
Efficient Multi-party Private Set Union Resistant to

Maximum Collusion Attacks

Qiang Liu1 and Joon-Woo Lee1(B)

1 Department of Computer Science and Engineering,
Chung-Ang University, Seoul, Republic of Korea

liuqiang0321@gmail.com,
jwlee2815@cau.ac.kr

Abstract. Multi-party Private Set Union (MPSU) enables multiple participants to jointly
compute the union of their private sets without leaking any additional information beyond the
resulting union. Liu et al. (ASIACRYPT 2023) proposed the first scalable MPSU protocol fully
based on symmetric key encryption (SKE), which designates one participant as the ”leader”
responsible for obtaining the final union. However, the protocol assumes that the leader does not
collude with other participants, which weakens its practicality. In this work, we design a scalable
MPSU protocol, Πone-leader

MPSU , which tolerates maximum collusion. The protocol relies primarily on
SKE supplemented with additive homomorphic encryption (AHE), with the designated leader
obtaining the union result. Furthermore, to address the issue of fairness in scenarios where
obtaining the result early provides an advantage, we extend Πone-leader

MPSU and propose a protocol
that allows all participants to receive the union result simultaneously, called Πleaderless

MPSU . We
implement our proposed schemes and conduct a comprehensive comparison with state-of-the-
art solution (Gao et al. PETS 2024) that resist maximum collusion. The results demonstrate
that, while our protocol only offers a moderate improvement in runtime, it significantly reduces
communication cost by approximately 4 to 5 times.

1 Introduction

Private Set Union (PSU) is a fundamental cryptographic protocol that enables two or more
participants to securely compute the union of their sets without disclosing any private informa-
tion. With the growing demand for privacy protection, PSUs have become increasingly vital
in scenarios involving joint data analysis, finding applications in areas such as network risk
assessment [1], [2] and data mining [3], [4], where securely computing the union of sets is cru-
cial. For example, financial institutions like banks may need to share blacklists of suspicious
transactions or fraudulent accounts to better prevent financial fraud. These blacklists contain
sensitive information and are generated based on each bank’s risk detection strategy, making
direct sharing impractical due to privacy and security concerns. Using PSU, banks can securely
compute the union of their blacklists without revealing customer privacy or detection strategies,
thereby achieving comprehensive risk assessment and collaboration while mitigating privacy and
strategy leakage inherent in traditional sharing methods.

mailto:liuqiang0321@gmail.com
mailto:jwlee2815@cau.ac.krm

During the past decade, Private Set Intersection (PSI) has garnered extensive research, with
two-party PSI making particularly notable progress [5–13]. The most efficient two-party PSI
protocol [12] now achieve performance comparable to that of insecure naive hashing PSI. Fur-
thermore, benefiting from advancements in two-party PSI, efficient multi-party PSI (MPSI)
for large sets containing millions of items have also seen significant development [14–18]. In
contrast, PSU has received relatively less attention. For more than a decade after Kisser and
Song initially proposed the two-party PSU protocol [19], PSU remained limited to relying on
expensive additive homomorphic encryption (AHE) and complex circuits, resulting in low per-
formance that made practical large-scale set operations nearly impossible. It wasn’t until 2019,
when Kolesnikov et al. introduced the first two-party PSU protcol based on symmetric key
operations suitable for large-scale sets [3], that significant progress was made. In the follow-
ing years, several higher-performance two-party PSU protocols were developed [20,21], building
upon Kolesnikov et al.’s work. Notably, the proposed by Zhang et al. achieved linear commu-
nication and computation complexity for PSU in 2023 [22], marking a significant breakthrough
in this field.

Similarly to two-party PSU, research on MPSU has been primarily focused on AHE [19,23–25]
and general MPC frameworks [26]. However, due to the high computational cost associated with
these techniques, their applications remain largely theoretical and are challenging to implement
for large-scale sets in practice. In 2023, Liu et al. introduced the first MPSU protocol fully based
on SKE, capable of handling large sets [27]. Compared to prior approaches, Liu et al.’s work
achieved over a 100 times performance improvement. Nevertheless, the security is guaranteed
only under the assumption that the leader does not collude with other participants. Recently,
Gao et al. proposed the first MPSU protocol capable of handling large-scale sets while resisting
maximal collusion attacks among participants [28]. Their protocol combines SKE and AHE.
Although the protocol mainly employs SKE-based techniques for interaction, the data exchanged
during each interaction is encrypted using AHE, which results in significant communication cost.

In summary, existing protocols fail to strike a good balance between security and efficiency.
Protocols that achieve high levels of security often incur significant communication or computa-
tional cost, while those that prioritize efficiency often require compromising on security. Given
these limitations, we raise the following question:

Under the assumption of maximal semi-honest collusion, is it possible to design a multi-party
private set union protocol that primarily relies on symmetric key encryption, rather than
heavily depending on additive homomorphic encryption, while achieving a well-balanced

trade-off among security, scalability, and efficiency?

1.1 Contribution

In this work, we provide a definitive answer to the aforementioned question. Specifically, our
contribution can be summarized as follows:

• We analyze and summarize the major two-party PSU and MPSU, and conduct a review
and classification of their communication and computation complexity from both two-party
and multi-party perspectives.

• We propose a MPSU protocol, Πone-leader
MPSU , which tolerates maximal semi-honest collusion.

The protocol is primarily based on SKE, using AHE only for encrypting set items during

2

transmission and for recovering the items during the joint decryption phase. This achieves
a well-balanced trade-off between security and performance, enabling large-scale set oper-
ations while maintaining robust security guarantees. The protocol is divided into an offline
phase and an online phase, with the core of the online phase denoted as Πcore

MPSU. Upon
completion of the protocol, the leader obtains the union result.

• In some application scenarios, where all participants obtain the union result simultane-
ously, as early access may provide an advantage (i.e., the result is highly time-sensitive).
To address fairness, we extend the Πone-leader

MPSU protocol and propose the leaderless MPSU
(Πleaderless

MPSU). This protocol eliminates the role of one leader, enabling all participants to
collaboratively compute and synchronously obtain the union result. It tolerates maximal
semi-honest collusion and ensures fair distribution. The offline phase is identical to that
of Πone-leader

MPSU , while the computational and communication cost of the online phase scale
linearly with the number of participants.

• We implement our protocols using a naive threshold Elgamal encryption scheme. Addi-
tionally, we compare Πone-leader

MPSU with the scheme in [28]. Since [28] employs a thresh-
old Elgamal encryption scheme based on Curve25519, we run their protocol and re-
run our protocol using their encryption scheme for comparison. Notably, Curve25519-
based scheme achieves 128-bit computational security and offers higher efficiency than
the naive threshold Elgamal scheme. However, it can only operate on data that can
be mapped to points on the elliptic curve, rather than arbitrary data. The comparison
shows that our protocol reduces communication cost by approximately 4 ∼ 5 times and
also moderately outperforms [28] in runtime. The implementation is released on Github:
https://github.com/QIANG-crypto-230608/LL2024.git.

1.2 Related Work

We conduct a theoretical comparative analysis of the current major two-party PSU and MPSU
protocols under the semi-honest security setting.

Two-party PSU. Initially, in 2005, Kissner and Song proposed a pioneering PSU protocol
based on polynomial representations and AHE [19]. The union of two sets was determined by
computing the roots of the polynomial f × g, but its quadratic complexity limited its practical
utility. Later, in 2007, Frikken introduced an improved PSU protocol with linear communication
complexity [23]. The receiver encrypts a polunomial f and sends it to the sender, who processes
each y ∈ Y and returns the results. The receiver then decrypts these to determine the union.
Despite communication efficiency has been improved, the computational complexity remained
O(n2). In 2007, Davidson and Cid proposed an enhanced PSU protocol using Bloom Filters
(BF) along with AHE [29]. The receiver flips bits in the BF, encrypts it to create an Encrypted
Inverse BF (EIBF), and sends it to the sender. The sender processes the EIBF and returns
ciphertexts to the receiver, who decrypts them to obtain the union. While the computational
complexity is reduced to O(λn), communication complexity increases to O(κλn) due to IBF
encryption and decryption.

Kolesnikov et al. (2019) introduced a PSU protocol based on symmetric key encryption [3],
utilizing the RPMT protocol to verify if an item from the sender is in the receiver’s set. This
protocol achieved a magnitude performance improvement with communication and computa-
tional complexity of O(κλ log n) and O(n log n log log n), respectively. Later, in 2021, Garimella

3

https://github.com/QIANG-crypto-230608/LL2024.git

et al. proposed a PSU protocol using Permuted Characteristic (PC) [10], relying on the Oblivi-
ous Switching Network (OSN) [40], which reduced the computational complexity to O(n log n),
resulting in a performance improvement of 2 − 2.5 times over [3]. In 2022, Jia et al. further
enhanced the protocol using OSN to address input set imbalances by shuffling both the receiver’s
and sender’s sets [21], achieving a 4− 5 times speedup compared to [3], while maintaining sim-
ilar complexity to [10]. Recently, in 2023, Zhang et al. designed a novel multi-query RPMT
(mq-RPMT) functionality for constructing their PSU protocol. They proposed two approaches:
one based on symmetric key encryption (SKE) and the other based on re-randomized public key
encryption (PKE). Their proposed achieved linear complexity with the lowest communication
cost among current protocols.

The core idea of the current two-party PSU protocols suitable for large-scale sets is that
receiver first determines whether each item in the sender’s set X belongs to the receiver’s set
Y . Subsequently, the difference Y \X is obtained using OT protocol. However, this approach
is challenging to directly compute the union

⋃n
i=1Xi using the current two-party technologies,

such as by computing the union X1 ∪ (X2\X1)∪ · · · ∪ (Xn\(X1 ∪X2 ∪ · · · ∪Xn−1)), it would not
only reveal the cardinality of difference |Xi\(X1∪X2∪· · ·∪Xi−1)| but also fail to guarantuee the
privacy of the items in Xi\(X1∪X2∪· · ·∪Xi−1) during each union computation. Therefore, the
approach of two-party PSU cannot meet the privacy and security requirements of the MPSU.

