# Adaptively Sound Zero-Knowledge SNARKs for UP 

Surya Mathialagan*<br>MIT

Spencer Peters ${ }^{\dagger}$<br>Cornell University

Vinod Vaikuntanathan ${ }^{\ddagger}$<br>MIT

April 1, 2024


#### Abstract

We study succinct non-interactive arguments (SNARGs) and succinct non-interactive arguments of knowledge (SNARKs) for the class UP in the reusable designated verifier model. UP is an expressive subclass of NP consisting of all NP languages where each instance has at most one witness; a designated verifier SNARG (dvSNARG) is one where verification of the SNARG proof requires a private verification key; and such a dvSNARG is reusable if soundness holds even against a malicious prover with oracle access to the (private) verification algorithm.

Our main results are as follows. 1. A reusably and adaptively sound zero-knowledge (zk) dvSNARG for UP, from subexponential LWE and evasive LWE (a relatively new but popular variant of LWE). Our SNARGs achieve very short proofs of length $(1+o(1)) \cdot \lambda$ bits for $2^{-\lambda}$ soundness error. 2. A generic transformation that lifts any "Sahai-Waters-like" (zk) SNARG to an adaptively sound (zk) SNARG, in the designated-verifier setting. In particular, this shows that the Sahai-Waters SNARG for NP is adaptively sound in the designated verifier setting, assuming subexponential hardness of the underlying assumptions. The resulting SNARG proofs have length $(1+o(1)) \cdot \lambda$ bits for $2^{-\lambda}$ soundness error. Our result sidesteps the Gentry-Wichs barrier for adaptive soundness by employing an exponential-time security reduction. 3. A generic transformation that lifts any adaptively sound (zk) SNARG for UP to an adaptively sound (zk) SNARK for UP, while preserving zero-knowledge. The resulting SNARK achieves the strong notion of black-box extraction. There are barriers to achieving such SNARKs for all of NP from falsifiable assumptions, so our restriction to UP is, in a sense, necessary. Applying (3) to our SNARG for UP from evasive LWE (1), we obtain a reusably and adaptively sound designated-verifier zero-knowledge SNARK for UP from subexponential LWE and evasive LWE. Moreover, applying both (2) and (3) to the Sahai-Waters SNARG, we obtain the same result from LWE, subexponentially secure one-way functions, and subexponentially secure indistinguishability obfuscation. Both constructions have succinct proofs of size poly $(\lambda)$. These are the first SNARK constructions (even in the designated-verifier setting) for a non-trivial subset of NP from (sub-exponentially) falsifiable assumptions.


[^0]
## Contents

1 Introduction ..... 1
1.1 Concurrent Work ..... 5
1.2 Organization of the Paper ..... 5
2 Technical Overview ..... 6
2.1 Our SNARG for UP from Evasive LWE ..... 6
2.2 Achieving Adaptive Security for "Sahai-Waters-like" SNARGs ..... 12
2.3 From Adaptive SNARGs for UP to SNARKs for UP ..... 14
3 Preliminaries ..... 16
3.1 Notation ..... 16
3.2 LWE Assumption ..... 17
3.3 Security Parameters ..... 17
3.4 Trapdoor and Pre-image Sampling ..... 18
3.5 Primitives ..... 18
3.5.1 Pseudorandom Functions ..... 18
3.5.2 SNARGs, SNARKs and NIZKs ..... 21
3.5.3 Fully Homomorphic Encryption ..... 24
3.5.4 Public-key Encryption ..... 25
3.5.5 Indistinguishability Obfuscation ..... 25
4 Obfuscating Matrix PRFs with Noise ( $\sigma$-Matrix PRFs) ..... 26
4.1 Matrix Branching Programs ..... 26
$4.2 \quad \sigma$-Matrix PRFs ..... 27
4.3 Transforming Read-c PRFs into Read-Once PRFs ..... 27
4.4 GGH Encodings ..... 29
4.5 Evasive LWE ..... 30
4.6 Obfuscating Sufficiently Secure $\sigma$-matrix PRFs ..... 30
5 Witness PRFs for UP ..... 35
5.1 Definitions ..... 35
5.2 Construction ..... 37
6 Designated Verifier Zero-Knowledge SNARGs from Witness PRFs ..... 41
7 Adaptive SNARGs from Non-Adaptive Witness PRFs ..... 43
7.1 Non-Adaptive Witness PRFs to SNARGs ..... 43
7.2 Sahai-Waters SNARG through the Lens of Non-Adaptive Witness PRFs ..... 45
8 SNARK for UP ..... 47
8.1 Our Transformation from SNARG for UP to SNARK for UP ..... 48
8.2 Proof of Theorem 8.1 ..... 50
A Deferred proofs ..... 59
A. 1 Proof of Lemma 3.9 ..... 59
A. 2 Proof of Lemma 3.15 ..... 60
A. 3 Proof of Lemma 4.7 ..... 61

## 1 Introduction

Can we generate short proofs of correctness, consisting of a few bytes, of long and possibly nondeterministic computations, consisting of billions of steps? The notion of succinct non-interactive arguments (SNARGs) [Mic00, GW11] gives us a positive answer to this question by introducing two relaxations to the problem statement: computational soundness and the existence of a trusted common random, or reference, string. The construction of SNARGs has been a tremendously active area of research in cryptography, leading us to three broadly defined clusters of constructions.
The first cluster of constructions, starting from [Mic00] (building on Kilian's succinct interactive arguments [Kil92]) showed SNARGs (and even SNARKs, succinct non-interactive arguments of knowledge) for all NP languages with security in the random oracle model or under strong, nonfalsifiable, knowledge assumptions [Gro10, BCCT12, BCCT13, $\left.\mathrm{BCI}^{+} 13\right]$. This class of SNARG constructions have since then been engineered to have superior concrete efficiency (e.g. in a line of work starting from [PHGR13, $\left.\mathrm{BCG}^{+} 13, \mathrm{BCTV} 14\right]$ ) and have been deployed in the real world $\left[\mathrm{BCG}^{+} 14\right]$. Their very popularity and increasingly widespread use raises the question of whether one can place SNARGs (and SNARKs) on a more solid footing of security, with constructions based on falsifiable assumptions. The rest of this paper will focus on constructions in the plain model (that is, eschewing random oracles).
The second cluster of constructions is really a singular beautiful construction, due to Sahai and Waters [SW14], that builds a SNARG for NP from a sub-exponentially falsifiable assumption, namely the existence of indistinguishability obfuscation (IO) schemes. ${ }^{1}$ The Sahai-Waters SNARG comes with very short proofs, essentially $O(\lambda)$ bits for a soundness error of $2^{-\lambda}$, but a long common reference string (CRS) that is as long as the NP witness. A recent work of Jain and Jin [JJ22] shows how to reduce the size of the CRS for a subclass of NP $\cap$ coNP. While IO can now be based on relatively well-studied (and falsifiable) cryptographic assumptions [JLS21, JLS22], the constructions themselves are complex and inefficient, which motivates the quest for simpler and more direct constructions. An additional issue is that the constructions of [JLS21, JLS22] are not post-quantum secure.
The third cluster of constructions follows the paradigm of Kalai, Raz and Rothblum [KRR13, KRR14] who construct a designated verifier SNARG for P from the learning with errors (LWE) assumption. A designed verifier SNARG is a further relaxation where verification of the SNARG proof requires a private verification key. This has since been built upon by a large body of work over the last decade ([KPY19, CCH ${ }^{+}$19, CJJ21, JKLV24] and many others), obtaining public verifiability and extending the reach to larger and larger classes of languages. However, until now, the most expressive class for which we can construct a SNARG following this line of work (even in the easier designated verifier setting) is a subclass of NP $\cap$ coNP [JKLV24].
Several intriguing questions emerge in light of these constructions.

SNARG for NP from LWE? Can we match the expressivity of the Sahai-Waters SNARG, while basing security only on the well-studied (and presumably post-quantum secure) LWE assumption? The question is open even in the easier, designated verifier (dv), setting.

[^1]Q1: Can we construct a (dv)SNARG for NP (or large subclasses thereof) from the LWE assumption?

Our first contribution is the construction of a designated verifier SNARG with reusable soundness for UP (unambiguous nondeterministic polynomial time), a subclass of NP where each instance has a unique witness (for example, the set of all numbers that are a product of two distinct prime numbers), from a variant of LWE (see the next paragraph). In a designated verifier SNARG, one could require soundness against (efficient) malicious provers that either have oracle access to the verification algorithm or not. Soundness against the former (stronger) class of malicious provers is referred to as reusable soundness, since the verification key can be safely reused to check polynomially many proofs. If the cheating prover is not allowed access to the verification oracle, one obtains the weaker notion of non-reusable soundness (some SNARG constructions, e.g. [KRR13, KRR14] achieve this weaker notion). Henceforth, when we refer to a designated verifier SNARG, we will always mean one with reusable soundness.

Our construction is sound under a relatively new, but popular, variant of LWE called evasive LWE [Wee22, Tsa22, VWW22, HLL23]. Informally, evasive LWE acts as a "bridge" between the standard learning with errors (LWE) assumption and the existence of indistinguishability obfuscation (IO). Evasive LWE has proved fruitful in constructing several cryptographic primitives such as witness encryption and null-IO [Tsa22, VWW22], optimal broadcast encryption [Wee22], multi-authority ABE [WWW22] and unbounded-depth attribute-based encryption [HLL23] that we have so far been able to construct from IO but not from the LWE assumption alone. These constructions also provide a potential pathway to achieving constructions based on plain LWE. (For a description of the evasive LWE assumption, we refer the reader to Eq. (1) in Section 2.1).

Informal Theorem 1. Assuming sub-exponential LWE and evasive LWE, there exists an reusably sound designated-verifier zero-knowledge SNARG for UP. The length of the SNARG proof is $\lambda+\omega(\log (|x|+|w|+\lambda))$ to achieve a soundness error of $2^{-\lambda}$. The length of the common reference string is poly $(\lambda,|x|,|w|)$.

We achieve this result via the construction of a new average-case obfuscator for a class of function families with pseudorandom truth tables, called $\sigma$-PRF obfuscation, from evasive LWE (see Section 4). We consider the notion and construction of $\sigma$-PRF obfuscation of potentially independent interest; for example, our construction captures and generalizes many existing constructions of primitives from LWE such as shift hiding functions and constrained pseudorandom functions.

Adaptive Soundness. A second question relates to the notion of adaptive soundness which allows a cheating prover to pick the instance on which she decides to cheat, based on the common reference string. On the one hand, adaptive soundness is the desired form of security as many applications require one to publish a CRS and being able to handle NP statements chosen after the fact. On the other hand, constructions from the second and third cluster typically do not satisfy adaptive soundness. In particular, the Sahai-Waters construction is non-adaptively sound; and the construction of Jin, Kalai, Lombardi and Vaikuntanathan [JKLV24] for a subclass of NP $\cap$ coNP is also inherently non-adaptively sound. This question is interesting even for the easier designated
verifier setting, even with strong (falsifiable) assumptions, and even for subclasses of NP. ${ }^{2}$

Q2: Can we construct an adaptively secure (dv)SNARG for NP (or an interesting subclass thereof)?

Our second contribution is the construction of an adaptively secure reusable dvSNARG from evasive LWE. Indeed, we show that the construction from Theorem 1 is adaptively sound as-is.

As a third contribution, we show a general lifting theorem, based on careful complexity leveraging, that takes any non-adaptively sound "Sahai-Waters-type" dvSNARG construction, and shows that it is also adaptively sound, without increasing the proof length (rather, only the length of the CRS). Our lifting theorem applies to [SW14] as well as to our evasive LWE-based SNARG construction. To the best of our knowledge, this lifting theorem is new, and crucially leverages the designated verifier setting.

Informal Theorem 2. Assuming the sub-exponential hardness of underlying assumptions, SNARGs in the "style of Sahai-Waters" can be made adaptively secure in the designated verifier setting, with proof size $\lambda+\omega(\log (|x|+|w|+\lambda))$ to achieve a soundness error of $2^{-\lambda}$.

In particular, we show in Section 7 that the Sahai-Waters SNARG [SW14] itself can be made adaptively secure in the designated verifier setting by assuming the sub-exponential hardness of the underlying indistinguishability obfuscation scheme and puncturable PRF family.
On the Gentry-Wichs Barrier. It is instructive to pause and ponder why our result does not contradict the Gentry-Wichs (GW) impossibility for SNARGs [GW11]. Gentry and Wichs showed that any construction of an adaptively sound SNARG for a hard language (even a designated verifier one, and even one with a long CRS [CGKS23]) cannot be based on a falsifiable assumption. In slightly more detail, any purported reduction from solving an instance of a falsifiable assumption to breaking the adaptive soundness of such a SNARG can be turned into an algorithm (that runs in the same time as the reduction) that decides the language without any help. Ergo, if the language is hard, such a reduction does not exist. Our construction seems to overcome the GW impossibility for two reasons, one more fundamental than the other: (1) our reduction runs in time exponential in the witness length, and is thus trivially powerful enough to decide the language; and (2) the evasive LWE assumption, on the face of it, is not falsifiable. The second of these two reasons does not appear to be fundamental, again for two reasons. First, to the best of our knowledge, it is plausible that evasive LWE could one day be proved hard under a falsifiable assumption. In such a world, the only reason why our SNARG construction evades the GW impossibility would be the runtime of the reduction. Secondly, it is worth noting that $\sigma$-PRF obfuscation, on which our SNARG for UP is directly based, is a sub-exponentially falsifiable assumption, in the same sense that IO is a sub-exponentially falsifiable assumption.

The fact that our reduction runs in time exponential in the witness length affects the length of the CRS but not the length of the proof (the same way it plays out in the [SW14] SNARG.)

[^2]SNARKs. A third question relates to the notion of succinct non-interactive arguments of knowledge, or SNARKs. SNARKs are more directly useful in several applications than plain SNARGs. They also compose better, e.g. in recursive constructions [BCCT13]. However, we know much less about SNARKs; by a recent result, SNARKs in the plain model with black-box extraction do not exist for all of NP [CGKS23, Kal23]. This leads us to the following question:

Q3: Can we construct a (dv)SNARK for an interesting subclass of NP?
We show a general compiler that takes any adaptively sound SNARG for UP and converts it into a nonadaptively extractable SNARK. Given the impossibility result for NP mentioned above [CGKS23], our restriction to UP is essential.
Informal Theorem 3. Assuming sub-exponential LWE, any adaptively sound SNARG for UP can be compiled into one with (non-adaptive) black-box knowledge soundness. If the original SNARG is publicly verifiable, so is the SNARK. Additionally, if the underlying SNARG is zero-knowledge, the resulting SNARK is also zero-knowledge.

We achieve the weaker form of non-adaptive knowledge extraction; the stronger adaptive form is also known to be impossible w.r.t. black-box extraction for essentially any non-trivial language [CGKS23]. Our transformation here builds heavily on the work of [CGKS23] and corrects two issues with their construction (see Remark 8.4). Additionally, the transformation of [CGKS23] relied on a SNARG for NP, whereas a SNARG for UP is sufficient for our transformation. Our compiler gives us zero knowledge for free. We also note that adaptive security of the underlying construction seems crucial for both our transformation and that of [CGKS23]. For more details, see Section 8.
Combining this transformation with our SNARG for UP, we obtain a construction of a reusably and adaptively sound, and non-adaptively extractable, SNARK for UP from evasive LWE.
Informal Theorem 4. Assuming sub-exponential LWE and evasive LWE, there exists a reusable and adaptively sound zero-knowledge SNARK for UP in the designated verifier setting, achieving non-adaptive black-box knowledge soundness with proof size poly $(\lambda)$. The length of the common reference string is $\operatorname{poly}(\lambda,|x|,|w|)$.

Additionally, by applying our compilers to the Sahai-Waters SNARG with sub-exponential hardness of underlying assumptions, we also obtain the following corollary.
Informal Theorem 5. Assuming LWE, sub-exponentially-secure indistinguishability obfuscation and sub-exponentially-secure one-way functions, there exists a reusable and adaptively sound zeroknowledge SNARK system for UP in the designated verifier setting, achieving black-box knowledge soundness with proof size poly $(\lambda)$. The length of the common reference string is poly $(\lambda,|x|,|w|)$.

To the best of our knowledge, these are the first SNARK constructions (even in the designated verifier setting) for a non-trivial subset of NP from (sub-exponential) falsifiable assumptions. Both our SNARG to SNARK for UP compiler and that of Campanelli et al. [CGKS23] seem to require adaptively sound underlying SNARGs, and we (along with the concurrent work of Waters and Wu [WW24], see Section 1.1) instantiate the first such SNARGs from (sub-exponentially) falsifiable assumptions.
For a roadmap of our results, see Fig. 1.


Figure 1: Roadmap of our results and transformations. All of the constructions above are additionally multi-theorem adaptively zero knowledge. Our results are highlighted in orange, and concurrent work and its implications are highlighted in blue. All transformations from our paper are denoted by arrows labeled by the corresponding sections. The dashed arrow represents an immediate consequence.

### 1.1 Concurrent Work

In concurrent work, Waters and Wu [WW24] modify the Sahai-Waters construction to achieve adaptivity in the publicly-verifiable setting. They show the following.

Theorem 1.1 ([WW24, Theorem 1.1]). Assuming (1) either the polynomial hardness of computing discrete logs in a prime-order group or the polynomial hardness of factoring, (2) sub-exponentiallysecure indistinguishability obfuscation, and (3) sub-exponentially-secure one-way functions, there exists a publicly verifiable, perfectly zero-knowledge SNARG for all of NP, with proof size poly $(\lambda)$.

In comparison to our "lifting" theorem (Informal Theorem 3), we note that their transformation introduces a new assumption and requires a white-box modification to the Sahai-Waters SNARG. On the other hand, our transformation works for any SNARG in the style of Sahai-Waters (we describe the precise class of SNARGs we mean in Section 2.2), although we are restricted to the (reusable) designated verifier setting.
Combining the Waters-Wu SNARG with our SNARG to SNARK compiler in Informal Theorem 3, or the compiler of [CGKS23], we obtain the corollary that there exists a (publicly verifiable) zkSNARK for all of UP achieving black-box extractability (see Fig. 1). To the best of our knowledge, this is the first publicly verifiable SNARK for a non-trivial subset of NP from (sub-exponential) falsifiable assumptions.

### 1.2 Organization of the Paper

First, in Section 2, we give high-level descriptions of our SNARG for UP, our adaptive security transformation, and our SNARG-to-SNARK compiler. In Section 3, we state basic definitions and lemmas. In Section 4, we introduce the notion of $\sigma$-matrix PRFs, and show how to obfuscate sufficiently secure $\sigma$-matrix PRFs using LWE and evasive LWE. In Section 5, we use our $\sigma$-matrix

PRF obfuscation to construct an adaptively secure witness PRF for UP. In Section 6, we show a generic transformation from a (sufficiently secure) adaptively secure witness PRF for an NP language $L$ to a reusable, adaptively secure designated-verifier SNARG for $L$. In Section 7, we show that a class of "Sahai-Waters-type" SNARGs (which includes our SNARG for UP) can be generically upgraded to adaptive soundness in the designated verifier setting, if we assume the sub-exponential hardness of the underlying primitives. Finally, in Section 8, we show that any adaptively sound SNARG for UP can be generically transformed into a SNARK for UP, with black-box knowledge soundness.

## 2 Technical Overview

### 2.1 Our SNARG for UP from Evasive LWE

We first recall the zk-SNARG for NP construction of Sahai and Waters [SW14] from indistinguishability obfuscation and one-way functions. For simplicity, we describe their construction in the designated-verifier model. Given a relation circuit $C$, the Sahai-Waters common reference string is an obfuscation of the following circuit $P$. On input $x, w, P$ checks if $C(x, w)=1$. If yes, $P$ outputs a PRF value $\pi=f_{k}(x)$, and otherwise it outputs $\perp$. The designated verifier simply stores the PRF key $k$, and on input $(x, \pi)$, accepts iff $\pi=f_{k}(x)$. To show soundness of the SNARG on a non-adaptively chosen $x^{*} \notin L$, Sahai and Waters use a punctured programming technique to show that $f_{k}\left(x^{*}\right)$ remains hidden even given an indistinguishability obfuscation of $P$.

Overview. Our SNARG for UP construction proceeds in two steps, and the second step follows an approach very similar to that of Sahai and Waters. In the first step, we construct a witness PRF [Zha16] for UP. In the second, which we explain next, we generically convert any witness PRF for a NP language $L$ into a SNARG for $L$. Recall that, intuitively, a witness PRF is a PRF $f_{k}$ taking instances $x$ as input, along with an evaluation key ek such that

$$
\text { Eval }(\mathrm{ek}, x, w)= \begin{cases}f_{k}(x) & \text { if } R(x, w)=1 \\ \perp & \text { otherwise } .\end{cases}
$$

In particular, ek hides $f_{k}(x)$ for all $x \notin L^{3}$. Given a witness PRF for $L$, we construct a SNARG for $L$ as follows: the common reference string is the evaluation key ek; the prover on input $(x, w)$ computes $y=f_{k}(x)$ using ek and $w$ and outputs $y$, and the designated verifier stores $k$ and on input ( $x, \pi$ ), accepts iff $\pi=f_{k}(x)$. The (adaptive) security of the witness PRF implies the adaptive security of our SNARG; for a rough intuition, one can view the witness PRF-based argument as a strengthening of the Sahai-Waters punctured programming argument, where all $x \notin L$ are punctured simultaneously.

Above, the witness PRF evaluation key ek plays the role of an obfuscation of the original PRF; in particular, functionality allows computation of $f_{k}(x)$ for $x \in L$ given a witness $w$ for $x$, but security guarantees that the values $f_{k}(x)$ are hidden for $x \notin L$. The first step-the construction of a witness

[^3]PRF for UP from LWE and evasive LWE - also relies on an obfuscation notion for PRFs (more precisely, a relaxation of PRFs). To describe the witness PRF construction for UP, it will be helpful to first describe a simplified construction that does not work. Specifically, it does not work because it requires a strong PRF obfuscation guarantee that we do not know how to obtain.

Simplified Construction of a Witness PRF for UP. First, we instantiate a PRF corresponding to a UP relation $R$, with the following structure:

$$
f_{k_{1}, k_{2}}(x, w)= \begin{cases}g_{k_{1}}(x) & \text { if } R(x, w)=1 \\ g_{k_{1}}(x)+g_{k_{2}}(x, w) & \text { otherwise } .\end{cases}
$$

where both $g_{k_{1}}$ and $g_{k_{2}}$ are PRFs.
Note that if $R$ were not a UP relation, i.e. there exists some $x \in L$ with multiple witnesses, then $f_{k_{1}, k_{2}}$ would not be a PRF. In particular, if some instance $x$ had two corresponding witness $w_{1}$ and $w_{2}$, then we would have $f_{k_{1}, k_{2}}\left(x, w_{1}\right)=g_{k_{1}}(x)=f_{k_{1}, k_{2}}\left(x, w_{2}\right)$. This is why our construction only works for UP relations.

Next, we obfuscate $f_{k_{1}, k_{2}}$. For now, we will assume an obfuscation scheme $\operatorname{Obf}$ such that $\operatorname{Obf}\left(f_{k_{1}, k_{2}}\right)$ allows the evaluation of $f_{k_{1}, k_{2}}$ on any input $x, w$, while enjoying the strong average-case obfuscation property that there exists a fixed distribution $\mathcal{D}$ such that for random keys $k_{1}, k_{2}$,

$$
\operatorname{Obf}\left(f_{k_{1}, k_{2}}\right) \approx_{c} \mathcal{D} .
$$

Notice that this type of obfuscation would certainly not be possible if $f_{k_{1}, k_{2}}$ were not a PRF-that is, if the outputs of $f_{k_{1}, k_{2}}$ were not indistinguishable from a fixed distribution independent of $k_{1}, k_{2}$.
Given this strong obfuscation, our witness PRF construction is straightforward. The generation algorithm simply samples $k=\left(k_{1}, k_{2}\right)$ and ek $=\operatorname{Obf}\left(f_{k_{1}, k_{2}}\right)$; the underlying PRF is $g_{k_{1}}(x)$, which, for $x \in L$, can be computed given ek and the witness $w$ for $x$. Security is straightforward, since by obfuscation security, the evaluation key ek can be replaced with an independent sample from $\mathcal{D}$, which completely hides $k_{1}$.

From Simplified to Complete Construction However, we cannot quite obtain this strong notion of obfuscation from evasive LWE. In our real construction, we actually obfuscate an object that we call a $\sigma$-matrix $P R F$. This is a keyed family of functions $\left\{f_{k}\right\}_{k}$ that satisfies a relaxation of the definition of a PRF, where each $f_{k}$ is computable by a matrix branching program. In this technical overview, we will assume for simplicity that all matrix branching programs are read-once; in the full construction, we generalize this to read- $c$ matrix branching programs using more-or-less standard techniques (see Lemma 4.5). Recall that a (read-once) matrix branching program (MBP)

$$
f:=\left(\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v}\right)
$$

is a collection of matrices and pair of vectors, all over some ring (in our case, $\mathbb{Z}_{q}$ for some prime $q$ ). Abusing notation, the MBP $f$ is said to compute the function $f:\{0,1\}^{h} \rightarrow \mathbb{Z}_{q}$ defined by

$$
f_{k}(x)=\mathbf{u}^{T}\left(\prod_{i \in[h]} \mathbf{M}_{i, x_{i}}\right) \mathbf{v} .
$$

The other notion we need is that of a $\sigma$-PRF. We define a $\sigma$-PRF (in the presence of auxiliary input aux) to be a keyed family of functions $\left\{f_{k}\right\}_{k}$ satisfying the following pseudorandomness guarantee: letting $\left\{e_{x} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}\right\}_{x \in\{0,1\}^{h}}$ be independent Gaussian errors, we have that for a random key $k$,

$$
\left\{f_{k}(\mathbf{x})+e_{x}\right\}_{x \in\{0,1\}^{h}}, \operatorname{aux}(k) \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{x \in\{0,1\}^{h}}, \operatorname{aux}(k) .
$$

(We note that this is actually the $\sigma$-PRF guarantee specialized to adversaries powerful enough to write down the entire truth table. This is the setting we care about, since our proof of obfuscation security will need pseudorandomness against even stronger adversaries.)
Finally, we define a $\sigma$-matrix PRF to be a $\sigma$-PRF computable by polynomial-sized matrix branching programs. Given a sufficiently secure $\sigma$-matrix PRF, our obfuscation will satisfy the strong security guarantee from above: namely, that there exists a fixed distribution $\mathcal{D}$ such that for random keys $k$,

$$
\operatorname{Obf}\left(f_{k}\right) \approx_{c} \mathcal{D}
$$

However, it will only have approximate correctness; that is, knowing $\operatorname{Obf}\left(f_{k}\right)$ will only allow the evaluation of $f_{k_{1}, k_{2}}(x, w)+e$, where $e$ is a noise term of width at least $\sigma$. This is in fact necessary in general, since otherwise the evaluations would not be pseudorandom, and could be used to break indistinguishability.
Before we describe our obfuscation scheme, let us complete the construction assuming that such a scheme exists. First, notice that approximate correctness has little effect on our witness PRF construction. We simply round the witness PRF values; that is, the underlying PRF becomes $\left\lfloor g_{k_{1}}(x)\right\rceil_{p}$. Choosing $p$ appropriately, we can guarantee that except with negligible probability, for all $x \in L$ with corresponding witness $w$,

$$
\left\lfloor f_{k_{1}, k_{2}}(x, w)+e\right\rceil_{p}=\left\lfloor g_{k_{1}}(x)+e\right\rceil_{p}=\left\lfloor g_{k_{1}}(x)\right\rceil_{p} ;
$$

that is, the witness PRF values $\left\lfloor g_{k_{1}}(x)\right\rceil_{p}$ can be recovered from the noisy evaluations $f_{k_{1}, k_{2}}(x, w)+e$ yielded by the evaluation key $\operatorname{Obf}\left(f_{k_{1}, k_{2}}\right)$.
The only remaining issue is to instantiate a $\sigma$ - $\operatorname{PRF} f_{k_{1}, k_{2}}(\cdot, \cdot)$ with the desired structure. In this and in the proof of obfuscation security, we in large part follow the witness encryption construction of Vaikuntanathan, Wee and Wichs [VWW22]. Our starting point is the unrounded BLMR PRF ([BLMR13]). For appropriate parameters, the BLMR PRF is a $\sigma$-PRF that has very high levels of security under sub-exponential LWE (see Lemma 3.9). Moreover, since it is defined as a subset product of matrices, it can easily be computed by a matrix branching program. To construct the $\operatorname{MBP} f_{k_{1}, k_{2}}$, we carefully combine two BLMR $\sigma$-matrix PRFs $g_{k_{1}}$ and $g_{k_{2}}$ with a MBP $f_{R}$ computing the UP relation $R$. (The latter exists by combining a classical reduction to Circuit-SAT and the classical result due to Barrington that any function computable by logarithmic-depth Boolean circuits
can be represented by a read-many MBP.) This completes the construction. Next, we turn to a description of our obfuscation scheme from LWE and evasive LWE.

Constructing an Obfuscation Scheme for $\sigma$-Matrix PRFs. To construct our obfuscation scheme, we rely on the evasive LWE assumption, introduced by [Wee22, Tsa22]. We first describe the assumption and then use it to construct our obfuscation scheme. Fix some efficiently samplable distributions ( $\mathbf{S}, \mathbf{P}$, aux ) over $\mathbb{Z}_{q}^{n^{\prime} \times n} \times \mathbb{Z}_{q}^{n \times t} \times\{0,1\}^{*}$. We want to be able to show statements of the form

$$
\left(\mathbf{S B}+\mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right) \approx_{c}\left(\mathbf{C}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right)
$$

where $\mathbf{B} \leftarrow \mathbb{Z}_{q}^{n \times m}, \mathbf{C} \leftarrow \mathbb{Z}_{q}^{n^{\prime} \times m}$ are uniformly random. (The reader should think of parameters $t \geq m=\Omega(n \log q)$ so that $\mathbf{P}$ is wider than B.) There are two distinguishing strategies in the literature:

- distinguish $\mathbf{S B}+\mathbf{E}$ from $\mathbf{C}$ given aux;
- compute $(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) \approx \mathbf{S P}$ and distinguish the latter from uniform, again given aux.

