓ,i (y) for each Pi ∈ H. Then for each corrupted Pj , S computes Pj ’s

column polynomial ĝ(k)ℓ,j (y) = F
(k)
ℓ (αj , y). Finally, S sets ĝ

(k)
∗,j = (ĝ

(k)
1,j , . . . , ĝ

(k)
L′,j). Since |H| = t + 1, S can

reconstruct each F
(k)
ℓ (x, y). S does not use these polynomials to do anything. Thus, Hyb0 and Hyb1 have

the same output distribution.
Hyb2: In this hybrid, during the Verification Phase, for each honest Pi and ℓ ∈ [L′], S computes

Fℓ(x, y) =
∑m

k=1 F
(k)
ℓ (x, y) · rki . If Pi accepts his {g(k)ℓ,i }ℓ∈[L′],k∈[m], for each ℓ ∈ [L′], Pi can reconstruct a

degree-(t, 2t) bivariate polynomial F̃ℓ(x, y). Then S additionally checks whether F̃ℓ(x, y) = Fℓ(x, y) for each
ℓ ∈ [L′]. When an honest Pi accepts his column polynomials, F̃ℓ(αh, y) = gℓ,h(y) holds for all Ph ∈ M
and ℓ ∈ [L′]. Since H ⊂ M and |H| = t + 1, we always have F̃ℓ(x, y) = Fℓ(x, y) if Pi accepts his column
polynomials. Thus, Hyb1 and Hyb2 have the same output distribution.

Hyb3: In this hybrid, during the Verification Phase, for each ℓ ∈ [L′], k ∈ [m], S additionally checks
whether F

(k)
ℓ (αi, y) = g

(k)
ℓ,i (y). When Pi accepts his column polynomials, for each ℓ ∈ [L′] it holds that

Fℓ(αi, y) = gℓ,i(y). The output distribution only changes when there exists ℓ ∈ [L′] or k ∈ [m] such that
F

(k)
ℓ (αi, y) ̸= g

(k)
ℓ,i (y), we consider equation

∑m
k=1(F

(k)
ℓ (αi, y) − g

(k)
ℓ,i (y)) · xk = 0. Let F

(k)
ℓ (αi, y) − g

(k)
ℓ,i =∑2t

j=0 h
(k)
ℓ,j · yj , and there exists k ∈ [m], ℓ ∈ [L′] and j ∈ [0, 2t] such that h

(k)
ℓ,j is none zero. We need the

polynomial to y
2t∑
j=0

(
m∑

k=1

h
(k)
ℓ,j · xk) · yj = 0, which means all the coefficient are 0, i.e. ∀j,

m∑
k=1

h
(k)
ℓ,j · xk = 0. For

each j ∈ [0, 2t], since the degree of
∑m

k=1 h
(k)
ℓ,j · xk is at most m, which has at most m roots in F. Since ri is

randomly sampled by honest Pi, if ri is one of the roots, then the output will change, and the probability
this happens is m/|F|. Now we take the union bound for 2t + 1 honest Pi, j ∈ [0, 2t] and ℓ ∈ [L′]. The
probability that there exists some F

(k)
ℓ (αi, y) ̸= g

(k)
ℓ,i (y) but Pi accepts his {g(k)ℓ,i (y)}ℓ∈[L′],k∈[m] is at most:

ϵ2 = L′ · (2t+ 1)2 · m

|F|
≤ mL′n2

|F|
,

50



which is negligible. Thus, the output distributions of Hyb2 and Hyb3 are statically close.
Hyb4: In this hybrid, during the Authentication Phase, for each corrupted Pj and k ∈ [m], S computes

Pj ’s shares of {[τ (k)i�v]
i
2t}k∈[m] with ĝ

(k)
∗,j , denoted each one by τ̂

(k)
i�v,j . S does not use these τ̂ (k)i�v,j to do anything

else. Thus, Hyb3 and Hyb4 have the same output distribution.
Hyb5: In this hybrid, during the Authentication Phase, when Pi is corrupted, for each Pj , instead of

following the protocol to compute each Pα’s shares of [γi�v,j ]
i
t, S randomly samples the whole [γi�v,j ]

i
t based

on corrupted parties’ shares and Pj ’s share of tag. For each honest Pα, S uses these random elements as
honest parties’ shares of [γi�v,j ]

