
Hardware Acceleration of
the Prime-Factor and Rader NTT

for BGV Fully Homomorphic Encryption
David Du Pont

KU Leuven
Leuven, Belgium

david.du.pont@outlook.com

Jonas Bertels
COSIC, KU Leuven

Leuven, Belgium
jonas.bertels@esat.kuleuven.be

Furkan Turan
COSIC, KU Leuven

Leuven, Belgium
furkan.turan@esat.kuleuven.be

Michiel Van Beirendonck
COSIC, KU Leuven

Leuven, Belgium
michiel.vanbeirendonck@esat.kuleuven.be

Ingrid Verbauwhede
COSIC, KU Leuven

Leuven, Belgium
ingrid.verbauwhede@esat.kuleuven.be

Abstract—
Fully Homomorphic Encryption (FHE) enables computation

on encrypted data, holding immense potential for enhancing
data privacy and security in various applications. Presently, FHE
adoption is hindered by slow computation times, caused by data
being encrypted into large polynomials. Optimized FHE libraries
and hardware acceleration are emerging to tackle this perfor-
mance bottleneck. Often, these libraries implement the Number
Theoretic Transform (NTT) algorithm for efficient polynomial
multiplication. Existing implementations mostly focus on the case
where the polynomials are defined over a power-of-two cyclotomic
ring, allowing to make use of the simpler Cooley-Tukey NTT.
However, generalized cyclotomics have several benefits in the
BGV FHE scheme, including more SIMD plaintext slots and a
simpler bootstrapping algorithm.

We present a hardware architecture for the NTT targeting
generalized cyclotomics within the context of the BGV FHE
scheme. We explore different non-power-of-two NTT algorithms,
including the Prime-Factor, Rader, and Bluestein NTTs. Our most
efficient architecture targets the 21845-th cyclotomic polynomial
— a practical parameter for BGV — with ideal properties
for use with a combination of the Prime-Factor and Rader
algorithms. The design achieves high throughput with optimized
resource utilization, by leveraging parallel processing, pipelining,
and reusing processing elements. Compared to Wu et al.’s VLSI
architecture of the Bluestein NTT, our approach showcases 2×
to 5× improved throughput and area efficiency. Simulation
and implementation results on an AMD Alveo U250 FPGA
demonstrate the feasibility of the proposed hardware design for
FHE.

Index Terms—Fully Homomorphic Encryption, Brakerski-
Gentry-Vaikuntanathan, Hardware Accelerator, Number Theo-
retic Transform, Rader’s FFT, Prime-Factor FFT, Bluestein’s
FFT

I. INTRODUCTION

In an era where data privacy and security have become
important concerns, innovative cryptographic solutions are
emerging to safeguard sensitive information while enabling ef-
ficient computations in untrusted environments. Among these

advancements, Fully Homomorphic Encryption (FHE) stands
out as a transformative technology that holds great promise
across various sectors, including finance, web services, and
beyond. FHE revolutionizes data processing by allowing com-
putations to be performed directly on encrypted data, elimi-
nating the risk of unauthorized access.

In 2009, Gentry introduced the first feasible construct for
Fully Homomorphic Encryption, opening the door to a new
realm of possibilities in secure computing [1]. Gentry’s scheme
allows both addition and multiplication operations, providing a
foundation for constructing circuits that can perform arbitrary
computations. Gentry started from a Somewhat Homomorphic
Encryption scheme and modified it so it could evaluate its own
decryption function and at least one more operation. A scheme
like this is said to be bootstrappable. This bootstrapping oper-
ation of evaluating the decryption function homomorphically
is very slow even on modern hardware [2].

FHE schemes generally encrypt plaintext data into ci-
phertext polynomials of a certain large degree. Smart and
Vercauteren [3] observed that multiple plaintext values of a
smaller ring can be packed into a single ciphertext. A single
operation on this ciphertext then corresponds to performing
this operation on each of the plaintext values individually
in a SIMD fashion. This innovation leads to more efficient
cryptosystems such as the BGV scheme [4]. The operations
in BGV are defined over a cyclotomic polynomial ring, and
polynomial multiplication becomes the main performance bot-
tleneck. In practice, power-of-two cyclotomic rings have been
the preferred implementation choice due to their simplicity.
However, generalized non-power-of-two cyclotomics typically
have more efficient packing in the plaintext slots.

Halevi and Shoup [2] proposed an improved bootstrapping
method for the BGV-FHE used in the open-source software
library HElib [5]. Their method relies on having a polynomial
ring of degree m, where m has a special form. Practical



values of m are not powers of two, but rather composed of
a few large prime factors. As such, HElib is the only FHE
software library to include generalized cyclotomics rings. To
accelerate polynomial multiplication, HElib uses a different
representation called DoubleCRT form. In DoubleCRT form,
polynomial multiplication becomes a simple pointwise mul-
tiplication of vector elements. To convert between the coef-
ficient representation of a polynomial and DoubleCRT form,
a Number Theoretic Transform (NTT) is used. To compute
non-power-of-two NTTs, HElib employs Bluestein’s algorithm
[6]. From benchmarking HElib we find that 52%-53% of
the computation time is spent on the Bluestein algorithm
for common operations such as ciphertext multiplication and
bootstrapping.