MPSU. Kissner and Song proposed the earliest MPSU protcol based on polynomial rep-
resentation and AHE [19]. In their protocol, each party Pi (i ∈ [t]) represents their input set
Xi = {xi1, xi2, ..., xin} as a polynomial fi(x) =

∏n
j=1(x−xj), whose roots are the set items. The

product of these polynomials represents the union of all input sets. Their approach requires a
large number of AHE operations and high-degree polynomial evaluations with a computational
complexity of O(t3n2). Subsequently, Frikken proposed an improved method based on the ideas
in [19], but it still requires O(t2n log n) multiplication operations [23]. In their protocol, party
P1 encrypts f1 using AHE and sends it to P2, who then evaluates it for each item in set X2.
The difference set X2\X1 is then computed based on these evaluations, which can be repeated
for additional sets to compute the final union. In 2012, Seo et al. proposed a new approach
based on rational polynomial functions and reversed Laurent series, associating each party’s
input set with a rational function and providing constant-round complexity [24]. Although it
improves efficiency compared to [19], [23], its security is limited to scenarios where at most t/2
parties collude. Gong et al. proposed a constant-round MPSU protocol based on AHE and BF
in 2022 [25]. The protocol first constructs a BF to store the union and exploits the no-collusion
property of BF to determine if each position is mapped by only one item, thereby identifying the
items in the set. With the length of the BF depends on the statistical security parameter and
the union size, resulting in a large number of AHE operations and computational cost, making
it impractical.

In additional to using expensive AHE, employing generic Secure Multi-party Computation
(SMPC) to address the MPSU is also an interesting approach. In 2012, Blanton and Aguiar
proposed an MPSU protocol based on Oblivious Sorting and generic SMPC, which operates in
an honest majority setting [26]. The core idea is to merge all participants’ sets into a large
set, perform an oblivious sort, and then remove duplicate items by comparing adjacent items
to obtain the union. Nevertheless, due to its reliance on SMPC techniques, specifically using
Batcher’s network [31] to sort the union with O(n log2 n) comparisons, the protocol is inefficient
when handling larger set sizes or a greater number of participants.

Liu and Gao in 2023 proposed an MPSU protocol for efficiently computing large-scale sets,

4

based on symmetric key operations [27]. The protocol relies on a multi-party secret-shared
shuffle and a multi-query secret-shared private membership test as its core components. Under
the presence of a leader, the protocol allows the leader to obtain the union result by interacting
with other participants. However, the security of their protocol depends on the assumption that
the leader does not collude with other participants, which results in weaker security guarantees.

Recently, in 2024, Gao et al. proposed a MPSU protocol capable of resisting maximal
collusion attacks [28]. In their scheme, a sub-protocol called ”membership OT (mOT)” was
designed by combining OT with Secret-shared Private Membership Test to perform oblivious
item membership detection. The protocol encrypts data using AHE and uses the encrypted
data as the input for mOT to enable interactive computation. The leader then obtains the
encrypted union data, and the final union is derived through joint decryption. However, since
the entire communication during the protocol involves data encrypted with AHE, the scheme
incurs a significant communication cost.

Following, we summarize the communication and computational complexity, as well as the
encryption operations used in two-party PSU schemes, in Table 1. Additionally, Table 2 presents
a comparison of the communication and computational complexity, resistance to collusion at-
tacks, and encryption operations for MPSU schemes.

Protocol Year Comm. Comp. Enc. ope.
[19] 2005 O(n2) O(n2)

PKE
[23] 2007 O(n) O(n log log n)
[29] 2017 O(n) O(n)

PKE-based [22] 2023 O(n) O(n)
[3] 2019 O(n log n) O(n log n log log n)

SKE
[10] 2021

O(n log n) O(n log n)
[21] 2022

SKE-based [22] 2023 O(n) O(n)

Table 1: Asymptotic communication and computation complexities of semi-honest secure Two-
party PSU protocols. Note: Comm./Comp.: Communication/Computational complexity; Enc.
ope.: Encryption operations; PKE: Public-key encryotion operations; SKE: Symmetric key en-
cryotion operations; n: Size of sets.

Protocol Year Comm. Comp. Threshold Ope.

[26] 2012 O(t2n log2(nt)) O(t2n log2(nt)) < ⌈t/2⌉ Oblivious sorting
[24] 2012 O(t3n2) O(t4n2) < ⌈t/2⌉

SKE
[27] 2023 O(t2n log(tn)) O(tn) < t (leader no colludes with others)
[19] 2005 O(t2n) O(t3n2) < t

PKE[23] 2007 O(t2n) O(t2n log n) < t
[25] 2022 O(tn) O(tn) < t
[28] 2024 O(t2n log(n)/ log log(n) O(t2n log(n)/ log log(n) < t SKE + PKE

Our Πone-leader
MPSU - O(t2n) O(t2n) < t SKE (+partially PKE)

Table 2: Asymptotic communication and computation complexities of semi-honest secure
MPSU protocols. Note: Comm./Comp.: Communication complexity/Computational complex-
ity; Ope.: Operation technique; PKE: Public-key encryotion operations; SKE: Symmetric key
encryotion operations; t: Number of parties; n: Size of sets.

5

2 Preliminaries

2.1 Notation

Assume Pi (i ∈ [t]) denotes a participant, and Xi = {x1i , x2i , ..., xni } represents the set held

by each participant Pi, where xji (j ∈ [n]) denotes the j-th item in set Xi. [n] denotes the set
{1, 2, .., n}. κ, λ are the computational security parameter and the statistical security parameter

respectively. r
$←− {0, 1}ℓ denotes a randomly generated binary number r with bit length ℓ. ||

represents the string concatenation operator, such taht a||b means concatenating strings a and
b. Pseudorandom function is denoted by PRF, and probabilistic polynomial-time is abbreviated
as PPT.

2.2 Security Model

In this work, we consider the adversaries are semi-honest, or honest-but-curious, meaning that
adversaries strictly follow the protocol specifications but attempt to learn additional information
by examining the protocol transcripts. We use the ”simulation paradigm” method from [?] to
prove the semi-honest security, with the specific definition given below.

Definition 2.1. Let f : ({0, 1}∗)t → ({0, 1}∗)t be an t-ary functionality, where fi(x1, ..., xt)
denotes the i-th item of f(x1, ..., xt). For I = (i1, ..., ik) ⊆ [t], we let fI(x1, ..., xt) denote the
subsequence fi1(x1, ..., xt),...,fik(x1, ..., xt). Let Π be an t-party protocol for computing f . The

view of the i-th party during an execution of Π on
−
x = (x1, ..., xt) is denoted by ViewΠ

i (
−
x).

For I = (i1, ..., ik), we let ViewΠ
I (
−
x)

def
= (I,ViewΠ

i1(
−
x), ...,ViewΠ

ik
(
−
x)). We say that Π privately

computes f if there exists a PPT algorithm, denoted Sim, such that for every I ⊆ [t], it holds
that

{(Sim(I, (xi1 , ..., xik), fI(
−
x)), f(

−
x))}−

x∈({0,1}∗)t
c≡ {ViewΠ

I (
−
x),OutputΠ(

−
x)}−

x∈({0,1}∗)t
,

where OutputΠ(
−
x) denotes the output sequence of all parties during the execution represented in

ViewΠ
I (
−
x).

2.3 Building Blocks

Oblivious Programmable PRF An Oblivious PRF (ORRF) [33] allows the sender to learn
the PRF key k, while the receiver learns F (k, x), where F is a PRF and x is the receiver’s input.
In an Oblivious Programmable PRF (OPPRF) [14], the PRF further allows to ”program” the
output of F on a limited number of inputs, namely P = {(xj , yj)}j∈[n], which means that the
PRF value for xj is encoded as yj . The receiver’s input is {qi}i∈[t]. After the execution, the
sender obtains (k, hint), while the receiver learns the PRF output {F (k, hint, qi)}i∈[t] and the
hint. Importantly, the receiver does not know whether the obtained output items F (k, hint, qi)
match the sender’s programmed PRF input items yj , i.e., if qi = xj , then F (k, hint, qi) = yj ;
otherwise, F (k, hint, qi) is pseudorandom. The ideal functionality FOPPRF is given in Fig. 1.

Permute + Share The Permute + Share (PS) functionality FPS was proposed by Chase et
al. in 2020 [34]. In this functionality, there are two participants, namely a sender and a receiver.

6

Functionality FOPPRF

Parameters:

• Two parties: Sender S and Receiver R;
• A Programmable PRF F with the key generation algorithm KeyGen(·);
• Upper bound n on the number of points to be programmed;

• Upper bound t on the number of queries.

Functionality:

1. Wait for input P = {(x1, y1), ..., (xn, yn)} from the sender S;
2. Wait for input {q1, ..., qt} from the receiver R;
3. Run (k, hint)← KeyGen(P) and compute F (k, hint, q1), ..., F (k, hint, qt);

4. Give output (k, hint) to the sender S and output (hint, {F (k, hint, qi)}i∈[t]) to the
receiver R.

Fig. 1. Ideal Functionality for Oblivous Programmble PRF.

The sender holds a set {x1, ..., xn} of size n, where each item has a bit length of ℓ, while the
receiver chooses a permutation function π to permute the n items. The goal of FPS is for the
sender to learn the share values {sπ(1), ..., sπ(n)}, while the receiver obtains the other shared
values {sπ(1) ⊕ xπ(1), ..., sπ(n) ⊕ xπ(n)}. The concrete ideal functionality FPS is shown in Fig. 2.

Functionality FPS

Parameters:

• Two parties: Sender S and Receiver R.
Functionality:

1. Wait for input {x1, ..., xn} ∈ ({0, 1}ℓ)n from the sender S;
2. Wait for input a permutation π : [n]→ [n] from the receiver R;
3. Generate the shares {sπ(1), ..., sπ(n)} ∈ ({0, 1}ℓ)n;
4. Give output {sπ(1), ..., sπ(n)} to the sender S and output {sπ(1) ⊕ xπ(1), ..., sπ(n) ⊕

xπ(n)} to the receiver R.

Fig. 2. Ideal Functionality for Permute + Share.

Private Equality Test Private Equality Test (PEqT) is used to determine whether two
strings are equal. More specifically, two participants, namely a sender and a receiver, each hold
a string x and y respectively. By invoking the PEqT functionality, both participants input their
respective strings x and y, and eventually the sender obtains an output bit b, while the receiver
obtains an output bit b∗, such that if x = y, then b ⊕ b∗ = 0; otherwise, b ⊕ b∗ = 1. The ideal
functionality FPEqT is illustrated in Fig. 3.

