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Abstract. Adaptor signatures have attracted attention as a tool to ad-
dress scalability and interoperability issues in blockchain applications,
for example, such as atomic swaps for exchanging di�erent cryptocur-
rencies. Adaptor signatures can be constructed by extending of common
digital signature schemes that both authenticate a message and disclose
a secret witness to a speci�c party. In Asiacrypt 2021, Aumayr et al.
formulated the two-party adaptor signature as an independent crypto-
graphic primitive. In this study, we extend the their adaptor signature
scheme formulation to N party adaptor signature scheme, present its
generic construction, and de�ne the security to be satis�ed. Next, we
present a concrete construction based on Schnorr signatures and discuss
the security properties.

1 Introduction

1.1 Background

An adaptor signature was �rst proposed by Andrew Poelstra et al. [26, 27] in
2017 as the concept of Scriptless Script and later formulated as an independent
cryptographic primitive by Aumayr et al. [1]. Adaptor signatures have recently
attracted attention as a tool to address issues such as scalability and interoper-
ability for blockchain applications. An adaptor signature scheme is constituted
as an extension of a digital signature scheme through a dialogue between two
parties: a signer and a secretary. First, the signer generates a pre-signature based
on a certain mathematical condition. The conditions are de�ned by a computa-
tionally hard algebraic relation between the public information and the secret
information, such as the discrete logarithm problem or the preimage of a hash
function. Next, the secretary, who possesses a secret witness for the above con-
ditions, �ts the pre-signature to create a valid adaptor signature. Once the valid
adaptor signature is completed, the secret information is disclosed to the signer.
A valid adaptor signature is a digital signature that is veri�able in the origi-
nal signature scheme. Particularly in blockchain applications, a miner will not
know that an ordinary signature is the output of an adaptor signature scheme
and will simply verify it. At the same time, the two parties involved in gen-
erating the adaptor signature can embed conditions that are not restricted to
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the blockchain's scripting language. Thus, adaptor signatures can be used in
o�-chain payment instruments such as a payment channel network (PCN) [11,
1], which is an o�-chain payment method, and an atomic swap [26, 14], which
is a P2P transaction between di�erent cryptocurrencies. Moreover, they can be
used in scriptless blockchain applications. A PCN is a second-layer technology
created to accelerate the transaction processing of cryptocurrencies [13].

Adaptor signature is a signature scheme that can be adapted from a signa-
ture called a pre-signature to a normal signature without using a signing key
by using a computationally di�cult algebraic relation (Hard Relation), and is
mainly used in two applications: Payment Channel Network (PCN) [11, 1], an
o�-chain payment method, and Atomic Swap [26, 14], a P2P transaction between
di�erent cryptocurrencies. To date, adaptor signatures have mainly been con-
sidered for applications like PCNs and atomic swaps, which are implemented
via a dialoge between two parties. Accordingly, all existing studies on adaptor
signature schemes have been based on this two-party case.

1.2 Related Works

As the adaptor signature was originally formulated as an independent crypto-
graphic primitive by Aumayr et al., here, we mainly introduce related works that
sought to analyze and improve adaptor signatures as cryptographic primitives.

Erwig et al. [10] proposed method for a general conversion method from
IDs to adaptor signatures, following the work of Aumayr et al. Indeed, since
that work, various adaptor signature schemes have been proposed as crypto-
graphic primitives [11, 35, 19, 41]. The adaptor signature constructed by Aumayr
et al. was based on the Schnorr signature [30]. Lattice-based [11], homomor-
phic mapping-based [35], and code-based [19] signatures have been proposed
as schemes that satisfy quantum security resistance. Along this line, Esgin et
al. constructed a lattice-based adaptor signature (LAS) based on the Dilithium
signature [8]. Tairi et al. constructed a homomorphic mapping-based adaptor
signature by applying the Fiat-Shamir transformation [12] from the CSI-FiSh
variant to the Schnorr type identi�cation protocol [30, 35]. An optimized version
(O-IAS) was then proposed by [35]. Klamti et al. proposed a sign-based adaptor
signature [19]. They used algebraic relations that were de�ned from the syndrome
decoding problem to construct an adaptor signature based on Debris-Alazard et
al.'s sign-based signature scheme of hash-and-sign [6].

On the security side, Erwig et al. [10] proposed an adapter signature with
re-randomizable keys to securely store secret information via algebraic relations
with respect to the signing key. Dai et al. [5] strengthened the existing security
de�nition, added a new security de�nition, and improved the security model
of adapter signatures. As for e�ciency, Tu et al. [38] constructed an e�cient
adapter signature based on ECDSA by generating zero-knowledge proofs in the
pre-signature stage in a batch and o�ine.

As noted above, atomic swaps [7, 15, 38, 16] and payment channel networks
(PCNs) [25, 36, 3, 35, 24, 2, 33, 21, 39, 23, 29] use adapter signatures and have been
actively studied in terms of various practical aspects. Both applications rely on
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technology to exchange secret information for signatures, which is precisely the
functionality provided by adapter signatures. Note again that adapter signa-
tures were originally designed to solve scalability and interoperability issues in
blockchain applications, and they have various other applications [20, 31, 4]. Liu
et al. [20] proposed a data sharing protocol on a blockchain, which is based on
adapter signatures and zero-knowledge proofs (NIZK).

Regarding the functionality of adapter signatures, Sui et al. [33] proposed
a two-party, sequentially linkable ring adapter signature (2P-CLRAS) to con-
struct a PCN compatible with Monero, a privacy-preserving cryptocurrency.
They constructed 2P-CLRAS from a sequential adapter signature (CAS) by us-
ing a new cryptographic primitive called a Veri�able Consecutive One-Way Func-
tion (VCOF). This led to the proposal of MoNet, a two-way, Monero-compatible
PCN. Qin et al. [28] proposed a blind adapter signature (BAS) based on blind
signature schemes to construct a new privacy-preserving payment channel hub
(PCH), BlindHub, and a privacy-preserving bidirectional PCN protocol, Blind-
Channel, in a PCH that supports o�-chain payments between senders and re-
ceivers via an intermediary (called a tumbler). Hu and Chen [17] also proposed
an anonymous, fair transaction scheme for electronic resources by using a new
BAS technology. To reduce the PCN's computational complexity, Zhou et al.
proposed a new cryptographic primitive called a veri�able timed adapter signa-
ture. Thvagarajan et al. [37] proposed a scheme that is similar to the adapter
signature, called a lockable signature, which does not require computationally
di�cult algebraic relations. Lockable signatures provide an e�ective signature
scheme for constructing PCNs and can be seen as a special case of adapter
signatures. Finally, as elaborated below, Ji et al. [18] proposed multi-adapter
signatures and threshold adapter signatures based on the Schnorr signature and
Dilithium schemes, respectively.

1.3 Our contribution

As explained above, adapter signatures have various applications that are akin
to conventional digital signatures, yet the current two-party setting has proven
insu�cient. In this paper, we introduce a novel concept, the N-party adapter sig-
nature, to address this limitation. To accomplish this, we �rst propose a formal
security model for three-party adapter signatures and demonstrate a speci�c
construction example using Schnorr signatures. Then, we rigorously establish
that the proposed scheme precisely satis�es the de�ned security model. Follow-
ing the discussion on three-party scenarios, we delve into the security and con-
crete constructions for N-party scenarios. The security proofs are demonstrated
inductively by leveraging the established security among three parties.

Technical Contributions The paper's technical contributions include the gener-
alization of constructing pre-signatures for pre-signatures. This allows the for-
mation of concatenated adapter signatures from two- to N-party settings. The
mechanism for creating this �pre-signature of a pre-signature� is enabled by the
additivity that appears in the syntax of adapter signatures. We call our algorithm
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for this �pre-signature of a pre-signature� the PreAdapt algorithm. Furthermore,
we provide rigorous security proofs. It is evident that if security holds for three-
party adapter signatures, then it easily extends to N-party settings. However, the
proof of security for three-party settings cannot be trivially derived from that
of two-party settings, because of di�erences in the form of pre-signatures and
the addition of a pre-adaptation oracle. Finally, we derive the reduction loss to
demonstrate the computational gap incurred by extending from two- to N-party
settings.

Comparison with Existing Multi-Party Settings As explained above, our contri-
bution lies in extending adapter signatures to multi-party settings and inves-
tigating the gap with respect to two-party settings. Ji et al. [18] proposed a
multi-adapter signature scheme, but their multi-party setting di�ers from ours.
In their setting, users who are performing pre-signatures exist �simultaneously"
and the resulting n pre-signatures are aggregated into one via signature ag-
gregation techniques before being sent to Alice, the secretary. Thus, Ji et al.
considered n signers, and this extension could also be of interest in blockchain
applications. In real-world applications, however, protocols that end in a single
round trip are rare, and scenarios often involve routing or proxies, where some-
one else intervenes, or where Alice needs to forward messages to someone else.
Therefore, our multi-party setting is more generalized. That is, given an initial
pre-signer Bob, we consider the scenario of non-simultaneously receiving n users
from Bob, who then passes on the pre-signatures sequentially. Eventually, the
nth user performs adaptation to obtain a regular signature. At each handover,
the execution of an �Extract� operation to obtain the secret witness enables the
fair exchange desired in the two-party setting. Accordingly, we expect our ap-
proach to be applicable in data sharing and supply chain management, among
other applications.

1.4 Two-party adaptor signatures

An adaptor signature scheme is essentially a two-step signing algorithm that
is bound to a secret: a partial signature is �rst generated such that it can be
completed only by a party knowing a certain secret, with the complete signature
revealing that secret. More precisely, we de�ne the adapter signature scheme
with respect to a digital signature scheme Σ and a hard relation R. For any
statement Y ∈ LR, a signer holding a secret key can produce a pre-signature
w.r.t. Y on any message m. Such a pre-signature can be adapted into a valid
signature on m if and only if the adapter knows a witness for Y . Moreover,
it must be possible to extract a witness for Y given the pre-signature and the
adapted signature.

The adaptor signature scheme AS is constructed using a digital signature
scheme Σ = (KGen,Sign,Vrfy) and a computationally intractable algebraic rela-
tion (Y, y) ⊆ R. Let (Y, y)← GenR(λ) be a PPT algorithm that takes the security
parameter λ as input and generates a pair comprising public and secret infor-
mation related by an algebraic relation. For instance, when using the discrete
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logarithm problem, let G = ⟨g⟩ be a cyclic group of prime order q, as de�ned
in the previous section. In this case, the computationally intractable algebraic
relation Rg is de�ned as Rg = {(Y, y)|Y = gy} ⊆ G × Zq. Other constructions,
such as those based on lattice problems, may also exist, and the de�nition is
tailored to the computational assumptions underlying the constructed adapter
signature's security.

Syntax of Two-Party Adaptor Signatures The adapter signature ASR,Σ =
(PreSign,PreVrfy,Adapt,Ext) is de�ned by four algorithms as follows. Note that
the public key, private key, public information, and secret information used below
are pre-prepared via (sk, pk) ← KGen(λ) and (Y, y) ← GenR(λ). First, the pre-
signature generation algorithm σ̂ ← PreSign((pk, sk), Y,M) takes as input a pair
of public and private keys (pk, sk), the public information Y , and a message
M , and it outputs the pre-signature σ̂. The pre-veri�cation algorithm 1/0 ←
PreVrfy(Y, pk, σ̂,M) takes as input public information Y , the public key pk, the
pre-signature σ̂, and the message M , and it outputs 1 if the signature σ is
accepted, or 0 otherwise. The adaptation algorithm σ := Adapt((Y, y), pk, σ̂,M)
takes as input a pair comprising the public information Y and secret information
y, the public key pk, the pre-signature σ̂, and the message M , and it outputs
a signature σ via a DPT algorithm. Finally, the extraction algorithm y′/ ⊥←
Ext(Y, σ̂, σ) s.t. (Y, y′) ∈ R takes as input the public information Y , pre-signature
σ̂, and signature σ, and it outputs y′ satisfying (Y, y′) ∈ R if σ̂ and σ are correct,
or ⊥ otherwise. With adapter signatures, a user who receives a pre-signature σ̂
can obtain secret information from any (σ̂, σ) pair by adapting (Adapt) the secret
information and pre-signature. For the security of the original two-party adaptor
signatures, see the Appendix B.2..

