
Perfectly-Secure MPC with Constant Online Communication
Complexity

Yifan Song
Tsinghua University

and Shanghai Qi Zhi Institute
yfsong@mail.tsinghua.edu.cn

Xiaxi Ye
Tsinghua University

yexx23@mails.tsinghua.edu.cn

Abstract

In this work, we study the communication complexity of perfectly secure MPC protocol with guaran-
teed output delivery against t = (n− 1)/3 corruptions. The previously best-known result in this setting
is due to Goyal, Liu, and Song (CRYPTO, 2019) which achieves O(n) communication per gate, where n
is the number of parties.

On the other hand, in the honest majority setting, a recent trend in designing efficient MPC protocol
is to rely on packed Shamir sharings to speed up the online phase. In particular, the work by Escudero et
al. (CCS 2022) gives the first semi-honest protocol that achieves a constant communication overhead per
gate across all parties in the online phase while maintaining overall O(n) communication per gate. We
thus ask the following question: “Is it possible to construct a perfectly secure MPC protocol with GOD
such that the online communication per gate is O(1) while maintaining overall O(n) communication per
gate?”

In this work, we give an affirmative answer by providing an MPC protocol with communication
complexity O(|C|+Depth ·n+n5) elements for the online phase, and O(|C| ·n+Depth ·n2+n4) elements
for the preprocessing phase, where |C| is the circuit size and Depth is the circuit depth.

1 Introduction
Secure multiparty computation (MPC) allows a set of mutually distrustful parties to jointly compute a com-
mon function on their private inputs. Very informally, the protocol guarantees that each party can only
learn his own input and output but nothing else. Since the notion of MPC was introduced by Yao [Yao82],
early feasibility results on MPC were obtained by Yao [Yao82] and Goldreich et al. [GMW87] in the com-
putational setting, where the adversary is assumed to have bounded computational resources. Subsequent
works [BOGW88, CCD88] considered the unconditional (or information-theoretic) setting and showed pos-
itive results up to t < n/3 corrupted parties assuming point-to-point communication channels. If one
assumes a broadcast channel in addition, it was shown in [RBO89, Bea89] how to obtain positive results in
the information-theoretic setting for up to t < n/2 corrupted parties.

In this work, we are interested in the communication complexity of perfectly secure MPC with guaranteed
output delivery (GOD) over point-to-point channels. At a high level, perfect security requires that any
(computationally unbounded) adversary by controlling t corrupted parties cannot learn any information
about honest parties’ inputs even if corrupted parties can arbitrarily deviate from the protocol. Guaranteed
output delivery, on the other hand, requires that the protocol should always succeed. Indeed, perfect security
with GOD is the best possible security one can hope. It has been shown in [BOGW88] that perfectly secure
MPC with GOD is impossible to achieve when t ≥ n/3. On the other hand, when t < n/3, [BOGW88] gives
the first positive result that can compute any computable functions.

Communication complexity is an important measurement of the efficiency of an MPC protocol, especially
in the information-theoretic setting. This is because unconditionally secure MPC protocols usually have light

1

weight local computation, often just a series of linear operations. On the other hand, known constructions
for general functions still require at least a linear communication complexity in the circuit size. Thus in the
real world, the efficiency of an unconditional MPC protocol is dominated by its communication complexity.

There is a rich line of works studying the communication complexity of perfectly secure MPC with GOD.
Most noticeably, the work [BTH08] gives the first result with linear communication complexity per multi-
plication gate. To be more concrete, the achieved communication complexity is O(|C| · n+Depth · n2 + n3)
elements. In 2019, Goyal et al. [GLS19] show how to remove the quadratic communication overhead in the
circuit depth and achieve O(|C| · n+ n3) elements. Both of these works are based on the party elimination
framework [HMP00], a generic approach to achieve GOD efficiently. On the other hand, this approach inher-
ently requires O(n) evaluation rounds. Therefore, the round complexity of these two works are O(Depth+n).
Another line of works [ALR11, AAY22, AAPP23] focuses on improving the communication complexity with-
out the O(n) overhead in the round complexity. And in the recent work [AAPP23], a linear communication
overhead per gate in the number of parties is also achieved in this setting. Concretely the achieved commu-
nication complexity is O(|C| · n+Depth · n2 + n4). It is not clear whether a linear communication overhead
per gate is inherent in general despite there are negative results for special cases [DLN19].

We note that in the honest majority setting where t < n/2, the communication complexity of the best-
known semi-honest protocol [DN07, GLO+21] is also linear in the number of parties per gate. However, a
recent work [EGPS22] gives a novel construction that achieves O(1) communication per gate in the online
phase while preserving O(n) overall communication per gate in the preprocessing phase. Having O(1)
communication per gate in the online phase is interesting since

• In practice, people care more about the efficiency in the online phase as the preprocessing phase can
be done in the idle time before knowing the inputs.

• It means that the amortized communication complexity per party decreases as the increase of the
number of parties and one may speed up the protocol by having more parties!

Unfortunately, to the best of our knowledge, such a result is not known in the perfect security setting. Thus,
we ask the following question:

“Is it possible to construct a perfectly secure MPC protocol with GOD such that the online communication
complexity per gate is O(1) while the overall communication remains O(n)?”

1.1 Our Contribution
In this work, we answer the above question affirmatively. Our main result is summarized in the following
theorem.
Theorem 1. Let n denote the number of parties. Let F be a finite field of size |F| ≥ 2n. For an arithmetic
circuit C over F, there exists an information-theoretic MPC protocol that computes C against a fully malicious
adversary controlling at most t = n−1

3 corrupted parties with perfect security. The communication cost of
the protocol is O(|C|+Depth ·n+n5) elements for the online phase and O(|C| ·n+Depth ·n2+n4) elements
for the preprocessing phase, where Depth is the circuit depth.

We note that the previously best-known results [GLS19, AAPP23] both require linear communication
complexity per gate in the online phase. Thus, our result gives a factor of O(n) improvements over the
previous results in the online phase.

To achieve our result, our idea is to compile the semi-honest protocol in [EGPS22] to achieve perfect
security. While the semi-honest protocol in [EGPS22] gives us an efficient way to compute the circuit in
the online phase, we note that the main difficulty of achieving perfect security is to efficiently verify the
computation and locate the errors. In particular, we identify a security issue that does not occur in the
semi-honest setting when compiling [EGPS22] to achieve perfect security. We note that this security issue
is very similar to the one observed in [GLS19]. Compared with [GLS19], we give a much simpler solution to
address this issue which can potentially be used to improve the construction in [GLS19]. In Section 2, we
give an overview of our solution towards tackling these difficulties.

2

Comparison with Previous Works. As we have mentioned above, our work achieves the same overall
asymptotic communication complexity as [GLS19, AAPP23] while we achieve constant online communication
per gate.

On the other hand,

• Both of our work and [AAPP23] suffer an additive communication overhead depending on the circuit
depth, O(Depth · n2), while [GLS19] does not have this term.

• For round complexity, the work [AAPP23] only requires O(Depth) rounds while both our work and [GLS19]
need additional poly(n) rounds due to the use of party elimination/dispute control framework.

This additional communication overhead depending on the circuit depth and additional round complexity
may be viewed as the cost of achieving constant online communication per gate. An interesting future
direction is to achieve the best among these three works.

2 Technical Overview
Our work uses both the standard Shamir sharings and Packed Shamir sharings. We use [x]d to represent a
degree-d Shamir sharing of x, which corresponds to a degree-d polynomial f such that the i-th share is f(i),
and f(0) = x. We will also use [x|j]d to denote a degree-d Shamir sharing of x where the secret value is
stored at f(−j+1) rather than f(0). For a vector x = (x1, . . . , xk) ∈ Fk, we use [x]d to represent a degree-d
packed Shamir sharing of x, which corresponds to a degree-d polynomial f such that the i-th share is f(i)
and for all j ∈ [k], f(−j + 1) = xj .

2.1 Efficient Online Protocol via Preprocessing
In this work, our goal is to design a perfectly secure MPC protocol with guaranteed output delivery (GOD)
against a fully malicious adversary who controls up to t = n−1

3 corrupted parties such that the online
communication complexity per multiplication gate is constant among all parties. Our starting point is the
recent semi-honest protocol [EGPS22] in the honest majority setting that achieves constant communication
complexity in the online phase relying on the packed Shamir sharing scheme and preprocessing.

The notion of packed Shamir sharing was introduced by Franklin and Yung in [FY92]. At a high level,
packed Shamir sharings allow us to compute a batch of O(n) gates of the same kind simultaneously but only
at cost O(n), the same as using the Shamir sharings to compute a single gate. This allows us to bring the
cost per gate to O(1). In [EGPS22], the authors rely on preprocessing to prepare packed Beaver triples (the
packed version of the standard Beaver triples) which are used in the online phase to achieve constant online
communication. On the other hand, the overall communication complexity of the construction in [EGPS22]
remains O(n) per gate, which matches the best-known semi-honest protocol [DN07, GLO+21].

Inspired by [EGPS22], our idea is to rely on packed Shamir sharings to achieve perfect security with
GOD with constant online communication per gate. At a very high level, our idea is to (1) use techniques
in [BTH08] to compile the preprocessing phase of [EGPS22] to prepare packed Beaver triples, and (2)
use party elimination framework [HMP00] to compile the online protocol that uses packed Beaver triples.
However, the second step is much more difficult to achieve than it looks. In the following, we give an overview
of our construction and demonstrate the technical difficulties we have to address. For simplicity, we first
focus on a SIMD circuit, which computes many copies of the same sub-circuit. We will discuss how to move
to a general circuit later.

Overview of Our Protocol. Let k be the number of secrets packed in a single sharing. We will discuss
the choice of k at a later point. We set d = t + k − 1 and use degree-d packed Shamir sharings to ensure
privacy against t corrupted parties. A packed Beaver triple contains three degree-d packed Shamir sharings
([a]d, [b]d, [c]d) such that c = a ∗ b, where ∗ denotes the coordinate-wise multiplication.

In the preprocessing phase of [EGPS22], a random packed Beaver triple is prepared as follows.

3

• First, for all i ∈ [k], a standard Beaver triple with secrets stored at position −i + 1 is prepared:
([ai|i]t, [bi|i]t, [ci|i]t).

• Then, all parties locally convert such a group of k Beaver triples to a packed Beaver triple. This is
done by computing [a]d =

∑k
i=1[ei]k−1 · [ai|i]t, where ei is the i-th unit vector (i.e., the i-th entry is 1

while all other entries are 0). To see why it works, just note that the secrets of [ei]k−1 · [ai|i]t is equal
to ai · ei. Thus, we have a =

∑k
i=1 ai · ei.

Using techniques in [BTH08], we can prepare standard Beaver triples with perfect security. Thus, follow-
ing [EGPS22], we can efficiently prepare packed Beaver triples with perfect security.

With packed Beaver triples in hand, in the online phase, all parties evaluate a group of k gates in
parallel each time. For a group of k addition gates with input sharings [x]d, [y]d, all parties locally compute
[z]d = [x]d + [y]d. For a group of k multiplication gates, all parties run the following steps:

1. All parties locally compute [x+a]d = [x]d+[a]d and [y+b]d = [y]d+[b]d and send them to a common
party Pking.

2. Pking reconstructs x+ a,y + b, and distributes [x+ a]k−1, [y + b]k−1 to all parties.

3. All parties locally compute

[z]d+k−1 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]d − [a]d · [y + b]k−1 + [c]d.

To obtain a degree-d packed Shamir sharing of z, all parties in addition prepare ([r]d, [r]d+k−1). Such
a pair of random sharings can also be prepared by using techniques in [BTH08].

4. All parties locally compute [z + r]d+k−1 = [z]d+k−1 + [r]d+k−1 and send it to Pking.

5. Pking reconstructs z + r and distributes [z + r]k−1 to all parties.

6. All parties locally compute [z]d = [z + r]k−1 − [r]d.
In this way, all parties can evaluate every group of gates with constant communication.

When corrupted parties deviate from the protocol, however, the above protocol can easily go wrong. This
is because the packed Shamir sharings are of degree d which is greater than t, and we cannot hope to use
the error correction of Reed Solomon Code as [BTH08] to ensure the correctness of the computation in the
online phase. To achieve perfect security, one may hope to use the party elimination framework as [GLS19].
At a high level, the whole computation task is first divided into O(n) segments. Each time one segment is
computed as above. Then all parties together check the correctness of the computation. If the computation
is correct, all parties move to the next segment. Otherwise, all parties together find a pair of dispute parties
which ensures at least one party is corrupted. Such a dispute pair is removed and all parties re-evaluate
the current segment. This way, we can achieve perfect security without blowing up the communication
complexity.

Unfortunately, this idea does not work in our case. This is because in the worst case, the party elimination
framework may remove 2t parties and only t+1 parties left. However, in the above multiplication protocol, to
allow Pking to reconstruct [z]d+k−1, at least d+k = t+2k−1 > t+1 parties are needed. To resolve this issue,
our construction uses the dispute control method [BTH06]. The high-level idea of dispute control is similar
to party elimination framework except that each time a dispute pair is found, we will not remove these two
parties. Instead, we will ensure that these two parties never talk to each other in the following computation.
In this way, we could avoid finding the same dispute pair in the future evaluation. A party is only removed
if he is disputed with more than t parties, in which case this party is definitely a corrupted party. By using
dispute control, we will only remove corrupted parties. Thus, at least 2t+ 1 (honest) parties are active. To
ensure that Pking can always receive enough shares for [z]d+k−1, which requires d + k = t + 2k − 1 shares,
we need t+2k− 1 ≤ 2t+1. Thus, our construction sets k = t

2 +1 = O(n), which is sufficient to achieve our
goal.

Note that so far we haven’t discussed how to check the correctness of the computation and how to find
a dispute pair if the computation goes wrong. In particular,

4

• The verification of computation should be done with constant communication per gate as well. Note
that this difficulty does not appear in [GLS19] since their construction only achieves linear commu-
nication per gate in the online phase. So it suffices for them to also pay linear cost per gate in the
verification. This difficulty does not appear in [EGPS22] either since their malicious version is in the
honest majority setting where one cannot hope to achieve perfect security. However, allowing errors
with negligible probability simplifies the task of verification as one can even achieve sublinear cost in
the verification [GSZ20].

• Degree-d packed Shamir sharings are insufficient to identify dispute pairs when the computation goes
wrong. This is unlike degree-t Shamir sharings where even all corrupted parties provide incorrect
shares, we can always reconstruct the whole sharing. In fact, this is a much more severe issue since if
the input packed Shamir sharings are found to be incorrect, then even if all parties follow the protocol,
the computation will always fail and we are not able to find a dispute pair.

In the following sections, we will address these two difficulties.

2.2 Boosting Verification
As we discussed above, we have to design a verification protocol with constant communication per gate. We
first examine where the multiplication protocol may go wrong.

