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Abstract. This paper presents the first optimal-resilient, adaptively secure asynchronous common
coin protocol with O(λn2) communication complexity and O(1) rounds, requiring only a public silent
setup. Our protocol immediately implies a sequence of quadratic-communication, constant-round asyn-
chronous Byzantine agreement protocols and asynchronous distributed key generation with a silent
setup. Along the way, we formulate a new primitive called asynchronous subset alignment and in-
troduce a simple framework to reason about specific composition security suitable for asynchronous
common coin, which may be of independent interest.

1 Introduction

Coin flipping [15], also known as a common coin, is a classical problem with significant modern
applications [24,32,38,48,53,60,67]. At a high level, a group of n parties jointly execute a common
coin protocol, where all participants agree on one value that is both unpredictable to the adversary
and indistinguishable from a uniformly sampled value. A closely related problem is distributed key
generation (DKG) [7, 22,37, 47,54, 58,71], in which each of the honest participants obtains a share
of a secret key. It is well known that a DKG protocol immediately yields a common coin protocol.

In this work, we investigate the multiparty coin-flipping (and DKG) problem in an asynchronous
setting, where an adversary has the power to arbitrarily delay and reschedule messages between
honest participants. Our primary focus is on improving the communication and round complexities
of the protocol relative to the group size n. Beyond its theoretical interest, asynchronous coin-
flipping (and DKG) protocols are a critical component of asynchronous consensus protocols [4, 52,
53, 67, 70], which are central to blockchain applications [14, 46]. These blockchain systems often
involve a large number of participants, making scalability a key concern.

There has been a recent surge of interest in asynchronous common coins [10, 27, 75] and DKG
protocols [2,3,29,42,61]. Unfortunately, all of them suffer from high communication complexity of
at least O(n3). The only exception is the seminal work of Cachin, Kursawe, and Shoup [20], which
achieves O(λn2) via a unique threshold signature, but this inherently requires a private setup. 1 In a
private setup, a trusted party disperses correlated secrets to each participant, which is significantly
stronger than a common public setup, such as a public bulletin board, CRS, or PKI. Besides the
drawbacks of private setups in distributed systems, the basic motivation of DKG is to eliminate
such private setups. The following major question remains open,

Can we construct an asynchronous common coin (and DKG) protocol, that is with only O(λn2)
communication, secure against strongly adatpive adversary corrupting up to ⌈n3 ⌉ − 1 parties, but

without relying on private setups?

1 We summarize all existing asynchronous coin-flipping, including DKG protocols, in Table 1, which clearly demon-
strates the current status. Here, λ is the computational security parameter, denoting length of the coin, or size of
signature etc. More detailed explanations of broader developments are provided in Appendix A.



Table 1. Comparison with optimal-resilient asynchronous common coin protocols2

Protocol Type Comm.Cost Round Adaptive? Assumption Setup

CKS [20] Strong O(λn2) 1 !† RO,DDH,co-CDH † Private Setup

DDL+ [27] Weak O(λn3) O(1) % RO SecChan

FKT [75] Weak+ O(λn3 logn) O(1) % DLog SecChan

BBB+ [10] Weak+ O(λn3 logn) ‡ O(1) ! RO SecChan

KMS [61] Strong O(λn4) O(n) % RO,DDH PKI

DYX+ [31] Strong O(λn3) O(logn) % RO,DDH PKI

AJM+ [3] Strong O(λn3) O(1) !∗ RO,AGM,COMDL PKI

GLL+ [42] Strong O(λn3) O(1) !∗ RO,AGM,COMDL PKI

Bingo [2] Strong O(λn3) O(1) ! RO,AGM,q-SDH CRS, SecChan

Ours Strong O(λn2) O(1) ! RO, GGM CRS,PKI∗∗

– Type: Strong coins ensure agreement with 1− negl(λ) probability. Weak coins ensure agreement with a constant
probability. Weak+ coins ensure agreement with (1− negl(λ)− δ) probability for some adjustable small δ.
– Comm.Cost measures the expected number of bits sent by all honest nodes, where λ is the security parameter; The
costs of CKS and Weak or Weak+ coins are exact.
‡ BBB+ supports batching, so that after amortization, the communicaiton cost for each coin can be reduced to
O(λn2 logn). We measured the cost of a single-shot coin generation in the table.
– Round measures the expected number of rounds within which all honest nodes can terminate. The rounds of CKS
and Weak or Weak+ coins are exact.
– Adapptive? asks if the protocol is strongly adaptive secure [1].
†CKS is strongly adaptive secure if using an adaptively secure unique threshold signature scheme, for example, the
scheme from [28] under DDH and co-CDH assumptions.
∗AJM+ and GLL+ proved the static security of their protocol, but their results can be adaptively secure by using a
component from [9].
– Assumption: RO: Random Oracle; AGM: Algebraic Group Model [39]; GGM: Generic Group Model [66,74];
q-SDH: q-Strong Diffie-Hellman Assumption [16,57]; COMDL: Co-One-More Discrete Logarithm Assumption [9].
– Setup: SecChan: Secure Channels; CRS: Common Reference String. Note that [2, 3, 31,42,61] may also need a
uniformly distributed CRS, which can be implied by RO.
∗∗ Our instantiation requires O(λn)-sized public keys due to the current construction of underlying primitive
from [45], incurring O(λn3) setup communication due to reading all keys. This cost can be immediately reduced to
O(λn2) with the help of a key curator [43], which can deterministically (and even verifiably) aggregate the public
keys before returning them to participants. See Remark 2 for details.

1.1 Our Contributions

In this work, we answer this question affirmatively.

Primary result: asymptotically optimal common coin without private setup. We present
an asynchronous strong common coin protocol, ensuring that, except with negligible probability,
all honest nodes can output the same value in every instance. This value is both unpredictable
and unbiased, even in the presence of a computationally bounded adversary capable of adaptively
corrupting up to f = ⌈n3 ⌉ − 1 nodes. The communication complexity and round complexity of our

2 This table only includes computational asynchronous coin protocols, there are also asynchronous coins against
information theoretic adversary, which, naturally have even higher complexity. Also, there are many research on
synchronous common coin and DKG protocols, most of them are also with cubic communication; only until very
recently, we have the first synchronous coin and DKG protocols with subcubic communication [7,37], still, both of
them are not yet matching O(λn2) communication, and with O(n) rounds.
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protocol are O(λn2) and O(1) in expectation, respectively. Our protocol asymptotically matches
the performance of Cachin et al.’s common coin [20] but requires only a silent setup. 3

Direct implications: optimal Asynchronous Byzantine Agreements without private
setup and near-optimal ADKG protocol. All existing asymptotically optimal asynchronous
consensus protocols assume a quadratic communication asynchronous coin (or use [20] directly via
private setup). This includes the binary version (ABA) [69], the multi-valued version (MBA) [70],
the multi-valued validated version (MVBA) [65], and the asynchronous common subset (ACS)
[20, 65]. Our common coin protocol can be directly plugged in, providing the first set of these
asynchronous consensus protocols without requiring a private setup.

Furthermore, very recently, [36] introduced an ADKG protocol in the coin-aided model, 4 which
enjoys strong adaptive security (assuming adaptively secure coins), O(κλn2) communication com-
plexity, and O(1) round complexity, where κ and λ are the statistical and computational security
parameters, respectively. Instantiating the coin oracle in [36] with our common coin protocol di-
rectly yields a full-fledged ADKG protocol with the same asymptotic complexity under a silent
setup. In contrast, all existing ADKG protocols [2, 3, 31, 42, 61], as outlined in Table 1, require at
least O(λn3) communication cost.

A simple framework for analyzing specific composition security. Since our common coin
protocols involve several sub-protocols as components, we need to ensure that all components remain
secure when composed. Most previous works on computational asynchronous common coins appear
to have overlooked this issue. While the security properties of each component are defined and
analyzed in a stand-alone setting, their security in composition is often taken for granted, and the
final proofs are built upon this implicit assumption. 5

We introduce a simple framework for analyzing the composability of specific protocols (avoiding
the strong UC framework, which might be too heavy; see Sect.4.2 for further discussion), which
may be of independent interest. At a high level, we abstract the information an adversary could
possibly learn from a protocol instance ΠA as an oracle O. If a protocol instance ΠB remains secure
even when the adversary has access to O, then ΠB is secure in composition with ΠA. Our analysis
method is essentially a generalization of the work by Lindell, Lysyanskaya, and T. Rabin [64].
Details are presented in Sect.4.2.

2 Technical Overview

Our goal is to construct a communication-optimal strong common coin in the asynchronous setting,
which, except with negligible probability, ensures the following properties: (1) termination, meaning
that all honest nodes eventually terminate with a value; (2) agreement, meaning that all honest
nodes terminate with the same value; and (3) unpredictability and bias-resistance, meaning that
the agreed value is unpredictable and pseudorandom to the adversary.

3 In a silent setup, each party only posts once their public key (e.g., writes to the public bulletin board or sends it
to a trusted party). This generalizes the conventional PKI. At the same time, a silent setup remains a public setup
that disallows the distribution of secrets to individual parties, as discussed in Remark 1.

4 We sketch this result in Appendix E.
5 Indeed, we show a concrete construction of asynchronous verifiable secret sharing (AVSS) [23, 30] (a primitive
fundamental to most existing asynchronous coin protocols), which satisfies all properties in the stand-alone setting
but becomes insecure when two instances of it are run together (see Sect.4.2). While our example does not imply
that existing constructions are insecure, particularly when their components indeed provide security guarantees
beyond the stand-alone setting, the security analysis does require more careful attention.
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In the following, we walk through the challenges and our solutions.

Existing construction methods. Most existing asynchronous coins start with a weak coin, where
both agreement and unpredictability and bias-resistance may hold only with constant probability.
They construct certain asynchronous Byzantine consensus protocols based on a weak common coin
protocol, enabling the application of conventional “commit-and-reveal” methods to achieve a strong
common coin.

A weak coin, in turn, is typically constructed through a delicate combination of an information
gathering (Gather) primitive [3, 23, 27] and a random ranking mechanism [3, 23, 27, 42] (Steps 1-3
below).
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Fig. 1. The Weak Common Coin Protocol from Abraham et al. [3]

• Step 1: Prepare a “committed candidate coin.” Even in an asynchronous setting, every
node can still receive at least n− f commitments provided by distinct nodes, and any subset of
f +1 commitments is sufficient to define a “candidate” random coin. At least one commitment
originates from an honest node, ensuring that the final aggregated value remains unpredictable
to the adversary. In existing works, every node is responsible for forming such a “committed
candidate coin” (referred to simply as a “candidate” hereafter), which can be naively described
by a set of f +1 commitments received by the node or an aggregation of those commitments. 6

Note that alternative instantiations, such as the scheme in [42], also exist; however, the essence
of this step is that each node proposes a committed random value, with the committed value
being unpredictable even to the node that proposed the commitment.

• Step 2: Gather. This is typically the most complicated component. At this stage, every
node has a candidate, and the next question is which candidate the network will decide on.
Ideally, if every honest node could see the same subset of candidate committed coins, they could
apply a deterministic rule to pick one and open it as the coin. However, achieving this requires
asynchronous consensus—which itself requires a coin to begin with. The Gather mechanism is
introduced to address the absence of full-fledged asynchronous consensus. Gather cannot ensure

6 For example, if the underlying “commitment” supports aggregation, such as using aggregatable publicly verifiable
secret sharing as in [3].
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that the subsets received by different honest nodes are identical, but it guarantees the existence
of a large common subset:
– Binding Core: Let {OSeti}i∈H represent the output sets of all honest nodes {Pi}i∈H. There
exists a core set of n − f values that is a subset of every OSeti for i ∈ H (where H is the
index set of all honest nodes). Furthermore, the core set is binding, meaning it is already
determined at the moment the first honest node generates its output set.

In addition to the conventional termination and validity requirements, Gather ensures that
every node can propose at most one value (in this application, a candidate).

• Step 3: “Rank” the candidates. At this stage, there are at most n candidates, with n− f
appearing in the output sets of all honest nodes. In this step, the network ranks these candidates
such that every node simply decides on the commitment with the highest rank in its output
set. The ranking process is deterministic yet unpredictable before a certain point, ensuring a
probability of roughly n−f

n that the highest-ranked commitment is in the core set. If this occurs,
every honest node will decide on it and take its opening as the common coin.
Care must be taken to ensure that the ranking process does not grant the adversary additional
power to create a committed candidate outside the core set with a high rank [3, 27,42].

• Step 4: Compiling a weak coin into a strong coin. After constructing a weak common
coin, we need to build certain asynchronous consensus protocols that can imply an asynchronous
“bulletin board,” such as multivalued validated Byzantine agreement (MVBA) [3, 4, 19, 65].
This step represents the final technical challenge. While conventional MVBA protocols assume
the existence of a strong common coin, weak-coin-based constructions with special care or
alternative designs [2, 3, 42] are often employed.

Cubic communication in each step. Unfortunately, every step described above incurs Ω(n3)
communication complexity.

• Cost for candidate committed coins. In existing protocols, the “commitment” scheme support-
ing forced opening is realized using (a few variants of) asynchronous verifiable secret sharing
(AVSS) [2,30]. An adaptively secure AVSS incurs O(λn2) communication cost, leading toΩ(λn3)
cost for preparing candidate committed coins, as Ω(n) instances of AVSS are utilized.

• Cost for Gather. The Ω(n3) cost in Gather arises for multiple reasons. First, if the size of a
candidate is O(n), then Gather incurs Ω(n3) cost because each node receives n candidates,
resulting in Ω(n2) bits. Second, the Gather protocols in [3, 27] involve n instances of reliable
broadcast (RBC) [18] and an instance of a so-called index-Gather protocol [27] to determine
which RBC instances should be included in the output set. Both the n RBC instances and the
index-Gather incur Ω(n3) communication cost. Notably, this Ω(n3) term persists even when
the candidate size is reduced to O(1).
We also note that a weaker form of Gather, known as the Weak Core Set, has been studied
in [42], which only requires that the output sets of f +1 honest nodes contain the binding core.
However, the above arguments regarding the Ω(n3) communication cost still apply.

• Cost for ranking. The ranking step requires opening all O(n) candidates. Even if each node
multicasts only O(λ) bits for each candidate, the total cost still amounts to O(λn3).

• Cost for converting a weak coin to a strong coin via MVBA.Most existing MVBA protocols fall
into two categories: (1) Protocols such as [3,27] that use a weak leader election subroutine, which,
with constant probability, selects the same leader ι for all nodes (and thus can be implemented
using a weak common coin). However, the corresponding MVBA schemes still incur Ω(λn3)
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communication complexity, even when ignoring the cost of the weak coin. (2)Protocols such
as [4, 19, 65] that use an ideal leader election subroutine. While some of these protocols [4, 65]
achieve quadratic communication complexity (excluding the cost of leader election), implement-
ing leader election using a weak coin requires additional effort. The state-of-the-art compiler [42]
involves n instances of reliable broadcast (RBC), which inherently incurs Ω(n3) communication
complexity.
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Fig. 2. Our Weak Common Coin Protocol

2.1 Our solutions to achieve quadratic communication

We reduce the communication complexity of all four steps using a set of techniques that enable an
asynchronous strong common coin with quadratic communication complexity. The execution flow
of our solution is illustrated in Fig. 2.

STHE: for improving Step 1 and Step 3. As we discussed, existing asynchronous common coin
protocols exclusively use an asynchronous verifiable secret sharing protocol as the “commitment”,
which leads to Ω(n3) communication cost for all nodes to contribute their commitments. We shift
to another tool, threshold encryption, to realize this purpose.

Conventionally, threshold encryption/decryption requires a private setup. Recently, this per-
spective has changed due to Garg et al.’s silent-setup threshold encryption (STE) scheme [45].
This new advancement enables a O(λ)-size commitment scheme supporting forced opening without
private setup. However, a “plain” STE scheme is not sufficient for our purpose, as costs incurred
due to proposing a candidate committed coin and ranking these candidates are still O(λn3). For
fully enjoying the benefits of an STE scheme, we consider a variant of it called STE with tag-
homomorphism (STHE) (for aggregation), also with strengthend security, which has the following
useful features:

• Tag-homomorphism: The encryption algorithm takes an additional input, tag, such that ci-
phertexts under the same tag can be homomorphically aggregated into a single compact ci-
phertext. In our protocol, tag corresponds to the instance identifier sid. Without this prop-
erty, a candidate committed coin would require f + 1 ciphertexts for its description. With
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tag-homomorphism, these ciphertexts can be aggregated into a single compact ciphertext rep-
resenting the candidate.

• Tag-decryption: During the decryption phase, each node only needs to release an O(λ)-sized
partial decryption key for the corresponding tag (instead of O(nλ)-sized shares). Once enough
partial decryption keys are released, they can be aggregated into a complete decryption key for
the tag. This key allows the decryption of all ciphertexts under that tag. This property reduces
the ranking phase to O(λn2)-bit communication cost. Without tag-decryption, every ciphertext
would need to be decrypted individually, resulting in O(λn3)-bit communication complexity.

Besides the more powerful functionalities, we define much stronger security for STHE. In particular,
the adversary is allowed to obtain the partial decryption keys of honest nodes and can perform
adaptive corruption, while neither of these adversarial abilities are considered in [45]. A formal
definition for STHE is provided in Sect.4.1, and a construction (adapted from [45]) is presented in
Appendix C.

Now, a candidate committed coin is represented as an aggregation of f + 1 ciphertexts (each
encrypting a random number) contributed by distinct nodes. To ensure that the value encrypted
by such an aggregated ciphertext remains unknown to the adversary, we leverage a constant-size
SNARK [49] to prove that a ciphertext c∗ is an aggregation of f + 1 ciphertexts cj , each signed
by a distinct node. This guarantees that the decryption r∗ of c∗ is formed as the sum of fresh
randomness values rii∈S , with rz among them, chosen by some honest Pz.

However, a subtle issue arises: while rz is unknown to the adversary A, A might create a
ciphertext c′ on behalf of corrupted nodes such that the decryption of c′ is related to rz (e.g., −rz),
thereby revealing the final r∗ to A. To prevent such malleability attacks, we ensure that every fresh
ciphertext cj is accompanied by a validity proof πj with respect to a simulation-extractable NIZK
system [62]. Additionally, the SNARK proof must demonstrate that each fresh ciphertext being
aggregated has a corresponding validity proof.

With these measures, we prove that the value encrypted by any ciphertext c∗ with the specified
SNARK proof remains unpredictable to the adversary, even under adaptive corruption. In partic-
ular, we carefully apply the single inconsistency party proof technique [22, 28] to handle adaptive
corruption without relying on memory erasures. More details are available in Sect. 6.1.

Align : a further weaker version of Gather (for Step 2). While the communication cost
associated with the underlying commitment scheme can be reduced using STHE, the cubic cost of
the Gather protocol still persists. As previously discussed, existing Gather protocols incur Ω(n3)-bit
communication regardless of the commitment size. Achieving a quadratic-communication Gather
protocol appears to be a very challenging task, if not impossible. Specifically, when a node outputs
a set in Gather, it must be assured that a binding core set of n− f values will be included in the
output sets of all other nodes. To achieve this, it seems necessary for each node to share its intended
output with all other nodes, which inherently requires Ω(n3) communication.

On the other hand, a weaker version of Gather, known as the Weak Core Set, has been studied
in [42]. This weaker version only requires that the output sets of f + 1 honest nodes contain the
core set. However, similar communication barriers persist even for this weaker version.

Fortunately, we found that the guarantees provided by Gather or the Weak Core Set are unnec-
essarily strong. Recall that the purpose of Gather is to enable a constant probability for all honest
nodes to decide on the globally highest-ranked candidate. First, as also observed in [42], once f +1
honest nodes have seen the globally highest-ranked candidate, it is straightforward to ensure that
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Fig. 3. The output guarantees in Gather, Weak Core Set, and Align

all honest nodes can decide on this candidate by performing an additional round of multicast for
amplification. Second, we further observe that to ensure f+1 nodes see the globally highest-ranked
candidate with a certain probability, it is not necessary for the output sets of f+1 nodes to contain
a core set. Instead, this can be guaranteed by the existence of a large “well-covered” subset WS,
where every element is “well-covered,” i.e., included in the output sets of at least f+1 honest nodes.
Unlike the Weak Core Set, elements in WS can be covered by different subsets of f + 1 nodes.

Based on this observation, we introduce a new primitive termed Asynchronous Subset Alignment
(Align). Fig.3 provides an example with four nodes, illustrating how the guarantees of Gather, the
Weak Core Set, and Align differ. In addition to the existence of a “well-covered” set, Align also
ensures the existence of a binding cover, a property previously studied in [27] as a characteristic of
Gather. The binding cover ensures that all elements verifiable as valid Align (or Gather) outputs
are known at the time the first node generates an output. This property is crucial to prevent an
adversary from injecting new candidates once the ranking phase has started. A formal definition of
Align is presented in Sect.5.1.

Most importantly, we demonstrate that our weakening enables a solution with O(1) rounds
and O(λn2) communication complexity. Our protocol builds upon the provable broadcast (PB)
primitive [4,20,52], introduced by Cachin et al. [20] and recently extensively used in the construction
of communication-efficient MVBA protocols [4, 52, 65]. Specifically, we carefully apply n parallel
chains of three consecutive PB instances to realize Align. Notably, using fewer PB instances would
result in a security issue. The details of our Align protocol are discussed in Sect.5.2.

