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Abstract

Universal computational extractors (UCEs), introduced by Bellare, Hoang, and Keelveedhi
[BHK13], can securely replace random oracles in various applications, including KDM-secure
encryption, deterministic encryption, RSA-OAEP, etc. Despite its usefulness, constructing UCE
in the standard model is challenging. The only known positive result is given by Brzuska and
Mittelbach [BM14], who constructUCEwith strongly computationally unpredictable one-query
source assuming indistinguishability obfuscation (iO) and the existence of point obfuscators
with auxiliary input (AIPO); they also construct UCE with q-query sources assuming iO and
composable AIPO. On the other hand, Brzuska, Farshim, and Mittelbach [BFM14] show that
the most potent version of UCE does not exist, assuming the existence of iO.

In this paper, we construct UCE with strongly computationally unpredictable one-query
sources from lattice assumptions based on the GGH15 encodings [GGH15], without using iO.
Security is proven under the following assumptions: (1) LWEwith subexponential hardness; (2)
evasive LWE,which is a new assumption proposed byWee [Wee22]; (3) the existence of AIPO in
NC1. OurUCEdirectly implies a universal hardcore function that outputs a polynomial number
of bits, giving the first lattice-based universal hardcore function without using iO. We also put
forth a new primitive called obliviously programmable function as an intermediate abstraction; it
makes our analysis more modularized and could be of independent interest.

1 Introduction

The Random Oracle Methodology refers to the popular paradigm of designing cryptographic
schemes that comprises two steps: One first designs a scheme whose security can be proved in the
random oracle (RO) model; then, the random oracle is instantiated by a good ‘cryptographic hash
function’ (e.g., SHA-3), hoping the resulting scheme is still safe. Well-known applications of the
RO methodology include the Fiat-Shamir transform [FS87] and the Fujisaki-Oakamoto transform
[FO99]. However, this is only a rule of thumb and has been proven to be theoretically unsound:
In a seminal work, Canetti et al. [CGH04] designed a scheme that is secure in the random oracle
model but insecure when the random oracle is replaced by any function.

Even with these negative results, the random oracle methodology remains popular as people
deem the known counterexamples as artificially contrived. The hope is that in natural and practical
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cases, the random oracle can be safely instantiated. A natural remedy is to identify ‘RO-like’ prop-
erties that are sufficient for important applications and then construct hash functions with such
properties under well-formed assumptions. Along this line, a number of security notions have
been proposed in existing literature, such as correlation intractability [CGH04], correlated-input
security [GOR11], and universal computational extractors [BHK13]. In this paper, we focus on the
construction of universal computational extractors (UCEs).

UCEsecurity. Universal computational extractors, introduced byBellare, Hoang, andKeelveedhi
(BHK, [BHK13]), enable instantiations of random oracles in various applications, e.g., universal
hardcore function, deterministic encryption, RSA-OAEP, etc. For a keyed function family H, the
UCE security is defined by a two-stage game as follows. An adversary in this game is a pair of
algorithms (S,D), where S is called the source and D the distinguisher. S has access to an oracle
HASH that is either H.Eval(hk, ·) or a random oracle; D receives a message L from S and is given
hk; D has to guess to which oracle S has access to. The adversary wins if D guesses correctly.

Without any restrictions, we can easily design a winning adversary: S queries HASH on a ran-
dom point x and send L = (x, y) to D, where y is the oracle answer; then D simply check whether
H.Eval(hk, x) = y. Therefore, we restrict the source to be in some set S , and allow D to be any PPT
algorithm. H is said to be S-UCE-secure if for every S ∈ S and PPT D, the winning probability of
(S,D) in the UCE game is negligible.

BHK first considers the set of all computationally unpredictable sources, denoted by Scup.
Roughly speaking, S ∈ Scup if no PPT predictor, given L, can predict the queries made by S to
HASH. [BFM14] shows that UCE security for computationally unpredictable sources Scup can-
not be achieved in the standard model, assuming indistinguishability obfuscation (iO) [BGI+12,
GGH+16] exists.

Later, [BM14] strengthened the restriction to be strongly computationally unpredictable, mean-
ing that the oracle answers to the source are also given to the predictor. Assuming the existence
of iO and point obfuscation with auxiliary input (AIPO) [Can97, Wee05, GK05, GKPV10], they
constructed a UCE-secure function for sources that are (1) strongly computationally unpredictable
and (2) only make one query to HASH. We denote the set of such sources as Sscup

1 .
Though the sources are restricted to making only one query, a Sscup

1 -UCE-secure function is
still powerful — it implies hardcore function for any one-way function and the hardcore function
outputs a polynomial number of bits. As iO appears to be a much stronger primitive than UCE, a
natural question arises:

Can we construct UCE-secure functions without using iO (in the standard model)?

1.1 Our Results

In this paper, we give a simple construction of Sscup
1 -UCE-secure function from lattice assumptions

based on the GGH15 encoding [GGH15]. Our main result is

Theorem 1.1. Under the subexponential LWE assumption and the evasive LWE assumption, provided that
there exists an AIPO in NC1, then there exists a Sscup

1 -UCE-secure function.

Here, we need the existence ofAIPOwhere the evaluation algorithmof the obfuscated program
can be computed by a circuit in NC1. Such AIPO exists assuming some non-standard yet plausible
variants of LWE or DDH, which we will explain later.
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According to [BHK13], an Sscup
1 -UCE-secure function is a universal hardcore function; that is,

it is a hardcore for any one-way function.

Corollary 1.2. Under the subexponential LWE assumption and the evasive LWE assumption, provided
that there exists an AIPO in NC1, then there exists a universal hardcore function that outputs a polynomial
number of bits.

Among previous constructions of universal hardcore function, only the constructions due to
Zhandry are free of iO: One [Zha16] uses extractable witness PRF, and the other [Zha19] uses
extremely loss functions. Extractable witness PRF contains strong knowledge assumptions and the
only instantiation of extremely lossy functions based on the exponential hardness of the decisional
Diffie-Hellman problem. Our construction is the first lattice-based one without using iO.

Since subexponential LWE is rather a standard assumption, we discuss the other two assump-
tions in what follows. Evasive LWE is a new assumption proposed by Wee [Wee22]. Suppose that
we have some joint distributions over matrices P,S and auxiliary information aux. The evasive
LWE assumption postulates that, for a uniformly random (and secret) matrix B,

if
(
SB+ E,SP+ E′, aux

)
≈c

(
U,U′, aux

)
then

(
SB+ E,B−1(P), aux

)
≈c

(
U,B−1(P), aux

)
where U,U′ are uniformly random matrices, and E,E′ are chosen from the LWE error distribution
with appropriate parameters. Essentially the above says that given SB+ E, getting the additional
component B−1(P) is no more useful than just getting the product (SB + E) · B−1(P) ≈ SP +
E′. Evasive LWE has proven to be useful in constructing advanced primitives such as witness
encryption [Tsa22, VWW22] and attribute-based encryption [HLL23]; (heuristic) attacks are only
known for highly contrived distribution of aux [VWW22].

On the AIPO assumption. We consider a variant of point obfuscators. Loosely speaking, we
require the obfuscation of any point function to be indistinguishable from the obfuscation of the
all-zero function. Construction of AIPO in NC1 with statistically unpredictable auxiliary inputs is
known from standard LWE [GKPV10]. We conjecture that the same construction is an AIPO for
computationally unpredictable auxiliary inputs (with our definition).

It is worth noting that the AIPO is only used in the security proof; the construction of UCE
itself only involves lattice computations. That is, we only need the existence of an AIPO in NC1.
Therefore, regardless of the status of the AIPO assumption, our construction is still a good candi-
date for UCE in light of its simplicity. It is possible that the same construction can be proven secure
without making use of AIPO, and even more ambitiously, without evasive LWE.

1.2 Technical Overview

Our starting point is the construction of UCE based on iO and AIPO due to Brzuska and Mittel-
bach [BM14]. Their construction of UCE uses the iO of a puncturable pseudorandom function
(PRF); that is, the hash key hk ← iO(F(msk, ·)) is an obfuscated program, where F is a punc-
turable PRF and msk is the master key of F. The security proof in [BM14] essentially uses iO
to privately switch the real PRF key to a punctured key that involves the query information from
the source. This hints that privately constrained PRFs (PCPRFs) [BLW17] may be good candi-
dates for UCEs, where the hash key hk is simply the constrained key for an empty circuit. Given
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that there exist a few constructions of PCPRFs from lattice assumptions without using iO (see
e.g. [BKM17, CC17, BTVW17, PS18]), we might be able to construct a UCE without iO using ideas
from those PCPRFs.