The evasive LWE assumption essentially asserts that these are the only distinguishing attacks. Namely,

$$
\begin{array}{ll}
\text { if } & \left(\mathbf{S B}+\mathbf{E}, \mathbf{S P}+\mathbf{E}^{\prime}, \text { aux }\right) \approx_{c}\left(\mathbf{C}, \mathbf{C}^{\prime}, \text { aux }\right), \\
\text { then } & \left(\mathbf{S B}+\mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right) \approx_{c}\left(\mathbf{C}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right) \tag{2}
\end{array}
$$

where $\mathbf{E}^{\prime}$ is a fresh noise matrix of not-too-large magnitude relative to $\mathbf{E}$. We refer to Eq. (1) as the pre-condition, and Eq. (2) as the post-condition. We give a formal definition of Evasive LWE in Section 4.5.
We now use evasive LWE to construct our obfuscation for $\sigma$-matrix PRFs $f_{k}(\mathbf{x})=\mathbf{u}^{T} \mathbf{M}_{\mathbf{x}} \mathbf{v}$, where $k=\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v}$. As above, we will assume that $f_{k}$ is read-once. And, as mentioned above, our construction closely follows the witness encryption construction of Vaikuntanathan, Wichs and Wee [VWW22].
First, we sample matrices with small Gaussian entries $\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}$, and construct the following diagonal matrices

$$
\widehat{\mathbf{S}}_{i, b}=\left(\begin{array}{ll}
\mathbf{M}_{i, b} & \\
& \mathbf{S}_{i, b} .
\end{array}\right)
$$

Additionally, set the "bookend vectors" $\hat{\mathbf{u}}=\left(\mathbf{u} \mid \mathbf{1}^{n}\right)$ and $\hat{\mathbf{v}}=\left(\mathbf{v} \mid \mathbf{0}^{n}\right)$. Note that

$$
\hat{\mathbf{u}}^{T} \widehat{\mathbf{S}}_{\mathbf{x}} \hat{\mathbf{v}}=\mathbf{u}^{T} \mathbf{M}_{\mathbf{x}} \mathbf{v}=f_{k}(\mathbf{x}) .
$$

Using the encoding technique of Gentry, Gorbunov and Halevi [GGH15] (often referred to as the GGH15 encoding), we encode our matrices as follows:

$$
\left\{\mathbf{D}_{1, b}:=\hat{\mathbf{u}}_{1, b} \widehat{\mathbf{S}}_{1, b} \mathbf{A}_{1}\right\}_{b \in\{0,1\}},\left\{\mathbf{D}_{i, b}:=\mathbf{A}_{i-1}^{-1}\left(\widehat{\mathbf{S}}_{i, b} \mathbf{A}_{i}\right)\right\}_{2 \leq i \leq h, b \in\{0,1\}}
$$

where $\mathbf{A}_{h}=\hat{\mathbf{v}}, \mathbf{A}_{i} \leftarrow \mathbb{Z}_{q}^{(n+w) \times 4(n+w) \log q}$, and $\mathbf{A}_{i}^{-1}(\cdot)$ denotes a random preimage with small entries. We use curly underlines to indicate noised terms; for example, $\underset{\sim}{\mathbf{A}}$ indicates $\mathbf{A}+\mathbf{E}$ for some small noise term E. By the correctness of the GGH15 encodings, we have that up to small additive error,

$$
\mathbf{D}_{\mathbf{x}}:=\prod_{i \in[h]} \mathbf{D}_{i, x_{i}} \approx \hat{\mathbf{u}} \widehat{\mathbf{S}}_{\mathbf{x}} \hat{\mathbf{v}}=f_{k}(\mathbf{x}),
$$

that is, the GGH encodings can be used to approximately compute the functionality of $f_{k}$.
To prove security, we use LWE and evasive LWE to show that the GGH15 encodings look pseudorandom. For notational simplicity, below, each instance of $\mathcal{U}$ will denote an independently sampled, uniformly sampled matrix over $\mathbb{Z}_{q}$ with appropriate dimensions. For the first step of the argument, we set:

$$
\mathbf{S}=\left\{\hat{\mathbf{u}} \hat{\mathbf{S}}_{\mathbf{x}^{\prime}}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}}, \mathbf{B}=\mathbf{A}_{h-1}, \mathbf{P}=\binom{\stackrel{\widehat{\mathbf{S}}}{h, 0}^{{\underset{\mathrm{A}}{h}}}}{{\underset{\sim}{\mathbf{S}_{h, 1}}}^{\mathbf{A}_{h}}}, \operatorname{aux}=\operatorname{aux}(k)
$$

Note that the product $\mathbf{S P}$ is just a noisy version of the pseudorandom truth table, that is:

$$
\mathbf{S P}=\left\{\hat{\mathbf{u}}_{\mathbf{S}_{\mathbf{x}}} \mathbf{A}_{h}\right\}_{\mathbf{x} \in\{0,1\}^{h}}=\left\{f_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{h}} .
$$

Thus, $\mathbf{S P}$ is pseudorandom in in the presence of $\operatorname{aux}(k)$. It follows $\mathbf{~ S P}$ is too. Additionally, writing $\mathbf{A}_{h-1}=\binom{\overline{\mathbf{A}}_{h-1}}{\underline{\mathbf{A}}_{h-1}}$, we have that

$$
\begin{aligned}
\mathbf{S B} & =\left\{\hat{\mathbf{u}}_{\mathbf{x}^{\prime}} \mathbf{A}_{h-1}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}} \\
& =\left\{\mathbf{u M}_{\mathbf{x}^{\prime}} \overline{\mathbf{A}}_{h-1}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}}+\underbrace{\left\{\mathbf{1}_{n} \mathbf{S}_{\mathbf{x}^{\prime}} \mathbf{A}_{h-1}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}}}_{\text {pseudorandom }} \approx_{c}\{\mathcal{U}\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}}
\end{aligned}
$$

by invoking a BLMR-type argument [BLMR13] with public matrices $\mathbf{S}_{i, b}$ and secret matrix $\underline{\mathbf{A}}_{h-1}$. Because the $\mathbf{S}_{i, b}$ matrices are treated as public, this indistinguishability also holds in the presence of $\mathbf{S P}$, and because the $\mathbf{S}_{i, b}$ and $\mathbf{A}_{i}$ matrices are sampled independently of $k$, it holds even in the presence of $\operatorname{aux}(k)$. Therefore,

$$
\left(\mathbf{S B}^{\mathbf{S B}}, \underset{\mathbf{S P}, \operatorname{aux}(k)) \approx_{c}(\mathcal{U}, \mathcal{U}, \operatorname{aux}(k)) . . . ~}{\text {. }}\right.
$$

Therefore, invoking evasive LWE, we get the following as the post-condition:

$$
\begin{aligned}
\left(\left\{\hat{\mathbf{u}}_{\mathbf{x}^{\prime}} \mathbf{A}_{h-1}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-1}},\left\{\mathbf{D}_{h, b}\right\}_{b}, \operatorname{aux}(k)\right) & =\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P}), \operatorname{aux}(k)\right) \\
& \approx_{c}\left(\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}), \operatorname{aux}(k)\right)
\end{aligned}
$$

That is, we have "peeled off" the last pair of matrices $\left\{\mathbf{D}_{h, b}\right\}_{b}$ while preserving pseudorandomness. Now we repeat. In the second step of the argument, we use evasive LWE to peel off $\left\{\mathbf{D}_{h-1, b}\right\}_{b}$, by
setting

$$
\mathbf{S}=\left\{\hat{\mathbf{u}} \widehat{\mathbf{S}}_{\mathbf{x}^{\prime}}\right\}_{\mathbf{x}^{\prime} \in\{0,1\}^{h-2}}, \mathbf{B}=\mathbf{A}_{h-2}, \mathbf{P}=(\overbrace{\left.{\underset{\sim}{\mathbf{S}_{h-1,1,1}}}^{{\underset{\sim}{n}}^{\left(\mathbf{A}_{h-1}\right.}}\right)}), \operatorname{aux}=\left(\left\{\mathbf{D}_{h, b}\right\}, \operatorname{aux}(k)\right)
$$

Continuing in this way, applying evasive LWE a total of $h-1$ times, we finally obtain that

$$
\left(\left\{\mathbf{D}_{1, b}\right\}_{b},\left\{\mathbf{D}_{i, b}\right\}_{i \geq 2, b}, \operatorname{aux}(k)\right) \approx_{c}\left(\mathcal{U},\left\{\mathbf{D}_{i, b}\right\}_{i \geq 2, b}, \operatorname{aux}(k)\right) .
$$

Now the random matrix $\mathbf{A}_{1}$ only appears in $\left\{\mathbf{D}_{2, b}\right\}_{b}$. Indeed, we have

And, following [CVW18], the random short preimages $\mathbf{A}_{i}^{-1}(\cdot)$ are sampled in such a way that for any matrix $\mathbf{Z}$, for uniformly random $\mathbf{A}_{i}, \mathbf{A}_{i}^{-1}(\underset{\sim}{\mathbf{Z}})$ is indistinguishable from a discrete Gaussian sample $\mathcal{D}_{\mathbb{Z}, \sigma}$ (independent of $\mathbf{Z}$ ). Thus we can replace $\left\{\mathbf{D}_{2, b}\right\}_{b}$ with a fresh discrete Gaussian sample $\mathcal{D}_{\mathbb{Z}, \sigma}$. But now $\mathbf{A}_{2}$ only appears in $\left\{\mathbf{D}_{3, b}\right\}_{b}$, so we can repeat the argument and replace $\left\{\mathbf{D}_{3, b}\right\}_{b}$ with $\mathcal{D}_{\mathbb{Z}, \sigma}$. Continuing in this way, we obtain

$$
\left(\left\{\mathbf{D}_{1, b}\right\}_{b},\left\{\mathbf{D}_{i, b}\right\}_{i \geq 2, b}, \operatorname{aux}(k)\right) \approx_{c}\left(\mathcal{U},\left\{\mathcal{D}_{\mathbb{Z}, \sigma}\right\}_{i \geq 2}, \operatorname{aux}(k)\right) .
$$

completing the proof. For a formal description of the obfuscation scheme and the formal proof, we point the reader to Section 4.

On Heuristic Counterexamples to Evasive LWE. As shown in [VWW22], the evasive LWE assumption is likely false for general auxiliary input aux. This is due to a heuristic attack in which aux is an (ideal) obfuscation of a program which knows $\mathbf{P}$ along with a trapdoor $\tau$ for $\mathbf{P}$, and on input ( $\mathbf{C}, \mathbf{D}$ ) uses $\tau$ to decide if $\mathbf{C} \cdot \mathbf{D}$ is close to $\mathbf{S}^{\prime} \cdot \mathbf{P}$ for some $\mathbf{S}^{\prime}$. (See [VWW22, Section 8.2] for details.) Such an aux will break the post-condition of evasive LWE while leaving the pre-condition valid. While it is reasonable to conjecture the security of evasive LWE for essentially any "reasonable" aux [VWW22], in our case, caution is warranted.

The auxiliary input we use to argue the security of GGH encodings of $\sigma$-matrix PRFs has two components. The first is the sequence of GGH-encoding matrices $\left(\left\{\mathbf{D}_{i, b}\right\}_{i \geq j}\right.$, aux $\left.(k)\right)$ arising from our inductive argument. The second is the auxiliary information aux $(k)$ related to the PRF key $k$.
In our witness PRF construction, the second component aux $(k)$ is a list of $\operatorname{PRF}$ values $\left\{\mathrm{PRF}_{\mathrm{fk}}(\mathbf{x})\right\}_{\mathbf{x} \notin L}$ on inputs not in the language $L$, which seems quite benign. But the first component seems, at least superficially, quite similar to the auxiliary input used in the heuristic attack. It is a GGH encoding that can be viewed as the obfuscation of a certain program $\Pi$, and it is generated using a trapdoor for a matrix related to $\mathbf{P}$. However, we believe the similarity is only superficial. While the trapdoor is used to generate the obfuscation of $\Pi$, the functionality of $\Pi$ is independent of the trapdoor for $\mathbf{P}$ (even of $\mathbf{P}$ ). Indeed, evaluating the obfuscated program involves multiplying $\mathbf{S B}+\mathbf{E}$
by the first matrix that is part of the obfuscated program, simply yielding the matrix $\mathbf{S P}+\mathbf{E}^{\prime}$ in the evasive LWE precondition. This is a key difference between our aux and the contrived auxiliary input described in [VWW22], indeed, one that makes the existence of a similar attack unlikely.

### 2.2 Achieving Adaptive Security for "Sahai-Waters-like" SNARGs

As discussed above, Gentry and Wichs [GW11] showed that it is not possible to construct an adaptively secure SNARG for all languages in NP through polynomial time reductions to falsifiable assumptions, even in the designated verifier setting. In fact, this impossibility result holds for all languages which have sub-exponentially hard-membership problems. Even UP languages such as decisional Diffie-Hellman (DDH) are believed to have such sub-exponentially hard-membership problems.
One interpretation of the Gentry-Wichs barrier is that one has to turn to sub-exponential hardness assumptions to be able to argue adaptive soundness based on (sub-exponentially) falsifiable assumptions. Indeed, our SNARG for UP relies on sub-exponential LWE, in addition to evasive LWE, which is seemingly not falsifiable. However, our reduction reduces the soundness of the SNARG to $\sigma$-PRF obfuscation, which is in fact falsifiable. Therefore, the main reason our SNARG can be shown to be adaptively sound is that our reduction runs in exponential time and the underlying assumption is sub-exponential.

It is then natural to ask more generally if existing SNARG constructions, in particular the SahaiWaters SNARG, can be shown to be adaptively secure via similar exponential-time reductions to sub-exponential security assumptions.

Complexity-leveraging. A general strategy to promote a non-adaptively secure scheme to an adaptively secure one is complexity leveraging [BB04]. In the case of SNARGs, the high-level idea is to guess the instance $x^{*} \leftarrow \bar{L}$ that the adaptive cheating prover is going to cheat on, and proceed with the non-adaptive security reduction. Since the probability of guessing $x^{*}$ correctly is $1 /|\bar{L}|$, the resulting reduction incurs an exponential loss in the security parameter. This approach does immediately work, in a somewhat weak sense - by assuming sub-exponential hardness of the underlying assumptions, one can straightforwardly prove adaptive soundness. However, the difficult part is ensuring that the resulting SNARG proofs remain succinct. Indeed, complexity leveraging applied directly to the publicly verifiable Sahai-Waters SNARG [SW14] does not seem to yield succinct proofs. ${ }^{4}$

Sahai-Waters in the designated-verifier setting. On the other hand, we show in Section 7 that the Sahai-Waters SNARG construction restricted to the designated-verifier setting can in fact be transformed into one that is reusable and adaptively sound while maintaining succinct proofs through a careful complexity leveraging argument.
We view the Sahai-Waters SNARG as an instantiation non-adaptive witness PRF (see Definition 7.1), which is a relaxation of the definition of witness PRFs as proposed by Zhandry [Zha16]. In Section 7,

[^4]we show that a sub-exponentially secure non-adaptive witness PRF for a language $L$ can be used to construct an adaptively sound designated-verifier SNARG for $L$. Then, we show that the Sahai-Waters SNARG can be viewed through the lens of non-adaptive witness PRFs.

Here, we state the crucial properties of the Sahai-Waters SNARG construction that allows us to prove adaptive soundness in the designated-verifier setting:

1. For every statement $x$ and every possible common reference string crs, there is a unique string, which we denote by $\pi_{\mathrm{crs}, x} \in\{0,1\}^{\ell}$, that causes the verifier to accept.
2. For all $x^{*} \notin L$, the distributions (crs, $\pi_{\mathrm{crs}, x^{*}}$ ) $\approx_{c}$ (crs, $r$ ) are indistinguishable, where $r \leftarrow$ $\{0,1\}^{\ell}$ is sampled independently from crs. Moreover, the following two distributions are indistinguishable:

- $\mathrm{H}_{0}$ : Sample $(\mathrm{crs}, \tau) \leftarrow$ SNARG.Gen $\left(1^{\lambda}\right)$. Publish crs and give black-box oracle to $\operatorname{Ver}_{\tau}(\cdot)$.
- $\mathrm{H}_{1}$ : Same as $\mathrm{H}_{0}$, accept we modify the verifier oracle as follows Ver $_{\tau, x^{*}, r}^{\prime}$ that works as follows:
- On input $(x, \pi)$ where $x \neq x^{*}$, output $\operatorname{Ver}_{\tau}(x, \pi)$.
- On input $\left(x^{*}, \pi\right)$, accept if $\pi=r$, and reject otherwise.

3. A cheating prover can only make poly $(|x|,|w|, \lambda)$ queries to the verifier. This is the crucial difference between the publicly-verifiable setting and the designated-verifier setting.

We note that our SNARG from evasive LWE also has this structure. For simplicity of the following exposition, suppose $|x|,|w| \leq \operatorname{poly}(\lambda)$, and we only $\operatorname{argue} \operatorname{negl}(\lambda)$ soundness error (rather than $2^{-\lambda}$ ).

Recap of non-adaptive soundness proof. Recall that to prove soundness for a non-adaptively chosen $x^{*}$, one would normally argue that one would normally argue in $\mathrm{H}_{1}$ that if the cheating prover $\mathcal{P}^{*}$ only gets $\operatorname{poly}(\lambda)$ black-box calls to the verifier, it only has a poly $(\lambda) / 2^{\ell}=\operatorname{negl}(\lambda)$ if $\ell \geq \lambda$ probability of guessing $r$ correctly (since crs does not contain any information about the independently generated $r$ ). On the other hand, a cheating non-adaptive prover $\mathcal{P}^{*}$ with non-negligible advantage would be able to guess $\pi_{x^{*}, \text { crs }}$ in $\mathrm{H}_{0}$ with non-negligible probability. Therefore, $\mathcal{P}^{*}$ can be used to distinguish the distributions in $\mathrm{H}_{0}$ and $\mathrm{H}_{1}$ with non-negligible probability in $\lambda$.

Our adaptive soundness proof. To argue adaptive soundness, we consider distributions identical to those before, except with the changes highlighted in blue.

- $\mathrm{H}_{0}^{\prime}$ : Sample a uniformly random $x^{*} \leftarrow \bar{L}$, and $($ crs,$\tau) \leftarrow \operatorname{SNARG} . G e n\left(1^{\lambda}\right)$. Publish (crs, $\left.x^{*}\right)$, and give black-box oracle to $\operatorname{Ver}_{\tau}(\cdot)$.
- $\mathrm{H}_{1}^{\prime}$ : Sample a uniformly random $x^{*} \leftarrow \bar{L}$, and (crs,$\left.\left.\tau\right) \leftarrow \operatorname{SNARG.Gen(1}{ }^{\lambda}\right)$. Publish ( crs' $^{\prime}, x^{*}$ ), and give black-box access to $\mathrm{Ver}_{\tau, x^{*}, r}^{\prime}$ that works as follows:
- On input $(x, \pi)$ where $x \neq x^{*}$, output $\operatorname{Ver}_{\tau}(x, \pi)$.
- On input $\left(x^{*}, \pi\right)$, accept if $\pi=r$.

It is clear that by the fact that $\mathrm{H}_{0} \approx_{c} \mathrm{H}_{1}$, the above distributions are also polynomially indistinguishable by an averaging argument. However, we additionally need sub-exponential indistingushability of the two hybrids. Suppose that $H_{0}^{\prime}$ and $H_{1}^{\prime}$ are indistinguishable to $2^{\rho^{\alpha}}$ time adversaries with $2^{-\rho^{\alpha}}$ for a parameter $\rho=\lambda+|x|+|w|$ (we can achieve this using sub-exponential hardness assumptions).
Suppose there exists a cheating prover $\mathcal{P}^{*}$ that breaks adaptive soundness with non-negligible advantage $\epsilon(\lambda)$ by making only poly $(\lambda)$ queries to the Ver oracle. Then, we show that there exists an $\mathcal{A}$ that can use $\mathcal{P}^{*}$ to distinguish $\mathrm{H}_{0}^{\prime}$ and $\mathrm{H}_{1}^{\prime}$ with advantage $p(\lambda) /|\bar{L}|$, for some non-negligible function $p$. Adv uses $\mathcal{P}^{*}$ as follows:

- Upon receiving the tuple (crs, $x^{*}$ ), $\mathcal{A}$ does the following:
- Send crs to $\mathcal{P}^{*}$, and keep $x^{*}$ private.
- For all (possibly adaptive) queries $\left(x_{i}, \pi_{i}\right)$ from $\mathcal{P}^{*}$, query the verification oracle and send back the response.
- If any $x_{i}=x^{*}$, and ( $x_{i}, \pi_{i}$ ) was accepted by the oracle, output 0 . Otherwise, output 1.

First, note that in $\mathrm{H}_{0}^{\prime}$, the prover $\mathcal{P}^{*}$ does not see $x^{*}$. Since $x^{*}$ is chosen uniformly randomly from $\bar{L}$, the probability that $\mathcal{A}$ outputs 0 is at least $\frac{\epsilon(\lambda)}{|\bar{L}|}$.
Now, we upper bound the probability that $\mathcal{A}$ outputs 0 in $\mathrm{H}_{1}^{\prime}$. A naive argument in $\mathrm{H}_{1}^{\prime}$ would say that $\mathcal{P}^{*}$ guesses $r$ with probability at most poly $(\lambda) / 2^{\ell}$. A more refined argument would be as follows: however, note that $x^{*}$ is also hidden in $\mathrm{H}_{1}^{\prime}$ (since $\mathcal{P}^{*}$ doesn't see $x^{*}$ ). Therefore, $\mathcal{P}^{*}$ needs to essentially guess both $x^{*}$ and $r$, which he succeeds in with probability approximately $\frac{\operatorname{poly}(\lambda)}{|\overline{\mid}| \cdot 2^{\ell}}=\frac{\operatorname{neg}(\lambda)}{|\bar{L}|}$ since $\mathcal{P}^{*}$ only gets poly $(\lambda)$ queries to the verifier.
Therefore,

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{H}_{0}^{\prime}}\left(1^{\rho}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}^{\mathrm{H}_{1}^{\prime}}\left(1^{\rho}\right)=0\right] \geq \frac{1}{|\bar{L}|} \epsilon(\lambda)-\frac{1}{|\bar{L}|} \operatorname{negl}(\lambda) \geq \frac{p(\lambda)}{|\bar{L}|} \geq \frac{\operatorname{poly}(\lambda)}{2^{|x|}} \geq 2^{-\rho^{\alpha}},
$$

thereby contradicting the sub-exponential indistinguishability $\mathrm{H}_{0}^{\prime} \approx_{c} \mathrm{H}_{1}^{\prime}$.

### 2.3 From Adaptive SNARGs for UP to SNARKs for UP

In this section, we outline our transformation from a SNARG to SNARK for UP from Section 8. We take inspiration from the work of Campanelli et al. [CGKS23] (we describe the main differences between our transformation and theirs in Remark 8.7, and we describe some of the issues in their construction and how we fix them in Remark 8.4). Our knowledge extractor relies on the fact that any $x \in L$ has a unique witness $w$. Our construction will essentially extract a single bit of $w$ at some index $i$ which is hidden from the prover.
Fix a UP language $L$ with relation $R: \mathcal{X} \times \mathcal{W}=\{0,1\}$, where $\mathcal{X}$ is the set of instances, and $\mathcal{W}$ is the corresponding set of potential witnesses. Additionally, fix a fully homomorphic encryption scheme FHE and an public-key encryption scheme PKE. We transform $R$ into a new UP relation $R^{(e \mathrm{ek}, \mathrm{pk}, \mathrm{ct})}$ as follows.

- Sample a secret key $\mathrm{sk}_{\text {FHE }}$ and a evaluation ek from FHE.Gen $\left(1^{\lambda}\right)$.
- Sample a secret key sk PKE and public key pk for some public key encryption scheme PKE.
- Pick an index $i \leftarrow[|w|]$, and compute ct $=\mathrm{FHE} . \mathrm{Enc}_{\mathrm{sk}}(i)$.
- Let $C_{w}$ be the circuit that takes as input $j$ and outputs the bit $w[j]$.

Now, we define a new relation $R^{(e \mathrm{ek}, \mathrm{pk}, \mathrm{ct})}: \mathcal{X}^{\prime} \times \mathcal{W}^{\prime} \rightarrow\{0,1\}$

$$
R^{(\mathrm{ek}, \mathrm{pk}, \mathrm{ct})}((x, \rho),(w, r))= \begin{cases}1 & \text { if } R(x, w)=1 \text { and PKE. } \mathrm{Enc}_{p k}\left(\mathrm{FHE} . \mathrm{Eval}_{\mathrm{ek}}\left(C_{w}, \mathrm{ct}\right) ; r\right)=\rho \\ 0 & \text { otherwise } .\end{cases}
$$

Here, FHE.Eval ${ }_{\text {ek }}$ takes as input the circuit $C_{w}$ and the ciphertext ct and homomorphically evaluates $C_{w}$ on the ciphertext. Additionally, suppose that PKE has an injective encryption function, i.e. PKE.Enc ${ }_{\text {sk }}$ is injective in the message space and randomness (see Definition 3.25). Assuming that FHE.Eval ${ }_{\mathrm{ek}}$ is a deterministic function and PKE is injective, one can argue that $R^{(\mathrm{ek}, \mathrm{pk}, \mathrm{ct})}$ is a UP relation. Moreover, given the secret key $\mathbf{s k}_{\text {FHE }}$ and $\mathbf{s k}_{\text {PKE }}$, one can extract $w[i]$ from the ciphertext $\rho$.

SNARK Construction. We are now ready to outline our SNARG to SNARK construction (for a more detailed construction, see Section 8). Let $\Pi$ be an adaptively sound SNARG system for UP languages.

- SNARK.Gen $\left(1^{\lambda}\right)$ :
- Sample ( $\mathrm{sk}_{\mathrm{FHE}}$, ek) for FHE, and ( $\mathrm{sk}_{\mathrm{PKE}}, \mathrm{pk}$ ) for PKE, and a ciphertext ct $=\mathrm{FHE} . \mathrm{Enc}_{\mathrm{sk}}(i)$, as described earlier.
- Compute $(\mathrm{crs}, \tau) \leftarrow \Pi$. $\operatorname{Gen}\left(1^{\lambda}\right)$, for relation $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}$.
- Set the new common reference string crs' $=(\mathrm{crs}, \mathrm{ek}, \mathrm{pk}, \mathbf{c})$, and verifier state $\tau$.
- Output (crs', $\tau$ ).
- SNARK.Prove $\left(\right.$ crs $\left.^{\prime}, x, w\right)$ :
- Sample randomness $r$, and compute $\rho=\operatorname{PKE.Enc}{ }_{p k}\left(\operatorname{FHE}^{\operatorname{Eval}}{ }_{\mathrm{ek}}\left(C_{w}, \mathrm{ct}\right) ; r\right)$, i.e. homomorphically compute the circuit $C_{w}$ on the FHE ciphertext ct (this will result in an encryption of $w[i]$ under $\mathrm{sk}_{\text {FHE }}$ ), and encrypt under the public key pk .
- Compute $\pi \leftarrow \Pi$. Prove $($ crs, $(x, \rho),(w, r))$.
- Output $\rho, \pi$ as the proof for $x$.
- SNARG.Verify $(\tau, x,(\rho, \pi))$ : Accept iff $\Pi . \operatorname{Verify}(\tau,(x, \rho), \pi)$ accepts, i.e. treat $(x, \rho)$ as the statement under relation $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}$, and $\pi$ as the SNARG proof.

We sketch the proofs of knowledge extractability and zero-knowledge.

Knowledge soundness. First, we sketch why the above construction is knowledge-sound, i.e. one can extract a witness for $x$ by repeatedly querying an non-adaptive $\mathcal{P}^{*}$ on various common reference strings (see Definition 3.20 for a more detailed definition). Suppose $\mathcal{P}^{*}$ succeeds in creating proofs for $x$ with probability $\epsilon$. Since the language is UP, there is a unique witness $w$ for $x$. We crucially rely on the uniqueness of $w$.
By the adaptive soundness of $\Pi$, with probability approximately $\epsilon,(x, \rho), \pi$ created under $\mathrm{crs}^{\prime}=$ (crs, ek, $\mathrm{pk}, \mathbf{c}$ ) is accepted only if $(x, \rho)$ has a witness under $R^{(\mathrm{ek}, \mathrm{pk}, \mathrm{ct})}$. Moreover, given as trapdoor $\mathrm{td}=\left(\mathrm{sk}_{\mathrm{FHE}}, \mathrm{sk}_{\text {PKE }}\right)$, one can decrypt $\rho$ to obtain $C_{w}[i]=w[i]$. By repeating this experiment many times, one should eventually collect all bits of the unique witness $w$. Note that since the index $i$ is encrypted, one can argue that the probability of extracting each $w[i]$ is approximately $\epsilon /|w|$ (up to negl $(\lambda)$ terms) by IND-CPA security of the FHE scheme. Therefore, by repeating the experiment many times, one can extract all the bits of $w$.
Here, we crucially rely on the adaptive soundness of $\Pi$ because even an honest prover can only create an instance for $\Pi$ after crs' is generated and the parameters ( $\mathrm{pk}, \mathrm{ek}, \mathbf{c}$ ) are publicly available.

Zero-knowledge. To argue that the transformation preserves zero-knowledge, we rely on the public-key encryption scheme. Recall that if FHE.Eval ${ }_{\text {ek }}$ is deterministic, it is most likely not circuitprivate, and might leak information about underlying circuit. Therefore, the additional layer of public-key encryption allows one to invoke IND-CPA security to simulate the ciphertext $\rho$ without the witness. Then, $\pi$ can be simulated using just ( $x, \rho$ ) using the zero-knowledge simulator for the underlying zero-knowledge SNARG scheme $\Pi$.