Simpler conversion from weak coin to leader election (for Step 4). After constructing a
quadratic-communication weak common coin, we build a strong common coin through the following
two steps:(1) Construct an MVBA protocol with quadratic communication complexity using our
weak common coin; (2) Use the MVBA to enable the network to agree on a specific candidate
committed coin, such that all honest nodes can obtain the coin value by opening this candidate,
which, in our case, involves decrypting the ciphertext. The overall execution flow of our strong
common coin protocol is illustrated in Fig. 4.

The main technical gap lies in the MVBA component. Specifically, while there are quadratic-
communication MVBA protocols, they all rely on a quadratic-communication leader election sub-
routine, which ensures agreement on the election outcome with a probability of 1 − negl(λ). [42]
proposed a compiler from a weak common coin to leader election; however, this approach incurs an
O(λn3)-bit communication cost.
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Fig. 4. Asynchronous Strong Common Coin

To address this gap, we propose a much simpler compiler built upon multivalued Byzantine
agreement (MBA) [70]. After receiving a value ιi ∈ [n] from a weak common coin instance with
output space [n], each honest node Pi inputs ιi into the MBA protocol. This ensures that, except
with negligible probability, the network agrees on the same ι ∈ [n]. If the MBA protocol returns
⊥, the process is simply re-run until the MBA produces a valid output. A prudent reader may
observe that the MBA protocol [70] itself requires randomization, which can be readily supplied by
concurrent instances of weak common coins. A detailed construction and analysis are provided in
Sect. 7.1. 7

3 Models, Goals and Preliminary

Notations. Throughout the paper, let λ represent the bit length of the cryptographic security
parameter. The notation [i, n] denotes the set {i, i + 1, . . . , n}, where i and n are integers with
i < n. We may abbreviate [1, n] as [n]. For a set {x1, x2, . . . , xn} and a sequence (x1, x2, . . . , xn),
we denote them as {xi}i∈[n] and (xi)i∈[n], respectively, for brevity. A function f(n) is considered
negligible in n, denoted by f(n) ≤ negl(n), if for every positive integer c, there exists an n0 such
that for all n > n0, f(n) < n−c. Conversely, a non-negligible function satisfies f(n) > negl(n).
For a set X, the notation x ←$ X signifies sampling x uniformly from X. Given a distribution X,
x← X denotes sampling x from X. For a probabilistic algorithm A, A(x1, x2, . . . ; r) represents the
result of running A with inputs x1, x2, . . . and random coins r. We use y ← A(x1, x2, . . . ) to denote
randomly choosing r and computing A(x1, x2, . . . ; r) to obtain the output y. We assume that every
protocol instance is assigned a unique identifier sid, and the identifier of an instance serves as
the prefix for the identifiers of its subroutines. The concatenation of sid and sid0 is denoted as
⟨sid, sid0⟩, where sid is a prefix of this concatenated identifier.

Network and Adversary Models. We consider an asynchronous network where nodes are pair-
wise connected via authenticated channels, and we assume the identities of all participating nodes
are publicly known. The adversary cannot omit, change, or inject messages sent by honest nodes.

7 We note that our compiler, apart from the weak common coin instance, does not require any setup or cryptographic
operations. We expect it to be useful in hash-only settings or information-theoretical settings.
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However, the adversary can reorder the messages and arbitrarily delay them, though it cannot de-
lay them indefinitely. We focus on optimal resilience, meaning that the total number of corrupted
nodes is at most f ≤ ⌈n3 ⌉ − 1.

We consider the adaptive adversaries which can adaptively corrupt nodes at any time during
the protocol execution. Once a node is corrupted, the adversary gains access to its local state and
controls its subsequent behavior. During execution, the nodes that have remained honest up to a
given point are referred to as so-far-honest nodes, while those that remain honest until the end
of execution are called forever-honest nodes. For simplicity, when we refer to honest nodes in this
paper, we mean forever-honest nodes. In particular, an adaptive adversary can perform “after-fact-
removal” attacks [1,68], i.e., corrupt a node and remove all messages the node just sent before they
are delivered.

Silent Setup. Following [44,45], we consider a setup phase to be silent if the setup can be performed
with the help of a public bulletin board, to which each participant has only one-time writing access
(and unbounded reading access). It is easy to observe that the conventional PKI setup and common
reference string (CRS) setup fall into this category. In this work, we consider a slightly more general
setup phase that includes both the PKI and CRS setups and can be described by the following
three algorithms:

• CRS(1λ, n, t)→ crs. On input the security parameter λ, the number of participants n, and the
threshold number t, it generates a common reference string crs. This algorithm can be run by
a trusted entity, and crs is published on the bulletin board and made available to everyone.

• KeyGen(crs, i) → ((pki, hinti), ski). A user Pi locally runs the algorithm to generate its own
key pair (pki, ski) along with a hint information hinti. While ski is kept private, (pki, hinti) is
published on the bulletin board. Notably, (pki, hinti) can be viewed as an extended public key
of Pi.

• GroupPKGen(crs, (pk1, hint1), . . . , (pkn, hintn)) → pk. This is a deterministic algorithm such
that every participant can read the public keys ((pk1, hint1), . . . , (pkn, hintn)) and compute the
same group public key pk.

For notational simplicity, we denote the above process as

SilSetup(1λ, n, t)→ (crs, pk, (pki)i∈[n], (ski)i∈[n]).

Furthermore, an adversary A is allowed to corrupt some participants during the setup phase (after
seeing the CRS) and generate keys on behalf of the corrupted parties (after seeing the public keys
of uncorrupted parties). We denote an execution of SilSetup involving A as

SilSetupA(1λ, n, t)→ (crs, pk, (pki)i∈[n]; stateA; (ski)i∈[n]\Cinit),

where Cinit ⊂ [n] is the set of initially corrupted parties’ identities, and stateA is the state of A after
the setup.

Remark 1. As discussed in [44], a silent setup does not enable the participants to run a DKG during
the setup phase. In particular, even for the non-interactive DKG protocols [50,58], the parties need
to write to the bulletin board twice. First, they must post their public keys to the bulletin board.
Then, based on the public keys of all other nodes, they generate transcripts, which also need to
be posted to the bulletin board. In contrast, a silent setup allows only one-time writing access to
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the bulletin board, which enables the nodes to join the system “asynchronously”: when each node
arrives, they only need to read the CRS and post their public key; the participants do not need to
coordinate with each other to complete the setup.

Remark 2 (Registered PKI Setup with a Key Curator). Looking ahead, our coin construction
requires each node to generate O(λn)-sized hint information. If all honest nodes read all hints and
run GroupPKGen locally, the setup incurs O(λn3) communication cost. This cost can be reduced
to O(λn2) under a registered PKI setup with a key curator [43], which collects (pki, hinti) from
participants, runs GroupPKGen locally, and returns (pk, (pki)i∈[n]) to all participants.

We note that key curators have been extensively studied in registration-based encryption [43],
representing a strictly weaker setup assumption than a trusted key generator which is needed by
identity-based encryption [17] and the unique threshold signature schemes. A key curator is fully
transparent, holds no secret information, and performs only deterministic tasks.

Design Goal: Common Coin. We aim at designing a silent-setup common coin protocol with
optimal resilience and optimal communication. Specifically, a common coin protocol provides a
random source observable by all participants but unpredictable by an adversary [20], which can be
formally defined as follows.

Definition 1 (Common Coin). Let Π be a protocol involving n participants in which each Pi

does not have an input and will be instructed to output a value vi ∈ V . We say Π is an (n, f, φ)
common coin protocol for φ ∈ (0, 1], if, in any instance of Π, and for any PPT adversary A which
can corrupt up to f parties, the following properties are ensured:

• Termination: When all honest nodes are activated in this instance, except with negligible
probability, every honest party Pi eventually outputs a value ri ∈ V .

• φ-Fairness: With a probability of at least φ−negl(λ), the protocol has a fair outcome, satisfying:

– Agreement: There is a value v ∈ V such that vi = v for any i ∈ H, where {Pi}i∈H is the set
of honest parties.

– Unpredictability and bias-resistance: Let StatebeforeA denote the internal state of A before
n−f−|C| so-far-honest nodes participate in the protocol, where |C| is the number of corrupted
parties. For any PPT distinguisher D and u←$ V ,∣∣Pr[D(StatebeforeA , v) = 1]− Pr[D(StatebeforeA , u) = 1]

∣∣ ≤ negl(λ).

Remark 3. When φ = 1, the above definition captures the multivalued version of the crypto-
graphic strong common coin [20], which ensures termination, agreement, unpredictability, and
bias-resistance except with negligible probability. When φ < 1, this definition can be seen as a
multivalued and cryptographically secure version of the weak common coin by Feldman and Mi-
cali [35], and it can trivially imply a protocol satisfying their definition, as we show in Lemma 14
in Appendix B.1.

3.1 Other Cryptographic and Consensus Tools

Non-interactive (Zero-Knowledge) Argument An argument system Φ for an NP relation R
can be described by the following three algorithms.
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• Setup(1λ) generates a common reference string crs.
• Prove(crs, x, w) on inputs a statement x and its witness w such that (x,w) ∈ R, produces a
proof π.

• Vrfy(crs, x, π) validates the proof π for x.

We consider the following properties of an argument system Φ.

• Completeness. Φ is complete, if for any (x,w) ∈ R, crs← Setup(1λ), it holds that

Pr[Vrfy(crs, x,Prove(crs, x, w)) = 1] = 1

.
• Knowledge Soundness. Φ is knowledge-sound, if for any PPT adversary A, there is an PPT
algorithm EA, such that

Pr

[
crs← Setup(1λ), (x, π)← A(crs), w ← EA(x, π) :

Vrfy(crs, x, π) = 1 ∧ (x,w) /∈ R

]
≤ negl(λ).

• Zero Knowledge. Φ is zero-knoweldge, if there is a pair of simulator algorithms {SimSetup,SimProve},
and for any PPT adversary A, it holds that∣∣∣∣∣|Pr

[
crs← Setup(1λ) :

1← AO0(·)(crs)

]
− Pr

[
(crs, tk)← SimSetup(1λ) :

1← AO1(·)(crs)

]∣∣∣∣∣ ≤ negl(λ),

whereO0 on input (x,w) ∈ R returns π ← Prove(crs, x, w), andO1 returns π ← SimProve(crs, tk, x).
• Simulation Extractability. Φ is simulation extractable if, in addition to the zero-knowledge sim-
ulation algorithm, {SimSetup, SimProve}, there is a PPT extractor algorithm SimExt, such that,
for any PPT adversary A, the following equation holds, where O returns SimProve(crs, tk, x),
and HistO records all x queried to O.

Pr

[
(crs, tk)← SimSetup(1λ), (x, π)← AO(·)(crs) s.t.x /∈ HistO1

w ← SimExt(crs, tk, x, π) : Vrfy(crs, x, π) = 1 ∧ (x,w) /∈ R

]
≤ negl(λ).

In addition, Φ is succinct if the proof size, i.e., |π|, is at most logarithmic in |w| (the witness size).
In this paper, we consider the following two types of non-interactive argument systems with

different combinations of properties.

• NIZK: Satisfy the completeness, the zero-knowledge property, and the simulation extractability.
Due to technical reasons, which will become clear when demonstrating our coin protocol, we
require NIZK in the standard model, which admits various standard instantiations, such as
Groth-Sahai [51] (plus generic compiler for simulation extractability [62]), that work for a wide
range of relations and even all NP relations.

• SNARK: Satisfy the completeness, knowledge soundness, and the succinctness. In particular,
there are SNARK schemes, such as Groth-16 [49] and [41], that enjoy constant proof size and
work for all NP relations.

Multi-valued Byzantine Agreement (MBA). In an (n, t, ℓ)-MBA protocol, there are n parties
P1, . . . , Pn, each Pi having an ℓ-bit initial input vi. Against any adversary A that corrupts up to t
parties, a secure MBA ensures the following properties:

12



• Validity. If all honest parties share the same input v, they all eventually output v.
• Agreement. If an honest party Pi outputs v, then all honest party eventually outputs v.
• Termination. All honest parties eventually produce an output message.

Multi-valued Validated Byzantine Agreement (MVBA). In an (n, t, ℓ)-MVBA protocol
with a predicate Predicate : {0, 1}ℓ → {0, 1}, there are n parties P1, . . . , Pn, each Pi having an ℓ-bit
initial input vi. Against any adversary A that corrupts up to t parties, a secure MVBA ensures the
following properties:

• External Validity. If an honest party outputs v, then it must be that Predicate(v) = 1.
• Agreement. If an honest party Pi outputs v, then all honest party eventually outputs v.
• Termination. If at least n− f honest nodes are activated in the instance, and the input vi of
each Pi is valid, i.e., Predicate(vi) = 1, then all honest nodes eventually output a value.

Provable Broadcast. In an instance of a provable broadcast (PB) protocol, there is a desig-
nated party, the sender, who has an input message v to be delivered to the network. When v is
“successfully” delivered, the sender can obtain a proof ρ, which can be verified by an algorithm
PB[sid].Vrfy, where sid is the session ID of the instance. In addition, an external predicate Predicate
on the message may be considered, such that only messages satisfying this predicate shall be de-
livered. Following Abraham et al. [4], an (n, f)-PB protocol shall satisfy the following properties
except with a negligible probability, for any session ID sid, and any PPT adversary controlling up
to f nodes.

• Integreity. An honest node delivers at most one message.
• External Validity. If an honest node delivers v′, then Predicate(v′) = 1.
• Abandon-ability. An honest node can call a function Abandon(sid) of the instance, such that
this node will not deliver any message for this instance.

• Termination. If the sender is honest, and the input v satisfies Predicate(v) = 1, then any
honest party eventually delivers v for this instance if it does not call Abandon(sid). In addi-
tion, if no honest party called Abandon(sid), then the sender can obtain a proof ρ, such that
PB.Vrfy[sid](v, ρ) = 1.

• Provability. For any two pairs (v, ρ) and (v′, ρ′), if PB[sid].Vrfy(v′, ρ′) = PB[sid].Vrfy(v, ρ) = 1
it follows that v′ = v. In addition, if a (potentially corrupted) sender can output a valid proof
ρ for v, then at least f + 1 forever-honest nodes delivered v in this instance.

Instantiation. There is a simple construction based on threshold signature [20] to realize PB with
O(n(ℓ+ λ)) communication complexity and 2 rounds. In particular, the sender first multicasts the
message v to all recipients. Upon receiving a message v from the sender, a recipient will deliver the
message and return a partial signature on v to the sender if the message satisfies the predicate. After
receiving 2f + 1 partial signatures, the sender can aggregate them into a constant-size threshold
signature, which is the delivery proof ρ for v. We detail this construction in Algorithm 5 in Appendix
B.2. Note that the threshold signature can be realized using a silent setup threshold signature (STS)
scheme, for example, [26]. We recall the formal definition of STS in Appendix.B.3.

4 Our Tools

In this section, we introduce a few new tools for our common coin protocols. In particular, in
Sect.4.1, we present our core cryptographic tool, which is a variant of the silent threshold encryption
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(STE) from [45] but with stronger security guarantees that are necessary for our coin protocols. In
Sect.4.2, we introduce a simple framework for analyzing specific compositions.

4.1 Silent Threshold Encryption with Tag-homomorphism.

A threshold encryption scheme allows a group of nodes to jointly decrypt a ciphertext under their
group public key, while an adversary controlling up to a threshold number of nodes cannot break
the secrecy guarantee. It is called a silent threshold encryption scheme if its setup phase is silent (as
in Remark 1). In addition, we consider tag-homomorphism, which means the encryption algorithm
takes an extra input tag, and ciphertexts under the same public key and the same tag can be
homomorphically evaluated.

Syntax. Formally, an (n, t) silent threshold tag-homomorphic encryption (STHE) scheme consists
of the following algorithms:

• SilSetup(1λ, n, t)→ (crs, ek, (eki)i∈[n], (dki)i∈[n]). This is the silent setup phase of STHE. Here,
ek and dk denote the public encryption key and the secret decryption key, respectively. crs is
the implicit input to all the following algorithms.

• Enc(ek, tag,m) Encrypts the plaintext m under ek and tag, producing a ciphertext c. In par-
ticular, we assume the plaintext spaceM is a commutative group with an operation ⊕.

• Eval(ek, tag, {ci}i∈S) On input a set of ciphertexts under the same encryption key ek and tag,
outputs a ciphertext c∗.

• PartDec(ek, tag, dki) Generates a partial decryption key ζi for ciphertexts under ek and tag.
• PartVrfy(ek, tag, eki, ζi) Verifies whether ζi is a partial decryption key generated by node i.
• DkAgg(ek, tag, {ζi}i∈S) Aggregates a set of valid partial decryption keys into a decryption key
dktag for tag.

• Dec(ek, tag, c, dktag) Decrypts a ciphertext c using the decryption key dktag.

Remark 4. Compared with the syntax STE established in [45], the STHE introduced above includes
the notion of a tag, which serves as an additional input to the encryption algorithm and enables
two essential features: (1) Tag-homomorphism, allowing ciphertexts encrypted under the same tag
to be homomorphically aggregated; (2) Tag-based decryption, enabling all participants to release a
decryption key for a specific tag to decrypt all ciphertexts under that tag.

Correctness. Let A be any PPT adversary corrupting up to t participants. Let {crs, ek, (eki)i∈[n]} ←
SilSetupA(1λ, n, t). The following properties hold:

• Partial Verification Correctness: For any tag and i /∈ Cinit, it holds that

Pr[PartVrfy(ek, tag, eki,PartDec(ek, tag, dki))] = 1.

• Decryption Correctness: For any tag, m, and γ, such that c = Enc(ek, tag,m; γ), and for t+ 1
partial decryption keys {ζj}j∈S where PartVrfy(ek, tag, ekj , ζj) = 1, it holds that

Pr[Dec(ek, tag, c,DkAgg(ek, tag, {ζj}j∈S))] = m.

• Evaluation Correctness: For any {ci = Enc(ek, tag,mi; γi)}i∈S and c∗ ← Eval(ek, tag, {ci}i∈S),
there exists γ∗ such that

c∗ = Enc(ek, tag,
⊕
i∈S

mi; γ
∗).
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Semantic Security. At a high level, the semantic security captures that any PPT adversary cannot
learn any non-trivial information from a ciphertext as long as the adversary does not know enough
partial decryptions for the tag of the ciphertext. We further allow the adversary to see the partial
decryptions produced by honest participants for any specific tags, which captures the fact that the
decryption process for other tags will not undermine the secrecy of ciphertexts under the current
tag. In Fig.5, we use OPartD to formalize such an ability. In addition, for an adaptive adversary, we
consider a corruption oracle OCorr through which the adversary can obtain the secret key, as well as
the randomness previously used to generate the partial decryption keys; The adversary can decide
which participant to corrupt based on the query results of OPartD and the challenge oracle Ob.

Formally, we say an (n, t)-STHE scheme satisfies the adaptively semantic security if for any
PPT adversary A, it holds that, for every λ ∈ N and every tag∗ ∈ {0, 1}∗,

AdvaindA,tag∗(λ) = |Pr[aIND
A,tag∗

0 (1λ, n, t)]− Pr[aINDA,tag∗

1 (1λ, n, t)]| ≤ negl(λ). (1)

aINDA,tag∗

b (1λ, n, f)

C,Tags,State1, . . . , Staten ← ∅
(crs, ek, (eki)i∈[n]; stateA; (dki)i∈[n]\Cinit

)

← SilSetupA(1λ, n, t), C ← C ∪ Cinit
1← AOCorr(·),OPartD(·),Ob(·)(stateA)

OCorr(i)

if i ∈ [n] \ C ∧ |C| < t

C ← C ∪ {i}
return (dki, Statei)

OPartD(tag, i)

if tag ̸= tag∗ ∧ i /∈ C
Tags← Tags ∪ {tag}
γ ← RandPartD

ζi ← PartDec(ek, tag, dki; γ)

Statei ← Statei ∪ {(tag, i, γ, ζi)
return ζi}

Ob(m0,m1)

return cb ← Enc(ek, tag∗,mb)

Fig. 5. Security Game of STHE.

Instantiation. We show an instantiation of STHE in Appendix C, which is a variant of the silent
threshold encryption scheme in [45]. In summary, the ciphertext size and the partial decryption
size are both O(λ), independent of the number of participants n. While the CRS size and public
key size are O(λn), each node can obtain this information from the setup phase.

4.2 A Simple Framework for Analyzing Specific Composition

In this section, we introduce a framework to analyze the security of a protocol instance when it is
composed of certain other instances in a particular manner.

What might go wrong if not formally proving composition security? In most existing
works in the domain of asynchronous common coins or asynchronous consensus, the protocol secu-
rity is defined with a list of properties. A protocol usually has several components, each with a list
of properties as its security definition. These properties usually focus on a single instance, and the
components are proven to satisfy these properties in the single instance setting. When analyzing
the security of the final protocol, existing works usually show a reduction from certain properties
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of the final protocol to certain properties of certain components. However, there is a loophole in
such a security proof since the following question has not been addressed: Do the components still
satisfy the security properties when they are composed in the final protocol?

We show a concrete example of a protocol that satisfies all security properties in the stand-alone
setting becoming insecure when two instances of the same protocol run together. Our example is
an artificial modification of the asynchronous verifiable secret sharing (AVSS) protocol by Das et
al. [30]. Das et al.’s AVSS works as follows:

• The dealer samples a random polynomial f whose f(0) is the secret, sends every receiver Pi a
share f(i) and a polynomial commitment [57] com to f , along with some proof showing f(i) is
the corret evaluation w.r.t. the committed polynomial.