7

Functionality FPEqT

Parameters:

• Two parties: Sender S and Receiver R.
Functionality:

1. Wait for input x from the sender S;
2. Wait for input y from the receiver R;
3. Generate b and b∗ satisfying that if x = y, b⊕ b∗ = 0, otherwise, b⊕ b∗ = 1;

4. Give output b to the sender S and output b∗ to the receiver R.

Fig. 3. Ideal Functionality for Private Equality Test

1-out-of-2 OT Extension 1-out-of-2 OT Extension (
(
2
1

)
-OTe) is a major cryptology building

block [35]. It allows the sender input n message pairs (xi0, x
i
1) with each message is ℓ-bit, while

the receiver holds n-bit choice vector b. At the end, the receiver obtains the output result xib[i],
but the sender obtains nothing. The ideal functionality F(21)-OTe is shown in Fig. 4

Functionality F(21)-OTe

Parameters:

• Two parties: Sender S and Receiver R;
• Computational security parameter κ;

• Number of based-OTs β = κ.

Functionality:

1. Wait for input (xi0, x
i
1) ∈ ({0, 1}ℓ)2n from the sender S;

2. Wait for input choice vector b ∈ {0, 1}n from the receiver R;
3. Give output (x1b[1], ..., x

n
b[n]) to the receiver R.

Fig. 4. Ideal Functionality for 1-out-of-2 OT Extension

Simple Hashing In the simple hashing scheme, β hash functions h1, · · · , hβ : {0, 1}∗ → [b]
are used to map n items into b bins B1, · · · , Bb. Each item xi (i ∈ [n]) is added to bins
Bh1(xi), Bh2(xi), · · · , Bhβ(xi), regardless of whether those bins are already occupied. In other
words, an item can be assigned to multiple bins, which introduces redundancy in data dis-
tribution, thereby improving the flexibility and reliability of data retrieval. According to the
inequality, when hashing n items into b bins, the maximum bin size ρ can be set to ensure that
except with a probability of 2−λ, no bin will contain more than ρ items [36]. Specifically, ρ
satisfies the condition

Pr[∃bin with ≥ ρ items] ≤ b[
∑n

i=ρ

(
n
i

)
· (1b)

i · (1− 1
b)

n−i].

8

Cuckoo Hashing Cuckoo Hashing was introduced by Pagh and Rodler in 2001 [37]. It uses
multiple hash functions h1, h2, . . . , hγ to map items to bins in a hash table of size b = ϵn. The
distinctive feature of Cuckoo Hashing is its ability to ensure that each bin contains only one
item, thereby maintaining structural simplicity and minimizing collusions. The core of this
technique lies in a deterministic eviction process. When an item x is inserted, it is initially
hashed into one of the bins Bh1(x), Bh2(x), . . . , Bhγ(x). If all designated bins are occupied, the
algorithm randomly selects one of the occupied bins, evicts the item currently in that bin, and
re-inserts it into another bin determined by a different hash function. This process is repeated
iteratively until either a vacant bin is found, or the number of evictions reaches a predefined
threshold, indicating that insertion into the regular hash table is infeasible. In such cases,
the item is placed into a small auxiliary space called the ”stash,” reserved for overflow items.
Mathematical analysis of Cuckoo Hashing shows that, by appropriately tuning the parameters
γ and ϵ, the stash size can be minimized to zero in most practical scenarios while maintaining
a failure probability as low as 2−λ [6].

Encryption Scheme In our constructed protocols, the AHR-TPKE (Additively Homomor-
phic Re-randomizable TPKE) scheme is used. We provide the formal definition of AHR-TPKE
as given in Appendix A following the description in [38].

3 Technique Overview

We present the ideal functionality of the MPSU we aim to achieve, as shown in Fig. 5. Assume
there are t participants P1, ...,Pt each holding a set Xi = {xi1, ..., xin} of size n, where the
maximum bit length of items in the set is ℓ. This ideal functionality encompasses both the one-
leader and leaderless settings. In both scenarios, t participants Pi input their respective sets Xi

to compute the union of all input sets. However, under the one-leader mode, only the leader
receives the computed union

⋃t
i=1Xi, whereas in the leaderless mode, all participants obtain

the union simultaneously. It is worth noting that the ideal functionality can easily compute the
union of all input sets, and ensure that each participant obtains the result. However, during the
execution, no additional information beyond the final output should be disclosed.

Functionality FMPSU

Parameters:

• t parties P1, ...,Pt and the set size n;

• The maximum bit length of all items is ℓ

Functionality:

1. Wait for input set Xi = {xi1, ..., xin} ∈ ({0, 1}∗)n from Pi;
2. (a) One-leader: Give output

⋃t
i=1Xi to Pt.

(b) Leaderless: Give output
⋃t

i=1Xi to P1, ...,Pt simultaneously.

Fig. 5. Ideal Functionality for Multi-party Private Set Union

Based on the ideal functionality presented in Fig. 5, we design our MPSU protocols under the
semi-honest security model that can resist collusion by up to t−1 adversarial participants among

9

t participants. Before diving into the technical overview of our MPSUs, we briefly describe a
interesting module that plays a fundamental role in our designed MPSU protocols.

Fig. 6. Illustration of The BEtORG Protocol

Batched Equality-tested Oblivious Random Generation (BEtORG) is constructed in this
work as a interesting block of our MPSU protocol, and the flow is illustrated in Fig. 6. As
shown in Fig. 6, the BEtORG protocol begins by invoking the PEqT functionality n times to
determine the relationship between xi and yi for each pair. Specifically, in each PEqT invocation,
a bit value is sent to the sender and the receiver, denoted ei and ẽi, respectively. It holds that
if xi = yi, then ei ⊕ ẽi = 0; otherwise, ei ⊕ ẽi = 1. Next, the sender randomly generates
n pairs of strings {(rei , rei⊕1)}i∈[n] as inputs for the 1-out-of-2 OTe, while the receiver inputs
ẽi = ẽi ⊕ {1}n. As a result, the receiver obtains the n obliviously transferred string {rẽi}i∈[n].
More specifically, if BEtORG is treated as a block box, where the sender and the receiver input
their sets X and Y , the final output will provide each party with a respective result: the sender
will obtain {(rei , rei⊕1}i∈[n], denoted as {(ai, ãi}i∈[n], while the receiver will obtain {rẽi}i∈[n],
denoted as {bi}i∈[n]. In other words, apart from the final output obtained by themselves, the
participants cannot obtain any other private information.

3.1 Our One-leader MPSU Protocol

Fig. 7 (a) and (b) respectively illustrate the overall workflow of Πone-leader
MPSU and the detailed

flowchart of its online phase. As shown in Fig. 7 (a), for simplicity, we take four participants
as an example to illustrate the joint computation. The four participants Pi jointly execute the
threshold re-randomizable PKE scheme to generate a shared public key pk and individual secret
key ski. Simultaneously, based on their respective sets Xi, each participant also constructs their
own simple hashing table XSi, cuckoo hashing table XCi, and encrypted cuckoo hashing table
EXCi, all with a maximum bin size b. Notably, for j ∈ [b], EXCi[j] = Enc(pk, H(XCi[j])||XCi[j]).

After the preparation phase is completed, each of the four participants Pi provides the
constructed inputs ((pk, ski),XSi,XCi,EXCi) to the online phase. As illustrated in Fig. 7 (a),
the online phase consists of two parts. First, the intermediate output is computed through the

10

(a) Flowchart of Πone-leader
MPSU

(b) Flowchart of The Detailed Online Phase of Πone-leader
MPSU

(c) Flowchart of The Protocol Πleaderless
MPSU

Fig. 7. Illustration of Our New MPSU Protocols for 4 Participants.

Πcore
MPSU. Then, this output undergoes partial decryption and shuffling sequentially through each

participant, until the final participant, P4, completes the process and computes the final union
set, that is shuffled

⋃4
i=1Xi.

The above provided an overview of our Πone-leader
MPSU protocol execution process. Next, we pro-

vide a detailed breakdown of the online phase in the Πone-leader
MPSU , as depicted in Fig. 7 (b). First,

the operation flow of Πcore
MPSU is as follows. The first stage within Πcore

MPSU is the FOPPRF+FPS

execution phase. (1) Pi (i ∈ [4]) runs FOPPRF with other Pj (j ∈ {i + 1, .., 4}), where Pi acts
as the sender and Pj acts as the receiver. (2) Using the results from FOPPRF, Pi then runs FPS

with other Pj , where Pi acts as the sender and Pj acts as the receiver. Next is the second stage
of execution within Πcore

MPSU. Initially, P1 and P2 execute FBEtORG, where P1 acts as the sender
and P2 acts as the receiver. Then, P1 uses the result from FBEtORG to mask the items in EXC1,
and sends the masked data to P2. For simplicity, we denote the masked and transmitted data as

11

packaged[P1]. Subsequently, P2 combines its own data with packaged[P1], and repeats the above
process with P3. This process continues sequentially until P3 and P4 complete the operation,
with P4 finally obtaining the data, denoted as packaged[P1P2P3] from P3.

Following, the second phase of the online phase, namely the joint decryption and shuffle
phase, proceeds as follows. In this phase, the four participants sequentially perform partially
decryption operations and shuffle the partially decrypted results. Once P4 completes this pro-
cess, it receives the computed data, which corresponds to the shuffled set (X1 ∪X2 ∪X3) \X4.
Then the P4 performs the operation ((X1 ∪ X2 ∪ X3) \ X4) ∪ X4 =

⋃4
i=1Xi. This marks the

completion of Πone-leader
MPSU protocol. It is worth noting that during the joint decryption + shuffle

in the online phase, the decrypted data is randomly shuffled, meaning that the order of final
output union set is different each time.

3.2 Our Leaderless MPSU Protocol

Our Πleaderless
MPSU protocol is an extension of the Πone-leader

MPSU protocol, as illustrated in Fig. 7 (c). From
the flowchart, it is clear that the offline phase follows the same steps as the Πone-leader

MPSU protocol.
This includes a series of set processing and computation steps, as well as the collaborative
execution of the key generation algorithm for the encryption scheme by all participants. These
steps produce the required inputs for the online phase, namely ((pk, ski),XSi,XCi,EXCi).