## 3 Preliminaries

### 3.1 Notation

We write $[n]$ for the set $\{0,1, \ldots, n\}$. In what follows, $q$ will always denote a prime integer. We denote bitstrings with lowercase bold letters, and given two bitstrings $\mathbf{x}, \mathbf{y} \in\{0,1\}^{*}$, we write $\mathbf{x} \mid \mathbf{y}$ for their concatenation. For $c \in \mathbb{N}$, we write $\left.\right|^{c}(\mathbf{x})$ for the $c$-fold concatenation of $\mathbf{x}$ with itself, that is, $\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x}$, where $\mathbf{x}$ appears a total of $c$ times.
We denote matrices with uppercase bold letters $\mathbf{M}$, and (column) vectors with lowercase bold letters $\mathbf{v}$. We write $\mathbf{0}$ (resp. 1) for the all-zero (resp. all-one) vector when the dimension is clear from context. Given a collection of matrices $\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}$ and a string $\mathbf{x} \in\{0,1\}^{h}$, we write

$$
\mathbf{M}_{\mathbf{x}}:=\prod_{i=1}^{h} \mathbf{M}_{i, x_{i}}
$$

Given matrices $\mathbf{M}_{1}, \ldots, \mathbf{M}_{n}$, we write $\operatorname{diag}\left(\mathbf{M}_{1}, \ldots, \mathbf{M}_{n}\right)$ for the block-diagonal matrix whose blocks are the $\mathbf{M}_{i}$.
For integers $i, j \in \mathbb{Z}, i \bmod j \in \mathbb{Z}$ denotes the representative of the congruence class of $i \bmod j$ in the interval $[0, j-1]$. However, in expressions that interpret elements of $\mathbb{Z}_{q}$ as ordinary integers, such as $|x| \in \mathbb{Z}$ for $x \in \mathbb{Z}_{q}$, we interpret $x$ as an integer in the interval $[-q / 2, q / 2]$. The rounding
operation $\lfloor a\rceil_{p}: \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{p}$ is defined by $\left\lfloor(p / q) \cdot a^{\prime}\right\rceil$, where $a^{\prime}$ is any integer congruent to $a \bmod p$, and $\lfloor\cdot\rceil$ denotes rounding to the nearest integer.
We denote distributions with calligraphic letters. We write $x \leftarrow \mathcal{D}$ for drawing a (fresh, independent) sample $x$ from a distribution $\mathcal{D}$. Given a finite set $W, \mathcal{U}(W)$ denotes the uniform distribution over $W$. We write $x \leftarrow W$ for $x \leftarrow \mathcal{U}(W)$. $\mathcal{D}_{\mathbb{Z}, \sigma}$ denotes the discrete Gaussian over $\mathbb{Z}$ with parameter $\sigma$; that is, the distribution which assigns mass proportional to $\exp \left(-\pi x^{2} / \sigma^{2}\right)$ to each $x \in \mathbb{Z}$. And, given a distribution $\mathcal{D}$ and integers $m, n \geq 1$, we write $\mathcal{D}{ }^{n \times m}$ for the distribution over $n \times m$ matrices where each entry is sampled independently from $\mathcal{D}$.

Let $\lambda \in \mathbb{N}$ be a security parameter. Given distributions $\mathcal{D}_{1}, \mathcal{D}_{2}$, we write $\mathcal{D}_{1} \approx_{c} \mathcal{D}_{2}$ to denote computational indistinguishability and $\mathcal{D}_{1} \approx_{s} \mathcal{D}_{2}$ to denote statistical indistinguishability. By default, these mean that all non-uniform probabilistic poly $(\lambda)$-time distinguishers and unbounded distinguishers respectively have advantage at most $\operatorname{neg}(\lambda)$. When we wish to specify a different class of distinguishers or a different advantage bound, we will do so explicitly. For explicit statements of statistical indistinguishability, we will sometimes use the statistical (total variation) distance $\mathrm{d}_{\mathrm{TV}}(\cdot, \cdot)$.

### 3.2 LWE Assumption

Given $n, m, q \in \mathbb{N}$ and $\sigma, \delta>0$, the subexponential LWE assumption $\mathrm{LWE}_{n, m, q, \sigma}^{\delta}$ asserts that

$$
(\mathbf{A}, \mathbf{s} \mathbf{A}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})
$$

with security parameter $\mu=2^{n^{\delta}}$, where $\mathbf{s} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n \times m}\right)$, $\mathbf{e} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{m}$, and $\mathbf{b} \leftarrow \mathbb{Z}_{q}^{m}$.
Following [VWW22], we rely on the above assumption holding for some $\delta>0$, for parameters such that $q / \sigma \leq 2^{n^{\delta}}$.

The following useful lemma shows that LWE with small-norm public matrices (with entries sampled from the error distribution) is as hard as LWE.

Lemma 3.1 ([CVW18, Lemma 3.9]). For $q \leq 2^{\operatorname{poly}(n)}$, $m=\operatorname{poly}(n), n^{\prime} \leq n /(2 \log q)$, there is a poly $(n)$-time reduction from $\operatorname{LWE}_{n^{\prime}, \operatorname{poly}(n), q, \sigma}$ to the problem of distinguishing $(\mathbf{A}, \mathbf{s} \mathbf{A}+\mathbf{e})$ from uniform, where $m=\operatorname{poly}(n), \mathbf{A} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times m}, \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n}$, and $\mathbf{e} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{m}$.

### 3.3 Security Parameters

In this paper, we will need to reason about two different parameter regimes; one concerned with programs $P$ mapping bitstrings $\mathbf{x} \in\{0,1\}^{h}$ to values $P(\mathbf{x}) \in \mathbb{Z}_{q}$, and the other with the collections of outputs $\{P(\mathbf{x})\}_{\mathbf{x}}$ of such programs. To keep track of the different efficiency and security requirements in each regime, it will be useful to introduce two related security parameters, $\lambda$ and $\mu=\mu(\lambda)$. As is standard, we will require that all cryptographic algorithms run in time poly $(\lambda)$, and require that their security guarantees cannot be broken by poly $(\lambda)$-time adversaries, except with probability negl $(\lambda)$. The second security parameter $\mu$ roughly corresponds to collections of outputs of these algorithms, and it is much larger. In particular, we will always assume that parameters $n=n(\lambda), h=h(\lambda) \leq \operatorname{poly}(\lambda)$ and $q=q(\lambda)$ satisfy $h \leq n^{\delta / 20}$ and $q=2^{n^{\delta}}$, and we will set $\mu=\mu(\lambda):=2^{n^{\delta}}$. Notice that $\{P(\mathbf{x})\}_{\mathbf{x}}$
has size $2^{h} \log q=\operatorname{neg}(\mu)$, so poly $(\mu)$-time distinguishers can perform arbitrary polynomial-time computations on such collections. For a function $f=f(\lambda)$, we will say $\mathcal{D}_{1} \approx_{c} \mathcal{D}_{2}$ with security parameter $f$ to mean that all non-uniform probabilistic poly $(f)$-time distinguishers have advantage at $\operatorname{most} \operatorname{negl}(f)$. We will often use $f=\mu$. We will also often work with pairs of distributions for which all poly $(\mu)$-time distinguishers have advantage $\operatorname{negl}\left(2^{h^{2} \lambda}\right)$; this is a relaxation of indistinguishability with security parameter $\mu$.

### 3.4 Trapdoor and Pre-image Sampling

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ for $m \geq 2 n \log q$, a vector $\mathbf{y} \in \mathbb{Z}_{q}^{n}$, and $\sigma>0$, we use $\mathbf{A}^{-1}(\mathbf{y}, \sigma)$ to denote the distribution of a vector $\mathbf{d}$ sampled from $\mathcal{D}_{\mathbb{Z}, \sigma}^{m}$ conditioned on $\mathbf{A d}=\mathbf{y}(\bmod q)$. (Vectors satisfying the condition exist except with probability negl $(\mu)$.) We extend this notation to matrices $\mathbf{Y} \in \mathbb{Z}_{q}^{n \times k}$ in the natural way (i.e., columnwise). We sometimes suppress $\sigma$ when it is clear from context. The following convenient lemma statements are adapted from [CVW18].
Lemma 3.2 ([CVW18, Lemma 3.10], originally [Ajt96, AP11, MP12]). Assume LWE ${ }_{n, m, q, \sigma}^{\delta}$. There is a PPT algorithm $\operatorname{TrapSam}\left(1^{n}, 1^{m}, q\right)$ that, on input the modulus $q \geq 2$ and dimensions $n, m$ such that $m \geq 2 n \log q$, outputs a matrix $\mathbf{A}$ such that $\mathbf{A} \approx_{s} \mathcal{U}\left(\mathbb{Z}_{q}^{n \times m}\right)$ with security parameter $\mu$, along with a trapdoor $\tau$ (referenced in the next lemmas).
Lemma 3.3 ([CVW18, Lemma 3.11]). There is a PPT algorithm that, on input $\mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}$ and $(\mathbf{A}, \tau) \leftarrow \operatorname{TrapSam}\left(1^{n}, 1^{m}, q, \sigma\right)$ for some $\sigma \geq 2 \sqrt{n \log q}$, outputs a sample from $\mathbf{A}^{-1}(\mathbf{y}, \sigma)$. We will abuse notation and denote this algorithm by $\mathbf{A}^{-1}(\mathbf{y}, \sigma)$.
Lemma 3.4 ([CVW18, Lemma 4.4]). Assume $\mathrm{LWE}_{2 n, k, q, \sigma}^{\delta}$. Let $n, m, k, q \in \mathbb{N}, \sigma, \sigma^{\prime} \in \mathbb{R}$ satisfy $n, m, k \in \operatorname{poly}(\lambda), m \geq 4 n \log q$, and $\sigma^{\prime} \geq \sigma \geq 2 \sqrt{n \log q}$. Then, for any fixed matrix $\mathbf{Z} \in \mathbb{Z}_{q}^{n \times k}$, we have that with security parameter $\mu$,

$$
\mathbf{A}^{-1}(\mathbf{Z}+\mathbf{E}, \sigma) \approx_{c} \mathcal{D}_{\mathbb{Z}, \sigma}^{m \times k},
$$

where $\mathbf{A}, \tau \leftarrow \operatorname{TrapSam}\left(1^{n}, 1^{m}, q\right)$ and $\mathbf{E} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{n \times k}$.
Note that [CVW18, Lemma 4.4] had $\sigma^{\prime}=\sigma$, but we state a generalization to $\sigma^{\prime} \geq \sigma$. Indeed, the generalization can be easily proved by absorbing some of the variance of $\mathbf{E}$ into $\mathbf{Z}$ (this was used already implicitly in [VWW22]).

### 3.5 Primitives

In this section, we define and instantiate the various basic cryptographic primitives we will need.

### 3.5.1 Pseudorandom Functions

## Puncturable PRFs.

Definition 3.5 (Puncturable PRF). A puncturable PRF family on key space $\mathcal{K}=\left\{\mathcal{K}_{\lambda}\right\}_{\lambda}$, domain $\mathcal{X}=\left\{\mathcal{X}_{\lambda}\right\}_{\lambda}$, output space $\mathcal{Y}=\left\{\mathcal{Y}_{\lambda}\right\}_{\lambda}$ and polynomial $s(\lambda)$ is a tuple of PPT algorithms (PPRF.Gen, PPRF.Punc, PPRF.Eval) with the following interface and properties.

- PPRF.Gen $\left(1^{\lambda}\right)$ : On input the security parameter $1^{\lambda}$, outputs a key $k \in \mathcal{K}_{\lambda}$.
- PPRF.Punc $(k, S):$ On input a key $k \in \mathcal{K}_{\lambda}$ and a set $S \subseteq \mathcal{X}_{\lambda}$ such that $|S| \leq s(\lambda)$, outputs a new key $k(\{S\}) \in \mathcal{K}_{\lambda}$.
- PPRF.Eval $(k, x)$ : On input $k \in \mathcal{K}_{\lambda}$ and $x \in \mathcal{K}_{\lambda}$, outputs some value $y \in \mathcal{Y}_{\lambda}$.
- Functionality preserving: For all sets $S \subseteq \mathcal{X}$ of size $|S| \leq s(\lambda)$, for all $x \notin S$,

$$
\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right), k\{S\} \leftarrow \operatorname{Punc}(k, S): \operatorname{Eval}(k\{S\}, x)=\operatorname{Eval}(k, x)\right]=1
$$

- Polynomial pseudorandomness at punctured points: Consider the following experiment $\operatorname{EXP}_{\mathcal{A}}^{R}(b, \lambda)$ between a challenger $\mathcal{C}$ and adversary $\mathcal{A}$ :
- First, $\mathcal{A}$ chooses a set $S \subseteq \mathcal{X}_{\lambda}$ such that $|S| \leq s(\lambda)$, and sends it to $\mathcal{C}$.
$-\mathcal{C}$ samples $k \leftarrow \operatorname{PPRF} . G e n\left(1^{\lambda}\right)$, and computes $k\{S\} \leftarrow \operatorname{PPRF} . \operatorname{Punc}(k, S)$.
* If $b=0$, compute $L_{0}=\left\{x_{i}, \operatorname{PPRF} . E v a l\left(k, x_{i}\right)\right\}_{x_{i} \in S}$.
* If $b=1$, compute $L_{1}=\left\{x_{i}, y_{i}\right\}_{x_{i} \in S}$ where each $y_{i} \leftarrow \mathcal{Y}$.

Give $k\{S\}, L_{b}$ to $\mathcal{A}$.

- $\mathcal{A}$ produces a bit $b^{\prime}$.

Let $W_{b}$ be the event that the adversary outputs 1 in experiment $b$, and define the adversary's advantage to be $\operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\left|\operatorname{Pr}\left[W_{0}\right]-\operatorname{Pr}\left[W_{1}\right]\right|$. We say that the PPRF is pseudorandom at punctured points if for all PPT adversaries $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\operatorname{negl}[\lambda]$.

We additionally say that the PPRF is sub-exponentially pseudorandom at punctured points if, for some $\alpha>0$, for all poly $\left(2^{\lambda^{\alpha}}\right)$-time adversaries $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\operatorname{negl}\left(2^{\lambda^{\alpha}}\right)$.

Theorem 3.6 ([GGM84, BW13, BGI14, KPTZ13]). Assuming the existence of polynomially secure (resp. sub-exponentially secure) one-way functions, then there exists polynomially secure (resp. sub-exponentially secure) puncturable PRFs.

LWE-Based PRFs. The following lemma is a simple consequence of Banaczyzck's tail bound (see, e.g., [SD17, Corollary 1.3.11]).

Lemma 3.7. For any $\sigma>0$ and $n \in \mathbb{N}$,

$$
\operatorname{Pr}_{x \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}}[|x| \geq \sigma \sqrt{n}] \leq 2^{-n} .
$$

The following simple noise flooding lemma is integral to our uses of subexponential LWE.
Lemma 3.8 ([CVW18, Lemma 3.2]). For all $y \in \mathbb{Z}$ and $\sigma \in \mathbb{R}$, the statistical distance between $\mathcal{D}_{\mathbb{Z}, \sigma}$ and $\mathcal{D}_{\mathbb{Z}, \sigma}+y$ is at most $y / \sigma$.

The following lemma adapts the BLMR PRF [BLMR13, Theorem 5.1] to the setting of subexponential LWE.

Lemma 3.9. Let $n, n^{\prime}, q, h \in \mathbb{N}$ and $f, k, \sigma, \sigma^{\prime} \in \mathbb{R}$ be functions of $\lambda$ satisfying

- $\left\lceil(2 \log q) \cdot n^{\prime}\right\rceil \leq n \leq \operatorname{poly}\left(n^{\prime}\right)$,
- $\sigma^{\prime} \geq k \cdot\left(n^{2} \sigma\right)^{h+1}$,
- $2^{-n^{\delta}} \leq 1 / k(n) \leq \operatorname{negl}\left(2^{h} \cdot n \cdot f(n)\right)$.

Let

$$
\mathbf{a} \leftarrow \mathbb{Z}_{q}^{n},\left\{\mathbf{e}_{\mathbf{x}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}\right\}_{x \in\{0,1\}^{h}} .
$$

Then, assuming $\operatorname{LWE}_{n^{\prime}, \operatorname{poly}\left(n^{\prime}\right), q, \sigma}^{\delta}$,

$$
\left\{\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{\substack{i \in[h] \\ b \in\{0,1\}}},\left\{\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{x}_{i}}\right) \cdot \mathbf{a}+\mathbf{e}_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{h}} \approx_{c}\left\{\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{\substack{i \in[h] \\ b \in\{0,1\}}},\{\mathcal{U}\}_{\mathbf{x} \in\{0,1\}^{h}} .
$$

where all poly $(\mu)$-time distinguishers have advantage at most $\operatorname{negl}(f(n))$. In particular, one can take $q=2^{n^{\delta}}$ (to rely on subexponential LWE with $q / \sigma \leq 2^{n^{\delta}}$ ), $h=n^{c}$ for some $c<\delta / 20, k=2^{h^{3} \lambda}$, and $f(n)=2^{-h^{2} \lambda}$.

We defer the details of the proof to Appendix A.1.
Remark 3.10. Notice that the statement is still true if $\mathbf{a}$ is replaced by $\mathbf{a} y_{\mathbf{x}}$, where $\left\{y_{\mathbf{x}} \in \mathbb{Z}_{q}\right\}_{\mathbf{x}}$ is arbitrary. Indeed, exactly the same proof works; the only step that changes is the LWE hybrid that relies on Lemma 3.1, and this lemma still applies since $\mathbf{a} y_{\mathbf{x}}$ is still uniform in $\mathbb{Z}_{q}$.

To prove a rounded version of Lemma 3.9, we will need a few simple lemmas, which will also be useful elsewhere in the paper. The first is a simple lemma about rounding (see, e.g., [BPR12]).

Lemma 3.11. For integers $q \geq p \geq 2, \mathrm{~d}_{\mathrm{TV}}\left(\left[\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\rceil_{p}, \mathcal{U}\left(\mathbb{Z}_{p}\right)\right) \leq p / q$.
The second is a simple condition for computational indistinguishability implying statistical indistinguishability.

Lemma 3.12. Suppose $\left\{a_{\lambda}\right\},\left\{b_{\lambda}\right\}$ are random variables, $g(\lambda) \geq 1 / \operatorname{poly}(\lambda)$, and $a \approx_{c} b$, where all $\operatorname{poly}(\lambda)$-time distinguishers have advantage $\operatorname{negl}(g(\lambda))$. Suppose further that $f$ is a poly $(\lambda)$-time computable function taking values in a finite set of cardinality poly $(\lambda)$. Then $f(a) \approx_{s} f(b)$, where all poly $(\lambda)$-time distinguishers have advantage $\operatorname{negl}(g(\lambda))$.

Proof. The optimal statistical distinguisher just checks membership in a (polynomial-sized) subset of the image of $f$, so it runs in polynomial time. Hence there is a trivial advantage-preserving reduction: given a challenge $c$ to the computational indistinguishability, compute $f(c)$ and run the optimal statistical distinguisher.

The third is a key step in justifying learning-with-rounding approaches that allows one to introduce or remove error terms inside a rounding operation at the cost of negligible statistical distance, for appropriate parameters.

Lemma 3.13. Suppose $\left\{a_{\lambda}\right\},\left\{b_{\lambda}\right\}$ are random variables, $n \leq \operatorname{poly}(\lambda)$ and $q \leq \operatorname{poly}(\lambda), g(\lambda) \geq$ $1 / \operatorname{poly}(\lambda)$, and

$$
\left\{a_{i}\right\}_{i \in[n]} \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{i \in[n]},
$$

where all poly $(\lambda)$-time distinguishers have advantage $\operatorname{negl}(g(\lambda))$. Suppose further that $B \in \mathbb{R}, p \in \mathbb{Z}$ satisfy $B<p<q$. Then for any $\left\{e_{i}\right\}_{i}$ such that except with probability $\operatorname{negl}(\lambda),\left|e_{i}\right| \leq B$ for all $i$, we have

$$
\mathrm{d}_{\mathrm{TV}}\left(\left\{\left\lfloor a_{i}+e_{i}\right\rceil_{p}\right\}_{i},\left\{\left\lfloor a_{i}\right\rceil_{p}\right\}_{i}\right) \leq n \cdot(2 B / p)+g(\lambda)+\operatorname{negl}(\lambda) .
$$

Proof. As a first step, we may assume that $\left|e_{i}\right| \leq B$ for all $i$, at the price of an additive negl $(\lambda)$ in the statistical distance. Next, notice that the condition $E$ that for all $i,\left\lfloor a_{i}+e_{i}\right\rceil_{p}=\left\lfloor a_{i}\right\rceil_{p}$ can be checked in polynomial time. Moreover, for truly uniform $a_{i}, \operatorname{Pr}[E] \geq 1-n \cdot(2 B / p)$. Hence, applying Lemma 3.12, $\operatorname{Pr}[E] \geq 1-n \cdot(2 B / p)-g(\lambda)-\operatorname{negl}(\lambda)$, completing the proof.

Lemma 3.14. Assuming the hypotheses of Lemma 3.13, no poly $(\lambda)$-time adversary can distinguish $\left\{\left\lfloor a_{i}\right\rceil_{p}\right\}_{i}$ from $\left\{\mathcal{U}\left(\mathbb{Z}_{p}\right)\right\}_{i}$ with advantage greater than $n \cdot((2 B / p)+(p / q))+g(\lambda)+\operatorname{neg} \mid(\lambda)$.

Proof. This follows immediately from the conclusion of Lemma 3.13 along with the hypothesis that $\left\{a_{i}\right\}_{i \in[n]} \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{i \in[n]}$ with advantage bound $g(\lambda)$ and the fact that $\mathrm{d}_{\mathrm{TV}}\left(\left\lfloor\mathcal{U}\left(\mathbb{Z}_{q}\right)\right]_{p}, \mathcal{U}\left(\mathbb{Z}_{p}\right)\right) \leq p / q$ (Lemma 3.11).

Finally, we present a "rounded" version of Lemma 3.9.
Lemma 3.15. With parameters as in Lemma 3.9, let $p \in \mathbb{N}$ be such that $k \cdot 2^{h} \cdot\left(2 \sigma^{\prime} \sqrt{n}+1\right) \leq p \leq q / k$. (Setting $p=2^{h^{7} \lambda}$ along with the other "in particular" parameters of Lemma 3.9 satisfies this.) Then, assuming $\operatorname{LWE}_{n^{\prime}, \text { poly }\left(n^{\prime}\right), q, \sigma}^{\delta}$,

$$
\left\{\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{\substack{i \in[h] \\ b \in\{0,1\}}},\left\{\left\lfloor\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{x}_{i}}\right) \cdot \mathbf{a}\right\rceil_{p}\right\}_{\mathbf{x} \in\{0,1\}^{h}} \approx_{c}\left\{\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{i \in[h]}^{b \in\{0,1\}}, ~\{\mathcal{U}\}_{\mathbf{x} \in\{0,1\}^{h}}
$$

where all poly $(\mu)$-time distinguishers have advantage at most $\operatorname{negl}(f(n))$.
We defer the proof to Appendix A.2.

### 3.5.2 SNARGs, SNARKs and NIZKs

A designated verifier non-interactive argument system (Definition 3.17) $\Pi$ consists of a triple of efficient algorithms $\Pi=$ (Gen, Prove, Verify) :

- $\Pi . G e n\left(1^{\lambda}, R\right)$ : Probabilistic algorithm that outputs a common reference string crs and a private state $\tau$ for the verifier.
- $\Pi$.Prove (crs, $x, w)$ : Given the common reference string crs, a statement $x$ and a witness $w$, outputs a proof $\pi$.
- $\Pi . \operatorname{Verify}(\tau, x, \pi)$ : Takes as input the private state $\tau$, a statement $x$, and proof $\pi$ and outputs either 0 or 1 . An argument system is publicly verifiable if $\tau=\mathrm{crs}$ or $\tau \subseteq \mathrm{crs}$.

We say that such an argument is also succinct (Definition 3.18) if the proof size $\pi$ is small. We say that such a system is also non-interactive zero-knowledge if it satisfies the zero-knowledge as described in Definition 3.19.

Remark 3.16. In the definitions below, we use the notation $\operatorname{Pr}[E: \mathcal{D}]$ to denote the probability of event $E$ over the distribution of $\mathcal{D}$ (sometimes notated as $\operatorname{Pr}_{\mathcal{D}}[E]$ ). We denote conditional probability of event $E$ conditioned on event $C$ as $\operatorname{Pr}[E \mid C]$.

Definition 3.17 (Non-Interactive Argument). We say that $\Pi=$ (Gen, Prove, Verify) is a designated verifier non-interactive argument for a language $L \in$ NP if $L$ has an NP relation $R$ such that $\Pi$ satisfies the following three properties:

- Completeness: For all $x, w$ such that $R(x, w)=1$,

$$
\operatorname{Pr}\left[\operatorname{Verify}(\tau, x, \pi)=0: \begin{array}{c}
(\operatorname{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}, R\right) \\
\pi \leftarrow \operatorname{Prove}(\operatorname{crs}, x, w)
\end{array}\right]=\operatorname{neg}(\lambda) .
$$

- Adaptive soundness: For all p.p.t. algorithms $\overline{\mathcal{P}}$,

$$
\operatorname{Pr}\left[\begin{array}{cc}
\operatorname{Verify}(\tau, x, \pi)=1 & (\operatorname{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}, R\right) \\
\wedge x \notin L & (x, \pi) \leftarrow \overline{\mathcal{P}}\left(1^{\lambda}, \operatorname{crs}\right)
\end{array}\right]=\operatorname{negl}(\lambda) .
$$

We additionally say that $\Pi$ is reusable if soundness holds even against malicious provers $\overline{\mathcal{P}}$ with oracle access to $\operatorname{Verify}(\tau, \cdot, \cdot)$.

- Non-adaptive soundness: For every $x \notin L$, and every p.p.t. adversary $\overline{\mathcal{P}}$,

$$
\operatorname{Pr}\left[\operatorname{Verify}(\tau, x, \pi)=1: \begin{array}{c}
(\operatorname{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}, R\right) \\
\pi \leftarrow \overline{\mathcal{P}}\left(1^{\lambda}, \operatorname{crs}\right)
\end{array}\right]=\operatorname{negl}(\lambda) .
$$

An $\Pi$ is publicly verifiable if $\tau=\mathrm{crs}$ or $\tau \subseteq \mathrm{crs}$.
Definition 3.18 (SNARG). We say that $\Pi=$ (Gen, Prove, Verify) is a (designated verifier) succinct non-interactive argument (SNARG) for a language $L \in N P$ if $\Pi$ is a (designated verifier) noninteractive argument with the following additional succinctness condition:

- Succinctness: For proofs $\pi \leftarrow$ Prove $(\operatorname{crs}, x, w)$ where $R(x, w)=1$, the proof length $|\pi|$ is at most poly $(\lambda) \cdot(|x|+|w|)^{o(1)} .{ }^{5}$

Definition 3.19 (Verifier NIZK). We say that $\Pi=$ (Gen, Prove, Verify) is a non-interactive zeroknowledge argument (NIZK) for a language $L \in$ NP if $\Pi$ is a non-interactive argument with one of the following zero knowledge properties.

[^5]- Adaptive multi-theorem zero-knowledge: There exists a p.p.t. simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ that satisfies the following: For all (stateful) p.p.t. adversaries $\mathcal{A}$, we have that for experiments $\operatorname{EXP}_{\mathcal{A}}^{\text {Real }}\left(1^{\lambda}\right)$ and $\operatorname{EXP}_{\mathcal{A}}^{\text {Ideal }}\left(1^{\lambda}\right)$ as in Experiments 1 and 2,

$$
\left|\operatorname{Pr}\left[\operatorname{EXP}_{\mathcal{A}}^{\text {Real }}\left(1^{\lambda}\right)=1\right]-\operatorname{Pr}\left[\operatorname{EXP}_{\mathcal{A}}^{\text {Ideal }}\left(1^{\lambda}\right)=1\right]\right|=\operatorname{negl}(\lambda)
$$

if $\mathcal{A}$ is limited to querying only $(x, w)$ such that $R(x, w)=1$.

```
Experiment \(1 \operatorname{EXP}_{\mathcal{A}}^{\text {Real }}\left(1^{\lambda}\right)\).
    \((\mathrm{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)\)
    \((x, w) \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{crs}, \tau\right)\)
    while \((x, w) \neq \perp\) and \(R(x, w)=1\) do
        \(\pi \leftarrow \operatorname{Prove}(\mathrm{crs}, x, w)\)
        \((x, w) \leftarrow \mathcal{A}\left(1^{\lambda}, \pi\right)\)
    end while
    return \(b \leftarrow \mathcal{A}\left(1^{\lambda}\right)\)
```

```
Experiment \(2 \operatorname{EXP}_{\mathcal{A}}^{\text {Ideal }}\left(1^{\lambda}\right)\).
    \((\mathrm{crs}, \tau, \mathrm{st}) \leftarrow \mathcal{S}_{1}\left(1^{\lambda}\right)\)
    \((x, w) \leftarrow \mathcal{A}\left(1^{\lambda}, \mathrm{crs}, \tau\right)\)
    while \((x, w) \neq \perp\) and \(R(x, w)=1\) do
        \(\pi \leftarrow \mathcal{S}_{2}(\mathrm{crs}, \mathrm{st}, x)\)
        \((x, w) \leftarrow \mathcal{A}\left(1^{\lambda}, \pi\right)\)
    end while
    return \(b \leftarrow \mathcal{A}\left(1^{\lambda}\right)\)
```

Additionally, we say $\Pi$ is statistically adaptively multi-theorem zero-knowledge if the above indistinguishability holds even for all stateful unbounded adversaries $\mathcal{A}$ making poly $(\lambda)$ queries.

- Adaptive single-theorem zero-knowledge: This is defined similarly to adaptive multitheorem zero-knowledge, except that $\mathcal{A}$ is allowed to make only a single query.