2 Three-Party Adaptor Signatures.

In this section, we describe a three-party adapter signature scheme to prepare for
our later N-party construction. The original adapter signature scheme initially
involves two entities, the secretary and the signer. However, in the proposed
three-party scheme presented here, we consider three entities: U1 as the sec-
retary, U2 as the main signer, and U3 as a sub-signer. In this con�guration,
the sub-signer U3 generates a pre-signature; the main signer U2 generates an-
other pre-signature for the same message, based on the pre-signature generated
by U3; and �nally, the secretary U1 performs adaptation to transform the pre-
signature into a (normal) signature. At this point, it is evident that the adapted
(normal) signature does not reveal the presence of U2 or U3, thus providing
anonymity for the signers. We now de�ne two primitives that serve as the foun-
dation for constructing the adapter signature. The �rst primitive is a digital
signature scheme Σ = (KeyGen,Sign,Vrfy), where U2 and U3 possess pairs of
public and private keys, denoted as (pk2, sk2) and (pk3, sk3), respectively. The
signatures generated using these keys are represented as σ2 ← Sign(pk2, sk2,M)
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and σ3 ← (pk3, sk3,M). Then, the second primitive is a hard relation R with
statement/witness pairs (Y, y) (as de�ned at the beginning of Appendix A).

Syntax of three-party adaptor signatures. A three-party adapter signature
scheme w.r.t. a hard relation R and a signature scheme Σ = (Gen,Sign,Vrfy)
comprises six algorithms,ΞR,Σ = (PreSign, PreVrfy, PreAdapt, Adapt, PreExt,Ext),
with syntax de�ned as follows. σ̂3 ← PreSign((pk3, sk3), Y2,M) is a PPT al-
gorithm that takes as input a public key pk3, a secret key sk3, a statement
Y2 ∈ R, and a message M ∈ {0, 1}∗, and outputs a pre-signature σ̂3. b =
PreVrfy(Y1, (pk2, pk3), (σ̂2), σ̂3),M) is a DPT algorithm that takes as input a
statement Y1 ∈ R, public keys (pk2, pk3), pre-signatures (σ̂2, σ̂3), and a message
M , and outputs a bit b. PreAdapt((Y2, y2), Y1, pk3, (sk2, pk2), σ̂3,M) is a PPT
algorithm3 that takes as input a pair of hard relations, (Y2, y2), a statement Y1,
a public key pk3, a pair of keys (sk2, pk2), a pre-signature σ̂3, and a message M ;
then, it outputs a pre-signature σ̂2. Adapt((Y1, y1), pk2, σ̂2,M) is a DPT algo-
rithm that takes as input a pair of a statement and a witness, (Y1, y1), a public
key pk2, a pre-signature (σ̂), and a message M . PreExt(Y2, σ̂3, σ̂2) is a DPT algo-
rithm that takes as input a public statement Y2 and pre-signatures (σ̂3, σ̂2), and
outputs either a witness y′2 such that (Y2, y

′
2) ∈ R, or ⊥. Ext(Y1, σ̂2, σ2) is a DPT

algorithm that takes as input a public statement Y1, a pre-signature σ̂2, and an
(original) signature σ2, and outputs either a witness y′2 such that (Y1, y

′
1) ∈ R,

or ⊥.
Given these algorithm de�nitions, we have the following de�nition of pre-

signature correctness for three parties.

De�nition 1 (Pre-signature correctness for three parties) For any mes-
sage M ∈ {0, 1}∗ and (Y2, y2), (Y3, y3) ∈ R, the three-party adapter signature
scheme ASR,Σ satis�es pre-signature correctness if the following holds:

Pr



PreVrfyU2
(Y2, pk3, σ̂3,M)=1;

Vrfy(pk3,M, σ2)=1;

(Y2, y
′
2) ∈ R;

PreVrfyU1
(Y1, (pk2, pk3),

(σ̂2, σ̂3),M) = 1;

Vrfy(pk2,M, σ1) = 1;

(Y1, y
′
1) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk2, sk2)(pk3, sk3)←Gen(1λ);

(Y1, y1)(Y2, y2)← GenR(1λ);

σ̂3←PreSignU3
((pk3, sk3), Y2,M);

σ̂2←PreAdaptU2
((Y2, y2), Y1,

pk3, (sk2, pk2), σ̂3,M);

y′2 = PreExtU3
(Y2, σ̂3, σ̂2);

σ2 = AdaptU1
((Y1, y1), pk2, σ̂2,M);

y′1/ ⊥= ExtU2
(Y1, (σ̂2, σ2));


=1.

3 The PreAdapt algorithm simultaneously performs internal processing of the Adapt
and PreSign algorithms. While it includes elements of a DPT algorithm because of
this simultaneous processing, the overall procedure involves probabilistic steps when
generating pre-signatures. Therefore, it is de�ned as a PPT algorithm.
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2.1 Concrete Construction of Three-Party Adaptor Signatures

In this section, we extend the two-party adapter signature de�ned in Section
1.4 to describe a speci�c instantiation of the Schnorr-based three-party adapter
signature scheme outlined in Fig. 1. For Schnorr signatures ΣSch and a hard
relation Rg := {(Y, y)|Y = gy}, we show the concrete construction of an N-party
adapter signature scheme N-ASRg,ΣSch

for the case of N = 3. Here, H(·) denotes
any cryptographic hash function, and Z∗

q denotes the set of all integers from 1
to q, excluding 0. First, we denote the three entities in this scheme as U1, U2,
and U3. In the construction of the three-party adapter signature, an algorithm's
subscript (e.g., PreSignU3

) corresponds to the entity executing the algorithm,
and a subscript in an argument (e.g., Y2 in PreSignU3

or 3 in σ̂3) corresponds to
the entity that initially owns (or generates) that value.

2.2 Security De�nitions for Three-Party Adaptor Signature Scheme

We now de�ne the security de�nitions from two-party adaptor signature scheme.
Existential unforgeability under chosen message attack in the context of three-
party adaptor signatures (3-aEUF-CMA) is an extension of the unforgeability
(De�nition 10 in Appendix B.2) for adaptor signatures to the three-party set-
ting. In the three-party case, because the content of signatures depends on which
entity generates them, we need to consider unforgeability for two separate dia-
logues involving all three entities, as classi�ed into two cases. First, for unforge-
ability between entities U3 and U2, U3 generates pre-signatures via the PreSign
algorithm, and the attacker attempts to forge signatures via the signature/pre-
signature oracle. Second, for unforgeability between U1 and U2, U2 generates
pre-signatures via the PreAdapt algorithm, and the attacker tries to forge signa-
tures via the signature/pre-adaptation oracle. We de�ne 3-aEUF-CMA as follows:

De�nition 2 (Existential unforgeability for three parties) A three-party
adaptor signature scheme 3-ASR,Σ is 3-aEUF-CMA secure if for any PPT adver-
sary A = (A1,A2), there exists a negligible function negl(λ) such that

Pr[3-aSigForgeA1,3-ASR,Σ
(λ) = 1] + Pr[3-aSigForgeA2,3-ASR,Σ

(λ) = 1] ≤ negl(λ)

where the experiments 3-aSigForgeA1,3-ASR,Σ
and 3-aSigForgeA2,3-ASR,Σ

are as de-
�ned in the �gure Table 1.

Regarding pre-signature adaptability for three-party adapter signatures, as
with unforgeability, we need to consider di�erent cases depending on which signer
is considered the malicious attacker. Here, we assume that only one entity, either
U2 or U3, attempts to adapt the pre-signature. This is because, in three-party
adapter signatures with two consecutive dialogues, integrity between entities
cannot be guaranteed if there are multiple attackers. Accordingly, we have the
following de�nition.

De�nition 3 (Pre-signature adaptability for three parties) For any mes-
sage M ∈ {0, 1}∗, any statement/witness pair (Y1, y1), (Y2, y2) ∈ R, and any key
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Fig. 1. Concrete construction: Schnorr-based three-party adaptor signatures.

U1: (Y1, y1)← GenR(λ);

y1 ← Z∗
q , Y1 := gy1 ,

return Y1 to U2.

U2: (sk2, pk2)←KeyGen(λ),
(Y2, y2)←GenR(λ);

sk2 := x2 ← Zq, pk2 = X2 := gx2 ∈ G,
y2 ← Z∗

q , Y2 := gy2 ,
return Y2 to U3 and pk2 to U1, U3.

U3: (sk3, pk3)← KGen(λ);

sk3 := x3 ← Zq, pk3 = X3 := gx3 ∈ G,
return pk3 to U1, U2.

U3: σ̂3 ← PreSignU3
((pk3, sk3), Y2,M);

k ← Zq, r3 := H(X3||gkY2||M),
s3 := k + r3 · x3, σ̂3 := (r3, s3),

return (σ̂3,M) to U1, U2.

U2: 0/1=PreVrfyU2
(Y2, pk3, σ̂3,M);

return 1
if r3 = H(X3||gs3 ·X−r3

3 · Y2||M).

U2:σ̂2←PreAdaptU2
((Y2, y2), Y1, pk3, (sk2, pk2), σ̂3,M);

k′ ← Zq, r2 := H
(
X2||gk

′
Y1||M

)
,

s2 := k′ + r2 · x2, s
′
3 := s3 + y2,

σ̂2 = (r2, s2, s
′
3),

return (σ̂2, σ̂3,M) to U1, and σ̂2 to U3.

U1:
b = PreVrfyU1

(Y1, Y2, pk2, pk3, σ̂2,σ̂3,M);

return 1 if r3=H(X3||gs3X−r3
3 Y2||M)

and r2=H(X2||gs2X−r2
2 Y1||M).

U1: σ2 = AdaptU1
((Y1, y1), pk2, σ̂2,M);

s1 := s2 + y1, σ2 = (r2, s1),
return σ2 to U2.

U2: y
′
1/ ⊥= ExtU2(Y1, (σ̂2, σ2));

y′
1 := s1 − s2,

return y′
1 if (Y1, y

′
1) ∈ R, otherwise,

return ⊥.

U3: y
′
2/ ⊥= PreExtU3(Y2, σ̂3, σ̂2);

y′
2 := s′3 − s3,

return y′
2 if (Y2, y

′
2) ∈ R, otherwise,

return ⊥.
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Table 1. Experiment c

3-aSigForgeA1,3-ASR,Σ
(λ)

1 : Q := ∅
2 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
3 : (Y1, y1)(Y2, y2)← GenR(1λ)

4 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

5 : σ∗
3 ← PreSign((pk3, sk3), Y2,M

∗)
6 : σ∗

2 ← PreAdaptU2
((Y2, y2), Y1, pk3, (sk2, pk2), σ3,M

∗)

7 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

8 : return (M∗ /∈ Q ∧ Vrfy(pk3, σ
∗
2 ,M

∗))

3-aSigForgeA2,3-ASR,Σ
(λ)

1 : Q := ∅
2 : (pk3, sk3)← Gen(1λ)
3 : (Y2, y2)← GenR(1λ)

4 : M∗ ← AOS(·),OpS(·,·)
2 (pk3)

5 : σ∗
3 ← PreSignU3

((pk3, sk3), Y3,M
∗)

6 : σn−1 ← A
OS(·),OpS(·,·)
2 (σ∗

3 , Y2)
7 : return (M∗ /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : σ2←PreAdaptU2
((Y2, y2), Y1, pk3, (sk2, pk2), σ3,M)

2 : Q := Q ∪ {M}
3 : return σ2

OAi
S (M) OpS(M,Y2)

1 : σi ← Sign(ski,M) 1 : σ3 ← PreSign(sk3, Y2,M)
2 : Q := Q ∪ {M} 2 : Q := Q ∪ {M}
3 : return σi 3 : return σ3

pairs (pk2, sk2), (pk3, sk3) ← Gen(1λ), a three-party adaptor signature scheme
3-ASR,Σ is pre-signature adaptable if following conditions (i) and (ii) below are
satis�ed.
(i) If the sub-signer U3 is an adversary, for any pre-signature σ̂3 ← {0, 1}∗ with
PreVrfyU2

(Y2, pk3, σ̂3,M) = 1, then we have

Vrfy(pk3,M,PreAdaptU2
((Y2, y2), Y1, pk3, (sk2, pk2), σ̂3,M))=1.

(ii) If the main-signer U2 is an adversary, for any pre-signatures σ̂3 ← PreSignU3
(

(pk3, sk3), Y2,M) and σ̂2 ← {0, 1}∗ with PreVrfyU1
(Y1, (pk2, pk3), (σ̂2, σ̂3),M) =

1, we have
Vrfy(pk2,M,AdaptU1

((Y1, y1), pk2, σ̂2,M)) = 1.

Finally, we consider an extension of witness extractability, as de�ned below.
Here, we again perform a case analysis based on which of the three entities forges
extraction of the secret information, speci�cally for U1 or U2 as the attacker.
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However, the entity performing such extraction is limited to one of U1 or U2.
In this case, the attacker extracting the witness is an entity that receives the
pre-signature, just as in the two-party case, so is U3 never the attacker.