In the online phase, the Πleaderless
MPSU protocol extends the Πone-leader

MPSU protocol. Specifically, as
described in Fig. 7 (b), running Πcore

MPSU enables the last participant in the protocol to obtain valid
output information. Thus, in Πleaderless

MPSU , we run Πcore
MPSU four times, with each participant taking

on different roles during these runs. This ensures that, by the end of the protocol execution,
each participant has obtained valid output information.

During the subsequent joint decryption and shuffle phase, all participants execute the fol-
lowing operations in parallel to ensure that each participant simultaneously obtains the union
output. Specifically, for i ∈ [4], the joint decryption and shuffle operations are sequentially
performed in the order Pi → Pi+1 → Pi+2 → Pi+3, where the indices are computed modulo
5 with an offset of +1. At the end of this process, Pi+3 obtains the shuffled union set. It is
important to note that, since the participants corresponding to each position vary with different
values of i, the above process can be executed in parallel even in a single-threaded setting. This
ensures that all participants simultaneously obtain the computed union set upon completion of
the protocol. However, due to the random shuffling at each step, the union sets obtained by
each participant, while identical in terms of elements, will have random orderings.

Summary, we have provided a detailed overview of the overall flow of our proposed protocols.
In the next section, we will present a complete description and analysis of our protocols.

4 New MPSU protocol

In this section, we provide a detailed construction and analysis of the aforementioned Πone-leader
MPSU

and Πleaderless
MPSU protocols. A key building used in the protocols is ΠBEtORG, which is newly

developed in this work. Below, we first describe this new building block in detail, followed by a
through introduction to Πone-leader

MPSU and Πleaderless
MPSU .

12

4.1 New Building Block

As mentioned above, we construct a new building block called “Batched Equality-tested Obliv-
ious Random Generation”(BEtORG), whose ideal functionality is shown in Fig. 8. In this
construction, the sender and receiver hold sets {xi}i∈[n] ∈ ({0, 1}ℓ)n and {yi}i∈[n] ∈ ({0, 1}ℓ)n,
respectively, and use them as inputs to the functionality FBEtORG. Finally, the sender obtains
the set {(ai, ãi)}i∈[n] and the receiver obtains the set {bi}i∈[n], satisfying that if xi = yi, bi = ãi;
otherwise, bi = ai. During the functionality execution, the string pairs of set {(ai, ãi)}i∈[n]
is generated randomly, satisfying that (ai, ãi)

$← ({0, 1}ℓ)2. Subsequently, a conditional set
{bi}i∈[n] is generated, where bi ∈ {0, 1}ℓ. The term ”conditional” means that if xi ̸= yi, bi = ai;
otherwise, bi = ãi. Finally, set {(ai, ãi)}i∈[n] is output to the sender, while {bi}i∈[n] is output to
the receiver. It is worth noting that upon completion of the functionality FBEtORG, neither the
sender nor the receiver can distinguish whether bi = ai or bi = ãi.

Functionality FBEtORG

Parameters:

• Two parties: Sender S and Receiver R.
Functionality:

1. Wait for input set {x1, ..., xn} ∈ ({0, 1}ℓ)n from the sender S;
2. Wait for input set {y1, ..., yn} ∈ ({0, 1}ℓ)n from the receiver R;
3. Generate n string pairs {(ai, ãi)}i∈[n] randomly. Construct a conditional set {bi}i∈[n],

s.t. if xi ̸= yi, then bi = ai; otherwise set bi = ãi;

4. Give output {(ai, ãi)}i∈[n] to the sender S, and output {bi}i∈[n] to the receiver R.

Fig. 8. Ideal Functionality for Batched Equality-tested Oblivious Randomness Generation

According to the description of the functionality FBEtORG above, we constructed a concrete
protocol ΠBEtORG, as shown in Fig. 9. The protocol is designed with FPEqT, F(21)-OT as the main

building blocks. For a more detailed description of the protocol, the sender and receiver first
invoke FPEqT n times, where each time two parties input an item, xi and yi, respectively. In the
end of FPEqT, the sender and receiver each obtain a bit value, denoted as ei and ẽi (i.e, if xi = yi,
then ei⊕ ẽi = 0; otherwise, ei⊕ ẽi = 1). Next, based on the vector e of length n bits, the sender
randomly generates n pairs of strings (rei , rei⊕1), each with a bit length of ℓ, while ensuring
that the two strings in each generated pair are distinct. After this, the sender and receiver call
F(21)-OT, where the sender inputs the constructed random string pairs {(rei , rei⊕1)}i∈[n], and the

receiver inputs the vector ẽ = ẽ ⊕ {1}n. After the completion of F(21)-OT, the receiver obtains

the set {rẽi}i∈[n], while the sender obtains nothing. Upon completion of the protocol ΠBEtORG,
the sender holds {(ai, ãi)}i∈[n] = {(xibi , x

i
bi⊕1)}i∈[n], while the receiver holds {bi}i∈[n] = {rẽi}i∈[n].

We show the security of ΠBEtORG in Theorem 4.1 as below.

Theorem 4.1. The protocol in Fig. 9 securely computes FBEtORG against semi-honest adver-
saries in the (FPEqT and F(21)-OT)-hybrid model.

Proof. We will demonstrate that for any adversary A, we can construct a simulator Sim that
simulates the view of the corrupted sender S and the corrupted receiver R, such that the

13

Protocol ΠBEtORG

Inputs:

• Sender S: set {x1, ..., xn} ∈ ({0, 1}ℓ)n;
• Receiver R: set {y1, ..., yn} ∈ ({0, 1}ℓ)n.

Protocol:

1. For i ∈ [n]: S and R invoke FPEqT, where S acts as sender with input xi and R
acts as receiver with input yi. S obtains the output ei and R obtains the output ẽi;

2. S randomly selects n pairs of strings {(rei , rei⊕1)}i∈[n]
$← ({0, 1}ℓ)2n, ensuring that

the two strings in each pair are distinct;

3. S and R invoke F(21)-OTe, where S acts as sender with input {(rei , rei⊕1)}i∈[n] and
R acts as receiver with input ẽ = ẽ ⊕ {1}n. R obtains the output {rẽi}i∈[n], where
if ẽi = ei, rẽi = rei , otherwise, rẽi = rei⊕1;

4. S obtains {(ai, ãi)}i∈[n] = {(rei , rei⊕1)}i∈[n], R obtains {bi}i∈[n] = {rẽi}i∈[n].

Fig. 9. Batched Equality-tested Oblivious Randomness Generation Protocol

produced transcript in the ideal-world is indistinguishable from that in the real-world in any
PPT environment.

Corrupted S: The simulator Sim simulates a real execution in which S is corrupted. Since
A is semi-honest, Sim can directly obtain the input set {x1, ..., xn} of S and externally send

it to FBEtORG. Upon receiving xi from A, Sim randomly selects ei
$← {0, 1}, and simulates

the execution of ΠPEqT. Upon receiving the input {(rei , rẽi⊕1)}i∈[n] for Π(21)-OT from A, Sim
simulates the execution of Π(21)-OT.

Next, we demonstrate that the outputs generated by Sim are indistinguishable from the real
view of S through the use of the following hybrids:

Hybrid 0 S’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of ΠPEqT is replaced by ei,
which is chosen by Sim, and Sim invokes the FPEqT simulator to generate the simulated
view for S. The computational indistinguishability between the view in simulation and
that in the real protocol is ensured by the security of the protocol ΠPEqT.

Hybrid 2 This hybrid is identical to Hybrid 1, except that Sim runs the simulator F(21)-OTe to

generate the simulated view for S. The computational indistinguishability between the
view in simulation and that in the real protocol is ensured by the security of the protocol
Π(21)-OTe. The bybrid is the view output by Sim.

Corrupted R: The simulator Sim simulates a real execution in which R is corrupted. Since
A is semi-honest, Sim can directly obtain the input set {y1, ..., yn} of R and externally send it

to FBEtORG. Upon receiving yi from A, Sim randomly selects ẽi
$← {0, 1}, and simulates the

execution of ΠPEqT. Upon receiving the input ẽ for Π(21)-OTe from A, and obtaining the output

{rẽ1 , ..., rẽn} from FBEtORG, Sim simulates the execution of Π(21)-OTe with {rẽ1 , ..., rẽn} as output.

14

Following, we demonstrate that the outputs generated by Sim are indistinguishable from the
real view of R through the use of the following hybrids:

Hybrid 0 R’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of ΠPEqT is replaced by ẽi,
which is chosen by Sim, and Sim invokes the FPEqT simulator to generate the simulated
view for R. The computational indistinguishability between the view in simulation and
that in the real protocol is ensured by the security of the protocol ΠPEqT.

Hybrid 2 This hybrid is identical to Hybrid 1, except that the output of Π(21)-OTe is replaced by

{rẽ1 , ..., rẽn} output by FBEtORG, and Sim invokes the F(21)-OTe simulator to generate the

simulated view for R. Regardless of whether rẽi is generated by Π(21)-OTe or FBEtORG, it

holds that if xi ̸= yi, then rẽi = rei ; otherwise rẽi = rei⊕1. The computational indistin-
guishability between the view in simulation and that in the real protocol is ensured by the
security of the protocol Π(21)-OTe.

4.2 New MPSU Protocol Πone-leader
MPSU

In this section, we provide detailed information about our constructed MPSU protocol (Πone-leader
MPSU),

which is used to realize the one-leader scenario of the FMPSU described in Fig. 5. The complete
Πone-leader

MPSU is shown in Fig. 10, with the core part Πcore
MPSU, shown in Fig. 11.

In the Πone-leader
MPSU , each of the t participants Pi (i ∈ [t]) holds a set Xi = {xi1, ..., xin}. During

the preparation phase, the t participants jointly invoke the AHR-TPKE scheme, allowing each
participant to obtain a joint public key pk and their respective private key ski. Next, each
participant Pi constructs a simple hashing table XSi and a Cuckoo hashing table XCi using
hashing functions h1, ..., hβ, where the simple hashing tables contain b bins with a maximum
capacity of m items per bin, and cuckoo hashing tables contain b bins with each bin can hold at
most one item. Subsequently, an encrypted cuckoo hashing table EXCi is constructed for each Pi
such that each item in the j-th bin of EXCi is represented as EXCi[j] = Enc(pk, H(XCi[j])||XCi[j]).