We follow the definition of black-box knowledge soundness of Campanelli et al. [CGKS23].
Definition 3.20 (Black-box knowledge soundness). A designated verifier non-interactive argument system as in Definition 3.17 is non-adaptive black-box $\epsilon(\lambda)$-knowledge sound for a relation $R$ if there exists a non-uniform PPT extractor Ext such that for any non-uniform PPT prover $\mathcal{P}=\left(\mathcal{P}_{\text {inp }}, \mathcal{P}_{\text {chall }}\right)$,

$$
\operatorname{Pr}\left[\begin{array}{ccc} 
& (x, \text { st }) \leftarrow \mathcal{P}_{\text {inp }}\left(1^{\lambda}\right) \\
\operatorname{Ver}(\tau, x, \pi)=1 & (\operatorname{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right) \\
\wedge R(x, w) \neq 1 & : & \pi \leftarrow \mathcal{P}_{\text {chall }}(\mathrm{st}, \operatorname{crs}) \\
& \left.w \leftarrow \operatorname{Ext}^{\text {chall }} \mathrm{st}, \cdot\right)(\operatorname{crs}, \tau, x, \pi)
\end{array}\right] \leq \epsilon(\lambda) .
$$

We say that the argument system is non-adaptively black-box knowledge sound if $\epsilon(\lambda)=\operatorname{negl}(\lambda)$.
Intuitively, the prover selects the instance $x$ on which she generates a proof, and the extractor is permitted to query the prover on many possible crs values (possibly with corresponding trapdoors) to reconstruct a witness for $x$.

Definition 3.21 (Non-Adaptive SNARK). A (designated verifier) SNARG system (Definition 3.18) is also a non-adaptive succinct argument of knowledge (SNARK) if it is non-adaptively black-box knowledge sound, as in Definition 3.20.

### 3.5.3 Fully Homomorphic Encryption

Definition 3.22 (Fully homomorphic encryption). A leveled fully homomorphic encryption scheme FHE with ciphertext size $\ell=\ell(\lambda)=\operatorname{poly}(\lambda)$ for a fixed polynomial $\ell$ is a tuple of PPT algorithms (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) with the following interface and properties.

## Interface:

- FHE.Gen $\left(1^{\lambda}, 1^{d}\right)$ : Probabilistic algorithm that outputs a (sk, ek) where sk is the secret key, ek is a public evaluation key.
- FHE.Enc $\mathrm{sk}^{(b)}$ : Probabilistic algorithm that takes as input the secret key sk and the message bit $b \in\{0,1\}$, and outputs a ciphertext ct $\in\{0,1\}^{\ell}$.
- FHE. Dec ${ }_{\text {sk }}(\mathrm{ct})$ : Deterministic algorithm that takes as input the secret key sk and a ciphertext ct , and outputs a bit $b \in\{0,1\}$.
- FHE.Eval ${ }_{\text {ek }}\left(C, \mathrm{ct}_{1}, \ldots, \mathrm{ct}_{m}\right)$ : Deterministic algorithm that takes as input the evaluation key ek, an $m$-input circuit $C$ of size at most $d$, and ciphertexts $\left\{\mathrm{ct}_{i}\right\}_{i \in m}$, and outputs a ciphertext ct* $\in\{0,1\}^{\ell}$.


## Properties:

- Encryption correctness: For all sk $\leftarrow$ FHE.Gen $\left(1^{\lambda}, 1^{d}\right)$ and $b \in\{0,1\}$, we have that

$$
\operatorname{Pr}\left[\text { FHE. }^{\text {Dec }} \text { sk }\left(\text { FHE. Enc }_{\text {sk }}(b)\right)=b\right]=1
$$

- IND-CPA security: or any PPT adversary $\mathcal{A}$ it holds that

$$
\begin{aligned}
& -\underset{\text { sk } \leftarrow \text { FHE. } \operatorname{Gen}\left(1^{\lambda}\right)}{ }\left[\mathcal{A}^{\text {FHE.Encsk }}(\cdot)\left(\text { ek, FHE.Enc }{ }_{\text {sk }}(1)\right)=1\right] \mid \leq \operatorname{negl}(\lambda),
\end{aligned}
$$

where $(\mathrm{sk}, \mathrm{ek}) \leftarrow$ FHE.Gen $\left(1^{\lambda}, 1^{d}\right)$.

- Evaluation correctness: For all circuits $C$ of size at most $d(\lambda)$, we must have

$$
\operatorname{Pr}\left[\mathrm { FHE } ^ { \operatorname { D e c } } \mathrm { Dk } \left({\left.\left.\operatorname{FHE} . \operatorname{Eval}_{\mathrm{ek}}\left(C, \mathrm{ct}_{1}, \ldots, \mathrm{ct}_{m}\right)\right) \neq f\left(\mu_{1}, \ldots, \mu_{m}\right)\right] \leq \operatorname{negl}(\lambda), ~}_{\text {a }},\right.\right.
$$

where $(\mathrm{sk}, \mathrm{ek}) \leftarrow \mathrm{FHE} . \operatorname{Gen}\left(1^{\lambda}\right)$ and $\mathrm{ct}_{i} \leftarrow \mathrm{FHE} . \mathrm{Enc}_{\mathrm{sk}}\left(\mu_{i}\right)$.
Theorem 3.23 ([BV11, BGV12, GSW13]). Assuming $\operatorname{LWE}_{n, \operatorname{poly}(n), q, \sigma}$ for $n=\operatorname{poly}(\lambda), q=2^{n^{\varepsilon}}$ for some constant $\varepsilon>0$, and $\sigma \geq \sqrt{2 n}$, there exists a leveled fully homomorphic encryption scheme with a deterministic evaluation algorithm, and ciphertexts of size $\ell(\lambda)$, for a fixed polynomial $\ell$.

### 3.5.4 Public-key Encryption

We additionally need a public key encryption scheme.
Definition 3.24 (Public key encryption). A public key encryption scheme PKE $=($ PKE.Gen, PKE.Enc, PKE.Dec) is a triple of algorithms:

- PKE.Gen $\left(1^{\lambda}, 1^{d}\right)$ : Probabilistic algorithm that outputs a (sk, pk) where sk is the secret key, pk is a public key.
- PKE.Enc $\mathrm{pk}(b)$ : Probabilistic algorithm that takes as input the public key pk and the message bit $b \in\{0,1\}$, and outputs a ciphertext ct $\in\{0,1\}^{\ell}$.
- PKE. Dec ${ }_{\text {sk }}(\mathrm{ct})$ : Deterministic algorithm that takes as input the secret key sk and a ciphertext ct , and outputs a bit $b \in\{0,1\}$.

The PKE scheme has to additionally sastisfy the following properties:
Encryption correctness: For all (sk, pk) $\leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)$ and $b \in\{0,1\}$, we have that

$$
\operatorname{Pr}\left[\operatorname{PKE} \cdot \operatorname{Dec}_{\text {sk }}\left(\operatorname{PKE} \cdot \operatorname{Enc}_{\mathrm{pk}}(b)\right)=b\right]=1
$$

IND-CPA security: or any PPT adversary $\mathcal{A}$ it holds that

$$
\begin{aligned}
& \mid \underset{(\mathrm{sk}, \mathrm{pk}) \leftarrow \operatorname{PKE} \cdot \operatorname{Gen}\left(1^{\lambda}\right)}{\operatorname{Pr}}\left[\mathcal{A}\left(\mathrm{pk}, \operatorname{PKE} \cdot \operatorname{Enc}_{\mathrm{pk}}(0)\right)=1\right] \\
& -\underset{(\mathrm{sk}, \mathrm{pk}) \leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)}{ }\left[\mathcal{A}\left(\mathrm{pk}, \operatorname{FHE} \cdot \operatorname{Enc}_{\mathrm{pk}}(1)\right)=1\right] \mid \leq \operatorname{negl}(\lambda),
\end{aligned}
$$

where $(\mathrm{sk}, \mathrm{ek}) \leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)$.
We need an encryption scheme with the following additional property:
Definition 3.25. We say that a public key encryption scheme PKE is an injective encryption scheme if, for $\mathrm{pk} \leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)$, the function PKE.Enc $\mathrm{Pk}(b ; r)$ is injective in the message bit $b$ and the randomness $r$ except with probability negl $(\lambda)$.

Many public-key encryption schemes satisfy this property; in particular, that of Regev, which can be based on $\operatorname{LWE}_{n, \operatorname{poly}(n), q, \sigma}$ for $q \leq \operatorname{poly}(n), \sigma \leq O(\sqrt{n})[\operatorname{Reg} 05]$.

Theorem 3.26 ([Reg05]). For public keys of size $n \times m$ for $n \geq \lambda, m \geq 2 n \log q$, Regev's public-key encryption scheme [Reg05] is an injective encryption scheme.

### 3.5.5 Indistinguishability Obfuscation

Definition 3.27 (Indistinguishability obfuscation (iO), [ $\left.\mathrm{BGI}^{+} 01\right]$ ). An indistinguishability obfuscator $i \mathcal{O}$ for a circuit class $\mathcal{C}=\left\{\mathcal{C}_{\lambda}\right\}_{\lambda}$ is a PPT algorithm that satisfies the following conditions:

- Correctness: For all security parameters $\lambda \in \mathbb{N}$, for all $C \in \mathcal{C}_{\lambda}$, for all inputs $x$, we have that

$$
\operatorname{Pr}\left[C^{\prime} \leftarrow i \mathcal{O}\left(1^{\lambda}, C\right): C^{\prime}(x)=C(x)\right]=1
$$

- Polynomial Security: For all pairs of circuits $C_{0}, C_{1} \in \mathcal{C}_{\lambda}$ such that $C_{0}(x)=C_{1}(x)$ for all $x$,

$$
i \mathcal{O}\left(1^{\lambda}, C_{0}\right) \approx_{c} i \mathcal{O}\left(1^{\lambda}, C_{1}\right)
$$

We additionally say that the $i \mathcal{O}$ is sub-exponentially secure if, for some $\alpha>0$, all poly $\left(2^{\lambda^{\alpha}}\right)$-time adversaries have distinguishing advantage at most negl $\left(2^{\lambda^{\alpha}}\right)$.

## 4 Obfuscating Matrix PRFs with Noise ( $\sigma$-Matrix PRFs)

In this section, we define a weakening of pseudorandom function (PRF) where the adversary sees the outputs after independent noise is added to each output. Then we show that, if such a $\sigma$-PRF has sufficient security and can be computed by a matrix branching program, it can be meaningfully obfuscated using evasive LWE.

### 4.1 Matrix Branching Programs

We will work with matrix branching programs (MBPs) that compute functions $f_{k}:\{0,1\}^{\ell} \rightarrow \mathbb{Z}_{q}$ for some prime $q$. In this paper we consider MBPs specified by a collection of matrices $\left(\mathbf{M}_{i, b}: i \in[h:=\right.$ $c \cdot \ell], b \in\{0,1\}$ ) and two vectors $\mathbf{u}, \mathbf{v}$ (all over some $\operatorname{ring} \mathcal{R}$, which, for us, will always be $\mathbb{Z}_{q}$ for a prime $q$ ) such that for all $\mathbf{x} \in\{0,1\}^{\ell}$,

$$
f(\mathbf{x})=\mathbf{u}^{T}\left(\prod_{i=1}^{h} \mathbf{M}_{i, x_{j_{i}}}\right) \mathbf{v}
$$

where $j_{i}:=(i-1) \bmod \ell+1$. More explicitly,

$$
f(\mathbf{x})=\mathbf{u}^{T}\left(\left(\mathbf{M}_{1, x_{1}} \cdot \ldots \cdot \mathbf{M}_{\ell, x_{\ell}}\right) \cdot\left(\mathbf{M}_{\ell+1, x_{1}} \cdot \ldots \cdot \mathbf{M}_{2 \ell, x_{\ell}}\right) \cdot \ldots \cdot\left(\mathbf{M}_{(c-1) \ell+1, x_{1}} \cdot \ldots \cdot \mathbf{M}_{c \ell, x_{\ell} \ell}\right)\right) \mathbf{v}
$$

Such MBPs are called read-c MBPs. When $c=1$, we say the MBP is read-once.
The following classical result shows that any function computable by logarithmic-depth Boolean circuits can be represented by a matrix branching program.

Theorem 4.1 (Barrington's Theorem [Bar86]). If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by a circuit of depth $d$, then it can be computed by a matrix branching program

$$
\left\{\mathbf{M}_{i, b}: i \in[h:=c \cdot \ell], b \in\{0,1\}\right\}, \mathbf{u}, \mathbf{v}
$$

where $h=O\left(4^{d}\right)$, and all matrices $\mathbf{M}_{i, b} \in\{0,1\}^{5 \times 5}$ are permutations.

## $4.2 \quad \sigma$-Matrix PRFs

We first recall the definition of a pseudorandom function (PRF). Below, $O(\cdot)$ denotes a truly random function.

Definition 4.2. A family of deterministic functions $\mathcal{F}:=\left\{f_{k}: \mathcal{X}_{\lambda} \rightarrow \mathcal{Y}_{\lambda}\right\}$ is called pseudorandom if for all PPT adversaries $\mathcal{A}$,

$$
\left|\operatorname{Pr}_{k, \mathcal{A}}\left[\mathcal{A}^{f_{k}(\cdot)}\left(1^{\lambda}\right)=1\right]-\underset{k, \mathcal{A}}{\operatorname{Pr}}\left[\mathcal{A}^{O(\cdot)}\left(1^{\lambda}\right)=1\right]\right| \leq \operatorname{negl}(\lambda) .
$$

Our arguments will crucially rely on the following relaxation of the notion of a pseudorandom function with outputs in $\mathbb{Z}_{q}$. Informally, it is pseudorandom against adversaries who are only permitted to observe the output values after independent Gaussian noise has been added to each value.

Definition 4.3. Let $q=q(\lambda) \in \mathbb{N}$ and $\sigma=\sigma(\lambda)>0$. A family of deterministic functions $\mathcal{F}:=\left\{f_{k}: \mathcal{X}_{\lambda} \rightarrow \mathbb{Z}_{q(\lambda)}\right\}$ is called $\sigma$-pseudorandom if for all PPT adversaries $\mathcal{A}$,

$$
\left|\operatorname{Pr}_{k, \mathcal{A}, O^{\prime}}\left[\mathcal{A}^{O^{\prime}(\cdot)}\left(1^{\lambda}\right)=1\right]-\operatorname{Pr}_{k, \mathcal{A}}\left[\mathcal{A}^{O(\cdot)}\left(1^{\lambda}\right)=1\right]\right| \leq \operatorname{negl}(\lambda)
$$

where the function $O^{\prime}$ is chosen by sampling discrete Gaussian errors $\left\{e_{\mathbf{x}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}\right\}_{\mathbf{x} \in \mathcal{X}_{\lambda}}$, and on input $\mathbf{x} \in \mathcal{X}_{\lambda}, O^{\prime}$ outputs $O^{\prime}(\mathbf{x})=f_{k}(\mathbf{x})+e_{\mathbf{x}}$.

Given a PPT function aux, we say that $\mathcal{F}$ is additionally pseudorandom in the presence of aux (resp. $\sigma$-pseudorandom in the presence of aux) if the inequality in Definition 4.2 (resp. Definition 4.3) holds even when the adversary is additionally given $\operatorname{aux}(k)$ as input.

As is typical, we will abbreviate "efficiently computable pseudorandom function family" as "PRF". Similarly, we will abbreviate "efficiently computable $\sigma$-pseudorandom function family" as " $\sigma$-PRF".

The $\sigma$-PRFs in this paper will have $\mathcal{X}_{\lambda}=\{0,1\}^{h}$, where $h=h(\lambda) \leq$ poly $(\lambda)$, and will be pseudorandom even against adversaries running in time poly $(\mu)$, where $\mu=2^{h^{2} \lambda} \gg 2^{h}$. Notice that such adversaries have the ability to write down the entire truth table of the $\sigma$-PRF (but with Gaussian errors added) and perform arbitrary polynomial-time computations on it.

We will call a $\sigma$-PRF computable by a poly $(\lambda)$-sized MBP a $\sigma$-matrix $P R F$.
In this section, we show how to obfuscate $\sigma$-matrix PRFs with sufficient security, using evasive LWE. Our main obfuscation construction (Algorithm 3) will use Garg-Gentry-Halevi encodings of the more modern type introduced in their 2015 work [GGH15], or GGH encodings for short. Before we introduce GGH encodings and give our main construction, we need one additional tool, which we provide in the next subsection.

### 4.3 Transforming Read- $c$ PRFs into Read-Once PRFs

Notice that for general read-c $\sigma$-matrix PRFs, it is not the case that all noisy products $\left\{\mathbf{u M}_{\mathbf{x}} \mathbf{v}+\right.$ $\left.e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{h}}$ are pseudorandom- the $\sigma$-PRF guarantee only requires that noisy products corresponding to inputs $\mathbf{x}^{\prime} \in\{0,1\}^{\ell}$ (i.e., with $\mathbf{x}=\mathbf{x}^{\prime}\left|\mathbf{x}^{\prime}\right| \cdots \mid \mathbf{x}^{\prime}$ ) need be pseudorandom. However, our proof
techniques will require all products to be pseudorandom. The following construction is a generic transformation that modifies a read- $c \sigma$-matrix PRF so that all its products are pseudorandom, without losing functionality.

Construction 4.4. On input a read-c, height-h MBP $f:=\left(\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v}\right)$ :

- Define $\mathbf{C}_{i, b}=\operatorname{diag}\left(y_{1}, \ldots, y_{2 \ell},-1, \ldots,-1\right)$, where $\ell=c \cdot h$, and for $1 \leq j \leq \ell$ and $b \in\{0,1\}$,

$$
y_{2 j-b}= \begin{cases}0 & i \bmod \ell=j \text { and } b^{\prime}=b \\ 1 & \text { otherwise } .\end{cases}
$$

- Sample matrices $\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, 2 \sqrt{n}}^{n \times n}$, and a vector $\mathbf{a} \leftarrow \mathbb{Z}_{q}^{n}$.
- Output $g:=\left(\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v}\right)$, where

$$
\begin{aligned}
& -\mathbf{M}_{i, b}^{\prime}=\operatorname{diag}\left(\mathbf{M}_{i, b}, \mathbf{C}_{i, b} \otimes \mathbf{S}_{i, b}\right), \\
& -\mathbf{u}^{\prime}:=\binom{\mathbf{u}}{\mathbf{1} \otimes \mathbf{e}_{1}}^{T}, \\
& -\mathbf{v}^{\prime}:=\binom{\mathbf{v}}{\mathbf{1} \otimes \mathbf{a}} .
\end{aligned}
$$

Lemma 4.5. Let $g,\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}$ be as in Construction 4.4 on input $f$. Then for all $\mathbf{x} \in\{0,1\}^{\ell}$,

$$
g(\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x})=f(\mathbf{x}),
$$

where we recall that $\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x}$ is the c-fold concatenation of $\mathbf{x}$ with itself.
Moreover, assuming $\operatorname{LWE}_{n^{\prime}, \operatorname{poly}\left(n^{\prime}\right), q, \sigma}^{\delta}$, and letting

- $\left\{e_{\mathbf{x}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}\right\}_{\mathbf{x} \in\{0,1\}^{\ell}}$,
- $\left\{e_{\mathbf{y}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}\right\}_{\mathbf{y} \in\{0,1\}^{h}}$, and
- $\mathbf{y}^{\prime} \in\{0,1\}^{h}$ range over all $\mathbf{y}^{\prime}$ not of the form $\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x}$,
we have that

$$
\left\{g(\mathbf{y})+e_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{h}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}} \approx_{c}\left\{f(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{\ell}},\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{y}^{\prime}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}
$$

that is, all poly $(\mu)$-time adversaries have distinguishing advantage at most $\operatorname{negl}(f(n))$.
Proof. It is straightforward to verify that for all $\mathbf{x} \in\{0,1\}^{h}$, all $b \in\{0,1\}$, and all $j \in[\ell]$, $\left(\mathbf{C}_{\mathbf{x}}\right)_{2 j-b, 2 j-b}=1$ if and only if $\mathbf{x}_{i}=1-b$ for all $i$ with $i \bmod \ell=j$; otherwise $\left(\mathbf{C}_{\mathbf{x}}\right)_{2 j-b, 2 j-b}=0$. It follows that $\mathbf{1 C}_{\mathbf{x}} \mathbf{1}^{T}=\sum_{i=1}^{2 \ell}\left(\mathbf{C}_{\mathbf{x}}\right)_{i i}-\ell \leq 0$, with equality iff for all $j, \mathbf{x}_{j}=\mathbf{x}_{j+\ell}=\cdots=\mathbf{x}_{j+(c-1) \ell}$; that is, $x=x^{\prime}\left|x^{\prime}\right| \cdots \mid x^{\prime}$.
Notice that, for all $\mathbf{x} \in\{0,1\}^{h}$,

$$
\left(\mathbf{u}^{\prime}\right)^{T} \mathbf{M}_{\mathbf{x}}^{\prime} \mathbf{v}^{\prime}=\mathbf{u}^{T} \mathbf{M}_{\mathbf{x}} \mathbf{v}+\left(\mathbf{1}^{\mathbf{T}} \mathbf{C}_{\mathbf{x}} \mathbf{1}\right) \cdot \mathbf{1}^{T} \mathbf{S}_{\mathbf{x}} \mathbf{a}
$$

This implies the claimed functionality; namely, if $\mathbf{x}=\mathrm{x}^{\prime}\left|\mathrm{x}^{\prime}\right| \cdots \mid \mathrm{x}^{\prime}$, then $\mathbf{1 C}_{\mathbf{x}} \mathbf{1}^{T}=0$, and

$$
\left(\mathcal{A}\left(f_{k}\right)\right)(\mathbf{x})=\left(\mathbf{u}^{\prime}\right)^{T} \mathbf{M}_{\mathbf{x}}^{\prime} \mathbf{v}^{\prime}=\mathbf{u}^{T} \mathbf{M}_{\mathbf{x}} \mathbf{v}=f_{k}\left(\mathbf{x}^{\prime}\right)
$$

On the other hand, if $\mathbf{x}$ is not a $c$-fold repetition, then $\mathbf{1}^{T} \mathbf{C}_{\mathbf{x}} \mathbf{1} \neq 0$. And by BLMR PRF security (Lemma 3.9 along with Remark 3.10) for independent $e_{\mathbf{x}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}$,

$$
\left\{y_{\mathbf{x}} \mathbf{1}^{T} \mathbf{S}_{\mathbf{x}} \mathbf{a}+e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{h}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}} \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in\{0,1\}^{h}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}},
$$

where $y_{\mathbf{x}}:=\mathbf{1}^{T} \mathbf{C}_{\mathbf{x}} \mathbf{1} \in \mathbb{Z}_{q}$, and all poly $(\mu)$-time adversaries have distinguishing advantage at most $\operatorname{neg}(f(n))$. By a one-time pad argument, this immediately implies the claimed indistinguishability.

### 4.4 GGH Encodings

To construct our obfuscation scheme, we rely on the machinery of Gentry, Gorbunov, and Halevi [GGH15], which we hereby refer to as GGH encodings. (This definition is closely related to the definitions given in [CVW18, VWW22].)

Construction 4.6. Given as input matrices $\left\{\mathbf{M}_{i, b} \in \mathbb{Z}_{q}^{n_{i-1} \times n_{i}}\right\}_{i \in[h], b \in\{0,1\}}$, ${ }^{6}$ the randomized algorithm ggh.encode outputs

$$
\begin{aligned}
& \left\{\mathbf{D}_{1, b}:=\mathbf{M}_{1, b} \mathbf{A}_{1}+\mathbf{E}_{1, b}\right\}_{b \in\{0,1\}}, \\
& \left\{\mathbf{D}_{i, b}:=\mathbf{A}_{i-1}^{-1}\left(\mathbf{M}_{i, b} \mathbf{A}_{i}+\mathbf{E}_{i, b}, \sigma\right)\right\}_{2 \leq i \leq h-1, b \in\{0,1\}}, \\
& \left\{\mathbf{D}_{h, b}:=\mathbf{A}_{h-1}^{-1}\left(\mathbf{M}_{h, b}+\mathbf{E}_{h, b}, \sigma\right)\right\}_{b \in\{0,1\}},
\end{aligned}
$$

where $\sigma=2 \sqrt{n \log q}, \mathbf{A}_{i} \in \mathbb{Z}_{q}^{n_{i} \times m_{i}}$ is sampled using Lemma 3.2, $\mathbf{E}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n_{i-1} \times m_{i}}$, and $m_{i}:=$ $4 n_{i} \log q$.

We extend the construction to MBPs $P=\left(\left\{\mathbf{M}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v}\right)$ via

$$
\operatorname{ggh} . \operatorname{encode}(P):=\operatorname{ggh} . \operatorname{encode}\left(\left\{\mathbf{M}_{i, b}^{\prime}\right\}_{i, b}\right),
$$

where $\mathbf{M}_{1, b}^{\prime}:=\mathbf{u M}_{1, b}, \mathbf{M}_{h, b}^{\prime}:=\mathbf{M}_{h, b} \mathbf{v}$, and for $2 \leq i \leq h-1, \mathbf{M}_{i, b}^{\prime}:=\mathbf{M}_{i, b}$.
The next lemma, which is similar to [VWW22, Lemma 4.3] and [CVW18, Lemma 5.3], captures the functionality provided by the construction, which is roughly that if the input matrices $\mathbf{M}_{i, b}$ have small entries, then for all $\mathbf{x} \in\{0,1\}^{h},\left|\mathbf{D}_{\mathbf{x}}-\mathbf{M}_{\mathbf{x}}\right|$ is small.

Lemma 4.7. Except with probability negl $(\mu)$ over $\left\{\mathbf{D}_{i, b}\right\}_{i \in[h], b \in\{0,1\}} \leftarrow \operatorname{ggh} . \operatorname{encode}\left(\left\{\mathbf{M}_{i, b}\right\}_{i, b}, \sigma\right)$, letting $B:=\max \left\{\sigma \sqrt{n}, \max _{i \in[h-1], b \in\{0,1\}}\left\|\mathbf{M}_{i, b}\right\|_{\infty}\right\}$ we have that for all $\mathbf{x} \in\{0,1\}^{h}$,

$$
\left\|\mathbf{D}_{\mathbf{x}}-\mathbf{M}_{\mathbf{x}}\right\|_{\infty} \leq h \cdot\left(\prod_{i=1}^{h-1} m_{i}\right) \cdot B^{h}
$$

[^6]We defer the simple proof to Appendix A.3.

### 4.5 Evasive LWE

To argue the security property of GGH encodings that we need, we use the following evasive LWE assumption from [VWW22].
Let $\sigma, \sigma^{\prime} \in \mathbb{R}_{>0}$, and let Samp be a PPT algorithm that on input $1^{\lambda}$ outputs

$$
\mathbf{S} \in \mathbb{Z}_{q}^{n^{\prime} \times n}, \mathbf{P} \in \mathbb{Z}_{q}^{n \times t}, \text { aux } \in\{0,1\}^{*}
$$

We define the following advantage functions:

$$
\begin{gathered}
\operatorname{Adv}_{\mathcal{A}_{0}}^{\text {pre }}(\lambda):=\operatorname{Pr}\left[\mathcal{A}_{0}\left(\mathbf{S B}+\mathbf{E}, \mathbf{S P}+\mathbf{E}^{\prime}, \text { aux }\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}_{0}\left(\mathbf{C}, \mathbf{C}^{\prime}, \text { aux }\right)=1\right], \\
\operatorname{Adv}_{\mathcal{A}_{1}}^{\text {post }}(\lambda):=\operatorname{Pr}\left[\mathcal{A}_{1}(\mathbf{S B}+\mathbf{E}, \mathbf{D}, \text { aux })=1\right]-\operatorname{Pr}\left[\mathcal{A}_{1}(\mathbf{C}, \mathbf{D}, \text { aux })=1\right]
\end{gathered}
$$

where

$$
\begin{aligned}
& (\mathbf{S}, \mathbf{P}, \text { aux }) \leftarrow \operatorname{Samp}\left(1^{\lambda}\right) \\
& \mathbf{B} \leftarrow \mathbb{Z}_{q}^{n \times m}, \mathbf{E} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n^{\prime} \times m}, \mathbf{E}^{\prime} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{n^{\prime} \times t}, \\
& \mathbf{C} \leftarrow \mathbb{Z}_{q}^{n^{\prime} \times m}, \mathbf{C}^{\prime} \leftarrow \mathbb{Z}_{q}^{n^{\prime} \times t}, \\
& \mathbf{D} \leftarrow \mathbf{B}^{-1}(\mathbf{P}, \sigma) .
\end{aligned}
$$

We say that the evasive $L W E$ assumption eLWE(Samp, $\sigma, \sigma^{\prime}$ ) holds if there exists some polynomial $Q(\cdot)$ such that for every PPT $\mathcal{A}_{1}$ there exists another PPT $\mathcal{A}_{0}$ such that

$$
\operatorname{Adv}_{\mathcal{A}_{0}}^{\text {pre }}(\lambda) \geq \operatorname{Adv}_{\mathcal{A}_{1}}^{\text {post }}(\lambda) / Q(\lambda)-\operatorname{negl}(\lambda)
$$

and $\operatorname{time}\left(\mathcal{A}_{0}\right) \leq \operatorname{time}\left(\mathcal{A}_{1}\right) \cdot Q(\lambda)$. In this work, we will assume evasive LWE with $\sigma=\sigma^{\prime}$.