De�nition 4 (Witness extractability for three parties) A three-party adap-
tor signature scheme 3-ASR,Σ is witness extractable if for every PPT adversary
A there exists a negligible function negl(λ) such that

Pr[3-aWitExtA∞,3-ASR,Σ
(λ) = 1] + Pr[3-aWitExtA∈,3-ASR,Σ

(λ) = 1] ≤ negl(λ)

where those experiments 3-aWitExtA∞,3-ASR,Σ
and 3-aWitExtA∈,3-ASR,Σ

are as
de�ned in Figure 2.

Fig. 2. Experiments for witness extractability
3-aWitExtA1,3-ASR,Σ (λ)

1 : Q := ∅
2 : (sk2, pk2)(sk3, pk3)← KeyGen(1λ)

3 : (M∗, Y1, Y2)← A
OS(·),OpS(·),OpA(·)
1 (pk2, pk3)

4 : σ̂∗
3 ← PreSignU3

((pk3, sk3), Y2,M
∗)

5 : σ̂∗
2 ← PreAdaptU2

((Y2, y2), Y1, pk3, (sk2, pk2), σ3,M
∗)

6 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ̂∗

2 , σ̂
∗
3 , Y1, Y2)

7 : y′
1 := Ext(Y1, σ1, σ̂

∗
2)

8 : return(M∗ /∈Q ∧ (Y1, y
′
1) /∈ R ∧ Vrfy(pk2, σ1,M

∗))

3-aWitExtA2,3-ASR,Σ (λ)

1 : Q := ∅
2 : (pk3, sk3)← Gen(1λ)

3 : (M∗, Y2)← A
OS(·),OpS(·)
1 (pk)

4 : σ̂∗
3 ← PreSign((pk3, sk3), Y2,M

∗)

5 : σ̂2 ← A
OS(·),OpS(·,·)
2 (σ̂∗

3)
6 : y′

2 := Ext(Y2, σ̂2, σ
∗
3)

7 : return (M∗ /∈ Q ∧ (Y2, y
′
2) /∈ R′ ∧ Vrfy(pk3, σ̂2,M

∗))

OpA(Yi, Yi+1,M)

1 : σ̂2 ← PreAdaptU2
((Y2, y2), Y1, pk3, (sk2, pk2), σ̂3,M)

2 : Q := Q ∪ {M}
3 : return σ̂2

OpS(M,Yi)

1 : σ̂i+1 ← PreSign(ski+1, Yi,M)
2 : Q := Q ∪ {M}
3 : return σ̂i+1

OA1
S (M)

1: σi ← Sign(ski+1,M)
2: Q := Q ∪ {M}
3: return σi

OA2
S (M)

1: σi ← Sign(ski+1,M)
2: Q := Q ∪ {M}
3: return σi
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2.3 Security Proofs for Three-Party Adaptor Signature Scheme

Theorem 1 If a Schnorr signature scheme ΣSch is SUF-CMA-secure, and Rg is
a computationally hard algebraic relation, then 3-ASRg,ΣSch

in Fig. 1 is secure in
the ROMl.

Lemma 1 (Pre-signature adaptability for three parties) The Schnorr-based
adaptor signature scheme 3-ASRg,ΣSch

satis�es pre-signature adaptability for three
parties.

Lemma 2 For any σ2 := (r2, s1) ∈ Zq × Zq and any y1 ∈ Zq,

AdaptU1
(AdaptU1

((r2, s1), y1),−y1) = σ.

Proof. By the de�nition of Adapt, for any r2, s1, y1 ∈ Zq, we have

AdaptU1
(AdaptU1

((r2, s1), y1),−y1) = Adapt((r2, s1 + y1),−y1)
= (r2, s1 + y1 + (−y1))
= (r2, s1).

In particular, this lemma implies that, by knowing a witness y, we can not only
adapt a valid pre-signature with respect to gy1 into a valid signature but also
vice versa.

Lemma 3 (3-aEUF-CMA security.) Assuming that the Schnorr digital signa-
ture scheme ΣSch is SUF-CMA secure and Rg is a hard relation, the three-party
adaptor signature scheme 3-ASRg,ΣSch

, as de�ned in Fig.1, is 3-aEUF-CMA se-
cure.

Before formally proving this lemma, we discuss the main idea behind the proof
intuitively. The goal is to reduce the forgery resistance of the three-party adapter
signature scheme to the strong resistance of the standard Schnorr scheme. In the
three-party scheme, we have two cases to consider: an adversary A1 between U1

and U2, or an adversary A2 between U2 and U3, where the adversary wins the
3-aSigForge experiment as a PPT attacker. We design an adversary (or simulator)
S for this purpose. First, case (i) can be proved by using almost the same game-
hopping steps as in the proof of the two-party adapter signature scheme [Lemma
4 (aSigForge) in [1]], so we skip the proof here. Next, for case (ii), the proof follows
a completely di�erent approach from the two-party case. The technical challenge
is that A1 can access not only the interaction between U1 and U2 but also the
information exchanged between U2 and U4 that A2 had. Speci�cally, A2 has
access to previous pre-signatures.

Proof. We consider two cases, (i) and (ii) as explained above, and we perform
several game hops in each case to prove Lemma 3. For case (i), we follow a similar
procedure to the proof of unforgeability in the original two-party scenario of
Lemma 4 in [1]. Then, for case (i), we demonstrate each game hop and reduction
loss via a sketch proof.

For case (i), we have the following game de�nitions for strongSigForge and
G0 to G4.
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Game G0: The original 3-aEUF-CMA game, 3-aSigForgeA2,ASR,Σ
.

Game G1: An abort game for when the adversary forges a pre-signature for the
challenge public statement Y ∗ without knowing the secret witness s∗.

Game G2: An abort game for when queries to the oracle overlap.
Game G3: A game where the pre-signature oracle returns a regular signature.
Game G4: A game where the pre-signature given to the adversary is turned

into a regular signature.
Game strongSigForge: A SUF-CMA game for regular signatures.

The reduction loss for the above is as follows, and it can be directly obtained
from the original two-party scenario:

Pr[3-aSigForgeA2,3-AS(λ) = 1] (1)

= Pr[G0 = 1]

≤ Pr[G1 = 1] + v1(λ)

≤ Pr[G2 = 1] + v1(λ) + v2(λ)

= Pr[G3 = 1] + v1(λ) + v2(λ)

≤ Pr[G4 = 1] + v1(λ) + v2(λ)

= Pr[strongSigForgeSA2 ,3-AS(λ) = 1] + v1(λ) + v2(λ),

where v1 and v2 are the negligible functions in λ.
Next, for case (ii), we have 3-aSigForgeA2,ASR,Σ

.

Game G0: This game, which is formally de�ned in Table 2, corresponds to the
original 3-aSigForge, where the adversary A1 has to produce a valid forgery for
a message m of his choice, while having access to a pre-signature oracle OpS, a
signature oracle OS, and a pre-adaptation oracle OpA. Since we are in the ROM,
the adversary (as well as all of the scheme's algorithms) also has access to a
random oracle H. The simulator S wins if b = 1 and M∗ /∈ Q.

Pr[3-aSigForgeA2,ASR,Σ
(λ) = 1] = Pr[G0 = 1]. (2)

Game G1: This game, which is formally de�ned in Table 14, works exactly like
G0 with the following exception. When the adversary outputs a forgery σ∗

1 , the
game G1 checks whether completion of the pre-signature σ̂2 by using the secret
value y1 yields σ

∗
1 . If so, the game aborts. The di�erence between G0 and G1 is

recorded in Table 3.
Claim for Game G1. Let Bad1 be the event that G1 aborts. Then, Pr[Bad1] ≤
v1(λ), where v1 is a negligible function in λ.

Proof. Using adversary A1, we construct a simulator S that solves a relation Rg

and reduces it to a hard relation.

1. The simulator S generates a key pair (sk2, pk2) ← Gen(1n) to simulate
queries to the oracles H,OS ,OpS ,OpA of adversary A1, where the oracles'
behavior follows G1.
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Table 2. Formal de�nition of game G0

G0

1 : Q := ∅
2 : H := [⊥]
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y ∗

1 , y∗
1)(Y

∗
2 , y∗

2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y
∗
2 ,M∗)

7 : σ2 ← PreAdaptU2
((Y ∗

2 , y∗
2),

Y ∗
1 , pk3, (sk2, pk2), σ3,M

∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y

∗
1 , Y ∗

2 )
9 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : σ2←PreAdaptU2
((Y2, y2), Y1, pk3,

(sk2, pk2), σ3,M)
2 : Q := Q ∪ {M}
3 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: σ3 ← PreSign((pk3, sk3), Y2,M)
2: Q := Q ∪ {M}
3: return σ3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]

2. Upon receiving a challenge message M∗ from an adversary A, S calculates
σ2 ← PreSign((pk2, sk2), Y

∗
1 ,M

∗) and returns a pair (σ2, Y
∗) to A1.

3. When an adversary A outputs a forged signature σ∗
1 and Bad1 occurs (i.e.,

Adapt(σ2, y1) = σ∗
1), S can obtain (Y ∗

1 , y
∗
1) ∈ R by executing y∗1 ← Ext(σ∗

1 , σ2,
Y ∗
1 ) (because of pre-signature correctness).

4. A challenge public statement Y ∗
1 is an instance of the hard relation R and fol-

lows the output distribution of GenR. From the perspective of an adversary
A, Y1 ≈ Y ∗

1 , and G0 and G1 are thus indistinguishable.

Therefore, the probability that the simulator S breaks the hard relation Rg is
equal to the probability of Bad1 occurring.

Because games G1 and G0 are equivalent except if event Bad1 occurs, it holds
that

Pr[G0 = 1] ≤ Pr[G1 = 1] + v1(λ), (3)

where v1 means the probability of breaking the hard relation R.

Game G2: This game, which is formally de�ned in Table 15, behaves simi-
larly to the previous game, with the only di�erence being in the OpS oracle. In
this game, the OpS oracle �rst makes a copy of the list H before executing the
algorithm PreSign. Then, it extracts the randomness used during the PreSign al-
gorithm, and checks whether, before the signing algorithm's execution, a query
of the form pk3||K||M or pk3||K · Y2||M was made to H by checking whether
H ′[pk3||K||M ] ̸=⊥ or H ′[pk3||K · Y2||M ] ̸=⊥. If such a query was made, the
game aborts. The di�erence between G1 and G2 is recorded in Table 4.
Claim for Game G2. Let Bad2 be the event that G2 aborts in OpS . Then

Pr[Bad2] ≤ v2(λ), where v2 is a negligible function in n.
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Table 3. Di�erence between G0 and G1

G1

1 : Q := ∅
2 : H := [⊥]
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1←A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

abort.
10 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

Table 4. Di�erence between G1 and G2

OpS(M,Y2)

1: H ′ := H
2: σ3 ← PreSign((pk3, sk3), Y2,M)

3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥

6: ∧H ′[pk3||K · Y2||M ]

7: abort
8: Q := Q ∪ {M}
9: return σ3

Proof. PreSign, Sign, and PreAdapt compute K = gk by using a uniformly ran-
dom k from Zq. Bad2 occurs when queries pk3||K3||M and pk3||(K3 ·Y2)||M have
not been generated before. As the adversary A is a PPT algorithm, the number of
queries to each oracle H,OS ,OpS ,OpA is polynomial. The signature oracle OS ,
pre-signature oracle OpS , and pre-adaptation oracle OpA use the above k when
computing K = gk. Let the numbers of queries to the oracles H,OS ,OpS ,OpA

be l1, l2, l3, l4, respectively. Then,

Pr[Bad2] = Pr[H′[pk3||K3||M ] ̸=⊥ ∨H′[pk3||(K3 · Y2)||M ] ̸=⊥]

≤ 2(l1 + l2 + l3 + l4)

q
=: v′2(λ),

where l1, l2, l3, l4 are polynomials in λ, making v′2 is negligible. In total, there are
l1+ l2+ l3+ l4 chances out of q, and two of them are for K and K ·Y . Therefore,

Pr[G1 = 1] ≤ Pr[G2 = 1] + v′2(λ).

Game G3: This game, which is formally de�ned in Table 16, behaves similarly to
the previous game, but with several di�erences in the oracle OpA. In this game,
OpA �rst makes a copy of the list H before executing PreAdapt. Afterward, it
extracts the randomness values r2, s2, and s′3 that were used in the PreAdapt
algorithm. For r2 and s2, it checks whether, before the signing algorithm's ex-
ecution, a query of the form pk2||K2||M or pk2||K2 · Y1||M was made to H by
checking whether H ′[pk2||K2||M ] ̸=⊥ or H ′[pk2||K2 ·Y1||M ] ̸=⊥. If such a query
was made, the game aborts. The di�erence between G2 and G3 is recorded in
Table 5.