i
t and sends them to FprivRec. Then, S uses Pα’s share of [γi�v,j ]

i
t to compute

his share of [maskj ]
i
t. The difference between Hyb4 and Hyb5 is S will not use honest Pα’s share of [maskj ]

i
t

to compute his share of [γi�v,j ]
i
t. Instead, S samples the whole [γi�v,j ]

i
t based on corrupted parties’ shares

and Pj ’s share of tag. Then, S computes honest parties’ share of [maskj ]
i
t with [γi�v,j ]

i
t. Since honest parties’

shares of [γi�v,j ]
i
t are randomly sampled, their shares of [maskj ]

i
t are also random when the corrupted parties’

shares are fixed. Therefore, we only change the order of sampling the two sharings. Thus, Hyb4 and Hyb5

have the same output distribution.
Hyb6: In this hybrid, during the Authentication Phase, when Pi is corrupted, instead of following

the protocol to compute each Pj ’s shares of {[τ (k)i�v]
i
2t}k∈[m] (denoted by τ

(k)
i�v,j), S randomly samples the

whole {[τ (k)i�v]
i
2t}k∈[m] based on corrupted parties’ shares. For each honest Pj , S uses these random elements

(denoted by τ̃
(k)
i�v,j) as Pj ’s shares of {[τ (k)i�v]

i
2t}k∈[m] and sends them to Pi. Since

∑t
u=1[[eu]]

i
t · [r

(k)
u ]it can be

considered as [0]i2t as we have argued in the hybrid arguments when D is honest, due to the similar reason
in Hyb5, Hyb5 and Hyb6 have the same output distribution.

Hyb7: In this hybrid, during the Authentication Phase, when Pi is honest, for each corrupted Pj , S
follows the protocol to compute each corrupted Pα’s share of [γi�v,j ]

i
t with ĝ∗,h, then S randomly samples

honest Pα’s shares based on corrupted parties’ shares and sends them to FprivRec. The difference between
Hyb6 and Hyb7 is how we let honest Pi get corrupted Pj ’s share of [γi�v,j ]

i
t. In Hyb6, honest Pi will

get corrupted Pj ’s share of [γi�v,j ]
i
t which is consistent with all honest parties’ shares from FprivRec. In

Hyb7, S uses ĝ∗,h to compute corrupted Pα’s share of [γi�v,j ]
i
t and then randomly samples honest parties’

shares based on corrupted parties’ shares. Since ĝ∗,h is determined by the first t+ 1 honest parties’ column
polynomials in M, the results of Pj ’s share of [γi�v,j ]

i
t in the two hybrids are the same. Thus, Hyb6 and

Hyb7 have the same output distribution.
Hyb8: In this hybrid, during the Authentication Phase, when Pi is honest, for each corrupted Pj , when

Pi receives {τ (k)i�v,j}k∈[m] from Pj , for each k ∈ [m], S checks whether τ
(k)
i�v,j = τ̂

(k)
i�v,j . If true, S accepts

Pj ’s shares. In Hyb7, honest Pi will accepts corrupted Pj ’s {τ (k)i�v}k∈[m] when Pj ’s share of [γi�v,j ]
i
t is

τi�v,j =
∑m

k=1 τ
(k)
i�v · rki�v,j . The output distribution only changes when there exists k ∈ [m] such that

τ̂
(k)
i�v ̸= τ

(k)
i�v. Since Pi receives the whole [γi�v,j ]

i
t from FprivRec, corrupted Pj ’s share of [γi�v,j ]

i
t is equal to∑m

k=1 τ̂
(k)
i�v · rki�v,j . Therefore, we consider polynomial

∑m
k=1(τ̂

(k)
i�v − τ

(k)
i�v) ·xk. The degree of it is at most m,

which means this polynomial has at most m roots in F. Since ri�v,j is randomly sampled by Pi, therefore,
the probability that ri�v,j is a root is m/|F|. Now we take the union bound for 2t+1 honest Pi, t corrupted
Pj and n Pv, the probability that the distribution changes is at most

ϵ3 = t · (2t+ 1) · n · m

|F|
≤ mn3

|F|
,

which is negligible. Thus, the output distributions of Hyb7 and Hyb8 are statically close.
Hyb9: In this hybrid, during the Completion Phase, when Pv is honest, for each corrupted Pi ∈ W,