• Issue 1. In step 1 and 4, parties may send incorrect shares to Pking so that Pking cannot reconstruct
the secrets of degree-d or degree-(d+ k − 1) packed Shamir sharings.

• Issue 2. In step 2 and 5, Pking may maliciously distribute incorrect packed sharings where either the
degree of packed sharings is not k − 1 or the secrets are incorrect.

In the first case, we show that Pking can detect such issues and directly announce to others that the com-
putation is incorrect. Recall that we set k, the number of secrets packed in a single sharing, to be t

2 + 1.
Then d + k − 1 = t + 2k − 1 = 2t + 1. Therefore, a degree-d or degree-(d + k − 1) packed Shamir sharing
is fully determined by the shares of honest parties and corrupted parties can only cause the sharing to be
inconsistent but not change the secret. Thus, Pking can detect errors by checking whether the received shares
lie on a valid degree-d or degree-(d+ k − 1) polynomial.

In the second case, we can abstract the verification task as follows. All parties hold a pair of packed
Shamir sharings ([u]d+k−1, [u]k−1), where the first sharing is the one all parties send to Pking and the second
sharing is the one all parties receive from Pking (note that we can always view a degree-d packed Shamir
sharing as a degree-(d+ k− 1) packed Shamir sharing). The goal is to check that (1) the second sharing is a
valid degree-(k− 1) packed Shamir sharing, and (2) both two sharings have the same secrets. To verify such
a pair, we let each party receive the shares from all parties and check the above two points accordingly. Here
we rely again on the fact that a degree-(d+k−1) packed Shamir sharing is fully determined by the shares of
honest parties. Thus corrupted parties cannot make honest parties accept the verification by sending wrong
shares.

However this way of checking ([u]d+k−1, [u]k−1) would require O(n2) communication per pair. To amor-
tize the communication complexity, we adapt the technique in [BTH08] to efficiently check a batch of 2t+1
such pairs, say {([ui]d+k−1, [ui]k−1)}2t+1

i=1 . Let M be a Vandermonde matrix of size n× (2t+1). All parties
first expand such 2t+ 1 pairs to n pairs by locally computing

([vi]d+k−1, [vi]k−1)
n
i=1 = M · ([ui]d+k−1, [ui]k−1)

2t+1
i=1 .

By the property of Vandermonde matrices, there is a one-to-one linear map between any subset of 2t+1 pairs
in {([vi]d+k−1, [vi]k−1)}ni=1 and {([ui]d+k−1, [ui]k−1)}2t+1

i=1 . Thus if 2t + 1 pairs in {([vi]d+k−1, [vi]k−1)}ni=1

are correct, this implies that {([ui]d+k−1, [ui]k−1)}2t+1
i=1 are all correct. Therefore, after expansion, we let

each party Pi check a single pair ([vi]d+k−1, [vi]k−1). If every party is happy with the pair he checked, then
at least 2t + 1 pairs are verified by honest parties, which ensures that the original 2t + 1 pairs are correct.

5

Finally, all parties run a Byzantine Agreement protocol to reach an agreement on whether the verification
passes or not. Note that the communication remains to be O(n2) but we check O(n) pairs each time.

In Section 5, we extend the above idea to check any linear secret sharing scheme which satisfies that the
whole sharing is determined by the shares of honest parties. The functionality FVerifyPub and protocol ΠVerifyPub

will be formally described in Subsection 4.1 and Subsection 5.1, respectively.

2.3 Identifying Dispute Pair
After the verification, if the check fails, we reach a scenario where

• Either Pking claims that the degree-d or degree-(d+k−1) packed Shamir sharing he received is incorrect.

• Or some party Pi claims that ([vi]d+k−1, [vi]k−1) he received is incorrect.

Then we know the computation of the current segment fails and we have to identify a dispute pair of parties.
For the latter case, since ([vi]d+k−1, [vi]k−1) is computed from {([ui]d+k−1, [ui]k−1)}2t+1

i=1 which are known
by Pking, Pking can provide a correct version to Pi so that Pi can cross check which party deviates from
the protocol. However, what if Pking claims that a degree-d or degree-(d+ k − 1) packed Shamir sharing is
incorrect? Since d > t, we cannot hope to always reconstruct the correct sharing and identify the party who
sends the wrong share.

To enable identification of dispute pair, we have to resort to degree-t Shamir sharings. Our idea is to
compute a degree-t Shamir sharing for every value. In this way, whenever a degree-d or degree-(d + k − 1)
packed Shamir sharing is incorrect, we can always come back to the degree-t sharings to identify a dispute
pair. However, we have to achieve this with constant online communication.

Computing Degree-t Sharings with Constant Online Communication. Our observation is that in
the preprocessing phase of [EGPS22], all parties can obtain a degree-d packed Shamir sharing [a]d via local
computation from {[ai|i]t}ki=1. This inspires us to compute degree-t Shamir sharings in the online phase with
a similar form so that when we compute multiplication gates, we can pack the degree-t Shamir sharings on
demand. To be more concrete, for every group of k multiplication gates, all parties hold {[xi|i]t, [yi|i]t}ki=1

in the beginning. They first locally transform these 2k degree-t Shamir sharings to [x]d, [y]d and then run
the multiplication protocol.

Note that we also have to unpack the output sharing [z]d to {[zi|i]t}ki=1. Fortunately, this can be achieved
with a small modification of the preprocessing data: We require all parties to also prepare {[ri|i]t}ki=1 when
preparing ([r]d, [r]d+k−1). Then after receiving [z + r]k−1 from Pking, since [z + r]k−1 can be viewed as
a degree-(k − 1) Shamir sharing of zi + ri stored at −i + 1, i.e., [zi + ri|i]k−1, all parties can compute
[zi|i]t = [z + r]k−1 − [ri|i]t.

Identifying Dispute Pair When [x+ a]d is Incorrect. Now come back to the problem of identifying
dispute pair. If Pking claims that [x + a]d is incorrect, all parties can provide {[xi + ai|i]t}ki=1 (note that
[ai|i]t is generated when preparing packed Beaver triples in the preprocessing phase). In this way, Pking can
robustly reconstruct each degree-t Shamir sharing and compute the correct [x+ a]d.

Identifying Dispute Pair When [z+r]d+k−1 is Incorrect. If Pking claims that [z+r]d+k−1 is incorrect,
however, the above approach does not work. Recall that

[z + r]d+k−1 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]d − [a]d · [y + b]k−1 + [c]d + [r]d+k−1,

where [x + a]k−1 and [y + b]k−1 are distributed by Pking. Also recall that all parties have prepared
{([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 in the preprocessing phase. To allow Pking robustly reconstructing [z + r]d+k−1,
we further change the way of preparing [r]d+k−1 as follows: All parties prepare 2k − 1 random degree-t
Shamir sharings {[ri|i]t}2k−1

i=1 . Let r′ = (r1, . . . , r2k−1). Following the observation in [EGPS22], all parties
can locally transform {[ri|i]t}2k−1

i=1 to a degree-(d+k−1) packed Shamir sharing [r′]d+k−1 (that stores 2k−1

6

secrets). Here we utilize the fact that d + k − 1 = t + 2k − 1 by our choices of d and k. Note that if we
only focus on the first k secrets of r′, denoted by r = (r1, . . . , rk), [r′]t+2k−1 can be directly viewed as a
degree-(d+ k − 1) packed Shamir sharing [r]d+k−1 (that stores k secrets), which is what we need.

Now if all parties send {([ai|i]t, [bi|i]t, [ci|i]t)}ki=1 and {[ri|i]t}2k−1
i=1 to Pking, Pking can reconstruct each

degree-t Shamir sharing and compute a correct degree-(d+ k − 1) packed Shamir sharing [z + r]d+k−1, and
therefore can identify a dispute pair. However, doing this would reveal x,y, z to Pking. To resolve this issue,
we use the following tricks.

1. In the preprocessing phase, all parties prepare random degree-t Shamir sharings {([a′i|i]t, [b′i|i]t, [c′i|i]t)}ki=1

and {[r′i|i]t}
2k−1
i=1 as random masks. Note that each c′i is a random value rather than a′i · b′i.

2. All parties compute [a′]d, [b
′]d, [c

′]d, [r
′]2k−1 locally. Then all parties send

[v]d+k−1 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b′]d − [a′]d · [y + b]k−1 + [c′]d + [r′]d+k−1

to Pking. Basically, [v]d+k−1 is computed in the same way as [z + r]d+k−1 except that we use
[a′]d, [b

′]d, [c
′]d, [r

′]d+k−1.

3. Now if Pking complains about [v]d+k−1, all parties send {([a′i|i]t, [b′i|i]t, [c′i|i]t)}ki=1 and {[r′i|i]t}
2k−1
i=1 to

Pking. These are independent of the actual wire values.

4. Otherwise, it means that [z+r]d+k−1+[v]d+k−1 is not a valid degree-(d+k−1) packed Shamir sharing.
Note that we have

[z + r]d+k−1 + [w]d+k−1

= 2[x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · ([b]d + [b′]d)− ([a]d + [a′]d) · [y + b]k−1

+([c]d + [c′]d) + ([r]d+k−1 + [r′]d+k−1).

All parties send {([ai + a′i|i]t, [bi + b′i|i]t, [ci + c′i|i]t)}ki=1 and {[ri + r′i|i]t}
2k−1
i=1 to Pking. Again those

sharings are independent of the actual wire values because of the random masks.

In this way, Pking can identify a party who sends incorrect shares.

2.4 Security Issue of the Current Approach
One issue we omitted so far is that the multiplication above is actually not secure against malicious corrupted
parties: A malicious Pking can learn some partial information of y from the shares of [z+r]d+k−1 by sending
incorrect [x+ a]k−1 and [y + b]k−1. Consider the following attack:

1. Without loss of generality, assume the first 2t+1 parties are honest. After Pking reconstructs e = x+a,
Pking chooses another vector e′ such that the first shares of [e]k−1 and [e′]k−1 are identical. Then Pking
sends the shares of [e]k−1 to {P1, . . . , Pt+1}, and sends the shares of [e′]k−1 to {Pt+2, . . . , P2t+1}.

2. Let [z + r]d+k−1 denote the correct sharings computed from [e]k−1 and [z′ + r]d+k−1 denote the
incorrect sharings computed from [e′]k−1. Then the parties in {P1, . . . , Pt+1} hold shares of [z+r]d+k−1

while parties in {P1, Pt+2, . . . , P2t+1} hold shares of [z′ + r]d+k−1. Note that corrupted parties, i.e.,
{P2t+2, . . . , P3t+1}, can compute their shares of both [z + r]d+k−1 and [z′ + r]d+k−1.

3. After receiving the shares of [z+ r]d+k−1 (or [z′ + r]d+k−1) from all honest parties, Pking learns 2t+1
shares of both [z+r]d+k−1 and [z′+r]d+k−1. Thus Pking can reconstruct z+r and z′+r and compute
z′ − z = (e′ − e) ∗ y, which leaks the information about y.

We point out that such an issue does not appear in [EGPS22] since in their setting, they set d+k−1 = n−1
so that Pking needs all shares to reconstruct z + r. In our case, however, we need d + k − 1 ≤ 2t to ensure
that Pking can detect the errors in [z + r]d+k−1.

7

We note that a similar issue has been pointed out in [GLS19]. We follow the approach in [GLS19] to
resolve this issue. Before sending [z + r]d+k−1 to Pking, all parties prepare a random degree-(n− 1) packed
Shamir sharing of 0, denoted by [0]n−1, and add it with [z + r]d+k−1. In this way, even if a malicious
Pking may distribute incorrect [x+ a]k−1 and [y + b]k−1, he no longer gains any information from shares of
[z + r]n−1. Intuitively, this is because [z + r]n−1 = [z]d+k−1 + ([r]d+k−1 + [0]n−1) where the second part is
a random degree-(n − 1) packed Shamir sharing and every share is just a random value. Effectively, every
party uses a uniform value to hide his share of [z]d+k−1.

While this approach prevents a corrupted Pking from gaining information from [z + r]n−1, an honest
Pking cannot detect errors in [z + r]n−1 either. In [GLS19], the authors introduce the so called 4-consistent
sharings to detect errors in [z + r]n−1. In our work, we give a much simpler approach for this task. Our
approach can potentially be used to simplify the construction in [GLS19] and avoid the use of 4-consistent
sharings.

We notice that the key point of the above attack is that Pking may distribute [x+ a]k−1 and [y + b]k−1

that are not of degree (k− 1). On the other hand, if Pking is guaranteed to distribute degree-(k− 1) packed
Shamir sharings, even if the secrets are incorrect, Pking cannot learn any information from [z+r]d+k−1 since
in this case it is a valid degree-(d+ k− 1) packed Shamir sharing and the potentially incorrect secrets z are
masked by r. Thus, to allow Pking to detect errors in [z + r]n−1,

1. All parties first check that Pking indeed shares degree-(k − 1) packed Shamir sharings. This check can
be done by the verification protocol ΠVerifyPub we introduced above.

2. All parties together open the mask sharing [0]n−1. This is done by letting each party send all messages
when generating [0]n−1 to Pking. Note that given that Pking shares valid degree-(k− 1) packed Shamir
sharings, [0]n−1 is safe to open. Now Pking can detect errors in [z + r]d+k−1 = [z + r]n−1 − [0]n−1

again.

In our construction, we will use a random packed Shamir sharing of 0 when reconstructing [x+ a]d and
[y + b]d to Pking. In this way, we can first evaluate multiplication gates in multiple layers without check,
and then verify the correctness of multiplication gates at the end. We point out that without doing this, a
similar security issue occurs when evaluating multiplication gates in multiple layers without check [GLS19].

2.5 Towards General Circuits
When evaluating a general circuit, one issue is to prepare the packed Shamir sharings for the next group
of multiplication gates. We note that the packed Shamir sharings only allow us to do coordinate-wise
multiplications. It requires that the secrets of the two input sharings are correctly aligned. This holds
automatically for SIMD circuits. However, when dealing with a general circuit, the secrets may not be in
the order we want. Or even worse, the secrets may not be in a single packed Shamir sharing. This problem
is referred to as network routing [GPS21, GPS22].

In [GPS21, GPS22], the authors reduce the problem of network routing to the following sharing transfor-
mation problem. Suppose all parties hold a packed Shamir sharing [x]d and want to perform a linear map
L : Fk → Fk to the secrets x. I.e., the goal is to compute a packed Shamir sharing [L(x)]d. Following [GPS21],
this task can be achieved as follows.

1. All parties prepare ([r]d, [L(r)]d).

2. All parties compute [x+ r]d and sends their shares to Pking.

3. Pking reconstructs x+ r and distributes [L(x+ r)]k−1.

4. All parties locally compute [L(x)]d = [L(x+ r)]k−1 − [r]d.

There are two difficulties we have to address. First, how should parties prepare ([r]d, [L(r)]d) efficiently?
Indeed this is the main technical difficulty resolved in [GPS21, GPS22]. This task is not simple because
each time we may need to perform a different linear map. Known solutions from [DN07, BTH08] only allow

8

us to prepare such random sharings for the same linear map many times. In [GPS22], the authors show
how to perform any linear transformation efficiently (where the underlying secret sharing scheme can be any
linear secret sharing scheme). Instead of using the general linear transformation, we give an efficient solution
towards this task that is tailored for our case.