Implementations of BGV offer a trade-off in the choice of
cyclotomic rings. Power-of-two cyclotomics are simpler and
more implementation-friendly, and they can make use of the
standard Cooley-Tukey NTT. In contrast, non-power-of-two
cyclotomics can offer more efficient plaintext packing and
bootstrapping, but they are more difficult to implement in
both software and hardware implementations. Especially in
hardware implementations, non-power-of-two cyclotomics are
underexplored in the literature. Many architectures have been
explored to accelerate the NTT operation for power-of-two
values of m [7]–[11], but only a single prior implementation
explores the non-power-of-two Bluestein NTT [12].

In this paper, we implement a hardware architecture for the
NTT targeting generalized cyclotomic rings in HElib’s BGV-
FHE implementation. We explore different non-power-of-two
algorithm trade-offs, including the Prime-Factor, Rader, and
Bluestein NTTs. Similar to the analysis of Hsu and Shieh
[13], we highlight that the 21845-th cyclotomic polynomial
has ideal properties for an implementation using a combination
of the Prime-Factor and Rader NTT. Using the combination of
these two algorithms significantly reduces the arithmetic cost
of the NTT compared to a Bluestein implementation.

We are the first to implement and evaluate in hardware the
Prime-Factor and Rader NTTs for this choice of cyclotomic.
Different circuit optimizations are used to achieve high perfor-
mance; mainly parallel processing to reduce the latency, and
pipelining of the datapath to achieve a higher clock speed.
An efficient memory design is used to keep up with the
high throughput. Additionally, we focus on maximal reuse of
functional units throughout the different computation stages to
keep the area or resource utilization limited on an Alveo U250
FPGA. Finally, we compare our implementation to Wu et al.’s
[12] implementation of Bluestein’s FFT, showing increased
throughput and area efficiency. The RTL implementation of
our work is publicly available at:

https://github.com/KULeuven-COSIC/NonPowerOfTwoNTT.

II. PRELIMINARIES

We use Zq to denote the ring of integers with q elements,
also known as the integers modulo q. In case q is a prime
number, Zq forms a finite field. Elements in a ring are

denoted by lowercase letters. Vectors are expressed in bold
x = ⟨x1, x2, x3, . . . , xn−1, xn⟩. The i-th component of vector
x is specified as xi. We use ∗ to represent the convolution
operation between two vectors, whereas ⊙ represents element-
wise multiplication.

A. The BGV Scheme

The BGV FHE scheme [4] operates on polynomials de-
fined over the cyclotomic ring: R = Z[X]/(Φm(X)), where
Φm(X) is the cyclotomic polynomial of order m. The plain-
text space of the BGV scheme consists of vectors of integers
modulo a plaintext modulus t. The ciphertext space of the
BGV scheme consists of vectors of polynomials modulo a
ciphertext modulus Q, which is a large integer that determines
the security level and the noise budget.

An important feature of the BGV scheme is the concept
of modulus switching. A freshly encrypted ciphertext starts
at encryption level L, and the encryption level gradually
moves down as we perform homomorphic computations. With
each encryption level l, a modulus ql is associated, and the
ciphertext modulus Q = qL. Modulus switching helps to
reduce the noise growth because when we switch the modulus
from ql to ql−1 with ql−1 > ql, the noise term of the ciphertext
is reduced by the ratio ql

ql−1
. When we reach the smallest

modulus q0 at encryption level 0, the noise can no longer
be reduced. At this point, the ciphertext needs to either be
decrypted or Gentry’s bootstrapping method [1] needs to be
employed to enable further computation.

In the implementation of the BGV scheme within HE-
lib, a series of small machine-word sized prime numbers
p0, p1, p2, . . . , pL are used to construct moduli as follows: [2]

ql =

i=l∏
i=0

pi (1)

The BGV scheme involves various operations with integer
polynomials, such as modular multiplications, additions, and
Frobenius maps. The polynomials used in these operations
are represented using the DoubleCRT format to increase
efficiency. This format represents a polynomial as a collection
of polynomials, each computed modulo a small prime pl,
with each individual polynomial further represented in the
evaluation form. In this evaluation form, a polynomial is
described as a vector containing its values at primitive N -
th roots of unity within the finite field Zpl

. Within this
representation, polynomial multiplication simplifies to point-
wise multiplication that can be performed in linear time.
The transformation between coefficient representation, where
the polynomial is expressed as a list of its coefficients, and
evaluation representation involves using the Number Theoretic
Transform (NTT). The NTT happens to be the most time-
consuming step for calculations in HElib, therefore, it is the
primary focus of hardware acceleration.

B. Number Theoretic Transform

The Number Theoretic Transform (NTT) generalizes the
discrete Fourier transform (DFT) over Zp where p is prime.

https://github.com/KULeuven-COSIC/NonPowerOfTwoNTT


It provides efficient algorithms for size-N polynomial multi-
plication in time proportional to N log(N). In this work, we
are primarily interested in the case where N is not a power
of two. Rather, N = m, with the cyclotomic parameter m a
product of distinct primes.

[14] Zp is a finite field, so there exists a primitive N -th
root of unity if N divides p − 1. Let ω be a primitive N -th
root of unity. Then, the N -point NTT,

X = ⟨X0, . . . , XN−1⟩ = N {x} , (2)

is defined as:

Xk =

N−1∑
n=0

xnω
nk, k = 0, . . . , N − 1 (3)

The inverse NTT,

x = ⟨x0, . . . , xN−1⟩ = N−1 (X) , (4)

is defined as:

xn = N−1
N−1∑
k=0

Xkω
−nk, k = 0, . . . , N − 1. (5)

Since ω is an N -th root of unity we have ω−nk = ω(N−k)n.
This means an inverse NTT can be computed using a forward
NTT by reversing the order of the elements in X as follows:

⟨X0, XN−1, XN−2, . . . , X2, X1⟩ (6)

Because of the similarity between the NTT and DFT, any FFT
algorithm can also be used for calculating the NTT. The only
modification that needs to be made is that e−

j2π
N is replaced

by ω. [15]
When N is a power of two, the NTT is typically computed

using (variations of) the radix-2 Cooley-Tukey algorithm. This
algorithm re-expresses a size-N NTT as two NTTs of sizes
N/2. When N contains large or distinct prime factors, other
algorithms can be exploited for greater efficiency.