S additionally checks whether τi�v =
∑m

k=1 r
k
i�v · τ̂ (k)i�v. For each ℓ ∈ [L′], instead of checking gℓ,i(αv) =∑m

k=1 r
k
i�v · g(k)ℓ,i (αv), S checks whether gℓ,i(y) =

∑m
k=1 r

k
i�v · ĝ(k)ℓ,i (y). If both checks pass, S accepts Pi’s

{g(k)ℓ,i (αv)}ℓ∈[L′],k∈[m]. The only difference between Hyb8 and Hyb9 is when τi�v ̸=
∑m

k=1 r
k
i�v · τ̂ (k)i�v, if

there exists ℓ ∈ [L′] such that gℓ,i(y) ̸=
∑m

k=1 r
k
i�v · ĝ

(k)
ℓ,i (y), Pv still accepts {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′]. We denote
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τ̂i�v =
∑m

k=1 r
k
i�v · τ̂

(k)
i�v, according to the following equations:

τi�v = g∗,i · µi�v +
∑m

k=1 r
k
i�v · ν

(k)
i�v

τ̂i�v = ĝ∗,i · µi�v +
∑m

k=1 r
k
i�v · ν

(k)
i�v

}
⇒ τi�v − τ̂i�v = (g∗,i − ĝ∗,i) · µi�v,

when there exists ℓ ∈ [L′] such that gℓ,i(y) ̸=
∑m

k=1 r
k
i�v · ĝ(k)ℓ,i (y) when g∗,i ̸= ĝ∗,i. Since µi�v is randomly

distributed, (g∗,i − ĝ∗,i) · µi�v is also randomly distributed. Therefore, the probability that τi�v − τ̂i�v =
(g∗,i − ĝ∗,i) ·µi�v is 1/|F|. Now we take the union bound for at most t corrupted Pi ∈ W and 2t+ 1 honest
Pv, the probability that the output distribution changes is at most

ϵ4 = t · (2t+ 1) · 1

|F|
≤ n2

|F|
,

which is negligible. Thus, the output distributions of Hyb8 and Hyb9 are statically close.
Hyb10: In this hybrid, during the Completion Phase, when Pv is honest, for each corrupted Pi ∈ W,

ℓ ∈ [L′] and k ∈ [m], S additionally checks whether ĝ(k)ℓ,i (αv) = g
(k)
ℓ,i (αv). In Hyb9, S only accepts the values

sent by Pi when gℓ,i(y) =
∑m

k=1 r
k
i�v · ĝ(k)ℓ,i (y) for each ℓ ∈ [L′]. If there exists ℓ ∈ [L′], k ∈ [m] such that

ĝ
(k)
ℓ,i (αv) ̸= g

(k)
ℓ,i (αv), which means

∑m
k=1(ĝ

(k)
ℓ,i (αv)− g

(k)
ℓ,i (αv)) · rki�v = 0. Similarly, the probability is at most

m/|F|. Now we take the union bound for all ℓ ∈ [L′], t corrupted Pi and 2t + 1 honest Pv, the probability
that the output distribution changes is at most

L′ · t · (2t+ 1) · m

|F|
≤ mL′n2

|F|
,

which is negligible. Thus, the output distributions of Hyb9 and Hyb10 are statically close.
Hyb11: In this hybrid, during the Completion Phase, when Pv is corrupted, instead of following the

protocol to compute each honest Pi’s τi�v, S does the following things:

(1). When S emulates FprivRec, if Pi is honest, S randomly samples the whole [µi�v]
i
t, {[ν

(k)
i�v]

i
t}k∈[m] based on

corrupted parties’ shares. If Pi is corrupted, S randomly samples the whole [µi�v]
i
t based on corrupted

parties’ shares, then S computes ν
(k)
i�v = τ̂

(k)
i�v − ĝ

(k)
∗,i · µi�v for each k ∈ [m]. Finally, for each k ∈ [m],

S samples the whole {[ν(k)i�v]
i
t} based on corrupted parties’ shares and ν

(k)
i�v.

(2). For each honest Pi ∈ W, when Pi receives ri�v from Pv, S computes τi�v = g∗,i ·µi�v+
∑m

k=1 r
k
i�v ·ν

(k)
i�v.