Let us now briefly explain how [BM14] shows that iO of puncturable PRF is a UCE. Here we
assume readers have some familiarity of the iO and puncturable PRF methodology (for readers
who are not familiar with the iO and puncturable PRF methodology, [SW14, BM14] are good ref-
erences). Suppose that the source S makes only one query, denoted by x∗, and receives the oracle
answer y∗ = F(msk, x∗). The proof in [BM14] comprises two major steps.

1. First, switch y∗ to a uniformly random value, and meanwhile, hk is changed to iO(Px∗,y∗,kx∗ )
where kx∗ is the punctured key at point x∗ and Px∗,y∗,kx∗ (·) is the following program:

• On input x, if x = x∗, output y∗; otherwise, output F(kx∗ , x).

2. Next, hk is switched back to iO(F(msk, ·)), but y∗ is still chosenuniformly at random. This step
iswhereAIPO comes into play: Instead of hardcodingx∗ intoPx∗,y∗,kx∗ , it suffices to hardcode
a point obfuscation of x∗ denoted by px∗ ← AIPO(x∗), becausewe only need to checkwhether
x = x∗ or not. Moreover, we can use msk instead of kx∗ , since F(kx∗ , x) = F(msk, x) for all
x 6= x∗. More precisely, we replace Px∗,y∗,kx∗ by

• Ppx∗ ,y∗ : On input x, if px∗(x) = 1, output y∗; otherwise, output F(msk, x).

By the strong unpredictability of S and the security of AIPO, it is hard to find x∗ given px∗ , y∗.
Note that x∗ is the only input that F(msk, ·) andPpx∗ ,y∗(·) differs. Thenwe can finish the proof
by a technique from [BCP14]: It is shown that iO for all circuits in P/poly is also a differing-
inputs obfuscator for circuits that differ on at most polynomially many inputs.

Nevertheless, if we wish to use a PCPRF G instead, we will get stuck even in the first step: In a
wishful thinking, we want to first switch the key to the punctured key kx∗ while using G(msk, x∗)
as the oracle answer; then, we can replace the oracle answer G(msk, x∗) by a random value due to
pseudorandomness. However, to switch frommsk (i.e., constrained key for an empty circuit) to kx∗

relying on the constraint-hiding property, the adversary (for G) has no access to G(msk, x∗), and
thus it cannot properly reply G(msk, x∗) to the query by the source. To fix this issue, we conceive
the following strategy:

• Imagine that the punctured key is generated by first sampling y∗ (uniformly at random) and
then producing a key kx∗ such that G(kx∗ , x∗) = y∗. This way, in the reduction from the
constraint-hiding property, the reduction can compute y∗ = G(kx∗ , x∗) and reply y∗ to the
source.

That is, wewant to program the value at x∗ to be y∗, a random value sampled before the generation
of the puncture key kx∗ .

Even if we manage to do such programming, the AIPO also causes a problem: In the second
step, we want to use px∗ ← AIPO(x∗) instead of x∗ to generate the key. Hence, we have to pro-
gram the value at x∗ to be y∗ without explicitly knowing x∗— we are only given px∗ , a circuit that
computes the point function 1x∗ . Therefore, we roughly require the following functionality:

• Given a circuit C that computes the point function 1x∗ and a value y∗, one can generate a
‘programmed key’ kC such that G(kC , x∗) = y∗.

4



This functionality is supported by the PCPRF constructed from iO [BLW17], but is not supported
by the existing lattice-based PCPRFs [BKM17, CC17, BTVW17, PS18]. This also motivates our def-
inition of a new primitive called obliviously programmable function. We mean by oblivious that the
programmed key is generated only given a circuitC that computes 1x∗ , without explicitly knowing
x∗.

Obliviously programmable function (OPF). Let C be a circuit class. An OPF OPF(·, ·) for C, like
PRFs, is a keyed function where the first input is viewed as the key. It provides an algorithm
OPF.Program(C, y) that takes as input a circuit C ∈ C and a value y, and outputs a programmed
key kC . The following properties are required.

• Correctness. If C computes the point function 1x, then OPF(kC , x) = y.

• Privacy. kC computationally hidesC if (1)C computes a point function or the all-zero function
and (2) the programmed value y is chosen uniformly at random.

• Value-Hiding for the all-zero function. If C computes the all zero function, kC computation-
ally hides the value y.

The value-hiding property intuitively says that if C computes the all-zero function, the value y has
no effect. In section 3, we shall prove that H(hk, x) def

= OPF(hk, x) is a UCE, with the following key
generation algorithm:

• The key generation algorithm H.Gen chooses a value y uniformly at random, and outputs
hk ← OPF.Program(C∅, y), where C∅ ∈ C is any (fixed) circuit that computes the all-zero
function.¹

Theorem 1.3. (Theorem 3.3, informally) Assume that there exists an AIPO that always outputs a circuit
in the circuit class C (e.g., NC1). If OPF is an OPF for C, then H defined above is Sscup

1 -UCE-secure.

Realizing OPF via GGH15 encodings. We start with a brief introduction of GGH15 encodings.
In this framework, circuits are encoded as matrix branching programs (MBPs). A read-once MBP
Γ is specified by v ∈ {0, 1}w and

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}. On inputs x ∈ {0, 1}h, the output

of the MBP is 1 if v⊤Mx = 0 and otherwise 0, where Mx
def
=

∏
i∈[h] Mi,xi . To encode such a MBP, we

first construct
{
Ŝi,b

}
i∈[h],b∈{0,1}

:

Ŝ1,b =
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b =

(
In

Mi,b ⊗ Si,b

)
for i = 2, . . . , h,

where Sj,b ← Dn×n
σ . Then GGH15 encodings of such an MBP is given by

GGH.Encode({Ŝi,b}) =
{
Ŝ1,bA1
::::::

,A−11 (Ŝ2,bA2
::::::

), . . . ,A−1h−1(Ŝh,bAh
::::::

)

}
b∈{0,1}

,

where Ai ← Z(n+nw)×m
q for some m = Θ(nw log q) and

::::::
wavy

::::::::::
underline is put in place of noise

terms. Given the encoding and x ∈ {0, 1}h, we can approximate ŜxAh, where Ŝx
def
=

∏
i∈[h] Ŝi,xi .

¹Actually, by the value-hiding property, we can set y to be any fixed value.
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Intuitively, to generate a programmed key for Γ, we let the encoding be the programmed key kΓ
and let OPF.Eval(kΓ, x) be the approximation of ŜxAh given by the encoding. But how to program
the value at x∗ (assuming Γ computes the point function 1x∗)?

Note that we add a seemingly useless In-track in the Ŝ-matrices. Remarkably, it is this modifi-
cation that allows us to program on the target point. To see this, observe that

OPF.Eval(kΓ, x) ≈ ŜxAh =
(
In | v⊤Mx ⊗ Sx

)
·Ah

= Ah + (v⊤Mx ⊗ Sx) ·Ah,
(1)

where Ah denotes the top n rows of Ah and Ah is the rest part. If Γ computes the point function
1x∗ , i.e., v⊤Mx∗ = 0, then OPF.Eval(kΓ, x) ≈ Ŝx∗Ah = Ah. Hence, we can program the value at x∗
by controlling Ah.

For privacy, we need to show the encoding computationally hides Γ provided that Γ computes a
point function or the all-zero function. This is reminiscent of witness encryption or null-iO, where
security is required only when the underlying circuit computes the all-zero function. In our case,
we need to show security also for circuits that compute point functions. To this end, we observe that
though [VWW22] aims at constructing witness encryption and null-iO, they in fact give a general
reduction assuming evasive LWE: In order to prove the encodings are pseudorandom (thus hiding
Γ), it suffices to show that the evaluated products

{
ŜxAh + Ex

}
x∈{0,1}h

are pseudorandom, where
Ex are independent noises. Continuing eq. (1), we have

ŜxAh + Ex = Ah + (v⊤Mx ⊗ I) · (I⊗ Sx) ·Ah + Ex

≈ Ah + (v⊤Mx ⊗ I) ·
pseudorandom︷ ︸︸ ︷
(I⊗ Sx) ·Ah
:::::::::::

.

Since there is at most one point x∗ with v⊤Mx∗ = 0, we have that

• the value at x∗ approximately equals to Ah so it is uniformly random as long as Ah is;

• the value at x 6= x∗ is pseudorandom since (I⊗ Sx) ·Ah
:::::::::::

is pseudorandomand (v⊤Mx⊗I) 6= 0.

The value-hiding property follows from a similar argument. The difference is that we want
to show the programmed value Ah is computationally hidden, provided that Γ computes the all-
zero function. This is true because if Γ computes the all-zero function, then for all x ∈ {0, 1}h,
ŜxAh + Ex is randomized by (I⊗ Sx) ·Ah

:::::::::::
, hence the evaluated products are still pseudorandom

even if Ah is chosen and fixed by the distinguisher. Consequently, the encoding is pseudorandom
by the aforementioned reduction.