C. Prime-Factor FFT Algorithm

The Prime-Factor FFT algorithm (PFA) transforms a dis-
crete Fourier transformation (DFT) with a size of N = N1N2

into a two-dimensional DFT with dimensions N1×N2. [16] It
is important to note that the PFA requires that N1 and N2 are
integers that are relatively prime. By applying PFA recursively,
the smaller DFTs of size N1 and N2 can be computed. For
example, N = m = 21845 has factorization 257× 17× 5 and
will be computed as a three-dimensional DFT with dimensions
257 × 17 × 5. The factorization is similar to Cooley-Tukey
but has the advantage that no multiplications with twiddle
factors are required. As a trade-off, its use is limited to coprime
factorizations, and a more complex re-indexing based on the
Chinese Remainder Theorem (CRT) is required.

D. Rader’s FFT Algorithm

Whereas the Prime-Factor algorithms can break up an NTT
into its prime factors, Rader’s algorithm permits efficiently
computing the N -point NTT when N is prime. In our example
above, Rader’s algorithm can be used to more efficiently
implement the size-257, size-17, and size-5 prime NTTs that
result from PFA decomposition of the size-21845 NTT.

[17] In ZN , there exists a primitive root g ∈ ZN such
that for any non-zero element n ∈ ZN , there exists a unique
exponent q ∈ {0, 1, 2, . . . , N − 2} satisfying the equation:
n = gq (mod N). Since every non-zero element in ZN

corresponds to a unique q this forms a bijection from q to
non-zero n. In the same way k = g−p (mod N), with k a
non-zero element in ZN and p ∈ {0, 1, 2, . . . , N − 2} forms
a bijection from p to non-zero k. By using this re-indexing
the size-N NTT can be expressed as the convolution of two
sequences a and b of sizes N − 1 as follows:

aq = xgq (7)

bq = ωg−q

(8)

Xg−p = x0 +

N−2∑
q=0

aqbp−q p = 0, . . . , N − 2 (9)

In turn, the convolution of sequences a and b is computed
by using the convolution theorem (Equation 10), requiring
NTTs of size N − 1:

A = N (a) (10)
B = N (b) (11)

a ∗ b = N−1 {A⊙B} . (12)

E. Bluestein’s FFT Algorithm

Bluestein’s algorithm permits to efficiently compute the
DFT of any size, including prime sizes. [6] We show below
how this algorithm can be used to compute the NTT.

Begin with the definition of the NTT

Xk =

N−1∑
n=0

xnω
nk k = 0, . . . , N − 1 (13)

If we replace nk in the exponent by

nk =
k2

2
+

n2

2
− (k − n)

2

2
, (14)

we obtain:

Xk = ω
k2

2

N−1∑
n=0

(
xnω

n2

2

)
ω− (k−n)2

2 k = 0, . . . , N − 1

(15)
This summation can be expressed as the convolution of two
sequences an and bn as follows:



an = xnω
n2

2

bn = xnω
−n2

2

Xk = b−1
k

(
N−1∑
n=0

anbk−n

)
k = 0, . . . , N − 1

(16)

Just like in Rader’s algorithm, the convolution is computed by
a pair of NTTs using the convolution theorem (10).

The advantage here is that these NTTs do not have to be of
length N. The convolution can be computed after zero-padding
it to a length of at least 2N − 1. By padding it to a power of
two, the NTT can be computed efficiently using the Cooley-
Tukey algorithm in O (M log2 M), where M is the padded
length.

III. ALGORITHMIC EXPLORATION

In this section, we explore different choices for the non-
power-of-two NTT for practical parameter sets of BGV-FHE.
We repeat the analysis of [13], highlighting that the combi-
nation of the Prime-Factor and Rader algorithms can often
outperform Bluestein implementations. In their work, Hsu
and Shieh [13] show that especially the 21845-th cyclotomic
polynomial presents an optimal parameter choice for the non-
power-of-two NTT in BGV-FHE. We also show that this
parameter set features the smallest number of multiplications,
and we proceed with the first hardware implementation for
this parameter set in the rest of the paper.

A. Comparing PFA, Rader, and Bluestein

In this work, we are specifically interested in evaluating al-
ternatives to a Bluestein NTT implementation. For an arbitrary
N -point sequence, three different scenarios can be defined:

• When N can be factored into coprime numbers N1 and
N2, the problem of computing an N-point NTT can be
reformulated using PFA into computing N2 instances of
an N1-point NTT and N1 instances of an N2-point NTT.

• When N is not a prime number but a prime power,
represented as pk, the Cooley-Tukey FFT algorithm can
be used.

• When N is a prime number, the problem of computing the
N -point NTT can be transformed using Rader’s algorithm
into computing two (N − 1)-point NTTs.