### 4.6 Obfuscating Sufficiently Secure $\sigma$-matrix PRFs

The samplers Samp in our evasive LWE assumption will depend on the matrices sampled by ggh.encode, so we write these explicitly. The outputs of ggh.encode (and our construction) are:

$$
\left\{\mathbf{D}_{1, b} \in \mathbb{Z}_{q}^{m}\right\}_{b \in\{0,1\}},\left\{\mathbf{D}_{i, b} \in \mathbb{Z}_{q}^{m \times m}\right\}_{2 \leq i \leq h, b \in\{0,1\}},\left\{\mathbf{D}_{h, b} \in \mathbb{Z}_{q}^{m}\right\}_{b \in\{0,1\}},
$$

[^7]```
Algorithm 3 GGH Encoding for \(\sigma\)-matrix PRFs
    Input: A sample \(f_{k}\) from a height- \(h \sigma^{\prime}\)-matrix \(\operatorname{PRF}\left\{f_{k}\right\}_{k \in \mathcal{K}_{\lambda}}\) (in the presence of aux).
```

    Algorithm:
    - Use Lemma 4.5 to convert $f_{k}$ into a read-once $\sigma^{\prime}$-matrix PRF

$$
g_{k}=:\left(\left\{\mathbf{M}_{i, b} \in \mathbb{Z}_{q}^{w \times w}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v} \in \mathbb{Z}_{q}^{w \times 1}\right) .
$$

- Sample $\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}$, where $\sigma=2 \sqrt{n} .^{7}$ Set $\widehat{\mathbf{S}}_{i, b}:=\operatorname{diag}\left(\mathbf{M}_{i, b}, \mathbf{S}_{i, b}\right) \in \mathbb{Z}_{q}^{(n+w) \times(n+w)} .8$
- Set $\mathbf{u}^{\prime}=\left(\mathbf{u}^{T} \mid \mathbf{1}_{n}\right)^{T} \in \mathbb{Z}_{q}^{(n+w) \times 1}$ and $\mathbf{v}^{\prime}=\left(\mathbf{v}^{T} \mid \mathbf{0}_{n}\right)^{T} \in \mathbb{Z}_{q}^{(n+w) \times 1}$.
- Set $P=\left(\left\{\widehat{\mathbf{S}}_{i, b}\right\}_{i, b}, \mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right)$.
- Compute $\left\{\mathbf{D}_{i, b}\right\}_{i \in[h], b \in\{0,1\}} \leftarrow \operatorname{ggh} . \operatorname{encode}(P)$.

Output: $\left\{\mathbf{D}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}$

$$
\begin{aligned}
& \left\{\mathbf{D}_{1, b}:=\mathbf{u}^{\prime} \widehat{\mathbf{S}}_{1, b} \mathbf{A}_{1}+\mathbf{E}_{1, b}\right\}_{b \in\{0,1\}}, \\
& \left\{\mathbf{D}_{i, b}:=\mathbf{A}_{i-1}^{-1}\left(\widehat{\mathbf{S}}_{i, b} \mathbf{A}_{i}+\mathbf{E}_{i, b}, \sigma\right)\right\}_{2 \leq i \leq h-1, b \in\{0,1\}}, \\
& \left\{\mathbf{D}_{h, b}:=\mathbf{A}_{h-1}^{-1}\left(\widehat{\mathbf{S}}_{h, b} \mathbf{v}^{\prime}+\mathbf{E}_{h, b}, \sigma\right)\right\}_{b \in\{0,1\}},
\end{aligned}
$$

where

- $m=4(w+n) \log q$,
- for $j \in[h-1], \mathbf{A}_{i} \approx_{s} \mathcal{U}\left(\mathbb{Z}_{q}^{(w+n) \times m}\right)$ with security parameter $\mu$,
- and $\mathbf{E}_{1, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{1 \times m}, \mathbf{E}_{2, b}, \ldots, \mathbf{E}_{h-1, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{(w+n) \times m}, \mathbf{E}_{h, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{(w+n) \times 1}$.

Now we can describe the samplers $\operatorname{Samp}_{\mathcal{F}, \text { aux }, 1}, \ldots, \operatorname{Samp}_{\mathcal{F}, \text { aux }, h-1}$ appearing in our evasive LWE assumptions.

Definition 4.8. Let $\mathcal{F}=\left\{f_{k}\right\}_{k \in \mathcal{K}_{\lambda}}$ be a height- $h$ MBP, and aux be a PPT algorithm. For $1 \leq j \leq h-1$, the sampling algorithm Samp $\mathcal{F}_{\mathcal{F}, \text { aux }, j}$ is defined as follows. On input $1^{\lambda}$, Samp $_{\mathcal{F}, \text { aux }, j}$ samples $k \leftarrow \mathcal{K}_{\lambda}$ and samples matrices as in Algorithm 3 on input $f_{k}$. It outputs

$$
\begin{aligned}
\mathbf{S} & =\left\{\left(\mathbf{u}^{T} \mid \mathbf{1}_{n}\right)^{T} \hat{\mathbf{S}}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}} \\
\mathbf{P} & =\left(\hat{\mathbf{S}}_{j+1,0} \mathbf{A}_{j+1}+\mathbf{E}_{j+1,0} \mid \hat{\mathbf{S}}_{j+1,1} \mathbf{A}_{j+1}+\mathbf{E}_{j+1,1}\right), \\
\operatorname{aux} & =\left(\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)
\end{aligned}
$$

With the necessary samplers defined, we can now state our technical obfuscation result.
Theorem 4.9. Let $\sigma \geq \sqrt{2 n}$ and $B \geq \sigma \sqrt{n}$, and suppose $\mathcal{F}:=\left\{f_{k}\right\}_{k \in \mathcal{K}_{\lambda}}$ is a height-h MBP with all entries of $\mathbf{u}$ and the $\mathbf{M}_{i, b}$ bounded by B. Let $\left\{\mathbf{D}_{i, b}^{(k)}\right\}_{i \in[h], b \in\{0,1\}}$ be the output of Algorithm 3 on input $f_{k}$, and let $m:=4(n+w) \log q$. Then for all $k \in \mathcal{K}_{\lambda}$, except with probability $\operatorname{negl}(\mu)$, we have
that for all $\mathbf{x} \in\{0,1\}^{\ell}$,

$$
\left|f_{k}(\mathbf{x})-\mathbf{D}_{\mathbf{y}}^{(k)}\right| \leq h(m B)^{h},
$$

where $\mathbf{y}:=\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x} \in\{0,1\}^{h}$.
Moreover, letting $\sigma^{\prime}=2^{h^{3}} \cdot\left(n^{2} \sigma\right)^{h+1}$, and assuming $\operatorname{LWE}_{n, \text { poly }(n), q, \sigma}$ and $\operatorname{eLWE}_{\text {Samp }_{\mathcal{F}, \text { aux }, j, j}, \sigma^{\prime}, \sigma^{\prime}}$ for all $1 \leq j \leq h-1$, if $\mathcal{F}$ is a $\sigma^{\prime}$-matrix PRF such that poly $(\mu)$-time adversaries achieve distinguishing advantage at most $\operatorname{negl}\left(2^{h^{2} \lambda}\right)$, then there is a distribution $\mathcal{D}$ (independent of $k$ ) such that for $k \leftarrow \mathcal{K}_{\lambda}$,

$$
\left\{\mathbf{D}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \operatorname{aux}(k) \approx_{c} \mathcal{D}, \operatorname{aux}(k),
$$

such that poly $(\mu)$-time adversaries achieve distinguishing advantage at most negl $\left(2^{h^{2} \lambda}\right)$.
Proof. The analysis in large part follows that of [VWW22, Theorem 5.1].
First, by Lemma 4.5, we have that $\left\{g_{k}\right\}_{k}$ is also a height- $h \sigma$-matrix PRF with the same security guarantee as $\left\{f_{k}\right\}_{k}$; namely that all poly $(\mu)$-time adversaries achieve distinguishing advantage at most negl( $\left.2^{h^{2} \lambda}\right)$.
By Lemma 3.7, except with probability negl $(\mu)$, the matrices of $g_{k}$ have entries bounded in absolute value by $B$. Thus for all $\mathbf{y} \in\{0,1\}^{h}$, we have

$$
\begin{equation*}
\left|\mathbf{D}_{\mathbf{y}}-\left(\mathbf{u}^{\prime}\right)^{T} \widehat{\mathbf{S}}_{\mathbf{y}} \mathbf{v}^{\prime}\right| \leq h(m B)^{h} \tag{3}
\end{equation*}
$$

by correctness of GGH encodings (Lemma 4.7). Moreover, for all $\mathbf{x} \in\{0,1\}^{\ell}$, letting $\mathbf{y}=\mathbf{x}|\mathbf{x}| \cdots \mid \mathbf{x}$, we have

$$
\left(\mathbf{u}^{\prime}\right)^{T} \widehat{\mathbf{S}}_{\mathbf{y}} \mathbf{v}^{\prime}=\mathbf{u}^{T} \mathbf{M}_{\mathbf{y}} \mathbf{v}=g_{k}(\mathbf{x})=f_{k}(\mathbf{x}),
$$

where the first equality is algebraic, the second is by definition, and the third is by the guarantee of Lemma 4.5. Substituting this equality into (3) proves the first part of the theorem.
For the second part, we will argue that it suffices to prove the following claim.
Claim 4.10. Assume $\operatorname{LWE}_{n, \text { poly }(n), q, \sigma}$ and $\operatorname{eLWE}_{\text {Samp }_{\mathcal{F}, \text { aux }, j, \sigma^{\prime}, \sigma^{\prime}}}$ for all $1 \leq j \leq h-1$. Set $d=m$ for $p<h$ and $d=1$ for $p=h$, and $\sigma^{\prime \prime}=\sigma$ for $p=1$ and $\sigma^{\prime \prime}=\sigma^{\prime}$ for $p>1$. Sample $\left\{\mathbf{e}_{\mathbf{y}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime \prime}}^{1 \times d}\right\}_{\mathbf{y} \in\{0,1\}^{p}}$, and let $\mathbf{A}_{h}:=\mathbf{v}^{\prime}$. Then for all $1 \leq p \leq h$,

$$
\begin{aligned}
& \left(\left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \widehat{\mathbf{S}}_{\mathbf{y}} \mathbf{A}_{p}+\mathbf{E}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{p}},\left\{\mathbf{D}_{i, b}\right\}_{i \geq p+1, b \in\{0,1\}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}\right) \\
& \approx_{c}\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times d}\right\}_{\mathbf{y} \in\{0,1\}^{p}},\left\{\mathbf{D}_{i, b}\right\}_{i \geq p+1, b \in\{0,1\}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}\right),
\end{aligned}
$$

where all poly $(\mu)$-time adversaries have distinguishing advantage $\operatorname{negl}\left(2^{h^{2} \lambda}\right)$.
Indeed, the claim with $p=1$ is exactly

$$
\begin{align*}
& \left(\left\{\mathbf{D}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right) \\
& \approx_{c}\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}\right\}_{b \in\{0,1\}},\left\{\mathbf{D}_{i, b}\right\}_{2 \leq i \leq h, b \in\{0,1\}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right) . \tag{4}
\end{align*}
$$

Now, the only place that $\mathbf{A}_{1}$ appears on the right-hand side of (4) is in $\mathbf{D}_{2,0}$ and $\mathbf{D}_{2,1}$. But

$$
\binom{\mathbf{D}_{2,0}}{\mathbf{D}_{2,1}}=\mathbf{A}_{1}^{-1}\left(\binom{\widehat{\mathbf{S}}_{2,0}}{\widehat{\mathbf{S}}_{2,1}} \mathbf{A}_{2}+\binom{\mathbf{E}_{2,0}}{\mathbf{E}_{2,1}}\right) .
$$

Since $\binom{\mathbf{E}_{2,0}}{\mathbf{E}_{2,1}}$ is distributed as $\mathcal{D}_{\mathbb{Z}, \sigma}^{2(w+n) \times m}$, and does not appear anywhere else on the right-hand side of Eq. (4), Lemma 3.4 allows us to replace $\binom{\mathbf{D}_{2,0}}{\mathbf{D}_{2,1}}$ with $\mathcal{D}_{\mathbb{Z}, \sigma}^{2(w+n) \times m}$, with security parameter $\mu$. But in the resulting hybrid, $\mathbf{A}_{2}$ only appears in $\mathbf{D}_{3,0}$ and $\mathbf{D}_{3,1}$. Hence we can repeat the argument to replace $\mathbf{D}_{3, b}$ with Gaussian samples. Continuing in this way, we get that

$$
\begin{aligned}
& \left\{\mathbf{D}_{1, b}\right\}_{b \in\{0,1\}},\left\{\mathbf{D}_{i, b}\right\}_{2 \leq i \leq h, b \in\{0,1\}}, \operatorname{aux}(k) \\
& \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{m \times 1}\right\}_{b \in\{0,1\}},\left\{\mathcal{D}_{\mathbb{Z}, \sigma}^{(w+n) \times m}\right\}_{2 \leq i \leq h, b \in\{0,1\}}, \operatorname{aux}(k)
\end{aligned}
$$

with security parameter $\mu$, as desired.
It remains to prove Claim 4.10. We proceed by induction in decreasing order of $p$.

Base case. The base case $p=h$ is

$$
\left(\left\{g_{k}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{h}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right) \approx_{c}\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in\{0,1\}^{h}}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right),
$$

where $g_{k}(\mathbf{x})=\mathbf{u}^{\prime} \cdot \widehat{\mathbf{S}}_{\mathbf{x}} \cdot \mathbf{v}^{\prime}$.
To prove the base case, start with our assumption that $\mathcal{F}$ is a $\sigma$-PRF in the presence of aux such that $\operatorname{poly}(\mu)$-time adversaries obtain advantage at most negl $\left(2^{h^{2} \lambda}\right)$; that is, letting $\mathbf{z}=\mathbf{y}|\mathbf{y}| \cdots \mid \mathbf{y}$, for random $k \leftarrow \mathcal{K}_{\lambda}$,

$$
\left(\left\{f_{k}(\mathbf{z})+e_{\mathbf{Z}}\right\}_{\mathbf{y} \in\{0,1\}^{\ell}}, \operatorname{aux}(k)\right) \approx_{c}\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{y} \in\{0,1\}^{\ell}}, \operatorname{aux}(k)\right) .
$$

On the other hand, Lemma 4.5 guarantees that for any fixed key $k$, over the randomness of the $\mathbf{S}_{i, b}$ and the $e_{\mathbf{y}}$,

$$
\left\{g_{k}(\mathbf{y})+e_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{h}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}} \approx_{c}\left\{f_{k}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{\ell}},\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{y}^{\prime}},\left\{\mathbf{S}_{i, b}\right\}_{i \in[h], b \in\{0,1\}},
$$

where again, poly $(\mu)$-time adversaries obtain advantage at most negl $\left(2^{h^{2} \lambda}\right)$. Applying the first indistinguishability to the $\left\{f_{k}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}}$ term of the second and using the fact that the $\mathbf{S}_{i, b}$ are sampled independently of $k$ yields the base case.

Inductive step. Suppose Claim 4.10 is true for $p=j+1$; we will prove it for $p=j$. For all $i \in[h]$ and all $\mathbf{y} \in\{0,1\}^{i}$, let $\mathbf{E}_{\mathbf{y}} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{1 \times m}$ (previously, $\mathbf{E}_{\mathbf{y}}$ was only defined for $i=h$ ). Recall that $\mathbf{y} \mid b$ denotes the concatenation of bitstring $\mathbf{y}$ with bit $b$. We claim that all poly $(\mu)$-time adversaries
obtain advantage at most negl $\left(2^{h^{2} \lambda}\right)$ in distinguishing the following sequence of hybrids:

$$
\begin{align*}
& \left(\left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}} \mathbf{A}_{j}+\mathbf{E}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}},\right. \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}} \cdot\left(\hat{\mathbf{S}}_{j+1, b} \mathbf{A}_{j+1}+\mathbf{E}_{j+1, b}\right)+\mathbf{E}_{\mathbf{y} \mid b}\right\}_{\mathbf{y} \in\{0,1\}^{j}, b \in\{0,1\}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{1}\\
& =\left(\left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}} \mathbf{A}_{j}+\mathbf{E}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}}\right. \text {, } \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y} \mid b} \mathbf{A}_{j+1}+\mathbf{E}_{\mathbf{y} \mid b}+\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \widehat{\mathbf{S}}_{\mathbf{y}} \mathbf{E}_{j+1, b}\right\}_{\mathbf{y} \in\{0,1\}^{j}, b \in\{0,1\}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{2}\\
& \approx_{s}\left(\left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}} \mathbf{A}_{j}+\mathbf{E}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}},\right. \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}^{\prime}} \mathbf{A}_{j+1}+\mathbf{E}_{\mathbf{y}^{\prime}}\right\}_{\mathbf{y}^{\prime} \in\{0,1\}^{j+1}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{3}\\
& =\left(\left\{\mathbf{u M}_{\mathbf{y}} \overline{\mathbf{A}_{j}}+\left(\mathbf{1}_{n}\right) \mathbf{S}_{\mathbf{y}} \underline{\mathbf{A}_{j}}+\mathbf{E}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}},\right. \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}^{\prime}} \mathbf{A}_{j+1}+\mathbf{E}_{\mathbf{y}^{\prime}}\right\}_{\mathbf{y} \in\{0,1\}^{j+1}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{4}\\
& \approx_{c}\left(\left\{\mathbf{u M}_{\mathbf{y}} \overline{\mathbf{A}_{j}}+\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}\right\}_{\mathbf{y} \in\{0,1\}^{j}},\right. \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}^{\prime}} \mathbf{A}_{j+1}+\mathbf{E}_{\mathbf{y}^{\prime}}\right\}_{\mathbf{y} \in\{0,1\}^{j+1}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{5}\\
& =\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}\right\}_{\mathbf{y} \in\{0,1\}^{j}}\right. \text {, } \\
& \left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}^{\prime}} \mathbf{A}_{j+1}+\mathbf{E}_{\mathbf{y}^{\prime}}\right\}_{\mathbf{y} \in\{0,1\}^{j+1}}, \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)  \tag{6}\\
& \approx_{c}\left(\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}\right\}_{\mathbf{y} \in\{0,1\}^{j}},\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}\right\}_{\mathbf{y}^{\prime} \in\{0,1\}^{j+1}},\right. \\
& \left.\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right) . \tag{7}
\end{align*}
$$

We prove each step as follows:

- $\left(\mathrm{H}_{1}\right)=\left(\mathrm{H}_{2}\right)$ by linear algebra.
- $\left(\mathrm{H}_{2}\right) \approx_{s}\left(\mathrm{H}_{3}\right)$ by noise-flooding (Lemma 3.8). In particular, $\mathbf{E}_{\mathbf{y} \mid b}$ is a discrete Gaussian with parameter $\sigma^{\prime}$ satisfying $\sigma^{\prime} \geq\left(2^{h^{2} \lambda}\right)^{\omega(1)}\left\|\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \widehat{\mathbf{S}}_{\mathbf{y}} \mathbf{E}_{j-1, b}\right\|_{\infty}$.
- $\left(\mathrm{H}_{3}\right)=\left(\mathrm{H}_{4}\right)$ by definition of $\widehat{\mathbf{S}}_{\mathbf{y}}$.
- $\left(\mathrm{H}_{4}\right) \approx_{c}\left(\mathrm{H}_{5}\right)$ by BLMR security (Lemma 3.9) of the family $\left\{\left(\mathbf{1}_{n}\right) \mathbf{S}_{\mathbf{y}} \mathbf{A}_{j}+\mathbf{E}_{\mathbf{y}}\right\}$ with secret $\mathbf{A}_{j}$. Note that the parameters of this family are exactly the "in particular" parameters of the lemma statement.
- $\left(\mathrm{H}_{5}\right)=\left(\mathrm{H}_{6}\right)$ since the additive $\mathcal{U}\left(\mathbb{Z}_{q}\right)^{1 \times m}$ acts as a one-time pad.
- $\left(\mathrm{H}_{6}\right) \approx_{c}\left(\mathrm{H}_{7}\right)$ by invoking the inductive hypothesis.

Now, we may apply evasive LWE with the following choices of variables, where we view $\{\cdot\}$ as stacking the matrices vertically.

$$
\begin{aligned}
\mathbf{S} & =\left\{\left(\mathbf{u} \mid \mathbf{1}_{n}\right) \hat{\mathbf{S}}_{\mathbf{y}}\right\}_{\mathbf{y} \in\{0,1\}^{j}}, \\
\mathbf{B} & =\mathbf{A}_{j}, \\
\mathbf{P} & =\left(\hat{\mathbf{S}}_{j+1,0} \mathbf{A}_{j+1}+\mathbf{E}_{j+1,0} \mid \hat{\mathbf{S}}_{j+1,1} \mathbf{A}_{j+1}+\mathbf{E}_{j+1,1}\right), \\
\operatorname{aux} & =\left(\left\{\mathbf{D}_{i, b}\right\}_{i \geq j+2, b}, \operatorname{aux}(k),\left\{\mathbf{S}_{i, b}\right\}\right)
\end{aligned}
$$

The fact $\left(\mathrm{H}_{1}\right) \approx_{c}\left(\mathrm{H}_{7}\right)$ is (up to rearranging matrices) exactly the precondition of eLWE $\mathrm{Samp}_{\mathcal{F}, \text { aux }, j}, \sigma^{\prime}, \sigma^{\prime}$ :

$$
\left(\mathbf{S B}+\mathbf{E}, \mathbf{S P}+\mathbf{E}^{\prime}, \text { aux }\right) \approx_{c}\left(\mathcal{U}\left(\mathbb{Z}_{q}\right)^{2^{j} \times m}, \mathcal{U}\left(\mathbb{Z}_{q}\right)^{2^{j} \times 2 m}, \text { aux }\right),
$$

where by definition $\mathbf{E} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{2 j \times m}, \mathbf{E}^{\prime} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}^{2 j}$. Thus, by evasive LWE, we have

$$
\left(\mathbf{S B}+\mathbf{E}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right) \approx_{c}\left(\mathcal{U}\left(\mathbb{Z}_{q}\right)^{2^{j} \times m}, \mathbf{B}^{-1}(\mathbf{P}), \text { aux }\right),
$$

which is exactly the statement of the claim with $p=j$. To finish the inductive step, we must write down the security loss from evasive LWE. For $j \in[h]$, let $\mathcal{A}_{j}$ denote an adversary that breaks the indistinguishability of Claim 4.10 with $p=j$.
Then, evasive LWE with security parameter $\lambda^{\prime}=2^{j} \lambda$ (so that $n^{\prime}=2^{j-1}(n+w)$ is bounded by poly $\left.\left(\lambda^{\prime}\right)\right)$ tells us

$$
\operatorname{Adv}\left(\mathcal{A}_{j}\right) \geq \operatorname{Adv}\left(\mathcal{A}_{j-1}\right) / \operatorname{poly}\left(2^{j} \lambda\right), \quad \operatorname{time}\left(\mathcal{A}_{j}\right) \leq \operatorname{time}\left(\mathcal{A}_{j-1}\right) \cdot \operatorname{poly}\left(2^{j} \lambda\right)
$$

which implies

$$
\operatorname{Adv}\left(\mathcal{A}_{h}\right) \geq \operatorname{Adv}\left(\mathcal{A}_{1}\right) / \operatorname{poly}\left(2^{h^{2}} \lambda^{h}\right), \quad \operatorname{time}\left(\mathcal{A}_{h}\right) \leq \operatorname{time}\left(\mathcal{A}_{1}\right) \cdot \operatorname{poly}\left(2^{h^{2}} \lambda^{h}\right)
$$

Thus we need the base case indistinguishability, that is Claim 4.10 with $p=h$, to hold with security parameter $2^{h^{2}} \lambda^{h}$. But the claim in fact holds with security parameter $2^{h^{2} \lambda}>2^{h^{2}} \lambda^{h}$. This completes the proof.

## 5 Witness PRFs for UP

In this section, we first construct witness PRFs for UP, that is, the class of unambiguous nondeterministic polynomial time languages.

### 5.1 Definitions

We first recall the definition of witness PRFs due to Zhandry [Zha16].

Definition 5.1 (Witness PRFs). A witness PRF is a triple of PPT algorithms (Gen, F, Eval) with the following interface and properties.

- Gen is a randomized algorithm that takes as input a security parameter $1^{\lambda}$ and a circuit $R:\{0,1\}^{\ell_{x}} \times\{0,1\}^{\ell_{w}} \rightarrow\{0,1\}^{\ell}$ representing a NP relation. It outputs a (secret) function key fk and a (public) evaluation key ek.
(We will often write $\mathcal{X}, \mathcal{W}$, and $\mathcal{Y}$ for $\{0,1\}^{\ell_{x}},\{0,1\}^{\ell_{w}}$, and $\{0,1\}^{\ell}$ respectively.)
- $\mathrm{F}(\mathrm{fk}, x)$ : On input key fk and statement $x \in \mathcal{X}$, deterministically outputs some $\mathbf{y} \in \mathcal{Y}$.
- Eval(ek, $x, w)$ : On input the evaluation key ek, statement $x \in \mathcal{X}$ and witness $w \in \mathcal{W}$, outputs either $\mathbf{y} \in \mathcal{Y}$ or $\perp$.

Correctness: Except with probability negl $(\lambda)$ over the randomness of Gen, for all $(x, w) \in \mathcal{X} \times \mathcal{W}$,

$$
\text { Eval }(\mathrm{ek}, x, w)= \begin{cases}\mathrm{F}(\mathrm{fk}, x) & \text { if } R(x, w)=1 \\ \perp & \text { if } R(x, w)=0\end{cases}
$$

Security: Consider the following experiment $\operatorname{EXP}_{\mathcal{A}}^{R}(b, \lambda)$ between a challenger $\mathcal{C}$ and adversary $\mathcal{A}$ :

- The challenger runs $(\mathrm{fk}, \mathrm{ek}) \leftarrow \operatorname{Gen}\left(1^{\lambda}, R\right)$ and sends ek to $\mathcal{A}$.
- The adversary can adaptively query instances $x_{i} \in \mathcal{X}$. The challenger replies with $\mathrm{F}\left(\mathrm{fk}, x_{i}\right)$.
- The adversary can make a single challenge query to $x^{*} \in \mathcal{X}$. The challenger responds with $y_{b}$, where $y_{0}:=\mathrm{F}\left(\mathrm{fk}, x^{*}\right)$, and $y_{1} \leftarrow \mathcal{Y}$.
- Again, the adversary can adaptively query instances $x_{i} \in \mathcal{X}$, to which the challenger replies with $\mathrm{F}\left(\mathrm{fk}, x_{i}\right)$.
- The adversary sends a bit $b^{\prime}$ to the challenger.
- The challenger then checks that $x^{*} \notin\left\{x_{i}\right\}$ and that there is no $w$ such that $R\left(x^{*}, w\right)=1$ (i.e., $\left.x^{*} \notin L\right)$. If these checks both pass, the challenger outputs $b^{\prime}$. Otherwise, it outputs a random bit.

Let $W_{b}$ be the event that the challenger outputs 1 in experiment $b$, and define the adversary's advantage to be

$$
\operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\left|\operatorname{Pr}\left[W_{0}\right]-\operatorname{Pr}\left[W_{1}\right]\right| .
$$

Following Zhandry, we say that (Gen, $\mathrm{F}, \mathrm{Eval}$ ) is adaptively interactively secure for a relation $R$ if for all $\operatorname{PPT} \mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\operatorname{neg}(\lambda)$.

Definition 5.2 (Unambiguous non-deterministic polynomial time (UP)). Let $p: \mathbb{N} \rightarrow \mathbb{N}$ be an efficiently computable, polynomially bounded function, and let $L \in$ NP. An efficiently computable relation $R:\{0,1\}^{\alpha} \times\{0,1\}^{p(\alpha)} \rightarrow\{0,1\}$ is a unambiguous non-deterministic polynomial time (UP) relation for $L$ if for all $\alpha \in \mathbb{N}$, for all $\mathbf{x} \in\{0,1\}^{\alpha}$,

- if $\mathbf{x} \in L$, there is a unique $\mathbf{w} \in\{0,1\}^{p(\alpha)}$ such that $R(\mathbf{x}, \mathbf{w})=1$;
- if $\mathbf{x} \notin L$, there are no $\mathbf{w} \in\{0,1\}^{p(\alpha)}$ such that $R(\mathbf{x}, \mathbf{w})=1$.

If $L \in$ NP has a UP relation we say that $L \in \mathrm{UP}$.

### 5.2 Construction

The construction takes inspiration from the witness encryption construction of [VWW22].
Construction 5.3. Let $\alpha=\alpha(\lambda)$, and let $R_{\alpha}:\{0,1\}^{\alpha} \times\{0,1\}^{p(\alpha)} \rightarrow\{0,1\}$ be a UP relation. Choose $\alpha(\lambda) \in \operatorname{poly}(\lambda)$ small enough that $\alpha, p(\alpha) \leq n^{\delta / 10}$. By a classical reduction to CircuitSAT, we may assume without loss of generality that $R_{\alpha}(\mathbf{x}, \mathbf{w})$ is represented by a circuit of depth $O(\log |\alpha+p(\alpha)|)=O(\log \lambda)$. Let $\ell=\alpha+p(\alpha)$.
The generation algorithm $\operatorname{Gen}\left(1^{\lambda}, R_{\alpha}\right)$ proceeds as follows. First, it uses Barrington's theorem (Theorem 4.1) to construct a read-c MBP

$$
\Gamma_{\alpha}=\left(\left\{\mathbf{M}_{i, b} \in\{0,1\}^{v \times v}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{u}, \mathbf{v} \in\{0,1\}^{v},\right)
$$

computing $1-R_{\alpha}$, where $v=O(1), c, l \in \operatorname{poly}(\lambda)$, and $h:=c \cdot \ell$. Specifically, for all $\mathbf{x} \in\{0,1\}^{\alpha}$ and $\mathbf{w} \in\{0,1\}^{\ell}$,

$$
1-R_{\alpha}(\mathbf{x}, \mathbf{w})=\mathbf{u}^{T} \mathbf{M}_{(\mathbf{x}, \mathbf{w})|(\mathbf{x}, \mathbf{w})| \cdots \mid(\mathbf{x}, \mathbf{w})} \mathbf{v}
$$

For $i \in[h]$, it samples $\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}$, and for $i \leq \alpha$, it samples $\mathbf{T}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}$, where $\sigma=\sqrt{2 n}$. Next, it samples matrices

$$
\begin{aligned}
\mathbf{Q}_{i, b} & =\left\{\begin{array}{ll}
\left(\begin{array}{ll}
\mathbf{M}_{i, b} \otimes \mathbf{S}_{i, b} & \\
& \mathbf{T}_{i, b}
\end{array}\right) & 1 \leq i \leq \alpha, \\
\mathbf{M}_{i, b} \otimes \mathbf{S}_{i, b} & \\
& \mathbf{I}
\end{array}\right) \\
\mathbf{L} & =\left(\left(\mathbf{u}^{T} \otimes(1,0, \ldots, 0)\right) \mid(1,0, \ldots, 0)\right), \\
\mathbf{R} & =\binom{\mathbf{v} \otimes \mathbf{a}}{\mathbf{b}},
\end{aligned}
$$

where $\mathbf{a}, \mathbf{b} \leftarrow \mathbb{Z}_{q}^{n}$, and sets $\mathcal{F}:=\left(\mathbf{L},\left\{\mathbf{Q}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{R}\right)$. Finally, it outputs

$$
\begin{aligned}
& \mathrm{fk}:=\left\{\left\{\mathbf{T}_{i, b}\right\}_{i \in[\alpha], b \in\{0,1\}}, \mathbf{b}\right\}, \\
& \text { ek }:=P:=\operatorname{ggh} . \operatorname{encode}(\mathcal{F}) .
\end{aligned}
$$

The other two algorithms are as follows, where $p:=2^{h^{7} \lambda}$ (following Lemma 3.15).

- $\mathrm{F}(\mathrm{fk}, \mathbf{x})$ : Outputs $\left\lfloor\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}\right\rceil_{p} \in \mathbb{Z}_{p}$.
- $\operatorname{Eval}(\mathrm{ek}, \mathbf{x}, \mathbf{w}):$ If $R_{\alpha}(\mathbf{x}, \mathbf{w})=0$, output $\perp$. Else, use ek to compute

$$
y:=\lfloor P(\mathbf{x}, \mathbf{w})\rceil_{p} \in \mathbb{Z}_{p}
$$

and output $y$.
Lemma 5.4. View $\left(\mathbf{L},\left\{\mathbf{Q}_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{R}\right)$ in Construction 5.3 as a family of MBPs $\left\{f_{k}\right\}_{k}$ whose keys are the random matrices $k:=\left(\left\{\mathbf{S}_{i, b}\right\}_{i, b},\left\{\mathbf{T}_{i, b}\right\}_{i, b}\right)$. Let $\sigma=\sqrt{2 n}, \sigma^{\prime}=2^{h^{3} \lambda} \cdot\left(n^{2} \sigma\right)^{h+1}$ (following Lemma 3.9), and let $\operatorname{aux}(k):=\left\{\left\lfloor\mathbf{T}_{\mathbf{x}} \cdot \mathbf{B}\right\rceil_{p}\right\}_{\mathbf{x} \notin L}$. Then $\left\{f_{k}\right\}_{k}$ is a $\sigma^{\prime}$-matrix PRF in the presence of aux such that all poly $(\mu)$-time adversaries have distinguishing advantage at most $\operatorname{negl}\left(2^{-h^{2} \lambda}\right)$.

Proof. Let $\left\{\mathbf{S}_{i, b}\right\}_{i, b},\left\{\mathbf{T}_{i, b}\right\}_{i, b}$ be sampled as in Construction 5.3. We wish to show that for $\left\{e_{\mathbf{x} \mid \mathbf{w}} \leftarrow\right.$ $\left.\mathbf{D}_{\mathbb{Z}, \sigma^{\prime}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}}$,

$$
\begin{equation*}
\left\{\mathbf{L} \mathbf{Q}_{(\mathbf{x}, \mathbf{w})|(\mathbf{x}, \mathbf{w})| \cdots \mid(\mathbf{x}, \mathbf{w})} \mathbf{R}+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}}, \text { aux } \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}}, \text { aux } . \tag{5}
\end{equation*}
$$

For ease of notation, we let $\mathbf{z}:=\mathbf{x} \mid \mathbf{w}, \mathcal{Z}:=\{(\mathbf{x} \mid \mathbf{w}) \mid \mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}\}$, and let

$$
\begin{aligned}
f_{\mathbf{s k}_{1}}(\mathbf{x}) & =\mathbf{1}^{T} \cdot \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b} \in \mathbb{Z}_{q}, & \mathrm{sk}_{1} & =\left\{\left\{\mathbf{T}_{i, b}\right\}, \mathbf{b}\right\} \\
g_{\text {sk }_{2}}(\mathbf{z}) & =\mathbf{1}^{T} \cdot \mathbf{S}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \cdot \mathbf{a} \in \mathbb{Z}_{q}, & \text { sk }_{2} & =\left\{\left\{\mathbf{S}_{i, b}\right\}, \mathbf{a}\right\}
\end{aligned}
$$

where $\mathrm{sk}_{1}$ and $\mathrm{sk}_{2}$ are independently generated according to the distribution in Construction 5.3. Then, we can rewrite:

$$
\begin{align*}
& \left\{\mathbf{L Q}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \mathbf{R}+e_{\mathbf{z}}\right\}_{\mathbf{z} \in \mathbf{Z}}  \tag{6}\\
& =\left\{\left(\mathbf{u}^{T} \mathbf{M}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \mathbf{v}\right) \cdot\left(\mathbf{1}^{T} \mathbf{S}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \cdot \mathbf{a}\right)+\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}+e_{\mathbf{z}}\right\}_{\mathbf{z} \in \mathbf{Z}}  \tag{7}\\
& =\left\{\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=1} \sqcup\left\{\mathbf{1}^{T} \mathbf{S}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \cdot \mathbf{a}+\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}  \tag{8}\\
& =\left\{f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in L} \sqcup\left\{g_{\mathbf{s k}_{\mathbf{2}}}(\mathbf{x}, \mathbf{w})+f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0 .} . \tag{9}
\end{align*}
$$

We obtain the first equality by definition of $\mathbf{L}, \mathbf{Q}_{i, b}, \mathbf{R}$. We obtain the second inequality using the assumption that $\mathbf{u M}_{\mathbf{z}|\mathbf{z}| \cdots \mid \mathbf{z}} \mathbf{v}=1-R(\mathbf{z})$. Finally, we obtain the last equality by using the definition of $f_{\mathrm{sk}_{1}}$ and $g_{\mathrm{sk}_{2}}$, and by using the fact that the language is in UP to re-index the first term in terms of only $\mathbf{x}$. We can also rewrite aux $:=\left\{\left\lfloor\mathbf{T}_{\mathbf{x}} \cdot \mathbf{B}\right\rceil_{p}\right\}_{\mathbf{x} \notin L}=\left\{\left\lfloor f_{\mathbf{s k}_{1}}(\mathbf{x})\right\rangle_{p}\right\}_{\mathbf{x} \notin L}$.
Now, we proceed in hybrids. Note we allow the reductions below to run in time poly $(\mu) \geq$ poly $(|\mathcal{X}|,|\mathcal{W}|, \lambda)$, and bound the distinguishing probability by neg| $\left(2^{-h^{2} \lambda}\right)$.

- $\mathrm{H}_{0}$ : This is the real distribution of Construction 5.3. Sample $\mathrm{sk}_{1}$, $\mathrm{sk}_{2}$, and aux as in Construction 5.3, and output

$$
\left\{f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in L} \sqcup\left\{g_{\mathrm{sk}_{2}}(\mathbf{x}, \mathbf{w})+f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}, \text { aux }=\left\{\left\lfloor f_{\mathrm{sk}_{1}}(\mathbf{x})\right\rceil_{p}\right\}_{\mathbf{x} \notin L}
$$

- $\mathrm{H}_{1}$ : Output

$$
\left\{f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in L} \sqcup\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}, \text { aux } .
$$

Indeed, we have

$$
\begin{aligned}
& \left\{g_{\mathbf{s k}_{2}}(\mathbf{x}, \mathbf{w})+f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x} \mid \mathbf{w}}\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0} \\
& \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)+f_{\mathbf{s k}_{1}}(\mathbf{x})\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0} \\
& =\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0} .
\end{aligned}
$$

Here, the $\approx_{c}$ follows from BLMR PRF security (Lemma 3.9), and the $=$ is by a one-time pad argument.

- $\mathrm{H}_{2}$ : Replace aux as follows: output

$$
\left\{f_{\mathbf{s k}_{1}}(\mathbf{x})+e_{\mathbf{x}}\right\}_{\mathbf{x} \in L} \sqcup\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}, \text { aux }:=\left\{\left\lfloor f_{\mathbf{s k}_{1}}(\mathbf{x})+\mathbf{e}_{\mathbf{x}}^{\prime}\right\rceil_{p}\right\}_{\mathbf{x} \notin L}
$$

where $\mathbf{e}_{\mathbf{x}}^{\prime} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma^{\prime}}$. This follows from Lemma 3.13.

- $\mathbf{H}_{3}$ : Replace $\left\{f_{\mathbf{s k}_{1}}(\mathbf{x})+\mathbf{e}_{\mathbf{x}}\right\}_{\mathbf{x} \in L} \sqcup\left\{f_{\mathrm{sk}_{1}}(\mathbf{x})+\mathbf{e}_{\mathbf{x}}^{\prime}\right\}_{\mathbf{x} \notin L}$ with $\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}}$. That is, output

$$
\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in L} \sqcup\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}, \text { aux }:=\left\{\left\lfloor\mathcal{U}\left(\mathbb{Z}_{q}\right)\right]_{p}\right\}_{\mathbf{x} \notin L},
$$

This replacement follows from BLMR PRF security (Lemma 3.9).

- $\mathrm{H}_{4}$ : Replace aux $=\left\{\left[\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\rceil_{p}\right\}_{\mathbf{x} \notin L}$ with aux $=\left\{\mathcal{U}\left(\mathbb{Z}_{p}\right)\right\}_{\mathbf{x} \notin L}$. This step is statistical, and follows from Lemma 3.11.
- $\mathrm{H}_{5}$ : Replace aux ${ }^{\prime}$ with $\left.\left\{\operatorname{f}_{\mathrm{sk}_{1}}(\mathbf{x})\right\rangle_{p}\right\}_{\mathbf{x} \notin L}$. That is, output

$$
\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in L} \sqcup\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in \mathcal{X}, \mathbf{w} \in \mathcal{W}: R(\mathbf{x}, \mathbf{w})=0}, \text { aux }:=\left\{\left\lfloor f_{\mathrm{sk}_{1}}(\mathbf{x})\right\rceil_{p}\right\}_{\mathbf{x} \notin L} .
$$

This step follows from rounded BLMR (Lemma 3.15).
$\mathrm{H}_{5}$ is exactly the distribution on the RHS of (5). Therefore, this completes the proof.
Theorem 5.5. Let $L$ be a UP language with UP relation $R$, and assume $\operatorname{LWE}_{n, \text { poly }(n), q, \sigma}$ and $\operatorname{eLWE}_{\mathrm{Samp}_{\mathcal{F}, \text { aux }, j}, \sigma^{\prime}, \sigma^{\prime}}$ for all $1 \leq j \leq h-1$, where $\operatorname{aux}(k):=\left\{\left\lfloor\mathbf{T}_{\mathbf{x}} \cdot \mathbf{B}\right\rceil_{p}\right\}_{\mathbf{x} \notin L}$, and all parameters and matrices are as in Construction 5.3.
Then Construction 5.3 is an adaptively secure witness PRF for $L$.
Proof. We show that Construction 5.3 is correct and adaptively secure as in Definition 5.1.
Correctness. It suffices to check that, except with probability $\operatorname{negl}(\lambda)$, for all $\mathbf{x}, \mathbf{w}$ such that
$R(\mathbf{x}, \mathbf{w})=1, \operatorname{Eval}(\mathrm{fk}, \mathbf{x}, \mathbf{w})=\mathrm{F}(\mathrm{fk}, \mathbf{x})$; that is,

$$
\lfloor P(\mathbf{x}, \mathbf{w})\rceil_{p}=\left\lfloor\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}\right\rceil_{p} .
$$

But by Lemma 3.7, except with probability negl $(\mu)$, all matrices of ek have entries bounded by $B:=\sigma \sqrt{n}$. Thus by GGH-encoding correctness (Theorem 4.9), for all $\mathbf{x}, \mathbf{w}$,

$$
\left|\xi_{\mathbf{x}, \mathbf{w}}:=\left(P(\mathbf{x}, \mathbf{w})-\mathbf{L} \mathbf{Q}_{(\mathbf{x}, \mathbf{w})|(\mathbf{x}, \mathbf{w})| \cdots \mid(\mathbf{x}, \mathbf{w})} \mathbf{R}\right)\right| \leq \xi,
$$

where $\xi=(4(\sigma \sqrt{n})(n+O(1)) \log q)^{h+1}$. And for $\mathbf{x}, \mathbf{w}$ such that $R(\mathbf{x}, \mathbf{w})=1$,

$$
\mathbf{L} \mathbf{Q}_{(\mathbf{x}, \mathbf{w})|(\mathbf{x}, \mathbf{w})| \cdots \mid(\mathbf{x}, \mathbf{w})} \mathbf{R}=\mathbf{1}^{T} \cdot \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}
$$

since $\mathbf{u}^{T} \mathbf{M}_{(\mathbf{x}, \mathbf{w})|(\mathbf{x}, \mathbf{w})| \cdots \mid(\mathbf{x}, \mathbf{w})} \mathbf{v}=0$. It remains to notice that $\xi / p=\operatorname{negl}\left(2^{h} \cdot \lambda\right)$, so by Lemma 3.13, except with probability negl $(\lambda)$, for all $\mathbf{x}, \mathbf{w}$ such that $R(\mathbf{x}, \mathbf{w})=1$,

$$
\left\lfloor\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}+\xi_{\mathbf{x}, \mathbf{w}}\right\rceil_{p}=\left\lfloor\mathbf{1}^{T} \mathbf{T}_{\mathbf{x}} \cdot \mathbf{b}\right\rceil_{p} .
$$

This completes the proof of witness PRF correctness.
Adaptive security. We proceed in a sequence of hybrids to show that $\operatorname{EXP}_{\mathcal{A}}^{R}(0, \lambda) \approx_{c} \operatorname{EXP}_{\mathcal{A}}^{R}(1, \lambda)$

- $\mathrm{H}_{0, b}$ : The challenger interacts with the adversary $\mathcal{A}$ according to the original experiment $\operatorname{EXP}_{\mathcal{A}}^{R}(b, \lambda)$.
- $\mathrm{H}_{1, b}$ : This hybrid follows $\mathrm{H}_{0, b}$, with the following modification to the challenger. After the challenger samples (fk, ek) $\leftarrow \mathrm{wPRF} . \operatorname{Gen}\left(1^{\lambda}, R\right)$, she computes aux $=\operatorname{aux}_{\mathrm{fk}}:=\{\mathrm{F}(\mathrm{fk}, \mathbf{x})\}_{\mathbf{x} \notin L}$. Then, when the challenger receives the challenge query $\mathbf{x}^{*}$, she first attempts to compute the witness $\mathbf{w}$ for $\mathbf{x}^{*}$ (by searching over all $\mathbf{w} \in\{0,1\}^{\ell}$ ). If she finds one, she responds with wPRF.Eval(ek, $\left.\mathbf{x}^{*}, \mathbf{w}\right)$; otherwise, she responds with $\operatorname{aux}\left(\mathbf{x}^{*}\right)$ (which is possible since $\mathbf{x}^{*} \notin L$ ).
By wPRF correctness, except with probability negl $(\lambda)$, for all $\mathbf{x}, \mathbf{w}$ such that $R(\mathbf{x}, \mathbf{w})=1$, wPRF.Eval $(\mathrm{ek}, \mathrm{x}, \mathrm{w})=\mathrm{F}(\mathrm{fk}, \mathrm{x})$. On the other hand, if $\mathrm{x} \notin L$, then $\operatorname{aux}(\mathrm{x})=\mathrm{F}(\mathrm{fk}, \mathrm{x})$ by construction of aux. Therefore, $\mathrm{H}_{1, b} \approx_{s} \mathrm{H}_{0, b}$.
- $\mathrm{H}_{2, b}$ : Follows $\mathrm{H}_{1, b}$, but replaces ek with a value independent of fk , drawn from the distribution $\mathcal{D}$ guaranteed by Theorem 4.9. This follows from Theorem 4.9, which applies because of Lemma 5.4.
- $\mathrm{H}_{3, b}$ : This hybrid is identical to $\mathrm{H}_{2, b}$, except that the challenger replaces aux with $\left\{\mathcal{U}\left(\mathbb{Z}_{p}\right)\right\}_{\mathbf{x} \notin L}$. This is justified by Lemma 3.15, now that fk is sampled independently of the rest of the adversary's view. Therefore, it follows that $\mathrm{H}_{3, b} \approx_{c} \mathrm{H}_{2, b}$.

But now, conditioned on $x \notin L, \mathrm{H}_{3,0}=\mathrm{H}_{3,1}$, since the response to the challenge query is a independently and uniformly sampled bit regardless of whether $b=0$ or $b=1$. Hence, conditioned on $\mathbf{x}^{*} \notin L$,

$$
\operatorname{EXP}_{\mathcal{A}}^{R}(0, \lambda) \equiv \mathrm{H}_{0,0} \approx_{s} \mathrm{H}_{1,0} \approx_{c} \mathrm{H}_{2,0} \approx_{c} \mathrm{H}_{3,0} \equiv \mathrm{H}_{3,1} \approx_{c} \mathrm{H}_{2,1} \approx_{s} \mathrm{H}_{0,1} \equiv \operatorname{EXP}_{\mathcal{A}}^{R}(1, \lambda),
$$

which implies that the adversary has negligible advantage. And conditioned on $\mathbf{x}^{*} \in L$, the adversary has zero advantage by definition of adaptive security. This completes the proof.

## 6 Designated Verifier Zero-Knowledge SNARGs from Witness PRFs

In this section, we show how to construct a designated verifier zero-knowledge SNARG generically from witness PRFs. We follow the NIZK construction of Sahai and Waters [SW14] (which is also a SNARG construction), and demonstrate how one can use a witness PRF for a relation $R$ to obtain a designated-verifier SNARG for relation $R$. As a corollary, we obtain a SNARG for UP from evasive LWE.

Theorem 6.1. Suppose there exists an adaptively secure witness PRF for a NP language $L$ with witness relation $R:\{0,1\}^{\ell_{x}} \times\{0,1\}^{\ell_{w}} \rightarrow\{0,1\}$. Then, for any $\ell \geq \omega(\log (\lambda))$, there exists a reusable, adaptively secure designated verifier SNARG for $R$ which has statistical adaptive multitheorem zero-knowledge (see Definition 3.19), with proof size $\ell$, and prover (and verifier) runtime poly $\left(\ell_{x}+\lambda+\ell\right) .{ }^{9}$
Moreover, if the witness PRF is subexponentially secure (that is, for some $\delta>0$, all poly $\left(2^{\lambda^{\delta}}\right)$ adversaries achieve advantage at most negl $\left(2^{\lambda^{\delta}}\right)$ in the adaptive security game), then for any proof size $\ell \geq \omega\left(\lambda^{\delta}\right)$, the above $S N A R G$ is subexponentially sound (more precisely, all poly $\left(2^{\lambda^{\delta}}\right)$ adversaries achieve success probability at most $\operatorname{neg}\left(2^{\lambda^{\delta}}\right)$ in the reusable adaptive soundness game).