We can generalize the above proof strategy to work with a larger class called read-c MBPs for
any polynomial c. Any NC1 circuit can be translated into such MBPs; therefore, we get an OPF for
NC1:

Theorem 1.4. Assuming subexponential LWE and evasive LWE, there exists an OPF for NC1 (based on
GGH15 encodings).

Now theorem 1.1 follows by combining theorem 1.4 and theorem 1.3.
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1.3 Discussion

OPF compared with PCPRF. OPF is different from PCPRF in both syntax and security.

• Syntax. OPF has no master key and it is more like a plain PRF. The programmed circuit is
chosen before key generation.

• Security. OPF does not emphasize pseudorandomness; it is more about programmability. It
allows us to program an input-value pair (x∗, y∗) into the function where x∗ is not explicitly
known — only a circuit computing the point function 1x∗ is given. Interestingly, though in
our construction, the OPF is indeed a PRF when programmed on the all-zero function, but it
seems difficult to prove ‘every OPF programmed on the all-zero function is a PRF’ from the
definitions.

OurOPF construction is somewhat similar to the construction of PCPRFs byChen, Vaikuntanathan,
andWee (CVW, [CVW18]). TheCVWconstruction also uses a two-track structure in the Ŝ-matrices.
While we put all identity matrices in the top track to support programming, the CVW construc-
tion puts Si,b in the top track of Ŝi,b so that the value computed by the top track (i.e., SxAh) is the
evaluation of the constrained PRF with the master key.

We would like to emphasize that the OPF we construct from lattice assumptions is not a con-
strained PRF, in the sense that we do not support a general constraining algorithm. Constructing
an obliviously programmable constrained PRF without using iO remains an open problem.

Programming onmore points? Our result suggests that for a keyed functionH, if we can program
one point inH obliviously, then assumingAIPO,we show thatH behaves like anROwith one query.
It is conceivable that if we manage to program q points obliviously, then assuming obfuscation for
functions that take the value 1 on at most q values, we can prove H behaves like an RO with q-
queries, e.g., proving H is a UCE that supports q-queries. Indeed, this is realized in [BM14] using
iO plus composable virtual grey box point obfuscators.

Another direction is to construct OPF for larger circuit classes, e.g., P/poly, without using iO. If
we can do so then there is no need to restrict the AIPO from being in NC1. One potential approach
is to start from the PCPRFs in [BTVW17, PS18], which support P/poly constraints.

Remove the evasive LWE assumption? Another interesting open problem is proving our con-
struction of UCE is secure without using the evasive LWE assumption. Evasive LWE is a plausi-
ble but yet strong and unfalsifiable assumption. Let us briefly explain why we currently need to
assume evasive LWE by looking back to the previous applications of the GGH15 encoding. For
the constructions of PCPRFs and lockable obfuscations [CC17, GKW17, WZ17, CVW18] from the
GGH15 encoding, their security properties can be converted locally into each level of the GGH15
encoding, so they can be proven from standard LWE. For the constructions of witness encryption
[Tsa22, VWW22] from GGH15, the security property (i.e., there is no witness) is global, and it is
not clear how to convert it to local properties in GGH15, so they use evasive LWE instead. In our
proof, “the AIPO has only one input evaluated to 1” is a global property, and we don’t know how
to convert it to each level of GGH15 since we don’t know which input evaluates to 1 in the AIPO,
so we can only argue security using evasive LWE. However, there might be a chance of finding a
smart proof technique that allows us to base UCE (and witness encrytion) from GGH15 encoding
on standard LWE, and we leave it as an open problem.
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2 Preliminaries

Notations. We use lowercase bold symbols for vectors (e.g., v) and uppercase for matrices (e.g.,
A); denoted by In the identity matrix of dimension n. For a set S, we use U(S) to denote the
uniform distribution over S. We use ← to denote sampling from a distribution or choosing an
element from a set uniformly at random. For two distributions χ1 and χ2, we write χ1 ≈s χ2 if χ1

and χ2 are statistically close; and χ1 ≈c χ2 means that they are computationally indistinguishable.
In experiments or games, JEK equals 1 if the event E happens and otherwise 0; Expr ⇒ 1 means
the experiment Expr outputs 1. For x ∈ Zq, let bxep

def
=

⌊
x · pq

⌋
denote the rounding of x to Zp; and

bAep is the matrix resulting from rounding every entry of A to Zp. For a function ν : N→ [0, 1], we
write ν = negl(λ) if for every c ∈ N, ν(λ) ≤ 1/(cλc) for sufficiently large λ.

2.1 Lattice Background

Gassian. For σ > 0, we use Dσ to denote the Guassain over Z with standard deviation σ, namely

∀x ∈ Z,Dσ(x) ∝ e−πx/σ
2
.

Learning with Error. We recall the learning with errors problem.

Definition 2.1 (Decisional learning with errors (LWE) [Reg09]). For n,m ∈ N and modulus q ≥ 2,
distributions θ, π, χ over Zq for secret vectors, public matrices, and error vectors respectively. The
LWEn,m,q,θ,π,χ assumption states that

(s⊤A+ e⊤ mod q,A) ≈c (u⊤,A),

where
s← θn,A← πn×m, e← χm,u← U(Zm

q ).

We rely on the subexponential LWE assumption, which states that for some δ > 0, the above
indistinguishability holds against adversaries running in 2n

δ with advantage at most 2−nδ with the
following parameters:

m = poly(n), θ = π = U(Zq), χ = Dσ, q ≤ 2n
δ · σ.

Lemma 2.2 ([BLMR13]). Subexponential LWE assumption with π = D2
√
n (and other parameters the

same) are implied by the subexponential LWE assumption (with π = U(Zq)).

Trapdoor and preimage sampling. We recall the background of lattice trapdoor and the capabil-
ity of using the trapdoor to sample a short preimage of the Ajtai function.

Lemma 2.3 ([Ajt99, AP09,MP12]). There is a PPT algorithmTrapSam(1n, 1m, q) that, given the modulus
q ≥ 2, dimensions n,m such thatm ≥ 2n log q, outputs A ≈s U(Zn×m

q ) with a trapdoor τ .

Given any A ∈ Zn×m
q , y ∈ Zn

q , σ > 0, we use A−1(y, σ) to denote the distribution of a vector d
sampled from Dm

σ conditioned on Ad = y (mod q). We sometimes suppress σ when the context
is clear.

Lemma2.4 ([GPV08]). There is a PPT algorithm that forσ ≥ 2
√
n log q, given (A, τ)← TrapSam(1n, 1m, q),

y ∈ Zn
q , outputs a sample from A−1(y, σ).
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2.2 Matrix Branching Programs

Below we introduce the terminologies for matrix branching programs.

Definition 2.5 (Matrix branching program, MBP). A matrix branching program Γ with width w,
length h and input length ℓ consists of the following data:

Γ =
(
ι : [h]→ [ℓ], v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
.

Here, ι is called the index-to-inputmap, and it naturally defines an input-to-indexmapϖ : {0, 1}ℓ →
{0, 1}h by letting ϖ(x)i = xι(i), ∀i ∈ [h], x ∈ {0, 1}ℓ.

This branching program is computing the function fΓ : {0, 1}ℓ → {0, 1}, defined as

fΓ(x) =
{
0 if v⊤Mϖ(x) = v⊤

∏
i∈[h] Mi,xι(i)

6= 0;
1 if v⊤Mϖ(x) = v⊤

∏
i∈[h] Mi,xι(i)

= 0.

For simplicity, we write Γ(x) instead of fΓ(x) henthforth.
Write c

def
= h/ℓ. Γ is called a read-c matrix branching program if ϖ : {0, 1}ℓ → {0, 1}h out-

puts c
def
= h/ℓ copies of x, namely, ϖ(x) = x|x| · · · |x︸ ︷︷ ︸

c times

. In this paper, we shall focus on read-once

branching programs, i.e., c = 1 with ι,ϖ being the identity function, where we simply write
Mx

def
=

∏
i∈[h] Mi,xi .

Definition 2.6. For ℓ, w, c ∈ N, let MBPc
ℓ,w denotes the set of read-c matrix branching programs

with input length ℓ and width w.

Note that read-cMBPs are closely related to read-onceMBPs: Given a read-cMBP Γwith input
length ℓ, we can repeat the input c times then feed into a read-once MBP Γ′, where Γ′ is the same
as Γ except that its index-to-input map is the identity function (so its input length is h). However,
the correctness is only about Γ′ on valid inputs, namely, inputs that are c-copies of an ℓ-bit string.
To generalize our result to read-c-branching programs, we need to ensure that Γ′(x′) = 0 (i.e.,
v⊤Mx 6= 0) for all invalid input x′. This is done by the following lemma, proven in appendix A.