• Each receiver Pi, after verifying f(i) is an evaluation at i of the committed polynomial, signs
com, and returns the signature to the dealer.

• Then, the dealer, after collecting n − f valid signatures, will broadcast (via a RBC [18]) the
commitment com, all n−f signatures, and the remaining f(j) for all Pj which has not returned
the signature.

To show what might go wrong, let us focus on the following important property of AVSS.

• Completeness of AVSS : If an honest node terminates in the AVSS instance, then every honest
node can deliver a correct share.

Note that the AVSS scheme described above satisfies the completeness because the valid shares
are either available via the broadcast or the corresponding receivers have confirmed the delivery by
their signature.

Now, let us assume the underlying signature scheme is a one-time signature, which ensures
that an adversary cannot forge a signature of vki when only seeing one signature of Pi, while the
signature can be easily forged after seeing two signatures under vki. It is easy to see that the
protocol can still guarantee single-instance security. However, when two instances using the same
PKI setup run together, the adversary can forge the signature of honest nodes without sending
corresponding shares, which violates completeness.

Note that AVSS is fundamental to almost all asynchronous common coin protocols, and more
importantly, each common coin instance will invoke several AVSS instances. Therefore, a single-
instance-secure AVSS is not secure in the composition of coin protocols, which indicates the com-
position security for asynchronous coins and consensus deserves a more serious treatment.

Why not UC? On the other hand, a well-established path for ensuring composition security is
to prove each component is secure in the Universal Composable framework [21]. However, as our
construction leverages certain “non-UC” components, such as a succinct non-interactive argument
knowledge (SNARK) [49], it is unlikely to have a simple UC proof without heavy modeling. In ad-
dition, due to the nature of asynchronous protocols, where the messages from different components
cannot be scheduled at different times, the trivial composition theorems, like that for sequential
composition, cannot apply.

A simple case. Let Π[sid] and Π ′[sid′] be two protocol instances running together. Let A be an
adversary against this composition. Note that A can access information via two means: one is to
observe the communication transcripts, whether they are sent directly to the corrupted parties or
between two honest nodes; another is to corrupt an honest node so that all its internal states will
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be leaked to the adversary. In particular, if Π[sid] and Π ′[sid′] involve some common participants,
corrupting a common participant in one instance triggers corruption in the other instance.

We model the view of A in composition as a joint random variable VIEWA = (VIEWA,Π[sid],
VIEWA,Π′[sid′]), where VIEWA,Π[sid] (resp. VIEWA,Π′[sid]) consists the communication transcripts
and internal states available to A in Π (resp. Π ′). Then, we have the following facts.

Lemma 1. Π[sid] remains secure in the composition with Π ′[sid′], if for any A against the com-
position, there is an algorithm S whose complexity is polynomial in A’s complexity, such that at
any point of the execution, the distribution of VIEWA = (VIEWA,Π[sid],VIEWA,Π′[sid′]) is identical
to (VIEWA,Π[sid],S(VIEWA,Π[sid])).

Proof. Assume that there is an adversary A which can violate the certain security property of
Π[sid] in the composition. Then, we can turnA into a B, which violates the security ofΠ[sid] in the
stand-alone setting. B runs a copy of A in the following manner: it serves as a relay between A and
the instance Π[sid] (so VIEWA,Π[sid] is available to both A and B), and provides VIEWA,Π′[sid′] =
S(VIEWA,Π[sid]) to A. Since (VIEWA,Π[sid],VIEWA,Π′[sid′]) = (VIEWA,Π[sid],S(VIEWA,Π[sid])), A
can violate the security of Π[sid], so can B. ⊓⊔

The above lemma basically states the facts: if an instance Π ′[sid′] cannot give any “new” infor-
mation to an adversary against Π, then Π[sid] remains secure when it is composed with Π ′[sid′].
A typical example of such a composition is the composition of information-theoretical consensus
protocols, where the input and output of honest parties are all available to the adversary, and
honest nodes do not keep any secret internal states, which makes it trivial to generate the adver-
sary’s view. Indeed, Lindell et al. [64] showed that all information-theoretical Byzantine agreement
protocols are secure under concurrent composition.

Composition with signing oracles. There are scenarios in which the messages in one instance
cannot be generated using the view of another instance. For example, consider Π[sid] and Π ′[sid′]
that are using the same digital signature scheme under the same PKI setup to authenticate com-
munication. Then, due to the security of the digital signature scheme, it is infeasible to generate a
message sent by an honest node Pi in Π ′[sid′], given the view of the adversary in Π[sid].

The barrier can be overcome if a signing oracle w.r.t. Pi is available. Intuitively, if Π[sid]
remains secure when the adversary has access to the signing oracles of the honest participants,
then it remains secure in the composition with Π ′[sid′] whose communication transcripts can be
generated by the adversary with the access to the signing oracles. Of course, the signing oracles
cannot be unrestricted; Otherwise, A may leverage these oracles to forge messages in Π[sid], so
that Π[sid] cannot be secure against such an adversary. However, with unique identifiers sid and
sid′, we can force every message in Π[sid] and Π ′[sid′] to carry the corresponding identifer. Then,
Π[sid] remains secure, when A can access signing oracles that do not sign messages starting with
sid, while such signing oracles, are sufficient for helping to generate messages in Π ′[sid′]. Lindell
et al. cites LindellLR06 have shown that a variety of authenticated Byzantine agreement instances
are secure under concurrent composition when each instance has a unique identifier.

General oracle-enhanced case. We consider a more general case, where A and S can access
oracles beyond the signing oracles. Formally, we consider a set of oracles O = {Oz}, where each
Oz takes input in the form of (sid, i, ·), where sid is an identifier of a protocol instance, and i is
the index of an uncorrupted node. There is a general restriction that an adversary attacking an
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instance with sid can only query Oz with (sid′, i, ·) s.t. sid′ ̸= sid. In addition, notice that an
adaptive adversary may corrupt a party Pi during the protocol execution so that all internal states
of Pi used to generate the previous messages must be leaked to A as well. To capture this, we
consider that, O, by default, includes a special corruption oracle OCorr, that is, when an adversary
A corrupts Pi, the query i to OCorr is automatically triggered, such that OCorr returns all internal
secrets and randomness of all Oz that have been used to responde the queries in the form of (·, i, ·).

Furthermore, notice that there might be some information from an instanceΠ ′[sid′] that cannot
be captured by oracles, for example, the inputs to Π ′[sid′]. Therefore, we also consider an auxiliary
string Aux, which is available to both the adversary against Π[sid] and the simulator algorithm S.
Formally, we can extend Lemma 1 to the oracle-enhanced case.

Lemma 2. Let Π[sid] and Π ′[sid′] be two protocol instances running together. Let Aux be an
auxiliary string. Π[sid] remains secure in the composition with Π ′[sid′], if Π[sid] remains secure
in the stand-alone setting even when the adversary has access to oracles in O and Aux, and for any
A against the composition, there is an algorithm S whose complexity is polynomial in A’s complexity
and which has access to oracles in O and Aux, such that at any point of the execution, the distribution
of VIEWA = (VIEWA,Π[sid],VIEWA,Π′[sid′]) is identical to (VIEWA,Π[sid],SAux,O(VIEWA,Π[sid])).

Proof. The proof is similar to the proof for Lemma 1. Assume that there is an adversary A which
can violate the certain security property of Π[sid] in the composition. Then, we can turn A into
a BO which violates the security of Π[sid] in the stand-alone setting. B runs a copy of A in
the following manner: it serves as a relay between A and the instance Π[sid] (so VIEWA,Π[sid]

is available to both A and B), and provides VIEWA,Π′[sid′] = SO(Aux,VIEWA,Π[sid]) to A. Since
(VIEWA,Π[sid],VIEWA,Π′[sid′]) = (VIEWA,Π[sid],SO(Aux,VIEWA,Π[sid])), A can violate the security

of Π[sid], so can BO. ⊓⊔

Oracle-emulatable protocols. Note that in Lemma 2, we show that a protocol instance Π[sid] is
secure in the composition with a protocol instance Π ′[sid′], if Π[sid] is secure when O is available
to A, and Π ′[sid′] can be “emulated” using oracles in O and the view of A in Π[sid]. However,
whether Π ′[sid′] can be “emulated” using O and the view of A in Π[sid] needs to be checked
w.r.t. Π[sid]. Instead, we would like to have more general results regarding the “emulatability”
of Π ′[sid′], independent of which Π[sid] will be composed with. In the following, we define O-
emulatable instances. In particular, we would like to cover the case that under the same setup,
there are multiple instances of the same protocol, which will be helpful in arguing the composition
security for the instances using the same setup.

Definition 2 (O-emulatable protocol). Let Π.Setup[sid] be an instance of the setup phase
of protocol Π, and let Π[⟨sid, sid0⟩] be an instance under the setup of Π.Setup[sid]. We say
Π[⟨sid, sid0⟩] is O-emulatable under Π.Setup[sid], if for an arbitrary protocol instance Π ′[sid′]
running in an arbitary composition with Align.Setup[sid] and Align, and any PPT adversary A
against the composition, there exists a PPT algorithm S which can query the oracles in O with
messages starting with sid, such that the view of A in the composition, which consists of

(VIEWA,Π′[sid′],VIEWA,Π.Setup[sid],VIEWA,Π[⟨sid,sid0⟩]),

distributes identically with

(VIEWA,Π′[sid′],VIEWA,Π.Setup,SO({vi}i∈H,VIEWA,Π′[sid′],VIEWA,Π.Setup)).
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If removing Π.Setup[sid] from above definition, then Π[⟨sid, sid0⟩] is O-emulatable.

How we analyze the composition security for components in this paper.We use the frame-
work established above to ensure the composition security of components in this paper. Specifically,
we additionally prove two facts about every component. First, this component remains secure even
given a set of oracles to the adversary. Second, all information an adversary can learn from an in-
stance of the component can be emulated using a set of oracles. Therefore, when arguing whether a
component A is secure in a composition, we only need to check whether the rest of the composition
can be emulated using the set of oracles with which the component A remains secure.

As most of the composition analysis for components in this paper is easy to follow and more
like a sanity check, we defer all composition analyses to a dedicated section in the Appendix. D.

5 Asynchronous Subset Alignment

One of the main tools in our design of communication-efficient asynchronous coin protocol is a new
primitive termed Asynchronous Subset Alignment (Align). It can be seen as a (strictly) weaker form
of the well-studied Gather problem [3, 27] or the Weak Core Set problem [42], while it is actually
sufficient for weak coin constructions as we will soon demonstrate in the next section.

5.1 Definition

Following the intuition discussed in Sect.2, we formally define the primitive as follows. We discuss
why each property is needed in remarks after the definition.

Syntax. Let Π be a protocol involving n participants in which each Pi has an input vi and will be
instructed to output a set OSeti which either is empty or consists of tuples in the form of (j, vj , θj).
We say Π is an (n, f)-secure Align with a predicate function Predicate : {0, 1}∗ → {0, 1}, if it is
equipped with an algorithm Align.Vrfy : (sid, j, vj , θj)→ {0, 1}, such that in any instance Π[sid],
and for any PPT adversary A which can corrupt up to f nodes, the termination, external validity,
and f + 1-alignment properties are ensured.

For facilitating a formal definition, we use the following variables: (1) Hfirst ⊂ [n], so that
{Pi}i∈Hfirst is the set of all so-far-honest nodes at the time the first honest Pi outputted; (2)
Hend ⊂ [n], so that {Pi}i∈Hend is the set of all forever-honest nodes; (3) StateendA , which is the state
of A at the time all honest nodes have outputted in the instance; (4) Statefirsti , which is the state
of Pi at the time that the first honest node generated an output. With these notions, we define the
properties as follows.

• Termination. When every honest participant Pi is activated on sid with a valid input vi such
that Predicate(vi) = 1, except with a negligible probability, every honest participant Pi eventu-
ally outputs a set OSeti which is either ∅ or in the form of {(j, vj , θj)}j∈Si for some Si ⊂ [n].

• External Validity. When an honest node Pi outputs a non-empty OSeti = {(j, vj , θj)}j∈Si , it
satisfies that for all j ∈ Si, Align.Vrfy(sid, j, vj , θj) = 1 and Predicate(vj) = 1.

• (f + 1)-Alignment. There is a polynomial-time algorithm CSGen, which on the input of
{Statefirsti }i∈Hfirst

, outputs a set CoverSet = {(j, vj)}j∈Ic so that n − f ≤ |CoverSet| = |Ic| ≤ n,
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and a subset WS = {(j, vj)}j∈Is ⊂ CoverSet s.t. |Is| = n−f . For any PPT algorithm A′, it holds
that
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CSGen({Statefirsti }i∈Hfirst)→ (CoverSet,WS)

A′(StateendA , {OSeti}i∈Hend
)→ (j′, v′, θ′) :∃(j, vj) ∈WS, s.t.

∑
i∈Hend

isCovered(OSeti, (j, vj)) < f + 1


∨

(Align.Vrfy(sid, j′, v′, θ′) = 1 ∧ (j′, v′) /∈ CoverSet)


≤ negl(λ),

where isCovered(OSeti, (j, vj)) = 1, if and only if there exists some θj s.t. (j, vj , θj) ∈ OSeti.

Remark 5. By properly defining Predicate, the external validity ensures the outputs in Align are
“meaningful” to its application scenarios. Looking ahead, in our weak common coin protocol, we
expect Align to return sets of valid aggregated ciphertexts. Without this property, each node may
return a set of invalid ciphertexts that cannot be decrypted at all, which is useless for our application
even if the other properties are all ensured.

Remark 6. The (f +1)-alignment captures that although the output sets OSeti’s of different nodes
can be different, all of them are “well-aligned” according to certain constraints which are determined
when the first honest generated its output set. In particular:

• There is a (n − f)-sized well-covered subset WS of CoverSet, such that for every (j, vj) in the
subset, it must be contained in the output set of at least f + 1 forever honest nodes.

• There is binding cover CoverSet determined at the time the first honest node generated its
output, such that all valid values w.r.t. Align.Vrfy have been contained in it. It implies the
output set OSetj of any honest Pj is a subset of CoverSet.

Remark 7. The existence of both the well-covered subset WS and the binding cover set CoverSet is
fundamental to our weak common coin protocol.

As we sketched in Sect.2, in our weak common coin protocol, after Align, there will be a ranking
phase to rank all values in the output set of Align, and it is important to ensure that there is a
constant probability that all nodes can decide on the highest-ranked value. So, intuitively, as WS
has n − f values, and CoverSet has at most n values, there is a good probability that WS has
the value with the highest rank. So, f + 1 honest nodes will immediately decide on this value. As
ensured by CoverSet, the adversary cannot inject new values with a valid proof w.r.t. Align.Vrfy, so
all honest nodes can decide on the highest-ranked value with the help of the f + 1 honest nodes.

It is also important to ensure that both CoverSet and WS must be determined at the time that
the first honest node generates an output. This is because when an honest node finishes Align, it may
start to assist in ranking the values (in our weak common coin, it helps decrypt all ciphertexts). If
CoverSet and WS have not been decided at that point, A may, according to the ranking information,
maliciously delay messages so that the highest-ranked value will never be contained in WS.

5.2 Our Construction

Intuition. There is an implicit requirement from the (f + 1)-alignment property that for every
node j, there is at most one value vj such that (j, vj) has a valid proof with respect to Align.Vrfy. A
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natural idea is to use provable broadcast (PB) [4,20] to ensure this property. We recall the definition
of PB in Sect. 3.1 and provide a threshold-signature-based construction in Appendix B.2. At a high
level, a sender broadcasts its message v to the network, and it is ensured that for each instance,
the sender can obtain a delivery proof for at most one value v, perfectly aligning with this security
requirement. Additionally, the existence of a proof for a value v indicates that at least f +1 honest
nodes have delivered v in PB.

In the following, we start with a simple PB-based protocol, analyze where it fails, and gradually
strengthen it to satisfy all properties of Align.

First, assume that each node broadcasts its input value to the network via PB. After obtaining
a delivery proof for its input, it multicasts the proof. A node can terminate when receiving n − f
valid proofs. However, although the value provided by each node will be unique, there will be no
well-covered set that can be determined at the time the first honest node outputs.

Next, consider a solution with two consecutive PB instances. Specifically, after obtaining a proof
for the first PB instance, a sender invokes the second PB to broadcast both the proof ρ1 and the
input value v. Receivers deliver this message only when ρ1 is a valid proof for v with respect to
the first PB instance. Then, after receiving the proof ρ2 for the second PB, the sender multicasts
the value v along (ρ1, ρ2) to the network. Note that a proof ρ2 for v with respect to the second
PB instance means that at least f + 1 honest nodes have delivered the value v in the second PB
instance. Meanwhile, in the second PB instance with sender Pj , the values delivered by all honest
nodes must be the same value v, since v has the delivery proof for the first PB instance with Pj .
Thus, if each honest node outputs values delivered in the “second” PB instances upon seeing n− f
values with proofs for the “second” PB instances, the existence of a well-covered set is guaranteed.
Specifically, the n−f values with delivery proofs of the “second” PB instances must be well-covered,
and Align.Vrfy verifies if the values contain the corresponding proofs for PB.

However, there are still security issues regarding the binding cover property (part of (f + 1)-
alignment). So far, we cannot decide all values with PB proofs at the moment that the first honest
node outputs. Even if the node that outputs stops responding to the PB instances (or “abandons”
the PB instances), there are still enough nodes in the system to produce a PB proof. Therefore, we
add a few rounds of communication (called the “tail” phase) after the “second” PB. With the tail
phase, an honest node terminates when f +1 honest nodes have abandoned all PB instances while
ensuring that everyone can terminate even if many honest nodes have abandoned the PB instances.

Nonetheless, even with all these measures, we cannot guarantee that the size of the binding
cover is bounded by n. A corrupted node can send f +1 different values in the “first” PB instance
to f + 1 honest nodes before they abandon the PBs. When the first honest node outputs, the
corrupted node can still select any of those f + 1 values to finish the first PB, causing the selected
value to appear in some honest nodes’ output sets. Since there are up to f corrupted nodes, the
number of values that may appear in the output sets is f(f + 1), which exceeds n.

To address this issue, we introduce an extra PB instance to “fully lock” the input value to the
“first” PB. This PB instance is added before the “first” PB instance discussed above, resulting in
our protocol with n parallel chains of three consecutive PB instances. The execution flow of the
protocol is described in Fig. 6.

Construction. With a silent setup phase for enabling PB, we present the pseudocode of our Align
protocol in Algorithm 1. Our protocol works as follows:
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Fig. 6. Asynchronous Subset Alignment Align

• First PB: At Line 4-5, every honest node Pi broadcasts its input vi via the PB instance
PB[⟨sid, i, 1⟩], whose predicate is the external predicate of Align.

• Second PB: At Line 6-7, upon obtaining a proof ρi,1 w.r.t PB[⟨sid, i, 1⟩], Pi broadcasts (vi, ρi,1)
via PB[⟨sid, i, 2⟩], whose predicate is that ρi,1 should be a valid delivery proof for vi w.r.t.
PB[⟨sid, i, 1⟩]. In addition, at Line 12-13, when Pi delivers (vj , ρj,1) in PB[⟨sid, j, 2⟩], it adds
(j, vj) to Locki.

• Thrid PB: At Line 8-9, upon obtaining a proof ρi,2 w.r.t PB[⟨sid, i, 2⟩], Pi broadcasts (vi, ρi,1, ρi,2)
via PB[⟨sid, i, 3⟩], whose predicate is that ρi,2 should be a valid delivery proof for (vi, ρi,1) w.r.t.
PB[⟨sid, i, 2⟩]. In addition, at Line 14-15, when Pi delivers (vj , ρj,1, ρj,2) in PB[⟨sid, j, 3⟩], it adds
(j, vj , ρj,1, ρj,2) to OSeti.

• Tail Phase: At line 10-11, upon obtaining a proof ρi,3 w.r.t PB[⟨sid, i, 3⟩], Pi multicasts (sid,
Covered, vi, ρi,1, ρi,2, ρi,3). At line 16-20, after receiving valid Covered messages from at least
n− f distinct nodes, Pi multicasts (sid,Enough-Covered). Otherwise, it will multicast this
message when it receives (sid,Enough-Covered) from at least f + 1 distinct nodes.

• Abandon: An honest Pi abandons all PB instances after receiving (sid,Enough-Covered)
from at least n − f distinct nodes. In the meanwhile, (sid,Finished) is multicasted to the
network.