Any of these algorithms will reduce the sizes of the NTTs to
be performed. An efficient approach to performing NTTs of
any size can be found by recursively selecting the appropriate
algorithm for each new size encountered. [18]

Figure 1 shows how this method compares to both the
direct application of Bluestein’s algorithm and the application
of PFA followed by Bluestein for different bootstrappable
parameters of the BGV-FHE scheme from Table I. To
simplify the analysis, for this comparison, it is assumed that
each power-of-two length NTT requires exactly N logN
multiplications. Recursive application of PFA and Rader

Fig. 1. Number of multiplications required to perform different NTT
algorithms.

requires significantly fewer multiplications than using
Bluestein, both directly or after PFA.

In the context of precomputing twiddle factors and
precomputing the NTT of the sequence bn in Bluestein’s
algorithm or bq in Rader’s algorithm, another important
factor to consider is the size of the required lookup table.
If Bluestein’s algorithm is applied directly, the length of the
NTT is at least doubled, and the number of twiddle factors
and Bn values is also doubled. A single application of PFA
reduces the number of twiddle factors and Bq values from N
to N1 +N2.

Another thing to consider is the restriction on the moduli
that can be used in computing the NTT. A primitive N -th
root of unity exists in the ring Zp when p is of the form
p = kN + 1. Since different NTT lengths are used in the
algorithm, a prime p is required that satisfies this property
for each length. Table II shows the possible moduli for
different bootstrappable parameters for both the PFA-Rader
algorithm and Bluestein’s algorithm. The table also includes
the minimum number of bits needed to represent the first
twenty possible values for p. Bluestein’s algorithm generally
requires longer word sizes.

Because of these advantages, the hardware architecture will
be based on the PFA-Rader algorithm rather than Bluestein.
The choice m = 21845 stands out as a good parameter for
this algorithm, both in the number of slots and implementation
metrics. Therefore, the hardware design and the remainder of
the paper focuses on this parameter.

B. An Optimization to Rader’s Algorithm

Rader’s algorithm requires m−1 additions to compute X0 =∑m−1
i=0 xi and m − 1 additions to add x0 to each element of

the convolution result. This number can be reduced to just two
additions. We observe that

A0 =

N−2∑
q=0

xgq =

N−1∑
i=1

xi, (17)

so X0 can be computed as X0 = x0 + A0. If C = A ⊙ B,
then adding x0 to C0 before the inverse NTT corresponds
to adding x0 to each element of c. Algorithm 1 describes our
implementation of Rader’s algorithm with these modifications.
Note that we exclude the final reversed re-indexing step.



TABLE I
BOOTSTRAPPABLE VALUES FOR PARAMETER m. GENERATED USING FIND_BOOTSTRAPPABLE_PARAMS.M OF [19].

cyclotomic ring m 65535 49981 42799 35113 21845
m’s factorization 257 · 17 · 5 · 3 331 · 151 337 · 127 73 · 37 · 13 257 · 17 · 5
number of slots 2048 1650 2016 864 1024

TABLE II
POSSIBLE MODULI FOR PFA-RADER FFT AND BLUESTEIN FFT

PFA-Rader Bluestein
m p n-bits p n-bits

65 535 16 776 960k + 1 31 8 589 803 520k + 1 40
49 981 49 481 190k + 1 33 6 551 109 632k + 1 41
42 799 43 141 392k + 1 32 5 609 750 528k + 1 41
35 115 82 169 100k + 1 34 4 602 593 280k + 1 39
21 845 5 592 320k + 1 30 1 431 633 920k + 1 38

Algorithm 1 Optimized Rader’s Algorithm

RADER(x)
x′ ← RaderPermutation([x1, x2, . . . , xm−1])
A← N (x′)
X0 ← A0 + x0

C← B⊙A
C0 ← C0 + x0

[X1, X2, . . . , Xm−1]← N−1 (C)
return X

IV. HARDWARE ARCHITECTURE

In the remainder, we describe a high-throughput hardware
NTT implementation that is optimized for the 21845-th cyclo-
tomic polynomial. As mentioned before, our implementation
uses a combination of the Prime-Factor, Rader, and Cooley-
Tukey algorithms, decomposing 21845 = 257 × 17 × 5.
Since FHE applications typically use a single parameter set,
there is no need to support multiple choices of m within a
single architecture. Therefore, our implementation focuses on
the specific optimized choice m = 21845, but the proposed
methodology is general and can be extended to produce
optimized circuits for other choices for m.

A. Architecture Overview

Figure 2 shows an overview of the hardware architecture.
The architecture exploits data parallelism by performing op-
erations on large vectors. The data is streamed through a
fully pipelined datapath with twenty-seven pipeline stages. The
processor is fully pipelined, and the design achieves a clock
frequency of 250 MHz after FPGA place & route. There are no
wait states, such that all processing elements achieve optimal
utilization.

Vectors are composed of 257 32-bit words, where 257
corresponds to the largest dimension in the resulting 257×85
matrix obtained through PFA. Each vector can represent either
one row of the matrix or three columns. As the vectors pass
through the datapath, either one recursive stage of the Cooley-
Tukey FFT algorithm or 128 pointwise multiplications can be

Fig. 2. Proposed PFA+Rader NTT hardware architecture

computed. Each functional unit in the architecture is designed
to handle a throughput of one vector per cycle. The inner NTT
unit consists of 128 radix-2 butterfly units. These units can be
configured to perform either a butterfly operation or only a
multiplication and modular reduction.

The overall architecture can work with up to 46 different
moduli of 32 bits, this is necessary for modulus switching in
the BGV scheme. Only forward NTTs are supported, but an
inverse NTT can be computed by performing a re-indexing
in software that puts the elements in the order as shown in
Equation 6.