The only difference between Hyb10 and Hyb11 the way of computing each honest Pi’s τi�v. In Hyb10,
S computes τi�v =

∑m
k=1 r

k
i�v · τ (k)i�v. In Hyb11, S computes τi�v = g∗,i · µi�v +

∑m
k=1 r

k
i�v · ν(k)i�v, where

µi�v and {ν(k)i�v}k∈[m] are randomly sampled based on corrupted parties’ shares by S. Therefore, τi�v is also
random when the corrupted parties’ shares of it are fixed, as sampled in Hyb11. Thus, Hyb10 and Hyb11

have the same the output distribution.
Hyb12: In this hybrid, during the Completion Phase, when Pw is honest, for each corrupted Pi ∈ W,

when Pw receives τi�w and {gℓ,i(y)}ℓ∈[L′], S doesn’t follow the protocol to check the values. Instead, S
checks whether τi�w =

∑m
k=1 r

k
v�w · τ̂ (k)i�w. For each ℓ ∈ [L′], S also checks whether the degree of gℓ,i(y) is 2t

and gℓ,i(y) =
∑m

k=1 r
k
v�w · ĝ(k)ℓ,i (y). If true, S accepts Pi’s {gℓ,i(y)}ℓ∈[L′]. Due to the same reason in Hyb9,

the output distribution sof Hyb11 and Hyb12 are statically close.
Hyb13: In this hybrid, during the Completion Phase, when Pw is corrupted, for each honest Pi ∈ W,

instead of computing τi�w with {τ (k)i�w}k∈[m], S computes τi�w = g∗,i ·µi�w +
∑m

k=1 r
k
v�w · ν(k)i�w. Due to the

same reason in Hyb11, the output distributions of Hyb12 and Hyb13 are statically close.
Hyb14: In this hybrid, during the Authentication Phase, if any honest party receives W from D and S

checks W is correct, S reconstructs q1(x), . . . , qN (x) and sends (Dealer,ACSS, {q1(x), . . . , qN (x)}) to FACSS.
This doesn’t affect the output. Thus, Hyb13 and Hyb14 have the same output distribution.
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Hyb15: In this hybrid, during the Completion Phase, for each honest Pw, when Pw accepts 2t+1 different
Pv’s {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′], instead of computing {g(k)ℓ,w(αi)}ℓ∈[L′],k∈[m′],i∈[−t,0] by himself, S lets FACSS send
output to Pw. If the authentication phase doesn’t terminate, all the parties won’t pass the public verification
of W, all the honest parties won’t get any output and the functionality FACSS is not requested by D, so it
won’t affect the output distribution. If the authentication phase terminates, due to the same reason with
Hyb16 when D is honest, the ACSS protocol must terminate and all the honest parties will eventually get
their outputs. The outputs are fixed by the polynomials determined by the column polynomials of first t+1
parties in M, and the output of from FACSS is also determined by the row polynomials of those polynomials.
Thus, Hyb14 and Hyb15 have the same output distribution.

Note that Hyb15 is the ideal-world scenario, ΠACSS statistically-securely computes FACSS when D is
corrupted.

D.3 Analysis of the Communication Complexity
We make a recap of the parameters in our ΠACSS, D divides his N input polynomials into m′ groups. For
each group, every t+1 polynomial will be batched to be shared by a bivariate polynomial. Therefore, there
are L′ = N/(m′(t + 1)) bivariate polynomials for each group. Taking security into account, we add T + T ′

random groups, where T = n3 + n and T ′ = 2n2. As a result, there are m = m′ + T + T ′ groups in total.
Our FAPICP will take m vectors as inputs and each vector is of length L = L′ · n.

During the Sharing Phase: For each group, D sends a degree-2t column polynomial to each Pi ∈ P,
since there are m groups, resulting in a total communication of O(mL′n2κ) bits for all parties. Then each
Pi ∈ P broadcasts OKi (each OKi can be encoded with O(log n) bits), the total communication is O(n3 log n)
bits. Finally, D broadcasts set M, which requires O(n3 log n) bits. Here we omit the communication of each
FAPICP, and we will compute it later. Therefore, we need communication of O(mL′n2κ+n3 log n) bits during
the Sharing Phase. Since L′ = L/n, the communication cost is O(mLnκ+ n3 log n) bits.