After completing the above process, the first step involves all participants P1, ...,Pt jointly
executing Πcore

MPSU, where only Pt obtains the valid output. The detailed process is as follows.
We use FOPPRF to anonymize the items, followed by FPS to shuffle the anonymized items.
Next, we utilize FBEtORG to securely determine whether the shuffled and anonymized items are
equal. Afterward, the results are encrypted using the AHR-TPKE scheme, then packaged and
transmitted to the next participant. The use of AHR-TPKE ensures protection against privacy
leakage due to possible collusion between participants. After conducting FBEtORG comparisons t
times and sequentially encrypting and packaging items for transmission, the leader Pt eventually
receives the encrypted set, which consists of encrypted {EXC1 ∪ ... ∪ EXCt} \ EXCt and random
values, where each EXCj (j ∈ [t]) is shuffled by FPS.

In the second step, a joint decryption and shuffle process is executed sequentially in the order
P1 → P2 → ... → Pt to recover the information. Since Pt performs the final decryption, the
recovered information is ultimately held by Pt. Then Pt performs the final verification step to
filter out random values, retaining only the items of {X1 ∪ ...∪Xt} \Xt and storing them in the

15

Protocol Πone-leader
MPSU

Parameters:

• Hashing functions h1, h2, ..., hβ: {0, 1}ℓ1 → [b];

• A simple hashing table based on h1, h2, ..., hβ, with b = ϵ · n bins and bin size
m = O(log(βn));

• A cuckoo hashing table based on h1, h2, ..., hβ, with b = ϵ · n bins and no stash;

• A collusion-against hash function H(x) : {0, 1}∗ → {0, 1}ℓ;
• A AHR-TPKE schem (Setup,KeyGen,Enc,ShareDec,Combine).

Inputs:

• t parties Pi (i ∈ [t]): Xi = {x1i , ..., xni } ∈ ({0, 1}∗)n.
Preparation:

• Each Pi (i ∈ [t]) jointly run pp ← Setup(1κ) and KeyGen(pp, t, t) to obtain their
respective keypair (pk, ski);

• Each Pi (i ∈ [t]) respectively inserts the set Xi into the simple hashing table XSi
and the cuckoo hashing table XCi, and fills the empty bins with the dummy d in
XCi. Let denote XSi[j] and XCi[j] as the items in i-th bins, where j ∈ [b]. Each Pi
(i ∈ [t]) respectively constructs EXCi, s.t. EXCi[j] = Enc(pk, H(XCi[j])||XCi[j]).

Protocol:

1. P1, ...,Pt jointly execute the Πcore
MPSU, and then Pt obtains the ciphertexts

{ct1, ..., ct(t−1)b}. Pt sends {c
t
1, ..., c

t
(t−1)b} to P1;

2. For k ∈ [t− 1]: Pk decrypts and shuffles {ck−11 , ..., ck−1(t−1)b} obtaining {c
k
1, ..., c

k
(t−1)b},

where c0 = ct; Pk sends {ck1, ..., ck(t−1)b} to Pk+1;

3. Pt constructs a empty set Zt and decrypts {ct−11 , ..., ct−1(t−1)b} obtaining

{m1, ...,m(t−1)b}. For k ∈ [(t− 1)b]: Pt checks whether mk = H(sk)||sk and sk ̸= d,
if yes, setting Zt = Zt ∪ {sk}; Finally, Pt obtains Zt ∪Xt.

Fig. 10. Πone-leader
MPSU Protocol Achieving One-leader FMPSU

set Zt, as described in Step 3 of the Πone-leader
MPSU protocol. Finally, Pt computes Zt ∪Xt to obtain

the final shuffled union of items.

Correctness The first potential point of collusion occurs during the execution of FOPPRF in
Step 1 of ΠCORE

MPSU, i.e., if XCj [k] /∈ XSq[k] (where j ∈ [t], q ∈ {j + 1, ..., t}, an k ∈ [b]) but wq,j
k =

F (Kq,j
k , hintq,jk ,XCj [k]). Therefore, to reduce the probability of such a collusion to a negligible

level, specifically 2−λ, the output bit length ℓ2 of PRF function F is typically set to λ+log(ϵ ·n).
Additionally, in 3) of ΠCORE

MPSU, items in Pj are compared sequentially with those in Pj+1 to check
for duplicates, where j ∈ [t]. If duplicates are found, the duplicate items in Pj are randomized,
while retaining the items in Pj+1, as described in Appendix B. This process continues until
Pt obtains the {{X1 ∪ ... ∪Xt} \Xt + random values}. Eventually after joint decryption and
shuffling, Pt performs a verification to remove the random values and retain {X1∪ ...∪Xt}\Xt,

16

Πcore
MPSU

1. Each Pj (j ∈ [t]) randomly selects j-1 string group {rj,1k }, ..., {r
j,j−1
k } $← ({0, 1}ℓ2)b, where

k ∈ [b]; Then each Pj (j ∈ [t]) severally invokes FOPPRF with all parties in I = {Pj+1, ...,Pt}
in parallel:

a) Pq acts as sender with input {(XSq[k][1], rq,jk), ..., (XSq[k][m], rq,jk)}, and Pj acts as
receiver with input {XCj [k]}, where k ∈ [b] and q ∈ {j + 1, ..., t};

b) Pj obtains (hintq,j , {wq,j
1 , ..., wq,j

b }) and Pq obtains (hintq,j , {Kq,j
1 , ...,Kq,j

b }),
where wq,j

k = F (Kq,j
k , hintq,j ,XCj [k]). Specifically, if XCj [k] ∈ XSq[k], then

F (Kq,j
k , hintq,j ,XCj [k]) = rq,jk ; otherwise, F (Kq,j

k , hintq,j ,XCj [k]) ̸= rq,jk ;
2. Each Pj (j ∈ [t]) randomly selects a permutation function πj : [b] → [b]; Then each Pj

(j ∈ [t]) severally invokes FPS with all parties in I = {Pj+1, ...,Pt} in parallel:

a) Pj acts as sender with input πj , and Pq acts as receiver with input {rq,j1 , ..., rq,jb },
where q ∈ {j + 1, ..., t};

b) Pj obtains {sq,j1 , ..., sq,jb } and Pq obtains {s̃q,j1 , ..., s̃q,jb }, where sq,jk ⊕ s̃q,jk = rq,jπj(k)
and

k ∈ [b];
3. For j ∈ [t− 1], t parties sequentially execute the following processes:

a) Pj invokes FBEtORG with Pj+1:

– Pj acts as sender with input {{swj+1,q
k }k∈[b]}q∈[j], where swj+1,q

k = sj+1,q
k ⊕

wj+1,q
πq(k)

⊕j≥p+1
p=q+1(a

p,q
k ⊕b

p,q
k), and Pj+1 acts as receiver with input {{s̃j+1,q

k }k∈[b]}q∈[j];

– Pj obtains {{(aj+1,q
k , ãj+1,q

k)}k∈[b]}q∈[j] and Pj+1 obtains {{bj+1,q
k }k∈[b]}q∈[j],

where if swj+1,q
k = s̃j+1,q

k , then x̃j+1,q
k = bj+1,q

k ; otherwise bj+1,q
k = xj+1,q

k ;

b) Pj sends {{Aj,q
k }k∈[b]}q∈[j] and {{{s̃wl,q

k }k∈[b]}q∈[j]}l∈{j+2,...,t} to Pj+1, where

Aq,q
k = {EXCq[πq(k)]⊕ aq+1,q

k }

Aj,q
k = {((Aj−1,q

k ⊕ bj,qk) +H Enc(pk, 0))⊕ aj+1,q
k }

s̃wl,q
k = sl,qk ⊕ wl,q

πq(k)
⊕j≥q+1

p=q+1 (a
p,q
k ⊕ bp,qk)⊕ aj+1,p

k .

Then Pj+1 computes each s̃wl,q
k ⊕ bj+1,q

k ; Specifically, when j = t− 1, Pt−1 only sends

{{At−1,q
k }k∈[b]}q∈[t−1] to Pt. Then Pt only computes {(At−1,q

k ⊕bt,t−1
k)+H Enc(pk, 0))},

denote as {c1, ..., c(t−1)b};

Fig. 11. The core protocol of Πone-leader
MPSU

thereby obtaining the final shuffled union set {{X1 ∪ ... ∪ Xt} \ Xt} ∪ Xt =
⋃t

j=1Xj . In the
above process, potential errors may arise, such as decrypted item being random value that still
pass Pt’s union check (i.e., zk = H(sk)||sk when sk is a random value), or item belonging to the
union failing the check. However, the properties of the AHR-TPKE and the collusion-resistant
hash function ensures that the probability of such errors is negligible.

Security The security of Πone-leader
MPSU is proved as follows.

Theorem 4.2. The protocol in Fig. 10 securely computes FMPSU of one-leader scenario against
any number of corrupt, colluding, semi-honest parties in the (AHR-TPKE, FOPPRF, FPS, and
FBEtORG)-hybrid model.

17

Proof. All interactions between participants in Πone-leader
MPSU occur within online phase, that is

Πcore
MPSU and joint decryption + shuffling operation. Assuming Pi (where i ∈ [t]) is honest and

I = {(P1, ...,Pt)\Pi} is a colluding coalition, to satisfy the correctness of Theorem 4.2, we need
to prove that Pi can resist coalition attacks when it respectively assumes the roles P1, ...,Pt.
That is, for any adversary A, we can construct a simulator Sim that simulates the view of the
corrupted coalition I, such that the produced transcript in the idel-world is indistinguishable
from that in the real-world in any PPT environment. Since P1, ...,Pt−1 perform the same role
in the protocol, we will prove in two different cases: when Pi acts as the leader Pt, when Pi acts
as the other participant roles.