Second, how should parties check the correctness of Pking? We note that the verification protocol ΠVerifyPub

only allows us to check the same linear maps many times, which is not sufficient since each time we may
have to perform a different linear map. We design an efficient solution to resolve this issue which we will
introduced later.

Efficient Preprocessing for Sharing Transformation. Our idea is to prepare random sharings {([ri]d, [Li(ri)]d)}ki=1

for k different linear maps in a batch way, where recall that k is the number of secrets packed in a single
sharing. Let ui = Li(ri). Then for all j ∈ [k], ui,j is a linear combination of ri,1, . . . , ri,k.

In the beginning, all parties prepare k random degree-d packed Shamir sharings {[ri]d}ki=1. We may list
the secrets in a matrix as follows: r1,1 . . . r1,k

...
rk,1 . . . rk,k

Then the secrets in the same row are stored in a single packed Shamir sharing.

We observe that the packed Shamir sharings support efficient linear operations over secrets that are
stored in the same positions, i.e., we can efficiently compute any linear combination of r1,i, . . . , rk,i, which
are stored at position −i+ 1. However, the sharing transformation requires us to do linear operations over
secrets that are all stored in different positions. Thus, a natural idea is to re-share the matrix so that the
secrets in the same column are stored in a single packed Shamir sharing, i.e., {[r∗,j]d}kj=1. This can be
viewed as a “transpose” operation. Now all parties could efficiently compute {[u∗,j]d}kj=1. This is because
the i-th secret of [u∗,j]d, which is ui,j , is a linear combination of ri,1, . . . , ri,k, which are the i-th secrets of
{[r∗,j]d}kj=1. To obtain {[ui]d}ki=1, we simply perform another “transpose” operation on {[u∗,j]d}kj=1.

We note that the “transpose” operation can also be viewed as one type of sharing transformation and
the only difference is that it acts on the secrets of k packed Shamir sharings. Since we have to perform the
same “transpose” operation many times, this can be handled efficiently by solutions from [DN07, BTH08].

Efficient Verification of Pking. We may abstract the verification task as follows. Given ([u]d, [v]k−1) and
a linear map L, we want to check that [v]k−1 is a valid degree-(k− 1) packed Shamir sharing and v = L(u).

To achieve efficient verification, we follow a similar approach to that when preparing random sharings
for sharing transformation. This becomes even simpler since Pking knows all sharings and he can help all
parties perform the “transpose” operations. We sketch our solution as follows:

1. For each group of k pairs {([ui]d, [vi]k−1), Li}ki=1, Pking shares the “transpose” sharings {[u∗,j]k−1}kj=1,
{[v∗,j]k−1}kj=1.

2. All parties use ΠVerifyPub to check the correctness of all “transpose” operations. Note that these are
just the same operations, which can be handled by our verification protocol.

3. All parties compute from {[u∗,j]k−1}kj=1 to {[v∗,j]k−1}kj=1 and check whether the secrets of the resulting
sharings are the same as those shared by Pking. Again the last check can be handled by our verification
protocol as well.

2.6 Summary of Our Construction
Putting all components together, we obtain a perfectly secure MPC protocol with constant online commu-
nication. In the preprocessing phase, we prepare correlated random degree-t Shamir sharings and Beaver
triples. We show how to use the techniques in [BTH08] to achieve this task. The communication complexity
in the preprocessing phase is O(n) elements per gate.

9

In the online phase, we follow the dispute control method and divide the circuit into O(n2) segments
of equal size. Since there are at most O(n2) different dispute pairs, in the worst case, we may need to re-
evaluate O(n2) segments. By having O(n2) segments, even in the worst case, the asymptotic communication
complexity remains unchanged.

In each segment, we first evaluate the circuit by using packed Shamir sharings without check. This
includes (1) performing proper linear transformations to prepare input packed Shamir sharings for each
layer, and (2) using packed Shamir sharings to evaluate each group of gates efficiently. Note that to protect
against a malicious Pking, every sharing that is reconstructed to Pking is masked by a degree-(n− 1) packed
Shamir sharing of 0.

After evaluation, all parties together verify whether Pking distributes valid degree-(k− 1) packed Shamir
sharings. After this check, all parties can reveal the mask sharing [0]n−1. Now Pking checks whether the
shares he received are valid degree-d or degree-(d + k − 1) sharings, and all parties check whether Pking
honestly follows the protocol. If all check passes, all parties proceed to the next segment. Otherwise, all
parties rely on the degree-t Shamir sharings prepared in the preprocessing phase to identify a dispute pair.
Then the whole segment is re-evaluated.

As a conclusion, we have the following theorem.

Theorem 1. Let n denote the number of parties. Let F be a finite field of size |F| ≥ 2n. For an arithmetic
circuit C over F, there exists an information-theoretic MPC protocol that computes C against a fully malicious
adversary controlling at most t = n−1

3 corrupted parties with perfect security. The communication cost of
the protocol is O(|C|+Depth ·n+n5) elements for the online phase and O(|C| ·n+Depth ·n2+n4) elements
for the preprocessing phase, where Depth is the circuit depth.

3 Preliminary
3.1 The Model
We consider a set of n parties {P1, P2, . . . , Pn} where each party can provide inputs, receive outputs, and
participate in the computation. For every pair of parties, there exists a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. The communication complexity
is measured by the number of bits via private channels.

We focus on functions which can be represented as arithmetic circuits over a finite field F (with |F| ≥ 2n)
with input, addition, multiplication, and output gates. Let κ = log |F| be the size of an element in F.

In this work, we consider the standard simulation-based definition of MPC [Can00]. An adversary is able
to corrupt at most t = n−1

3 parties, provide inputs to corrupted parties, and receive all messages sent to
the corrupted parties. Corrupted parties can deviate from the protocol arbitrarily. We denote the set of
corrupted parties by C. We consider perfect security with guaranteed output delivery. That is the protocol
is guaranteed to succeed with no error.

3.2 Packed Shamir Secret Sharing
We use the packed secret sharing technique introduced by Franklin and Yung [FY92]. This is a generalization
of the standard Shamir secret sharing scheme [Sha79]. Let F be a finite field of size |F| ≥ 2n. Let n be the
number of parties and k be the number of secrets that are packed in one sharing. A degree-d (d ≥ k − 1)
packed Shamir sharing with secret x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) for which there exists a
polynomial f(·) ∈ F[X] of degree at most d such that f(−i + 1) = xi for all i ∈ [k], and f(i) = wi for all
i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing
requires d + 1 shares and can be done by Lagrange interpolation. For a random degree-d packed Shamir
sharing of x, any d− k + 1 shares are independent of the secret x.

In our work, we use [x]d to denote a degree-d packed Shamir sharing of x ∈ Fk. In the following,
operations (addition and multiplication) between two packed Shamir sharings are coordinate-wise. We recall
two properties of the packed Shamir sharing scheme:

10

• Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.

• Multiplicativity: Let ∗ denote the coordinate-wise multiplication operation. For all d1, d2 ≥ k − 1
subject to d1 + d2 < n, and for all x,y ∈ Fk, [x ∗ y]d1+d2

= [x]d1
· [y]d2

.
These two properties directly follow from computing the underlying polynomials.

Note that the second property implies that, for all x, c ∈ Fk, all parties can locally compute [c ∗x]d+k−1

from [x]d and the public vector c. To see this, all parties can locally transform c to degree-(k − 1) packed
Shamir sharing [c]k−1. Then they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x]d+k−1 = [c]k−1 · [x]d. This property is referred to as multiplication-friendliness in [GPS22].

Recall that t is the number of corrupted parties. Also recall that a degree-d packed Shamir secret sharing
scheme is secure against d− k+ 1 corrupted parties. In our work, we set k = (t+ 2)/2 = (n+ 5)/6 and d =
t+k−1. As we have discussed in Section 2.1, during the computation, all parties need to reconstruct degree-
(d+k−1) packed Shamir sharings. Using the above choices of k and d, we have d+k−1 = t+2k−1 = 2t+1,
which ensures that even if all corrupted parties have been removed when using dispute control (introduced
below), we still have enough shares to reconstruct degree-(d+ k − 1) packed Shamir sharings.

Standard Shamir Secret Sharing. When k = 1, [x]d is a standard degree-d Shamir sharing of x ∈ F.
In our work, for all i ∈ {1, . . . , n}, we use [x|i]d to denote a degree-d Shamir sharing with secret stored at
position −i+ 1 rather than 0.

3.3 The Generalization of Party Elimination: Dispute Control
Our work uses the dispute control technique introduced in [BTH06]. The crux for dispute control is to divide
the whole computation into several segments and do it segment by segment. As for the current segment,
we first evaluate it and then detect efficiently whether the evaluation is correct. It requires that at least
one honest party would notice the errors in case faults occur. After detection, all parties run a consensus to
agree on whether they evaluate the current segment correctly. In the case of success, all parties move to the
next segment. In the case of failure, all parties run another protocol to localize a pair of two dispute parties
containing at least one corrupted party. Then the current segment will be evaluated again. To avoid finding
the same dispute pair (Pi, Pj), we find an intermediate party Pr which is not disputed with both Pi and Pj

to help pass messages between Pi and Pj . Notice the secrecy is preserved because at least one of Pi and Pj

is corrupted and relaying does not leak more information to the adversary. Once a party Pi is disputed with
more than t parties, this party is not allowed to join future computation. Note that in this case, Pi must
be a corrupted party. Then one can always find an intermediate party Pr who is not disputed with both Pi

and Pj if both Pi and Pj are active. Moreover, the number of failures is bounded by O(n2) since each failure
leads to finding a new dispute pair.

Hence, dividing uniformly the whole circuit into n2 segments, each of size |C|/n2, since there are totally
at most n2 failures, the whole communication complexity at most doubles.

We denote the set of currently active parties by P and the set of recorded dispute pairs of parties by D.
We use n′ to denote the size of P and t′ to denote the number of corrupted parties in P. Then each time a
corrupted party is eliminated, it results in n′ := n′ − 1, t′ := t′ − 1.

3.4 Enabling Preprocessing
Preparing Random Degree-t Shamir Sharings. Our work needs to prepare the following kinds of
correlated random degree-t Shamir sharings in the preprocessing phase.

• A random degree-t Shamir sharing [r|i]t. We use Σ1,i to denote this kind of random sharings.

• A pair of random degree-t Shamir sharings ([r|i]t, [r|j]t) of the same random value. We use Σ2,i,j to
denote this kind of random sharings.

For all Σ ∈ {Σ1,i,Σ2,i,j}ni,j=1, we give the functionality FRandSh below that prepares N random Σ-sharings.

11

Functionality 1 : FRandSh(Σ)

1. FRandSh receives a public parameter N . FRandSh also receives the set C of the corrupted parties’
identities.

2. For all k ∈ [N], FRandSh receives the corrupted parties’ shares {uj}Pj∈C from the adversary,
samples a random Σ-sharing such that for all Pj ∈ C, the j-th share of the sharing is uj , and
distributes them to honest parties.

In Section D, we show that FRandSh can be realized by using techniques in [BTH08] with communication
complexity O(N · n+ n4) elements.

Preparing Random Beaver Triples. To prepare random packed Beaver triples, we also make use of
the functionality FTriples(i) that generates N random degree-t Beaver triples with secrets stored at position
−i+ 1.

Functionality 2 : FTriples

1. FTriples receives a public parameter N and i. FTriples also receives the set C of corrupted parties’
identities.

2. For all k ∈ [N]:

(a) FTriples receives from the adversary the corrupted parties’ shares
{u(1)

j , u
(2)
j , u

(3)
j }Pj∈C . FTriples samples two random elements x, y ∈ F and computes

z := x · y. Then FTriples samples random degree-t Shamir secret sharings [x|i]t, [y|i]t, [z|i]t,
such that for all Pj ∈ C, the j-th share of ([x|i]t.[y|i]t, [z|i]t) is (u

(1)
j , u

(2)
j , u

(3)
j).

(b) FTriples distributes the shares of [x|i]t, [y|i]t, [z|i]t to honest parties.

In Section D, we show that FTriples(i) can be realized by using techniques in [BTH08] with communication
complexity O(N · n+ n4) elements.

4 Circuit Evaluation
Recall that, we use n to denote the number of parties, n′ to denote the number of active parties and t′ to
denote the number of active corrupted parties. Also recall the corruption threshold t = (n − 1)/3 and the
packing parameter k = (t+ 2)/2 = (n+ 5)/6.

4.1 Useful Building Block for Verification
Let Σ be a linear secret sharing scheme such that a Σ sharing is fully determined by the shares of honest
parties. We consider the scenario where a party Pking distributes N Σ-sharings, denoted by U1, . . . , UN to
all parties (via a relay if Pking and Pi are disputed). These N Σ-sharings need not to be private. All parties
want to check whether they hold valid Σ-sharings. We assume that an honest Pking always distribute valid
Σ-sharings to all parties.

We introduce a functionality FVerifyPub to accomplish this task. FVerifyPub either outputs accept to all
parties, indicating that all (honest) parties hold valid Σ-sharings, or outputs a new dispute pair that con-
tains at least one corrupted party. Moreover, we show that FVerifyPub can be realized with communication
complexity O((N + n) · |Σ|) elements if the check passes in Subsection 5.1, where |Σ| is the sharing size.

12

Functionality 3 : FVerifyPub(Σ)

1. FVerifyPub receives the set C of corrupted parties’ identities and the set D of disputed pairs.

2. FVerifyPub receives honest parties’ shares of U1, . . . , UN from the honest parties and sends them
to the adversary.

3. FVerifyPub checks if each group of shares form a valid Σ-sharing.

• If all the checks are passed, FVerifyPub receives an instruction from the adversary:
– If FVerifyPub receives reject from the adversary, it further receives a new pair of dispute

parties containing at least one corrupted party and outputs reject together with the
receiving pair to all parties.

– If FVerifyPub receives accept from the adversary, it outputs accept to all parties.
• If one of the checks fails, FVerifyPub receives a new pair of dispute parties containing at least

one corrupted party and outputs reject together with the receiving pair to all parties.

4.2 Evaluating Multiplication Gates
To evaluate a group of k multiplication gates with input sharings {[xi|i]t, [yi|i]t}ki=1, we follow the technique
of packed Beaver triples together with degree reduction.

In the preprocessing phase, all parties prepare random Beaver triples {[ai|i]t, [bi|i]t, [ci|i]t}ki=1 such that
ci = ai · bi for all i ∈ [k], and random sharings {[ri|i]t}2k−1

i=1 . Before the evaluation of each segment, all
parties also together prepare random degree-(n′ − 1) packed Shamir sharings of 0 ∈ Fk. We summarize the
protocol ΠzeroSharing below, which allows all parties to prepare O(n) degree-(n′ − 1) packed Shamir sharings
of 0 with communication cost O(n2) elements.