To achieve the required memory bandwidth, we use 257
individually addressable memory banks. The rows of the
matrix are stored in a staggered manner, ensuring that each
element of a row or column resides in a different memory
bank. An address generator determines the read and write
addresses, while barrel shifters eliminate and reapply the offset
caused by row staggering.

In the following sections, we will describe the control flow,
memory, permutation hardware, and inner Cooley-Tukey NTT
implementation in more detail.



Fig. 3. Control state diagram of the PFA+Rader algorithm executions.

B. Control Flow

Figure 3 illustrates the state diagram of the controller,
which governs the processing of a three-dimensional grid with
dimensions 257×17×5 obtained through PFA. The outer loop
in the controller contains seven distinct states, including the
initial idle state. Additionally, three state variables are present:
axis, row, and step. axis indicates the traversal direction within
the grid, row indicates the currently processed row index, and
step corresponds to the Cooley-Tukey algorithm stage. The
output of the controller depends on both the current state and
the current axis.

Each stage of the NTT computation is performed on all rows
along one axis before moving on to the next stage. Iterating
over the NTT stages in the outer loop and over the rows in
the inner loop eliminates data dependencies that would cause
pipeline stalls. The iteration order is different for the Multiply
part 1 and Multiply part 2 states, which encompass the point-
wise multiplication in Rader’s Algorithm 1. Iterating over the
rows in the outer loop is more efficient for these operations
since there are no data dependencies. Moreover, some of the
data required for part 2 would be overwritten by the result of
part 1, this is avoided by performing both operations for the
same row in subsequent cycles.

The pipeline stalls in the final state, where we wait for
all NTTs along the current axis to complete. This stalling is
necessary when transitioning from rows to columns because
there is a data dependency between each row and column.

Figure 4 details the iteration through the matrix. The three-
dimensional 257 × 17 × 5 matrix is stored in memory as
a two-dimensional 257 × 85 matrix, where each column
represents a flattened 17× 5 matrix. The highlighted blue and
red regions indicate the rows and columns processed in one

x1,1

x1,2

x1,3

...

x1,85

x2,1

x2,2

x2,3

...

x2,85

x3,1

x3,2

x3,3

...

x3,85

x4,1

x4,2

x4,3

...

x4,85

x5,1

x5,2

x5,3

...

x5,85

x6,1

x6,2

x6,3

...

x6,85

x7,1

x7,2

x7,3

...

x7,85

x8,1

x8,2

x8,3

...

x8,85

x9,1

x9,2

x9,3

...

x9,85

x10,1

x10,2

x10,3

...

x10,85

x11,1

x11,2

x11,3

...

x11,85

x12,1

x12,2

x12,3

...

x12,85

x13,1

x13,2

x13,3

...

x13,85

· · ·

· · ·

· · ·

. . .

· · ·

x257,1

x257,2

x257,3

...

x257,85

51 x 5

15 x 17

257

Fig. 4. Illustration of the matrix layout and iterations during PFA+Rader
algorithm executions.

Fig. 5. Illustration of staggered rows in memory, each color represents a
column in the PFA matrix.

iteration step, respectively. First, we iterate over every row and
subsequently over every column. Three columns are processed
simultaneously in each step, except in the last iteration step,
where only two columns are processed. The dashed regions
indicate the sections of the matrix that will be processed in
the next iteration step. It is important to note that columns
undergo two separate iterations: in the first iteration, the rows
of the flattened 17×5 matrices are processed, and in the second
iteration, the columns of these matrices are processed.

C. Memory Design

The PFA FFT re-expresses the NTT of size m = 21845 as
a two-dimensional NTT over a 257× 85 matrix. This matrix
is stored in 257 Block RAMs (BRAM) on the FPGA so that
a vector of 257 32-bit words can be read from or written to
the memory in every cycle.

Accessing matrix elements in parallel poses a memory
challenge. Specifically, storing columns in separate BRAMs
enables parallel row access but not parallel column access,
while storing rows in separate BRAMs enables parallel column
access but not parallel row access. To address this, a staggered
memory arrangement is used. These permuted arrangements
have been used before for power-of-two NTT implementations
in FHE [20], [21], but, to the best of our knowledge, never
for the PFA NTT.

Rows are stored offset by one BRAM from each other,
enabling parallel access to both rows and columns. Figure
5 gives a visual example using a 7×5 matrix. Each color
corresponds to a distinct matrix column, highlighting separate
BRAM storage for both rows and column elements.
To facilitate reading from and writing to memory with the
required offsets, two circular shift circuits are needed: one at
the write ports and another at the read ports of the memory.
These circuits enable circularly shifting 32-bit words across



lanes in a vector of length 257. A barrel shifter is used to
achieve a throughput of one vector per cycle.

D. Combining Permutations

The NTTs of size 85 over the columns are re-expressed as
a two-dimensional NTT over a 17× 5 matrix. This translates
to two distinct permutations in our hardware: one that groups
the elements of every matrix row together and one that groups
the columns of the matrix.

The NTTs of size 257, 17 and 5 are computed using Rader’s
algorithm. In Rader’s algorithm, the first element of each row
(with sizes 257, 17, and 5) in the vector needs to be removed.
A permutation removes the first points from the NTT vectors
and fills the gaps with subsequent elements. The removed
first points are collected and placed at the end of the vector.
An additional permutation is required for the re-indexing
in Rader’s algorithm. This permutation is different for each
NTT size (257, 17, and 5). Finally, a bit-reversal permutation
is necessary because the decimation in time Cooley-Tukey
algorithm expects the initial input in a bit-reversed order.