Regarding s′3, it is used when extracting the witness y′2 (y′2 := s′3 − s3). The
adversary checks whether its forged witness y′2 corresponds (by chance) to the
challenge statement Y ∗

2 on the oracle side. (The same veri�cation performed by
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Table 5. Di�erence between game G2 and game G3

G3

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

10 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

11 : then abort
12 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H
2 : σ2←PreAdaptU2

((Y2, y2), Y1, pk3,
(sk2, pk2), σ3,M)

3 : (r2, s2, s
′
3) := σ2

4 : K2 := gs2 · pk−r2
2

5 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

6 : if H ′[pk2||K2||M ] ̸=⊥

7 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥

8 : ∧ s′3 ∈ S

9 : ∧ (Y ∗
2 , y′

2) ∈ R∗

10 : abort
11 : Q := Q ∪ {M}
12 : S := S ∪ {s′3}
13 : return σ2

the simulator in G1 is performed here on the oracle side.) In other words, on
the side of the pre-adaptation oracle OpA, if y

′
2 is computed from σ′

3 = (r3, s3)
and σ2 = (r2, s2, s

′
3) as y

′
2 = s′3− s3, and if (Y ∗

2 , y
′
2) ∈ R∗, then the game aborts.

While it aborts if a valid witness y′2 for the challenge statement Y ∗
2 exists, a

separate list S is prepared because of possible overlapping queries.
If A1 uses a challenge M∗ as an oracle query, this can be determined by

checking whether M /∈ Q; similarly, if A1 uses M (̸= M∗) and a challenge Y ∗
1

as oracle queries, this can be determined by the Adapt algorithm in line 39
of G3. For the case where A1 uses M( ̸= M∗) and a challenge Y ∗

2 , however,
further consideration is needed. Therefore, on the simulator side, S executes the
algorithm y′1 ← Ext(Y1, σ̂2, σ2). If the forged σ∗

2 output by A1 corresponds to
the legitimate witness y∗1 derived from the challenge Y ∗

1 when σ′
2 ← PreAdapt

is computed using M (̸= M∗) and the challenge Y ∗
2 , then the game aborts. This

probability is bounded by the probability of breaking the hard relation, at most.

Claim for Game G3. Let Bad3 be the event that G3 aborts in OpA. Then
Pr[Bad3] ≤ v3(λ), where v3 is a negligible function in n.

Proof. We �rst note that PreSign, Sign, and PreAdapt compute K = gk by
choosing k uniformly at random from Zq. As A is PPT, the number of queries
it can make to H, OmathrmS , OpS, and OpA is also polynomially bounded. Let
l′1, l

′
2, l

′
3, l

′
4 be the numbers of queries made to H, OmathrmS , OpS, and OpA

respectively. Furthermore, to address the case where A1 uses M (̸= M∗) and the
challenge Y ∗

2 , S executes the algorithm y′1 ← Ext(Y1, σ̂2, σ2). If the forged σ∗
2

output by A1 corresponds to a legitimate witness y∗1 derived from the challenge
Y ∗
1 when σ′

2 ← PreAdapt is computed usingM( ̸= M∗) and the challenge Y ∗
2 , then
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the game aborts. As with G1, this probability is bounded by the probability of
breaking the hard relation, which is denoted as v1. Then, we have the following:

Pr[Bad3] = Pr[H ′[pk3||K3||M ] ̸=⊥ ∧H ′[pk3||K3 · Y2||M ] ̸=⊥] + v1(λ)

≤ 2
l′1 + l′2 + l′3 + l′4

q
+ v1(λ) = v′3(λ) + v1(λ),

where v′3 is a negligible function because l′1, l
′
2, l

′
3, l

′
4 are polynomial in λ and v1

is the advantage of hard relation's advantage.

∴ Pr[G2 = 1] ≤ Pr[G3 = 1] + v1(λ) + v′3(λ). (4)

Game G4: In this game, which is formally de�ned in Table 17, upon an OpS

query, the game produces a valid full signature σ̃ = (r, s) = (H(pk||K||m), k +
rs · k) and adjusts the global list H as follows. It assigns the value stored at
position pk||K||m to H[pk||K · Y ||m] and samples a fresh random value for
H[pk||K||m]. These changes make the full signature σ̃ �look like� a pre-signature
to the adversary A, because it obtains the value H[pk||K||m] upon querying the
random oracle on pk||K · Y ||m. The adversary can only notice the changes in
this game if the random oracle was previously queried on either pk||K||m or
pk||K · Y ||m. This case is captured in the previous game, and it thus holds that
Pr[G3 = 1] = Pr[G4 = 1].

Table 6. Di�erence between game G3 and game G4

OpS(M,Y2)

1: H ′ := H

2: σ3 ← Sign((pk3, sk3),M)

3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥
6: ∧H ′[pk3||K · Y2||M ]
7: abort

8: x := pk3||K3||M

9: H ′[pk3||K3 · Y2||M ] := H[x]

10: H[x]← Zq

11: Q := Q ∪ {M}
12: return σ3

Game G5: This game, which is formally de�ned in Table 18, aims to ap-
pear like a pre-signature to the adversary upon an OpA query. However, be-
cause a pre-signature's structure di�ers from that of a regular signature, ad-
versaries may notice the changes in this game, unlike with G4. Therefore, to
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simulate σ̂2 = (r2, s2, s
′
3), where the �rst two components are indistinguishable

from a regular signature σ2 = (r2, s1) and s′3 is just random noise, we need
to perform a similar procedure to that in G4, ensuring that σ2 = (r2, s1) re-
mains indistinguishable and replacing s′3 with a random value. The di�erence
between G4 and G5 is recorded in Table 7. When using a randomly chosen
s′3 to extract y′2, the probability that y′2 corresponds to the challenge Y ∗

2 is
bounded by the advantage of breaking the hard relation, denoted as v1. Hence,
Pr[G4 = 1] = Pr[G5 = 1] + v1(λ) holds.

Table 7. Di�erence between game G4 and game G5

G5

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

10 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

11 : then abort
12 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H

2 : σ2 ← Sign((pk2, sk2),M)

3 : (r2, s2) := σ2

4 : s′3 ← Zq

5 : if s′3 ∈ S, abort

6 : K2 := gs2 · pk−r2
2

7 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

8 : if H ′[pk2||K2||M ] ̸=⊥
9 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥
10 : ∧ s′3 ∈ S
11 : ∧ (Y ∗

2 , y′
2) ∈ R∗

12 : abort
13 : x := pk2||K2||M
14 : H[pk2||K2 · Y1||M ] := H[x]
15 : H[x]← Zq

16 : (r2, s2, s
′
3) := σ̂2

17 : Q := Q ∪ {M}
18 : S := S ∪ {s′3}
19 : return σ2

Game G6: In this game, which is formally de�ned in Table 19, the pre-signature
generated upon A outputting the message M is created by modifying a full
signature to a pre-signature.

The simulator S modi�es the pre-signatures passed to adversary A1 to pre-
signatures converted from regular signatures. Speci�cally, from regular signa-
tures σ′

2 and σ′
3, S creates σ2 = Adapt(σ′

2,−y1) and σ3 = Adapt(σ′
3,−y1). The

di�erence in this transformation lies in k2 and k3 becoming k′2 = k2 − y1 and
k′3 = k3 − y2; however, because k is uniformly random, it is indistinguishable,
and A1 cannot determine whether a signature is a pre-signature or a regular
signature. This transformation can be viewed as k being modi�ed to k′ = k−y2.
Because k is chosen uniformly at random, and because, according to Lemma 2,
the adversary's view is identical between this game and previous game, it holds
that Pr[G5 = 1] = Pr[G6 = 1].
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Table 8. Di�erence between game G5 and game G6

G6

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ′
2, σ

′
3 ← Sign((pk2, sk2)(pk3, sk3),M

∗)

7 : (r′2, s
′
2) := σ′

2, (r
′
3, s

′
3) := σ′

3

8 : σ2 := Adapt(σ′
2,−y1)

9 : σ3 := Adapt(σ′
3,−y2)

Y1, pk3, (sk2, pk2), σ3,M
∗)

10 : σ′
1 ← A

OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

11 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

12 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

13 : then abort
14 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

Game strongSigForge: In analogous fashion, we seek to establish the ex-
istence of a simulator that can faithfully reproduce G6 while harnessing the
capabilities of A1 to achieve success in the strongSigForge game. Here, we
succinctly delineate how the simulator responds to oracle queries. For a compre-
hensive formal exposition of the simulator, refer to Table 9.

Signature queries:When the adversary A1 queries oracle OS with an input
M , the simulator S forwards M to oracle OSch

Sign and relays the response to A1.

Random oracle queries:WhenA1 queries oracleH with input x, ifH[x] =⊥,
then S queries HSch(x); otherwise, it returns H[x].

Pre-signature queries: 1. When A1 queries oracle OpS with input (M,Y2),
S forwards M to oracle OSch

Sign and receives a signature σ3 = (r3, s3) (r3 =

HSch(pk3||K3||M)). 2. If oracle H was previously queried on (pk3||K3||M) or
(pk3||K3 · Y2||”M”), S aborts. 3. S programs the random oracle H such that
queries made by A1 on input (pk3||K3 · Y2||”M”) are answered with the value
HSch(pk3||K3||M), and queries on input (pk3||K3||M) are answered with HSch(
pk3||K3 · Y2||M). 4. S returns σ3 to A1.

Pre-Adaptation queries: 1. WhenA1 queries oracleOpA with input (M,Y1,
Y2, σ2), S forwards M to oracle OSch

Sign and receives a signature σ2 = (r2, s2)

(r2 = HSch(pk2||K2||M)). 2. If oracle H was previously queried on (pk2||K2||M)
or (pk2||K2 · Y1||”M”), S aborts. 3. S programs the random oracle H such
that queries made by A1 on input (pk2||K2 · Y1||”M”) are answered with the
value HSch(pk2||K2||M), and queries on input (pk2||K2||M) are answered with
HSch(pk2||K2 · Y1||M). 4. S returns σ2 to A2.
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Challenge Phase: S selects (Y1, y1)(Y2, y2) ← GenR(1n) and runs A1 on
pk2, pk3 and Y1, Y2. If A1 outputs a challenge message M∗, then S queries the
SignSch oracle with input M∗. If A1 outputs a forged signature σ∗, then S
outputs (M∗, σ∗) as its own forgery.

The main di�erence between the simulation and G6 lies in the syntax. Instead
of generating public and secret keys and calculating the algorithm Signsk and
random oracle H, the simulator S uses its own oracles SignSch and HSch. Thus,
S perfectly simulates G6. We still need to demonstrate that S can use the forgery
output by A1 to win the strongSigForge game.

Claim for strongSigForge. (M∗, σ∗) is a valid forgery of strongSigForge.

Proof. We show that (M∗, σ∗) is never output by the oracle SignSch. This proof
follows similar reasoning to the two-party case. First, the simulated adversary
has not made any queries to OS , OpS , or OpA for the challenge message M∗.
From Game G1 and Lemma 2, the adversary outputs a forgery σ that is equal to
a signature σ′ output by SignSch during the challenge phase with only a negligible
probability (i.e., the probability of breaking the hard relation). In this case, the
simulation is aborted. Therefore, SignSch never outputs σ for M , and (M∗, σ∗)
is thus a valid forgery for the game strongSigForge.

As S provides a perfect simulation of G6, from games G0 to G6, we have the
following:

Pr[3-aSigForgeA2,ASRg,Σ
(λ) = 1] (5)

= Pr[G0 = 1] ≤ Pr[G1 = 1] + v1(λ)

≤ Pr[G2 = 1] + v1(λ) + v′2(λ)

= Pr[G3 = 1] + 2v1(λ) + v′2(λ) + v′3(λ)

= Pr[G4 = 1] + 2v1(λ) + v′2(λ) + v′3(λ)

= Pr[G5 = 1] + 3v1(λ) + v′2(λ) + v′3(λ)

= Pr[G6 = 1] + 3v1(λ) + v′2(λ) + v′3(λ)

= Pr[strongSigForgeSA2 ,3-AS(λ) = 1] + 3v1(λ) + v′2(λ) + v′3(λ).

Then, from Equations (1) and (5), the overall reduction loss for three-party
unforgeability is as follows:

Pr[3-aSigForgeA1,ASRg,Σ
(λ) = 1] + Pr[3-aSigForgeA2,ASRg,Σ

(λ) = 1] ≤ negl(λ).