Protocl 1 : ΠzeroSharing

1. All parties agree on a Vandermonde matrix VT of size n′ × (n′ − t′).

2. Every party Pi randomly samples a random degree-(n′ − 1) 0-sharing [0(i)]n′−1 and distributes
the shares to other parties, where 0 is of dimension k.

3. All parties locally compute

([01]n′−1, . . . , [0n′−t′]n′−1)
T = V · ([0(1)]n′−1, . . . , [0

(n′)]n′−1)
T.

We give the description of ΠMult below. The communication complexity per batch of k multiplication
gates is O(n) elements.

Protocol 2 : ΠMult

For a batch of k multiplication gates, all parties hold input sharings {[xi|i]t, [yi|i]t}ki=1. In addition,
all parties hold the following sharings prepared in the preprocessing phase.

• A group of Beaver triples {[ai|i]t, [bi|i]t, [ci|i]t}ki=1;

• A group of random degree-t Shamir sharings {[ri|i]t}2k−1
i=1 ;

All parties also hold the following sharings prepared right before evaluating the current segment:
three degree-(n′− 1) packed Shamir sharings [01]n′−1, [02]n′−1, [03]n′−1. All parties run the following
steps to compute {[zi|i]t}ki=1.

13

1. All parties locally compute [x]t+k−1, [y]t+k−1, [a]t+k−1, [b]t+k−1, [c]t+k−1 from
{[xi|i]t, [yi|i]t}ki=1 and {[ai|i]t, [bi|i]t, [ci|i]t}ki=1.

2. All parties locally compute [x + a]n′−1 = [x]t+k−1 + [a]t+k−1 + [01]n′−1 and [y + b]n′−1 =
[y]t+k−1 + [b]t+k−1 + [02]n′−1, and send their shares to Pking.

3. Pking reconstructs x+ a and y + b, distributes [x+ a]k−1, [y + b]k−1 to all parties.

4. All parties locally compute

[z]t+2k−2 = [x+ a]k−1 · [y + b]k−1

−[x+ a]k−1 · [b]t+k−1 − [a]t+k−1 · [y + b]k−1 + [c]t+k−1

and a random degree-(t+ 2k − 2) packed Shamir sharing [r]t+2k−2 from {[ri|i]t}2k−1
i=1 .

Finally, all parties locally compute [z+r]n′−1 = [z]t+2k−2+[r]t+2k−2+[03]n′−1 and send their
shares to Pking.

5. Pking reconstructs z + r and distributes [z + r]k−1 to all parties.

6. All parties locally compute [zi|i]t = [z + r]k−1 − [ri|i]t for all i ∈ [k].

4.3 Handling Sharing Transformations
In this section, we show how to efficiently perform sharing transformations. This will be an important
component to evaluate a general circuit using packed Shamir sharings. The task of sharing transformation
is to transform a degree-(t+ k − 1) packed Shamir sharing [x]t+k−1 to [L(x)]t+k−1, where L : Fk → Fk is a
linear map.

Preparing Correlated Random Sharings for Linear Maps. As we discussed in Section 2, the sharing
transformation is done by first preparing a pair of random sharings ([r]t+k−1, [L(r)]t+k−1).

We first introduce a protocol ΠTranspose that allows all parties to transform {[xi,j |j]t}ki,j=1 to {[xj,i|j]}ki,j=1.
The communication complexity of ΠTranspose is O(n2) elements in the case of success.

Protocol 3 : ΠTranspose in FVerifyPub − hybrid model

All parties hold input sharings {[xi,j |j]t}ki,j=1. All parties in addition hold the following random
sharings prepared in the preprocessing phase: {[ri,j |j]t, [rj,i|j]t}ki,j=1. All parties run the following
steps to compute {[xj,i|j]t}ki,j=1.

1. For all i ∈ [k], all parties locally compute [xi]t+k−1 and [ri]t+k−1 from {[xi,j |j]t}kj=1 and
{[ri,j |j]t}kj=1.

2. For all i ∈ [k], all parties locally compute [xi + ri]t+k−1 = [xi]t+k−1 + [ri]t+k−1 and send their
shares to Pking.

3. Pking checks whether all received degree-(t + k − 1) packed Shamir sharings are valid. If not,
supposing the i-th sharing is inconsistent, Pking broadcasts a complain to all parties. Then all
parties send their shares of {[xi,j + ri,j |j]t}kj=1 to Pking.
Pking reconstructs (xi,j + ri,j)

k
j=1 and computes [(xi,j + ri,j)

k
j=1]t+k−1. Then Pking identifies

the cheating party Pi and broadcasts (i, x, x′), where Pi should have sent x to Pking, but Pking
receives x′ ̸= x. Then Pi and the relay between Pi and Pking broadcast the messages they
believe. Set two adjacent parties broadcasting differently to be the dispute pair.

14

4. Otherwise, Pking reconstructs (xi,j + ri,j)
k
i,j=1. For all i ∈ [k], Pking distributes [x∗,i + r∗,i]k−1

to all parties.

5. For all i, j ∈ [k], all parties locally compute [xj,i|j]t = [x∗,i + r∗,i]k−1 − [rj,i|j]t.

6. All parties invoke FVerifyPub to check whether Pking correctly distributes valid degree-(k − 1)
packed Shamir sharings. If not, all parties take a new dispute pair as output. Otherwise, all
parties take {[xj,i|j]t}ki,j=1 as output.

We will use ΠTranspose to prepare correlated random sharings for sharing transformations in ΠPrepTrans.
The communication complexity of ΠPrepTrans is O(N · n + n3) elements to prepare random sharings for N
linear transformations if succeeds.

Protocol 4 : ΠPrepTrans in FVerifyPub − hybrid model

All parties together hold N linear maps L1, . . . , LN and the goal is to prepare {[ri,j |j]t, [Li,j(ri)|j]t}kj=1

for all i ∈ [N]. Here Li,j(·) denote the linear function that outputs the j-th value of Li(·).
For each group of k linear maps, say L1, . . . , Lk, in the beginning, all parties hold the following random
sharings prepared in the preprocessing phase: {[ri,j |j]t, [rj,i|j]t}ki,j=1. All parties do the following.

1. All parties locally compute

[Lj,i(rj)|j]t = Lj,i([rj,1|j]t, . . . , [rj,k|j]t), ∀i, j ∈ [k].

2. All parties invoke ΠTranspose on {[Lj,i(rj)|j]t}ki,j=1 to obtain shares of {[Li,j(ri)|j]t}ki,j=1.

Finally, if all parties succeed in ΠTranspose, all parties invoke FVerifyPub to check whether Pking correctly
performs the transpose operation in ΠTranspose. This is done as follows. In ΠTranspose, Pking receives
{[xi + ri]t+k−1}ki=1 from all parties and distributes {[x∗,i + r∗,i]k−1}ki=1 to all parties. We may
effectively think that Pking distributes {[xi + ri]t+k−1}ki=1 and {[x∗,i + r∗,i]k−1}ki=1 to all parties. All
parties invoke FVerifyPub to check the correctness of the transpose operations.

Performing Sharing Transformations. With {[rj |j]t, [Lj(r)|j]t}kj=1, we show how to transform {[xj |j]t}kj=1

to {[Lj(x)|j]t}kj=1 in ΠShTrans. The communication complexity of ΠShTrans is O(n) elements.

Protocol 5 : ΠShTrans

All parties take {[xj |j]t}ki=1 and a linear map L = (L1, . . . , Lk) as input. All parties also hold the
following random sharings prepared right before the evaluation of the current segment:

• Two groups of correlated random sharings {[rj |j]t, [Lj(r)|j]t}kj=1,

• A degree-(n′ − 1) packed Shamir sharing [0]n′−1.

All parties run the following steps to compute {[Lj(x)|j]t}kj=1.

1. All parties locally compute [x]t+k−1 and [r]t+k−1 from {[xj |j]t}kj=1 and {[rj |j]t}kj=1.

2. All parties locally compute [x+ r]n′−1 = [x]t+k−1 + [r]t+k−1 + [0]n′−1 and send their shares to
Pking.

3. Pking reconstructs x+ r, computes L(x+ r), and distributes [L(x+ r)]k−1 to all parties.

4. All parties locally compute [Lj(x)|j]t = [L(x+ r)]k−1 − [Lj(r)|j]t for all j ∈ [k].

15

4.4 Summary of the Evaluation Phase
To compute a general circuit with packed Shamir sharings, we utilize the techniques in [GPS21] for network
routing. At a high level, for any circuit C, we first divide gates of the same type in each layer into groups
of size k. After we obtain output packed Shamir sharings for each group of gates in the current layer, the
authors in [GPS21] show that the input packed Shamir sharings in the next layer can be obtained as follows:

• For each output packed Shamir sharings in the current layer, we perform the fan-out operation to copy
each secret enough number of times. For example, if a packed Shamir sharing [x1, x2, x3]d satisfies
that x1, x2, x3 will be used by (2, 3, 1) times in future layers, then all parties compute [x1, x1, x2]d and
[x2, x2, x3]d. Note that each new packed Shamir sharing can be obtained by performing a proper linear
transformation to the original packed Shamir sharing.

• After the fan-out operations, for each obtained packed Shamir sharing, perform a proper permutation
on the secrets, which is also a linear transformation.

• After doing the above two steps, we move to prepare the input packed Sharings we need in the next layer.
The main property that is achieved in [GPS21] is that, now for every packed Shamir sharing [x]t+k−1

we want to prepare, the previous steps have generated k packed Shamir sharings {[x(i)]t+k−1}ki=1 such
that there exists a permutation p : {1, . . . , k} → {1, . . . , k} and xi = x

(i)
p(i). In other words, all secrets

we want to collect all come from different positions. In this way, all parties can efficiently collect secrets
they want and obtain [x′]t+k−1 without changing the positions of the secrets, i.e., xi = x

(i)
p(i) = x′

p(i).

We note that in our case this task is even simpler. This is because for every [x(i)]t+k−1, we actually
prepare {[x(i)

j |j]t}kj=1. Thus, we just need to pick {[xi|p(i)]t}ki=1 = {x(i)
p(i)|p(i)}

k
i=1.

• Finally, to obtain [x]t+k−1, we permute the secrets in [x′]t+k−1, which again is a linear transformation.

Since our work uses [GPS21] in a black box way, we refer the readers to [GPS21] for how to find these
linear maps.

We assume that for output packed Shamir sharings from the last segment, the first two steps have
been done. We will maintain the invariant in the current segment. We summarize our evaluation protocol
as ΠEval below and analyze the number of required different kinds of preprocessing data as follows, where we
suppose there are N linear maps and M multiplication gates needed to be handled in this segment and thus
N = O(|C|/n3),M = O(|C|/n2).

• A degree-(n′ − 1) packed Shamir sharing [0]n′−1: 3M
k +N .

• A group of Beaver triples {[ai|i]t, [bi|i]t, [ci|i]t}ki=1: M
k groups.

• A group of random degree-t Shamir sharings {[ri|i]t}2k−1
i=1 : M

k groups.

• A group of Shamir sharings {[ri,j |j]t, [rj,i|j]t}ki,j=1: 2N
k groups.

Protocol 6 : ΠEval

For each group of k wires before the current segment, all parties hold {[xi|i]t}ki=1. All parties run the
following steps.

1. Suppose the linear maps we need to perform in this segment is L1, . . . , LN . All parties in-
voke ΠPrepTrans to prepare {[ri,j |j]t, [Li,j(ri)|j]t}i∈[N],j∈[k]. All parties invoke ΠzeroSharing to pre-
pare [0]n′−1.

2. All parties evaluate the current segment layer by layer.

(a) For each group of input wires x, all parties locally collect secrets and obtain {[xi|p(i)]t}ki=1,

16

where p is a permutation over [k]. This step is guaranteed by the network routing protocol
in [GPS21].

(b) For each group of input wires x, All parties invoke ΠShTrans on {[xi|p(i)]t}ki=1 to obtain
{[xi|i]t}ki=1.

(c) For each group of addition gates with input packed Shamir sharings {[xi|i]t}ki=1 and
{[yi|i]t}ki=1, all parties locally compute [zi|i]t = [xi|i]t + [yi|i]t via local computation for
i ∈ [k].

(d) For each group of multiplication gates with input packed Shamir sharings {[xi|i]t}ki=1 and
{[yi|i]t}ki=1, all parties invoke ΠMult to compute {[zi|i]t}ki=1.

(e) For each output packed Shamir sharing {[zi|i]t}ki=1 and the linear map L that is needed to
perform on z, all parties invoke ΠShTrans on {[zi|i]t}ki=1 to obtain {[Li(z)|i]t}ki=1. (Fan-out
gates and permutations are handled here.)

5 Efficient Verification
In this section, we study how to perform efficient verification after completing evaluating the current segment
and handling sharing transformations.

5.1 Instantiating Batch-wise Verification
To achieve perfect security with constant online communication complexity, we need an efficient protocol
to realize FVerifyPub introduced in Subsection 4.1 which allows to verify linear secret sharings distributed by
party Pking who is responsible for the consistency of these sharings. Recall the verification either is passed
only if the shares held by all honest parties are consistent, or fails and further provides a new dispute pair
that contains at least one corrupted party.

We follow the high-level idea in Section 2.2 and give the construction below. The communication com-
plexity of ΠVerifyPub is O((N + n) · |Σ|) to check N Σ-sharings if the check passes.

Protocol 7 : ΠVerifyPub(Σ)

All parties hold N Σ-sharings U1, . . . , UN , which are distributed by Pking. For each group of 2t + 1
sharings, say U1, . . . , U2t+1. Let T = 2t+ 1. All parties do the following.

1. All parties agree on n′ distinct field elements {βi}n
′

i=1. Define U(x) =
∑T

h=1 Uhx
h−1. For all

i ∈ [n′], every party Pj computes its share of U(βi) and sends it to Pi.

2. For all i ∈ [n′], party Pi checks if the shares it receives form a Σ-sharing. If they are inconsistent,
Pi gets unhappy.

3. Fault Detection: Reach an agreement on whether at least one party is unhappy.

(a) Every party Pi sends its happy-bit together with its index (Pi, happy-bit) to every party
Pj , who gets unhappy if at least one Pi claims to be unhappy.

(b) All the parties run a consensus protocol on their respective happy-bits. If the consen-
sus outputs happy, all parties output accept and halt. Otherwise, the following Fault-
Localization step is executed.

4. Fault Localization: Localize a pair of parties E in which at least one party is corrupted.
If Pr sends (Pr, unhappy), Pr checks the consistency as follows:

17

(a) All parties send to Pr their shares received from Pking. Pking sends to Pr the shares it
distributed. (Note if any party conflicts with Pr, then this will be relayed by an interme-
diate party.) All parties also send to Pr all messages they sent and received in the Fault
Detection step.