In summary, there are many permutations involved within
the combination of the PFA and Rader algorithms. In our
architecture, we propose to combine permutations to limit their
limit number. This optimization reduces the total number of
permutations to only six. To select one permutation from the
reduced set of six, a 6-to-1 multiplexer is used.

E. Vectorized Cooley-Tukey FFT

The NTTs of sizes N−1 within Rader’s algorithm (256, 16,
and 4), are computed using the Cooley-Tukey FFT algorithm.
This inner Cooley-Tukey FFT algorithm, specifically the radix-
2 decimation-in-time (DIT) variant, works by breaking down a
Discrete Fourier Transform (DFT) of a larger size 2n into two
smaller transforms of size n. These smaller transforms are then
combined using mathematical operations called ”butterflies,”
which involve computing smaller DFTs of size 2 that are mul-
tiplied with roots of unity known as ”twiddle factors”. Figure 6
shows a butterfly diagram for an 8-point FFT algorithm, which
illustrates how the inputs and outputs are connected for each
stage during the computation. The same hardware used for
computing an FFT of size 2n can also be used for computing
two FFTs of size n by omitting the final stage of the FFT
and adjusting the twiddle factors. This property allows us to
reuse the hardware of a 256-point FFT, for computing multiple
16-point and 4-point FFTs in parallel.

The Cooley-Tukey NTT requires the input to be bit-
reversed. The bit-reversal circuit is simple. To achieve a
throughput of one vector per cycle, it is implemented as a
series of eight bit-reversal permutations of increasing lengths:
{2, 4, 8, 16, 32, 64, 128, 256}. Multiplexers are used to select
either the permuted vector or the non-permuted vector.

F. Butterfly Units

We used 128 butterfly units to achieve a throughput of one
vector per cycle. The design of a butterfly unit is depicted in
Figure 7.

Fig. 6. Butterfly diagram for radix-2 DIT FFT algorithm

Fig. 7. Implementation of radix-2 DIT FFT butterfly

The butterfly unit makes use of a word-level Montgomery
modular multiplier implementation from Mert et al. [9] The
multiplier is fully pipelined and has a latency of nineteen
cycles. A shift register is used to match the latency of the
modular multiplier for the other input. Twiddle factors are
precomputed and stored in a lookup table.

The convolution in Rader’s algorithm requires a pointwise
product to be computed. We repurpose existing butterfly unit
multipliers for this task to optimize resource utilization. One
of the factors in each pointwise product is a precomputed
constant, conveniently stored within the FFT twiddle factor
lookup table. To perform multiplication without the final
addition, we add a multiplexer at input A that allows a zero
input selection. Another multiplexer is added at input B to
enable multiplication of either input A or input B with a
constant factor.

V. EVALUATION AND RESULTS

A. Latency Simulation Results

We measure the latency of architecture using waveform
simulations. Simulation involves writing testvector data into
the BRAMs from a file, followed by the full NTT computa-
tion. Testvectors are generated using HElib and checked for
correctness. Simulation shows that a 21845-point NTT can

Frequency (MHz) CLB LUT CLB Register BRAM DSP
250 224074 169900 300 1024

TABLE III
ALVEO U250 IMPLEMENTATION RESULTS



TABLE IV
COMPARISON TO OTHER NTT IMPLEMENTATIONS. BOTH NON-POWER-OF-TWO (LEFT) AND POWER-OF-TWO NTTS (RIGHT) ARE INCLUDED.

Design This work [12] [7] [8] [9] [10] [11]
m 21845 8193/4369 32768 8192 4096 512 1024
Coefficient size (bits) 32 25 32 54 60 13 16

Platform Alveo U250 Virtex-7 Virtex-7 Stratix 10 GX
2800 Virtex-7 Virtex 6 Artix-7

Frequency (MHz) 250 250 250 300 125 278 45.47
Cycles 2987 5825 12725 768 972 2304 18537
CLB LUTs 224k 76.2k 219k 142k 99.3k 1536 2908
CLB Registers 170k - 90.7k 387k - 953 170
BRAM 429 62 193 725 176 3 0
DSPs 1024 256 768 320 929 1 9
l̃ (µs) 0.44 2.9/5.8 1.0 0.14 0.86 45 815
ADP: l̃ × LUTs 87k 219k/440k (2.5×/5.1×) 232k 21k 86k 70k 2.4M
ADP: l̃ × DSPs 398 734/1480 (1.8×/3.7×) 814 47 803 45 7338

be computed in 2987 clock cycles. This number is consistent
regardless of the data or modulus used. Of these total clock
cycles, 2392 clock cycles are spent in computing the inner
FFTs using Cooley-Tukey’s algorithm, 514 clock cycles in
pointwise multiplication for Rader’s algorithm, and 78 cycles
are pipeline stalls, which corresponds to only 2.6% of the total
execution time.

B. Implementation Results

Table III shows the implementation area and frequency
results. These results include the entire NTT but without
BRAM interface. Of the used BRAMs, 257 are used as RAM,
and 171 BRAMs are used as ROM to store the twiddle factors.
The Alveo U250 FPGA contains BRAM tiles, which can
implement either one large BRAM or two smaller BRAMs.
The ROM BRAMs use one tile each, the RAM BRAMs use
128.5 tiles. Therefore, utilization reports show 300 BRAMs
used.