Lemma 4 (Witness extractability for three parties.) Assuming that the
Schnorr digital signature scheme ΣSch is SUF-CMA secure and Rg is a hard
relation, the three-party adaptor signature scheme 3-ASRg,ΣSch

, as de�ned in
Fig. 1, is witness extractable.

As with the three-party unforgeability in Lemma 3, we reduce the witness ex-
tractability of the adapter signature to the SUF-CMA security of the Schnorr
signature. That is, we demonstrate the existence of a simulator S when a PPT
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Table 9. Formal de�nition of game strongSigForge

SSignSch,HSch

1 : Q := ∅, S := ∅
2 : H := [⊥]
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ′
2, σ

′
3 := SignSch(M)

7 : (r′2, s
′
2) := σ′

2, (r
′
3, s

′
3) := σ′

3

8 : σ2 := Adapt(σ′
2,−y1)

9 : σ3 := Adapt(σ′
3,−y2)

Y1, pk3, (sk2, pk2), σ3,M
∗)

10 : σ′
1 ← A

OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

11 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1

12 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

13 : then abort
14 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H

2 : σ2 := SignSch(M)

3 : (r2, s2) := σ2

4 : s′3 ← Zq

5 : if s′3 ∈ S, abort

6 : K2 := gs2 · pk−r2
2

7 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

8 : if H ′[pk2||K2||M ] ̸=⊥
9 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥
10 : ∧ s′3 ∈ S
11 : ∧ (Y ∗

2 , y′
2) ∈ R∗

12 : abort
13 : x := pk2||K2||M
14 : H[pk2||K2 · Y1||M ] := HSch(x)

15 : H[x] := HSch(pk2||K2 · Y1||M)

16 : (r2, s2, s
′
3) := σ̂2

17 : Q := Q ∪ {M}
18 : S := S ∪ {s′3}
19 : return σ2

OA1
S (M)

1 : σ1 := SignSch(M)

2 : (r2, s1) := σ1

3 : K1 := gs1pk
−r2
2

4 : x := pk2||K1||M

5 : H[x] := HSch(x)

6 : Q := Q ∪ {M}
7 : return σ1

OpS(M,Y2)

1 : H ′ := H

2 : σ3 := SignSch(M)

3 : (r3, s3) := σ3

4 : K := gspk−r3
3

5 : if H ′[pk3||K||M ] ̸=⊥
6 : ∧H ′[pk3||K · Y2||M ]
7 : abort
8 : x := pk3||K3||M
9 : H[pk3||K3 · Y2||M ] := HSch(x)

10 : H[x] := HSch(pk3||X3 · Y2||M)

11 : Q := Q ∪ {M}
12 : return σ̂3

H(x)
1: if H[x] =⊥
2: H[x]← HSch(x)

3: return H[x]
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adversary A = (A1, A2) wins the 3-aWitExt game, indicating successful forgery
of the signature.

Because the PPT adversary acts as the witness extractor, in the case of two-
party witness extractability, we consider the scenario where a user corresponding
to the secretary becomes the adversary. Under the three-party conditions, how-
ever, either the secretary U1, who may receive the public statement, or the main
signer U2, can potentially become the adversary. Therefore, as with Lemma 3,
we consider two cases (i) and (ii).

The strategy involves sending the adversary a complete signature and behav-
ing as if that signature were a valid pre-signature. However, in the pre-signature
simulation in aWitExt, unlike in aSigForge, the adversary outputs the public
statement Y along with the message M , so the game does not select pairs (Y, y).
Therefore, S cannot convert a full signature to a pre-signature by executing
Adapt(σ,−y) with the secret witness y.

Thus, to enable this transformation even without knowing y, we program a
random oracle in which the values of H(gx|K|m) and H(gx|KY |m) are swapped
(where the simulator knows K = gk, gx, and Y ). Here, if at least one of gx|K|m
or gx|KY |m has been queried to H before, the random oracle cannot be pro-
grammed. However, because A is PPT and k is uniformly randomly chosen from
Zq, the probability that these values have been queried to H before is negligibly
low.

Now, by considering the above points, we can outline the proof of three-party
unforgeability.

Proof. As noted above, we divide Lemma 4 into two cases, (i) and (ii), and we
perform several game hops in each case to prove the lemma. For case (i), we can
follow a similar procedure to the proof of unforgeability in the original two-party
scenario in Lemma 5 of [1] and in Lemma 3. Hence, we demonstrate each game
hop and reduction e�ciency as follows.

Case (i). For case (i), we have the following game de�nitions for G0 to G4 and
strongSigForge.

Game G0: A three-party adapter signature game, 3-aWitExtA2,ASRg,Σ
.

Game G1: An abort game for when queries to the oracle from A2 overlap for
H ′[pk||K||M ] and H ′[pk||K · Y ||M ]

Game G2: A game where the pre-signature oracle returns a regular signature

Game G3: A game where the same modi�cations as for G1 are applied to S.
The game aborts if S has already queriedH

′
[pk||K||M ] andH

′
[pk||K ·Y ||M ].

Game G4: A game where the same modi�cations as for G2 are applied to S.
The game passes regular signatures to A instead of pre-signatures.

Game strongSigForge: A SUF-CMA game for regular signatures.
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The reduction loss for the above is as follows and can be directly obtained from
the original two-party scenario:

Pr[3-aWitExtA2,3-ASRg,ΣSch
(λ) = 1] (6)

= Pr[G0 = 1]

≤ Pr[G1 = 1] + v(λ)

= Pr[G2 = 1] + v(λ)

= Pr[G3 = 1] + v(λ) + v(λ)

≤ Pr[G4 = 1] + 2v(λ)

= Pr[strongSigForgeSA2 ,3-ASRg,ΣSch
(λ) = 1] + 2v(λ),

where v is a negligible function in λ.

Case (ii). For case (ii), we have the following game de�nitions for G0 to G6

and strongSigForge.

Game G0 : A three-party adapter signature game, 3-aWitExtA1,ASRg,Σ
. The

changes from 3-aWitExt to G0 involve recording the hash values in the game's
random oracle, namely the addition of H := [⊥]. The reduction between the
games is Pr[3-aWitExtA1,3-ASRg,ΣSch

(λ) = 1] = Pr[G0 = 1].
Game G1 : A game that aborts if queries to the pre-signature oracle from A2

overlap for H ′[pk2||K||M ] and H ′[pk2||K ·Y1||M ]. The modi�cation from G0

to G1 is that, in the pre-signature oracle OpS , if either the pre-signature's
format or the normal Schnorr signature's format has already been queried
to the random oracle H, the game aborts. Let Bad1 denote the event that
G1 aborts. Let ℓ denote the total number of queries to each oracle. Because
ℓ is a polynomial in λ and v is a negligible function, the reduction between
the games is as follows:

Pr[Bad1] = Pr[H ′[pk2||K||M ] ̸=⊥ ∧H ′[pk2||K · Y1||M ] ̸=⊥]

≤ 2
ℓ

q
:= v1(λ),

where v1 is negligible in λ. Therefore, we obtain Pr[G0 = 1] ≤ Pr[G1 =
1] + v1(λ).

Game G2 : A game that aborts if queries from A to the pre-adaptation oracle
overlap. The modi�cation from G1 to G2 is that, in the pre-adaptation oracle
OpA, if either the pre-signature's format or the normal Schnorr signature's
format has already been queried to the random oracle H, the game aborts.
Similarly to G1, the reduction between the games is as follows:

Pr[G1 = 1] ≤ Pr[G2 = 1] + v2(λ),

where v2 is negligible in λ.
Game G3 : A game whose pre-signature oracle returns a regular signature. In

this game G3, the pre-signature oracle OpS outputs the signature σ instead
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of a pre-signature σ̃. The value of H[pk||K||M ] is set to H[pk||K · Y ||M ],
and H[pk||K||M ] is set to a new random value by the random oracle.

The adversary A cannot distinguish full signatures and pre-signatures, but
it can only notice the change in this game if the random oracle has been
queried on either pk||K||M or pk||K ·Y ||M . However, as this case is covered
in G1, the reduction loss is Pr[G2 = 1] = Pr[G3 = 1].

Game G4 : A game where the pre-adaptation oracle returns regular signa-
tures. In this game G4, the pre-adaptation oracle OpA generates a regular
signature σ instead of a pre-signature σ̃. However, because this oracle's form
di�ers from that of a pre-signature oracle, some adjustments are necessary.
These adjustments can be made similarly to those for the unforgeability
game G3. First, the value of H[pk||K||M ] is set to H[pk||K · Y ||M ], and
H[pk||K||M ] is set to a new random value by the random oracle. As in
Game G3 above, the adversary A cannot distinguish full signatures and pre-
signatures but can only notice the change in this game if the random oracle
has been queried on either pk||K||M or pk||K · Y ||M . Again, this case is
covered in G1.

Next, the adversary's output forged witness y′2 is checked against the chal-
lenge statement Y ∗

2 (by chance) or on the oracle side. If y′2 does not corre-
spond to Y ∗

2 , the game aborts. The probability here is equal to the prob-
ability of breaking the hard relation v3. Therefore, the reduction loss is
Pr[G3 = 1] ≤ Pr[G4 = 1] + v3(λ), where v3 is negligible in λ.

Game G5 : A game that applies the same modi�cations as inG1 andG2 to S.
The game aborts if S has already queriedH

′
[pk||K||M ] andH

′
[pk||K ·Y ||M ].

The reduction loss is Pr[G4 = 1] ≤ Pr[G5 = 1] + v1(λ) + v2(λ).

Game G6 : A game that applies the same modi�cations as in G3 and G4 to
S. The game passes regular signatures instead of pre-signatures to A. The
reduction loss is Pr[G5 = 1] ≤ Pr[G6 = 1] + v3(λ).

Game strongSigForge: The SUF-CMA game for regular signatures. In this game,
unlike in 3-aEUF-CMA security, the adversary A1 outputs a message M∗ and
public statements Y ∗

1 , Y
∗
2 as the challenge messages. Therefore, to convert

full signatures into pre-signatures, the random oracle's output is programmed
such that full signatures become regular signatures and vice versa. As a re-
sult, although regular Schnorr signatures are sent to the adversary, it can
behave as if those signatures are valid pre-signatures, thus fully simulating
GameG6. Note that we will give a formal, detailed proof of this in the full ver-
sion of this paper. Hence, the reduction is Pr[G6 = 1] = Pr[strongSigForge =
1].
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Finally, from the above discussion, the reduction e�ciency for case (ii) is as
follows:

Pr[3-aWitExtA1,3-ASRg,ΣSch
(λ) = 1]

= Pr[G0 = 1]

≤ Pr[G1 = 1] + v1(λ)

≤ Pr[G2 = 1] + v1(λ) + v2(λ)

= Pr[G3 = 1] + v1(λ) + v2(λ)

≤ Pr[G4 = 1] + v1(λ) + v2(λ) + v3(λ)

≤ Pr[G5 = 1] + 2v1(λ) + 2v2(λ) + v3(λ)

≤ Pr[G6 = 1] + 2v1(λ) + 2v2(λ) + 2v3(λ)

= Pr[strongSigForgeSA1 ,3-ASRg,ΣSch
(λ) = 1] + 2v1(λ) + 2v2(λ) + 2v3(λ).

3 N-Party Adaptor Signatures

In this section, we extend the two-party adapter signatures de�ned in Section
1.4 to construct an N-party adapter signature scheme N-ASR,Σ . Here, we denote
the N entities as U1, · · · , Ui, · · · , Un. Each entity is classi�ed into one of three
types: Un as the entity that generates the initial pre-signature, U1 as the entity
that �nally adapts from pre-signatures to a regular signature, and Ui as all the
other entities. In constructing N-party adapter signatures, we assume the same
digital signature scheme and computationally hard algebraic relation used in
the two-party case. Additionally, the subscripts for each algorithm (e.g., Un in
PreSignUn

) correspond to the entity executing the algorithm, and the subscripts
for each argument (e.g., i in Yi or n in σn) correspond to the entity that initially
owns (or generates) that value.

Syntax of Proposed N-Party Adaptor Signatures Setup. U1 executes the
algebraic relation generation algorithm (Y1, y1)← GenR(1n); the Ui (2 ≤ i < n)
execute the key generation algorithm (ski, pki) ← KeyGen(λ) and the algebraic
relation generation algorithm (Yi, yi) ← GenR(1n); and Un executes the key
generation algorithm (skn, pkn)← KeyGen(λ).
Pre-signing: σn ← PreSignUn

((pkn, skn), Yn−1,M). The pre-signing algorithm
PreSignUn

is executed by Un and takes as input the key pair (pkn, skn) of Un,
the public information Yn−1 of Un−1, and the message M ; then, it outputs the
pre-signature σn. Note that all entities except U1 generate pre-signatures, but
because entities other than U1 and Un generate pre-signatures with the PreAdapt
algorithm, only Un executes this pre-signing algorithm.