```
Algorithm 4 SNARG for relation \(R\) given a witness PRF for \(R\), with proof size \(\ell\).
    Fix a witness PRF family (wPRF.Gen, wPRF.F,wPRF.Eval) with domain \(\mathcal{X}\) and range \(\{0,1\}^{\ell}\),
    where \(\ell \geq \omega(\log (\lambda))\).
        - SNARG.Gen \(\left(1^{\lambda}\right)\) :
            - Generate fk, ek \(\leftarrow \mathrm{wPRF}\).Gen \(\left(1^{\lambda}, R\right)\).
            - Set private state \(\tau:=\mathrm{fk}\), and crs \(:=\mathrm{ek}\).
            - Output (crs, \(\tau\) ).
            - SNARG.Prove(crs, \(x, w)\) : Output \(\pi \leftarrow\) wPRF.Eval(crs, \(x, w)\).
            - SNARG.Verify \((\tau, x, \pi)\) : Output 1 iff \(\pi=\mathrm{wPRF} . \mathrm{F}(\mathrm{fk}, x)\).
```

Proof. We show that Algorithm 4 satisfies the properties of Definition 3.18. The claimed runtime bound on Algorithm 4 is immediate. Succinctness is satisfied, because the proof size is independent of $\ell_{x}$ and $\ell_{w}$. Correctness is also clearly satisfied, since witness PRF correctness guarantees that except with probability $\operatorname{negl}(\lambda)$, for all $x, w$ such that $R(x, w)=1$, we have wPRF.Eval $($ ek, $x, w)=$ wPRF.F(fk, $x$ ).

For soundness, suppose for contradiction that there exists a prover $\mathcal{P}$ running in time $p(\lambda)$ that wins the reusable adaptive soundness game with probability $\varepsilon(\lambda)$. Specifically, with probability at least

[^8]$\varepsilon(\lambda), \mathcal{P}$ outputs $x^{*} \notin L$ along with a cheating proof $\pi^{*}$ for $x^{*}$ (satisfying Verify $\left(x^{*}, \pi^{*}\right)=1$ ). We assume without loss of generality that in this case, the last query made by $\mathcal{P}$ is $\left(x^{*}, \pi^{*}\right)$.
Consider the following adversary $\mathcal{A}$ in the witness PRF adaptive security game. At a high level, $\mathcal{A}$ works by guessing the first index $i$ where the prover queries $\left(x^{*}, \pi\right)$ for some proof $\pi$. (Notice that $\pi$ might not equal $\pi^{*}$; that is, the prover may not yet have succeeded in finding a cheating proof!)

1. $\mathcal{A}$ chooses a random index $i \leftarrow[p(\lambda)]$.
2. Upon receiving the evaluation key ek from the witness PRF challenger $\mathcal{C}$, the adversary $\mathcal{A}$ sets crs $=\mathrm{ek}$, and runs the prover $\mathcal{P}$ on input crs, simulating its oracle queries.
3. For the first $i-1$ oracle queries $\left(x_{j}, \pi_{j}\right)$ made by $\mathcal{P}$ :

- $\mathcal{A}$ queries $x_{j}$ to the challenger, who returns $\mathrm{F}\left(\mathrm{fk}, x_{j}\right)$.
- $\mathcal{A}$ responds to $\mathcal{P}$ 's query with 1 if $\pi_{j}=\mathrm{F}\left(\mathrm{fk}, x_{j}\right)$, and with 0 otherwise.

4. For the $i$ th query $\left(x_{i}, \pi_{i}\right)$,

- If $x_{i}=x_{j}$ for any $j<i, \mathcal{A}$ outputs a random bit to $\mathcal{C}$ (ending the game).
- Otherwise, $\mathcal{A}$ sends $x_{i}$ as a challenge query to the challenger, receiving as output a string $y$.
- If $\pi_{i}=y, \mathcal{A}$ outputs $b^{\prime}=0$ to $\mathcal{C}$ (ending the game). Otherwise, it responds to $\mathcal{P}$ 's query with the value 0 .

5. For the remaining queries $\left(x_{j}, \pi_{j}\right)$ for $j>i$ :

- If $x_{j}=x_{i}$, and if $\pi_{j}=y$, then $\mathcal{A}$ outputs $b^{\prime}=0$ to $\mathcal{C}$ (ending the game).
- Otherwise, if $x_{j}=x_{i}$ but $\pi_{j} \neq y$, then $\mathcal{A}$ sends 0 to $\mathcal{P}$.
- Otherwise, $\mathcal{A}$ queries $x_{j}$ to the challenger, to obtain $\mathrm{F}\left(\mathrm{fk}, x_{i}\right)$. Then, $\mathcal{A}$ responds to $\mathcal{P}$ with 1 if $\pi_{i}=\mathrm{F}\left(\mathrm{fk}, x_{i}\right)$, and sends 0 otherwise.

6. The adversary outputs a random bit to the challenger.

First, observe that if $\mathcal{P}$ runs in time $p(\lambda) \leq \operatorname{poly}(\lambda)$, then $\mathcal{A}$ runs in time poly $(\lambda)$. Moreover, if $\mathcal{P}$ runs in time $p(\lambda) \leq \operatorname{poly}\left(2^{\lambda^{\delta}}\right)$, then $\mathcal{A}$ runs in time poly $\left(2^{\lambda^{\delta}}\right)$. To finish the proof, we claim that $\mathcal{A}$ achieves advantage at least

$$
\varepsilon(\lambda) /(2 p(\lambda))-p(\lambda) / 2^{\ell} .
$$

If $p \leq \operatorname{poly}(\lambda), \varepsilon \geq 1 / \operatorname{poly}(\lambda)$ and $\ell \geq \omega(\log (\lambda))$, this contradicts polynomial security of the witness $\operatorname{PRF}$, implying the first part of the theorem. On the other hand, if $p \leq \operatorname{poly}\left(2^{\lambda^{\delta}}\right), \varepsilon \geq 1 / \operatorname{poly}\left(2^{\lambda^{\delta}}\right)$, and $\ell \geq \omega\left(2^{\lambda^{\delta}}\right)$, this contradicts subexponential security of the witness PRF, proving the second part of the theorem.
It remains to prove the claim. Suppose the witness PRF challenger sampled $b=0$. Then, it is easy to see that the view of $\mathcal{P}$ is exactly as in the reusable, adaptive soundness game of the SNARG. Let $E$ be the event that the prover succeeds and $\mathcal{A}$ guesses the index $i$ correctly. That is, $\mathcal{P}$ outputs
$\left(x^{*}, \pi^{*}\right)$ such that $\operatorname{Verify}_{\tau}\left(x^{*}, \pi^{*}\right)=1$, and $i$ is the first index such that $x_{i}=x^{*}$. Notice that $\operatorname{Pr}[E]$ is non-negligible; indeed $\operatorname{Pr}[E] \geq \varepsilon(\lambda) / p(\lambda)$. Conditional on $E$, it is easy to see that the witness PRF challenger $\mathcal{C}$ outputs 0 . Indeed, because $\pi^{*}=\mathrm{F}\left(\mathrm{fk}, x_{i}\right)=y, \mathcal{A}$ outputs $b^{\prime}=0$ as soon as $\mathcal{P}$ queries $\left(x^{*}, \pi^{*}\right)$. Moreover, $x^{*}$ was never sent to $\mathcal{C}$ as an evaluation query, and $x^{*} \notin L$ by assumption. Thus $\mathcal{C}$ also outputs $b^{\prime}=0$. Now condition on $\bar{E}$. Recall that $\mathcal{C}$ either outputs a random bit, or $\mathcal{C}$ outputs what $\mathcal{A}$ outputs. And notice that $\mathcal{A}$ either outputs $b^{\prime}=0$ or outputs a random bit. Hence, the probability that $\mathcal{C}$ outputs $b^{\prime}=0$ is at least $1 / 2$. It follows that, in the $b=0$ case, the probability that $\mathcal{C}$ outputs 0 is at least $1 / 2+\varepsilon(\lambda) /(2 p(\lambda))$.

Now, suppose the witness PRF challenger sampled $b=1$. Similarly to before, it is not hard to see that $\mathcal{C}$ outputs a uniformly random bit, unless $\mathcal{A}$ outputs 0 in steps 4 or 5 . But the probability that $\mathcal{A}$ outputs 0 in steps 4 or 5 is at most the probability that $\mathcal{P}$ queries some $\left(x_{i}, \pi_{i}\right)$ with $x_{i}=y=y_{1}$. But $y_{1} \leftarrow\{0,1\}^{\ell}$ is uniformly random and independent of the view of $\mathcal{P}$. Thus, this probability is at most $p(\lambda) / 2^{\ell}$. It follows that, in the $b=1$ case, the probability that $\mathcal{C}$ outputs 0 is at most $1 / 2+p(\lambda) / 2^{\ell}$.
Putting the last two paragraphs together, we see that $\mathcal{A}$ has advantage at least $\varepsilon(\lambda) /(2 p(\lambda))-p(\lambda) / 2^{\ell}$, completing the proof.
Statistical Adaptive Multi-Theorem Zero-Knowledge. It suffices to define p.p.t. $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ for Experiment 2.

- $\mathcal{S}_{1}\left(1^{\lambda}\right)$ : Computes fk, ek $\leftarrow \mathrm{wPRF} . \operatorname{Gen}\left(1^{\lambda}, R\right)$. Sets $\mathrm{crs}=\mathrm{ek}, \tau=\mathrm{fk}$ and $\mathrm{st}=\mathrm{fk}$.
- $\mathcal{S}_{2}(x, \mathrm{st})$ : Output wPRF.F $(\mathrm{st}, x)=$ wPRF.F(fk, $\left.x\right)$.

By statistical correctness of the wPRF, we have that wPRF.Eval(crs, $x, w)=w \operatorname{PRF} . F(\tau, x)$ with probability $1-\operatorname{negl}(\lambda)$. Therefore, by a union bound, we have that Prove $(\operatorname{crs}, x, w)=\mathcal{S}_{2}(\tau, x)$, and the views of the $\mathcal{A}$ in the real and ideal experiments are in fact statistically close.

Therefore, using our witness PRF for UP from Construction 5.3, we have the following corollary.
Corollary 6.2. Let $L$ be a UP language with UP relation $R$. Assuming the LWE and evasive LWE assumptions made in Theorem 5.5, there exists a subexponentially adaptively sound reusable designated-verifer SNARG for $L$.

## 7 Adaptive SNARGs from Non-Adaptive Witness PRFs

In this section, we show that a sub-exponentially secure non-adaptive witness PRF (defined in Definition 7.1) is sufficient to construct adaptive designated-verifier SNARGs with succinct proofs. Then, in Section 7.2, we argue that the Sahai-Waters SNARG [SW14] in the designated-verifier setting can be viewed as a non-adaptive witness PRF.

### 7.1 Non-Adaptive Witness PRFs to SNARGs

First, we introduce the notion of a non-adaptive witness PRF.

Definition 7.1 (Non-Adaptive Witness PRFs). A non-adaptively secure witness PRF (non-adaptive $\mathrm{wPRF})$ is a triple of PPT algorithms wPRF $=(\mathrm{wPRF} . G e n, w P R F . F, w P R F . E v a l)$ having the interface of Definition 5.1, satisfying the correctness property of Definition 5.1, and satisfying the following, alternative, security definition.
Non-Adaptive Security: Consider the following experiment $\operatorname{ExP}_{\mathcal{A}}^{R}(b, \lambda)$ between a challenger $\mathcal{C}$ and adversary $\mathcal{A}$ :

- $\mathcal{A}$ chooses some $x^{*} \notin L$, and sends it to $\mathcal{C}$.
- If $b=0, \mathcal{C}$ sets $y=\mathrm{F}(\mathrm{fk}, x)$. Otherwise, she samples $y \leftarrow \mathcal{Y}$. Then she sends $y$ to $\mathcal{A}$.
- $\mathcal{C}$ runs $(\mathrm{fk}, \mathrm{ek}) \leftarrow \operatorname{Gen}\left(1^{\lambda}, R\right)$, and sends ek to $\mathcal{A}$.
- $\mathcal{A}$ now can make adaptive queries to $x \in \mathcal{X}$ with $x \neq x^{*}$, to which $\mathcal{C}$ responds with $\mathrm{F}(\mathrm{fk}, x)$.
- $\mathcal{A}$ outputs a bit $b^{\prime}$.

Let $W_{b}$ be the event that the adversary outputs 1 in experiment $b$, and define the adversary's advantage to be $\operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\left|\operatorname{Pr}\left[W_{0}\right]-\operatorname{Pr}\left[W_{1}\right]\right|$. We say that (Gen, $\mathrm{F}, \mathrm{Eval}$ ) is non-adaptively secure for a relation $R$ if for all $\operatorname{PPT} \mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\operatorname{neg}(\lambda)$. We further say that it is subexponentially non-adaptively secure if there exists a constant $\alpha>0$ such that, for all $\mathcal{A}$ running in time poly $\left(2^{\lambda^{\alpha}}\right)$, $\operatorname{Adv}_{\mathcal{A}}^{R}(\lambda)=\operatorname{negl}\left(2^{\lambda^{\alpha}}\right)$.

We now show that a witness PRF that is subexponentially non-adaptively secure is in fact (subexponentially) adaptively secure.

Theorem 7.2. Assume there exists a subexponentially non-adaptively secure witness PRF for a language $L \in N$. Then, there exists a subexponentially adaptively secure witness PRF for $L$.

Proof. Let $\rho$ denote a security parameter for the non-adaptive witness PRF wPRF. That is, for some $\alpha>0$, wPRF is non-adaptively secure against adversaries running in time poly $\left(2^{\rho^{\alpha}}\right)$ with distinguishing advantage negl $\left(2^{\rho^{\alpha}}\right)$.
Consider the language $L$ restricted to $\{0,1\}^{\ell_{x}}$. We choose $\rho$ to be polynomial in $\ell_{x}+\lambda$. In particular, we choose $\rho=\left(\ell_{x}+\lambda\right)^{1 / \alpha}$ so that $2^{\rho^{\alpha}}=2^{\ell_{x}+\lambda}$.
We claim that with this choice, wPRF is in fact subexponentially adaptively secure. To prove this, let $\mathcal{A}$ be any adversary running in time poly $\left(2^{\rho^{\alpha}}\right)$ that achieves advantage $1 /$ poly $\left(2^{\rho^{\alpha}}\right)$ in the adaptive security game. We show an (non-uniform) adversary $\mathcal{A}^{\prime}$ running in time poly $\left(2^{\rho^{\alpha}}\right)$ that achieves advantage $1 /$ poly $\left(2^{\rho^{\alpha}}\right)$ in the non-adaptive security game, contradicting non-adaptive security. This adversary $\mathcal{A}^{\prime}$ takes as non-uniform advice the truth table of $L$ (on instances of length at most $\ell_{x}$ ), and behaves as follows.

- $\mathcal{A}^{\prime}$ samples $x^{*} \leftarrow \bar{L}$, and sends $x^{*}$ to $\mathcal{C}$. (Using the truth-table, this can be done in time $\operatorname{poly}\left(2^{\ell x}\right) \leq \operatorname{poly}\left(2^{\rho^{\alpha}}\right)$.)
- The challenger $\mathcal{C}$ computes $y$, ek, and fk , and sends $y$ and ek to $\mathcal{A}^{\prime}$. $\mathcal{A}^{\prime}$ then forwards ek to $\mathcal{A}$.
- $\mathcal{A}^{\prime}$ handles $\mathcal{A}$ 's queries as follows.
- For each evaluation query from $\mathcal{A}, \mathcal{A}^{\prime}$ forwards the query to $\mathcal{C}$, and forwards $\mathcal{C}$ 's response back to $\mathcal{A}$.
- For the challenge query $x$, if $x=x^{*}, \mathcal{A}^{\prime}$ responds with $y$. Otherwise, $\mathcal{A}^{\prime}$ aborts and outputs a random bit.
- $\mathcal{A}^{\prime}$ outputs whatever $\mathcal{A}$ outputs.

Clearly $\operatorname{Pr}\left[x=x^{*}\right]=1 /|\bar{L}| \geq 1 / \operatorname{poly}\left(2^{\rho^{\alpha}}\right)$. And conditional on $x=x^{*}$, the non-adaptive adversary $\mathcal{A}$ is playing the real adaptive security game, so it wins (and so $\mathcal{A}^{\prime}$ wins) with probability at least $1 / 2+1 / \operatorname{poly}\left(2^{\rho^{\alpha}}\right)$. Finally, conditional on $x \neq x^{*}, \mathcal{A}^{\prime}$ outputs a random bit, so it wins with probability $1 / 2$. It follows that $\mathcal{A}^{\prime}$ wins with probability $1 / 2+1 / \operatorname{poly}\left(2^{\rho^{\alpha}}\right)$, contradicting non-adaptive security of wPRF. This completes the proof.

Combining this with Theorem 6.1, we have the following corollary.
Corollary 7.3. Assume there exists a subexponentially non-adaptively secure witness PRF for a language $L \in N P$. Then, there exists a subexponentially adaptively sound designated-verifier SNARG for $L \in \mathrm{NP}$.

### 7.2 Sahai-Waters SNARG through the Lens of Non-Adaptive Witness PRFs

In this section, we re-frame the Sahai-Waters construction [SW14] in the designated verifier setting in terms of non-adaptive witness PRFs. The construction is Algorithm 5. We show that assuming sub-exponential hardness of indistinguishability obfuscation and one-way functions, Algorithm 5 is a subexponentially non-adaptively secure witness PRF.