• Output: Finally, upon receiving the Finished messages from n − f distinct nodes, Pi outputs
OSeti.
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Algorithm 1 The Align protocol with identifier sid and Predicate for Pi

1: Lockedi,OSeti,Coveredi ← ∅
2: for j = 1 to n do
3: Initialize PB[⟨sid, j,Num⟩] with the predicate PredNum, for Num = 1, 2, 3

4: upon activated with input vi s.t. Predicate(vi) = 1 do
5: Invoke PB[⟨sid, i, 1⟩] as the sender with input vi.
6: wait until PB[⟨sid, i, 1⟩] returns ρi,1
7: Invoke PB[⟨sid, i, 2⟩] as the sender with input (vi, ρi,1)
8: wait until PB[⟨sid, i, 2⟩] returns ρi,2
9: Invoke PB[⟨sid, i, 3⟩] as the sender with input (vi, ρi,1, ρi,2)
10: wait until PB[⟨sid, i, 3⟩] returns ρi,3
11: Multicast (sid,Covered, vi, ρi,1, ρi,2, ρi,3)

12: upon PB[⟨sid, j, 2⟩] delivers (vj , ρj,1) do
13: Lockedi ← Lockedi ∪ {(j, vj)}

14: upon PB[⟨sid, j, 3⟩] delivers (vj , ρj,1, ρj,2) do
15: θj ← (ρj,1, ρj,2), OSeti ← OSeti ∪ {(j, vj , θj)}

16: upon receiving (sid,Covered, vj , ρj,1, ρj,2, ρj,3) from Pj for the first time do
17: if PB[⟨sid, j, 3⟩].Vrfy((vj , ρj,1, ρj,2), ρj,3) = 1 then
18: Coveredi ← Coveredi ∪ {(j, vj)}
19: if |Coveredi| = n− f and the Enough-Covered has not been sent then
20: Multicast (sid,Enough-Covered)

21: upon receiving (sid,Enough-Covered) from at least f+1 distinct nodes and Pi has not sent Enough-Covered
do

22: Multicast (sid,Enough-Covered)

23: upon receiving (sid,Enough-Covered) from at least n− f distinct nodes do
24: for j = 1 to n do
25: Call PB.Abandon(⟨sid, j,Num⟩), for Num = 1, 2, 3.

26: Multicast (sid,Finished)

27: upon receiving (sid,Finished) from at least n− f distinct nodes do
28: return OSeti
29:

Algorithm Align.Vrfy(sid, j, vj , θj)
30: Parse θj → (ρj,1, ρj,2), and return PB[⟨sid, j, 2⟩]((vj , ρj,1), ρj,2)
31:

Predicate PredNum

32: Pred1(v) = 1 iff Predicate(v) = 1
33: Pred2(j, vj , ρj,1) = 1 iff PB[⟨sid, j, 1⟩].Vrfy(vj , ρj,1) = 1
34: Pred3(j, vj , ρj,1, ρj,2) = 1 iff PB[⟨sid, j, 2⟩].Vrfy((vj , ρj,1), ρj,2) = 1
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Efficiency analysis. Note that a PB instance incurs O(n(ℓ + λ))-bit communication cost and
2 rounds when broadcasting ℓ bits. And its proof size is O(λ). Since our protocol involves three
consecutive PB instances and three additional rounds after PB, it requires 9 rounds to terminate.
It is easy to verify the communication complexity is O(n2(ℓ+ λ)).

Instantiation and assumptions. The Align protocol is built upon a PB protocol, for which we
sketched an instantiation in Appendix.B.2 based on a silent threshold signature scheme [26]. The
silent threshold signature scheme is proven to be secure under the q-SDH assumption [16, 57] and
the co-CDH assumption in the algebraic group model (AGM) and the random oracle model. Thus,
our Align protocol inherites the assumptions needed by the silent threshld signature scheme [26].

Security analysis. We establish the security of our Align protocol in the following theorem.

Theorem 1 (Align). Assuming the security of the underlying PB, the Align protocol in Algorithm
1 ensures the properties of the termination, external validity, and f + 1-alignment.

We proceed with the proof by analyzing the properties in the following lemmas.

Lemma 3 (Align termination). Our Align protocol ensures termination, i.e., every honest node
Pi can eventually terminate with a set OSeti, which can be empty.

Proof. We show that every honest node Pi can proceed with the instruction of returning OSeti (line
28). Note that if an honest node Pj called PB.Abandon (line 25), then it must have received the
Enough-Covered message from at least n−f nodes, while at least f+1 among them are forever-
honest. Therefore, every honest node can receive at least f + 1 Enough-Covered messages. Fol-
lowing the instruction at line 21, all honest nodes will eventually multicast the Enough-Covered
message. Hence, all honest nodes will multicast the Finished message (line 26), which grants the
execution of the instruction at line 28. It leaves us to discuss whether there exists an honest node
that can receive n− f Enough-Covered messages, and we prove this by showing contradictions.
In particular, if no honest node saw n−f Enough-Covered messages, then no honest node called
PB.Abandon. Following the termination property of PB, all honest senders will eventually obtain
the broadcast proofs. It follows that all honest nodes can receive n− f “valid” Covered messages
and then broadcast the Enough-Covered messages, which grants that an honest node to observe
n− f Enough-Covered messages. ⊓⊔

Lemma 4 (Align External Validity). The protocol Align satisfies the external validity.

Proof. According to the protocol description, an honest node Pi will add a tuple (j, vj , θj) to the
set OSeti only when PB[⟨sid, j, 3⟩] delivers (vj , ρj,1, ρj,2). Ensured by the external validity of PB,
it follows that PB[⟨sid, j, 2⟩].Vrfy(vj , ρj,1, ρj2) = 1, which implies that at least f + 1 honest nodes
delivered (vj , ρj,1) in PB[⟨sid, j, 2⟩]. Following a similar arguement, at least f + 1 honest nodes
delivered vj in PB[⟨sid, j, 1⟩], which implies Predicate(vj) = 1. ⊓⊔

Lemma 5 (Align f + 1-Alignment). Our Align protocol satisfies the f + 1-alignment.

Proof. First, we describe the algorithm CSGen, which on input of {Statefirsti }i∈Hfirst
outputs a cover

CoverSet = {(j, vj)}j∈Ic and a well covered subset Is. In particular, let {Lockedj}j∈Hfirst
be the local
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Locked sets of so-far-honest nodes the time that the first honest nodes generated an output, which
are contained in {Statefirsti }i∈Hfirst

. CSGen will output

CoverSet =
⋃
j∈H

Lockedj = {(j, vj)}j∈Ic

Regarding the well-covered subset Iw, CSGen checks the {Coveredi}i∈Hfirst (also available in the
states), and finds any i′ such that |Coveredi′ | = n− f . It outputs WS = Coveredi′ .

Now we argue that CoverSet are well-formed. Namely, |CoverSet| = |Ic| ≤ n, which implies
that there are no (j, vj), (j, v

′
j) ∈ CoverSet such that vj ̸= v′j . Since each (z, vz) ∈ Lockedj , Pj

delivers (vz, ρz,1) in PB[⟨sid, z, 2⟩]. According the predicate Pred2 of PB[⟨sid, z, 2⟩], it holds that
PB[⟨sid, z, 1⟩].Vrfy(vz, ρz,1) = 1. Ensured by the provability of PB, if two honest parties deliver
(vz, ρz,1) and (v′z, ρ

′
z,1) in PB[⟨sid, z, 2⟩], respectively, it must follow vz = v′z. Therefore, |CoverSet| ≤

n.
Next, we show that if the adversaryA′ outputs some (j, vj , θj) such that Align.Vrfy(sid, j, vj , θj) =

1, (j, vj) must belong to CoverSet. Note that when Pi outputs, at least f + 1 forver-honest nodes
have multicasted the Finished message. According to line 23-25, these f + 1 nodes have called
PB.Abandon for all PB instances. On the other hand, if (j, vj) is not included in CoverSet, then no
honest party has delivered vj in PB[⟨sid, j, 2⟩]; In addition, there are f + 1 forever-honest nodes
who have abandoned all PB instances, then, according to the provability of PB, the sender cannot
obtain a proof ρj,2 for the value vj . Therefore, due to the absence of the proof, no tuple in the form
of (j, vj , ρj,1, ·) can be delivered in PB[⟨sid, j, 3⟩], so (j, vj) will not be included in OSeti of any
honest Pi.

Then, we argue that CSGen can always find some i′ ∈ Hfirst such that |Coveredi′ | = n− f , and
Coveredi′ is a subset of CoverSet. Note that an honest node Pi outputs OSeti when it has seen
n − f Finished messages, while at least f + 1 of them are sent by forever-honest nodes, which
implies at least f +1 forever honest nodes have seen n− f Enough-Covered messages. Then, at
least one honest Pi′ sent the Enough-Covered message because of |Coveredi′ | = n− f . For every
(j, vj) ∈ Coveredi′ , according to Line 17, there exists a proof showing it has been delivered by at
least f + 1 forever honest nodes in PB[⟨sid, j, 3⟩], and it follows that it was delivered by at least
f + 1 forever honest nodes in PB[⟨sid, j, 2⟩]. Therefore, according to Line 12-13, (j, vj) must been
included in at the Lockedi of at least f + 1 forever honest Pi’s, which makes (j, vj) ∈ CoverSet

Finally, we prove that for every j ∈ Is, (j, vj) must appear in the output set of at least f+1 forver
honest nodes. For every (z, vz) ∈ Coveredi′ , there exists a tuple (vz, ρz,1, ρz,2) that was delivered by
PB[⟨sid, z, 3⟩], such that PB[⟨sid, z, 2⟩].Vrfy((vz, ρz,1), ρz,2) = 1, Ensured by the provability of PB,
at least f + 1 forever-honest nodes have delivered (vz, ρz,1) in PB[⟨sid, z, 2⟩]. Therefore, (z, vz) is
included in at least f + 1 forever-honest nodes’ OSet. ⊓⊔

6 Communication-Optimal Asynchronous Weak Coin

Following the intuition from Sect.2, we present our asynchronous weak common coin protocol with
O(λn2) communication complexity and O(1) round complexity.

6.1 The Construction

Building blocks: Our scheme is built upon the following ingredients.
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STHE. An (n, f)-secure STHE scheme STHE = {STHE.SilSetup,STHE.Enc, STHE.Eval,
STHE.PartDec, STHE.PartVrfy, STHE.DkAgg,STHE.Dec}, introduced in Sect.4.1, is assumed in our
weak coin protocol. For notational convenience, we denote its message space and the randomness
space by Msgte and Randte, respectively.

Digital signature. A standard-model digtial signature scheme DS = {DS.KeyG,
DS.Sign,DS.Vrfy} is assumed. DS shall satisfy the conventional existential unforgeability under cho-
sen message attacks, which could have various instantiations, for example, the Boneh-Boyen signa-
ture [16].

Argument systems. We need a NIZK = {NIZK.Setup,NIZK.Prove,NIZK.Vrfy} for the following rela-
tion:

Renc := {((ek, tag, c, aux), (m, γ)) : c = STHE.Enc(ek, tag,m; γ)}, (2)

which demonstrates that a ciphertext c is well-formed under ek and tag.

We further need a SNARK = {SNARK.Setup,SNARK.Prove,SNARK.Vrfy} for the following re-
lation:

Ragg :={(n, f, (vki)i∈[n], ek, tag, crsenc, c∗), {(cij , πenc,ij , σij )}j∈[t+1] :

c∗ = STHE.Eval(ek, tag, {cij}j∈[f+1]), and ∀j ∈ [f + 1],DS.Vrfy(vkij ,

(tag, cij ), σij ) = 1 ∧ NIZK.Vrfy(crsenc, (ek, tag, cij , ij), πenc,ij ) = 1}.
(3)

SNARK is used to show a ciphertext c∗ is obtain by honestly aggregating f + 1 ciphertexts that
are signed by distinct users. As we introduced in Sect.3.1, NIZK shall satisfy the completeness,
simulation extractability, and zero-knowledge property, while SNARK ensures the completeness
and knowledge soundness and provides O(1)-sized proofs. In addition, as the verification algorithm
of NIZK is a part of the relation Ragg, we require NIZK to be secure in the standard model.

Align. Our weak coin protoocl uses our (n, f)-secure Align protocol as a subroutine. In particular,
the external predicate Predicate, is parameterized by (crsagg, n, f, (vki)i∈[n], ek, sid, crsenc), and
Predicate(c∗, π∗) = 1, iff

SNARK.Vrfy(crsagg, (n, f, (vki)i∈[n], ek, sid, crsenc, c
∗), π∗) = 1. (4)

Hash functions. We explicitly use two hash functions H1 : {0, 1}∗ → TO and H2 : {0, 1}∗ → V,
which will be modeled as random oracles in the security analysis. Here, TO is a totally ordered set
with space greater than 22λ, so that the probability of two independent sampling in TO yielding
the same value is negligibly small. V is the space of coin values.

The protocol description. With the ingredients introduced above, we present our weak common
coin protocol in Algorithm 2. It works under a silent setup, where (1) STHE.SilSetup has been
finished, so every Pi has the key pair (eki, dki), while (ek, (eki)i∈[n]) and the CRS crste are available
to everyone; (2) the CRS setups for both NIZK and SNARK have been done, so crsenc and crsagg
are publicly available; (3) the PKI setup for DS is finished, so that everyone has its own key pair
(vki, ski) and knows the public keys of others; (4) the silent setup needed by Align is also finalized.

At a high level, our protocol works as follows.

• Contribute a random ciphertext. At line 2-5, each user Pi encrypts a fresh chosen randomness
under ek and the session ID sid to a ciphertext ci, proves the well-formedness of ci, and signs
it. The ciphertext, ci, the proof πi, and the signature σi, are multicasted to the network.
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Algorithm 2 The asynchronous weak coin protocol WeakCoin with identifier sid for Pi

1: Initialize: Candidates, LocWins← ∅, and Align[⟨sid, ali⟩] instance.
2: upon activated with sid do
3: ri ←$ Msgte, γi ←$ Randte, ci ← STHE.Enc(ek, sid, ri; γi)
4: σi ← DS.Sign(ski, (sid, ci)) πi ← NIZK.Prove(crsenc, (ek, sid, ci, i), (ri, γi))
5: Multicast (sid,Fresh, ci, σi, πi)

6: upon receiving (sid,Fresh, cj , σj , πj) from node Pj for the first time do
7: if DS.Vrfy(vkj , (sid, cj), σj) = 1 ∧ NIZK.Vrfy(crsenc, (ek, sid, cj , j), πj) = 1 then
8: Fresh← Fresh ∪ {(j, cj , σj , πj)}
9: if |Fresh| = f + 1 and has not invoked Align[⟨sid, ali⟩] then
10: c∗i ← STHE.Eval(ek, sid, {cj}(j,... )∈Fresh) � Aggregate then prove
11: π∗

i ← SNARK.Prove(crsagg, (n, f, (vki)i∈[n], ek, sid, crsenc, c
∗),Fresh)

12: Invoke Align[⟨sid, ali⟩] with input (c∗i , π
∗
i )

13: upon Align[⟨sid, ali⟩] returns OSeti = {(z, c∗z, π∗
z , θ

∗
z)} do

14: Candidates← OSeti
15: if Candidates = ∅ then
16: Multicast (sid,LocalWin,⊥)
17: ζi ← STHE.PartDec(ek, sid, dki)
18: Multicast (sid,PartDec, ζi)

19: upon receiving (sid,PartDec, ζj) from Pj for the first time do
20: if STHE.PartVrfy(ek, sid, pkj , ζj) = 1 then
21: ParK← ParK ∪ {(j, ζj)}
22: if |ParK| = n− f and has not sent LocalWin messsage then
23: dksid ← STHE.DkAgg(ek, sid, {ζk}(k,)̇∈ParK) � decryption key

24: for (z, (c∗z, π
∗
z ), θz) ∈ Candidates do

25: r∗z ← STHE.Dec(ek, sid, dksid, c
∗
z), and toz ← H1(sid, z, r

∗
z)

26: Pick a such that toa = MAX({toa}(a,)̇∈Candidates).

27: Multicast (sid,LocalWin, (a, c∗a, π
∗
a, θa))

28: upon receiving (sid,LocalWin, (a, c∗a, π
∗
a, θa)) from Pj for the first time do

29: if (a, c∗a, π
∗
a, θa) =⊥ then LocWins← LocWins ∪ {(a,⊥)}

30: if Align.Vrfy(sid, a, (c∗a, π
∗
a), θa) = 1 then r∗a ← STHE.Dec(ek, sid, dksid, c

∗
a)

31: LocWins← LocWins ∪ {(a, r∗a, toa = H1(sid, a, r
∗
a))}

32: if |LocWins| = n− f then
33: Decide z such that toz = Max({toa})
34: Return H2(sid, z, r

∗
z), where H2 is a random oracle whose range is V .
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• Aggregate f + 1 signed ciphertext. At line 6-11, each user Pi collects f + 1 ciphertexts which
each has a well-formedness proof and a valid signature. Then, it aggregates those ciphertexts
to c∗i , and provides a proof π∗

i showing aggregation correctness. Note that any ciphertext c∗

with a valid proof is an aggregation of f +1 ciphertexts, which contains at least one ciphertext
contributed by the forever-honest node, so the encrypted value is unknown to the adversary
before the decryption starts.

• Reach a set of well-covered aggregated ciphertexts. At line 12, each honest Pi provides (c∗i , π
∗
i )

as input to Align, and it obtains a set Candidates = {(j, c∗j , π∗
j , θj)} at line 13-14, where θj is a

proof w.r.t. Align, showing (c∗j , π
∗
j ) is in the outcome of the Align.

• Decide the “winner” among local candidates. At lines 17-18, each honest Pi provides its partial
decryption key w.r.t. the tag sid, and then at lines 19-23, it obtains the full decryption key
for the tag sid. Then, at lines 24-25, Pi decrypts all ciphertexts in Candidates and then hashes
the plaintexts into a total order set. At lines 26-27, Pi picks the ciphertext c∗a whose decryption
result yields the largest hash value as the “local winner”, and then multicasts c∗a with its validity
proof in a LocalWin message. Note if Candidates is empty, Pi multicasts ⊥ as a placeholder
at lines 15-16.

• Decide the output. At lines 28-33, Pi collects n − f LocalWin messages and then applies
the same rule to decide the winner among all the ciphertexts carried by this textsc LocalWin
messages. Applying another random oracle to the decryption of the winner ciphertext, Pi obtains
the output value.

Efficiency Analysis. According to Algorithm 2, and as clearly shown in Fig.2, the protocol
WeakCoin has 3 more rounds besides Align which in turn has 9 rounds. Hence, WeakCoin requires
12 rounds. In addition, since the input size to Align is merely O(λ), the communication complexity
due to Align is O(λn2). Then, it is easy to verify the overall communication complexity is O(λn2).

Instantiation and Assumptions. The STHE scheme is developed in Appendix.C, which is secure
in the generic group model (GGM) and the random oracle model. The GGM and random oracle
model indeed have subsumed the assumptions needed for other components. Specifically, the Align
protocol requires the q-SDH assumption and the co-CDH assumption in the AGM, which can be
implied by GGM, according to [56]. We can instantiate the underlying digital signature scheme
with the Boneh-Boyen signature [16] and the SNARK with Groth16 [49], whose assumptions are all
subsumed by GGM. Regarding the NIZK, it is easy to see that Renc falls in the family of relations
supported by the Groth-Sahai proof system [51]. So, a NIZK with simulation extractability for
Renc can be realized by applying the generic transformation [62] to the Groth-Sahai [51], and the
assumptions needed for the NIZK can be subsumed by GGM.

6.2 The Security Analysis

We establish the security results of our WeakCoin in Theorem 2. Before proceeding to it, in the fol-
lowing, we consider a security game, which we call Random Aggregation Unpredictability (raUNP).
Basically, this security notion captures all security guarantees that WeakCoin needs from the un-
derlying STHE, NIZK, DS, and SNARK. It says that any PPT adversary A cannot produce an
aggregated ciphertext c∗ along with a valid SNARK proof π∗ while knowing the decryption of c∗.
Here π∗ shows c∗ is an honest aggregation of f + 1 ciphertext from f + 1 distinct nodes, i.e., the
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relation Ragg in Eq.3. The rest of the proofs for Theorem 2 can be built upon the raUNP security
without giving a security reduction to the security of each cryptographic component.
Random aggregation unpredictability. For facilitating the security analysis, we consider the
Random Aggregation Unpredictability (raUNP) security game ExpraUNPA in Fig.7. In Lemma.6, we
prove that the probability of winning the security is negligible for any PPT adversary.

ExpA,tag∗

raUNP (1λ, n, f)

C,Tags, State1, . . . , Staten ← ∅.Generate CRS := (crsenc, crsagg, crssthe)

(CInit, stateA)← A(CRS), C ← C ∪ CInit
for i /∈ Cinit, Generate (eki, dki), (vki, ski), provide public keys to A, and wait A

to provide public keys of corrupted parties. Let ek be the group encryption key

for i ∈ [n] \ Cinit
γi ← Randte, ri ← Msgte, γ̂i ← Randzk, γ̄j ← Randsig, ci ← STHE.Enc(ek, tag∗, ri; γi)

πi ← NIZK.Prove(crsenc, (ek, tag
∗, ci, i), (ri, γi); γ̂i);σi ← DS.Sign(ski, (tag

∗, ci); γ̄i)

(c∗, π∗, r∗)← AO
C̃orr

(·),O
P̃artD

(·),O
S̃ign

(·)
(stateA, (ci, πi, σi)i∈[n]\Cinit

)

if SNARK.Vrfy(crsagg, (n, f, (vki)i∈[n], ek, tag
∗, crsenc, c

∗), π∗) = 1

∧ r∗ = STHE.Dec(ek, dktag∗ , c
∗) then

return 1 else return 0

OS̃ign(i, (tag, msg))

if tag ̸= tag∗ ∧ i /∈ C
Tags← Tags ∪ {tag}, γ ←$ RandSign

σi ← DS.Sign(ski, (tag, msg); γ)

Statei ← Statei ∪ {(Sign, i, tag, msg, γ, σi)}
return σi

O
P̃artD

(tag, i)

if tag ̸= tag∗ ∧ i /∈ C
Tags← Tags ∪ {tag}, γ ←$ RandPartD

ζi ← PartDec(ek, tag, dki; γ)

Statei ← Statei ∪ {(PartD, i, tag, γ, ζi)}
return ζi

OC̃orr(i)

if i ∈ [n] \ C ∧ |C| ≤ f

C ← C ∪ {i}; return dki, ski, ri, γi, γ̂i, γ̄i, Statei

Fig. 7. ra-UNP Security Game.