(b) If Pi and Pj do not agree on some message, Pr broadcasts (ℓ, Pi, Pj , v, v
′, disputed), where

ℓ is the index of a message where Pi should have sent v to Pj , while Pj claimed to have
received v′ ̸= v. Go to step 4(e).

(c) If Pking itself sends inconsistent messages, Pr broadcasts (Pking, corrupt). Go to step 4(e).
(d) If some Pj sends an incorrect share of U(βr) or sends an incorrect happy bit, Pr broadcasts

(Pj , corrupt). Go to step 4(e).
(e) All parties localize a dispute pair:

i. If a pair of parties that has already been broadcast, then Pr is corrupted and will be
eliminated.

ii. If (Pj , corrupt) is broadcast, then the relay for (Pj , Pr) together with Pj broadcast
whether they agree with Pr. Denote the relay by Pj↔r. If Pj agrees, then Pj is
corrupted. If Pj , Pj↔r have different opinions, set E = {Pj , Pj↔r}. Otherwise, set
E = {Pr, Pj↔r}

iii. Otherwise when (ℓ, Pi, Pj , v, v
′, disputed) is broadcast, all the parties relaying for

(Pr, Pi), (Pi, Pj), (Pj , Pr) together with Pi and Pj broadcast what the message they
believe is correct. Set E to be the set of the two adjacent parties whose opinions are
different.

Lemma 1. After finishing step 1 and step 2 in ΠVerifyPub, at least one honest party will get unhappy if the
shares of Uh belonging to honest parties are inconsistent for some 1 ≤ h ≤ T .

See the proof in Appendix A.

Lemma 2. The protocol ΠVerifyPub securely computes FVerifyPub against a fully malicious adversary who
controls t′ ≤ (n′ − 1)/3 parties.

See the proof in Appendix B.

5.2 Verifying Multiplication Gates
For now, all parties already complete the computation of the current segment including evaluating all groups
of multiplication gates inside the current segment and handling sharing transformations.

To verify the evaluation above, all parties first invoke FVerifyPub to check whether Pking distributes valid
degree-(k − 1) packed Shamir sharings in ΠMult. If the verification passes, all parties open their shares
of degree-(n′ − 1) packed Shamir sharings of 0 prepared in ΠzeroSharing. After subtracting the shares of
degree-(n′− 1) packed Shamir sharings of 0, Pking obtains the original messages receiving from other parties

1. two degree-(t+ k − 1) sharings [x+ a]t+k−1, [y + b]t+k−1 and

2. a degree-(t+ 2k − 2) sharing [z + r]t+2k−2.

Notice Pking is able to detect whether other parties send these shares correctly by simply checking if the
received shares lie on a degree-(t+ k − 1) polynomial for the first case and a degree-(t+ 2k − 2) polynomial
for the second case because for both cases, shares of honest parties fully determine the whole sharing. In the
case of inconsistency, Pking is supposed to localize a dispute pair. For the first case, all parties send their
degree-t shares of {[xj |j]t + [aj |j]t}kj=1 to Pking who takes advantage of error correction code to robustly
reconstruct x+a, and compares them with [x+a]t+k−1 to detect who is cheating (note at least 2t+1 shares
of [x+ a]t+k−1 held by honest parties correctly share the secret x+ a).

18

As for the second case, we follow the high-level idea in Section 2.2 to find a dispute pair.
The protocol ΠVerifyMult described below requires all parties to prepare randomness {[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1,

{[r′j |j]t}
2k−1
j=1 in the preprocessing phase. The communication of verifying per batch k of multiplication gates

is O(n) elements in the case of success.

Protocol 8 : ΠVerifyMult in FVerifyPub − hybrid model

All parties hold random degree-t Shamir sharings prepared in the preprocessing phase
{[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1 and {[r′j |j]t}

2k−1
j=1 .

1. All parties invoke FVerifyPub to check whether Pking sends valid degree-(k − 1) packed Shamir
sharings in step 3 and step 5 of ΠMult.

• If the verification passes, then all parties send all messages in ΠzeroSharing to Pking. Then
Pking checks whether all parties honestly follow ΠzeroSharing.

– If not Pking either broadcasts (ℓ, v, v′, Pi, Pj) if Pi and Pj do not agree on the same
message, or (Pi, corrupt) if Pi does not follow the protocol. Then Follow Step 4.(e)
in ΠVerifyPub to identify a new dispute pair.

– Otherwise Pking subtracts the degree-(n′ − 1) packed Shamir sharings of 0 from the
sharings he received in ΠMult.

• Otherwise, all parties take the new dispute pair as output.

2. Pking checks if one of other parties sends wrong share [x+a]t+k−1, [y+b]t+k−1 in step 2 of ΠMult:
Pking only needs to check whether these shares are of degree t+ k − 1.

• If it is inconsistent, every party Pi sends {[xj |j]t + [aj |j]t, [yj |j]t + [bj |j]t}kj=1 to Pking,
∀i ∈ [n′]. Pking reconstructs x + a,y + b, compares it with [x + a]t+k−1, [y + b]t+k−1

to detect who is cheating and broadcasts (i, x, x′), where Pi should have sent x to Pking,
but Pking claims to have received x′ ̸= x. Pking asks Pi and their relay to broadcast the
messages they believe. Set two adjacent parties broadcasting differently to be the dispute
pair.

3. All parties invoke FVerifyPub to check whether Pking sends degree-(k − 1) sharings with correct
secret value x+ a,y + b in step 3 of ΠMult.

4. Pking checks if it receives a valid deg-(t+ 2k − 2) Shamir secret sharing in step 4 of ΠMult.

• If it is inconsistent, all parties localize a dispute pair as follows, using fresh random sharings
{[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1 and {[r′j |j]t}

2k−1
j=1 .

(a) Every party locally computes a degree-(t+ 2k − 2) sharing [v]t+2k−2 as

[v]t+2k−2 = [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b′]t+k−1

−[a′]t+k−1 · [y + b]k−1 + [c′]t+k−1 + [r′]t+2k−2,

where [a′]t+k−1, [b
′]t+k−1, [c

′]t+k−1, [r
′]t+2k−2 are locally computed from

{[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1 and {[r′j |j]t}
2k−1
j=1 .

Then all parties send [v]t+2k−2 to Pking.
(b) Pking checks if the received shares in step 4(a) satisfy a degree-(t + 2k − 2) Shamir

secret sharing.
– If it is inconsistent, every party Pi sends {[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1 and

{[r′j |j]t}
2k−1
j=1 to Pking who localizes a dispute pair as follows. Pking reconstructs all

degree-t Shamir sharings and computes [a′]t+k−1, [b
′]t+k−1, [c

′]t+k−1, [r
′]t+2k−2.

Then Pking computes [v]t+2k−2 and detect who is cheating. The rest is the same
as step 2.

19

(c) If it is consistent, every party Pi sends {[a′j |j]t+[aj |j]t, [b′j |j]t+[bj |j]t, [c′j |j]t+[cj |j]t}kj=1

and {[r′j |j]t + [rj |j]t}2k−1
j=1 to Pking who localizes a dispute pair as in step 4(b).

5. All parties invoke FVerifyPub to check whether Pking sends a degree-(k − 1) sharing with correct
secret value z + r in step 5 of ΠMult.

5.3 Verifying Sharing Transformations
Following the verification of multiplication gates, after degree-(n′ − 1) packed Shamir sharings of 0 are
opened, Pking checks whether all parties send correct shares [x + r]t+k−1. Then all parties check whether
Pking honestly shares [L(x+ r)]k−1.

The protocol ΠVerifyShTrans is described below. The communication of verification per sharing transforma-
tion is O(n) elements in the case of success.

Protocol 9 : ΠVerifyShTrans in FVerifyPub − hybrid model

1. All parties check whether Pking distributes a degree-(k− 1) Shamir sharing in step 3 of ΠShTrans

in the same way as step 1 in ΠVerifyMult. Then Pking checks if one of other parties sends wrong
share of [x+ r]t+k−1 in step 2 of ΠShTrans in the same way as step 2 in ΠVerifyMult.

2. All parties check whether Pking sends valid sharing of degree k− 1 with correct secret L(x+ r)
as follows. For each group of k linear transformations, say L1, L2, . . . , Lk, all parties hold
{[xi + ri]t+k−1, [Li(xi + ri)]k−1}ki=1. Let [ui]t+k−1 denote [xi + ri]t+k−1 and [vi]k−1 denote
[Li(xi + ri)]k−1.

(a) Pking distributes {[u∗,i]k−1}ki=1 and {[v∗,i]k−1}ki=1 to all parties.
(b) All parties invoke FVerifyPub to check whether Pking honestly perform the transpose opera-

tions for {[ui]t+k−1}ki=1. This step is done for all groups of k linear transformations.
(c) All parties invoke FVerifyPub to check whether Pking honestly perform the transpose opera-

tions for {[vi]k−1}ki=1. This step is done for all groups of k linear transformations.
(d) For all i ∈ [k], all parties locally compute

[oi]2k−2 = [v∗,i]k−1 −
k∑

j=1

[ej]k−1 · Lj,i([u∗,1]k−1, . . . , [u∗,k]k−1),

where ej ∈ Fk is the j-th unit vector (i.e., the j-th value is 1 while all other values are 0).
Note that Pking can also compute {[oi]2k−2}ki=1. Effectively, we view these sharings are
distributed by Pking.

(e) All parties invoke FVerifyPub to check whether {[oi]2k−2}ki=1 are degree-(2k−2) packed secret
sharings of 0.

6 Main Protocol with Perfect Security
In this section, we will conclude our main protocol and discuss the instantiation of preprocessing phase.

6.1 Input Layer
We sketch the protocol ΠInput that allows a party Ps to share his inputs to all parties. At the end of ΠInput,
either all parties hold degree-t Shamir sharings of Ps’s input, or a new dispute pair is identified and Ps will

20

re-share his input.
For each group of k inputs x of Ps, all parties prepare random degree-t Shamir sharings {[rj |j]t}kj=1 in

the preprocessing phase. Then in the online phase, all parties locally compute [r]t+k−1 from {[rj |j]t}kj=1

and send their shares to Ps. Ps checks whether the received shares form a valid degree-(t + k − 1) packed
Shamir sharing. If not, all parties send their shares of {[rj |j]t}kj=1 to Ps and Ps helps identify a dispute
pair. Otherwise, Ps distributes [x + r]k−1 to all parties. Then all parties use FVerifyPub to check whether
Ps distributes a valid degree-(k − 1) packed Shamir sharing. If not, all parties receive a new dispute pair
from FVerifyPub. Otherwise, all parties locally compute [xj |j]t = [x+ r]k−1 − [rj |j]t.

The protocol ΠInput is described below. The communication per batch of k input gates is O(n) elements
in the case of success.

Protocol 10 : ΠInput in FRandSh,FVerifyPub − hybrid model

Divide all the input gates into several segments while preserving each size of the segments bounded
by |C|/n2. All parties handle the input gates segment by segment.
For each segment:

For every group x = (x1, . . . , xk) of k input gates belonging to Ps, Ps shares its group of inputs
to all parties using random sharings {[rj |j]t}kj=1 as follows:

1. Every party receives its shares of {[rj |j]t}kj=1 from FRandSh.

2. Every party computes [r]t+k−1 =
∑k

j=1[ej]k−1 · [rj |j]t and sends it to Ps.
3. Ps checks if one of other parties sends wrong share [r]t+k−1: Ps only needs to check whether

this is of degree t+ k − 1.
– If it is inconsistent, every party Pi sends {[rj |j]t}kj=1 to Ps, ∀i ∈ [n′]. Ps reconstructs

r, compares it with [r]t+k−1 to detect who is cheating and broadcasts (i, x, x′), where
Pi should have sent x to Ps, but Ps claims to have received x′ ̸= x. Ps asks all parties
who are responsible to transmit Pi’s shares to broadcast the messages they believe.
Set two adjacent parties broadcasting differently to be the dispute pair. After relaying
for this dispute pair, redo the current segment.

4. Ps reconstructs r using the receiving shares and distributes [x+ r]k−1 to all parties.
5. All parties invoke FVerifyPub to check whether Ps sends a degree-(k − 1) sharing.
6. For all j ∈ [k], every party computes [xj |j]t = [x+ r]k−1 − [rj |j]t.

6.2 Output Layer
After completing the entire computation segment by segment, all parties come to the output phase. To
reconstruct the output z ∈ Fk of party Ps towards Ps, all parties send their shares of [z]t+k−1 to Ps. Then
after checking the consistency, Ps is able to reconstruct its output.

We formally describe ΠOutput in Appendix E. The communication is O(n) elements per batch k output
gates in the case of success.

6.3 Main Protocol
Now we are ready to present our main protocol. First, we apply the deterministic circuit transformation
algorithm proposed in [GPS21] with a little modification to ensure the resulting circuit is friendly to the
packed secret sharing technique. By doing this, we are able to pack the input gates belonging to one party
in the input layer, the multiplication gates and the addition gates in each intermediate layer, and the output
gates belonging to one party in the output layer into groups of gates of size k. We refer to Appendix F for
more details about the requirements of the circuit transformation. In dispute control framework, we keep

21

recording the set of active parties P which contains all parties initially, and the set of dispute pair of parties
D which is empty initially. In the preprocessing phase, all parties invoke FRandSh and FTriples to prepare
sufficient amount of random sharings of each type. In the input phase, all parties invoke ΠInput to share
their groups of inputs. Before computing the circuit, we divide uniformly the whole circuit into n2 segments
and start to compute all the segments sequentially.

In the computation phase, each segment is first evaluated by ΠEval. Then all parties together check the
correctness of the computation by running ΠVerifyMult and ΠVerifyShTrans. All parties either agree on the success
of the computation, in which case they move on to evaluate the next segment, or receive a new dispute pair.
In the latter case, the whole segment is re-evaluated.

A small issue with the current approach is that in each segment, the number of fan-out operations we
need to perform may be even larger than the segment size. For example, in the first segment, there might
be a wire that will be used O(|C|) times in later layers. Then re-evaluating the first segment would result in
a large communication overhead. Our solution is to first perform the fan-out operations only for the current
segment. Only after the computation of the current segment succeeds, all parties perform the rest of fan-out
operations. In particular, the rest of fan-out operations are also divided into sub-segments of size |C|/n2.

Ultimately, all parties have already had their shares of each output. Then in the output phase, all
parties invoke ΠOutput to reconstruct the output towards the corresponding party. We describe the main
protocol ΠMain below.