Lemma 2.7. Let Γ be a read-c MBP with width w, length h, and input length ℓ = h/c. Let repeat(x) =
x|x| · · · |x︸ ︷︷ ︸

c times

. Then there exists a read-once MBP Γ′ with the following properties.

1. Γ′ has width h+ w and length h.

2. For all x ∈ {0, 1}ℓ ,Γ(x) = Γ′(repeat(x)).

3. For all invalid x′ ∈ {0, 1}h, i.e., x′ 6= repeat(x) for any x ∈ {0, 1}ℓ, it holds that Γ′(x′) = 0.

In particular, if Γ computes a point function or all-zero function, then so is Γ′.
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2.3 Point Obfuscation

For a point x ∈ {0, 1}∗, define the point function 1x : {0, 1}|x| → {0, 1} as

1x(u)
def
=

{
1 if u = x

0 otherwise
.

We consider a variant of point function obfuscators. Loosely speaking, we require the obfuscation
of anypoint function to be indistinguishable from the obfuscation of the all-zero function. Note that
for many distributional VBB obfuscators for point functions or even evasive functions (e.g. [WZ17,
GKW17]) appeared in the literature, their simulators are essentially simulating an obfuscated null
circuit that is indistinguishable from the real obfuscated circuit, so those constructions immediately
satisfy our definition.

Formally, let us first define unpredictable distributions which are used in the definition of ob-
fuscators for point functions.

Definition 2.8 (Computationally unpredictable distribution). A distribution ensemble on D =
{Dλ = (Zλ, Xλ)}λ∈N is computationally unpredictable if for every poly-size circuit family {Cλ}λ∈N
and for all sufficiently large λ,

Pr
(z,x)←Dλ

[Cλ(z) = x] = negl(λ).

Definition 2.9 (Auxiliary input point obfuscation for computationally unpredictable distributions
(AIPO)). A PPT algorithm AIPO is a point obfuscator for computationally unpredictable distri-
butions if it satisfies the following properties.

• Correctness. On input x, it outputs a polynomial-size circuit that computes that point func-
tion 1x; on input (1λ, null), it outputs a polynomial-size circuit that computes the all-zero
function of input length λ, where null is a special symbol.

• Indistinguishability from a null program. For every (efficiently samplable) unpredictable dis-
tribution B1 over {0, 1}∗ × {0, 1}λ and every PPT algorithm B2,∣∣∣∣Pr [AIPOAIPO,(B1,B2)(1

λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ),

where the experiment AIPOAIPO,(B1,B2)(1
λ) proceeds as follows.

1. (x, z)← B1(1λ);
2. b← {0, 1};
3. C0 ← AIPO(x), C1 ← AIPO(1λ, null);
4. b′ ← B2(z, Cb); the experiment outputs 1 iff b = b′.

The circuit complexity of AIPO. Let C = {Cλ}λ∈N be a circuit class, where each C ∈ Cλ has input
length ℓin(λ). We say AIPO is supported in C if for all λ ∈ N, x ∈ {0, 1}ℓin(λ), AIPO(x) always output
a circuit in Cλ.
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Candidate AIPO in NC1 from a variant of the LWE assumption. Although we only need the
existence of AIPO in NC1, let us mention a concrete candidate construction of AIPO in NC1 from a
variant of the LWE assumption.

The construction is very simple: To obfuscate a point s ∈ {0, 1}n, we treat s as an LWE secret,
and outputs A ∈ Zn×m

q , y = AT s + e mod q as the point obfuscation for s, where q is a prime,
e ∈ Zm satisfies ‖e‖∞ < B for some bound B ∈ poly(n) such that Bm < qm−n. The evaluation
algorithm takes a point x ∈ {0, 1}n, outputs 1 iff ‖AT x− y mod q‖∞ < B. For security, q is chosen
to be super-polynomial in n. Suppose the min-entropy of s is k, then A ∈ Zn×m

q , y = AT s +
e mod q are indistinguishable from random (based on the standard LWE assumption where the
secret is sampled uniformly from Zℓ

q where ℓ = k−ω(logn)
log q ) [GKPV10]. Furthermore, we conjecture

the security holds when (s, z), where z is the auxiliary input, is sampled from a computational
unpredictable distribution (in which case no reduction from the standard LWE is known). Other
parameter settings can be found in, e.g., [BD20].

3 ConstructingUCE fromOblivious Programmable Function andAIPO

In this section, we formally define UCE and present a construction from (1) a new primitive called
obliviously programmable function (defined in section 3.2) plus (2) AIPO.

3.1 UCE

UCE is a security notion defined for a keyed function family. We first recall its syntax.
Akeyed function familyH =

{
Hλ : Kλ × {0, 1}H.ℓin(λ) →Rλ

}
λ∈N

consists of a pair of algorithms
(H.Gen,H.Eval) with the following syntax.

• Gen(1λ) 7→ hk ∈ Kλ. The key generation algorithm Gen outputs a key hk on input security
parameter 1λ.

• Eval(hk, x) 7→ y ∈ Rλ. When hk ← Gen(1λ), x ∈ {0, 1}H.ℓin(λ), the evaluation algorithm out-
puts a value y ∈ Rλ.

The UCE security is defined by a two-stage game. The first player has access to an oracle HASH
that is either H.Eval(hk, ·) or a random oracle. The second player receives a message from the first
player and is given hk; it has to guess to which oracle the first player has access.

Definition 3.1. Let (S,D) be an adversary, where S is called the source, and D is called the distin-
guisher. We associate them with the game in fig. 1. Define the advantage as

Advuce
H,(S,D)(λ)

def
=

∣∣∣∣Pr [UCEH
S,D(λ)⇒ 1

]
− 1

2

∣∣∣∣ .
We say H is S-UCE-secure, denoted by H ∈ UCE[S], if for every source S ∈ S and PPT D,
Advuce

H,(S,D)(λ) = negl(λ).
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UCEH
S,D(λ)

1 : β ← {0, 1} , hk← H.Gen(1λ)
2 : L← SHASH

3 : β′ ← D(L, hk)
4 : return Jβ = β′K

HASH(x)
1 : if x /∈ Q then
2 : Q← Q ∪ {x}
3 : if β = 0 then T [x]←Rλ

4 : else T [x]← H(hk, x)
5 : fi
6 : fi
7 : return T [x]

Figure 1: Games for defining UCE security.

PredS
P (λ)

1 : hk← H.Gen(1λ)
2 : L← SHASH

3 : x← P (L)

4 : return Jx ∈ QK

SPredS
P (λ)

1 : hk← H.Gen(1λ)
2 : L← SHASH

3 : x← P (L, T.values)
4 : return Jx ∈ QK

HASH(x)
1 : if x /∈ Q then
2 : Q← Q ∪ {x}
3 : T [x]←Rλ

4 : fi
5 : return T [x]

Figure 2: Games for defining unpredictable sources. Here, T.values denote the set of all oracle
answers (not query-answer pairs).

Definition 3.2. Consider the games in fig. 2. We say S is unpredictable if for every PPT predictor
P , it holds that ∣∣∣∣Pr [PredS

P (λ)⇒ 1
]
− 1

2

∣∣∣∣ = negl(λ).

Moreover, S is called strongly unpredictable if for every PPT predictor P ,∣∣∣∣Pr [SPredS
P (λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ).

Define Scup and Sscup as the sets of unpredictable and strongly unpredictable sources, respec-
tively. Furthermore, given a number q ∈ N and a class of sources S , let

Sq
def
= {S ∈ S : S makes at most q queries to HASH} .

3.2 Obliviously Programmable Functions (OPF)

Syntax. Let ℓin = ℓin(λ) be a length function. Let C = {Cλ}λ∈N be a circuit class such that every
circuit C ∈ Cλ has input length ℓin(λ), namely, C : {0, 1}ℓin(λ) → {0, 1}. C is called a point circuit if
|C−1(1)| def

=
∣∣∣{x ∈ {0, 1}ℓin(λ) : C(x) = 1

}∣∣∣ ≤ 1. We assume that there is a simple representation of

point functions in Cλ, i.e., for every x ∈ {0, 1}ℓin(λ), there exists a simple and explicit Px ∈ Cλ that
computes 1x.
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Anobliviously programmable function (OPF) for C consists of two algorithmsΠ = (Program,Eval)
and specifies an codomainR = {Rλ}λ∈N.

1. Program(1λ, C, y) 7→ kC . The programming algorithm Program takes as input a point circuit
C ∈ Cλ and y ∈ Rλ, outputs a key kC .

2. Eval(k, x) 7→ y. The evaluation algorithm Eval, on input a key k and a point x ∈ {0, 1}ℓin(λ),
outputs y = Eval(k, x) ∈ Rλ.