Lemma 6. Assume STHE, NIZK, SNARK, and DS satisfy the security properties outlined in Sect.6.1.
For any PPT adversary A, any λ ∈ N, any positive integers f and n = 3f + 1 that are polynomial
in λ, any tag∗ ∈ {0, 1}∗, it holds that

AdvraunpA,tag∗(λ) := Pr[ExpA,tag∗

raUNP (1
λ, n, f) = 1] ≤ negl(λ),

where the experiment is defined in Fig.7.

Proof. We prove this lemma by using the following hybrid experiments. We use Wink to denote
that Hybrid k returns 1.
Hybrid 0. It is the experiment defined in Fig.7.
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Hyrbid 1. It is almost identical to Hybrid 0, except that it has an additional rule:

• In the begining, uniformly sample ī ←$ [n]. If, during the protocol execution, A chooses to
corrupt Pī, then abort the experiment.

At the point of A’s view, as long as the experiment does not abort, then it is identical to Hybrid
0. Since the choice of ī is independent of A’s view, the probability that A chooses to corrupt ī is
bounded by f/n. Thus, Pr[Win1] ≥ Pr[Win0] · (n−f

n ).

Hybrid 2. It is almost identical to Hybrid 1, except that it uses the simulated setup of NIZK to
generate the CRS crsenc along with the trapdoor tk, and πī is generated with the simulated prover
algorithm using tk.

Ensured by the zero-knowledge of NIZK, we have |Pr[Win2]− Pr[Win1]| ≤ negl(λ).

Hybrid 3. It is almost identical to Hybrid 2, except that under the condition that Hybrid 2
does not abort, after A provides the tuple (c∗, π∗, r∗), it additionally applies the extractor al-
gorithm EA, whose existence is granted by the knowledge soundness of SNARK, to extract the
knowledge {j, cj , σj , πj}j∈I′ for some I′ ⊂ [n] and |I′| = f + 1. For every j ∈ I′, check whether
DS.Vrfy(vkj , σj , cj) = 1 and NIZK.Vrfy(crsenc, (ek, tag

∗, cj , j), πj) = 1. It aborts if any checking
does not pass.

If Hybrid 3 does not abort due to the new checking procedure, then at the point of A’s view, it
is identical to Hybrid 2. Ensured by the knowledge soundness of SNARK, the probability that the
extraction fails is negligible. Therefore, |Pr[Win3]− Pr[Win2]| ≤ negl(λ).

Hybrid 4. It is almost identical to Hybrid 3, except that under the condition that Hybrid 3 does
not abort, after extracting the knowledge {j, cj , σj , πj}j∈I′ , it additionally checks whether ī ∈ I′,
and if not, it aborts.

At the point of A’s view, as long as the experiment does not abort due to the new checking
procedure, then it is identical to Hybrid 3. Notice that A has to include at least one corrupted
index into I′, and the choice of ī is independent of A’s view. Hence, the probability that A does
not include ī into I′ is bounded by 1

n−f . It folloiws that Pr[Win4] ≥ Pr[Win3] · ( 1
n−f ).

Hybrid 5. It is almost identical to Hybrid 4, except that under the condition that Hybrid 4 does
not abort, for any j ∈ I′∩C, it additionally applies the simulation extractor SimExt, whose existence
is granted by the simulation extractability of NIZK, to extract the knowledge of (rj , γj) w.r.t. cj
for all j ∈ I′ \ {̄i}, such that STHE.Enc(ek, tag∗, rj ; γj) = cj . If the extraction fails, it aborts.

Notice that since the statement (ek, tag∗, cj , j) w.r.t. NIZK contains the identity j. Therefore,
for all j /∈ ī, the statement is not equal to the statement of the simulated proof. Hence, ensured by
simulation extractability of NIZK, the probability that the extraction fails is negligible. It follow
that |Pr[Win5]− Pr[Win4]| ≤ negl(λ).

Hybrid 6. It is almost identical to Hybrid 5, except that under the condition that Hybrid 5 does
not abort, it additionally checks whether the tuple (̄i, cī, σī, πī), extracted by EA, contains the same
ciphertext cī that was honestly generated and provided to A in the experiment. If not, it aborts.

Note that the party Pī is not corrupted throughout the execution, and (sid, cī) has a valid
signature under vkī. Due to the unforgeability of DS, the probability that cī is different from the
honestly generated ciphertext is negligible. Thus, |Pr[Win6]− Pr[Win5]| ≤ negl(λ).

Following the above arguments, we can see that Pr[Win6] ≥ Pr[Win0]
n − negl(λ). Therefore, if

Pr[Win0] is non-negligible, then Pr[Win6] must be non-negligible.
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On the other hand, assuming there is a PPT adversary A such that Pr[Win6] > negl(λ), we can
build a PPT adversary B against the adaptive semantic security of STHE, such that AdvaindB (λ) >
negl(λ). B works as follows.

• Setup: B uniformly samples ī ←$ [n], runs a copy of A and finishes the setup phase in the
following way: for the setup w.r.t. STHE, B just forwards the messages it receives in the aIND
experiment; for the setup w.r.t. the digital signature DS, and SNARK, B follows the specifications
in Fig.7. For NIZK, it runs the simulation setup NIZK.SimSetup to generate the CRS and its
trapdoor tk. If A requests to corrupt the party Pī, it returns b

′ ←$ {0, 1} and aborts.

• Prepare ciphertexts, proofs, and signatures: For every j ∈ [n] \ (CInit ∪ {̄i}), it generates
the ciphertext cj , the proof πj , and the signature σj by following the specifications in Fig.7.
Regarding the ciphertext cī, it uniformly sampels m0,m1 ←$ Msgte, queries the oracle Ob with
(m0,m1) in the experiment aIND, and assigns cī ← cb which is returned byOb. Then, it generates
a simulated proof πī using tk, and signs it honestly. All (ci, πi, σi)i∈[n]\Cinit are then provided to
A.

• Respond queries to O
P̃artD

: B just forwards these requeries to OPartD in the experiement
aIND.

• Respond queries to O
S̃ign

: For a query (i, (tag, msg)), B responds it honestly as specified in
Fig.7, using the signing key of Pi.

• Respond queries to O
C̃orr

: When A queries O
C̃orr

with i, if i = ī, it returns b′ ←$ {0, 1} and
aborts. Otherwise, it requries OCorr in the aIND experiment with i and obtains the decryption
key dki along StatePD,i. Then, it returns (dki, ski, γi, γ̂i, γ̄i,Statei) to A, where ski is the signing
key of Pi, γi, γ̂i, γ̄i are the randomness for generating the ciphertext, the proof, and the signature;
Statei contains the randomness used to respond each query to O

S̃ign
and O

P̃artD
.

• Output: AfterA returns (c∗, π∗, r∗), it applies the extractor EA to obtain the list {j, cj , σj , πj}j∈I′
as specified in Hybrid 3, applies the extractor SimExt to obtain the plaintext and randomness
(rj , γj)j∈I′\̄i as specified in Hybrid 5. It will return b′ ←$ {0, 1} and aborts under the same
conditions of Hybrid 6. If not abort, then it calculates r′

ī
← r∗ ⊖

⊕
j∈I′\{̄i} rj . Then, if r

′
ī
= m0,

B returns 0; If r′
ī
= m1, B returns 1. In any other cases, it returns b′ ←$ {0, 1}.

It is easy to verify that B perfectly simulates the experiment Hybrid 6 in A’s view. For notational
simplicity, we still use Win6 to denote the following event: B does not abort, andA returns (c∗, π∗, r∗)
such that π∗ is a valid proof for c∗ w.r.t. SNARK and r∗ is the decryption of c∗.

Now, we analyze AdvaindB (λ) = |Pr[aINDB
1 ]−Pr[aINDB

0 ]|. Note that due to the evaluation correct-
ness of STHE, when Win6 happens, there exists γ

∗ such that c∗ = STHE.Enc(ek, tag∗,
⊕

j∈I′ rj⊕mb).

Then, due to the decryption correctness, we have r∗ =
⊕

j∈I′ rj⊕mb. It follows that Pr[aIND
B
1 |Win6] =

1, while Pr[aINDB
0 |Win6] = 0. On the other hand, there is a special event SE thatA returns (c∗, π∗, r∗)

but r∗ =
⊕

j∈I′ rj ⊕ m1−b. It is easy to verify that Pr[aINDB
1 |SE] = 0, while Pr[aINDB

0 |SE] = 1.

However, since m1−b is uniformly sampled and indepdent of A’s view, so Pr[SE] = 1
|Msgte|

. In

addition, under the condition that ¬(SE ∪ Win6), B simply returns a uniformly sampled bit, so
Pr[aINDB

1 |¬(SE ∪ Win6)] = Pr[aINDB
0 |¬(SE ∪ Win6)] = 1

2 . Putting the above facts together, we have:

|Pr[aINDB
1 ]− Pr[aINDB

0 ]| =|Pr[aINDB
1 |Win6] Pr[Win6] + Pr[aINDB

1 |SE] Pr[SE]
− Pr[aINDB

0 |Win6] Pr[Win6]− Pr[aINDB
0 |SE] Pr[SE]|

=|Pr[Win6]− Pr[SE]|
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If Pr[Win6] is non-negligible, then AdvaindB (λ) is also non-negligible. Under the assumption that
STHE satisfies the adaptive semnatic security for (n, f), AdvaindB (λ) is negligible for any PPT B, so
Pr[Win6] (and thus Pr[Win0]) must also be negligible. ⊓⊔

Security of our weak coin protocol. We establish the following theorem for our weak coin
protocol in Algorithm 2. In particular, following the composition security lemmas in Sect.4.2, we
prove an “enhanced” version of the security, where the adversary against the instanceWeakCoin[sid]
is given additional access to the following oracles:

• O
P̂artD

: On input (sid′, i), if sid′ ̸= sid, returns STHE.PartD(ek, sid′, dki)

• O
Ŝign

: On input (sid′, i, msg), if sid′ ̸= sid, returns DS.Sign(ski, (sid
′, msg)).

• Oracles in OAlign, defined in Lemma.16 for the underlying Align.

We denote the set of the above oracles as well as the corruption oracle by OWeakCoin.

Theorem 2. The WeakCoin protocol in Algorithm.2 satisfies the termination and φ-fairness for
φ = n−f

n , even when the adversary has additional access to the oracles in OWeakCoin.

We prove the termination in Lemma.7 and the φ-fairness in Lemma 8, respectively. We argue in
Proposition 6 in Appendix.D that Align remains secure in the composition.

Lemma 7 (Termination of WeakCoin). WeakCoin satisfies the termination property, even when
the adversary has additional access to oracles in OWeakCoin.

Proof. We prove the termination by showing every honest node can execute the code of Line 32-34
in Algorithm 2. For Lines 1-5, every honest node can perform the task without issues. For 6-12,
due to the completeness of the underlying NIZK and the correctness of the underlying DS, every
honestly generated proof πj and signature σi can be verified, so that (j, cj , σj , πj) carried by the
Fresh message will be included in the set Fresh. Since all honest nodes have multicasted the Fresh
message, the condition in Line 9 can be satisfied, and every honest node can execute Line 9-12.

Every honest node Pi will invoke the Align[⟨sid, ali⟩] with (c∗i , π
∗
i ). Due to the completeness of

SNARK, π∗
i is a valid proof w.r.t. c∗i and the public parameters, so (c∗i , π

∗
i ) satisfies the predicate

of Align[⟨sid, ali⟩]. Since all honest nodes provide valid inputs to Align[⟨sid, ali⟩], every honest
node Pi can terminate in Align[⟨sid, ali⟩] with a set OSeti (which can be empty). Therefore, Lines
13-14 and Lines 17-18 can be executed by all honest nodes. Following the correctness of STHE,
all honest nodes can receive enough valid partial decryption keys, so Lines 19-21 can be executed
by all honest nodes. In addition, every honest node will execute either Line 15-16 or Line 22-27,
and due to the f + 1-alignment property of Align, at least f + 1 honest nodes execute Line 22-27.
Ensured by the correctness of STHE and termination of Align, all honestly generated LocalWin
messages will be included in the set LocWins. When |LocWins| = n− f , at least one of element in
LocWins carries (a, r∗a, toa) ̸=⊥. Thus, every honest node can execute Line 34 and return a value.

Note that giving A access to oracles in OWeakCoin does not violate any security properties of the
underlying primitives that we need in the above analysis. ⊓⊔

Lemma 8 (n−f
n -Fairness). WeakCoin satisfies the φ-Fairness property with φ = n−f

n , even when
the adversary has additional access to oracles in OWeakCoin.
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Proof. We first describe an event that happens with the probability φ, conditioned on which the
agreement, the unpredictability, and the bias-resistance are granted. Due to the (f + 1)-alignment
property (binding cover property and well-covered set property), at the first time that an hon-
est node Pi receives an output from Align[⟨sid, ali⟩], there exists the well-covered set WS =
{(j, (c∗j , π∗

j ), ·)}j∈Is whose size is n− f , as well as the binding cover CoverSet = {(j, (c∗j , π∗
j ), ·)}j∈Ic

whose size is at most n. Note that we have WS ⊂ CoverSet (while well-formedness proofs are
ignored). With this notion, we can define the following event:

• Fair: Let dksid be the decryption key obtained by an honest node at Line 23. Let r∗j =
STHE.Dec(ek, sid, dksid, c

∗
j ), and let toj = H1(sid, r

∗
j ), for j ∈ Ic. In this event, there exists an

index jmax ∈ Is, such that tojmax is the largest value among all {toj}j∈Ic .

In Proposition 2, we show Fair happens with a probability of at least φ − negl(λ), despite
any attacking strategy. Then, we prove that agreement and unpredictability in Proposition 3 and
Proposition 4, respectively. These proofs rely on the fact that the random oracles H1 and H2 had
not been queried with (sid, j, r∗j ) for any j ∈ Ic until the first time that an honest node finishes
Align[⟨sid, ali⟩], which we proved in Proposition 1. ⊓⊔

Proposition 1. At the first time that an honest node Pi finishes the Align[⟨sid, ali⟩] instance, the
probability that H1 or H2 has been queried with (sid, j, r∗j ) for any j ∈ Ic is negligibly small.

Proof. We prove this lemma by contradiction. Assume that there exists a PPT A, such that in
execution of WeakCoin[sid], there is a non-negligible probability that H1 or H2 has been queried
with the specified (sid, j, r∗j ) at the first time that an honest node Pi finishes the Align[sid|ali]
instance. Then, we can build a PPT adversary B which can win the raUNP security game in Fig.7,
i.e., ExpBraUNP(1

λ, n, f) = 1, with a non-negligible probability.
We outline the strategy of B as follows, which runs a copy of A and tries to simulate the

execution of our weak coin protocol until an honest node finishes the Align subroutine.

• Setup Phase: B forwards the messages it received in the raUNP security game to A and forwards
the corruption requests and public keys of corrupted parties from A to the security game. In
addition, the setup for Align is run by B. Initialize two sets H ⊂ [n] and C ⊂ [n] to track the
identities of honest parties and corrupted parties, respectively.

• Protocol Simulation: Note that in the raUNP security game, B receives (ci, πi, σi)i∈Cinit . Then, B
acts on the behalf of every so-far-honest node Pi to multicast (sid,Fresh, ci, σi, πi). Next, B
honestly follows the protocol specification to act on behalf of all honest nodes. Random oracle
queries are responded to in a standard way, and B maintains two tables Hist1 and Hist2 of the
query records.

• Handle Oracle Queries: Note that A can query the additional oracles in

Oweakcoin = {O
P̂artD

,O
Ŝign
} ∪OAlign.

When A queries O
P̂artD

(resp. O
Ŝign

) with (sid′, i) (resp. (sid′, i, msg)) such that i ∈ H and

sid′ ̸= sid, B queries O
P̃artD

(resp. O
S̃ign

)in the raUNP security game with (sid′, i) (resp.

(resp. (i, (sid′, msg)))) and forwards the message from O
P̃artD

to A. Regarding queries to or-
acles in OAlign, B answers them honestly by using the secret states of honest parties w.r.t.
Align[⟨sid, ali⟩].
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• Handle Corruption: When A corrupts Pi, B checks if the number of corrupted parties has
reached the limit. If not, B queries O

C̃orr
with i, which returns (dki, ski, ri, γi, γ̂i, γ̄i, Statei).

Then, it returns the tuple along with other secrets and randomness for SNARK and Align to A.
• Output: At the first time that an honest node finishes Align, B obtains the binding cover
CoverSet = {(j, (c∗j , π∗

j ), ·)}j∈Ic as well as the set of well-covered elements WS. As ensured by
Align, (c∗j , π

∗
j ) shall satisfy the predicate of Align, i.e.,

SNARK.Vrfy(crsagg, (n, f, (vki)i∈[n], ek, tag
∗, crsenc, c

∗
j ), π

∗
j ) = 1.

Then, B extracts all records in Hist1 and Hist2 with the input form (sid, j, r∗j ) for j ∈ Ic, and
uniformly picks one record (sid, z, r∗z) from them. It outputs (c∗z, π

∗
z , r

∗
z) in the raUNP security

game.

It is easy to verify, in A’s view, that the execution simulated by B is identical to a real execution
of WeakCoin[sid]. Therefore, there is a non-negligible probability that a tuple (sid, j, r∗j ), where
j ∈ Ic and r∗j is the decryption of c∗j , has been issued to H1 and H2. Moreover, since the number
of query records must be polynomial in λ, the probability that B happens to pick this tuple is at
least 1

poly(λ) . There would be a non-negligible probability that B wins in the raUNP security game,
which contradicts Lemma 6. ⊓⊔

Proposition 2. The event Fair (defined in Lemma 8) happens with a probability of at least φ −
negl(λ).

Proof. For ease of discussion, we consider the following event:

• EarlyQ: H1 or H2 has been queried with (sid, j, r∗j ) for any j ∈ Ic before the first time an
honest node finishes Align[⟨sid, ali⟩].

As shown in Lemma 1, we know Pr[EarlyQ] ≤ negl(λ). Note that at the first time an honest
node finishes Align[⟨sid, ali⟩], WS = {(j, c∗j , ·)}j∈Is and CoverSet = {j, c∗j , ·}j∈Ic have been de-
cided, so whether a tuple (j, c∗j , ·) is included in WS and CoverSet is independent of the values

{toj = H1(sid, j, r
∗
j )}. Therefore, for each j ∈ Ic, Pr[toj = Max({toi}i∈Ic)|¬EarlyQ] = 1

|Ic| , and

Pr[Max({toi}i∈Ic) ∈ {toi}i∈Is |¬EarlyQ] =
n−f
|Ic| , where the probability is taken over the choice of the

random function inside the random oracle H1. I.e., Pr[Fair|¬EarlyQ] = n−f
|Ic| . Therefore,

Pr[Fair] ≥ Pr[Fair|¬EarlyQ] Pr[¬EarlyQ]

≥ n− f

|Ic|
· (1− negl(λ)) ≥ n− f

n
− negl(λ)

where the probability is taken over the choice of the random function inside the random oracle H1,
the randomness of the adversary A, and the randomness of all honest nodes. ⊓⊔

Proposition 3. Under the condition that the event Fair (defined in Lemma8) happens, all honest
nodes output the same value.

Proof. Let imax ∈ Is be the index such that toimax is the largest value among all {toj}j∈Ic . Ensured
by the well-covered set property of Align, the tuple (imax, (c

∗
imax

,
π∗
imax

), θimax) is in the output sets of at least f+1 forever-honest parties, and all of these f+1 honest
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parties will multicast (sid,LocalWin, (imax, c
∗
imax

, π∗
imax

, θimax)). Hence, after receiving n−f Local-
Winmessages, all honest nodes can receive a message carrying (sid,LocalWin, (imax, c

∗
imax

, π∗
imax

, θimax)).
Meanwhile, due to the binding cover property of Align, all tuples passing the Align.Vrfy check must
have been included in CoverSet = {(j, c∗j , π∗

j )}j∈Ic . Thus, all honest nodes must decide on toimax is
the largest value among all {H1(sid, j, r

∗
j )}j∈Ic , which ensures the agreement property v. ⊓⊔

Proposition 4. Under the condition that the event Fair happens, the output v of an honest node
is unpredictable to A. Namely, let StatebeforeA be the internal state of A before n − f − |C| honest
nodes participating WeakCoin[sid], then, for any PPT algorithm D, and u←$ V ,

|Pr[D(StatebeforeA , v) = 1]− Pr[D(StatebeforeA , u) = 1]| ≤ negl(λ).

Proof. Let State′A be the state of A at the first time that an honest node finishes Align[⟨sid, ali⟩].
Since when an honest node finishes Align[⟨sid, ali⟩], n−f−|C| nodes must have already participated
in the instance, we can assume, without loss of generality, that StatebeforeA has been encoded in
State′A. Therefore, it would suffice to show |Pr[D(State′A, v) = 1]−Pr[D(State′A, u) = 1]| ≤ negl(λ).