Protocol 11 : ΠMain in FRandSh,FTriples,FVerifyPub − hybrid model

Circuit Transformation Phase. We adopt the deterministic algorithm in [GPS21].
Let D = {(Pi, Pj)|Pi and Pj are disputed} denote the set of pairs of disputed parties which initially
is an empty set. Let P of size n′ denote the set of parties remained to participate the computation
which contains all n parties initially.
Preprocessing Phase. All parties invoke FRandSh, FTriples to receive correlated randomness that will
be used in the online phase.
Input Phase. All parties invoke ΠInput to share their inputs.
Computation Phase. For every segment of the circuit:

1. All parties in P invoke ΠEval to evaluate this segment.

2. All parties in P invoke ΠVerifyMult and ΠVerifyShTrans to verify the correctness of the computation.

If a dispute pair of parties is identified, add this pair to D and redo the current segment. Otherwise,
all parties perform the remaining fan-out gates. This can be viewed as a segment that only contains
fan-out gates. Thus, it can be evaluated in the same way as described above.
Output Phase. All parties invoke ΠOutput to reconstruct their outputs.

Analysis of the Communication Complexity of ΠMain. Let I denote the input size, G denote the
number of gates, and O denote the output size, Depth denote the depth of the circuit. Then |C| ≥ I+G+O.
We set T = n − t, k = (n + 5)/6. In summary, the overall communication complexity for online phase
is O(|C| · n

k + (Depth + n) · n + n5) elements, where the term n5 is caused by redoing the segment when
encountering faults. We refer to Appendix G for more detailed analysis.

6.4 Summary
In the preprocessing phase, the preprocessing randomness can be divided into two classes: (1) degree-t
Shamir secret sharings satisfying some specific requirements and (2) packed Beaver triples, which both can
be dealt with using the techniques in [BTH08] as mentioned in Subsection 3.4. In total, the communication
for preprocessing phase is O((|C|+ k(n+Depth))n+ n4) elements. We refer to Appendix H for the detailed
communication complexity analysis for preprocessing phase.

22

To conclude, combining the preprocessing phase and the online phase, we get a perfectly secure protocol
to compute a circuit C with online communication O(|C| · n

k + (Depth+ n) · n+ n5) linear in the circuit size
and offline communication O((|C|+ k(n+ Depth))n+ n4) elements.

Functionality 4 : FMain in FRandSh,FTriples,FVerifyPub − hybrid model

1. FMain receives the input from all parties. Let x denote the input and C denote the circuit.

2. FMain computes C(x) and distributes the output to all parties.

Lemma 3. Protocol ΠMain securely computes FMain in FRandSh, FTriples, FVerifyPub-hybrid model against a fully
malicious adversary who controls at most t < n/3 parties.

See the proof in Appendix C.
Combining the complexity analysis, lemma 2, and lemma 3, we obtain the following theorem.

Theorem 1. Let n denote the number of parties. Let F be a finite field of size |F| ≥ 2n. For an arithmetic
circuit C over F, there exists an information-theoretic MPC protocol that computes C against a fully malicious
adversary controlling at most t = n−1

3 corrupted parties with perfect security. The communication cost of
the protocol is O(|C|+Depth ·n+n5) elements for the online phase and O(|C| ·n+Depth ·n2+n4) elements
for the preprocessing phase, where Depth is the circuit depth.

References
[AAPP23] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Detect, pack and batch:

Perfectly-secure mpc with linear communication and constant expected time. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 251–281, Cham,
2023. Springer Nature Switzerland.

[AAY22] Ittai Abraham, Gilad Asharov, and Avishay Yanai. Efficient perfectly secure computation with
optimal resilience. Journal of Cryptology, 35(4):27, Sep 2022.

[ALR11] Gilad Asharov, Yehuda Lindell, and Tal Rabin. Perfectly-secure multiplication for any t < n/3.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages 240–258, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In Conference on the
Theory and Application of Cryptology, pages 560–572. Springer, 1989.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 1–10. ACM, 1988.

[BTH06] Zuzana Beerliová-Trubíniová and Martin Hirt. Efficient multi-party computation with dispute
control. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Confer-
ence, volume 3876 of Lecture Notes in Computer Science, pages 305–328, New York, NY, USA,
March 4–7, 2006. Springer, Heidelberg, Germany.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume
4948 of Lecture Notes in Computer Science, pages 213–230, San Francisco, CA, USA, March 19–
21, 2008. Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13:143–202, 2000.

23

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19.
ACM, 1988.

[DLN19] Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. Communication lower bounds for
statistically secure mpc, with or without preprocessing. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 61–84, Cham, 2019. Springer
International Publishing.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of
Lecture Notes in Computer Science, pages 572–590, Santa Barbara, CA, USA, August 19–23,
2007. Springer, Heidelberg, Germany.

[EGPS22] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. TurboPack: Honest
majority MPC with constant online communication. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and Communications
Security, pages 951–964, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In 24th Annual ACM Symposium on Theory of Computing, pages 699–710,
Victoria, BC, Canada, May 4–6, 1992. ACM Press.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. Atlas:
Efficient and scalable mpc in the honest majority setting. In Advances in Cryptology – CRYPTO
2021, pages 244–274, Cham, 2021. Springer International Publishing.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with
guaranteed output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science,
pages 85–114, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-efficient
MPC via hall’s marriage theorem. In Tal Malkin and Chris Peikert, editors, Advances in Cryp-
tology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in Computer Science, pages
275–304, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority MPC with packed secret sharing. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Com-
puter Science, pages 3–32, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg,
Germany.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority mpc. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
– CRYPTO 2020, pages 618–646, Cham, 2020. Springer International Publishing.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation.
In Tatsuaki Okamoto, editor, Advances in Cryptology — ASIACRYPT 2000, pages 143–161,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 73–85. ACM, 1989.

24

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Machin-
ery, 22(11):612–613, November 1979.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982.
SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

A Proof of Lemma 1
Proof. Suppose for all 1 ≤ h ≤ T , Pj ’s share for Uh is u

(j)
h , ∀1 ≤ j ≤ n. Then in step 2, for all 1 ≤ i ≤ T + t,

every party Pj computes its share for U(βi) as u(j)(βi) =
∑T

h=1 u
(j)
h βh−1

i . Define V =

1 β1 . . . βT−1

1

1 β2 . . . βT−1
2

...
...

1 βn′ . . . βT−1
n′

,

which is the Vandermonde matrix of size n′×T . Then we get (u(j)(β1), . . . , u
(j)(βn′))T = V·(u(j)

1 , . . . , u
(j)
T)T, ∀1 ≤

j ≤ n′. Suppose the set of honest parties with smallest T indexes in {1, 2, . . . , n′} by H′. Then we
further get (u(j)(βi))

T
i∈H′ = VH′ · (u(j)

1 , . . . , u
(j)
T)T, ∀1 ≤ j ≤ n′, where VH′ denotes the matrix consist-

ing of the rows in V with their indexes in H′. Now suppose all parties in H′ get happy, which implies
for all i ∈ H′, (u(1)(βi), . . . , u

(n′)(βi)) satisfy the linear secret sharing scheme. Since the Vandermonde
matrix V is super-invertible, which means any its T × T submatrix is invertible, then VH′ is invertible
and this is a bijective map. Hence, every sharing Uh with Pj ’s share to be u

(j)
h must be consistent as

(u
(j)
1 , . . . , u

(j)
T)T = V−1

H′ · (u(j)(βi))
T
i∈H′ , ∀1 ≤ j ≤ n′, which leads to a contradiction.

B Proof of Lemma 2
Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.
Simulation for ΠVerifyPub. Now we describe the construction of the simulator S.

• S invokes FVerifyPub with the set of updated dispute set D, and receives honest parties’ shares of N
linear Σ-sharings from FVerifyPub. For every T Σ-sharings {U1, . . . , UT }, S simulates as follows:

– In step 1, for every honest party, S follows the protocol honestly, (i.e. S computes U(βj) =∑T
h=1 Uhβ

h−1
j) and sends its shares of {U(βj)}Pj∈C to the adversary.

For every corrupted party, S receives from the adversary its shares of {U(βj)}Pj∈H.
– In step 2, for every honest party Pi, S checks whether their shares of U(βi) and the shares received

from the adversary form a consistent Σ-sharing.
∗ If the check fails, S records (Pi,unhappy).

– In step 3, for every honest party Pi, if S has recorded (Pi,unhappy), S sends unhappy to the
adversary and records reject for the current iteration. Otherwise, S sends happy to the adversary.
For corrupted parties, if S receives unhappy from the adversary, it records reject for the current
iteration.
If S does not neither record any (Pi, unhappy) for some honest party Pi nor receive unhappy from
the adversary, it records accept for current iteration, and continues for another iteration or ends
loop if all N Σ-sharings have been checked.

– In step 4, if S records reject for the current iteration, it simulates the fault-localization step.
We consider two situations below:

∗ If Pr is honest, S follows the protocol honestly and finds a new dispute pair on behalf of
honest Pr.

25

∗ If Pr is corrupted, since S knows all the information about honest parties, S is able to act as
honest parties, follow the protocol honestly, and records the dispute pair broadcast by Pr.

S ends loop.

• If S records accept for all iterations, S sends accept to FVerifyPub. Otherwise, S sends reject
to FVerifyPub together with the recording dispute pair.

• S outputs what the adversary A outputs.

Now we show S perfectly simulates the behaviors of honest parties. Note that S knows all the information
about honest parties from FVerifyPub and thus can simulate all the messages sent by honest parties. Hence,
here we only need to show that: in the real world, following the protocol,

1. when all parties get happy, the shares of honest parties must be consistent;

2. if at least party gets unhappy, the fault-localization step in the protocol can always find a new pair of
disputed parties containing at least one corrupted party.

For 1., by lemma 1, at least one honest party will get unhappy if the shares of Uh belonging to honest parties
are inconsistent for some 1 ≤ h ≤ T . Since all honest parties get happy, the shares of honest parties are
consistent. For 2., we discuss this in two situations below.

• If a corrupted party Pr is unhappy, then it is expected to broadcast a new pair of parties or it will
be believed to be corrupted as in the first case in 4(e). We only need to prove it cannot succeed in
outputting a pair of two honest parties. This is clear because considering in step 4(e), two adjacent
honest parties will not agree with different messages.

• If an honest party Pr is unhappy, we show that Pr is always able to figure out a new pair of dispute
parties containing at least one corrupted party. Since Pr is unhappy, then 1) the shares of {Uh}1≤h≤T

belonging to honest parties are inconsistent or(and) 2) a corrupted party sends an incorrect share of
U(βr) or(and) an incorrect happy-bit to Pr. In both cases, we have a) there exists a pair of parties
(Pi, Pj) such that the messages claimed by Pi sending to Pj and by Pj receiving from Pi are inconsistent
or(and) b) Pj is observed not following the protocol when doing local computation. Notice a) can be
solved by the third case in 4(e) and b) can be solved by the second case in 4(e).

Now we complete the proof.

C Proof of Lemma 3
Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.
Simulation for ΠMain. We now describe the construction of the simulator S. When simulating FVerifyPub,
for simplicity, we omit to let S send the set of dispute pairs D to FVerifyPub.

Preprocessing phase. S emulates the ideal functionalities FRandSh and FTriples, and receives the shares of
corrupted parties for each secret sharing. Note that FRandSh and FTriples do not need to send any message to
corrupted parties.

Input phase. S simulates ΠInput as follows. For each group of k input gates belonging to party Ps with
input x = (x1, . . . , xk) ∈ Fk:

1. For step 1 - 4,

26

• If Ps is honest, S checks whether the receiving shares [r]t+k−1 from all parties form a degree-
(t+ k − 1) sharing honestly. If the check is passed, S samples k random field elements as x+ r,
computes [x+ r]k−1, and sends the corrupted parties’ shares of [x+ r]k−1 to the adversary A.

• If Ps is corrupted, S samples k random field elements as r. Based on the secret r and the
corrupted parties’ shares, S samples the whole sharing [r]t+k−1 and sends the shares of [r]t+k−1

held by honest parties to the adversary A.
– If Ps broadcasts the check fails, then for j ∈ [k], S computes honest parties’ shares of [rj |j]t

based on the sampled secret rj and corrupted parties’ shares of [rj |j]t, and sends them to Ps

on behalf of honest parties.
If Ps broadcasts the check is passed, then S receives honest parties’ shares of [x + r]k−1, recon-
structs x+ r, computes and records x.

2. S emulates FVerifyPub based on honest parties’ shares of [x+ r]k−1 and the adversary A’s instruction.
S computes and records the corrupted parties’ shares of [xj |j]t = [x+ r]k−1 − [rj |j]t, ∀j ∈ [k].

Computation phase.

Simulating ΠzeroSharing.

1. For step 1, for each honest party Ps, S samples a random element for each corrupted party as its share
of [0(s)]n′−1. For each corrupted party Ps, S receives the shares of [0(s)]n′−1 held by honest parties
from the adversary A.

Simulating ΠTranspose. If Pking is corrupted,

1. For step 1 and 2, S knows corrupted parties’ shares of {[xi,j + ri,j |j]t}ki,j=1. S further samples random
field elements as {xi,j + ri,j}ki,j=1 to compute the honest parties’ shares of {[xi,j + ri,j |j]t}ki,j=1 and
{[xi + ri]t+k−1}ki=1, and sends the second part to Pking on behalf of the honest parties.

2. For step 3, if Pking broadcasts the i-th sharing is inconsistent, S sends the honest parties’ shares of
{[xi,j + ri,j |j]t}kj=1 to Pking.

3. For step 4, S records the receiving shares of {[x∗,i + r∗,i]k−1}ki=1 held by honest parties. Then S
computes the corrupted parties’ shares of {[x∗,i + r∗,i]k−1}ki=1.

4. For step 6, S emulates FVerifyPub based on the honest parties’ shares received from Pking and the
adversary A’s instruction.

If Pking is honest,

1. For step 1, for i ∈ [k], S computes the corrupted parties’ shares of [xi]t+k−1 and [ri]t+k−1.

2. For step 2, for i ∈ [k], S receives the corrupted parties’ shares of [xi + ri]t+k−1 from the adversary A.

3. For step 3, S checks whether the computing shares correspond to the receiving shares. If they are
inconsistent, S broadcasts a complain, receives the corrupted parties’ shares, and figures out a new
dispute pair.

4. For step 4, S samples random field elements as {xi,j + ri,j}ki,j=1 and distributes the corrupted parties’
shares of {[x∗,i + r∗,i]k−1}ki=1 to the adversary A.

5. For step 5, S computes and records the corrupted parties’ shares of {[xj,i|j]t}ki,j=1.

6. For step 6, S emulates FVerifyPub based on the adversary A’s instruction.

27

Simulating ΠPrepTrans.

1. For step 1, S computes and records the corrupted parties’ shares of {[Lj,i(rj)|j]t}ki,j=1.

2. For step 2, S simulates ΠTranspose as described above.

3. For the last step of verifying the “transpose” operations in a batch-wise manner, S emulates FVerifyPub

based on the honest parties’ shares received from Pking and the adversary A’s instruction. If the check
has been passed, S computes and records the corrupted parties’ shares of {[Li,j(ri)|j]t}ki,j=1.

Simulating ΠMult. If Pking is corrupted,

1. For step 2, for each honest party Pi, S samples 2 random elements as Pi’s shares of [x+ a]n′−1, [y +
b]n′−1, and sends to Pking on behalf of Pi.