Correctness. There exists a negligible function ν such that for all λ ∈ N, C ∈ Cλ and y ∈ Rλ, if C
computes the point function 1x∗ , then

Pr
kC←Π.Program(1λ,C,y)

[Eval(kC , x∗) = y] ≥ 1− ν(λ).

The security of OPF consists of the following two features.

Privacy. We require kC ← Π.Program(C, y) computationally hides C if (1) C is a point circuit and
(2) y is chosen uniformly at random. Concretely, for every PPT adversary A,∣∣∣Pr [PrivΠ,A(1

λ)⇒ 1
]
− 1/2

∣∣∣ = negl(λ),

where the experiment PrivΠ,A(1
λ) is defined as follows:

1. On input 1λ, A submit two point circuits C0, C1 ∈ Cλ to the challenger.

2. The challenger samples b← {0, 1} , y ←Rλ, and send k∗ := Π.Program(1λ, Cb, y) back to A.

3. On receiving k∗, A outputs b′; the experiment output 1 iff b = b′.

Value-Hiding (whenprogrammingon the all-zero function). Werequire that k ← Π.Program(C, y)
computationally hides the value y whenever C computes the all-zero function. Formally, for every
PPT adversary A, ∣∣∣Pr [VHΠ,A(1

λ)⇒ 1
]
− 1/2

∣∣∣ = negl(λ),

where the experiment VHΠ,A(1
λ) is defined as follows:

1. On input 1λ, A submits (C, y0, y1) to the challenger, where y0, y1 ∈ Rλ and C computes the
all-zero function.

2. The challenger samples b← {0, 1}, and sends k∗ := Π.Program(1λ, C, yb) back to A.

3. On receiving k∗, A outputs b′; the experiment output 1 iff b = b′.
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3.3 The Construction

Construction 1. Let Π = (Π.Program,Π.Eval) be an OPF for circuit class C with input length ℓin =
ℓin(λ) and codomain {Rλ}λ∈N. Consider the following construction of a keyed function family
H = (H.Gen,H.Eval):

• H.Gen(1λ) 7→ hk: y ← Rλ, k∅ ← Π.Program(C∅, y), where C∅ denotes the all-zero function;
output hk := k∅.

• H.Eval(hk, x) 7→ y: output y := Π.Eval(hk, x).

Theorem 3.3. Let Π,H be as in construction 1. Assume that there exists an AIPO supported in C, then
H ∈ UCE[Sscup

1 ].

Proof. Let S ∈ Sscup
1 be a source and D be a PPT distinguisher. We start with Game0, as shown in

fig. 3, which is exactly the UCE game UCEH
S,D when the hidden bit β is fixed to 1 (i.e., HASH returns

the real hash value). Since S only query HASH once, we use a variable x∗ to record this query. Our
goal is to replace y∗ := H.Eval(hk, x) by y∗ ← Rλ (as in the last game Game5) via a sequence of
undetectable change.

Game0,Game5
1 : x∗ := ⊥

2 : hk← H.Gen(1λ)
1 : y ←Rλ

2 : k∅ ← Π.Program(1λ, C∅, y)

3 : hk := k∅

3 : L← SHASH

4 : β′ ← D(hk, L)
5 : return J1 = β′K

HASH(x)
1 : x∗ := x

2 : y∗ := H.Eval(hk, x∗) // Game 0

3 : y∗ ←Rλ // Game 5

4 : return y∗

Figure 3: Game0 and Game5

1. Game0 in fig. 4 is the same as fig. 3, but we move the generation of k∅ into HASH, which is just
a conceptual change.

2. Game1. Game1 is identical to Game0 except that

• hk := kx∗ where kx∗ ← Π.Program(1λ,AIPO(x∗), y).

Game0 ≈c Game1 readily follows from the privacy of Π (lemma 3.4).

3. Game2. Game2 is identical to Game1 except that HASH directly returns the programmed value
instead of computing Π.Eval(kx∗ , x∗). Also, we move the generation of kx∗ out of the oracle,
so that the oracle behaves exactly as a random oracle. By the correctness of Π,

|Pr [Game2 ⇒ 1]− Pr [Game1 ⇒ 1]| = negl(λ).
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Game0
1 : x∗ := ⊥
2 : L← SHASH

3 : hk := k∅

4 : β′ ← D(hk, L)
5 : return J1 = β′K

Game1
1 : x∗ := ⊥
2 : L← SHASH′

3 : hk := kx∗

4 : β′ ← D(hk, L)
5 : return J1 = β′K

Game2
1 : x∗ := ⊥
2 : L← SRO

3 : kx∗ ← Π.Program(1λ,AIPO(x∗), y∗))

4 : hk := kx∗

5 : β′ ← D(hk, L)
6 : return J1 = β′K

Game3
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : k∅ ← Π.Program(msk,AIPO(null), y∗)
5 : hk := k∅

6 : β′ ← D(hk, L)
7 : return J1 = β′K

Game4
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : y ←Rλ

5 : k∅ ← Π.Program(msk,AIPO(null), y)
6 : hk := k∅

7 : β′ ← D(hk, L)
8 : return J1 = β′K

Game5
1 : x∗ := ⊥
2 : msk ← Π.Gen(1λ)
3 : L← SRO

4 : y ←Rλ

5 : k∅ ← Π.Program(msk,C∅, y)

6 : hk := k∅

7 : β′ ← D(hk, L)
8 : return J1 = β′K

HASH(x)
1 : x∗ := x

2 : y ←Rλ

3 : k∅ ← Π.Program(1λ, C∅, y)

4 : y∗ := Π.Eval(ku, x∗)

5 : return y∗

HASH′(x)
1 : x∗ := x

2 : y ←Rλ

3 : kx∗ ← Π.Program(1λ,AIPO(x∗), y))

4 : y∗ := Π.Eval(kx∗ , x∗)

5 : return y∗

RO(x)

1 : x∗ := x

2 : y∗ ←Rλ

3 : return y∗

Figure 4: Games in the proof

Game0 Game1 Game2

Privacy

Game3 Game4 Game5

Correctness AIPO PrivacyValue-Hiding

UCE game with real hash
value

(β = 1)

≡ ≡

UCE game with random
value

(β = 0)

Figure 5: Outline of the proof
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4. Game3. Game3 is identical to Game2 except that hk is replaced by

k∅ ← Π.Program(msk,AIPO(null), y∗).

We shall prove Game2 ≈c Game3 via the security of AIPO (lemma 3.5).

5. Game4. Game4 is identical to Game3 except that

k∅ ← Π.Program(1λ,AIPO(null), y),

where y ←Rλ is a fresh random value (like in Game0). Note that when programming on the
all-zero function, the value y is hidden by the programmed key. Therefore, Game4 ≈c Game3
readily follows from the value-hiding property of Π (lemma 3.6).

6. Game5. Finally, Game5 is identical to Game4 except that hk = k∅ is generated in the original
way, removing AIPO:

k∅ ← Π.Program(msk,C∅, y).

The two programmed keys are indistinguishable according to the privacy ofΠ, which is sim-
ilar to is similar to Game1 ≈c Game0. Hence,

|Pr [Game5 ⇒ 1]− Pr [Game4 ⇒ 1]| = negl(λ)

.

We are happy to see that Game5 is exactly the UCE game with β = 0. Hence,∣∣∣Pr [UCEH
S,D(λ)⇒ 1

∣∣∣ β = 1
]
− Pr

[
UCEH

S,D(λ)⇒ 1
∣∣∣ β = 0

]∣∣∣
= |Pr [Game0 ⇒ 1]− Pr [Game5 ⇒ 1]|
= negl(λ),

which implies that Advuce
H,(S,D)(λ) is negligible.

It remains to prove the following lemmas on game-hopping. See fig. 5 for an outline.

Lemma 3.4. By the privacy of Π, |Pr [Game1 ⇒ 1]− Pr [Game0 ⇒ 1]| = negl(λ).

Proof. Consider the following adversary A that aims to break the privacy of Π.

1. Simulate S(·) until S issues the oracle query x∗.

2. Submit the challenge (C0 = C∅, C1 = AIPO(x∗)) and receive k∗ from the challenger where k∗
is generated in the following way: b← {0, 1} , y ←Rλ, k

∗ ← Π.Program(1λ, Cb, y).

3. Forward y := Π.Eval(k∗, x∗) to SHASH and get L.

4. Simulate D(hk = k∗, L), and let β′ denote the output of D.

5. Output b′ := β′.
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When b = 0, A simulates Game0; when b = 1, A simulates Game1. Therefore,

|Pr [Game1 ⇒ 1]− Pr [Game0 ⇒ 1]| = 2
∣∣∣PrivΠ,A(1

λ)− 1/2
∣∣∣ = negl(λ).