Recall the proof of Lemma 2 where we defined an event EarlyQ, in which H1 or H2 has been
queried with (sid, j, r∗j ) for any j ∈ Ic before the first time an honest node finishes Align[⟨sid, ali⟩].
Under the condition ¬EarlyQ, the index imax is determined independent ofH2. Therefore, Pr[D(State′A,
H2(sid, imax, r

∗
imax

)) = 1|EarlyQ] = Pr[D(State′A, u) = 1]. Under the condition that Fair hap-
pens, as we analyzed in Lemma 3, every honest node outputs v = H2(sid, imax, r

∗
imax

). Hence,
Pr[D(State′A, v) = 1|¬EarlyQ] = Pr[D(State′A, u) = 1]. Note that

Pr[D(State′A, v) = 1] =Pr[D(State′A, v) = 1|¬EarlyQ] Pr[¬EarlyQ]
+ Pr[D(State′A, v) = 1|EarlyQ] Pr[EarlyQ]

According to Lemma 1, Pr[¬EarlyQ] ≥ 1− negl(λ). Therefore,

Pr[D(State′A, v) = 1] = (1− negl(λ)) Pr[D(State′A, u) = 1] + negl(λ).

It follows that |Pr[D(State′A, v) = 1]− Pr[D(State′A, u) = 1]| ≤ negl(λ). ⊓⊔

7 Optimal Asynchronous Strong Common Coin with Silent Setup

Following the discussion in Sect.2, we “compile” a quadratic-communication weak common coin
protocol into a quadratic-communication strong common coin protocol via two steps. First, as in
Sect.7.1, we present a leader election protocol based on our weak common coin protocol, which is
sufficient for instantiating the existing quadratic-communication MVBA protocols that assume a
leader election subroutine. Next, as in Sect.7.2, a strong common coin can be easily built on the
silent-setup quadratic-communication MVBA.

7.1 Optimal Leader Election with Silent Setup

Leader Election Definition. We present a definition for leader election as follows, which is
adapted from [42]. In particular, compared with a weak common coin protocol with the output
space of [n], a leader election can ensure the agreement with 1− negl(λ) probability.
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Definition 3. Let Π be a protocol involving n participants in which each Pi does not have input
and will be instructed to output an index ι in [n]. We say Π is an (n, f, ϕ) leader election for
ϕ ∈ (0, 1], if, in any instance of Π, and for any PPT adversary A which can corrupt up to f
parties, the following properties are ensured.

• Termination: When all honest nodes are activated in this instance, except with a negligible
probability, every honest node Pi eventually outputs a value ι ∈ [n].

• Agreement: If two honest parties outputs ι and ι′, respectively, then ι = ι′.

• ϕ-Unpredictability: Let State
before
A be the internal state of A before (n−f−|C|) honest parties

are activated in this instance. Let ι be the output of an honest node. Then, for any PPT algorithm
D, it follows that

Pr[BadSet← D(StatebeforeA ) : ι /∈ BadSet ⊂ [n]] ≥ ϕ(
n− |BadSet|

n
)− negl(λ).

It can capture the essence that there is always a constant probability of electing a “good” leader.

Multivalued Byzantine Agreement with Silent Setup. As an ingredient to our leader election
protocol, we study a full-fledged instantiation of multivalued Byzantine Agreement (MBA) (the
definition recalled in Sect.3.1).

MBA has been studied extensively in the (weak)-coin-aided model. In particular, Mostefaoui
and Raynal [70] presented a communication-optimal MBA protocol in the (weak)-coin-aided model,
where ℓ is the bit length of the input to MBA. We summarize their results in the following lemma.

Lemma 9 (Coin-aided MBA, [70]). Assume there is a binary weak coin protocol with termi-
nation and ϕ-fairness for any constant ϕ ∈ (0, 12 ], as per [35] (cf. Appendix.B.1). Then, there is a
secure MBA protocol using the binary weak coin as subroutines, which, except the weak coin subrou-
tines, is deterministic and information-theoretically secure and has the communication complexity
of O(ℓn2) and the round complexity of O(1) in expectation, where ℓ is the bit length of an input.

In Theorem 2, we demonstrate a weak coin protocol for a general output space V with termi-
nation and n−f

n -fairness, as per Def.1. As we have shown in Lemma 14, our results imply a binary

weak coin with termination and n−f
2n -fairness as per Feldman and Micali [35]. Therefore, a straight-

forward approach to a communication-optimal MBA with a silent setup is to use multiple instances
of our binary weak coin protocol under the same setup to realize their weak coin subroutine. We
denote such a protocol by MBA, and its setup is WeakCoin.Setup. Since our weak coin protocol is
not guaranteed to be universally composable, we demonstrate the security of MBA in Lemma 19
in Appendix.D.

The Construction. Now, we are ready to present our leader election protocol with a silent setup.
Its setup phase is exactly WeakCoin.Setup. After the setup, the following tasks are iterated until
honest nodes output: First, a weak coin instance with the output space of [n] is invoked. Next, after
receiving ρi from the weak coin instance, an honest node Pi passes ρi to an MBA instance. Then,
if the MBA instance returns ρ ̸=⊥ to Pi, then Pi returns ρ as the output of the leader election.
Otherwise, Pi will join the next iteration. Here, the MBA instances are from Lemma 19, which
use binary weak coin instances under the setup of WeakCoin.Setup. We describe the pseudocode in
Algorithm 3, while the execution flow is outlined in a part of Fig.4.
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Algorithm 3 The asynchronous leader election protocol Leader with identifier sid for Pi

1: for k = 1 to ∞ do
2: Invoke WeakCoin[⟨sid, wc, k⟩]
3: wait until receiving ρi from WeakCoin[⟨sid, wc, k⟩]
4: Invoke MBA[⟨sid, ba, k⟩] with input ρi.

5: wait unitil receiving ρ′ from MBA[⟨sid, ba, k⟩]
6: if ρ′ ̸=⊥ then
7: return ρ′

Theorem 3 (Leader Election). Under the setup WeakCoin.Setup, the leader election protocol
Election in Algorithm 3 satisfies the termination and φ-unpredictability for φ = n−f

n . Its communi-
cation complexity and round complexity are O(λn2) and O(1) in expectation, respectively.

Proof. We argued why the components, WeakCoin and MBA, remain secure in the composition in
Proposition 7 in Appendix.D. Based on this fact, we prove the properties as follows.
Termination: First, following the termination property of WeakCoin and MBA, every honest node
can advance to the next iteration if it has not returned a value. Then, if theWeakCoin[⟨sid, wc, k⟩] re-
turns the same value ρ to all honest nodes, following the weak validity ofMBA,WeakCoin[⟨sid, ba, k⟩]
must returns ρ to all honest nodes, so the protocol can terminate. In addition, ensured by the φ-
fairness of MBA, each WeakCoin[⟨sid, wc, k⟩] can return the same value to all honest nodes with
an independent probability of at least φ − negl(λ). So, the probability that Election[sid] does not
terminate until k-th iteration is (1− (φ− negl(λ)))k−1 · (φ− negl(λ)), which decreses exponentially
in k. Therefore, Election[sid] can evenutally terminate. In addition, it is expected to terminate in

k∗ =
∞∑
k=1

k · (φ− negl(λ)) · (1− (φ− negl(λ)))k−1 ≈ 2

Since each iteration takes O(1) rounds and O(λn2)-bit communication cost in expectation, the
overall communication and round complexity are O(λn2) and O(1) in expectation, respectively

Agreement: It is naturally ensured by the agreement of MBA.

φ-unpredictability: Note that there is a fair event, denoted by Fairk w.r.t. WeakCoin[⟨sid, wc, k⟩],
such that Pr[Fairk] ≥ φ− negl(λ), and under which all honest nodes output the same ρ, and any
PPT algorithm, given the state StatebeforeA of A before n − f − |C| honest nodes are activated in
Election[sid], cannot distinguish ρ and uniformly sampled ρ′ from [n]. Therefore,

Pr[D(StatebeforeA )→ BadSet : ρ /∈ BadSet]

≥Pr[D(StatebeforeA )→ BadSet : ρ /∈ BadSet|Fairk] Pr[Fairk]

≥(n− BadSet

n
− negl(λ))(φ− negl(λ)) =

n− BadSet

n
· φ− negl(λ).

Achieving Multivalued Byzantine Validated Agreement with Silent Setup. As an in-
gredient to our strong common coin protocol, we study a full-fledged instantiation of multivalued
Byzantine Agreement (MVBA) with silent setup (the definition recalled in Sect.3.1).

There are a few MVBA protocols [4,52,65] with the communication complexity of O(λn2) (par-
ticularly here the input size is O(λ)) and the round complexity of O(1). In particular, [4,52] present
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MVBA protocols that use provable broadcast (PB) and leader election as subroutines. Naturally,
we can use PB in Algorithm 5 and Election in Algorithm 3 to instantiate these components, which
yields a communication-optimal MVBA protocol with a silent setup. In particular, the setup is
WeakCoin.Setup, which subsumes the setups needed for both PB and Election.

Since both PB and Election are not guaranteed to be universally composable, we need to check
the security of the composed protocol with more care. In Lemma 20, we proved the composition
guarantees of this MVBA scheme.

7.2 Achieving Strong Common Coin

Now, we are ready to present our asynchronous strong common coin. At a high level, we use a
silent-setup MVBA to help all honest nodes agree on an aggregated ciphertext c∗ with a valid proof
π∗ so that they can decrypt this ciphertext and use (the random oracle output of ) the decryption
as the common coin value.

The Construction. Our strong common coin protocol requires the following building blocks: An
STHE scheme, a digital signature scheme DS, a NIZK system NIZK for the relation Renc (cf. Eq.2),
and SNARK for the relation Ragg (cf. Eq.3). Basically, they are the same schemes that we need for
our weak coin protocol WeakCoin, and so they can function under the same setup WeakCoin.Setup.

In addition, we need theMVBA protocol outlined in Lemma 20, whose setup is alsoWeakCoin.Setup.
The external predicate Predicate of MVBA is parameterized by (crsagg, n, f, (vki)i∈[n],
ek, sid, crsenc) where sid is the identifier of the coin instance, and Predicate(c∗, π∗) = 1, iff

SNARK.Vrfy(crsagg, (n, f, (vki)i∈[n], ek, sid, crsenc, c
∗), π∗) = 1, (5)

which is actually the same predicate used in the Align inside WeakCoin except with different iden-
tifiers.

With these building blocks, we present our strong common coin protocol in Algorithm 4. The
protocol assumes a setup of WeakCoin.Setup, and works as follows. First, a few steps are similar
to that in our weak common protocol. After each node Pi has generated (c∗i , π

∗
i ), all nodes jointly

run an MVBA instance to agree on certain (c∗, π∗) which satisfies Predicate. After that, all honest
nodes can jointly decrypt c∗, and decide on H(sid,STHE.Dec(ek, dksid, c

∗)).

Theorem 4. The protocol Coin in Algorithm 4 satisfies the termination, 1-fairness as per Def.1,
and it has the communication complexity of O(λn2) and the round complexity of O(1) in expectation,
respectively.

It is easy to check the communication complexity and the round complexity. We prove the ter-
mination in Lemma 10. Regarding the 1-fairness, we prove the agreement in Lemma 11 and the
unpredictability in Lemma 12, respectively.

Lemma 10 (Termination of coin). The protocol Coin in Algorithm 4 satisfies the termination.

Proof. We prove the termination by showing every honest node can execute the code of Line 19-22
in Algorithm 2. For Lines 1-5, every honest node can perform the task without issues. For 6-12,
due to the completeness of the underlying NIZK and the correctness of the underlying DS, every
honestly generated proof πj and signature σi can be verified, so that (j, cj , σj , πj) carried by the
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Algorithm 4 The asynchronous strong common coin Coin protocol with identifier sid for Pi

1: upon activated with sid do
2: Initialize: Fresh,PartK← ∅
3: ri ←$ Msgte, γi ←$ Randte, ci ← STHE.Enc(ek, sid, ri; γi)
4: σi ← DS.Sign(ski, ci) πi ← NIZK.P(crsenc, (ek, sid, ci), (ri, γi))
5: Multicast (sid,Fresh, ci, σi, πi)

6: upon receiving (sid,Fresh, cj , σj , πj) from node Pj for the first time do
7: if DS.Vrfy(vkj , cj , σ1) = 1 ∧ NIZK.Vrfy(crsenc, (ek, sid, cj), πj) = 1 then
8: Fresh← Fresh ∪ {(j, cj , σj , πj)}
9: if |Fresh| = f + 1 and has not invoked MVBA[⟨sid, mvba⟩] then
10: c∗i ← STHE.Eval(ek, sid, {cj}(j,... )∈Fresh) � Aggregate then prove
11: π∗

i ← SNARK.P(crsagg, (n, f + 1, (vkz)z∈[n], ek, sid, crsenc, c
∗
i ),Fresh)

12: Invoke MVBA[⟨sid, mvba⟩] with input (c∗i , π
∗
i )

13: upon MVBA[⟨sid, mvba⟩] returns (c∗, π∗) do
14: ζi ← STHE.PartDec(ek, sid, dki)
15: Multicast (sid,PartDec, ζi)

16: upon receiving (sid,PartDec, ζj) from Pj for the first time do
17: if STHE.PartVrfy(ek, sid, pkj , ζj) = 1 then
18: ParK← ParK ∪ {(j, ζj)}
19: if |ParK| = n− f then
20: dksid ← STHE.DkAgg(ek, sid, {ζk}(k,)̇∈ParK) � decryption key

21: r∗ ← STHE.Dec(ek, sid, dksid, c
∗), and v∗ ← H(sid, r∗).

22: return v∗

Fresh message will be included in the set Fresh. Since all honest nodes have multicasted the Fresh
message, the condition in Line 9 can be satisfied, and every honest node can execute Line 9-12.

Due to the completeness of SNARK, π∗
i is a valid proof w.r.t. c∗i and the public parameters,

so (c∗i , π
∗
i ) satisfies the predicate of MVBA[⟨sid, mvba⟩]. Due to the termination of MVBA, every

honest node can output (c∗, π∗), so the code of Line 13-15 can be executed by all honest nodes. Due
to the partial verification correctness of STHE, it follows that all honest nodes can receive enough
valid partial decryptions, so the code of Lines 16-22 can be executed by all honest nodes. ⊓⊔

Lemma 11 (Agreement of coin). The protocol Coin in Algorithm 4 satisfies the agreement with
the probability 1− negl(λ).

Proof. Ensured by the agreement of MVBA, all honest nodes receive the same (c∗, π∗). Due to
the external validity of MVBA, (c∗, π∗) satisfies the predicate Predicate of MVBA defined in Eq.5,
i.e., π∗ is a valid proof showing the well-formedness of c∗ w.r.t. SNARK. The knowledge sound-
ness of SNARK implies that c∗ is an aggregation of f + 1 ciphertexts {cj}j∈S for some S ⊂ [n]
and |S| = f + 1, and every cj has a well-formedness proof πj w.r.t. NIZK for j ∈ S. Due to
the simulation extractability of NIZK, there are γj ∈ Randte and rj ∈ Msgte, such that cj =
STHE.Enc(ek, sid, rj ; γj). Then, the evaluation correctness of STHE ensures there exists r∗ and γ∗

such that c∗ = STHE.Enc(ek, sid, r∗; γ∗). Then, following the decryption correctness of STHE, all
honest nodes shall decrypt c∗ to r∗, and then they output the same H(sid, r∗). ⊓⊔

Lemma 12 (Unpredictability of coin). The protocol Coin in Algorithm 4 satisfies the unpre-
dictability and bias-resistance with the probability 1− negl(λ).
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Proof. Let State′A be the state ofA at the first time that an honest Pi outputs inMVBA[⟨sid, mvba⟩],
where there must have been n−f−|C| honest nodes participating the instance of Coin[sid]. Without
loss of generality, we assume StatebeforeA has been encoded in State′A. Then, it suffices to show that

|Pr[D(State′A, H(sid, r∗)) = 1]− Pr[D(State′A, v) = 1]| ≤ negl(λ),

for any PPT algorithm D, and v ←$ V .

To show this, we prove that the random oracle H has not been queried with (sid, r∗) (defined
in the proof of Lemma 11) at the first time that an honest node outputs in MVBA[⟨sid, mvba⟩] in
Lemma 13, except with a negligible probability. With this fact, State′A is independent of H(sid, r∗).
Then, it follows trivially to see |Pr[D(State′A, H(sid, r∗)) = 1]− Pr[D(State′A, v) = 1]| ≤ negl(λ).

⊓⊔

Lemma 13. At the first time that an honest node Pi outputs (c∗, π∗) in the MVBA[⟨sid, mvba⟩]
instance, the probability that H has been queried with (sid, r∗) is negligibly small, where r∗ is the
decryption of c∗.

Proof. This proof is similar to the proof for Lemma 1. In particular, we prove this lemma by
contradiction. Assume that there exists a PPT A, such that in the execution of Coin[sid], there is
a non-negligible probability that H has been queried with the specified (sid, r∗) at the first time
that an honest node Pi outputs (c∗, π∗) MVBA[⟨sid, mvba⟩] instance. Then, we can build a PPT
adversary B which can win the raUNP security game in Fig.7, i.e., ExpBraUNP(1

λ, n, f) = 1, with a
non-negligible probability.

We outline the strategy of B as follows, which runs a copy of A and tries to simulate the
execution of the coin until an honest node outputs in the MVBA subroutine.

• Setup Phase: Note that the setup of Coin is exactly the setup of our WeakCoin. Therefore, B can
finish the setup in the following way: B forwards the messages it received in the raUNP security
game to A, and forwards the corruption requests and public keys of corrupted parties from A
to the security game. In addition, the setup for Align is run by B. Initialize two sets H ⊂ [n]
and C ⊂ [n] to track the identities of honest parties and corrupted parties, respectively.

• Protocol Simulation: Note that in the raUNP security game, B receives (ci, πi, σi)i∈Cinit . Then, B
acts on the behalf of every so-far-honest node Pi to multicast (sid,Fresh, ci, σi, πi). Next, B
honestly follows the protocol specification to act on behalf of all honest nodes. Random oracle
queries are responded to in a standard way, and B maintains two tables Hist of the query records.

• Handle Oracle Queries: Note thatA can query the additional oracles inOweakcoin = {O
P̂artD

,O
Ŝign
}∪

OAlign. When A queries O
P̂artD

(resp. O
Ŝign

) with (sid′, i) (resp. (sid′, i, msg)) such that i ∈ H
and sid′ ̸= sid, B queries O

P̃artD
(resp. O

S̃ign
)in the raUNP security game with (sid′, i) (resp.

(resp. (i, (sid′, msg)))) and forwards the message from O
P̃artD

to A. Regarding queries to or-
acles in OAlign, B answers them honestly by using the secret states of honest parties w.r.t.
Align[⟨sid, ali⟩].

• Handle Corruption: When A corrupts Pi, B checks if the number of corrupted parties has
reached the limit. If not, B queries O

C̃orr
with i, which returns (dki, ski, ri, γi, γ̂i, γ̄i,Statei).

Then, it returns the tuple along with other secrets and randomness for SNARK and Align to A.
• Output: At the first time that an honest node outputs (c∗, π∗) in MVBA, B obtains (c∗, π∗). As
ensured by the external validity, SNARK.Vrfy(crsagg, (n, f, (vki)i∈[n], ek, tag

∗, crsenc, c
∗), π∗) =
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1, as (c∗, π∗) satisfy the predicate. Then, B extracts all records in Hist with the input form
(sid, r′), and uniformly picks one record (sid, r∗) from them. It outputs (c∗, π∗, r∗) in the
raUNP security game.

It is easy to verify, in A’s view, that the execution simulated by B is identical to a real execution
of Coin[sid]. Therefore, there is a non-negligible probability that a tuple (sid, r∗), where r∗ is
the decryption of c∗, has been issued to H. Moreover, since the number of query records must be
polynomial in λ, the probability that B happens to pick this tuple is at least 1

poly(λ) . There would
be a non-negligible probability that B wins in the raUNP security game, which contradicts Lemma
6. ⊓⊔
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A More Related Work

Preprocessing Coins. A few classical asynchronous coin protocols assume a preprocessing phase
where the participants already share correlated secret states. The simplest solution is due to
M.Rabin’s pioneering work [73], in which many random values have been secretly shared among
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all participants, such that in the online phase, each honest node multicasts a secret share and then
can reconstruct a random value based the shares it received. The online phase incurs O(ℓn2)-bit
communication for each coin of ℓ bits and only requires exactly 1 round. An obvious drawback is
that the network has to share O(N) random values in the preprocessing phase to supply O(N)
common coins in the online phase. This issue was resolved by Cachin, Kursawe, and Shoup [20]
in the computational setting by leveraging cryptographic tools, including a random oracle and a
non-interactive unique threshold signature scheme [28,63]. In their scheme, the group only needs to
share one random value in the preprocessing phase, which is a secret key of the threshold signature
scheme. Later on, in the online phase, a pseudorandom value is recovered as a common coin at the
cost of O(λn2) communication and exactly one round. In addition, Cachin et al. [20] can tolerate up
to ⌈n3 ⌉ − 1 Byzantine nodes, and if the underlying unique threshold signature scheme is adaptively
secure (for instance, using [8]), it is strongly adaptive secure [1]8. Due to its superior performance
and security, Cachin et al. [20] has been widely adopted by recent practical asynchronous consensus
protocols [4, 52, 53, 67]. E.Blum et al. [13] presented an asynchronous common coin protocol with
subquadratic communication complexity in this model, which, however, is not strongly adaptive
secure and only offers sub-optimal resilience.