(1) Pi acts as the leader Pt and I acts as the {P1, ...,Pt−1}. The simulator Sim simulates a real
execution. Since A is semi-honest, Sim can obtain the input IX = {X1, ..., Xt−1} of I directly,
and externally send IX to FMPSU. When receiving {XCj [1], ...,XCj [b]} (j ∈ [t− 1]) from A, Sim
randomly selects (hintt,j , {wt,j

k }) (where k ∈ [b]), and simulates the execution of ΠOPPRF, where
Pj acts as the receiver and Pt acts as the sender. Once receiving the permutation function πj
from A, Sim checks if it is a permutation of b items. If yes, Sim randomly selects {st,j1 , ..., st,jb },
where st,jk ∈ {0, 1}ℓ2 , and simulates the execution of ΠPS, where Pj acts as the sender and

Pt acts as the receiver. After obtaining the {{swt,q
k }k∈[b]}q∈[t−1] from A, Sim randomly selects

{{(at,qk , ãt,qk)}k∈[b]}q∈[t−1] and simulates the execution ΠBEtORG, where Pt−1 acts as the sender

and Pt acts as the receiver. Once obtaining {{At−1,q
k }k∈[b]}q∈[t−1] from A, and also obtaining

{ct1, ..., ct(t−1)b} from A, Sim simulates the set {ct−11 , ..., ct−1(t−1)b} that joint decryption after t− 1
rounds.

Next, we demonstrate that the outputs generated by Sim are indistinguishable from the real
view of I through the use of the following hybrids:

Hybrid 0 I’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of ΠOPPRF is replaced by
(hintt,j , {wt,j

1 , ..., wt,j
b }), chosen by Sim, when Pj (where j ∈ [t−1]) acts as the receiver and

jointly invokes with Pt. Afterwords, Sim invokes the FOPPRF simulator to simulate the t−1
calls and generate the simulated view for I. Since each invocation is independent of the
others, i.e., the invocation between P1, ...,Pt−1 and Pt are independent, the computational
indistinguishability between the simulated view and the real protocol view is ensured by
the security of ΠOPPRF.

Hybrid 2 This hybrid is identical to Hybrid 1, except that the output of ΠPS is replaced by
{st,j1 , ..., st,jb }, chosen by Sim, when Pj (where j ∈ [t − 1]) acts as the sender and jointly
calls with Pt. Afterwords, Sim invokes the FPS simulator to simulate the t − 1 calls and
generate the simulated view for I. Since each invocation is independent of the others,
i.e., the invocation between P1, ...,Pt−1 and Pt are independent, the computational indis-
tinguishability between the simulated view and the real protocol view is ensured by the
security of ΠPS.

Hybrid 3 This hybrid is identical to Hybrid 2, except that the output of ΠBEtORG is replaced by
{(at,q1 , ãt,q1), ..., (at,qb , ãt,qb)}, chosen by Sim, when Pt−1 acts as the sender and jointly calls
with Pt. Afterwords, Sim invokes the FBEtORG simulator to simulate the invocation and
generate the simulated view for I. The computational indistinguishability between the
simulated view and the real protocol view is ensured by the security of ΠBEtORG.

18

Hybrid 4 This hybrid is identical to Hybrid 3, except that the joint decryption result of the t− 1
participants in I is replaced by {ct−11 , ..., ct−1(t−1)b}, chosen by Sim. Afterwords, Sim invokes
the joint decryption simulator to simulate the invocation and generate the simulated view
for I. The computational indistinguishability between the simulated view and the real
protocol view is ensured by the security of AHR-TPKE and randomly shuffling. This
hybrid is the view output by the simulator Sim.

(2) Pi acts as the Pj (where j ∈ [t − 1]) and I acts as the {P1, ...,Pt} \ Pj . The sim-
ulator Sim simulates a real execution. Since A is semi-honest, Sim can obtain the input
IX = {X1, ..., Xt} \ Xj of I directly, and externally send IX to FMPSU. When obtaining

{(XSq[k][1], rq,jk), ..., (XSq[k][m], rq,jk)} (where q ∈ {j+1, ..., t} and k ∈ [b]) and {XCp[1], ...,XCp[b]}
(where p ∈ [j−1]), Sim randomly selects (hintq,j , {Kq,j

1 , ...,Kq,j
b } and (hintj,p, {wj,p

1 , ..., wj,p
b }), re-

spectively. Then, Sim simulates the execution of ΠOPPRF. Specifically, for {(XSq[k][1], rq,jk), ...,

(XSq[k][m], rq,jk)}, Sim simulates the scenario where Pq acts as the sender and Pj acts as the
receiver. For {XCp[1], ...,XCp[b]}, Sim simulates the scenario where Pp acts as the receiver and

Pj acts as the sender. Once obtaining πq (where q ∈ {j + 1, ..., t}) and {rj,p1 , ..., rj,pb } (where

p ∈ [j − 1]), Sim randomly selects {sq,j1 , ..., sq,jb } and {s̃j,p1 , ..., s̃j,pb }, respectively. Then, Sim
simulates the execution of ΠPS. Specifically, for πq, Sim simulates the scenario where Pq acts

as the sender and Pj acts as the receiver. For {rj,p1 , ..., rj,pb }, Sim simulates the scenario where

Pp acts as the receiver and Pj acts as the sender. Upon obtaining {{swj,q
k }k∈[b]}q∈[j−1] from

A, Sim randomly selects {(aj,q1 , ãj,q1), ..., (aj,qb , ãj,qb)}, and simulates the ΠBEtORG, where Pj−1
acts as the sender and Pj acts as the receiver. Upon obtaining {s̃j+1,j

1 , ..., s̃j+1,j
b } from A, Sim

randomly selects {aj+1,j
1 , ..., aj+1,j

b }, and simulates the ΠBEtORG, where Pj acts as the sender

and Pj+1 acts as the receiver. Once obtaining {{Aj,1
k }, ..., {A

j,j
k }} from A, and also obtaining

{cj1, ..., c
j
(t−1)b} from A, Sim simulates the set {m1, ...,m(t−1)b} representing decrypted message

after joint decryption of t rounds. After obtaining the shuffled Zt =
⋃t

i=1Xi from FMPSU, Sim
computes X̃j = Zt\IX and sets mi = H(X̃j [i])||X̃j [i] for i ∈ [|X̃j |]. Then, Sim randomly selects

mi
$← {0, 1}ℓ̃i for i ∈ {|X̃j |+ 1, ..., (t− 1)b}, where ℓ̃i represents the bit length of the sequential

items in the set IX plus ℓ. Finally, Sim sends the randomly shuffled {m1, ...,m(t−1)b} to A.
Next, we demonstrate that the outputs generated by Sim are indistinguishability from the

view of I through the use of the following hybrids:

Hybrid 0 I’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that when Pj+1, ...,Pt act as the sender and
jointly invoke ΠOPPRF with Pj , the output is replaced by (hintq,j , {Kq,j

1 , . . . , Kq,j
b }) (where

q ∈ {j + 1, ..., t}), chosen by Sim. Similarly, when P1, . . . ,Pj−1 act as the receiver and

jointly invoke ΠOPPRF with Pj , the output is replaced by (hintt,j , {wp,j
1 , . . . , wp,j

b }) (where
p ∈ [j−1]), also chosen by Sim. Then, Sim invokes the FOPPRF simulator to simulate the t−
1 invocations and generate a simulated view for I. Since each invocation is independent of
the others, the security of ΠOPPRF ensures the computational indistinguishability between
the simulated view and the real protocol view.

Hybrid 2 This hybrid is identical to Hybrid 1, except that when Pj+1, ...,Pt act as the receiver and
jointly invoke ΠPS with Pj , the output is replaced by {s̃q,j1 , ..., s̃q,jb } (where q ∈ {j+1, ..., t}),

19

chosen by Sim. Similarly, when P1, . . . ,Pj−1 act as the sender and jointly invoke ΠPS with

Pj , the output is replaced by {sj,p1 , ..., sj,pb } (where p ∈ [j − 1]), also chosen by Sim. Then,
Sim invokes the FPS simulator to simulate the t− 1 invocations and generate a simulated
view for I. Since each invocation is independent of the others, the security of ΠPS and the
random permutation functions ensures the computational indistinguishability between the
simulated view and the real protocol view.

Hybrid 3 This hybrid is identical to Hybrid 2, except that when Pj−1 acts as the sender and

jointly invokes ΠBEtORG with Pj , the output is replaced by {(aj,q1 , ãj,q1), . . . , (aj,qb , ãj,qb)}
(where q ∈ [j−1]), chosen by Sim. Afterwards, Sim invokes the FBEtORG simulator to simu-
late the invocation and generate a simulated view for I. Additionally, when Pj+1 acts as the

receiver and jointly invokes ΠBEtORG with Pj , the output is replaced by {bj+1,q
1 , . . . , bj+1,q

b }
(where q ∈ [j]), chosen by Sim. Subsequently, Sim calls the FBEtORG simulator again to
simulate the invocation and generate a simulated view for I. The security of ΠBEtORG

ensures that the simulated views in both cases are computationally indistinguishable from
the views in the real protocol.

Hybrid 4 This hybrid is identical to Hybrid 3, except that the {ct−11 , · · · , ct−1(t−1)b} obtained by Pt
is randomized due to {cj1, · · · , c

j
(t−1)b} is randomly chosen by Sim at Pj . Subsequently,

Sim invokes the joint decryption simulator to simulate the invocation and generate a sim-
ulated view for I. Consequently, the final decrypted information {m1, ...,m(t−1)b} is also
changed. The security of AHR-TPKE and random shuffling ensure that the simulated
view is computationally indistinguishable from the real protocol view. This hybrid is the
view output by the simulator Sim.

4.3 New MPSU Protocol Πleaderless
MPSU

The Πleaderless
MPSU protocol is an extension of the Πone-leader

MPSU protocol, with the same offline operations.
The distinction lies in the extended online phase, as detailed in Fig. 12. Specifically, by executing
Πcore

MPSU t times, each participant assumes a different role within Πcore
MPSU during each execution.

This ensures that after t executions, all t participants have played the role of internal Pt and
obtained valid output results. Subsequently, all participants perform the linear decryption and
shuffle operations in parallel, following the order Pi+1 → · · · → Pi+t−1 → Pi+t, where i ∈ [t], and
the index calculation omits the (mod (t+1))+1 modulus rule. It is worth noting that during the
parallel execution of linear operations, since the participants in each linear stage are distinct,
even in a single-threaded setting, all participants can still complete the linear computation
simultaneously. Finally, each participant sequentially verifies the decrypted information, removes
the random values, and obtains the final union set. Due to the shuffle operations performed
during the decryption phase, while all participants obtain identical items in their union set, the
order of items in each participant’s set is randomized.