2. For step 3, S receives honest parties’ shares of [x+ a]k−1, [y + b]k−1 from Pking and records them for
verification.

3. For step 4, for each honest party, S samples a random field element as its share of [z + r]n′−1 and
sends it to Pking.

4. For step 5, S receives honest parties’ shares of [z + r]k−1 and records them used for verification.

If Pking is honest,

1. For step 2, S receives corrupted parties’ shares of [x+ a]n′−1, [y + b]n′−1 from the adversary.

2. For step 3, S samples 2k random elements as the secrets x+a,y+ b, computes the corrupted parties’
shares of [x+ a]k−1, [y + b]k−1, and sends them to the adversary on behalf of the honest party Pking.

3. For step 4, S receives the corrupted parties’ shares of [z+ r]n′−1 from the adversary and records them
used for verification.

4. For step 5, S samples k random elements as the secret z + r, computes the corrupted parties’ shares
of [z + r]k−1, and sends them to the adversary on behalf of honest party Pking.

5. For step 6, S computes and records the corrupted parties’ shares of [zj |j]t.

Simulating ΠShTrans. If Pking is corrupted,

1. For step 2, for each honest party, S samples a random element as Ps’s share of [x+ r]n′−1 and sends
to Pking on behalf of the honest party.

2. For step 3, S receives honest parties’ shares of [L(x+ r)]k−1 from the adversary and records them for
the purpose of verification.

If Pking is honest,

1. For step 2, S receives corrupted parties’ shares of [x+ r]n′−1 from the adversary A.

2. For step 3, S samples k random elements as the secret x + r, computes corrupted parties’ shares of
[L(x+ r)]k−1, and sends them to the adversary on behalf of honest party Pking.

3. For step 4, S computes and records the corrupted parties’ shares of {[Li(x+ r)|i]t}ki=1.

28

Simulating ΠVerifyMult. If Pking is corrupted,

1. For step 1, S emulates FVerifyPub based on the honest parties’ shares received from Pking and the
adversary A’s instruction.
If the verification has been passed, S is able to reconstruct x+a,y+b, z+r. Together with corrupted
parties’ shares of [x + a]t+k−1, [y + b]t+k−1, [z + r]t+2k−2, S computes honest parties’ shares of [x +
a]t+k−1, [y + b]t+k−1, [z + r]t+2k−2, and computes honest parties’ shares of [01]n′−1, [02]n′−1, [03]n′−1

by [01]n′−1 = [x+a]n′−1−[x+a]t+k−1, [02]n′−1 = [y+b]n′−1−[y+b]t+k−1, [03]n′−1 = [z+r]n′−1−[z+
r]t+2k−2. S further computes the sharings distributed by the honest parties in ΠzeroSharing by inverting
the corresponding submatrix of the Vandermonde matrix and sends them together with honest parties’
shares of [01]n′−1, [02]n′−1, [03]n′−1 to Pking on behalf of honest parties.

2. For step 2,

• If Pking broadcasts the check is passed, then go to the next step.
• If Pking broadcasts the check fails, S computes honest parties’ shares of {[xj+aj |j]t, [yj+bj |j]t}kj=1

based on the sampled secrets x+a,y+b and corrupted parties’ shares of {[xj+aj |j]t, [yj+bj |j]t}kj=1

and sends to Pking on behalf of honest parties.

3. For step 3, S emulates FVerifyPub based on the honest parties’ shares sent to Pking and received from
Pking and the adversary A’s instruction.

4. For step 4,

• if Pking broadcasts the check is passed, then go to the next step.
• if Pking broadcasts the check fails.

– For step 4(a), S samples random elements as the secrets v, computes honest parties’ shares
of [v]t+2k−2 based on the sampled secrets and the corrupted parties’ shares, computes honest
parties’ shares of [v]t+2k−2 based on the sampled secrets and the corrupted parties’ shares,
and sends them to Pking on behalf of honest parties.

– For step 4(b), if Pking broadcasts the check fails, then S samples a′, b′, c′ and computes the
honest parties’ shares of {[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1, {[r′j |j]t}

2k−1
j=1 , and sends them to Pking on

behalf of honest parties.
– For step 4(c), if Pking broadcasts the check is passed, then S samples random elements as the

secrets a′+a, b′+b, c′+c, computes the honest parties’ shares of {[a′j+aj |j]t, [b′j+bj |j]t, [c′j+
cj |j]t}kj=1, {[r′j + rj |j]t}2k−1

j=1 based on the sampled secrets and the corrupted parties’ shares,
and sends them to Pking on behalf of honest parties.

5. For step 5, S emulates FVerifyPub based on the honest parties’ shares sent to and received from Pking
and the adversary A’s instruction. If the check has been passed, S computes and records the corrupted
parties’ shares of {[zj |j]t}kj=1.

If Pking is honest,

1. For step 1, S emulates FVerifyPub based on the adversary A’s instruction.

2. For step 2, S receives corrupted parties’ shares of [01]n′−1, [02]n′−1 in step 1 and checks if they satisfy
[01]n′−1 = [x+a]n′−1 − [x+a]t+k−1, [02]n′−1 = [y+ b]n′−1 − [y+ b]t+k−1. If they are inconsistent, S
follows the protocol.

3. For step 3, S emulates FVerifyPub based on the adversary A’s instruction.

4. For step 4, S checks whether the receiving corrupted parties’ shares satisfy [03]n′−1 = [z + r]n′−1 −
[z + r]t+2k−2. If they are inconsistent,

29

• S receives the corrupted parties’ shares of [v]t+2k−2 from the adversary A.
• S checks whether the adversary A sends the shares of [v]t+2k−2 correctly. If they are incorrect, S

further checks whether the adversary A sends the corrupted parties’ shares of {[a′j |j]t, [b′j |j]t, [c′j |j]t}kj=1

and {[r′j |j]t}
2k−1
j=1 correctly.

• If the receiving shares in 4(a) are correct, S checks whether the adversary A sends the corrupted
parties’ shares of {[a′j + aj |j]t, [b′j + bj |j]t, [c′j + cj |j]t}kj=1, {[r′j + rj |j]t}2k−1

j=1 correctly.

5. For step 5, S emulates FVerifyPub based on the adversary A’s instruction.

Simulating ΠVerifyShTrans. If Pking is corrupted,

1. For step 1, S simulates as it does when simulating ΠVerifyMult and thus obtains the honest parties’ shares
of {[xi + ri]t+k−1}i∈[k].

2. For step 2,

• for step 2(a), S receives the honest parties’ shares of {[u∗,i]k−1, [v∗,i]k−1}ki=1 from the adversary
A.

• for step 2(b), S emulates FVerifyPub based on the honest parties’ shares sent to and received from
Pking and the adversary A’s instruction.

• for step 2(c), S emulates FVerifyPub based on the honest parties’ shares sent to and received from
Pking and the adversary A’s instruction.

• for step 2(d) and 2(e), S computes the honest parties’ shares of {[oi]2k−1}i∈[k] and emulates FVerifyPub

based on the honest parties’ shares (effectively) received from Pking and the adversary A’s in-
struction. If the check has been passed, S computes and records the corrupted parties’ shares of
{[Li,j(xi)|j]t}ki,j=1.

If Pking is honest,

1. For step 1, S simulates as it does when simulating ΠVerifyMult.

2. For step 2,

• for step 2(a), S follows the protocol and sends the corrupted parties’ shares of {[u∗,i]k−1, [v∗,i]k−1}ki=1

to the adversary A on behalf of Pking.
• for step 2(b), S emulates FVerifyPub based the adversary A’s instruction.
• for step 2(c), S emulates FVerifyPub based the adversary A’s instruction.
• for step 2(e), S emulates FVerifyPub based the adversary A’s instruction.

Output Phase. S simulates for ΠOutput as follows. For each group of k output gates belonging to party Ps

with output z = (z1, . . . , zk) ∈ Fk. S together with honest parties invoke FMain with the corrupted parties’
inputs computed in input phase and honest parties’ inputs, respectively.

• If Ps is honest, S receives the corrupted parties’ shares of [z]t+k−1 from the adversary A. S checks the
correctness of these shares by comparing them with the corrupted parties’ shares of [z]t+k−1 recorded
previously. If they are inconsistent, S figures out a new dispute pair.

• If Ps is corrupted, S learns Ps’ output z from FMain. Based on corrupted parties’ shares of {[zj |j]t}kj=1,
S computes the whole sharings of [z]t+k−1 and {[zj |j]t}kj=1, and sends the honest parties’ shares of
[z]t+k−1 on behalf of the honest parties.

– If Ps broadcasts the check is passed, go to the simulation of the next segment.

30

– If Ps broadcasts the check fails, S sends the honest parties’ shares of {[zj |j]t}kj=1 computed
previously to Ps on behalf of the honest parties.

S outputs what the adversary A outputs and the honest parties output their results received from FMain.
Now we complete the description of the simulation. We stress that along the entire simulation, starting

from receiving corrupted parties’ shares of random sharings from FRandSh and FTriples, S always computes
and records the corrupted parties’ shares of each secret sharing. Furthermore, S always makes sure the
adversary cannot deviate from the protocol when encountering verification.

Above, we only simulate for a fully malicious adversary controlling exactly t corrupted parties (in the
beginning). However, for a malicious adversary controlling a set of corrupted parties of size less than t, we
just enroll an honest party Pi, generate random shares as corrupted parties’ shares of Pi’s input sharing
{[xj |j]t}kj=1. We also generate random elements as Pi’s shares of preprocessing random sharings. Thus, this
will not leak Pi’s information. During the simulation, we just treat Pi as a corrupted party. Hence, we can
always assume there are exactly t corrupted parties when simulating.

We show that S perfectly simulates honest parties, FRandSh, FTriples and FVerifyPub’ behaviors. It is sufficient
to focus on the places where honest parties and functionalities need to communicate with corrupted parties.

• In the input phase, for each group of k input gates belonging to Ps, if Ps is honest, S needs to simulate
the check and corrupted parties’ shares of [x + r]k−1 sent by Ps. In the ideal world, S simply checks
whether the adversary sends their shares of [r]t+k−1 the same as the shares the adversary sends to
S when emulating FRandSh and samples k random elements as x + r. Since r is uniformly random
given corrupted parties’ shares of {[rj |j]t}kj=1, x+ r is uniformly random. Therefore the distribution
of [x+ r]k−1 simulated by S has the same distribution as that in the real world.
If Ps is corrupted, S needs to simulate honest parties’ shares of [r]t+k−1 as well as {[rj |j]t}kj=1. r

is uniformly random given corrupted parties’ shares of {[rj |j]t}kj=1 by the property of Shamir secret
sharing scheme. In the ideal world, S randomly samples r ∈ Fk and then computes honest parties’
shares of [r]t+k−1. Therefore, the distribution of honest parties’ shares of [r]t+k−1 is identical to that
in the real world. Moreover, if the check has been passed, S is able to compute Ps’s input x and will
feed it to FMain to get outputs.
Note in both case, S is able to compute corrupted parties’ shares of {[xj |j]t}kj=1 and ensure that the
adversary follows the protocol.

• In the computation phase, we will show that S can always learn corrupted parties’ shares of {[zGj |j]t}kj=1

for each group G of k wires in the circuit. Furthermore, after verification, corrupted parties’ shares of
all wires {{[zGj |j]t}kj=1}G maintained by S have the same joint distribution as that in the real world.
Note that this is true for the first layer (the input layer).

– Preparing random 0-sharings (simulating ΠzeroSharing). S receives the honest parties’ shares of
0-sharings distributed by the adversary A and sends random field elements as the corrupted
parties’ shares of 0-sharings distributed by honest parties, which does not influence the output
distribution.

– Preparing random sharings for sharing transformation (simulating ΠTranspose and ΠPrepTrans). If
Pking is corrupted, S samples random elements as {xi + ri}ki=1 and computes the honest parties
shares of {[xi+ri]t+k−1}ki=1 and {[xi,j+ri,j |j]t}ki,j=1 if in need, which does not influence the joint
distribution of honest parties’ outputs and corrupted parties’ shares of {[xj,i|j]t}ki,j=1 since r is
uniformly random given corrupted parties’ shares of {[ri,j |j]t}ki,j=1 and the adversary A is forced
to distribute degree-(k − 1) sharings {[x∗,i + r∗,i]k−1}ki=1 correctly.
If Pking is honest, S samples random field elements as {xi + ri}ki=1, which does not influence the
joint distribution of honest parties’ outputs and corrupted parties’ shares of {[xj,i|j]t}ki,j=1 since
{xi+ri}ki=1 are uniformly random given corrupted parties’ shares of {[xi,j + ri,j |j]t}ki,j=1 and the
adversary A is forced to send the corrupted parties’ shares of {[xi + ri]t+k−1}ki=1 correctly.

31

Note that in both cases, S is able to compute corrupted parties’ shares of {[xj,i|j]t}ki,j=1 if the
verification has been passed.

– Addition gates. S simply computes the corrupted parties’ shares by local addition and records
the results.

– Multiplication gates (simulating ΠMult and ΠVerifyMult). If Pking is corrupted, when simulat-
ing ΠMult, S samples random elements as honest parties’ shares of [x + a]n′−1, [y + b]n′−1 and
[z + r]n′−1, which does not change the distribution of corrupted parties’ shares of {[zj |j]t}kj=1

since honest parties’ shares of [01]n′−1, [02]n′−1, [03]n′−1 are uniformly random and a, b, r are
uniformly random in the view of the adversary A. When simulating ΠVerifyMult, S samples
random elements as the secret v and samples random elements as the secrets (a′, b′, c′, r′) or
(a′ + a, b′ + b, c′ + c, r′ + r), which does not change the joint distribution of honest parties’
outputs and corrupted parties’ shares of {[zj |j]t}kj=1 due to the property of Shamir secret sharing
scheme that the secrets are uniformly random given the corrupted parties’ shares. The distribu-
tion will coincide with that in real world if the verification is passed.
If Pking is honest, when simulating ΠMult, S samples random elements as x+a,y+b, z+r, which
does not influence the joint distribution of honest parties’ outputs and corrupted parties’ shares of
{[zj |j]t}kj=1 due to the same property of Shamir secret sharing scheme as above. The distribution
will coincide with that in real world if the verification is passed.
Note in both cases, S can compute corrupted parties shares of {[zj |j]t}kj=1 if the verifivation is
passed.

– Sharing transformation (simulating ΠShTrans and ΠVerifyShTrans). If Pking is corrupted, when simu-
lating ΠShTrans, S samples random elements as honest parties’ shares of {[xi + ri]n′−1}ki=1, which
does not change the joint distribution of honest parties’ outputs and corrupted parties’ shares
of {[Li,j(xi)|j]t}ki,j=1 since honest parties’ shares of {[0i]n′−1}ki=1 are uniformly random. The
distribution will coincide with that in the real world if the verification is passed.
If Pking is honest, when simulating ΠShTrans, S samples random elements as {xi + ri}ki=1, which
does not influence the joint distribution of honest parties’ outputs and corrupted parties’ shares
of {[Li,j(xi)|j]t}ki,j=1 due to the same property of Shamir secret sharing scheme again. The dis-
tribution will coincide with that in the real world if the verification is passed.
Note in both cases, S can compute the corrupted parties’ shares of {[Li,j(xi)|j]t}ki,j=1 if the
verification is passed.