Essentially, in the preprocessing-model coin protocols, the parties can obtain a common coin in
the online phase by somehow “consuming” the coin that is “prepared” in the preprocessing phase.
Therefore, if there is no trusted dealer to share a random value with the group in the preprocessing
phase (for example, in blockchain-related applications), the group still needs to generate a coin
from scratch (at least as a setup for emulating the dealer), which motivates a long line of research
[3, 33,35,42,61] dedicating to common coin generation without preprocessing.

Coins without preprocessing. A setup phase is considered to be “silent” if all participants do
not communicate with each other, except posting their own public information to a public bulletin
board only once during the setup phase. The family of silent setups covers a variety of different
setups, including that for establishing the global set of participants’ identities, the standard PKI
setup, and the common reference string (CRS) setup.

Information-theoretical Coins. The seminal work by Feldman and Micali [33,35] initiated the study
of the common coin without preprocessing, with a focus on the information theoretical setting,
under a setup for establishing global identities and pairwise private and authenticated channels.
They presented a weak common coin protocol, which, on rough terms, satisfies the agreement
property of a (strong) common coin with a constant probability. While Feldman and Micali’s
result assumes a synchronous network, Feldman [34] and Canetti and T. Rabin [23] extended it to
asynchrony. In particular, Canetti and T. Rabin’s protocol tolerates up to ⌈n3 ⌉−1 Byzantine nodes,
while the communication cost for generating a binary common coin is as large as Ω(n8 log n).
Bangalore, Choudhury, and Patra [11] considered an even weaker form of common coin, which
has the communication complexity of O(n6). These weak forms of common coins are sufficient for
certain asynchronous consensus protocols such as asynchronous binary agreement [11, 23, 69]. In
addition, there is a generic information-theoretical complier, sketched by Choudhury and Patra
in [25], that lifts a weak common coin protocol to a strong common coin protocol at the cost of
introducing another multiplicative factor of n in the communication complexity. Recently, Huang,
Pettie, and Zhu [55] presented a strong common coin protocol that does not assume private channels

8 It is secure against adaptive adversaries who can retract yet-delivered messages sent by a newly corrupted node.
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and tolerates up to ( n
3+ϵ) Byzantine nodes, with communication complexity of Ω(n7) and poly(n)

rounds.

Computational Coins. On the other hand, cryptography has been extensively employed to improve
the performance of common coin protocols. Katz and Koo [59] extend Feldman and Micali’s protocol
to the computational setting with a PKI setup, which yields a computationally secure weak common
coin protocol with O(λn4) communication complexity and O(1) rounds. In recent years, motivated
by replacing the trusted setup needed by Cachin et al.’s common coin [20] with an asynchronous
distributed protocol, many efforts have been devoted to improving the performance of asynchronous
distributed key generation (ADKG), which has a close relation with asynchronous common coin.
Namely, the consensus protocols inside ADKG will rely on certain weak coin protocols, while an
ADKG protocol directly implies an asynchronous strong common coin protocol with the same
complexity.

Kokoris-Kogias et al. [61] gave the first ADKG protocol, which assumes a PKI setup and has
the communication complexity of O(λn4) and the round complexity of O(n). Later, Abraham et
al. [3] and Gao et al. [42] presented ADKG protocols with O(λn3) communication complexity
and O(1) rounds. Both works assume a setup for PKI and the CRS and are proven statically
secure in the random oracle model, though with an adaptively secure component from [9], they are
adaptively secure in principle in the algebraic group model (AGM) [40]. Das et al. [29, 31] focused
on the practical performance and presented statically secure ADKG with O(λn3) communication
complexity and O(log n) round complexity. Abraham et al. [2] gave a strongly adaptively secure
DKG under a CRS setup and in the AGM model, with O(λn3) communication complexity and
O(1) round complexity. Compared with [3, 42], [2] generates the standard secret key for DLog-
based cryptosystems.

Other than research on ADKG, Freitas, Kuznetsov, and Tonkikh studied Bandarupalli et al.
[10] adapted [75] to the hash-based setting and presetned a asycnhronous randomness beacon
that countinously emitting common coins, which can be proved adaptively secure in the ROM.
Though its amortized communication cost for each coin is subcubic, a single-shot execution incurs
O(λn3) communication complexity. Very recently, Das et al. [27] presented a hash-based weak coin
protocol in the random oracle model, with the O(λn3) communication complexity and O(1) round
complexity.

B Other Preliminaries

B.1 Binary Weak Common Coin

In the definition of [35], the termination is the same as ours, and the ρ-fairness is defined as follows:

• ϕ-fairness: let vi be the output of Pi. Then for every b ∈ {0, 1}, it holds that

Pr[∀i ∈ H : vi = b] ≥ ϕ− negl(λ).

We have the following lemma regarding the relation between our definition and their definition.

Lemma 14. A protocol with V = {0, 1} and satisfying φ-fairness in our definition directly satisfies
φ/2-fairness in the definition of [35].
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Algorithm 5 The provable broadcast protocol PB with identifier sid, the sender Ps,and the
predicate Predicate

// Protocol for the sender Ps

Initialize local variable S = ∅
1: upon receiving input vs satisfying Predicate(v) = 1 do
2: Multicast (sid, input, vs)
3: wait until |S| = n− f
4: ς ← STS.Combine(vk, S, (sid, vs))
5: return b-proof = ς.

6: upon receiving (sid,EchoInput, ςs,j) from Pj for the first time do
7: if TSig.PartVrfy(pvk, pvkj , ςs,j , (sid, vs)) = 1 then
8: S ← S ∪ {(j, ςs,j)}

// Protocol for other Pi

Initialize local variable v[sid] =⊥ and stop = 0
9: upon receiving (sid, Input, vs) from Ps for the first time do
10: if Predicate(vs) = 1 and stop = 0 then
11: v[sid]← vs
12: ςs,i ← TSig.PartS(tvki, tski, (sid, vs))
13: Send (sid,EchoInput, ςs,i) to Ps

14: Return v[sid]

15:
procedure Abandon(sid)

16: stop← 1
Vrfy(sid, b-proof, v)

17: return TSig.Vrfy(pvk, (sid, v), bproof)

Proof. According to our definition, there is an event Fair such that Pr[Fair] ≥ φ − negl(λ), and
Pr[∃b, vi = b∀i ∈ H|Fair] = 1. So Pr[∃b, vi = b∀i ∈ H] ≥ φ − negl(λ). Then, if there exists
b0 ∈ {0, 1} s.t. Pr[vi = b0∀i ∈ H] < φ/2 − ϵ, for some non-negligibel function ϵ. It follows that
Pr[vi = 1− b0∀i ∈ H] > φ/2 + ϵ− negl(λ). So, the adversary can trivially distinguish the output b
from a uniform bit. ⊓⊔

B.2 Provable Broadcast

For completeness, we include an instantiation available in Algorithm 5, which follows the classical
construction of [4, 20].

B.3 Silent-Setup Threshold Signature

A threshold signature scheme allows a group of nodes to jointly sign a message w.r.t. a group public
key, while an adversary controlling below a threshold number of nodes cannot forge a signature. It
is a silent threshold signature scheme if it has a silent setup phase9.

Formally, an (n, t) silent threshold signature (STS) scheme can be described using the following
algorithms.

• SilSetup(1λ, n, t) → (crs, vk, (vki), (ski)). It is the silent setup phase of STS. We denote the
public verification key and the secret signing key by vk and sk, respectively.

9 We remark that existing silent threshold signature schemes lack uniqueness and therefore do not imply a common
coin under Cachin et al.’s framework [20].
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• PartSign(vk, vki, ski,msg) → σi. It signs a message msg using the signing secret key ski of the
user i and produces a partial signature σi.

• PartVrfy(vk, vki, σi,msg) → b ∈ {0, 1}. It validates a partial signature σi on the message msg
under the public key vki of the user i.

• Combine(vk, {(vki, σi)}i∈S ,msg) → σ. It combines t + 1 valid signatures for the same message
msg under distinct public keys into one signature σ.

• Vrfy(vk, σ,msg)→ b ∈ {0, 1}. It validates a combined signature σ for a message msg under the
group public key vk.

An STS scheme satisfies the correctness and the unforgeability.

Correctness. An (n, t)-STS scheme is correct, if for every λ ∈ N and any PPT adversary A, under
an adversary-involved setup SilSetupA(1λ, n, t)→ (crs, vk,
(vki)i∈[n]; stateA; (ski)i∈[n]\Cinit), we have the following properties.

• Partial Verification Correctness. For any m and any i /∈ Cinit, it holds that

Pr[PartVrfy(vk, vki,PartSign(vk, vki, ski,msg),msg) = 1] = 1.

• Combination Correctness. For any subset S ∈ [n] with |S| = t+ 1, and {(vki, σi)}i∈S such that
PartVrfy(vk, vki, σi,msg) for the same message msg, it holds that

Pr[Vrfy(vk,Combine(vk, (vki, σ)i)i∈S ,msg) = 1] = 1.

Unforgeability. At a high level, an (n, t)-STS scheme satisfies the unforgeability if any PPT adversary
A controlling up to t nodes cannot forge a valid signature on a message that has not been signed
by any honest nodes. Furthermore, we allow the adversary to perform the chosen message attacks
(modeled by a signing oracle OPartS in Fig.). In addition, an adaptive adversary may corrupt
participants at any point; the capability of adaptive corruption is modeled by OCorr.

Formally, an (n, t)-STS scheme is unforgeable, if for any PPT adversary A and λ ∈ N, it holds
that

Formally, we say an (n, t)-STS scheme satisfies the unforgeability if for any PPT adversary A,
it holds that, for every λ ∈ N,

Pr[UNFA(1λ, n, t) = 1] ≤ negl(λ). (6)

An (n, f)-STHE scheme satisfies the adaptive unforgeability, if

Pr[Ada-UNFA(1λ, n, t) = 1] ≤ negl(λ). (7)

Instantiation. Silent threshold signatures have various instantiations [5,26,44,72]. In this work, we
consider the scheme from [26] as the instantiation, as it offers the constant signature size and the
constant verification cost while ensuring the adaptive unforgeability under the q-SDH assumption
in the random oracle model. We remark that while the corruption oracle in the security of [26] does
not leak the randomness w.r.t. partial signing, the partial signing algorithm in [26] (and most other
existing schemes) is deterministic, so there is no randomness to leak.
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Ada -UNFA(1λ, n, t)

C, State1, . . . , Staten ← ∅,Msgs←⊥

(crs, vk, (vki)i∈[n]; stateA; (ski)i∈[n]\Cinit
)← SilSetupA(1λ, n, t), C ← C ∪ Cinit

(σ∗,msg∗)← A
OCorr(·), OPartS(·)

(stateA)

if msg∗ /∈ Msgs ∧ Vrfy(vk, σ∗,msg∗) = 1, then return 1; else return 0

OCorr(i)

if i ∈ [n] \ C ∧ |C| < t

C ← C ∪ {i}
return (ski, Statei)

OPartS(msg, i)

if i /∈ C
Msgs← Msgs ∪ {msg}
γ ← RandPartS, σi ← PartSign(vk, vki, ski,msg; γ)

Statei ← Statei ∪ {(msg, i, γ, σi)} return σi

Fig. 8. Security Game of STS. OCorr is only included in Ada-UNF

C The Details of STHE Scheme

Our STHE scheme represents a minimal modification from the STE scheme in [45]. To put it
simply, the encryption algorithm in the STE scheme involves uniformly sampling a group element
Γ , which will also be included in the ciphertext as a public element. To enable the desired tag-
homomorphism, we need to replace the random element Γ with H(tag), where H is a hash function
modeled as a random oracle.

The STE scheme [45] can be considered as signature-based witness encryption [6] w.r.t. the STS
scheme [44], where the plaintext is encrypted w.r.t. a “message” and a public key, and it can be
decrypted by a valid signature for the “message” under the public key. The group element Γ in the
ciphertext is the “message” from this perspective. As a message m in the STS scheme is encoded as
H(m), a “natural” version of STE, which is discussed in the introduction of [45], indeed uses H(tag)
in place of a random Γ . The final scheme of STE in [45] uses a random element Γ for the purpose
of avoiding the additional random oracle assumption.

For completeness, we include the description of the STHE scheme in this section, which is
basically the natural” version of STE scheme [45], while we add the homomorphic evaluation
algorithm Eval to make it an STHE.

Notations and Bilinear Groups. We introduce the notations for polynomial and group opera-
tions. The following content is directly from [45] and [44].

We use the following notations for polynomials over finite fields. Let H ⊂ F be a multiplicative
subgroup of a finite field F. Let ω be the generator of H = {ω, ω2, . . . , ω|H| = 1}.

Let L1(x), L2(x), . . . , L|H|(x) be the Lagrange basis polynomial. That is, Li is the unique degree
|H| − 1 polynomial defined by:

Li(ω
j) =

{
1 when i = j,

0 when i ̸= j.
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Let Z(x) =
∏|H|

i=1(x−ωi) be the vanishing polynomial on H. Since H is a multiplicative subgroup,
Z(x) = x|H| − 1 and

Li(x) =
ωi

|H|
· x

|H| − 1

x− ωi
.

Note that Li(0) = |H|−1. In the construction, We use |H| = n+1, where n is the number of parties.
A Bilinear Group BG, generated as (p,G1,G2,GT , g1, g2, e) ← BG(1λ), is specified by three

groups G1,G2,GT (the first two we call ‘source groups’ and the third ‘target group’) of prime order
p = 2Θ(λ), a bilinear map e : G1 ×G2 → GT that we call ‘pairing’ and one random generator g1, g2
for each group. We use the implicit notation, i.e., [x]s := x · gs and more generally [A]s represents
a matrix of the corresponding group elements, for s ∈ {1, 2, t}.

Also, we denote the group operation additively, [x]s + [y]s = [x + y]s, for s ∈ {1, 2, t}. By
[x]1 ◦ [y]2 = [y]2 ◦ [x]1 = [x · y]T , we denote the pairing e([x]1, [y]2). We note that the way it is
defined ‘◦’ is commutative, for instance ([a]1, [b]2)

⊤◦([c]2, [d]1) is well-defined and gives the outcome
[ac+ bd]T .

All the algorithms of our constructions implicitly take as input a Bilinear Group generated by
BG(λ), even if it is not explicitly stated.

The construction. Most construction descriptions are from [45]. We simplified the interfaces by
merging a few algorithms and variables. For example, the user key generation algorithm and the
“hint” generation algorithm are included in a single key generation algorithm; the group encryption
key and aggregation public key are treated as a single group public key. We also decouple the
decryption algorithm into a decryption key aggregation algorithm and a decryption algorithm
using this key, which enables the use of a single key to decrypt all ciphertexts under the same tag.
We highlighted the changes for tag-homomorphism in green.

• SilSetup(1λ, n, t): It can be described by a CRS generation algorithm CRS, a key generation
algorithm KeyGen, and a deterministic group key aggregation algroithm GroupPkGen.
– CRS(1λ, n): Sample τ ← Zp and output:

crs =
(
[τ1]1, . . . , [τ

n+1]1, [τ
1]2, . . . , [τ

n+1]2
)
.

– KeyGen(CRS, i, n): Sample xi ← Z∗
p, and set dki = xi, encki = [xi]1. Then, compute

hinti =


[dkiLi(τ)]1 , [dki(Li(τ)− Li(0))]1 ,

[
dki

L2
i (τ)− Li(τ)

Z(τ)

]
1

,[
dki

Li(τ)− Li(0)

τ

]
1

,

{[
dki

Li(τ)Lj(τ)

Z(τ)

]
1

}
j∈[0,n],j ̸=i

 .

Output eki = (encki, hinti), and dki = xi.
– GroupPKGen(CRS, {hinti, eki}i∈[n]): Verify the validity of each eki: for each i ∈ [n], run

isValid(CRS, eki) (isValid is defined below) and let V ⊆ [n] be the set of the indices with
valid public keys. Set dk0 = 1 and set dki = 0 for each i /∈ V . Compute

ak =


V, {eki}i∈V ∪{0}, {[dki(Li(τ)− Li(0))]1}i∈V ∪{0} ,

{[
dki

L2
i (τ)− Li(τ)

Z(τ)

]
1

}
i∈V ∪{0}

,

{[
dki

Li(τ)− Li(0)

τ

]
1

}
i∈V ∪{0}

,


 ∑
j∈S,j ̸=i

skj
Lj(τ)Li(τ)

Z(τ)


1


i∈V ∪{0}

 .
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– enck:

enck =

([∑
i∈V

dkiLi(τ)

]
1

, [Z(τ)]2

)
:= (C,Z).

Output ek = (ak, enck).
• Enc(ek, tag,msg): Set [γ]2 = H(tag) ∈ G2 (rather than sample [γ]2 ←$ G2 in [45]), parse
ek := (ak, C, Z), set Z0 = [τ − ω0]2 and set

Atag =


C [1]2 Z [τ ]2 0 0 0 0
0 0 0 [τ ]2 [1]2 0 0 0
0 [γ]2 0 0 0 [1]1 0 0

[τ t]1 0 0 0 0 0 [1]2 0
[1]1 0 0 0 0 0 0 Z0

 .

b = ([0]T , [0]T , [0]T , [0]T , [1]T )
⊤.

Notice that each column of A contains elements from the same source group (looking ahead, this
is so that the pairing A ◦ ω can be properly performed.)
Sample a vector s← (Z∗

p)
5 and output:

c =
(
s⊤ ·Atag, s

⊤ · b+msg
)
.

• Eval(ek, tag, {ci}i∈S) : Parse ci = (cti,1, cti,2). Output c∗ = (
∑

i∈S cti,1,
∑

i∈S cti,2).
• PartDec(ek, tag, dki): Output ζi = dki ·H(tag).
• PartVrfy(ek, tag, eki, ζi): Parse eki := eki = (encki, hinti), and output 1 if and only if encki ◦
H(tag) = [1]1 ◦ ζi.

• DecAgg(ek, tag, {ζi}i∈S): Parse ek := (ak, enck = (C,Z)), and compute the subset of indices
with valid eki’s, Sv = S ∩ V . Then proceed as follows:

1. Compute a polynomial B(X) by interpolating 0 on all ωi with i /∈ Sv and 1 on ω0, i.e.,
interpolate B as {(ω0, 1), (ωi, 0)i/∈Sv

} and set

B =

[
n∑

i=0

B(ωi)Li(τ)

]
2

.

2. Set

aPK =
1

n+ 1

(∑
i∈Sv

B(ωi)encki + [1]1

)
.

3. Compute polynomials Qx(X) and Qz(X) such that

SK(X)B(X) =
aSK

n+ 1
+Qz(X)Z(X) +Qx(X)X

where

aSK =
M∑
i=0

SK(ωi)B(ωi) :=
∑
i∈Sv

dkiB(ωi) + 1.

By definition, B evaluates to 0 outside Sv and to 1 on ω0.
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According to Lemma 1, they can be computed as:

Qz(X) =
n+1∑
i=0

B(ωi)

(
dki

L2
i (X)− Li(X)

Z(X)

)
+

n+1∑
i=0

B(ωi)
n+1∑
j=0
j ̸=i

dkj
Li(X)Lj(X)

Z(X)

 ,

Qx(X) =
n+1∑
i=0

B(ωi)

(
dki

Li(X)− Li(0)

X

)
.

Then using ak , compute Qz = [Qz(τ)]1.
4. Compute Qx = [Qx(τ)]1.
5. Compute Q̂x = [Qx(τ) · τ ]1.
6. Set ζ∗ = 1

n+1

(∑
i∈Sv

B(ωi)ζi +H(tag)
)
.

7. Compute B̂ = [τB(τ)]1.
8. Compute a KZG evaluation at ω0, i.e., compute Q0(X) such that B(X)−1 = Q0(X)(X−ω0)

and compute Q0 = [Q0(τ)]1.
9. Output:

dktag =
(
B,−aPK,−Qz,−Qx, Q̂x, ζ

∗,−B̂,−Q0

)⊤
,

• Dec(ek, tag, c, dktag) : Parse c = (ct1, ct2) and output:

msg∗ = ct2 − ct1 ◦ dktag.

In order to confirm that hinti is well-formed in the Preprocess algorithm, we use an isValid
algorithm which we define as follows:

isValid(CRS, eki)→ {0, 1} : parses eki := (encki, hinti), and hinti :=
(
h1, h2, h3, h4, {h5,j}j∈[0,M ],j ̸=i

)
And outputs 1 iff it holds that:

1. h1 ◦ [1]2 = encki ◦ [Li(τ)]2,
2. h2 ◦ [1]2 = encki ◦ [(Li(τ)− Li(0))]2,

3. h3 ◦ [1]2 = encki ◦
[
L2
i (τ)−Li(τ)

Z(τ)

]
2
,

4. h4 ◦ [1]2 = encki ◦
[
Li(τ)−Li(0)

τ

]
2
,

5. h5 ◦ [1]2 = encki ◦
[
Li(τ)Lj(τ)

Z(τ)

]
2
, for each j ∈ [0,M ], j ̸= i.