A major challenge in the efficient place & route of our
design using default settings in Vivado is SLL (Super Long
Line) congestion. SLLs connect signals between die slices that
are called Super Logic Regions (SLR) on the FPGA. There
are only a limited number of these SLL connections available,
and the router has difficulty with timing closure when a high
portion of these SLLs is used. To address this problem, we
eliminated using SLLs entirely by confining all the logic to
one SLR. This single SLR placement solves congestion issues
and allows our design to achieve 250 MHz clock frequency
after place & route.

At a frequency of 250 MHz, a 21845-point NTT can be
computed in 11.9 microseconds, achieving a speed that is
ninety times faster than when the same NTT computation
is performed on a conventional CPU platform using HElib.
Conducting the same 21845-point NTT computation on an
Intel Core i7 processor, with 12 threads at 4 GHz, results in
a computation time of 1.10 milliseconds.

C. Comparison to Other Implementations

Few efforts have been made in hardware acceleration of
NTTs with non-power-of-two lengths. Hsu and Shieh [13] the-
oretically analyze the use of the Prime-factor and Rader algo-
rithms but do not develop an actual hardware implementation.

To the best of our knowledge, Wu et al.’s VLSI implementation
of the Bluestein algorithm [12] is the only non-power-of-
two implementation of an NTT. Their implementation makes
use of a 64-bit modulus, which is significantly larger than
the 22 to 25-bit coefficient size, in order to avoid modular
reductions during computation. We will focus mainly on
Wu et al.’s implementation, since the other implementations
are specifically tailored for power-of-two length NTTs [7]–
[11]. These power-of-two implementations are included in our
discussion solely for reference, and should not be considered
suitable for our target application of BGV with non-power-of-
two cyclotomics.

The implementation of Wu et al. targets BGV with m =
8193 or m = 4369. We note that, in contrast to our imple-
mentation, these smaller values for m are not bootstrappable
(Table I). They are only suitable for levelled FHE applications,
limiting their usability significantly.

To facilitate performance comparison across different NTT
sizes, Table IV presents the latency for one forward NTT
computation normalized to m = 1024 and k = 32, where
k is the coefficient size in bits. We assume quasilinear scaling
with m due to the FFT operation’s time complexity. Linear
performance scaling is assumed for k as lowering the small
moduli’s bit-width in the BGV scheme roughly corresponds to
a proportional increase in the number of vectors in DoubleCRT
representation. The normalized latency l̃ is calculated as

l̃ = latency · Reference NTT complexity
Other design complexity

(18)

= latency · 32 · 1024 log2 1024
k ·m log2 m

(19)

Table IV also includes Area-Delay Product (ADP) of the
normalized latency with the number of LUTs and DSPs. For
this ADP figure of merit combining area and performance,
lower values indicate a better performance. It’s important to
note that this performance estimation does not consider other
potential limitations.

In our implementation, we achieve a performance in the
ADP figure of merit, l̃ × LUTs/DSPs, that is more than
double when compared to the implementation by Wu et al.,
particularly when evaluating a 8193-point NTT. This scenario



represents the optimal case for Wu et al.’s implementation,
as this specific parameter selection eliminates the need for
padding within Bluestein’s algorithm. However, the practical
use case for BGV referenced by Wu et al. uses the parameter
choice m = 4369. In this more realistic scenario, our design
shows a fivefold increase in performance. For completeness,
we note that our design does not incorporate hardware-based
reversed re-indexing, resulting in a scrambled NTT result. This
reversed re-indexing step can be performed in linear time and
is not necessary for element-wise operations, but is required
when we convert back from DoubleCRT to polynomial coef-
ficient representation.

For fairness, we also note that our implementation targeting
the Alveo U250 is a more advanced process node (16nm) than
the Virtex-7 (28nm) that is popular in prior work. For FHE
applications, the Alveo U250 is a more interesting target, as
it is readily available in cloud platforms — such as Amazon’s
AWS — as a datacenter accelerator card. Whereas LUT/DSP
utilisation is typically nearly identical between these two
devices, we estimate that prior work would run at slightly
higher frequencies on the Alveo U250.

VI. CONCLUSION

In this work, we presented a hardware architecture for ef-
ficient non-power-of-two Number Theoretic Transform (NTT)
computations, targeting fully homomorphic encryption using
the BGV scheme. Our design focuses on the 21845-th cyclo-
tomic polynomial, which is a practical parameter for BGV. The
non-power-of-two NTT architecture employs a combination of
the Prime-factor and Rader FFT algorithms. We used efficient
arithmetic and algorithmic optimization techniques and lever-
aged parallel processing, pipelining, and optimized memory
management to achieve high performance. The simulation
and implementation results have demonstrated its competitive
performance as compared to existing implementations for both
power-of-two and non-power-of-two NTT sizes.

ACKNOWLEDGMENT

This work was supported by CyberSecurity Research Flan-
ders with reference number VR20192203. In addition, this
work is supported in part by the European Commission
through the Horizon 2020 research and innovation program
Belfort ERC Advanced Grant 101020005 and by the Defence
Advanced Research Projects Agency (DARPA) under con-
tract No. HR0011-21-C-0034 DARPA DPRIVE BASALISC.
Michiel Van Beirendonck is funded by FWO as Strategic Basic
(SB) PhD fellow (project number 1SD5621N).

REFERENCES

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in 41st
ACM STOC, M. Mitzenmacher, Ed. ACM Press, May / Jun. 2009, pp.
169–178.

[2] S. Halevi and V. Shoup, “Bootstrapping for HElib,” Cryptology ePrint
Archive, Report 2014/873, 2014, https://eprint.iacr.org/2014/873.