Since the offline phase of the Πleaderless
MPSU protocol is identical to that of the Πone-leader

MPSU protocol,
and its online phase can be regarded as t independent executions of the Πone-leader

MPSU ’s online phase,
proving the correctness and security of the Πone-leader

MPSU is sufficient to establish the correctness
and security of the Πleaderless

MPSU . The correctness and security of the Πone-leader
MPSU have been detailed

in Section 4.2. Therefore, we can directly derive the following theorem.

20

Protocol Πleaderless
MPSU

Protocol:

1. All participants execute Πcore
MPSU for t rounds. In the i-th round (where i ∈ [t]),

Pi,Pi+1, ...,Pi+t−1 sequentially take on the roles of Pt,P1, . . . ,Pt−1 within Πcore
MPSU,

where indices omit (mod (t + 1)) + 1. At the end of each round of Πcore
MPSU, Pi

obtains the output set {ci1, ..., ci(t−1)b} and sends it to Pi+1.

2. Execute the following operations in parallel: For i ∈ [t], Pj performs decryption and

shuffle operations on {cj−11 , ..., cj−1(t−1)b}, generating a new set {cj1, ..., c
j
(t−1)b}, and

sends it to Pj+1, where j ∈ {i+ 1, . . . , i+ t− 1}. Note that indices omit the rule (
mod (t+ 1)) + 1 and c0 = ct.

3. Each Pi (where i ∈ [n]) constructs a empty set Zi and decrypts {ci−11 , ..., ci−1(t−1)b}
obtaining {mi

1, ...,m
i
(t−1)b}. For k ∈ [(t − 1)b]: Pi checks whether mi

k = H(sik)||sik
and sik ̸= d, if yes, setting Zi = Zi ∪ {sik}; Finally, Pi obtains Zi ∪Xi.

Fig. 12. Πleaderless
MPSU Protocol Achieving Leaderless FMPSU

Theorem 4.3. The protocol in Fig. 12 securely computes FMPSU of leaderless scenario against
any number of corrupt, colluding, semi-honest parties in the (AHR-TPKE, FOPPRF, FPS, and
FBEtORG)-hybrid model.

4.4 Efficiency Optimization Strategy

Recall that in our protocols, during 3) of Πcore
MPSU, each internal participant Pj (where j ∈ [t])

should send relevant data to Pj+1 after running the FBEtORG. To ensure secure transmission and
resist collusion among semi-honest participants, we use the AHR-TPKE scheme to continuously
re-randomize the data to be transmitted. This process involves two steps: first, computing
Enc(pk, 0), and second, performing homomorphic addition +H . It is worth noting that the
majority of the runtime in this part is consumed by Enc(pk, 0), while the time spent on +H

is significantly lower, approximately T+H ≈ 5% × TEnc(pk,0). Therefore, generating a sufficient
number of Enc(pk, 0) during the preparation phase, and only performing +H during the online
phase can significantly improve the protocol’s efficiency.

4.5 Cost Analysis

During the interaction phase, our Πone-leader
MPSU protocol is executed through Πcore

MPSU and the joint
decryption + shuffle operations. The theoretical computational and communication complexities
are analyzed in detail in Table 3.

We assume there are t participants, each holding a set of size n. Recalling our Πone-leader
MPSU ,

each participant first jointly calls the AHR-TPKE scheme to obtain a joint public key and an
individual private key, and inserts the items into a simple hash table and a cuckoo hash table
respectively using γ hash functions (with a encrypted Cuckoo hash table also constructed). The
cuckoo hash table contains ϵn items, while the simple hash table contains γn items. Then, the
t participants proceed with executing Πcore

MPSU t times, involving the execution of ΠOPPRF, ΠPS,

21

ΠBEtORG, as well as encryption, decryption operations of the AHE-TPKE scheme.
For the implementation of ΠOPPRF, we used the batched OPPRF from [39] to hide the

number of items in each bin. Specifically, the complexity for computing hints and communication
is linear, i.e., O(γn), and the sender additionally needs O(ϵn log(ϵn)) to compute the PRF
values. Thus, in one round execution of Πcore

MPSU, ΠOPPRF results in a computational complexity
of O(A(γ + ϵ log(ϵn))n) and a communication complexity of O(Aγn), where A =

∑t−1
i=1 i.

We use the construction from [40] to implement ΠPS, resulting in a computational complexity
of O(ϵn log(ϵn)). Thus, in one round execution of Πcore

MPSU, ΠPS results in O(Aϵn log(ϵn)) for both
computation and communication complexity.

Our ΠBEtORG consists of ΠPEqT and Π(21)-OTe, both of which exhibit linear complexity. Thus,

the computational and communication complexity of ΠBEtORG are O(ϵn). Therefore, in one
round execution of Πcore

MPSU, Π(21)-OTe results in O(Aϵn) for both computation and communication

complexity. Additionally, in the encryption phase, there are O(Aϵn) encryption operations, while
the decryption phase involves O(t2ϵn) decryption operations.

FOPPRF FPS FBEtORG Encryption Decryption

Comp. O(A(γ + ϵ log(ϵn))n) O(Aϵn log(ϵn)) O(Aϵn) O(Aϵn) O(t2ϵn)

Comm. O(Arn) O(Aϵn log(ϵn)) O(Aϵn) O(Aϵn) O(t2ϵn)

Table 3: The theoretical complexities of Πcore
MPSU. Note: Comm./Comp.: Communication /Com-

putational complexity; t: Number of parties; n: Size of sets; A =
∑t−1

i=1 i; γ: Number of hashing
functions (in Simple hashing table and cuckoo hashing table); ϵn: Number of bins of Simple
hashing table and cuckoo hashing table.

For our Πleaderless
MPSU protocol, it can be considered as t invocations of the Πone-leader

MPSU protocol.
Thus, it is clear and intuitive that its computational complexity and communication complexity
are t times that of the Πone-leader

MPSU . Additionally, in Πleaderless
MPSU , each participant sequentially

assumes all roles within the t rounds of Πcore
MPSU. Consequently, after t rounds, the computational

and communication cost for each participant equals the cost incurred by a single round of Πcore
MPSU.

Similarly, after t parallel rounds of joint decryption and shuffle operations, the computational
and communication cost for each participant equals the cost of a single round of joint decryption
and shuffle. Therefore, in Πleaderless

MPSU , the total computational and communication cost for each
participant is identical and equals the cost incurred by a single round of Πone-leader

MPSU .

5 Performance Evaluation

In this section, we experimentally evaluate the performance of our MPSU protocols and compare
with the previous work.

Benchmarking Environment. We conduct experiments using CLion 2024.2.2 on a MacBook
Pro running a macOS 14.0, equipped with an Apple M3 Pro chip and 36GB RAM. The WAN
environment is configured with a network latency of 10ms and a bandwidth of 100Mbps.

Implementation Details. We use threshold Elgamal encryption as our AHR-TPKE scheme.
Specifically, we employ a key generation algorithm to generate moduli N of 1024 and 2058
bits, approximately corresponding to computational security parameters κ of 80 and 116 bits,

22

respectively. Additionally, the statistical security parameter is set to λ = 40. Furthermore,
γ = 3 hashing functions are used to respectively insert sets Xi (where i ∈ [t]) into the simple
hashing table and cuckoo hashing table, and the encrypted cuckoo hashing table, respectively.
The bin size ϵn of each hashing table is set to 1.27n. Our protocol is written in C/C++, and
utilizes the following libraries for its implementation.

• OPPRF. We use the BTOA19 batched OPPRF structure [39] to implement the OPPRF
functionality. The implementation can be found at https://github.com/encryptogroup/
OPPRF-PSI.

• PS functionality. We use the PS13 Oblivious Switching Network (OSN) structure [40] to
implement the PS functionality. The implementation can be found at https://github.
com/dujiajun/PSU.

• PEqT functionality. We use the NDA22 Private Set Membership (PSM) [41] to im-
plement the PEqT functionality. The implementation can be found at https://github.
com/shahakash28/2PC-Circuit-PSI.

• 1-out-of-2 OTe functionality. We use the library in https://github.com/osu-crypto/
libOTe to implement the 1-out-of-2 OTe functionality.

• Additionally, we also OpenSSL library to construct the threshold Elgamal ecnryption
and employ the cryptoTools library as the general framework to compute hash functions,
PRNG calls, creating channels, sending 128-bit blocks and so on. The implementation can
be found at https://github.com/ladnir/cryptoTools.

5.1 Performance of Our Proposed

In our experiments, we set the set sizes to {212, 216, 220} and the number of participants to
{3, 4, 6, 8} to examine the runtime and communication cost of our proposed. Table 4 consolidates
all results, presenting the runtime for both the offline phase and the execution of Πone-leader

MPSU during
the online phase, as well as the online execution time and communication cost for Πleaderless

MPSU .
These results are evaluated under threshold Elgamal of 1024 and 2048.

Based on the results presented in the table, for both of our protocols, when the set size
and encryption modulus are fixed, the offline runtime increases approximately 1.5 times linearly
with the number of participants grows, while the online runtime increases by approximately 2
times linearly. Additionally, when the number of participants and set size are fixed, an increase
in the encryption modulus leads to higher runtime and communication costs due to increased
encryption/decryption computation complexity and ciphertext size. These impacts are primarily
observed during the preparation phase, including generating encrypted cuckoo hashing table,
and in Πcore

MPSU during step 3.b, where set A is transmitted and re-randomized, as well as step 4,
where joint decryption is performed. In other parts of the protocol, the size of the encryption
modulus has minimal impact on performance.

Additionally, the computational efficiency of the Πleaderless
MPSU is determined by the runtime of

t executions of Πcore
MPSU and t joint decryption + shuffle operations. Since the t joint decryption

+ shuffle operations are executed in parallel, their total time equals the time for one operation.
Thus, the computational efficiency of the Πleaderless

MPSU is:

t× Runtime of Πcore
MPSU +Runtime of 1 Joint Decryption + Shuffle.