```
Algorithm 5 Sahai-Waters-based [SW14] witness PRF construction.
    wPRF.Gen \(\left(1^{\lambda}\right)\) :
        - Sample a PRF key \(k \leftarrow\) PPRF.Gen \(\left(1^{\rho}\right)\).
        - Construct the following circuit \(P_{k}\) :
            - Input: \(x, w\)
            - Hardcoded value: \(k\)
            - Algorithm: If \(R(x, w)=1\), output PPRF.Eval \((k, x)\). Else, output \(\perp\).
        - Compute the evaluation key ek \(:=\operatorname{Obf}\left(P_{k}\right)\) and the secret function key \(\mathrm{fk}:=k\).
        - Output (fk, ek).
    wPRF.F(fk, \(x\) ): On input key fk and PPRF input \(x\), output PPRF.Eval( \(\mathrm{fk}, x\) ).
    wPRF.Eval(ek, \(x, w)\) : Output Obf.Eval(ek, \((x, w))\).
```

Theorem 7.4. Assuming subexponentially secure one-way functions and subexponentially secure indistinguishability obfuscation, there exists a non-adaptively subexponentially secure witness PRF.

In particular, Algorithm 5, instantiated with a subexponentially secure indistinguishability obfuscator Obf and a subexponentially secure puncturable PRF PPRF, is a non-adaptively subexponentially secure witness PRF.

Proof. Recall that subexponentially secure puncturable PRFs follow from subexponentially secure one-way functions (Theorem 3.6). Our assumptions thus imply the existence of the following primitives, where $\alpha>0$ is some constant and $\rho$ is a security parameter.

- A $2^{\rho^{\alpha}}$-secure puncturable PRF family PPRF $=$ (PPRF.Gen, PPRF.Punc, PRF.Eval) with domain $\mathcal{X}$ and range $\{0,1\}^{\ell}$ for some $\ell=\kappa+\omega(\log (|x|+|w|+\lambda))$.
- A $2^{\rho^{\alpha}}$-secure indistinguishability obfuscation scheme Obf.

Consider the following hybrids, where $\mathrm{H}_{0, b}$ is the real non-adaptive witness PRF security game $\operatorname{EXP}_{\mathcal{A}}^{R}(b, \lambda)$.

- $\mathrm{H}_{0, b}: \mathcal{A}$ interacts with the real non-adaptive witness $\operatorname{PRF}$ challenger $\mathcal{C}$ as in $\operatorname{EXP}_{\mathcal{A}}^{R}(b, \lambda)$.
- $\mathrm{H}_{1, b}$ : Identical to $\mathrm{H}_{0, b}$, except that $\mathcal{C}$ computes ek by obfuscating a punctured program. Specifically, ek := $\operatorname{Obf}\left(P_{k\left\{x^{*}\right\}}\right)$, where on input $(x, w), P_{k\left\{x^{*}\right\}}$ behaves as follows: if $R(x, w)=1$, it outputs PPRF.Eval $\left(k\left\{x^{*}\right\}, x\right)$; otherwise it outputs $\perp$.
- $\mathrm{H}_{2, b}$ : Identical to $\mathrm{H}_{1, b}$, except that on receiving $x^{*}$ from $\mathcal{A}$, instead of responding with $y$, the challenger $\mathcal{C}$ responds with a random element $y^{\prime} \leftarrow \mathcal{Y}$.

Clearly, $\mathrm{H}_{2,0} \equiv \mathrm{H}_{2,1}$, so it suffices to show that for all $b \in\{0,1\}$, all poly $\left(2^{\rho^{\alpha}}\right)$-time distinguishers obtain advantage at most negl $\left(2^{\rho^{\alpha}}\right)$ in distinguishing $\mathrm{H}_{0, b}$ from $\mathrm{H}_{2, b}$.
But by the assumed subexponential security of Obf, for all $b \in\{0,1\}$, no poly $\left(2^{\rho^{\alpha}}\right)$-time distinguisher has advantage better than negl $\left(2^{\rho^{\alpha}}\right)$ in distinguishing $\mathrm{H}_{0, b}$ from $\mathrm{H}_{1, b}$. Indeed, since $x^{*} \notin L$, that is, there is no $w$ such that $R\left(x^{*}, w\right)=1, P_{k}$ and $P_{k\left\{x^{*}\right\}}$ have identical functionalities. Indistinguishability follows by invoking subexponential iO security.

And, by the assumed subexponential punctured-key security of PPRF, for all $b \in\{0,1\}$, the same indistinguishability holds between $\mathrm{H}_{1, b}$ and $\mathrm{H}_{2, b}$. Indeed, the (subexponential) punctured-key security of PPRF implies that

$$
\left(x^{*}, k\left\{x^{*}\right\}, \operatorname{PPRF} . E v a l\left(k, x^{*}\right)\right) \approx_{c}\left(x^{*}, k\left\{x^{*}\right\}, r\right) .
$$

But it is easy to verify that for all $b \in\{0,1\}$, there is an efficient algorithm which on input $b$ and the LHS (resp. RHS) of the above indistinguishability, simulates the challenger $\mathcal{C}$ in $\mathrm{H}_{1, b}$ (resp. $\mathrm{H}_{2, b}$ ). Hence $\mathrm{H}_{1, b} \approx_{c} \mathrm{H}_{2, b}$. Putting the previous two statements together, we obtain that for all $b \in\{0,1\}$, $\mathrm{H}_{0, b} \approx_{c} \mathrm{H}_{2, b}$. This completes the proof.

Corollary 7.5. Assuming subexponentially secure one-way functions and subexponentially secure indistinguishability obfuscation, there exists a reusable, adaptively subexponentially sound SNARG for NP in the designated verifier setting.

Proof. Combining Theorem 7.4 and Theorem 7.2 , we obtain a subexponentially adaptively sound witness PRF for NP from subexponentially secure one-way functions and subexponentially secure indistinguishability obfuscation. Then, applying Theorem 6.1, we obtain a reusable, adaptively subexponentially sound SNARG for NP in the designated verifier setting.

## 8 SNARK for UP

In this section, we show that any adaptively sound SNARG for UP can be generically transformed into one with black-box knowledge soundness. Our transformation preserves public verifiability and zero knowledge. We use a fully homomorphic encryption scheme (FHE) as well as an injective public-key encryption scheme. Both primitives can be instantiated from the learning with errors (LWE) assumption (see Definition 3.22 and Definition 3.25).

Theorem 8.1. Assume the existence of a leveled fully homomorphic encryption scheme and an injective public-key encryption scheme (see Definition 3.25). If there exists a reusably and adaptively sound designated-verifier SNARG system for UP, then there exists a reusably and adaptively sound designated-verifier SNARK for UP with a non-adaptive black-box knowledge extractor.
If the underlying SNARG is publicly verifiable, the resulting SNARK is also publicly verifiable. Additionally, if the underlying SNARG is a zk-SNARG, the resulting SNARK is also a zk-SNARK.

Plugging in the zk-SNARG system we constructed in Section 6, and noting that LWE implies a leveled fully homomorphic encryption scheme and an injective public-key encryption scheme (Theorem 3.23 and Theorem 3.26), we get the following corollary.
Corollary 8.2. Let $L$ be a UP language with UP relation $R$. Assuming the LWE and evasive LWE assumptions of Theorem 5.5, there exists a reusably and adaptively sound designated-verifier zk-SNARK for $L$ with a non-adaptive black-box knowledge extractor.

Furthermore, applying both Corollary 7.5 and Theorem 8.1 to the Sahai-Waters SNARG [SW14], we get the same primitive, but from indistinguishability obfuscation instead of evasive LWE.
Corollary 8.3. Let L be a UP language with UP relation $R$. Assuming subexponentially-secure indistinguishability obfuscation, subexponentially-secure one-way functions, and $\mathrm{LWE}_{n, \mathrm{poly}(n), q, \sigma}$ for $n=\operatorname{poly}(\lambda), \sigma \geq \sqrt{2 n}$, and $q=2^{n^{\varepsilon}}$ for some constant $\varepsilon>0$, there exists a reusably and adaptively sound designated-verifier zk-SNARK for $L$ with a non-adaptive black-box knowledge extractor.

Remark 8.4 (On the work of [CGKS23]). Our transformation is inspired by the recent work of Campanelli, Ganesh, Khoshakhlagh and Siim [CGKS23]. However, there are two issues with their claim. First, they claim that their transformation converts a non-adaptive SNARG (for UP) into a SNARK. To the best of our knowledge, their transformation as-is seems to require adaptive soundness of the underlying SNARG. We elaborate on this in Remark 8.7 after we describe the construction. Secondly, they claim that their construction preserves zero-knowledge, but to the best of our understanding, this is not the case. In our construction, we preserve zero-knowledge by adding a layer of encryption under a public-key encryption scheme. We have contacted the authors and they agree with both of the above points. Coming up with a transformation from non-adaptive SNARG for UP/NP to a non-adaptively extractable SNARK for UP is an interesting open problem.

Remark 8.5. One could ask if a similar compiler can be shown for NP instead of merely UP. It turns out that black-box extractable SNARKs for NP in the plain model do not exist [CGKS23, Kal23]; therefore, the restriction to UP is, in a sense, necessary.

We describe our transformation from a SNARG for UP to a SNARK for UP in Section 8.1 and prove that it indeed satisfies the desired properties in Section 8.2.

### 8.1 Our Transformation from SNARG for UP to SNARK for UP

Our construction builds on [CGKS23] and uses the following building blocks:

- An reusably and adaptively secure dvSNARG scheme $\Pi=$ ( $\Pi$.Gen, $\Pi$.Prove, $\Pi$.Ver) for UP (e.g., Corollary 6.2 or Corollary 7.5).
- A leveled fully homomorphic encryption scheme FHE = (FHE.Gen, FHE.Enc, FHE.Dec, FHE.Eval) such that FHE.Eval ${ }_{\text {ek }}$ is deterministic (e.g., Theorem 3.23).
- An injective public key encryption scheme PKE $=($ PKE.Gen, PKE.Enc, PKE.Dec) (see Definition 3.25 and Theorem 3.26). When encrypting a string $s$, we use PKE.Enc $\mathrm{Ek}_{\mathrm{pk}}(s)$ as a shorthand to denote the bit by bit encryption of $s$.

Construction. Consider $\alpha=\operatorname{poly}(\lambda)$, and consider a UP relation $R_{\alpha}$ with witnesses of size at most $p(\alpha)$ for some polynomial $p$. For $w \in\{0,1\}^{p(\alpha)}$, define the function $C_{w}:[p(\alpha)] \rightarrow\{0,1\}$ with the following functionality:

$$
C_{w}[i]=w[i]
$$

It is easy to see that such a function can be represented by a circuit of size at most $d:=d(\alpha)$, for some polynomial $d$ that depends only on $p$.
We first define a new relation $R_{\alpha}^{\prime}: \mathcal{X}^{\prime} \times \mathcal{W}^{\prime} \rightarrow\{0,1\}$ as follows:

$$
\begin{align*}
\mathcal{X}^{\prime} & =\mathcal{X} \times \mathcal{C} \\
\mathcal{W}^{\prime} & =\mathcal{W} \times \mathcal{R} \\
R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}((x, \rho),(w, r)) & = \begin{cases}1 & \text { if } R_{\alpha}(x, w)=1 \text { and } \\
\rho=\operatorname{PKE} . \mathrm{Enc}_{\mathrm{pk}}\left(\text { FHE.Eval } \mathrm{ek}^{( }\left(C_{w}, \mathbf{c}\right) ; r\right)^{10} \\
0 & \text { otherwise. }\end{cases} \tag{10}
\end{align*}
$$

where $\mathcal{R}$ is the domain of the randomness used in PKE.Enc and $\mathcal{C}$ is the output domain of PKE.
Claim 8.6. The relation $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}: \mathcal{X}^{\prime} \times \mathcal{W}^{\prime} \rightarrow\{0,1\}$ (defined in (10)) is a UP relation.
Proof. It is clear by construction that $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}$ is a polynomial time computable relation. This follows from the fact that $R_{\alpha}$, FHE.Eval and FHE.Rerand are all polynomial time computable functions.

To show unique witnesses, fix any $(x, \rho) \in \mathcal{X}^{\prime}$. We now have two cases to consider:

```
Algorithm 6 Construction of SNARK for UP relation \(R_{\alpha}\).
    We first describe the SNARG scheme, which relies on a leveled fully homomorphic scheme FHE
    and an injective public key encryption scheme (Definition 3.25).
        - SNARK.Gen \(\left(1^{\lambda}, R\right)\) :
            - Compute ( \(\left.\mathrm{sk}_{\text {FHE }}, \mathrm{ek}\right) \leftarrow \operatorname{FHE} . \operatorname{Gen}\left(1^{\lambda}, 1^{d}\right)\), where \(d\) was the bound on the size of the circuit
                \(C_{w}\).
            - Compute \(\left(\mathrm{sk}_{\text {PKE }}, \mathrm{pk}\right) \leftarrow\) PKE.Gen \(\left(1^{\lambda}\right)\).
            - Let \(t=\left\lceil\log _{2}(p(\alpha))\right\rceil\), and compute \(t\) ciphertexts \(\mathrm{ct}_{j}=\) FHE.Enc sk \(_{\text {FHE }}(0)\) for \(j \in[t]\). Let
                \(\mathbf{c}=\left(\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{t}\right)\).
            - Compute \((\mathrm{crs}, \tau) \leftarrow \Pi\). \(\operatorname{Gen}\left(1^{\lambda}, R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}\right)\), for relation \(R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}\) as defined in (10).
            - Set the new common reference string \(\mathrm{crs}^{\prime}=(\mathrm{crs}, \mathrm{ek}, \mathrm{pk}, \mathbf{c})\), and verifier state \(\tau .{ }^{11}\)
            - Output (crs', \(\tau\) ).
- SNARK.Prove(crs' \(, x, w)\) : If \(R(x, w)=0\), output \(\perp\). Else,
            - Sample \(r \leftarrow \mathcal{R}\).
            - Compute \(\rho \leftarrow\) PKE.Enc pk \(\left._{\text {(FHE.Eval }}^{\text {ek }}\left(C_{w}, \mathbf{c}\right) ; r\right)\).
            - Compute \(\pi \leftarrow\). .Prove(crs, \((x, \rho),(w, r))\).
            - Output \(x, \pi^{\prime}:=(\rho, \pi)\).
- \(\operatorname{SNARK} \cdot \operatorname{Ver}\left(\tau, x, \pi^{\prime}=(\rho, \pi)\right)\) : Output \(\Pi \cdot \operatorname{Ver}(\tau,(x, \rho), \pi)\).
```

Case 1: There are no witnesses $w$ such that $R_{\alpha}(x, w)=1$.
In this case, there is clearly no $(w, r)$ such that $R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}((x, \rho),(w, r))=1$. Thus $(x, \rho)$ has no witnesses.

Case 2: $x$ has some (unique) witness $w$ such that $R_{\alpha}(x, w)=1$.
In this case, clearly all witnesses to $(x, \rho)$ must be of the form $(w, \cdot)$. Moreover, for all $r$, $R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}((x, \rho),(w, r))=1$ only if $\rho={\operatorname{PKE} . \operatorname{Enc}_{\mathrm{pk}}(s ; r) \text {, where } s:=\operatorname{FHE} . \mathrm{Eval}_{\mathrm{ek}}\left(C_{w}, \mathbf{c}\right) \text { is a }}^{\text {a }}$ deterministic function of $w$ and $\mathbf{c}$. But since PKE is an injective encryption scheme, there can be at most one $r$ such that PKE. $\operatorname{Enc}_{\mathrm{pk}}(s ; r)=\rho$, so $(x, \rho)$ has at most one witness.

Since every $(x, \rho) \in \mathcal{X}^{\prime}$ has at most one witness in $\mathcal{W}^{\prime}$, the relation is in fact a UP relation.
Now, we describe our SNARK construction in Algorithm 6. Additionally, we present a trapdoor common reference string generation mode in Algorithm 7, which will be vital for our knowledge extractor.

Remark 8.7. Our transformation differs from the construction of [CGKS23] in three ways. Firstly, in the construction of [CGKS23], the homomorphically evaluated output of $\mathrm{FHE}^{\mathrm{E}} \mathrm{Eval}_{\mathrm{ek}}\left(C_{w}, \mathbf{c}\right)$ is not encrypted. However, encrypting under a public key encryption scheme PKE is necessary to argue the fact that the transformation in Algorithm 6 preserves zero-knowledge. Secondly, our transformation only relies on a SNARG for UP, rather than a SNARG for NP, to achieve a SNARK for UP. We are
able to do this by choosing our public key encryption scheme PKE to be injective. Finally, we rely on an adaptively-secure SNARG system. This seems inherent (even in the construction of [CGKS23]), because even an honest prover needs the public parameters pk, ek, c (generated along with the crs for the underlying SNARG) in Algorithm 6 before being able to generate an instance for the underlying SNARG.

```
Algorithm 7 Trapdoor common reference string generation for SNARK system in Algorithm 6.
    We additionally describe a trapdoor crs generation mode, which we later use in our knowledge
    extractor construction in Algorithm 8. The trapdoor mode additionally takes as input \(i\) representing
    some index of the witness. All differences from SNARK.Gen are highlighted in blue.
```

        - \(\operatorname{TDGen}\left(1^{\lambda}, R, i \in[p(\alpha)]\right):\)
            - Compute \(\left(\right.\) sk \(\left._{\text {FHE }}, \mathrm{ek}\right) \leftarrow \operatorname{FHE} . \operatorname{Gen}\left(1^{\lambda}, 1^{d}\right)\).
            - Compute \(\left(\mathrm{sk}_{\text {PKE }}, \mathrm{pk}\right) \leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)\).
            - Let \(t=\left\lceil\log _{2}(p(\alpha))\right\rceil\). Let \(i_{1}, i_{2}, \ldots, i_{t}\) be the bit decomposition of the index \(i\). Compute
                \(t\) ciphertexts \(\mathrm{ct}_{j}=\) FHE. Enc \(_{\text {sk }_{\text {FHE }}}\left(i_{j}\right)\) for \(j \in[t]\). Let \(\mathbf{c}=\left(\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{t}\right)\).
            - Compute \((\mathrm{crs}, \tau) \leftarrow \Pi\). Gen \(\left(1^{\lambda}, R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}\right)\), for relation \(R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}\) as defined in (10).
            - Set the new common reference string crs \(^{\prime}=(\mathrm{crs}, \mathrm{ek}, \mathrm{pk}, \mathbf{c})\), verifier state \(\tau\) and trapdoor
                \(\mathrm{td}=\left(\mathrm{sk}_{\mathrm{FHE}}, \mathrm{sk}_{\mathrm{PKE}}\right)\).
            - Output (crs', \(\tau, \mathrm{td}\) ).
    
### 8.2 Proof of Theorem 8.1

We constructed such a SNARK from a SNARG in Algorithm 6. We first show succinctness and soundness, and defer the proof of knowledge soundness to Lemma 8.8 and proof of adaptive multitheorem zero-knowledge to Lemma 8.11.

Succinctness. Note that the new proof consists of a PKE encryption of a FHE ciphertext of a single bit, and proof produced by SNARG.Prove(•).
Consider the following parameters.

- By the compactness of FHE, we know that the size of the ciphertext is bounded by $\ell(\lambda)$ for some polynomial $\ell$ independent of the size of $C_{w}$ (and hence, the size of $w$ ).
- The PKE scheme has ciphertexts (encrypting a single bit) of size $p(\lambda)$, and uses $r(\lambda)$ of randomness to encrypt a bit, where $p$ and $r$ fixed polynomials.
- Let $f(|x|,|w|, \lambda)$ be the proof size of the underlying SNARG scheme for negl $(\lambda)$ soundness.

Then, the new proof consists of a PKE encryption of an FHE ciphertext, which has size $\ell(\lambda) \cdot p(\lambda)$. Also recall that for relation $R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}((x, \rho),(w, r)),|\rho| \leq \ell(\lambda) \cdot p(\lambda) \leq \operatorname{poly}(\lambda)$ and $|r| \leq \ell(\lambda) \cdot r(\lambda) \leq$ $\operatorname{poly}(\lambda)$, where both are bounded by fixed polynomials independent of $x$ and $w$. Therefore, the
proof $\pi$ for the relation $R_{\alpha}^{(\mathbf{c}, \text { ek, pk })}((x, \rho),(w, r))$, we note that has size $f(|x|+|\rho|,|w|+|r|, \lambda)=$ $f(|x|+\operatorname{poly}(\lambda),|w|+\operatorname{poly}(\lambda))$. Therefore, if $f(|x|,|w|, \lambda)=\operatorname{poly}(\lambda) \cdot(|x|+|w|)^{o(1)}$, then we have that the proof length is:

$$
\begin{aligned}
|\rho|+|\pi| & =\ell(\lambda) \cdot p(\lambda)+f(|x|+\operatorname{poly}(\lambda),|w|+\operatorname{poly}(\lambda)) \\
& \leq \operatorname{poly}(\lambda)+\operatorname{poly}(\lambda)(|x|+|w|+\operatorname{poly}(\lambda))^{o(1)} \\
& \leq \operatorname{poly}(\lambda)(|x|+|w|)^{o(1)}
\end{aligned}
$$

where all instances of poly $(\lambda)$ denote polynomials independent of $x$ and $w$. Therefore, the resulting proof is still succinct if the underlying SNARG is succinct.

Reusable and adaptive soundness. Suppose otherwise, and there exists a cheating prover $\mathcal{P}^{*}$ with $\epsilon(\lambda)$ advantage (greater than negligible in $\lambda$ ). By an averaging argument, there must exist some $\left(\mathrm{sk}_{\mathrm{FHE}}, \mathrm{ek}\right) \leftarrow \operatorname{FHE} . \operatorname{Gen}\left(1^{\lambda}, 1^{d}\right),\left(\mathrm{sk}_{\mathrm{PKE}}, \mathrm{pk}\right) \leftarrow \operatorname{PKE} . G e n\left(1^{\lambda}\right)$ and $\mathbf{c}$ such that such that $P^{*}$ is able to cheat with probability $\epsilon(\lambda)$ with respect to a SNARK common reference string of the form (crs, ek, pk, c), where crs $\leftarrow \operatorname{SNARG} . \operatorname{Gen}\left(1^{\lambda}, R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}\right)$. Fix such a tuple (ek, pk, c). Then, $\mathcal{P}^{*}$ produces (possibly adaptive) cheating proofs for the underlying SNARG for $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}$ with probability at least $\epsilon(\lambda)$, which contradicts the reusable, and adaptive soundness of the underlying SNARG.

Preserving public verifiability. Suppose that the underlying SNARG system $\Pi$ is in fact publicly verifiable. In particular, this means that the verifier secret state $\tau$ generated in SNARK.Gen $\left(1^{\lambda}\right)$ in Algorithm 6 in fact equal to the crs. Note that $\mathrm{crs}^{\prime}=(\mathrm{crs}, \mathrm{pk}, \mathrm{ek}, \mathbf{c})$ in fact contains $\tau=\mathrm{crs}$. Therefore, the resulting SNARK is also publicly verifiable.

Lemma 8.8. If $\Pi$ is a reusable and adaptively secure SNARG scheme, then SNARK in Algorithm 6 is non-adaptively black-box knowledge sound.

Proof. Suppose $\mathcal{P}=\left(\mathcal{P}_{\text {inp }}, \mathcal{P}_{\text {chall }}\right)$ such that $\mathcal{P}$ able to produce a verifying proof for a non-adaptively chosen $x$ with non-negligible probability $\frac{1}{h(\lambda)}$, where $h$ is some polynomial. By the adaptive soundness of the underlying SNARG scheme, it must be the case that $x \in L$.

Claim 8.9. If the crs is generated using TDGen $\left(1^{\lambda}, R, i\right)$ (in Algorithm 7) instead of SNARK.Gen $\left(1^{\lambda}, R\right)$ for an arbitrary $i \in[p(\alpha)]$ instead, then $\mathcal{P}$ still succeeds in producing a verifying proof for $x$ with probability at least $1 / h(\lambda)-\operatorname{neg}(\lambda)$.

Proof. The only difference in the two modes of crs generations is that the encryption c generated in the crs is either an encryption of 0 , or an encryption of $i$. Therefore, by IND-CPA security of FHE, the two modes are indistinguishable and hence the $\mathcal{P}^{*}$ 's success probability differs by at most a negligible amount.

With this observation in hand, we now present the black-box extractor in Algorithm 8.
Since $x \in L$, there exists some $w$ such that $R_{\alpha}(x, w)=1$.
Claim 8.10. In each iteration of the for loop, Ext computes the ith bit of the $w$ with probability at least $1-\frac{1}{2^{\lambda} p(\alpha)}$.