Lemma 3.5. By the security of AIPO,

|Pr [Game3 ⇒ 1]− Pr [Game2 ⇒ 1]| = negl(λ).

Proof. Consider the adversary B = (B1,B2) that aims to break the security of AIPO, as shown in
fig. 6. The output of B1 is an unpredictable ensemble since S is an unpredictable source. Recall
that the AIPO experiment AIPOAIPO,B(1

λ) proceeds as follows:

1. (x, z)← B1(1λ);

2. b← {0, 1};

3. C0 ← AIPO(x), C1 ← AIPO(null)

4. b′ ← B2(z, Cb); the experiment outputs 1 iff b = b′.

By the assumption that S is strongly unpredictable, B1 is computationally unpredictable, and
hence the security of the AIPO guarantees that∣∣∣Pr [AIPOAIPO,B(1

λ)⇒ 1
]
− 1/2

∣∣∣ = negl(λ).

Note that conditioned on b = 0, the AIPO game is exactly Game2, and conditioned on b = 1, it is
exactly Game3. Therefore,

|Pr [Game3 ⇒ 1]− Pr [Game2 ⇒ 1]| ≤ 2
∣∣∣Pr [AIPOAIPO,B(1

λ)⇒ 1
]
− 1/2

∣∣∣
= negl(λ).

B1(1λ)
1 : y∗ ←Rλ

2 : Simulate SHASH with y∗ as oracle answer
3 : let x∗ and L be the query and output of S respectively.
4 : return (x∗, z = (L, y∗))

B2(z, C)

1 : Parse z = (L, y∗)

2 : kC ← Π.Program(1λ, C, y∗)

3 : return D(hk = kC , L)

Figure 6: Adversary B for AIPO
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Lemma 3.6. By the value-hiding property of Π,

|Pr [Game4 ⇒ 1]− Pr [Game3 ⇒ 1]| = negl(λ).

Proof. Consider the following adversary A that aims to break the value-hiding property of Π.
1. Simulate S(·) until S issue the oracle query x∗ and reply with y0 ← Rλ. Let L be the output

of S.

2. Samples y1 ← Rλ and C ← AIPO(null). Submit the challenge (C, y0, y1) and receive k∗ from
the challenger where k∗ is generated as follows: b← {0, 1} , k∗ ← Π.Program(1λ, C, yb).

3. Simulate D(hk = k∗, L), and let β′ denote the output of D.

4. Output b′ := β′.
When b = 0, A simulates Game3; when b = 1, A simulate Game4. Therefore,

|Pr [Game3 ⇒ 1]− Pr [Game4 ⇒ 1]| = 2
∣∣∣VHΠ,A(1

λ)− 1/2
∣∣∣ = negl(λ).

4 Obliviously Programmable Function from Lattice Assumptions

In this section, we present a construction of OPF based on GGH15 encodings [GGH15]. We draw
on LWE with subexponential hardness and evasive LWE assumption to prove the security of our
construction.
Theorem 4.1. Let λ be the security parameter and ℓin(λ), w(λ) = λO(1). Assume LWEwith subexponential
hardness and evasive LWE. Then there exists an OPF with input length ℓin for MBP1

ℓin,w, where MBP1
ℓin,w ={

MBP1
ℓin(λ),w(λ)

}
λ∈N

. (Recall that MBP1
ℓ,w denotes the set of read-once matrix branching programs with

input length ℓ and width w.)
Evasive LWE is a new assumption proposed by Wee [Wee22]; we formally state it in section 4.2

and use it to prove the security property of GGH 15 encodings we need.
Our construction can be generalized to any read-c (matrix) branchingprograms (see appendixA

for more detail):
Theorem 4.2. Let λ be the security parameter and ℓin(λ), c(λ), w(λ) = λO(1). Under the subexponential
LWE assumption and the evasive LWE assumption, there exists an OPF with input length ℓin for MBPc

ℓin,w.
Together with theorem 3.3, we conclude that

Theorem 4.3. Let λ be the security parameter and ℓin(λ), c(λ), w(λ) = λO(1). Under the subexponential
LWE assumption and the evasive LWE assumption, if there exists an AIPO supported in MBPc

ℓin,w, then
there exists a Sscup

1 -UCE-secure function with input length ℓin.
Such branching programs can represent the NC1 circuit class. Meanwhile, a Sscup

1 -UCE-secure
function is a universal hardcore function, proven in [BHK13, BM14]. Hence we conclude that
Corollary 4.4. Under the subexponential LWE assumption and the evasive LWE assumption, if there exists
an AIPO that always outputs an NC1 circuit, then there exists a Sscup

1 -UCE-secure function. Consequently,
there exists a universal hard-core function that outputs a polynomial number of bits.
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4.1 OPF Construction Based on GGH15 Encodings

GGH15 encodings. Wefirst describe generalizedGGH15 encodings, following [GGH15, CVW18,
VWW22].

Construction 2 (GGH15 encodings). The randomized algorithm GGH.Encode takes the following
inputs

• parameters 1λ, h,m, q, n̂0, n̂ ∈ N and Gaussian parameters σ1, σ2, σ3, σ4,

• matrices
{
Ŝ1,b ∈ Zn̂0×n̂

q , Ŝ2,b, . . . , Ŝh,b ∈ Zn̂×n̂
q

}
b∈{0,1}

,Ah ∈ Zn̂×m
q ,

and proceeds as follows.

1. Sample (Ai, τi)← TrapGen(1λ, q) for i ∈ [h− 1].

2. Sample E1,b ← Dn̂0×n̂
σ1

and E2,b, . . . ,Eh,b ← Dn̂×n̂
σ4

for i = 2, . . . h, b ∈ {0, 1}.

3. Compute
Cb := Ŝ1,bA1 + E1,b and Di,b := A−1i−1(Ŝi,bAi + Ei,b, σ3)

for i = 2, . . . , h, b ∈ {0, 1}, where A−1i−1(·, σ3) is computed using trapdoor τi−1.

4. Outputs C0,C1, {Di,b}i=2,...,h,b∈{0,1}.

The functionality ofGGH15 encodings allowsus to approximate ŜxAh byCx1 ·
∏h

i=2 D1,xi , which
is stated formally in the next lemma.

Lemma 4.5 (Correctness of GGH15 encodings, see, e.g., [CVW18], Lemma 5.3). Let Ah ∈ Zn̂×m
q .

For all x ∈ {0, 1}h, with high probability over

C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah),

it holds that∥∥∥∥∥Cx1 ·
h∏

i=2

D1,xi −
h∏

i=1

Ŝi,xi ·Ah

∥∥∥∥∥
∞

≤ h · σ1 ·
(
(σ3 + σ4)m · max

i∈[h],b∈{0,1}

∥∥∥Ŝi,b

∥∥∥
∞

)h

,

where
∥∥∥Ŝi,b

∥∥∥
∞

is the largest absolute value among all entries of Ŝi,b.

The OPF construction. For simplicity, we present the construction for read-onceMBPs. The con-
struction can be generalized to read-c MBPs, which is presented in appendix A.

Construction 3. Π = (Π.Program,Π.Eval). Input length ℓin = h and codomain Rλ = Zn×m
2 . Let

n̂0
def
= n, n̂

def
= n + nw. For a matrix U ∈ Zn̂×t

q , we use U ∈ Zn×t
q to denote the top n rows of U and

U ∈ Znw×t
q the bottom nw rows.

• Program(1λ, C,Y ∈ Zn×m
2 ) 7→ kC .
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1. Parse C as a read-once MBP Γ = (v, {Mi,b}i∈[h],b∈{0,1}).

2. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1} and set

Ŝ1,b =
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b =

(
In

Mi,b ⊗ Si,b

)
,

for i = 2, . . . , h, b ∈ {0, 1}.
3. Sample Ah ← Zn̂×m

q conditioned on
⌊
Ah

⌉
2
= Y and output

kC := C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

• Eval(kC , x ∈ {0, 1}h) 7→ Y ∈ Zn×m
2 . Parse kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} and output

Y :=

⌊
Cx1

h∏
i=2

Di,xi

⌉
2

.

Parameter setting. Our parameter setting is similar to that of [VWW22]. The adversary runs in
time poly(λ). We rely on 2n

δ -hardness for LWE (i.e., indistinguishability against adversaries 2nδ

and a modulus-to-noise ratio of 2nδ ). We have the following requirements for our parameters:

2n
δ
> max

{
2hλ

2
, q/σ4

}
LWE hardness

σ2 = λh · σ4 · λω(1) noise flooding
σ1 = σ2 · λω(1) evasive LWE & noise flooding
q ≥ 4h · σ1 · ((σ3 + σ4)m · λ

√
n)h correctness

σ3 = 2
√

n(w + 1) log q,m = 2n(w + 1) log q trapdoor sampling

A possible setting satisfying the constraints above is:

n =
(
h2λ

)1/δ
, q = 2n

δ
= 2h

2λ, σ4 = Θ(n), m = 2n(w + 1) log q.