Pre-veri�cation: 0/1←PreVrfyUi
({Yj}n−1

j=i , {pkj}nj=i+1, {σj}nj=i+1,M). The pre-
veri�cation algorithm PreVrfyUi

is executed by the Ui (1 ≤ i < n). It takes as
input the public information (Yi, . . . , Yn−1) from Ui to Un−1, the pre-signatures
(σi+1, . . . , σn) and public keys (pki+1, . . . , pkn) generated by Ui+1 to Un, and
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the message M , and it performs pre-signature veri�cation. It outputs 1 if the
signature is accepted, or 0 otherwise.

Pre-adaptation: σi←PreAdaptUi
((Yi, yi),Yi−1,pki+1,(ski, pki) ,σi+1, M). The

pre-adaptation algorithm PreAdaptUi
is executed by the Ui (2 ≤ i < n). It takes

as input the algebraic relation pair (Yi, yi) of Ui, the public information Yi−1 of
Ui−1, the public key pki+1 of Ui+1, the key pair (ski, pki) of Ui, the pre-signature
σi+1 generated by Ui+1, and the message M ; then, it outputs the pre-signature
σi.

Adaptation: σ1 ← AdaptU1
((Y1, y1), pk2, σ2,M): The adaptation algorithm

AdaptU1
is executed by U1. It takes as input the algebraic relation pair (Y1, y1)

of U1, the public key pk2 of U2, the signature σ2 generated by U2, and the
message M , and it outputs the signature σ1.

Extraction: yi−1 ← ExtUi
(Yi−1, σi, σi−1): The extraction algorithm ExtUi

is
executed by the Ui (2 ≤ i ≤ n). It takes as input the public information Yi−1

of Ui−1 and the signatures σi and σi−1 generated by Ui and Ui−1, respectively,
and it outputs the secret information yi−1.

The N-party adaptor signature scheme N-ASR,Σ satis�es the following cor-
rectness.

De�nition 5 (Pre-signature correctness for N parties) For any message
M ∈ {0, 1}∗ and (Y1, y1) . . . (Yn−1, yn−1) ∈ R, the N-party adaptor signature
scheme N-ASR,Σ satis�es pre-signature correctness for N parties if the following
holds:

Pr



PreVrfyUi
({Yj}n−1

j=i ,

{pkj,σj}nj=i+1,M)=1;

Vrfy(pki,M, σi−1)=1;

(Yi−1, y
′
i−1) ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{skj , pkj}nj=2←Gen(1λ);

{Yj , yj}n−1
j=1←GenR(1λ);

σn←PreSignUn
((pkn,skn),Yn−1,M);

σi ← PreAdaptUi
((Yi, yi), Yi−1,

pki+1, (ski, pki), σi+1,M);

yi−1 := ExtUi(Yi−1, σi, σi−1);

σ1:=AdaptU1
((Y1, y1), pk2,σ2,M)


= 1.

3.1 Concrete Construction of Schnorr-Based N-Party Adaptor
Signatures

Here, we extend the three-party adapter signature scheme de�ned in Section 2 to
describe a speci�c instantiation of the Schnorr-based N-party adapter signature
scheme given in Fig. 3. For Schnorr signatures ΣSch and a hard relation Rg :=
{(Y, y)|Y = gy}, we show the concrete construction of the N-party adapter
signature scheme N-ASRg,ΣSch

.
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Fig. 3. Concrete construction: Schnorr-based N-party adaptor signatures.

U1: (Y1, y1)← GenR(λ);

y1 ← Z∗
q , Y1 := gy1 ,

return Y1 to U2.

U2: (ski, pki)←KeyGen(λ),
(Yi, yi)←GenR(λ);

ski := xi ← Zq, pki = X2 := gxi ∈ G,
yi ← Z∗

g, Yi := gyi ,
return Yi to Ui+1 and pki to Ui−1, Ui+1.

Un: (skn, pkn)← KGen(λ);

skn := xn ← Z∗
q , pkn = Xn := gxn ∈ G,

return pkn to Ui.

Un: σ̂n←PreSignUn
((pkn, skn), Yn−1,M);

kn ← Zq, rn := H(Xn||gknYn−1||M),
sn := kn + rn · xn, σ̂n := (rn, sn),

return (σ̂n,M) to Un−1.

Ui: (1 ≤ i ≤ n− 1):
0/1←PreVrfyUi

(
{Yj}n−1

j=i , {pkj}
n
j=i+1, {σj}nj=i+1,M

)
;

For 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n,

return 1 if rj = H
(
Xj ||gsj ·X

−rj
j · Yj−1||M

)
.

Ui(2 ≤ i ≤ n− 1):
σ̂i ← PreAdaptUi

(
(Yi, yi), Yi−1, pki+1, (ski, pki), σi+1,M

)
;

ki ← Zq, ri := H
(
Xi||gkiYi−1||M

)
,

si := ki + ri · xi, s
′
i+1 := si+1 + yi,

σ̂i = (ri, si, s
′
i+1),

return {σ̂j}nj=i and M to Ui−1 and σ̂i to
Ui+1.

U1: σ1 = AdaptU1
((Y1, y1), pk2, σ̂2,M);

s1 := s2 + y1, σ1 := (r2, s1),
return σ1 to U2.

U2: y
′
1/ ⊥= ExtU2(Y1, (σ̂2, σ1));

y′
1 := s1 − s2,

return y′
1, If (Y1, y

′
1) ∈ R, otherwise,

return ⊥.

Ui(2 < i ≤ n):
y′
i−1/ ⊥= PreExtUi(Yi−1, σ̂i, σ̂i−1);

For 2 < i ≤ n, y′
i−1 := s′i − si.

return y′
i−1, if (Yi−1, y

′
i−1) ∈ R,

otherwise, return ⊥.
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3.2 Security of N-party Adaptor Signature Scheme

We now extend the security de�nitions of Section 2.2 to de�ne the security
properties that the N-party adaptor signatures, as de�ned in Section 3, should
satisfy.

First, existential unforgeability against chosen-plaintext attacks for N-party
adapter signatures (N-aEUF-CMA) extends the unforgeability de�nition for adapter
signatures (De�nition 10) to N parties. Here, because the signature content de-
pends on the generating entity, it is necessary to consider unforgeability for n
entities with n−1 interactions each. Hence, we consider two cases. The �rst case
is unforgeability between Un and Un−1. In this case, Un generates a pre-signature
via the PreSign algorithm, and the adversary attempts to forge signatures via
the signature/pre-signature oracle. The second case is unforgeability between Ui

and Ui+1 for 1 ≤ i ≤ n−2. Here, Ui+1 generates a pre-signature via the PreAdapt
algorithm, and the adversary attempts to forge signatures via the signature/pre-
adaptation oracle. We de�ne N-aEUF-CMA as follows.

Table 10. Experiment N-aSigForgeA,N-ASR,Σ
(λ)

N-aSigForgeiA,ASR,Σ
(λ)

1 : Q := ∅, (ski+1, pki+1)← Gen(1λ)
2 : (Yi, yi)← GenR(1λ)

3 : (M, st)← AOS(·),OpA(·,·,·)
1 ({pkj}nj=i+1, {Yj}n−1

j=i )

4 : σi+1 ← PreAdaptUi+1
((Yi, yi), Yi−1, pki+1, (ski, pki), σi+1,M)

5 : σi ← A
OS(·),OpA(·,·,·)
2 ({σj}nj=i+1, st)

6 : return (M /∈ Q ∧ Vrfy(pki+1, σi,M))

N-aSigForgen−1
A,ASR,Σ

(λ)

1 : Q := ∅, (skn, pkn)← Gen(1λ)
2 : (Yn−1, yn−1)← GenR(1λ)

3 : (M, st)← AOS(·),OpS(·,·)
1 (pkn, Yn−1)

4 : σn ← PreSignUn
((pkn, skn), Yn−1,M)

5 : σn−1 ← A
OS(·),OpS(·,·)
2 (σn, st)

6 : return (M /∈ Q ∧ VrfyUn
(pkn, σn−1,M))

OpA(M, (Yi, Yi+1), σi+2)

1 : σi←PreAdaptUi
((Yi, yi), Yi−1, pki+1, (ski, pki), σi+1,M)

2 : Q := Q ∪ {M}
3 : return σi

OS(M) OpS(M,Yn−1)

1 : σi ← Sign(ski,M) 1 : σn ← PreSign(skn, Yn−1,M)
2 : Q := Q ∪ {M} 2 : Q := Q ∪ {M}
3 : return σi 3 : return σn
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De�nition 6 (Existential unforgeability for N parties) An N-party adap-
tor signature scheme N-ASR,Σ is N-aEUF-CMA secure if for any PPT adversary
A = (A1, . . . ,AN−1), there exists a negligible function negl(λ) such that

N−2∑
i=1

Pr[N-aSigForgeAi,N-ASR,Σ
(λ) = 1] + Pr[N-aSigForgeAN−1,N-ASR,Σ

(λ) = 1]

≤ negl(λ)

where the experiments N-aSigForgeAi,N-ASR,Σ
and N-aSigForgeAN−1,N-ASR,Σ

are
as de�ned in the Table 10.

Regarding pre-signature adaptability for N-party adapter signatures, as with
unforgeability, it is necessary to consider separate cases depending on which
signer is considered as the malicious attacker. Here, we consider Ui (2 ≤ i ≤ n)
as the entity attempting to adapt the pre-signature. This is because N-party
adapter signatures entail n−1 consecutive interactions, so the legitimacy between
entities cannot be guaranteed when two or more attackers are present.

De�nition 7 (Pre-signature adaptability for N parties) For any message
M ∈ {0, 1}∗, algebraic relation pairs {Yj , yj}n−1

j=1 ∈ R, and public keys {pkj}nj=2,
the N-party adaptor signature scheme N-ASR,Σ satis�es pre-signature adaptabil-
ity for N parties if the following requirements hold. (i) When Un is the attacker,
for any randomly chosen pre-signature σn ← {0, 1}∗ satisfying PreVrfyUn−1

(pkn,M,
Yn−1, σn) = 1, we have

VrfyUn
(M, pkn,PreAdaptUn−1

((Yn−1, yn−1), Yn−2, pkn,(skn−1, pkn−1), σn,M)) = 1.

(ii) When Ui (2 ≤ i < n) is the attacker, for any σn ← PreSignUn
((pkn, skn),

Yn−1,M) and σi ← {0, 1}∗ satisfying PreVrfyUi
({Yj}n−1

i , {pkj}nj=i+1, {σj}nj=i+1,
M) = 1, the following conditions hold: for 2 < i < n,

VrfyUn
(M, pknPreAdaptUn−1

((Yn−1, yn−1), Yn−1, pkn, (skn−1, pkn−1), σn,M))=1,

and for i = 2,

VrfyUn
(M, pki,AdaptUi−1

((Yi, yi), Yi−1, pki, σi,M)) = 1.

Next, we consider the extension of witness extractability. Again, depending on
which entity among the N parties extracts secret information�i.e., when Ui is
the attacker for 1 ≤ i < n − 1, or when Un is the attacker�we need to distin-
guish these cases. Note, however, that the entity extracting secret information
is limited to the Ui (1 ≤ i ≤ n− 1).

De�nition 8 (Witness extractability for N parties) The N-party adaptor
signature scheme N-ASR,Σ is witness extractable if for every PPT adversary A
there exists a negligible function negl(λ) such that

n−2∑
i=1

Pr[N-aWitExt1≤i<n−1
Ai,N-ASR,Σ

(λ) = 1] + Pr[N-aWitExti=n−1
AN−1,N-ASR,Σ

(λ) = 1]

≤ negl(λ),
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for experiments N-aWitExt1≤i<n−1
Ai,N-ASR,Σ

(λ) and N-aWitExti=n−1
An−1,N-ASR,Σ

(λ).