```
Algorithm 8 Black-box extractor Ext for SNARK in Algorithm 6
    Input: (crs, \(\tau, x, \pi)\) such that \(\operatorname{SNARK} . \operatorname{Ver}(x, \pi)\)
    Oracle access: \(\mathcal{P}_{\text {chall }}(\mathbf{s t}, \cdot)\) which is able to provide accepting proofs for \(x\) with probability \(\frac{1}{h(\lambda)}\),
    for some polynomial \(h\).
```

    The algorithm:
        - Initial an array \(W\) of length \(p(\alpha)\) to all \(\varnothing\).
        - For \(i \in\{1, \ldots, p(\alpha)\}\), repeat the following experiment at most \(3 h(\lambda) \cdot\left(\log _{e} p(\alpha)+\lambda\right)\) times:
            - Restart black-box access to \(\mathcal{P}_{\text {chall }}\) from state st.
            - Compute \(\left(\mathrm{crs}^{\prime}, \tau, \mathrm{td}\right) \leftarrow \operatorname{TDGen}\left(1^{\lambda}, R, i\right)\).
            - Send crs' to \(\mathcal{P}_{\text {chall }}\) :
                    * Answer all SNARK. \(\operatorname{Ver}_{\tau}(\cdot)\) queries from \(\mathcal{P}_{\text {chall }}\) with secret state \(\tau\).
                    * If any query is of the form \((x,(\rho, \pi))\) such that \(\operatorname{SNARK} \cdot \operatorname{Ver}(\tau, x,(\rho, \pi))\) outputs 1 , then do the following:
    - Unpack td $=\left(\mathrm{sk}_{\mathrm{FHE}}, \mathrm{sk}_{\mathrm{PKE}}\right)$.
- Compute $b_{i} \leftarrow \mathrm{FHE} \cdot \operatorname{Dec}_{\text {sk }_{\text {FHE }}}\left(\operatorname{PKE} \cdot \operatorname{Dec}_{\text {sk }_{\text {PKE }}}(\rho)\right)$.
- Set $W[i]=b_{i}$.
- Check if $R(x, W)=1$. If yes, output $W$. Else, output $\perp$.

Proof. By Claim 8.9, $\mathcal{P}_{\text {chall }}(\mathrm{ct}, \cdot)$ succeeds in creating a verifying proof $(\rho, \pi)$ for $x$ with probability $\frac{1}{h(\lambda)}-\operatorname{negl}(\lambda) \geq \frac{1}{2 h(\lambda)}$. By adaptive soundness of the underlying SNARG, $\mathcal{P}_{\text {chall }}$ creates accepting proofs for $(x, \rho)$ without a witness if negl $(\lambda)$. Therefore, with probability $\frac{1}{2 h(\lambda)}-\operatorname{neg}(\lambda) \geq \frac{1}{3 h(\lambda)}$, it must be the case that $(x, \rho)$ has a witness $\left(w^{\prime}, r^{\prime}\right)$ under the corresponding relation $R_{\alpha}^{(\mathbf{c}, \mathrm{ek}, \mathrm{pk})}$. By construction, we additionally must have $R_{\alpha}\left(x, w^{\prime}\right)=1$, and since $R_{\alpha}$ is a UP relation, $w^{\prime}=w$. Additionally, by definition of $R_{\alpha}$, we have that $\rho=$ PKE.Enc $\mathrm{pk}_{\mathrm{pk}}\left(\right.$ FHE.Eval $\left.\mathrm{ek}\left(C_{w}, \mathbf{c}\right) ; r\right)$. Therefore, by the correctness of the PKE scheme, and the correctness of FHE, we have that $W[i]=$ FHE. $\operatorname{Dec}_{\text {sk }_{\text {FHE }}}\left(\operatorname{PKE} . \operatorname{Dec}_{\text {sk }_{\text {PKE }}}(\rho)\right)=C_{w}(i)=w[i]$ as desired.
Since the experiment is repeated $3 h(\lambda)\left(\log _{e} p(\alpha)+\lambda\right)$ times, we fail to compute the $i$ th bit with probability at most

$$
\left(1-\frac{1}{3 h(\lambda)}\right)^{3 h(\lambda)\left(\log _{e} p(\alpha)+\lambda\right)} \leq \frac{1}{2^{\lambda} p(\alpha)}
$$

By a union bound, the extractor Ext obtains all the bits of $w$ correctly with probability at least $1-1 / 2^{\lambda}$. Therefore, if $\mathcal{P}^{*}$ is able to succeed with creating a proof for $x$ with non-negligible probability, than Ext extracts an incorrect witness with probability at most $1 / 2^{\lambda}$.

$$
\operatorname{Pr}\left[\begin{array}{cc} 
& (x, \text { st }) \leftarrow \mathcal{P}_{\text {inp }}\left(1^{\lambda}\right) \\
\operatorname{Ver}(\tau, x, \pi)=1 & (\operatorname{crs}, \tau) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right) \\
\wedge R(x, w) \neq 1 & \pi \leftarrow \mathcal{P}_{\text {chall }}(\mathrm{st}, \operatorname{crs}) \\
& w \leftarrow \operatorname{Ext}^{\text {chall }} \text { (st,) }(\operatorname{crs}, \tau, x, \pi)
\end{array}\right] \leq \epsilon(\lambda) \cdot 2^{-\lambda}=\operatorname{negl}(\lambda) .
$$

Hence, Algorithm 6 is in fact non-adaptively black-box knowledge sound.
Lemma 8.11. Suppose that the SNARG $\Pi$ is adaptively multi-theorem zero-knowledge. Then, SNARK in Algorithm 6 is also (computationally) adaptively multi-theorem zero-knowledge, as in Definition 3.19.

Proof. Suppose that the underlying SNARG is adaptively multi-theorem zero-knowledge. Then, the resulting scheme is computationally adaptively multi-theorem zero-knowledge. Let $\mathcal{S}^{\Pi}=\left(\mathcal{S}_{1}^{\Pi}, \mathcal{S}_{2}^{\Pi}\right)$ be the adaptive, multi-theorem p.p.t. simulators for SNARG scheme $\Pi$.
Now, we would like to construct simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ for SNARK in Algorithm 6.

- $\mathrm{H}_{0}$ : The adversary $\mathcal{A}$ interacts with the real experiment $\operatorname{EXP}_{\mathcal{A}}^{\text {Real }}\left(1^{\lambda}\right)$ as in Definition 3.19 with SNARK.Gen and SNARK.Prove, and the true verifier secret $\tau$.
- $\mathrm{H}_{1}$ : In this hybrid, we replace both the calls to $\Pi$.Gen and П.Prove in SNARK.Gen and SNARK.Prove respectively with the simulator calls to $\mathcal{S}^{\Pi}$. All changes are highlighted in blue. Concretely:
- Replace SNARK.Gen $\left(1^{\lambda}, R\right)$ with SNARK.Gen ${ }_{1}\left(1^{\lambda}, R\right)$ as follows:
* Compute $\left(\mathrm{sk}_{\mathrm{FHE}}, \mathrm{ek}\right) \leftarrow \operatorname{FHE} . \operatorname{Gen}\left(1^{\lambda}, 1^{d}\right)$.
* Compute $\left(\mathrm{sk}_{\text {PKE }}, \mathrm{pk}\right) \leftarrow \operatorname{PKE} . \operatorname{Gen}\left(1^{\lambda}\right)$.
 Let $\mathbf{c}=\left(\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{t}\right)$.
* Compute $(\mathrm{crs}, \tau, \mathrm{st}) \leftarrow \mathcal{S}_{1}^{\Pi}\left(1^{\lambda}, R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}\right)$, for relation $R_{\alpha}^{(\mathrm{c}, \mathrm{ek}, \mathrm{pk})}$ as defined in (10).
* Set the new common reference string crs' $=(\mathrm{crs}, \mathrm{ek}, \mathrm{pk}, \mathbf{c})$, verifier state $\tau$.
* Output (crs',$\tau$ ).
- Replace SNARK.Prove(crs, $x, w)$ with SNARK.Prove ${ }_{1}(\mathrm{crs}, x, w, \mathrm{st})$ as follows: No longer check $R(x, w)=1$.
* Sample $r \leftarrow \mathcal{R}$.
* Compute $\rho \leftarrow$ PKE.Enc pk $\left(\right.$ FHE.Eval $\left.{ }_{\text {ek }}\left(C_{w}, \mathbf{c}\right) ; r\right)$.
* Compute $\pi \leftarrow \mathcal{S}_{2}($ crs, st, $(x, \rho))$.
* Output $x, \pi^{\prime}:=(\rho, \pi)$.

First, note that the experiment environment already verfies that $R(x, w)=1$, so removing the check in SNARK.Prove does not change the view of the adversary. Additionally, we have that by the adaptive multi-theorem zero-knowledge property of the underlying SNARG scheme, we have $\mathrm{H}_{0} \approx_{c} \mathrm{H}_{1}$ (note that this step can be replaced with a statistical indistinguishability if the underlying scheme has statistical zero-knowledge).
 SNARK. Prove $_{2}$ (crs, $x$, st), with the changes highlighted in blue:

- Sample $r \leftarrow \mathcal{R}$.
- Compute $\rho \leftarrow$ PKE. $\operatorname{Enc}_{\text {pk }}(0 ; r)$.
- Compute $\pi \leftarrow \mathcal{S}_{2}$ (crs, st, $\left.(x, \rho)\right)$.
- Output $x, \pi^{\prime}:=(\rho, \pi)$.

Note that $\mathrm{H}_{1} \approx_{c} \mathrm{H}_{2}$ by the semantic security of the PKE scheme (recall that the $\mathcal{A}$ interacting with this experiment does not see $r$ ) and the fact that $\mathcal{S}_{1}^{\Pi}$ and $\mathcal{S}_{2}^{\Pi}$ are p.p.t. algorithms.

Now, define $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ such that $\mathcal{S}_{1}=$ SNARK.Gen ${ }_{1}$ from $\mathrm{H}_{1}$, and $\mathcal{S}_{2}=$ SNARK.Prove ${ }_{2}$ (recall that $\mathcal{S}_{2}$ crucially no longer depends on $w$ ) from $\mathrm{H}_{2}$. Then, one can view $\mathrm{H}_{2}$ as the ideal experiment $\operatorname{EXP}_{\mathcal{A}}^{\text {Ideal }}\left(1^{\lambda}\right)$ in Definition 3.19 with simulator $\mathcal{S}=\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$. Therefore, since $\operatorname{EXP}_{\mathcal{A}}^{\text {Real }}\left(1^{\lambda}\right) \equiv \mathrm{H}_{0} \approx_{c}$ $\mathrm{H}_{2} \equiv \operatorname{ExP}_{\mathcal{A}}^{\text {Ideal }}\left(1^{\lambda}\right)$, we indeed have that the real and ideal views are indistinguishable, and the resulting SNARK is also (computationally) adaptively multi-theorem zero-knowledge.

Acknowledgements. We thank Yael Kalai and Zhengzhong Jin for insightful discussions on SNARGs, and Rahul Ilango for helpful discussions on strong notions of obfuscation for PRFs. SM and VV were supported in part by DARPA under Agreement Number HR00112020023, NSF CNS2154149, a Simons Investigator award, a Thornton Family Faculty Research Innovation Fellowship from MIT and a Simons Investigator Award. SM was also supported partially by Jane Street. SP was supported in part by the NSF under Grant No. CCF-2122230, and a generous gift from Google. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

## References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC, pages 99-108. ACM Press, May 1996. 18
[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of Computing Systems, 48:535-553, 2011. 18
[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in $\mathrm{NC}^{1}$. In 18th ACM STOC, pages 1-5. ACM Press, May 1986. 26
[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223-238. Springer, Heidelberg, May 2004. 12
[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In

Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 326-349. ACM, 2012. 1
[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 111-120. ACM, 2013. 1, 4
[ $\left.\mathrm{BCG}^{+} 13\right]$ Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for C: verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013-33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science, pages 90-108. Springer, 2013. 1
$\left[\mathrm{BCG}^{+} 14\right]$ Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459-474. IEEE Computer Society, 2014. 1
[ $\left.\mathrm{BCI}^{+} 13\right]$ Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer Science, pages 315-333. Springer, 2013. 1
[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct noninteractive zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014, pages 781-796. USENIX Association, 2014. 1
[BGI ${ }^{+}$01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1-18. Springer, Heidelberg, August 2001. 25
[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501-519. Springer, Heidelberg, March 2014. 19
[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309-325. ACM, January 2012. 24
[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of $L N C S$, pages 410-428. Springer, Heidelberg, August 2013. 8, 10, 19
[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of $L N C S$, pages 719-737. Springer, Heidelberg, April 2012. 20
[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97-106. IEEE Computer Society Press, October 2011. 24
[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280-300. Springer, Heidelberg, December 2013. 6, 19
$\left[\mathrm{CCH}^{+} 19\right]$ Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1082-1090. ACM, 2019. 1
[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities in succinct arguments: Black-box extraction and more. In International Conference on Cryptology in Africa, pages 465-489. Springer, 2023. 3, 4, 5, 14, 23, 47, 48, 49, 50
[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for $\$ \backslash$ mathcal $\{P\} \$$ from LWE. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 68-79. IEEE, 2021. 1, 41
[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577-607. Springer, Heidelberg, August 2018. 11, 17, 18, 19, 29, 30
[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 498-527. Springer, Heidelberg, March 2015. 9, 27, 29
[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of random functions. In G. R. Blakley and David Chaum, editors, CRYPTO'84, volume 196 of LNCS, pages 276-288. Springer, Heidelberg, August 1984. 19
[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010-16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 321-340. Springer, 2010. 1
[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75-92. Springer, Heidelberg, August 2013. 24
[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the $43 r d$ ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 99-108. ACM, 2011. 1, 3, 12
[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded depth from lattices. In IEEE FOCS, 2023. 2
[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs of equivalence. In $63 r d F O C S$, pages 1023-1034. IEEE Computer Society Press, October / November 2022. 1
[JKLV24] Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs under LWE via propositional proofs, 2024. 1, 2
[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from wellfounded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 60-73. ACM, 2021. 1
[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 June 3, 2022, Proceedings, Part I, volume 13275 of Lecture Notes in Computer Science, pages 670-699. Springer, 2022. 1
[Kal23] Yael Tauman Kalai. Personal communication, 2023. 4, 48
[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM STOC, pages 723-732. ACM Press, May 1992. 1
[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and RAM delegation. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1545-1552. ACM, 2023. 41
[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669-684. ACM Press, November 2013. 19
[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115-1124. ACM Press, June 2019. 1
[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 565-574. ACM Press, June 2013. 1, 2
[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power of no-signaling proofs. In David B. Shmoys, editor, 46 th ACM STOC, pages 485-494. ACM Press, May / June 2014. 1, 2
[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):12531298, 2000. 1
[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700-718. Springer, Heidelberg, April 2012. 18
[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333-342. ACM Press, May / June 2009. 30
[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 238-252. IEEE Computer Society, 2013. 1
[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald Fagin, editors, ${ }^{77}$ th ACM STOC, pages 84-93. ACM Press, May 2005. 25, 30
[SD17] Noah Stephens-Davidowitz. On the Gaussian Measure Over Lattices. PhD thesis, New York University, USA, 2017. 19
[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475-484. ACM Press, May / June 2014. 1, 3, 5, 6, 12, 41, 43, 45, 47
[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 535-559. Springer, Heidelberg, August 2022. 2, 9
[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 195-221. Springer, Heidelberg, December 2022. 2, 8, 9, 11, 12, 17, 18, 29, 30, 32, 37
[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217-241. Springer, Heidelberg, May / June 2022. 2, 9
[WW24] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for np from indistinguishability obfuscation. Cryptology ePrint Archive, Paper 2024/165, 2024. https://eprint.iacr.org/2024/165. 3, 4, 5, 12
[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from lattices without random oracles. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of Lecture Notes in Computer Science, pages 651-679. Springer, 2022. 2
[Zha16] Mark Zhandry. How to avoid obfuscation using witness PRFs. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of $L N C S$, pages 421-448. Springer, Heidelberg, January 2016. 6, 12, 35

## A Deferred proofs

## A. 1 Proof of Lemma 3.9

Proof. It suffices to prove indistinguishability for a pair of modified distributions, identical to those in the theorem statement except that each discrete Gaussian sample $x \leftarrow \mathcal{D}_{\mathbb{Z}, s}$ (where $s=\sigma$ or $s=\sigma^{\prime}$ ) is replaced with a "clipped" sample $\hat{x}$ defined by $\hat{x}=x$ if $|x|<s \sqrt{n}$, and $\hat{x}=0$ otherwise. This is justified by Lemma 3.7, which implies that for any $s>0, \hat{\mathcal{D}}_{\mathbb{Z}, s} \approx_{s} \mathcal{D}_{\mathbb{Z}, s}$ with security parameter $\mu$, where $\hat{\mathcal{D}}_{\mathbb{Z}, s}$ is the distribution of samples clipped as above.
Given $n, h \in \mathbb{N}$, let $a(n, h)$ be the adversary's advantage in the modified distinguishing task. Clearly $a(n, 0)=0$, since $\mathbf{a}+\mathbf{e}_{\epsilon}=\mathcal{U}\left(\mathbb{Z}_{q}\right)$, where $\epsilon$ denotes the empty bitstring. It suffices to show the claim

$$
a(n, h) \leq 2 a(n, h-1)+\operatorname{poly}\left(n \cdot 2^{h}\right) / k+\operatorname{negl}(\mu),
$$

because a simple induction on $h$ then shows that $a(n, h) \leq h \cdot 2^{h} \cdot\left(\operatorname{poly}\left(n \cdot 2^{h}\right) / k\right)+\operatorname{negl}(\mu)$. This implies the result since we assumed that $h \leq n^{\delta}, f(n) \leq 2^{n^{\delta}}$, and $1 / k(n) \leq \operatorname{negl}\left(n, 2^{h}, f(n)\right)$.
For $b \in\{0,1\}$, let $\mathbf{a}_{b} \leftarrow \mathbb{Z}_{q}^{n}$ and $\mathbf{e}_{b}^{\prime} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma}$, and for $\mathbf{x} \in\{0,1\}^{h}$, let $\mathbf{e}_{\mathbf{x}}^{\prime \prime} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma^{\prime}}$. The claim follows immediately from the following hybrids, which all hold against poly $(\mu)$-time adversaries with advantage bounds which will be specified below.

$$
\begin{array}{ll}
\left\{\left(\prod_{i=1}^{h+1} \mathbf{S}_{i, \mathbf{x}_{i}}\right) \cdot \mathbf{a}+\mathbf{e}_{\mathbf{X}}\right\}_{\mathbf{x} \in\{0,1\}^{h+1}}, & \left\{\mathbf{S}_{i, b} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{b \in\{0,1\}, i \in[h+1]} \\
\approx_{s}\left\{\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{y}_{i}}\right) \cdot\left(\mathbf{S}_{h+1, b} \mathbf{a}+\mathbf{e}_{b}^{\prime}\right)+\mathbf{e}_{\mathbf{y}, b}^{\prime \prime}\right\}_{\mathbf{y} \in\{0,1\}^{h}, b \in\{0,1\}}, & \left\{\mathbf{S}_{i, b} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{b \in\{0,1\}, i \in[h+1]} \\
\stackrel{c}{\approx}\left\{\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{y}_{i}}\right) \cdot \mathbf{a}_{b}+\mathbf{e}_{\mathbf{y}, b}^{\prime \prime}\right\}_{\mathbf{y} \in\{0,1\}^{h}, b \in\{0,1\}}, & \left\{\mathbf{S}_{i, b} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{b \in\{0,1\}, i \in[h+1]} \\
\approx_{c}\{\mathcal{U}\}_{\mathbf{y} \in\{0,1\}^{h+1}, b \in\{0,1\}} & \left\{\mathbf{S}_{i, b} \leftarrow \hat{\mathcal{D}}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{b \in\{0,1\}, i \in[h+1]}
\end{array}
$$

The $\approx_{s}$ holds with advantage bound poly $\left(n \cdot 2^{h} / k\right)$ and follows from noise flooding. Specifically, since the entries of the $\mathbf{S}_{i, b}$ have absolute value at most $\sigma \sqrt{n}$, and except with probability $n \cdot 2^{h} \cdot 2^{-n}=\operatorname{negl}(\mu)$ this also holds for all $\mathbf{e}_{\mathbf{x}}$, we have

$$
\sigma^{\prime \prime}=\max _{i, \mathbf{y}, b}\left\{\left|\left(\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{y}_{i}}\right) \mathbf{e}_{b}^{\prime}\right)_{i}\right|\right\} \leq\left(\sigma n^{2}\right)^{h+1}
$$

Thus, for each $\mathbf{y}, b$, we can replace each entry of $\mathbf{e}_{\mathbf{y}, b}-\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{y}_{i}}\right) \mathbf{e}_{b}^{\prime}$ with $\mathbf{e}_{\mathbf{y}, b}^{\prime \prime}$, each replacement within statistical distance $\sigma^{\prime \prime} / \sigma^{\prime} \leq 1 / k$ by Lemma 3.8, adding up to a total statistical distance of $2^{h+1} \cdot n \cdot\left(2^{-n}+1 / k\right)=\operatorname{poly}\left(n, 2^{h}\right) / k+\operatorname{neg}(\mu)=\operatorname{poly}\left(n, 2^{h}\right) / k$.
The $\approx_{c}$ holds with advantage bound negl $(\mu)$ and follows from Lemma 3.1 in dimension $n$, with secret a and public matrix $\left(\mathbf{S}_{h+1,0}^{T}, \mathbf{S}_{h+1,1}^{T}\right)^{T}$. Finally, the $\approx_{c}$ holds with advantage bound $2 a(n, h-1)$ and follows from inductive hypothesis. This concludes the proof of the claim and thus the proof of the lemma.

## A. 2 Proof of Lemma 3.15

Proof. To simplify the notation, we will omit $\left\{\mathbf{S}_{i, b} \leftarrow \mathcal{D}_{\mathbb{Z}, \sigma}^{n \times n}\right\}_{b \in\{0,1\}, i \in[h]}$ from the indistinguishability claims in the proof. (That is, each claimed indistinguishability implicitly includes these matrices on both sides.)

First, from Lemma 3.9 we have

$$
\left\{\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{x}_{i}}\right) \cdot \mathbf{a}+\mathbf{e}_{\mathbf{x}}\right\}_{\mathbf{x} \in\{0,1\}^{h}} \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in\{0,1\}^{h}}
$$

where all poly $(\mu)$-time distinguishers have advantage at most negl $(f(n))$.
Thus we can apply Lemma 3.11 to the above values, with our $p, g=f$, and $B=\sigma^{\prime} \sqrt{n}$, to obtain

$$
\left\{\left[\left(\prod_{i=1}^{h} \mathbf{S}_{i, \mathbf{x}_{i}}\right) \cdot \mathbf{a}\right]_{p}\right\}_{\mathbf{x} \in\{0,1\}^{h}} \approx_{c}\left\{\mathcal{U}\left(\mathbb{Z}_{q}\right)\right\}_{\mathbf{x} \in\{0,1\}^{h}}
$$

where all poly $(\mu)$-time distinguishers have advantage at most negl $\left(f^{\prime}(n)\right)$, for

$$
f^{\prime}=f+2^{h} \cdot(2 \sigma \sqrt{n} / p+(p / q))+\operatorname{negl}(\lambda)=f+k+2^{h} \cdot(p / q)+\operatorname{negl}(\lambda)=\operatorname{poly}(f)
$$

Combining these two indistinguishabilities gives the desired result.

## A. 3 Proof of Lemma 4.7

Proof. The proof proceeds in two steps. First, we will prove that for all $d \in[h]$, for all $\mathbf{x} \in\{0,1\}^{d}$, we have

$$
\begin{equation*}
\mathbf{D}_{\mathbf{x}}=\mathbf{M}_{\mathbf{x}} \mathbf{A}_{d}+\sum_{j=1}^{d}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d} \mathbf{D}_{i, x_{i}}\right) \tag{11}
\end{equation*}
$$

where we define $\mathbf{A}_{h}:=\mathbf{I}^{n_{h} \times n_{h}}$. Then, observing that for all $\mathbf{x} \in\{0,1\}^{h}, \mathbf{D}_{\mathbf{x}}-\mathbf{M}_{\mathbf{x}}$ is simply the sum in (11), we will finish the proof by showing that the (infinity) norm of this sum is at most the claimed bound. We prove (11) by induction on $d$. The base case $d=1$ follows by definition; indeed, for all $x_{1} \in\{0,1\}, \mathbf{D}_{1, x_{1}}:=\mathbf{M}_{1, x_{1}} \mathbf{A}_{1}+\mathbf{E}_{1, x_{1}}$. For the inductive step, observe that for all $\mathbf{x} \in\{0,1\}^{d}$,

$$
\begin{aligned}
\mathbf{D}_{\mathbf{x}} & :=\left(\prod_{i=1}^{d-1} \mathbf{D}_{i, x_{i}}\right) \cdot \mathbf{D}_{d, x_{d}} \\
& =\left(\left(\prod_{i=1}^{d-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{A}_{d-1}+\sum_{j=1}^{d-1}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d-1} \mathbf{D}_{i, x_{i}}\right)\right) \cdot \mathbf{A}_{d-1}^{-1}\left(\mathbf{M}_{d, x_{d}} \mathbf{A}_{d}+\mathbf{E}_{d, x_{d}}\right) \\
& =\mathbf{M}_{\mathbf{x}} \mathbf{A}_{d}+\left(\prod_{i=1}^{d} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{d, x_{d}}+\left(\sum_{j=1}^{d-1}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d} \mathbf{D}_{i, x_{i}}\right)\right) \\
& =\mathbf{M}_{\mathbf{x}} \mathbf{A}_{d}+\sum_{j=1}^{d}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d} \mathbf{D}_{i, x_{i}}\right)
\end{aligned}
$$

as desired. The second equality follows from the inductive hypothesis, and the others are just algebraic manipulations. We prove the norm bound via

$$
\begin{aligned}
& \left\|\sum_{j=1}^{d}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d} \mathbf{D}_{i, x_{i}}\right)\right\|_{\infty} \\
& \leq d \cdot \max _{j \in[d]}\left(\prod_{i=1}^{j-1} \mathbf{M}_{i, x_{i}}\right) \cdot \mathbf{E}_{j, x_{j}} \cdot\left(\prod_{i=j+1}^{d} \mathbf{D}_{i, x_{i}}\right) \\
& \leq d \cdot\left(\prod_{i=1}^{h-1} m_{i}\right) \cdot B^{d} .
\end{aligned}
$$

The first inequality is trivial, and the second repeatedly uses the simple fact that if $\left\|\mathbf{A} \in \mathbb{Z}_{q}^{x \times d}\right\|_{\infty} \leq a$ and $\left\|\mathbf{B} \in \mathbb{Z}_{q}^{d \times y}\right\|_{\infty} \leq b$, then $\|\mathbf{A B}\|_{\infty} \leq d a b$, along with Lemma 3.7, which implies that except with probability negl $(\mu)$, for all $i \in[h]$ and $b \in\{0,1\},\left\|\mathbf{D}_{i, b}\right\|_{\infty} \leq \sigma \sqrt{n}$.


[^0]:    *smathi@mit.edu
    †sp2473@cornell.edu
    ${ }^{\ddagger}$ vinodv@mit.edu

[^1]:    ${ }^{1}$ Indistinguishability obfuscation is not a polynomially falsifiable cryptographic assumption but it is sub-exponentially falsifiable. Alternatively, IO constructions can be based on falsifiable assumptions, e.g. [JLS21, JLS22].

[^2]:    ${ }^{2}$ The recent, and concurrent, work of Waters and Wu [WW24] achieves an adaptively secure (and publicly verifiable) SNARG for NP using indistinguishability obfuscation. We elaborate on this work in Section 1.1.

[^3]:    ${ }^{3}$ For a reader familiar with constrained PRFs [BW13], a witness PRF is similar to a constrained PRF on a relation circuit $R(x, w)$, except that the output value when $R(x, w)=1$ depends only on $x$, not both $x$ and $w$.

[^4]:    ${ }^{4}$ The concurrent work of Waters and Wu [WW24] modifies the Sahai-Waters SNARG in a more sophisticated white-box way to achieve adaptive security in this setting.

[^5]:    ${ }^{5}$ In fact, we obtain proof size $O(\lambda)$.

[^6]:    ${ }^{6}$ We remark that the "parallel" indices $b \in\{0,1\}$ can be generalized to $j \in\left[k_{i}\right]$ for arbitrary $\left\{k_{i} \in \mathbb{Z}\right\}_{i \in[h]}$, although we consider only binary indices in this paper.

[^7]:    ${ }^{7}$ This choice of $\sigma$ allows the hardness of LWE to be based on worst-case lattice problems via the celebrated reductions first shown by Regev [Reg05] and Peikert et al. [Pei09]; see [CVW18, Lemma 3.8] for a reference statement.
    ${ }^{8}$ This was referred to as the $\gamma_{\text {diag }}$ GGH15 encoding in [CVW18].

[^8]:    ${ }^{9}$ Note that the verifier runtime can be generically reduced to depend only logarithmically on $\ell_{w}$ using FHE and a RAM delegation scheme as in [CJJ21, KLVW23].