Correctness. Correctness of construction 3 readily follows from the correctness of GGH15 encod-
ing and the parameter setting above. Suppose that

kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← Π.Program(1λ, C,Y).

With overwhelming probability, we have maxi∈[h],b∈{0,1}
∥∥∥Ŝi,b

∥∥∥ ≤ λ
√
n, Hence, by lemma 4.5, for

all x ∈ {0, 1}h, it holds (with high probability) that

C1,x1

h∏
i=2

Di,xi ≈ ŜxAh =
(
In | v⊤Mx ⊗ Sx

)
·Ah = Ah + (v⊤Mx ⊗ Sx) ·Ah,

where the ≈ is up to an additive factor of B = h · σ1 · ((σ3 + σ4)m · λ
√
n)h.
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If C(x) = 1, meaning that v⊤Mx = 0, we will have

Eval(kC , x) =
⌊
Cx1

h∏
i=2

Di,xi

⌉
2

=
⌊
Ah + (v⊤Mx ⊗ Sx) ·Ah

⌉
2
=

⌊
Ah

⌉
2
,

where the second equality holds since we set q ≥ 4B. In the running of Program, it is guaranteed
that

⌊
Ah

⌉
2
= Y, and hence we have Eval(kC , x) = Y as required.

4.2 Security of GGH15 Encodings from Evasive LWE

We now prove the pseudorandomness of GGH15 encoding with respect to the distributions of{
Ŝi,b

}
i∈[h],b in{0,1}

,Ah involved in our construction: lemma 4.6 and lemma 4.7.

Lemma 4.6. Let Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be a read-once MBP such that

|Γ−1(1)| ≤ 1. Let C0,C1, {Di,b}i=2,...,h,b∈{0,1} be generated as follows.

1. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}, Ah ← Zm̂×m

q and set

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,

2. Output C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

Then, by LWE and the evasive LWE assumption,

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} .

Lemma 4.7. Fix Ah ∈ Zn×m
q . Let Γ =

(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be a read-once

MBP that computes the all-zero function. Let C0,C1, {Di,b}i=2,...,h,b∈{0,1} be generated as follows.

1. Sample Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}, Ah ← Znw×m, and set

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,Ah :=

(
Ah

Ah

)
.

2. Output C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← (
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

Then, by LWE and the evasive LWE assumption,

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ,Ah ≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} ,Ah.

The proofs of the two lemmas above follow the proof structure of [VWW22].
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1. First, relying on evasive LWE, proving the pseudorandomness of GGH15 encodings

C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah)

is reduced to proving that all the evaluation products
{
Ŝx′Aj + Ex′

}
j∈[h],x′∈{0,1}j

are pseudo-

random. Here, Ex′ are independent errors andAj ← Zn×m
q for j ∈ [h−1], but the distribution

of Ah could be tailored. This is done by lemma 4.8, which is directly from [VWW22].

2. It remains to show that all the evaluation products are indeed pseudorandom; we call this a
‘precondition’. The only difference between lemma 4.6 and lemma 4.7 is that we have differ-
ent distributions for Ah. Hence, we verify the preconditions respectively in claim 4.10 and
claim 4.11.

Below, we formally state the evasive LWE assumption.

Evasive LWE. Let Samp be a PPT algorithm that on input 1λ, outputs

B ∈ Zn′×n
q ,P ∈ Zn×t

q , aux ∈ {0, 1}∗ .

Define the following two advantage functions (for adversaries A0,A1):

Advpost
A0

(λ)
def
=

∣∣∣Pr [A0( SB+ E , SP+ E′ , aux) = 1
]
− Pr [A0(C,C′, aux) = 1]

∣∣∣ ,
Advpre

A1
(λ)

def
=

∣∣∣Pr [A1( SB+ E ,D, aux) = 1
]
− Pr [A1(C,D, aux) = 1]

∣∣∣ ,
where

(S,P, aux)← Samp
(
1λ
)
,

B← Zn×m
q ,E← Dn′×m

Z,σ1
,E′ ← Dn′×t

Z,σ2
,

C← Zn′×m
q ,C′ ← Zn′×t

q ,

D← B−1(P, σ1).

We say that the evasive LWE assumption holds if for every PPT Samp there exists some polynomial
p(·) such that for every PPT A1, there exists another PPT A0 satisfying

Advpost
A0

(λ) ≥ Advpre
A1

(λ)/p(λ) and time (A0) ≤ time (A1) · p(λ).

We consider parameter settings for which σ2 � σ1 so that the precondition is stronger, which in
turn makes evasive LWE weaker.

The reduction step is by the following lemma.

Lemma 4.8 (Lemma 5.1 in [VWW22]). Fix some distributions for
{
Ŝi,b

}
i∈[h],b∈{0,1}

and let E be an

efficiently samplable (and publicly known) distribution over Zn̂×m
q . Suppose that for all j ∈ [h], we have{

Ŝx′Aj + Ex′

}
x′∈{0,1}j

,
{
Ŝi,b

}
i∈[h],b∈{0,1}

≈c

{
U(Zn̂0×m

q )
}
x′∈{0,1}j ,

{
Ŝi,b

}
i∈[h],b∈{0,1}

(2)
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where Ex′ ← Dn̂0×m
σ1

, Aj ← Zn̂×m
q for j ∈ [h − 1], and Ah ← E . Then, by the evasive LWE assumption,

we have

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ,≈c

{
U(Zn×m

q )
}
b∈{0,1} ,

{
Dm×m

σ3

}
i=2,...,h,b∈{0,1} ,

where

{Cb}b∈{0,1} , {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah),Ah ← E .

Remark 4.9. Two comments are in order regarding lemma 4.8.

1. It is required that the precondition eq. (2) holds with hardness 2h2λ, namely, any adversary
running within 2h

2λ times has advantage at most 2−h2λ.

2. For parameters, in the proof of this lemma, it is also required that σ1 = σ2 ·λω(1) for invoking
evasive LWE and σ2 = λh · σ4 · λω(1) for noise flooding.

The following two claims verify the preconditions for two different distributions of Ah.

Claim 4.10 (Precondition 1). Fix a MBP

Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
such that |Γ−1(1)| ≤ 1. Let

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
.

where Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1}. Then, by the LWE assumption, for every j ∈ [h] we have{

Ŝx′Aj + Ex′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1} ≈c

{
U(Zn×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} , (3)

where Ex′ ← Dn×m
σ1

,Aj ← Zn̂×m
q for j ∈ [h].

Proof. Fix an arbitrary j ∈ [h]. For all x′ ∈ {0, 1}j , we have

F (x′) def
= Ŝx′Aj + Ex′

=
(
In | v⊤Mx′ ⊗ Sx′

)
·Ah + Ex′

= Ah + (v⊤Mx′ ⊗ Sx) ·Ah + Ex′

= Ah + (v⊤Mx′ ⊗ In) · (Iw ⊗ Sx′) ·Ah + Ex′

≈s Ah + (v⊤Mx′ ⊗ In) ·
(
(Iw ⊗ Sx′) ·Ah +Dnw×m

σ2

)︸ ︷︷ ︸
def
=G(x′)

+Ex′ ,

where the last step is by noise flooding (σ1 = σ2 · λω(1)). Next, by the security of the BLMR PRF
[BLMR13], G(x′) is pseudorandom, i.e.,{

(Iw ⊗ Sx′) ·Ah +Dnw×m
σ2

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1} ≈c

{
U(Znw×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} .

This relies on ((Iw ⊗ S)A+ E,S) ≈c

(
U(Znw×m

q ),S
)
, which follows from LWE via a simple reduc-

tion to the case of lemma 2.2.
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• j ∈ [h− 1]. Since |Γ−1(1)| ≤ 1, we have v⊤Mx′ 6= 0 for all x′ ∈ {0, 1}j . Therefore, (v⊤Mx ⊗
In) ·G(x′) ≈c U(Znw×m

q ) and hence {F (x′)}x′∈{0,1}j ≈c

{
U(Znw×m

q )
}
x′∈{0,1}j .

• j = h. If Γ computes the all-zero function, the argument in the first item still goes for j = h.
Now assume that Γ−1(1) = {x∗}. Then

F (x) =
{
Ah + Ex if x = x∗

Ah + (v⊤Mx ⊗ In) ·G(x) + Ex if x 6= x∗

Since Ah is uniformly distributed and (v⊤Mx ⊗ In) · G(x) ≈c U(Znw×m
q ) for all x 6= x∗, we

have {F (x)}x∈{0,1}h ≈c

{
U(Znw×m

q )
}
x∈{0,1}h , proving eq. (3) for j = h.