• In the output phase, for each group of k output gates belonging to Ps, if Ps is honest, Ps simply
checks if the adversary A sends the corrupted parties’ shares of [z]t+k−1 correctly. If Ps is corrupted,
S simulates honest parties’ shares of [z]t+k−1 by computing based on the output z received from FMain

and the corrupted parties’ shares of {[zj |j]t}kj=1. This does not change the joint distribution of honest
parties’ outputs and the corrupted parties’ shares due to the correctness of the protocol.

D Enabling Preprocessing Phase
We combine the techniques proposed in [BTH08] with dispute control framework to realize FRandSh and FTriples

in the following.

Preparing Random Degree-t Shamir Sharings. We first introduce the definition of hyper-invertible
matrix from [BTH08] which will be used to prepare random linear secret sharings.

Definition 1. An r-by-c matrix M is hyper-invertible if for any index sets R ⊆ {1, 2, . . . , r} and C ⊆
{1, 2, . . . , c} with |R| = |C| > 0, the matrix MC

R is invertible, where MR denotes the matrix consisting of the
rows i ∈ R of M, MC denotes the matrix consisting of the columns j ∈ C of M, and MC

R = (MR)
C .

32

[GLS19] points out a very useful property of hyper-invertible matrices, which is a more generalized version
compared with that shown in [BTH08].

Lemma 4. Let M be a hyper-invertible r-by-c matrix and (y1, . . . , yr)
T = M · (x1, . . . , xc)

T. Then for any
sets of indices A ⊆ {1, 2, . . . , c} and B ⊆ {1, 2, . . . , r} such that |A|+ |B| = c, there exists a linear function
f : Fc → Fr which takes {xi}i∈A, {yj}j∈B as inputs and outputs {xi}i ̸∈A, {yj}j ̸∈B.

Applying hyper-invertible matrices, [BTH08] proposed a method to verifiably prepare random linear
secret sharings, which will be modified to adapt to dispute control framework. In particular, initially all
parties are happy. First, every party Pi distributes a random linear sharing U (i). Then every party Pi

locally multiplies a hyper-invertible matrix to its own shares, i.e. (U1, . . . , Un′)T = M · (U (1), . . . , U (n′))T,
where M is a hyper-invertible n′ × n′ matrix. Then 2t′ resulting sharings are checked, by reconstructing
each sharing towards a different party who will get unhappy in the case of inconsistency. Then to detect
the faults, after sending their happy-bits to others, all parties run a consensus protocol to agree on whether
there are unhappy parties. If the consensus outputs happy, then the remaining unchecked n′ − 2t′ sharings
are outputted. Otherwise, all parties further execute a fault localization step to figure out a new disputed
pair of parties containing at least one corrupted party. Then all parties redo the procedure above.

For correctness, if all honest parties get happy, then at least n′ sharings, including t′ sharings checked
by honest parties and n′ − t′ sharings shared by honest parties, are correct. Hence, all 2n′ sharings must
be correct as the remained n′ sharings are linear combinations of n′ correct sharings due to the property
of hyper-invertible matrices stated in Lemma 4. As for its secrecy, the outputted sharings are random and
unknown to the adversary because the adversary knows at most 2t′ sharings, when fixing these 2t′ sharings,
there is a bijection between n′ − 2t′ honest input sharings and n− 2t′ output shairngs.

Note the procedure above costs communication O(n2) elements to prepare random degree-t sharings of
batch size n′ − 2t′ in the case of success. Thus, to prepare N random Σ-sharings, the communication cost is
O(N ·n+n4) elements for any Σ ∈ {Σ1,i,Σ2,i,j ,Σ3,i}, where Σ3,i is used to denote a kind of random sharings
in the form of ([r|i]t, [r|i]2t).

Preparing Random Beaver Triples. Before showing how to realize FTriples to prepare random packed
Beaver triples, we first introduce a method also proposed in [BTH08] to publicly and detectably reconstruct
a batch of degree-d Shamir secret sharings with d + t′ < n′. Actually, the protocol ΠVerifyPub instantiat-
ing FVerifyPub originates from this method. In particular, n′ sharings ([u1]d, . . . , [un′]d) are expanded from a
batch of T original unchecked secret sharings ([s1]d, . . . , [sT]d) by multiplying a Vandermonde matrix M as

([u1]d, . . . , [un′]d)
T = M · ([s1]d, . . . , [sT]d)T,

and reconstructed towards different parties who will get unhappy in case of inconsistency (i.e., [ui]d is
reconstructed towards Pi). Then every party Pi sends the resulting secret to all parties or sends ⊥ if Pi is
unhappy. For each Pi ∈ P , if Pi receives at least T+t′ (T−1)-consistent values (satisfy a degree-(T−1) secret
sharing) in the previous step, Pi will compute s1, . . . , sT from any T of them and get unhappy otherwise.
Intuitively, the correctness holds due to the super-invertibility of Vandermonde matrices.

Now all parties prepare random packed Beaver triples to realize FTriples(i) as follows.

1. All parties invoke FRandSh(Σ1,i) two times and FRandSh(Σ3,i) one time in parallel to generate three
groups of sharings {[al|i]t}Tl=1, {[bl|i]t}Tl=1, {([rl|i]t, [rl|i]2t)}Tl=1.

2. For l ∈ [T], all parties locally compute [cl + rl|i]2t = [al|i]t · [bl|i]t + [rl|i]2t, where cl = al · bl.

3. All parties publicly and detectably reconstruct {[cl + rl|i]2t}Tl=1.

4. For l ∈ [T], all parties locally compute [cl|i]t = cl + rl − [rl]t.

After finishing the procedure above, to detect the fault, all parties again sends their happy-bits to other parties
and run a consensus on whether there are unhappy parties. If all parties are happy, {([al|i]t, [bl|i]t, [cl|i]t)}Tl=1

33

are outputted. Otherwise, all parties further localize a new disputed pair containing at least one corrupted
party as before.

Note the security of this procedure prepraring random Beaver triples comes directly from the security
of the procedure preparing random double-sharings. Note the procedure above costs communication O(n2)
elements to prepare random Beaver triples of batch size T = 2t+ 1 in the case of success. Thus, to prepare
N random Beaver triples, the communication cost is O(N · n+ n4).

E Output Phase
We describe ΠOutput here.

Protocol 12 : ΠOutput

Divide all the output gates into several segments while preserving each size of the segments bounded
by |C|/n2. All parties handle the output gates segment by segment.
For every segment,

For every group of output z belonging to Ps, every party computes [z]t+k−1 =
∑k

j=1[ej]k−1 ·
[zj |j]t and sends to Ps. Ps checks whether all parties sends a degree-(t+ k − 1) sharing.

– If they are inconsistent, every party Pi sends its share of {[zj |j]t}kj=1 to Ps, ∀i ∈ [n′].
Ps reconstructs z, compares it with [z]t+k−1 to detect who is cheating and broadcasts
(i, x, x′), where Pi should have sent x to Ps, but Ps claims to have received x′ ̸= x. Ps

asks all parties who are responsible to transmit Pi’s shares to broadcast the messages they
believe. Set two adjacent parties broadcasting differently to be the dispute pair. After
relaying for this dispute pair, redo the current segment.

– If they are consistent, Ps reconstructs its output z.

F Circuit Transformation
When using packed Shamir secret sharing technique to compute a circuit, we are supposed to assume a
circuit may possess several properties which are friendly for packing. For instance, in an intermediate layer,
we assume the number of addition gates and the number of multiplication gates are some multiples of k so
that we can group addition gates and multiplication gates into several groups of size k, respectively. More
concretely, we assume a general circuit can be efficiently transformed to a circuit satisfying the following
properties:

• In the input layer and the output layer, the number of input gates belonging to each party and the
number of output gates belonging to each party are multiples of k. In each intermediate layer, the
number of addition gates and the number of multiplication gates are multiples of k.

• For the input layer and all intermediate layers, the number of output wires of each layer is a multiple
of k. For the output layer and all intermediate layers, the number of input wires of each layer is a
multiple of k. Moreover, each output wire is only used once as an input wire in a later layer so that
there is a bijective map between the output wires and the input wires.

• During the computation, gates that have the same type (i.e., input gates belonging to the same party,
output gates belonging to the same party, multiplication gates, addition gates) in each layer are divided
into groups of k. Each group of gates are evaluated simultaneously. For the output wires of each group
of gates, the number of times that those wires are used as input wires in later layers is a multiple of k.

34

We directly adopt a deterministic circuit transformation algorithm proposed in [GPS21] to efficiently
obtain a resulting circuit C ′ which has the same output as the original circuit C and satisfies the properties
above of size |C ′| = O(|C|+ k · (n+ Depth)), where Depth is the depth of C.

G Communication Complexity Analysis of ΠMain

Let I denote the input size, G denote the number of gates, and O denote the output size, Depth denote the
depth of the circuit. Then |C| ≥ I+G+O. We set T = n− t, k = (n+5)/6. We analyze the communication
complexity in the online phase as follows:

• Input Phase: For every group of k inputs, the communication complexity is O(n+ n2/T) elements in
the case of success and O(n2) elements in the worst case where a pair of dispute parties containing
at least one corrupted party must be found. Thus, the communication complexity for input phase is
O((Ik + n)(n+ n2

T)) = O((Ik + n) · n) elements in the case of success.

• Computation Phase:

– Segment Randomness Preparation: For every group of k sharing transformation randomness, the
communication complexity is O(n2k/T + nk) elements in the case of success and O(n2k) in the
worst case where a pair of dispute parties containing at least one corrupted party must be found.
For every group of n′ − t′ degree-(n′ − 1) 0-sharings, the communication complexity is O(n2)
elements.

– Evaluation Phase: For every group of k multiplication gates, the communication complexity
is O(n) elements. For every sharing transformations, the communication complexity is O(n)
elements.

– Verification Phase: For every group of k multiplication gates, the communication complexity is
O(n2/T) elements in the case of success and O(n2) elements in the worst case where a pair of
dispute parties containing at least one corrupted party must be found. For every group of k
sharing transformations, the communication complexity is O(n2k/T + nk) in the case of success
and O(n2k) in the worst case where a pair of dispute parties containing at least one corrupted
party must be found.

Thus, the total communication complexity for the computation phase is O((Depth + G
k)(n + n2

T +
n2

n′−t′)) = O((Depth+ G
k) · n) elements in the case of success.

• Output Phase: For every group of k outputs, the communication complexity is O(n) bits in the case
of success and O(nk) elements in the worst case where a pair of dispute parties containing at least one
corrupted party must be found. Thus, the communication complexity for output phase is O((Ok +n) ·n)
elements in the case of success.

In summary, the overall communication complexity for online phase is O((Depth+ n+ |C|
k) · n+ n2 · n2k) =

O(|C| · n
k + (Depth + n) · n + n5) elements, where the term n5 is caused by redoing the segment when

encountering faults.

H Instantiating Preprocessing
Instantiating Preprocessing Phase. In the preprocessing phase, all parties prepare the randomness as
follows.

1. Preparing Random Masked Sharings for Input Phase: Let I denote the number of input gates. For all
i ∈ [k], let Σ1,i be the secret sharing scheme corresponding to [ri|i]t. All parties invoke FRandSh(Σ1,i)
to prepare I/k + n random sharings in the form of [ri|i]t.

35

2. Preparing Random Masked Sharings for Transpose (used for preprocessing data in sharing transfor-
mation): Let N1 denote the number of input sharings of all intermediate layers and the output layer.
For all i, j ∈ [k], let Σ2,i,j be the secret sharing scheme corresponding to ([ri,j |i]t, [ri,j |j]t). All parties
invoke FRandSh(Σ2,i,j) to prepare 6N1

k random sharings in the form of ([ri,j |i]t, [ri,j |j]t).

3. Preparing Random Masked Sharings for Multiplication and Verifying Multiplication: Let N2 denote
the number of multiplication gates. For all i ∈ [2k− 1], all parties invoke FRandSh(Σ1,i) to prepare 2N2

k

random sharings in the form of [ri|i]t. For all i ∈ [k], all parties invoke FRandSh(Σ1,i) to prepare 5N2

k
random sharings in the form of [ri|i]t.

4. Preparing Random Beaver Triples for Multiplication: For all i ∈ [k], all parties invoke FTriples(i) to
prepare N2

k Beaver triples in the form of {[ai|i]t, [bi|i]t, [ci|i]t}.

Analysis of the Communication Complexity of the preprocessing phase. We analyze the com-
munication complexity of preprocessing phase as follows:

• Preparing Randomness for Input Phase: The communication to prepare (I +n · k) random sharings in
the form of [ri|i]t is O((I + n · k) · n+ n4) elements.

• Preparing Randomness for Multiplication: The communication to prepare N2(9k−2)
k random sharings

in the form of [ri|i]t is O(N2 · n + n4) elements. The communication to prepare N2 random Beaver
triples in the form of ([ai|i]t, [bi|i]t, [ci|i]t) is O(N2 · n+ n4) elements.

• Preparing Randomness for Sharing Transformation: The communication to prepare 6N1

k · k2 = 6N1k
random sharings in the form of ([ri,j |i]t, [ri,j |j]t) is O(N1nk + n4) elements. Then the communication
for sharing transformations is O(N1nk + n4) elements.

Since N1 ≤ G/k +Depth, N2 ≤ G+Depth · k, then the communication for preprocessing phase is O((I + n ·
k +N2 +N1 · k)n+ n4) = O((I + n · k + k ·Depth+G)n+ n4) = O((|C|+ k(n+Depth))n+ n4) elements.

36

	Introduction
	Our Contribution

	Technical Overview
	Efficient Online Protocol via Preprocessing
	Boosting Verification
	Identifying Dispute Pair
	Security Issue of the Current Approach
	Towards General Circuits
	Summary of Our Construction

	Preliminary
	The Model
	Packed Shamir Secret Sharing
	The Generalization of Party Elimination: Dispute Control
	Enabling Preprocessing

	Circuit Evaluation
	Useful Building Block for Verification
	Evaluating Multiplication Gates
	Handling Sharing Transformations
	Summary of the Evaluation Phase

	Efficient Verification
	Instantiating Batch-wise Verification
	Verifying Multiplication Gates
	Verifying Sharing Transformations

	Main Protocol with Perfect Security
	Input Layer
	Output Layer
	Main Protocol
	Summary

	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Enabling Preprocessing Phase
	Output Phase
	Circuit Transformation
	Communication Complexity Analysis of Main
	Instantiating Preprocessing