Efficiency. It is almost identical to the STE scheme in [45], except that the ciphertext size is
slightly reduced since there is no random element Γ ∈ G2 included in the ciphertext. In particular,
the CRS contains n+ 1 elements in G1 and n+ 1 elements in G2, whose size is O(λn). The public
key eki of each node Pi contains n+ 4 elements in G1, whose size is also O(λn). The group public
key ek contains 5n+6 elements in G1 and one element in G2, whose size is also O(λn). The size of
dki is O(λ). Notice that each node obtains this information in the setup phase.

A ciphertext contains 2 elements in G1, 6 elements in G2, and 1 element in GT , so its size is
O(λ). A partial decryption key consists of 1 element in G2, which is O(λ) bits.
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Correctness. The partial verification correctness and the decryption correctness trivially follow
the correctness of the STE scheme. The evaluation correctness is easy to verify. In particular, for
every ci = Enc(ek, tag, msgi; γ

′), it has the following form:

ci = (cti,1, cti,2) =
(
s⊤i ·Atag, s

⊤
i · b+ msgi

)
,

where si is the internal randomness (γ′ in the notation) for each ciphertext, while Atag is uniquely
determined by tag, so every ci has the same Atag and b. Thus, c∗ = Eval(ek, tag, {ci}i∈S) has the
following form:

(
∑
i∈S

cti,1,
∑
i∈S

cti,2) :=

(
(
∑
i∈S

s⊤i ) ·Atag, (
∑
i∈S

s⊤i ) · b+
∑
i∈S

msgi

)
,

which is a valid encryption for
∑

i∈S msgi w.r.t. the randomness s∗ =
∑

i∈S s⊤i .

C.1 STHE Security

While the STHE scheme described above represents a minor modification from the STE scheme
in [45], the security we defined in Fig.5 is significantly stronger than the security definition of
STE [45]. Specifically, in our definition, (1) the adversary is allowed to query the partial decryption
oracle OPartD to obtain the partial decryption key w.r.t. a tag tag ̸= tag∗ from any uncorrupted
party, and (2) it can adaptively corrupt parties. In contrast, in [45], the corruption is static, and
the adversary cannot obtain the partial decryptions of any uncorrupted parties.

In this section, we argue that the STHE scheme indeed satisfies the stronger security definition.
Our arguments are based on the original security proof for STE in [45]. At a high level, for handling
the queries to OPartD, we use a standard trick for random oracles so that a partial decryption key
ζi = dki ·H(tag) can be simulated as r̂tag · encki = dki · r̂tag · [1]2 when H(tag) is programmed as
r̂tag · [1]2. In this way, the simulator can respond to queries to OPartD without using any information
about dki. In addition, for handling the adaptive corruption, we can apply the simulation techniques
from [12] in a black box manner, which ensures that in the GGM, even under adaptive corruption,
the adversary still does not know any non-trivial information about the secret keys of uncorrupted
parties.

In the following, we first recall the basic background of the generic group model and some useful
results from [12], and then we discuss why STHE satisfies the stronger security definition.

Generic Group Model. In GGM, the adversary cannot see the concrete presentations of group
elements and can only use generic group operations. In particular, the adversary makes oracle
queries of each group operation it wishes to perform and receives a handle for the resulting group
elements. Generally, the adversary is initially provided by the handle of the element [1]1, [1]2 and
[1]T , and it can query the oracle GCMP for group operations, which takes as input two strings ξ and
ξ′ and a bit b, which indicates whether to compute the addition or the subtraction of the group
elements. In groups supporting pairing operations, there is an oracle GCPair, which takes as input
two strings ξ and ξ′ and returns ξ̂, handling for an element in GT as the result of this pairing. Note
that the “scalar multiplication” can be done trivially with the oracle GCMP.

Useful Results from [12]. Now we recall some useful results from [12], which demonstrates the
one-more discrete logarithm problem in unconditionally hard in GGM. In particular, the adversary
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is given (the handlings of) n random group elements (g1, . . . gn), and can query the oracle DLog,
which returns the scalar (i.e., discrete logarithm) of the queried (handling of) group element, for
at most n − 1 times. The adversary’s goal is to produce the scalars of all the n elements. In the
security proof in [12], the authors show a simulator (in [12, Fig.6]) that can simulate the security
game without ever computing the scalars of gi, such that the adversaries cannot output those scalars
except with a negligible probability. We summarize some useful results from [12] in the following
lemma.

Lemma 15 ( [12]). Consider an adversary A which is given the handlings of (g1, . . . gn) and
only allowed to query the oracle DLog with those handlings. There is a simulator SGGM, which
can simulate the handlings (ξ1, . . . , ξn) of (g1, . . . gn) and responses for DLog and GCMP, without
assigning a scalar ki to a handling ξi (such that ξi is the hanlding of k1 · [1]1) until DLog is
queried with ξi. In particular, SGGM uses random variables K1, . . . ,Kn to represent the scalars
(k1, . . . , kn), and ensures the invariance in simulating group operation oracles by recording each
query as a polynomial in (K1, . . . ,Kn). Except with a negligible probability that SGGM may abort,
the simulation, at the point of A’s view, is indistinguishable from a “real” security game where
(k1, . . . kn) are created for (g1, . . . gn) and all the oracle queries are responded honestly.

Security analysis of STHE. The security proof for STHE can be done by going through the
following hybrid security games.

Hybrid 0. This is the standard security game of STHE as we defined in Fig.5. Since the scheme
is in the generic group model and the random oracle model, the adversary A also has access to the
random oracle H and oracles w.r.t. GGM

Hybrid 1. This hybrid falls back to the “tag-free” setting, where the encryption algorithm STHE.Enc
does not take tag as an input, and the random oracle H and the partial decryption oracle OPartD are
totally removed from the security game. Instead, the encryption algorithm uses a freshly sampled
random group element [γ]2 in place of H(tag), just like the original STE scheme in [45], while the
random element [γ∗]2 used in the challenge oracle Ob is sampled in advance and available to A. For
clarity, we describe this hybrid in Fig.9.

Hybrid1Ab (1λ, n, f)

C ← ∅, [γ∗]2 ←$ G2

(crs, ek, (eki)i∈[n]; stateA; (dki)i∈[n]\Cinit
)

← SilSetupA([γ∗]2)(1λ, n, t), C ← C ∪ Cinit
1← AOCorr(·)Ob(·)(stateA)

Ob(m0,m1)

return cb ← Enc(ek,mb; [γ
∗]2)

OCorr(i)

if i ∈ [n] \ C ∧ |C| < t

C ← C ∪ {i}, return (dki)

Fig. 9. Hybrid 1

For the two hybrids, we have the following results.

Proposition 5. If there is a PPT adversary A0 that can win the security game in Hybrid 0 with
a non-negligible probability, then there exists a PPT adversary A1 that can win the security game
in Hybrid 1 with a non-negligible probability.
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Proof. A1 can invoke A0 as a subroutine by simulating Hybrid 0 based on the information from
Hybrid 1. In particular, A1 can program the random oracle H such that H(tag∗) := [γ∗]2. For other
tag ̸= tag∗, it samples r̂tag ←$ Zp, and returns r̂tag · [1]2 as the output of H(tag). Then, A1 can
respond a query (tag, i) to OPartrD as r̂tag · encki. When A0 queries Ob or OCorr, A1 just forwards
the query to the oracles in Hybrid 1. Note that the simulation provided by A1 is perfect at the
point of A0’s view. So if A0 can distinguish O0 and O1 in Hybrid 1, it can also distinguish them in
the simulation; So can A1. ⊓⊔

Hybrid 2. In this hybrid, the public key of each participant Pi is generated as (encki, ([dkiτ ]1, . . . , [dkiτ
n]1)).

Note that the standard public key with hinti can be deterministically computed from this simplified
one. This hybrid is only for simplifying notations, as used in [45].

Hybrid 3. In this hybrid, the adversary A is interacting with a simulator S3, which simulates the
setup phase with A and simulates the oracles OCorr and Ob. In particular, S3 runs a copy of SGGM
(c.f. Lemma. 15), and interacts with A in the following manner.

• Setup: SGGM provides the handlings of [1]1, [1]2, [1]T as well as ξ1, . . . , ξn to S3. S3 samples
τ ∈ Zp, and queries the group operation oracle to create the CRS and the public keys for all
uncorrupted parties. In particular, the public key for an uncorrupted party Pi is generated as
follows:

– encki ← ξi, while the handlings for each [dki · τ j ]1 is obtained by querying the oracle GCMP

to realize the scalar multiplication between ξi and τ j .

All queries for generic group operations are realized by querying the corresponding oracle pro-
vided by SGGM.

• Queries: Ob is responded by following the Fig.9. When A queries OCorr with i, S3 queries DLog
with ξi provided by SGGM. When DLog returns ki ∈ Zp, S3 returns dki := ki to A.

Note that under the condition that SGGM does not abort, Hybrid 3 is identical to Hybrid 2 at
the point of A’s view. Following Lemma 15, the probability that SGGM aborts is negligible.

Hybrid 4. This hybrid is almost identical to Hybrid 3, except that in the challenge oracle Ob, the
encryption algorithm Enc(ek,mb;Γ

∗) is realized as follows:

c =
(
s⊤ ·A,R∗ +mb

)
,

where R∗ is a uniformly sampled element in GT , and A is the matrix Atag while [γ]2 = H(tag) is
now replaced with Γ ∗.

It is easy to see that in Hybrid 4, the adversary has zero advantage to win this security game.
So, it remains to show that any PPT adversary cannot distinguish Hybrid 4 and Hybrid 3.

At this point, the remaining part has been exactly done in [45]. The original proof in [45]
focuses on a set of secret variables that are unknown to the adversary, which includes X (the
random variable of the CRS trapdoor τ), {Ki}i∈H (the random variables for the decryption keys of
honest participants), (S1, . . . , S5) (the random variables for s ∈ Z5

p used in encryption algorithm),
and Γ ∗ (the random variable for the scalar γ∗ of [γ∗]2). It is proved that, assuming all secret
random variables are uniformly distributed, [S5]T (which is s⊤ · b) is indistinguishable with R∗,
even when the adversary is given the handlings of [f1(Y )]1 for all f1(Y ) ∈ L1(Y ), [f2(Y )]2 for all
f2(Y ) ∈ L2(Y ), and [1]T , where

55



L1(Y ) :=

1, X, . . . ,Xn+1, {Ki,KiX, . . . ,KiX
n}i∈H∗ , S3︸︷︷︸

S⊤a6

,
∑
i∈H

KiLi(X) +
∑
i∈C

dkiLi(X) + S4X
t + S5

 ,

L2(Y ) :=

1, X, . . . ,Xn+1, Γ ∗, S1 + ΓS3︸ ︷︷ ︸
S⊤a2

, S1X
n+1 − S1︸ ︷︷ ︸
S⊤a3

, S1X + S2X︸ ︷︷ ︸
S⊤a4

, S2︸︷︷︸
S⊤a5

, S4︸︷︷︸
S⊤a7

, S5X − S5︸ ︷︷ ︸
S⊤a8

 .

In Hybrid 3 and Hybrid 4, note that the secret random variables are exactly (X, {Ki}i∈H, Γ ∗,
(S1, . . . , S5)), and all information available to the adversary that is related to those secret random
variables can be expressed as [f1(Y )]1 or [f2(Y )]2 for some f1(Y ) ∈ L1(Y ) or f2(Y ) ∈ L2(Y ). Note
that due to Lemma 15, the secret keys of all uncorrupted parties are random variables that have not
been assigned concrete scalars in Zp. Therefore, their distributions are uniform, which cannot be
biased by the adversary due to adaptive corruption. The other secret information, which includes
τ ∈ Zp, γ

∗ (the scalar of Γ ∗), and the scalars of (S1, . . . , S5), are all uniformly sampled, and the
adversary never has access to them. Therefore, the remaining proofs can be done by following [45].

D Analysis of Composition Security

Composition of Align We demonstrate a few facts that are useful for proving security when
composing our Align protocol with other protocol instances.

Recall that the PB protocol uses a silent-setup threshold signature scheme STS as a building
block. The security game of STS in Fig.8 enables the adversary to query partial signatures on any
messages except the challenge message via an oracle OPartS. We show that exposing this partial
signing oracle to the adversary A against Align will not undermine the security of Align.

Lemma 16. Align[sid] is secure even when the adversary can access OAlign, which consists of the
following oralces:

• O
P̂artS

which on input (sid, i, msg) returns OPartS((sid
′, msg), i).

• O
Ĉorr

, which on input i returns the secrets and randomness used to respond to the previous
queries with the form of (·, i, ·).

Note that the adversary attacking Align[sid] can only query O
P̂artS

with (sid′, ·, ·) s.t. sid′ ̸= sid

Proof. Note that the security of Align solely relies on the security of each PB instance, which, in
turn, relies on the unforgeability of the underlying STS scheme. Specifically, PB[sid] is secure when
the adversary cannot forge an STS signature on a message in the form of (sid, ·). On the other
hand, the security game of STS enables the adversary to query OPartS on any messages except
the challenge message, which, in this case, must be in the form of (sid, ·). Therefore, allowing
the adversary to query O

P̂artS
with messages not in the form of (sid, ·) as well as O

Ĉorr
will not

undermine the security of the instance PB[sid]. ⊓⊔

Since the protocol Align is deterministic after the setup phase, it is easy to see that, once
the inputs are known, all information an adversary can access in the instance Align[sid] can be
generated by itself with the help of O

P̂artS
and O

Ĉorr
. We summarize this observation in the following

lemma.

56



Lemma 17. Let Align.Setup[sid] be an instance of the setup phase of Align. Let Align[⟨sid, sid0⟩]
be an instance under the setup. Then Align[⟨sid, sid0⟩] is OAlign under Align.Setup[sid].

Next, we show Align remains secure when it is used as a subroutine in WeakCoin.

Proposition 6. Align[⟨sid, ali⟩] remains secure in WeakCoin[sid].

Proof. It naturally follows Lemma 1. In particular, WeakCoin[sid] has no inputs, and all messages
and states due to the code outside Align[⟨sid, ali⟩] are generated without using any information
related to Align[⟨sid, ali⟩], except the outputs of Align[⟨sid, ali⟩], which, however, are public to
the adversary A against Align[⟨sid, ali⟩]. Therefore, there is a PPT algorithm S, which on input of
the view VIEWAAlign

of AAlign can output VIEW′, such that (VIEWAAlign
,VIEW′) distributes identically

to the entire view of A in the composition. ⊓⊔

Composition of the weak coin. We now demonstrate a few facts that are useful for proving
security when composing our WeakCoin protocol with other protocol instances. We consider the
following oracles:

• O
P̂artD

: On input (sid′, i), if sid′ ̸= sid, returns STHE.PartD(ek, sid′, dki)
• O

Ŝign
: On input (sid′, i, msg), if sid′ ̸= sid, returns DS.Sign(ski, (sid

′, msg)).
• Oracles in OAlign, defined in Lemma.16 for the underlying Align.

We denote the set of the above oracles as well as the corruption oracle by OWeakCoin.
We have proved that our WeakCoin protocol is secure even when the adversary has access to

oracles in OWeakCoin in Theorem 2. Now we show an instance of WeakCoin is OWeakCoin-emulatable
under its setup.

Lemma 18. Let WeakCoin.Setup[sid] be an instance of the setup. Let WeakCoin[⟨sid, sid0⟩] be
an instance under the setup of WeakCoin.Setup[sid].Then, WeakCoin[⟨sid, sid0⟩] is OWeakCoin-
emulatable under WeakCoin.Setup[sid].

Proof. Given the public information from the WeakCoin.Setup[sid], in WeakCoin[⟨sid, sid0⟩], the
Fresh message sent by an honest node Pi can be generated by querying O

P̂artD
and O

Ŝign
with

messages in the form of (⟨sid, sid0⟩, i, ·). Then, the input of Pi to Align[⟨sid, sid0, ali⟩] is based on
the Fresh messages it received, which in turn can be generated by querying O

P̂artD
and O

Ŝign
with

messages in the form of (⟨sid, sid0⟩, i, ·). Then, as summarized in Lemma 17, the messages due to
Align[⟨sid, sid0, ali⟩] can be generated with the help of oracles in OAlign. Similarly, all subsequent
messages sent by Pi do not need secret keys of Pi, so they can be generated by a PPT algorithm
on the input of previous messages. The internal states leaked to A due to corruption can also be
generated with the help of the corruption oracle in OWeakCoin. Therefore, WeakCoin[⟨sid, sid0⟩] is
OWeakCoin-emulatable under WeakCoin.Setup[sid].

Composition of MBA. Applying Theorem 2 and Lemma 18, we can prove thatWeakCoin remains
secure when it is used as a subroutine in MBA. In particular, we have the following lemma for the
security of MBA.

Lemma 19. Let MBA[⟨sid, ba⟩] be an instance under the setup WeakCoin.Setup[sid], while the
{vi}i∈H is the input set of the initial honest parties. Then, if any instance of WeakCoin under
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the setup of WeakCoin.Setup[sid] is secure even when the adversary has access to {vi}i∈H, then
MBA[⟨sid, ba⟩] is secure.

In addition, the security of MBA[⟨sid, ba⟩] preserved when the adversary has access to oracles
in OWeakCoin under the restriction that queries must not start with ⟨sid, ba⟩, and MBA[⟨sid, ba⟩]
is OWeakCoin-emulatable under WeakCoin.Setup[sid].

Proof. Let WeakCoin[⟨sid, , sid0, sid′⟩] be an instance inside MBA[⟨sid, sid0⟩]. We can view
MBA[⟨sid, sid0⟩] and its setup as a composition of

(WeakCoin.Setup[sid],WeakCoin[⟨sid, , sid0, sid′⟩])

and the “remaining part” that includes the other instances ofWeakCoin insideMBA[⟨sid, sid0⟩] and
the coin-aided part of MBA[⟨sid, sid0⟩]. The other instances of WeakCoin are OWeakCoin-emulatable
under WeakCoin.Setup[sid], according to Lemma 18. Since the coin-aided part of MBA[⟨sid, sid0⟩]
is information-theoretical and deterministic, all messages and states w.r.t. this part can be efficiently
generated based on the inputs {vi}i∈H and the output of coin instances. Then, it is easy to see
that the “remaining part” is OWeakCoin-emulatable under WeakCoin.Setup[sid]. On the other hand,
under the assumption that WeakCoin[⟨sid, , sid0, sid′⟩] is secure in the stand-alone setting even if
the adversary has access to {vi}i∈H and OWeakCoin, following Lemma 2, MBA[⟨sid, sid0⟩] is secure.

⊓⊔

Composition of leader election. Now, we show that all components in our leader election
protocol are secure.

Proposition 7. All instances of WeakCoin and MBA inside Election[sid] remain secure.

Proof. It follows the fact that all WeakCoin[⟨sid, wc, k⟩] and MBA[⟨sid, ba, k⟩] instances for k =
1, . . . are OWeakCoin-emulatable, and all honest inputs to each MBA[⟨sid, ba, k⟩] are outputs of
WeakCoin[⟨sid, wc, k⟩] that are also OWeakCoin-emulatable. Then, as ensured by Theorem 2 and
Lemma 19, they all remain secure in the composition. ⊓⊔

The following proposition states useful facts when using Election as a subroutine.

Proposition 8. The security of Election[sid] preserves even when the adversary has access to
oracles in OWeakCoin under the restriction that queries must not start with sid, and Election[sid] is
OWeakCoin-emulatable under its setup.

Proof. It trivially follows the security of the underlying components.

Composition of MVBA.

Lemma 20 (MVBA with Silent Setup). Let MVBA be the protocol obtained by instantiating
the PB and leader election subroutines in the MVBA protocol of [52] with instances of PB (Algorithm
5) and Election (Algorithm 3), respectively. Let WeakCoin.Setup[sid] be an instance of the setup, and
let MVBA[⟨sid, mvba⟩] be an instance under the setup with {vi}i∈H as the inputs of honest nodes.
Then, if any instance of PB and any instance of Election under the setup of WeakCoin.Setup[sid] are
secure even when the adversary has access to {vi}i∈H and oracles in OWeakCoin, MVBA[⟨sid, mvba⟩]
is secure.

In addition, the security of MVBA[⟨sid, mvba⟩] is preserved when the adversary has access
to oracles in OWeakCoin under the restriction that queries must not start with ⟨sid, mvba⟩, and
MVBA[⟨sid, mvba⟩] is OWeakCoin-emulatable under WeakCoin.Setup[sid].
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Fig. 10. Coin-aided ADKG [36]

Proof. For any PB[⟨sid, mvba, pb0⟩] instance insideMVBA[⟨sid, mvba⟩], we can viewMVBA[⟨sid, mvba⟩]
as a composition of

(WeakCoin.Setup[sid],PB[⟨sid, mvba, pb0⟩])

and the remaining part, including other instances of PB and ELection and others, that are OWeakCoin-
emulatable. So, PB[⟨sid, mvba, pb0⟩] remains secure in the composition, if it is secure when the
adversary has access to OWeakCoin and {vi}i∈H. Similar arguments apply to any instance of ELection
inside MVBA[⟨sid, mvba⟩]. Hence, MVBA[⟨sid, mvba⟩] is secure under the assumption. It follows
trivially that MVBA[⟨sid, mvba⟩] is secure even when the adversary has access to OWeakCoin and
that it is OWeakCoin-emulatable. ⊓⊔

E Sketch of ADKG Protocol in [36]

The execution flow of the coin-aided ADKG protocol in [36] is in Fig.10.
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