[3] N. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Cryptology ePrint Archive, Report 2011/133, 2011, https://eprint.iacr.
org/2011/133.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” Electron. Colloquium Comput.
Complex., vol. TR11-111, 2011. [Online]. Available: https://eccc.
weizmann.ac.il/report/2011/111

[5] S. Halevi and V. Shoup, “Design and implementation of HElib: a
homomorphic encryption library,” Cryptology ePrint Archive, Report
2020/1481, 2020, https://eprint.iacr.org/2020/1481.

[6] L. Bluestein, “A linear filtering approach to the computation of discrete
fourier transform,” IEEE Transactions on Audio and Electroacoustics,
vol. 18, no. 4, pp. 451–455, 1970.

[7] E. Öztürk, Y. Doröz, E. Savas, and B. Sunar, “A custom
accelerator for homomorphic encryption applications,” IEEE Trans.
Computers, vol. 66, no. 1, pp. 3–16, 2017. [Online]. Available:
https://doi.org/10.1109/TC.2016.2574340

[8] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: High-performance
architecture for computation on homomorphically encrypted data in
the cloud,” Cryptology ePrint Archive, Report 2019/1066, 2019, https:
//eprint.iacr.org/2019/1066.

[9] A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Trans. Computers, vol. 71, no. 11, pp. 2829–2843,
2022. [Online]. Available: https://doi.org/10.1109/TC.2020.3017930

[10] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE based cryptoprocessor,” Cryptology ePrint Archive,
Report 2013/866, 2013, https://eprint.iacr.org/2013/866.

[11] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” Cryptology ePrint
Archive, Report 2020/446, 2020, https://eprint.iacr.org/2020/446.

[12] S.-Y. Wu, K.-Y. Chen, and M.-D. Shieh, “Efficient vlsi architecture
of bluestein’s fft for fully homomorphic encryption,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), 2022, pp.
2242–2245.

[13] H. Hsu and M. Shieh, “VLSI architecture of polynomial multiplication
for BGV fully homomorphic encryption,” in IEEE International
Symposium on Circuits and Systems, ISCAS 2020, Sevilla, Spain,
October 10-21, 2020. IEEE, 2020, pp. 1–4. [Online]. Available:
https://doi.org/10.1109/ISCAS45731.2020.9181192

[14] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” Cryptology ePrint Archive,
Report 2016/504, 2016, https://eprint.iacr.org/2016/504.

[15] R. Agarwal and C. Burrus, “Fast convolution using fermat number
transforms with applications to digital filtering,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 22, no. 2, pp. 87–97,
1974.

[16] I. J. Good, “The relationship between two fast fourier transforms,”
IEEE Trans. Computers, vol. 20, no. 3, pp. 310–317, 1971. [Online].
Available: https://doi.org/10.1109/T-C.1971.223236

[17] C. Rader, “Discrete fourier transforms when the number of data samples
is prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–1108, 1968.

[18] M. Parker and M. Benaissa, “Unusual-length number-theoretic
transforms using recursive extensions of rader’s algorithm,” IEE
Proceedings - Vision, Image and Signal Processing, vol. 142,
pp. 31–34(3), February 1995. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/ip-vis 19951689

[19] R. Geelen and F. Vercauteren, “Bootstrapping for BGV and BFV
revisited,” J. Cryptol., vol. 36, no. 2, p. 12, 2023. [Online]. Available:
https://doi.org/10.1007/s00145-023-09454-6

[20] L. Johnson, “Conflict free memory addressing for dedicated fft hard-
ware,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 39, no. 5, pp. 312–316, 1992.

[21] R. Geelen, M. Van Beirendonck, H. V. L. Pereira, B. Huffman,
T. McAuley, B. Selfridge, D. Wagner, G. Dimou, I. Verbauwhede,
F. Vercauteren, and et al., “Basalisc: Programmable hardware
accelerator for bgv fully homomorphic encryption,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2023, no. 4,
p. 32–57, Aug. 2023. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/11157

https://eprint.iacr.org/2014/873
https://eprint.iacr.org/2011/133
https://eprint.iacr.org/2011/133
https://eccc.weizmann.ac.il/report/2011/111
https://eccc.weizmann.ac.il/report/2011/111
https://eprint.iacr.org/2020/1481
https://doi.org/10.1109/TC.2016.2574340
https://eprint.iacr.org/2019/1066
https://eprint.iacr.org/2019/1066
https://doi.org/10.1109/TC.2020.3017930
https://eprint.iacr.org/2013/866
https://eprint.iacr.org/2020/446
https://doi.org/10.1109/ISCAS45731.2020.9181192
https://eprint.iacr.org/2016/504
https://doi.org/10.1109/T-C.1971.223236
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_19951689
https://digital-library.theiet.org/content/journals/10.1049/ip-vis_19951689
https://doi.org/10.1007/s00145-023-09454-6
https://tches.iacr.org/index.php/TCHES/article/view/11157
https://tches.iacr.org/index.php/TCHES/article/view/11157

	Introduction
	Preliminaries
	The BGV Scheme
	Number Theoretic Transform
	Prime-Factor FFT Algorithm
	Rader's FFT Algorithm
	Bluestein's FFT Algorithm

	Algorithmic Exploration
	Comparing PFA, Rader, and Bluestein
	An Optimization to Rader's Algorithm

	Hardware Architecture
	Architecture Overview
	Control Flow
	Memory Design
	Combining Permutations
	Vectorized Cooley-Tukey FFT
	Butterfly Units

	Evaluation and Results
	Latency Simulation Results
	Implementation Results
	Comparison to Other Implementations

	Conclusion
	References