Table 11. Experiment N-aWitExtA,N-ASR,Σ (λ)

N-aWitExt1≤i<n−1
Ai,N-ASR,Σ

(λ)

1: Q := ∅, (ski+1, pki+1)← Gen(1λ)

2: (M,Yi, st)← A
OS(·),OpA(·,·)
1 (pki+1, Yi+1)

3: σi+1←PreAdaptUi+1
((Yi+1,yi+1), Yi, pki+2, (ski+1, pki+1), σi+2,M)

4: σi ← A
OS(·),OpA(·,·)
2 (σi+1, st)

5: return(Yi,ExtUi+1(Yi, σi, σi+1) ∧M/∈Q∧Vrfy(pki+1, σi,M))

N-aWitExti=n−1
An−1,N-ASR,Σ

(λ)

1: Q := ∅, (skn−1, pkn−1)← Gen(1λ)

2: (M,Yn−1, st)← A
OS(·),OpS(·,·)
1 (pkn−1)

3: σ̂n−1 ← PreSign(skn−1, Yn−1,M)

4: σn ← A
OS(·),OpS(·,·)
2 (σ̂n−1, st)

5: return (Yn−1,ExtUn(σn, σi, Y)∧M/∈Q∧Vrfy(pkn−1, σn,M))

OpA(Yi, Yi+1,M)

1: σi+1←PreAdaptUi+1
((Yi+1,yi+1), Yi, pki+2, (ski+1, pki+1), σi+2,M)

2: Q := Q ∪ {M}
3: return σi+1

OS(M) OpS(M,Yi)

1: σi ← Sign(ski+1,M) 1 : σi+1 ← PreSign(ski+1, Yi,M)
2: Q := Q ∪ {M} 2 : Q := Q ∪ {M}
3: return σi 3 : return σi+1

3.3 Security Proofs for N-Party Adaptor Signature Scheme

In this section, we demonstrate that N-party adapter signatures based on Schnorr
signatures satisfy the security properties de�ned above. Note that each proof is
a straightforward extension of the corresponding proof given for the three-party
case in Section 2.3.

Theorem 2 If the Schnorr signature scheme ΣSch is SUF-CMA secure, and Rg

is a computationally hard algebraic relation, then N-ASRg,ΣSch
in Fig. 3 is secure

in the random oracle model.

To demonstrate the validity of Theorem 2, it su�ces to show that it satis�es
De�nitions 5, 6, 7, and 8. Each of these properties has already been proven for
the three-party case, and it is then trivial that they hold for the N-party case.

Regarding pre-signature correctness and pre-signature adaptability for N par-
ties, it is su�cient to demonstrate that the two veri�cation procedures Vrfy and
PreVrfyUi

hold in the N-party construction.
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Finally, regarding existential unforgeability and witness extractability for N
parties, we can apply similar case-by-case reasoning as in the three-party case.
In the three-party scenario, we considered an attacker A2 between U2 and U3 as
case (i) and an attacker A1 between U1 and U2 as case (ii). The same approach
can be used for the N-party scenario: we consider an attacker An−1 between
Un−1 and Un as case (i), and an attacker Ai between Ui and Ui+1 as case (ii),
with iteration over 1 ≤ i ≤ n − 2. This straightforward extension yields the
desired results.

4 Conclusion

In this paper, we explored a general extension of adapter signature schemes that
previously applied for two parties. First, we extended the two-party adapter
signature scheme to three parties and presented the security requirements that
the extended scheme should satisfy. We also provided a speci�c construction
example using Schnorr signatures. Then, we demonstrated that the resulting
Schnorr-signature-based, three-party adapter signature scheme satis�es all the
de�ned security properties. Furthermore, by extending the scheme to N parties,
we showed a general construction method for N-party adapter signatures and
again provided a speci�c construction example using Schnorr signatures. This
illustrates the ease of extending from three to N parties.
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A Preliminaries

We �rst introduce the cryptographic primitives and notations used in this pa-
per. We denote by x ← X the uniform sampling of a variable x from a set X.
Throughout this paper, λ denotes the security parameter, and all our algorithms
run in polynomial time in λ. By writing x← A(y), we mean that, on input y, a
probabilistic polynomial time (PPT) algorithm A outputs x. If A is a determin-
istic polynomial time (DPT) algorithm, then we use the notation x := A(y). A
function negl : N→ R is negligible in n if, for every k ⊂ N , there exists n0 ∈ N
s.t. for every n ≥ n0 it holds that |negl(n)| ≤ 1/nk.

We next recall the de�nition of a hard relation R with statement/witness
pairs (Y, y). Let LR be the associated language de�ned as {Y |∃y s.t.(Y, y) ∈ R}.
We say that R is a hard relation if the following hold: (i) There exists a PPT
sampling algorithm GenR that, on input 1λ, outputs a statement/witness pair
(Y, y) ∈ R; (ii) the relation is poly-time decidable; and (iii) for all PPT A on
input Y , the probability of A outputting a valid witness y is negligible.

A.1 Digital Signatures

A digital signature scheme Σ comprises the three algorithms KGen, Sign, and
Vrfy. The key generation algorithm (sk, pk)← KGen(λ) takes a security param-
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eter λ as an input and outputs a secret (signing) key sk and a public (veri-
�cation) key pk. The signing algorithm σ ← Sign(M, pk, sk) takes a message
M , pk, and sk as inputs and outputs a signature σ. The veri�cation algorithm
1/0 ← Vrfy(M, pk, σ) takes M，pk，and σ as inputs，and it outputs 1 if the
signature is accepted, or 0 otherwise. In this paper, we use a signature scheme
that satis�es SUF-CMA (strong existential unforgeability under chosen-message
attack). SUF-CMA security guarantees that a PPT attacker with access to the
signature oracle by entering his public key pk cannot generate a new valid sig-
nature for any message M .

A.2 Schnorr signatures

In this section, we introduce one of the most fundamental signature schemes,
Schnorr signatures, for later use in concrete con�gurations. Schnorr signatures
are the most intuitive and most compatible signature scheme with adapter sig-
natures, because Poelstra [26] used them as a base when he �rst presented the
concrete structure of adapter signatures.

First, let G =< g > be a cyclic group of prime order q, and let Rq ⊂ G×Zq

be a relation de�ned as Rq := {(Y, y)|Y = gy}, where Zq is the set of integers
modulo q.

Next, we brie�y recall the Schnorr signature scheme ΣSch = (Gen,Sign,Vrfy).
The key generation algorithm samples x← Zq uniformly at random and returns
X := gx ∈ G as the public key and x as the secret key. On an input message
m ∈ {0, 1}∗, the signing algorithm computes r] = H(X||gk||m) ∈ Zq and s :=
k+ rx ∈ Zq, for k ← Zq chosen uniformly at random, and it outputs a signature
σ := (r, s). Finally, on an input message m ∈ {0, 1}∗ and signature (r, s) ∈
Zq × Zq, the veri�cation algorithm veri�es that r = H(X||gs ·X−r||m).

In this paper, Schnorr signatures are considered to satisfy SUF-CMA. At a
high level, SUF-CMA guarantees that a PPT adversary, given the public key pk
and access to a signature oracle, cannot produce a new valid signature on any
message m.

B Supplemental Material for Two-Party Adaptor

Signatures

B.1 Correctness of Two-Party Adaptor Signatures

The adapter signature scheme ASR,Σ satis�es the following correctness:

De�nition 9 (Pre-signature correctness) For any messageM ∈ {0, 1}∗ and
(Y, y) ∈ R, the adapter signature scheme ASR,Σ satis�es pre-signature correct-
ness if the following holds:

Pr


PreVrfy(Y,pk, σ̂,M)=1;

Vrfy(pk,M, σ)=1;

(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣
(sk, pk)←Gen(1λ);

σ̂←PreSign((pk, sk), Y,M);

σ:=Adapt((Y, y), pk, σ̂,M);

y′ := Ext(Y, σ̂, σ)

=1.
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B.2 Security of Two-Party Adaptor Signatures

Here, we introduce the security of adapter signatures according to the de�nition
by Aumayr et al. [1], which entails three properties. Below, aEUF-CMA(existential
unforgeability under chosen-message attack for adapter signatures) is de�ned in
terms of the EUF-CMA security of a general digital signature, by considering a
scenario in which an additional pre-signature is provided for a randomly cho-
sen public statement Y ∈ LR. This �rst property of existential unforgeability
aims to ensure the unforgeability of signatures even when the adversary has a
pre-signature for a speci�c message M .

aEUF-CMA security protects the signer. It is similar to EUF-CMA for digital
signatures but additionally requires that production of a forgery σ for some
message M is hard even given a pre-signature on M with respect to a random
statement Y ∈ LR. Note that it is essential to allow the adversary to learn a
pre-signature on M because, for practical applications, signature unforgeability
needs to hold even when the adversary learns a pre-signature for M without
knowing a witness for Y .

De�nition 10 (Existential unforgeability) For any probabilistic polynomial-
time (PPT) algorithm A = (A1,A2), consider the experiment aSigForgeA,ASR,Σ

(λ)
in Table 12. If there exists a negligible function such that Pr[aSigForgeA,ASR,Σ

(λ)
= 1] ≤ negl(λ), then the adapter signature scheme ASR,Σ is aEUF-CMA secure.

Here, aEUF-CMA represents an for adaptively chosen-message attack under
a chosen-message attack (CCA) security, and Pr[aSigForgeA,ASR,Σ

(λ) = 1] rep-
resents the probability that the adversary A succeeds in the given experiment for
the adapter signature scheme ASR,Σ with security parameter λ. The above in-
equality means that if this probability is non-negligible, then the scheme is not
aEUF-CMA-secure.

Table 12. Experiment of aSigForgeA,ASR,Σ
(λ)

aSigForgeA,ASR,Σ
(λ)

1 : Q := ∅, (sk, pk)← Gen(1λ)
2 : (Y, y)← GenR(1λ)

3 : (M, st)← AOS(·),OpS(·,·)
1 (pk, Y )

4 : σ̂ ← PreSign(sk, Y,M)

5 : σ ← AOS(·),OpS(·,·)
2 (σ̂, st)

6 : return (m /∈ Q ∧ Vrfy(pk, σ,M))

OS(M) OpS(M,Y )

1 : σ ← Sign(sk,M) 1 : σ̂ ← PreSign(sk, Y,M)
2 : Q := Q ∪ {M} 2 : Q := Q ∪ {M}
3 : return σ 3 : return σ̂

The second property, called pre-signature adaptability, protects the veri�er.
It guarantees that any valid pre-signature w.r.t. Y (possibly produced by a
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malicious signer) can be completed as a valid signature by using a witness y
with (Y, y) ∈ R. Note that this property is stronger than the pre-signature
correctness property, because we require that even pre-signatures that were not
produced by PreSign but are valid can still be completed as into valid signatures.

De�nition 11 (Pre-signature adaptability) For any message M ∈ {0, 1}∗,
any statement/witness pair (Y, y) ∈ R, any public key pk and any pre-signature
σ̂ ∈ {0, 1}∗ with PreVrfy(pk,M, Y ; σ̂) = 1, an adaptor signature scheme ASR,Σ

satis�es pre-signature adaptability if we have Vrfy(M, pk;Adapt(σ̂, y)) = 1.

The last property of interest is witness extractability, which protects the
signer. Informally, it guarantees that a valid signature/pre-signature pair (σ, σ̂)
for a message/statement pair (m,Y ) can be used to extract a witness y for
Y . Hence, a malicious veri�er cannot use a pre-signature σ̂ to produce a valid
signature σ without revealing a witness for Y .

De�nition 12 (Witness extractability) An adaptor signature scheme ASR,Σ

is witness extractable if, for every PPT adversary A = (A1, A2), there exists a
negligible function V such that the following holds: Pr[aWitExtA,ASR,Σ

(n) =
1] ≤ V(λ), where the experiment aWitExtA,ASR,Σ

is de�ned as in Table 13.

Table 13. Experiment aWitExtA,ASR,Σ (λ)

aWitExtA,ASR,Σ (λ)

1 : Q := ∅, (sk, pk)← Gen(1λ)

2 : (M,Y, st)← AOS(·),OpS(·,·)
1 (pk)

3 : σ̂ ← PreSign(sk, Y,M)

4 : σ ← AOS(·),OpS(·,·)
2 (σ̂, st)

5 : return (Y,Ext(pk, σ, σ̂), T /∈ R ∧M /∈ Q ∧ Vrfy(pk, σ,M))

OS(M) OpS(M,Y )

1 : σ ← Sign(sk,M) 1 : σ̂ ← PreSign(sk, Y,M)
2 : Q := Q ∪ {M} 2 : Q := Q ∪ {M}
3 : return σ 3 : return σ̂

This security de�nition above does not explicitly consider the existential un-
forgeability of pre-signatures (pre-signature existential unforgeability). However,
by considering an experiment that omits steps 4 and 5 in De�nition 10 and di-
rectly returns the pre-signature σ̂, we can e�ectively address this aspect. Given
the similarity between this modi�ed experiment and De�nition 10, we omit the
detailed description here.