During the verification Phase: Each Pi ∈ P broadcasts a random element, resulting in a total commu-
nication of O(n3κ) bits. The communication of each FAPICP is still omitted. Therefore, we need O(n3κ)-bit
communication during the verification phase.

During the Authentication Phase: For each Pv ∈ P:
1. For each Pi, preparing random shares requires communication of O(Ln3κ+mn4κ+ n5κ2 + n6) bits:

(1). Each [µi�v]
i
t: O(Ln3κ+ n5κ2 + n6) bits.

(2). Each {[ν(k)i�v]
i
t}k∈[m]: O(mn3κ+ n5κ2 + n6) bits.

(3). Each {[r(k)u ]it}u∈[t],k∈[m]: O(mn4κ+ n5κ2 + n6) bits.

(4). Each {[maskj ]
i
t}j∈[n]: O(n5κ2 + n6) bits.

2. For each Pi, computing Pi’s tags requires communication of O(mnκ+ n2κ+ n3 log n) bits:

(1). Each Pj ∈ P sends his shares of tags, resulting in a total communication of O(mnκ) bits.

(2). Pi broadcasts a random element, which requires communication of O(n2κ) bits.

(3). Executing ΠprivRec requires communication of O(nκ) bits.

(4). Pi broadcasts Tagi, which requires O(n2 log n) bits.

(5). D broadcasts W, which requires communication of O(n3 log n) bits.

The communication of realizing each FAPICP is still omitted here, and we will compute them later. The
total communication cost is O(Ln5κ+mn6κ+ n7κ2 + n8) bits during the Authentication Phase.

During the Completion Phase, while reconstructing row polynomials, for each Pv ∈ P and Pi ∈ W, we
need O(mnκ+mL′κ+ L′nκ)-bit communication:

1. Pi sends {g(k)ℓ,i (αv)}k∈[m],ℓ∈[L′] to Pv, which requires communication of O(mL′κ) bits.
2. Invoking FprivRec requires communication of O(mnκ) bits.
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3. Pv sends a random element to each Pi, which requires communication of O(κ) bits.
4. Pi sends τi�v and {gℓ,i(y)}ℓ∈[L′] to Pv, which requires communication of O(L′nκ) bits.
Therefore, reconstructing row polynomials requires O(mn3κ+mL′n2κ+ L′n3κ) bits.
During the Completion Phase, while reconstructing column polynomials, for each Pw ∈ P:
1. Each Pv ∈ P sends {f (k)

ℓ,v (αw)}k∈[m],ℓ∈[L′] to Pw, resulting in a total communication of O(mL′nκ) bits.
2. Pw broadcasts a random element, which requires communication of O(n2κ) bits.
3. Each Pi ∈ W sends τi�w and {gℓ,i(y)}ℓ∈[L′] to Pw, resulting in a total communication of O(L′n2κ)

bits.
Therefore, reconstructing column polynomials requires O(mL′n2κ+ L′n3κ) bits.
Then, the total communication cost is O(mLnκ+mn3κ+ L′n3κ) bits during the Completion Phase.
In the end, we consider the communication cost of APICP. For each Ph in M, according to Theorem

5, the communication of realizing each FAPICP(Ph, D) is O(mLκ+mnT 2κ2 + LTκ+ nT 3κ2) bits. Since we
have defined m = m′ + T + T ′ and T = n3 + n, the total communication cost is O(mLnκ+mn8κ2) bits.

Therefore, the protocol ΠACSS requires communication of O(mLnκ +mn8κ2 + Ln5κ) bits. Since mL =
(m′ +T +T ′) ·L′n = O(N), when we take m = n4, the protocol ΠACSS requires communication of O(Nnκ+
n12κ2) bits.

E The Asynchronous MPC Protocol

E.1 Functionality FAMPC

The ideal functionality FAMPC (see Fig. 35) from [CP23, Coh16] is as follows.

FAMPC proceeds as follows, running with parties P = {P1, . . . , Pn} and an adversary S and parameterized by
an n-party function f : ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n. For each party Pi, initialize an input value
x(i) =⊥ and output value y(i) =⊥.
• Upon receiving an input v from Pi ∈ P, if CoreSet has not been recorded yet or if Pi ∈ CoreSet, set

x(i) = v.
• Upon receiving a input CoreSet from S, verify that CoreSet is a subset of P of size at least n− t, else

ignore the message. If CoreSet has not been recorded yet, then record CoreSet and for every
Pi /∈ CoreSet, set x(i) = 0.