Claim 4.11. Fix Ah ∈ Zn×m
q . Let

Γ =
(
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

)
be an MBP that computes the all-zero function and let

Ŝ1,b :=
(
In | v⊤M1,b ⊗ S1,b

)
, Ŝi,b :=

(
In

Mi,b ⊗ Si,b

)
,Ah :=

(
Ah

Ah

)
,

where Si,b ← Dn×n
2
√
n
for i ∈ [h], b ∈ {0, 1} ,Ah ← Zn̂×m

q . Then, by the LWE assumption, for every j ∈ [h]

we have{
Ŝx′Aj + Ex′

}
x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1} ,Ah ≈c

{
U(Zn̂0×m

q )
}
x′∈{0,1}j , {Si,b}i∈[h],b∈{0,1} ,Ah, (4)

where Ex′ ← Dn×m
σ1

,Aj ← Zn̂×m
q for j ∈ [h− 1].

Proof. For j ≤ h− 1, the proof is the same as that of the previous claim (Precondtion 1). For j = h,
note that when v⊤Mx 6= 0 for all x ∈ {0, 1}h, so F (x) is completely randomized byG(x), and hence
knowing Ah is not helpful.

Proving the pseudorandomness of GGH15 encodings: lemma 4.6 and lemma 4.7.

Proof of lemma 4.6. Since |Γ−1(1)| ≤ 1, by claim 4.10, the precondition of lemma 4.8 holds with E
being the uniform distribution over Zn̂×m

q . Then the lemma follows from lemma 4.8.

Proof of lemma 4.7. Claim 4.11 shows that the precondition of lemma 4.8 holds for the assumed
distribution of

{
Ŝi,b

}
i∈[h],b∈{0,1}

and Ah. Note that E is publicly known and hence Ah can be given
to the distinguisher. Then the lemma follows from lemma 4.8.
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4.3 Security Proof of Our OPF Construction

Finally, we show that construction 3 is indeed an OPF, proving theorem 4.1.

Theorem 4.12 (Security of construction 3). Under subexponential LWE assumption and evasive LWE
assumption, Π in construction 3 is an obliviously programmable function for MBP1

ℓin,w.

Proof. Correctness is proven in section 4.1. Here we prove that the two security properties of OPF
are satisfied.

Privacy. Note that when Y ← Zn×m
2 , Ah sampled in Π.Program(1λ,Γ,Y) is also uniformly dis-

tributed, and thus satisfies the condition of lemma 4.6. By lemma 4.6, for any Γ ∈ ROBPw, if
|Γ−1(1)| ≤ 1, then kΓ ← Π.Program(1λ,Γ,Y) is pseudorandom, where Y ← Zn×m

2 . Therefore,
for arbitrary (Γ0,Γ1) with |Γ−10 (1)| ≤ 1, |Γ−11 (1)| ≤ 1, no PPT adversary can distinguish kΓ0 ←
Π.Program(1λ,Γ0,Y) from kΓ1 ← Π.Program(1λ,Γ1,Y) for Y← Zn×m

2 .

Value-Hiding when programming on the all-zero function. Let Γ∅ be a MBP that computes
the all-zero function. Note that Y =

⌊
Ah

⌉
2
is a deterministic function of Ah. By lemma 4.7, for

any fixed Y, kΓ ← Π.Program(1λ,Γ,Y) is pseudorandom even the adversary knows Y. Therefore,
for arbitrary (Y0,Y1), no PPT adversary can distinguish k0 ← Π.Program(1λ,Γ∅,Y0) from k1 ←
Π.Program(1λ,Γ∅,Y1).
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A Generalization to Read-c MBPs

Wefirst prove the lemma that allows us to represent a read-cMBP by a read-onceMBP and ensures
all invalid inputs are evaluated to zero.
Lemma A.1 (lemma 2.7 restated). Let Γ be a read-c MBP with width w, length h, and input length
ℓ = h/c. Let repeat(x) = x|x| · · · |x︸ ︷︷ ︸

c times

. Then there exists a read-once MBP Γ′ with the following properties.

1. Γ′ has width h+ w and length h.

2. For all x ∈ {0, 1}ℓ ,Γ(x) = Γ′(repeat(x)).

3. For all invalid x′ ∈ {0, 1}h, i.e., x′ 6= repeat(x) for any x ∈ {0, 1}ℓ, it holds that Γ′(x′) = 0.

In particular, if Γ computes a point function or all-zero function, then so is Γ′.

Proof. Let Γ =
{
v ∈ {0, 1}w ,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

}
be a read-cMBP (and thus we omit ι).

Let

V(0) def
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


,V(1) def

=



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
... . . . ...

...
0 0 1 · · · 0 0
0 0 0 · · · 1 0


∈ {0, 1}c×c .

Claim A.2. For all z ∈ {0, 1}c,
∏

i∈[c] V(zi) = 0 if and only if z is all-zero or all-one.

For i ∈ [h], j ∈ [ℓ], b ∈ {0, 1}, define Ui,b,j ∈ {0, 1}c×c as follows.

Ui,b,j =

{
Vb, if i ≡ j (mod ℓ);
Ic, otherwise.

,

For i ∈ [h], b ∈ {0, 1}, set

M′i,b = diag(Ui,b,1,Ui,b,2, . . . ,Ui,b,ℓ,Mi,b) ∈ {0, 1}(h+w)×(h+w) .

Let v′ = (1 . . . 1|v) ∈ {0, 1}h+w. We claim that the read-once MBP

Γ′ =

{
v′,

{
M′i,b ∈ {0, 1}

(h+w)×(h+w)
}
i∈[h],b∈{0,1}

}
satisfies the said properties.

Note that (v′)⊤M′x′ = (1⊤U(1)| · · · |1⊤U(ℓ)|v⊤Mx′), where U(j) def
=

∏
i∈[h] Ui,x′

i,j
. And for all

j ∈ [ℓ]

U(j) =
∏
i∈[h]

Ui,x′
i,j

=
∏

i∈[h]:i≡j (mod ℓ)

Ui,x′
i,j

=
c∏

k=1

V(x′
(k−1)c+j

)
.

Therefore, by the claim above, 1⊤U(j) = 0 if and only if

x′j = x′j+ℓ = x′j+2ℓ = · · · = x′j+(c−1)ℓ.

Since this holds for all j ∈ [ℓ], we have the desired properties.
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Construction 4. Π = (Π.Program,Π.Eval). Input length ℓin and codomain Rλ = Zn×m
2 . Let h def

=

c · ℓin, w′
def
= w + h, n̂0

def
= n, n̂

def
= nw′ + n.

• Program(1λ, C,Y ∈ Zn×m
p ) 7→ kC

1. Parse C as a read-c MBP Γ. Let Γ′ = (v′,
{
M′i,b

}
i∈[h],b∈{0,1}

) be the read-once MBP rep-
resentation of Γ given by lemma 2.7.

2. Sample Si,b ← Dn×n
σ1

for i ∈ [h], b ∈ {0, 1} and set

Ŝ1,b =
(
In | (v′)⊤M′1,b ⊗ S1,b

)
, Ŝi,b =

(
In

M′i,b ⊗ Si,b

)
,

for i = 2, . . . , h, b ∈ {0, 1}.
3. Sample Ah ← Zn̂×m

q conditioned on
⌊
Ah

⌉
2
= Y and output

kc := C0,C1, {Di,b}i=2,...,h,b∈{0,1} ← GGH.Encode(
{
Ŝi,b

}
i∈[h],b∈{0,1}

,Ah).

• Eval(kC , x ∈ {0, 1}h) 7→ Y ∈ Zn×m
2 . Parse kC = C0,C1, {Di,b}i=2,...,h,b∈{0,1} and let x′ =

repeat(x) ∈ {0, 1}h. Output

Y :=

⌊
Cx′

1

h∏
i=2

Di,x′
i

⌉
2

.

Analysis.

• Correctness. Since for all x ∈ {0, 1}ℓin and x′ = repeat(x) ∈ {0, 1}h, we have

Γ(x) = 1 ⇐⇒ Γ′(x′) = 1 ⇐⇒ (v′)⊤M′x′ = 0.

And hence correctness follows from the same calculation in section 4.1.

• Security. Note that Γ′−1(1) = Γ−1(1), and thus lemma 4.6, lemma 4.7 works perfectly for Γ′.
Therefore, the argument in the proof of theorem 4.12 still goes, with Γ being replaced by Γ′.

• Efficiency. The only efficiency loss is that we need to augment the width from w to w′ =

w+ c · ℓin, which is still polynomial in λ. In the setting of parameters, we shall use w′ in place
of w.
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