Finally, given the above de�nitions, we have the following de�nition of an
adapter signature scheme's security.

De�nition 13 Suppose that the Schnorr signature scheme ΣSch is SUF-CMA
and Rg is a hard relation. N-ASRg,ΣSch

in Fig. 3 is a secure three-party adapter
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signature scheme in the ROM if N-party pre-signature correctness, three-party
existential unforgeability, N-party pre-signature adaptability, and N-party witness
extractability are satis�ed.

C Security

C.1 Pre-signature adaptability for three-party

Lemma 5 (Pre-signature adaptability for three-party) The Schnorr-based
adaptor signature scheme 3-ASRg,ΣSch

satis�es pre-signature adaptability for three-
party.

Proof. It is provable as well as the pre-signature adaptability of the 2-party.
Two case divisions depending on which adaptability among the three parties is
considered (i) when U2 (main-signer) is adversary (ii) when U3 (sub-signer) is
adversary.

(i) If U2 is an adversary, let y1, y2 ∈ Zq, M ∈ {0, 1}∗, pk2, pk3 ∈ G, and σ̂2 =
(r2, s̃2, s

′
3) ∈ Zq×Zq×Zq. De�ne s1 := s̃2+y1.Assume PreVrfyU1

(Y1, (pk2, pk3),
(σ̂2, σ̂3),M) = 1, then

r2 = H(pk2||gs̃2 · pk
−r2
2 · Y1||M)

= H(pk2||gs̃2 + y1 · pk−r2
2 ||M)

= H(pk2||gs1 · pk
−r2
2 ||M),

which implies Vrfy(pk1, σ1 = (r2, s1),M) = 1(∵ r2 = H(pk3||gs1 · pk
−r2
3 ||M).

(ii) If U3 is an adversary, let y1, y2 ∈ Zq, M ∈ {0, 1}∗, pk2, pk3 ∈ G, σ̂3 =
(r3, s̃3) ∈ Z1×Zq. De�ne s

′
3 := s̃3+y2. Assume PreVrfyU2

(Y2, pk3, (r3, s̃3),M)
= 1, then

r3 = H(pk3||gs̃3pk
−r3
3 Y2||M)

= H(pk3||gs̃3+y2pk−r3
3 ||M)

= H(pk3||gs
′
3pk−r3

3 ||M),

which implies Vrfy(pk3, σ̂3 = (r3, σ̂3), σ̂2 = (r2, s2, s
′
3)||M) = 1 since r3 =

H(pk3||gs
′
3pk−r3

3 ||M) holds.

C.2 Pre-signature correctness for three-party

Lemma 6 (Pre-signature correctness for three-party) The Schnorr-based
adaptor signature scheme 3-ASRg,ΣSch

satis�es pre-signature correctness for three-
party.

Proof. We show that the six equations of de�nition 9 are satis�ed under the
conditions of the de�nition.
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Correctness of PreVrfyU2
(Y2, pk3, σ̂3,M)=1. Given σ̂3 = (r3, s3) and s3 = k +

r3x3,
gs3 ·X−r3

3 · Y2 = gk+r3x3 · (gx3)−r3Y2 = gkY2.

Therefore, PreVrfyU2
(Y2, pk3, σ̂3,M) computes

r3 = H(X3||gs3 · gk · Y2||M) = H(X3||gs3 ·X−r3
3 · Y2||M).

Correctness of PreVrfyU3
(Y1, pk2, σ̂2,M) = 1. Given σ̂2 = (r2, s2, s

′
3) and s2 =

k′ + r2x2,
gs2 ·X−r2

2 · Y1 = gk
′+r2x2 · (gx2)−r2 · Y1 = gk

′
Y1.

Therefore, PreVrfyU3
(Y1, pk2, σ̂2,M) computes

r2 = H(X2||gs2 · gk
′
· Y1||M) = H(X2||gs2 ·X−r2

2 · Y1||M).

Correctness of (Y2, y
′
2) ∈ R. For s′3 = s3+ y2, U3 gets y

′
2 = s′3− s3 = (s3+ y2)−

s3 = y2.
∴ (Y1, y

′
1) ∈ R.

Correctness of PreVrfyU1
(Y1, (pk2, pk3), (σ̂2, σ̂3),M) = 1. Given σ̂2 = (r2, s2, s

′
3)

and σ̂3 = (r3, s3), return 1 if r3 = H(X3||gs3 ·X−r3
3 ·Y2||M) and r2 = H(X2||gs2 ·

X−r2
2 ·Y1||M) hold. The above can be demonstrated similarly to the correctness

of PreVrfyU2
and PreVrfyU3

.

Correctness of Vrfy(pk2,M, σ1)=1. Given σ1 = (r2, s1),

gs1 ·X−r2
2 = gs2+y1 · (gx2)−r2 (∵ s1 = s2 + y1)

= gk
′+r2x2+y1 · (gx2)−r2 (∵ s2 = k′ + r2x2)

= gk
′+y1

= gk
′
Y1 (∵ Y1 = gy1).

Therefore,
r2 = H(X2||gk

′
Y1||M) = H(X2||gs1X−r2

2 ||M).

Correctness of (Y1, y
′
1) ∈ R. For s1 = s2+ y1, U2 gets y

′
1 = s1− s2 = (s2+ y1)−

s2 = y1.
∴ (Y1, y

′
1) ∈ R.

D Security De�nitions of Games in Lemma 3.

In this section, we describe the formal de�nition of each game G1 through G6

in Case (ii) of Lemma 3.
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Table 14. Formal de�nition of game G1

G1

1 : Q := ∅
2 : H := [⊥]
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

abort.
10 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : σ2←PreAdaptU2
((Y2, y2), Y1, pk3,

(sk2, pk2), σ3,M)
2 : Q := Q ∪ {M}
3 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: σ3 ← PreSign((pk3, sk3), Y2,M)
2: Q := Q ∪ {M}
3: return σ3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]

Table 15. The formal de�nition of game G2

G2

1 : Q := ∅
2 : H := [⊥]
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

abort.
10 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : σ2←PreAdaptU2
((Y2, y2), Y1, pk3,

(sk2, pk2), σ3,M)
2 : Q := Q ∪ {M}
3 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: H ′ := H
2: σ3 ← PreSign((pk3, sk3), Y2,M)

3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥

6: ∧H ′[pk3||K · Y2||M ]

7: abort
8: Q := Q ∪ {M}
9: return σ3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]
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Table 16. Formal de�nition of game G3

G3

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

10 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

11 : then abort
12 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpS(M,Y2)

1: H ′ := H
2: σ3 ← PreSign((pk3, sk3), Y2,M)
3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥
6: ∧H ′[pk3||K · Y2||M ]
7: abort
8: Q := Q ∪ {M}
9: return σ3

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H
2 : σ2←PreAdaptU2

((Y2, y2), Y1, pk3,
(sk2, pk2), σ3,M)

3 : (r2, s2, s
′
3) := σ2

4 : K2 := gs2 · pk−r2
2

5 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

6 : if H ′[pk2||K2||M ] ̸=⊥

7 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥

8 : ∧ s′3 ∈ S

9 : ∧ (Y ∗
2 , y′

2) ∈ R∗

10 : abort
11 : Q := Q ∪ {M}
12 : S := S ∪ {s′3}
13 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]
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Table 17. Formal de�nition of game G4

G4

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

10 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

11 : then abort
12 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H
2 : σ2←PreAdaptU2

((Y2, y2), Y1, pk3,
(sk2, pk2), σ3,M)

3 : (r2, s2, s
′
3) := σ2

4 : K2 := gs2 · pk−r2
2

5 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

6 : if H ′[pk2||K2||M ] ̸=⊥
7 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥
8 : ∧ s′3 ∈ S
9 : ∧ (Y ∗

2 , y′
2) ∈ R∗

10 : abort
11 : Q := Q ∪ {M}
12 : S := S ∪ {s′3}
13 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: H ′ := H

2: σ3 ← Sign((pk3, sk3),M)

3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥
6: ∧H ′[pk3||K · Y2||M ]
7: abort

8: x := pk3||K3||M

9: H ′[pk3||K3 · Y2||M ] := H[x]

10: H[x]← Zq

11: Q := Q ∪ {M}
12: return σ3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]
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Table 18. Formal de�nition of game G5

G5

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ3 ← PreSign((pk3, sk3), Y2,M
∗)

7 : σ2 ← PreAdaptU2
((Y2, y2),

Y1, pk3, (sk2, pk2), σ3,M
∗)

8 : σ1 ← A
OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

9 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

10 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

11 : then abort
12 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H

2 : σ2 ← Sign((pk2, sk2),M)

3 : (r2, s2) := σ2

4 : s′3 ← Zq

5 : if s′3 ∈ S, abort

6 : K2 := gs2 · pk−r2
2

7 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

8 : if H ′[pk2||K2||M ] ̸=⊥
9 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥
10 : ∧ s′3 ∈ S
11 : ∧ (Y ∗

2 , y′
2) ∈ R∗

12 : abort
13 : x := pk2||K2||M
14 : H[pk2||K2 · Y1||M ] := H[x]
15 : H[x]← Zq

16 : (r2, s2, s
′
3) := σ̂2

17 : Q := Q ∪ {M}
18 : S := S ∪ {s′3}
19 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: H ′ := H
2: σ3 ← Sign((pk3, sk3),M)
3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥
6: ∧H ′[pk3||K · Y2||M ]
7: abort
8: x := pk3||K3||M
9: H ′[pk3||K3 · Y2||M ] := H[x]
10: H[x]← Zq

11: Q := Q ∪ {M}
12: return σ̂3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]



42 K. Kajita et al.

Table 19. Formal de�nition of game G6

G6

1 : Q := ∅, S := ∅
2 : H := [⊥],
3 : (pk2, sk2)(pk3, sk3)← Gen(1λ)
4 : (Y1, y1)(Y2, y2)← GenR(1λ)

5 : M∗ ← AOS(·),OpS(·),OpA(·)
1 (pk2, pk3)

6 : σ′
2, σ

′
3 ← Sign((pk2, sk2)(pk3, sk3),M

∗)

7 : (r′2, s
′
2) := σ′

2, (r
′
3, s

′
3) := σ′

3

8 : σ2 := Adapt(σ′
2,−y1)

9 : σ3 := Adapt(σ′
3,−y2)

Y1, pk3, (sk2, pk2), σ3,M
∗)

10 : σ′
1 ← A

OS(·),OpS(·),OpA(·)
1 (σ∗

2 , σ
∗
3 , Y1, Y2)

11 : if Adapt((Y1, y1), pk2, σ2,M) = σ∗
1 ,

12 : ∨ y∗
1 ← Ext(Y ∗

1 ,PreAdaptU2
((Y ∗

2 , y∗
2), Y

∗
1 ,

pk3, (sk2, pk2), σ̂
∗
3 ,M), σ∗

2

13 : then abort
14 : return (M /∈ Q ∧ Vrfy(pk3, σ2,M

∗))

OpA(M, (Y2, Y2), σ3)

1 : H ′ := H
2 : σ2 ← Sign((pk2, sk2),M)
3 : (r2, s2) := σ2

4 : s′3 ← Zq

5 : if s′3 ∈ S, abort

6 : K2 := gs2 · pk−r2
2

7 : y′
2 = s′3 − s3 (∵ (r3, s3) := σ̂3)

8 : if H ′[pk2||K2||M ] ̸=⊥
9 : ∧ H ′[pk2 K2 · Y1||M ] ̸=⊥
10 : ∧ s′3 ∈ S
11 : ∧ (Y ∗

2 , y′
2) ∈ R∗

12 : abort
13 : x := pk2||K2||M
14 : H[pk2||K2 · Y1||M ] := H[x]
15 : H[x]← Zq

16 : (r2, s2, s
′
3) := σ̂2

17 : Q := Q ∪ {M}
18 : S := S ∪ {s′3}
19 : return σ2

OA1
S (M)

1: σ1 ← Sign((pk1, sk1),M)
2: Q := Q ∪ {M}
3: return σ1

OpS(M,Y2)

1: H ′ := H
2: σ3 ← Sign((pk3, sk3),M)
3: (r3, s3) := σ3

4: K := gspk−r3
3

5: if H ′[pk3||K||M ] ̸=⊥
6: ∧H ′[pk3||K · Y2||M ]
7: abort
8: x := pk3||K3||M
9: H ′[pk3||K3 · Y2||M ] := H[x]
10: H[x]← Zq

11: Q := Q ∪ {M}
12: return σ̂3

H(x)
1: if H[x] =⊥
2: H[x]← Zq

3: return H[x]