• If the CoreSet has been recorded and the value x(i) has been set to a value different from ⊥ for every
Pi ∈ CoreSet, then compute (y(1), . . . , y(n)) = f(x(1), . . . , x(n)) and generate a request-based delayed
output y(i) for every Pi ∈ P.

Functionality FAMPC

Figure 35: Ideal functionality for asynchronous secure multiparty computation

E.2 Overview of the Construction of ΠAMPC

We recall the framework of constructing ΠAMPC in [CP17] here.
Let C be an arithmetic circuit over F with depth D and |C| multiplication gates. The high-level idea of

the construction is as follows:

• Step1: Preparing the Beaver Triples. Each party generates O(|C|) completely t-shared random
multiplication triples ([a]t, [b]t, [c]t), where c = a · b. For this, each party invokes FACSS to share O(|C|)
degree-t Shamir secret sharings. Since corrupted parties may provide invalid (c ̸= a·b) triples, all parties
apply a polynomial verification process to check each party’s triples. Due to the asynchronous network,
the invocations of FACSS by corrupted parties may never terminate. Therefore, all parties execute an
ACS protocol to agree on a common subset of n − t parties whose triples are correctly t-shared and
valid. To prevent corrupted parties from providing valid but non-random triples, all parties apply a
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triple extraction procedure to output |C| completely t-shared, truly random, and private triples. Each
Beaver triple is used for the computation of one multiplication gate.

• Step2: Input Sharing. Each party chooses degree-t polynomials to share his input x(i) and invokes
FACSS to share his input. Since the corrupted parties may never share their inputs, all parties run an
ACS protocol to agree on a common subset CoreSet of n− t parties whose input is complete t-shared.
All parties will use these n−t parties’ shares of inputs for the following computation and the remaining
t parties’ inputs will be set as 0.

• Step3: Circuit Evaluation. When each party receives verified Beaver Triples in Step 1 and all
shares from each one in CoreSet in Step 2, he starts to evaluate each gate in the circuit as follows,
depending on the type of the gate. Let the inputs for each gate be x and y, and the output be z.

– Linear Gate: Each party gets his share of z by locally applying the linear function on his shares
of x and y.

– Multiplication Gate: All parties use a Beaver triple (a, b, c) to compute their shares of the
output. At a high level, each party computes his share of [x − a]t and [y − b]t and sends them
to all parties. Then, each party uses OEC to reconstruct x − a and y − b. Finally, each party
computes his share of [z]t = (x− a)(y− b) + (x− a)[b]t + (y− b)[a]t + [c]t. The above procedures
require each party to reconstruct the degree-t Shamir secret sharings. Considering the efficiency of
reconstruction of degree-t Shamir secret sharings, a batch of t+1 reconstruction can be executed
in parallel.

– Output Gate: All parties invoke FprivRec with his t-shares of the output gate for every Pi ∈ P
to help Pi reconstruct his output y(i).

The communication cost is summarized as follows: In Step 1, we invoke FACSS n times to share O(|C| ·n)
degree-t Shamir secret sharings in total and broadcast O(n3) field elements. The triple extraction procedure
requires O(|C| · n2κ) bits. In Step 2, we invoke FACSS n times. In Step 3, the linear gates are free.
We pack every t + 1 multiplication gate in one layer, which requires communication of O(n2κ) bits, and
computing the whole multiplication gates requires communication O(|C| · nκ + D · n2κ) bits. The output
gates require n invocations of FprivRec. The main communication apart from the invocations of FACSS comes
from the invocations of triple extraction, broadcast field elements, and the circuit evaluation, which requires
communication of O(|C| · n2κ+ n5κ) bits.

Therefore, when replacing FACSS with our construction of ΠACSS to realize FAMPC, which requires com-
munication of O(|C| ·n2κ+n13κ2) bits to share O(|C| ·n) degree-t Shamir secret sharings in total, the whole
communication cost of ΠAMPC is O(|C| · n2κ+ n13κ2) bits.
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