23

https://github.com/encryptogroup/OPPRF-PSI
https://github.com/encryptogroup/OPPRF-PSI
https://github.com/dujiajun/PSU
https://github.com/dujiajun/PSU
https://github.com/shahakash28/2PC-Circuit-PSI
https://github.com/shahakash28/2PC-Circuit-PSI
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/ladnir/cryptoTools

Party Set Modulus Offline Runtime Online Runtime Comm. Cost Online Runtime Comm. Cost
Number Size (bits) (s) (Πone-leader

MPSU) (s) (Πone-leader
MPSU) (MB) (Πleaderless

MPSU) (s) (Πleaderless
MPSU) (MB)

3

212
1024 7.3 18.79 20 31.81 60
2048 69.76 81.15 32 94.17 96

216
1024 108.48 294.27 355 498.89 1065
2048 826.91 1392.78 538 1597.41 1614

220
1024 1943.73 6035.23 2083 10032.71 6249
2048 13274.1 28691.48 9005 32688.96 27015

4

212
1024 9.52 37.74 41 76.52 164
2048 77.52 171.42 64 210.18 256

216
1024 139.07 582.77 719 1174.61 2876
2048 1034.15 2764.91 1085 3356.75 4340

220
1024 2495.75 12686.05 12279 24925.09 49116
2048 16380.24 57784.64 18131 70023.67 72524

6

212
1024 12.61 93.42 107 252.12 642
2048 92.57 405.06 164 563.76 984

216
1024 192.33 1424.94 1836 3708.49 11016
2048 1379.63 6937.53 2751 9221.08 16506

220
1024 3279.41 24395.28 31306 65855.63 187836
2048 19689.05 106843.80 45936 148304.15 275617

8

212
1024 15.2 167.65 204 589.82 1632
2048 123.17 797.37 311 1219.54 2488

216
1024 246.73 2649.95 3501 8906.13 28008
2048 1864.94 12974 5208 19230.18 8896

220
1024 4200.93 45838.73 59575 155990.17 476600
2048 23469.34 210589.13 86885 — —

Table 4: The complete offline and online runtime (seconds) and communication cost of
Πone-leader

MPSU , as well as the online runtime and communication cost of Πleaderless
MPSU (N = 1024 and

N = 2048). Each party’s set contains of 64-bit elements, while the collusion-against hash func-
tion H produces outputs of 128-bit length. The decimal portion of the communication cost is
disregarded, retained only the integer values.

5.2 Comparison with Previous Work

To evaluate the performance of our proposed, we conduct a benchmark comparison between the
Πone-leader

MPSU protocol and the state-of-the-art protocol [28].
It is worth noting that the results presented in Table 4 are based on the naive threshold

Elgamal encryption scheme, which supports operations on arbitrary data. In contrast, the
encryption scheme used in [28] is based on the Curve25519-based threshold Elgamal encryp-
tion scheme, which ensures 128-bit computational security and significantly outperforms the
naive threshold Elgamal in computational efficiency. Moreover, the ciphertext generated by the
Curve25519-based scheme requires only 528 bits. However, the encryption scheme in [28] has a
limitation: it only supports operations on messages that can be mapped to points on the ellip-
tic curve, making it unsuitable for arbitrary messages. However, to ensure a fair performance
comparison under the same encryption scheme, we use the encryption scheme provided in [28]
to implement our protocol, as well as to test the implementation from [28]. The detailed results
of the comparison are shown in Table 5.

The results in Table 5 demonstrate that Πone-leader
MPSU achieves approximately 4 ∼ 5 times

improvement in communication cost compared to [28], along with moderate improvements in
runtime. Notably, in Table 4, when the modulus N is 2048, the security level is limited to 116-
bit computational security, whereas the results in Table 5 ensure 128-bit security. The runtime
and communication costs in Table 4 and Table 5 further highlight that the Curve25519-based
scheme incurs significantly lower cost than the naive threshold Elgamal scheme. However, the

24

Curve25519-based scheme imposes restrictions on the plaintext format, limiting its general ap-
plicability. As a result, while the Curve25519-based scheme demonstrates superior performance,
the naive threshold Elgamal scheme remains more practical for real-world applications due to
its broader compatibility.

Party Number Set Size Runtime (s) Comm. Cost (MB)
Ours [28] Ours [28]

3
212 40.07 67.27 12 61
216 653.13 716.79 222 694
220 12135.98 13564.51 4043 15427

4
212 75.75 107.04 25 122
216 1189.58 1209.28 452 1935
220 21939.56 23143.25 8209 30956

6
212 177.13 204.56 65 306
216 2547.72 2632.3 1169 4853
220 45417.65 48033.24 17037 77644

8
212 329.14 347.15 126 572
216 5052.34 5132.42 2254 9074
220 84435.3 86269.36 32394 145179

Table 5: Performance comparison of the runtime and communication cost of Πone-leader
MPSU with

[28]. The AHR-TPKE scheme employs a threshold Elgamal encryption scheme based on the
Curve25519 elliptic curve.

6 Acknowledgement

This work was supported by the Institute of Information & Communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.RS-2024-00399491,
Development of Privacy-Preserving Multiparty Computation Techniques for Secure Multiparty
Data Integration)

References

[1] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, and Sophia Yakoubov.
2016. Secure multiparty computation for cooperative cyber risk assessment. In 2016 IEEE
Cybersecurity Development, SecDev 2016. https://doi.org/10.1109/SecDev.2016.028

[2] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. 2020. BLAG: Improving
the Accuracy of Blacklists. In NDSS. https://www.ndss-symposium.org/ndss-paper/
blag-improving-the-accuracy-of-blacklists/

[3] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. 2019. Scalable Private
Set Union from Symmetric-Key Techniques. In ASIACRYPT. https://doi.org/10.1007/
978-3-030-34621-8_23

25

 https://doi.org/10.1109/SecDev.2016.028
https://www.ndss-symposium.org/ndss-paper/blag-improving-the-accuracy-of-blacklists/
https://www.ndss-symposium.org/ndss-paper/blag-improving-the-accuracy-of-blacklists/
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/978-3-030-34621-8_23

[4] Kenta Nomura, Yoshiaki Shiraishi, Masami Mohri, Masakatu Morii. 2020. Secure associ-
ation rule mining on vertically partitioned data using private-set intersection. In IEEE
Access. https://ieeexplore.ieee.org/abstract/document/9159575

[5] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Efficient
Batched Oblivious PRF with Applications to Private Set Intersection. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016.
https://doi.org/10.1145/2976749.2978381

[6] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private Set In-
tersection Based on OT Extension. ACM Trans. Priv. Secur. 21, 2 (2018), 7:1–7:35.
https://doi.org/10.1145/3154794

[7] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-light: lightweight
private set intersection from sparse OT extension. In CRYPTO 2019. https://doi.org/
10.1007/978-3-030-26954-8_13

[8] Melissa Chase and Peihan Miao. 2020. Private set intersection in the internet set-
ting from lightweight oblivious PRF. In CRYPTO 2020. https://doi.org/10.1007/

978-3-030-56877-1_2

[9] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS: Fast,
Malicious Private Set Intersection. In EUROCRYPT 2020. https://doi.org/10.1007/
978-3-030-45724-2_25

[10] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2021.
Oblivious Key-Value Stores and Amplification for Private Set Intersection. In CRYPTO
2021. https://doi.org/10.1007/978-3-030-84245-1_14

[11] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and Mark SimkinAuthors. 2022. Laconic
private set-intersection from pairings. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2022. https://doi.org/10.1145/
3548606.3560642.

[12] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing Fast PSI from Improved OKVS
and Subfield VOLE. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security , CCS 2022. https://doi.org/10.1145/3548606.3560658

[13] Dung Bui and Geoffroy Couteau. 2023. Improved private set intersection for sets with small
entries. In PKC 2023. https://doi.org/10.1007/978-3-031-31371-4_7

[14] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. 2017.
Practical multi-party private set intersection from symmetric-key techniques. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017. https://doi.org/10.1145/3133956.3134065

[15] Roi Inbar, Eran Omri, and Benny Pinkas. 2018. Efficient scalable multiparty private
set-intersection via garbled bloom filters. In SCN 2018. https://doi.org/10.1007/

978-3-319-98113-0_13

26

https://ieeexplore.ieee.org/abstract/document/9159575
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/3154794
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1145/3548606.3560642
https://doi.org/10.1145/3548606.3560642
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1007/978-3-031-31371-4_7
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13

[16] Alireza Kavousi, Javad Mohajeri, and Mahmoud Salmasizadeh. 2021. Efficient scal-
able multi-party private set intersection using oblivious PRF. In Security and Trust
Management: 17th International Workshop, STM 2021. https://doi.org/10.1007/

978-3-030-91859-0_5

[17] S. Dov Gordon, Carmit Hazay, and Phi Hung Le. 2022. Fully Secure PSI via MPC-in-the-
Head. In Proceedings on Privacy Enhancing Technologies. https://doi.org/10.56553/
popets-2022-0073

[18] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky. 2022. Psim-
ple: Practical multiparty maliciously-secure private set intersection. In Proceedings of the
2022 ACM on Asia Conference on Computer and Communications Security, ASIA CCS
2022. https://doi.org/10.1145/3488932.3523254

[19] Lea Kissner and Dawn Xiaodong Song. 2005. Privacy-Preserving Set Operations. In
CRYPTO 2005. https://doi.org/10.1007/11535218_15

[20] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh.
2021. Private Set Operations from Oblivious Switching. In PKC 2021. https://doi.org/
10.1007/978-3-030-75248-4_21

[21] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. 2022. Shuffle-
based Private Set Union: Faster and More Secure. In 31nd USENIX Security Sympo-
sium (USENIX Security 22). https://www.usenix.org/conference/usenixsecurity22/
presentation/jia

[22] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. 2023. Linear Pri-
vate Set Union from Multi-Query Reverse Private Membership Test. In 32nd USENIX
Security Symposium (USENIX Security 23). https://www.usenix.org/conference/

usenixsecurity23/presentation/zhang-cong

[23] Keith B. Frikken. 2007. Privacy-Preserving Set Union. In ACNS 2007. https://doi.org/
10.1007/978-3-540-72738-5_16

[24] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. 2012. Constant-round multi-party
private set union using reversed laurent series. In Public Key Cryptography–PKC 2012:
15th International Conference on Practice and Theory in Public Key Cryptography. https:
//doi.org/10.1007/978-3-642-30057-8_24

[25] Xuhui Gong, Qiang-Sheng Hua, and Hai Jin. 2022. Nearly optimal protocols for comput-
ing multi-party private set union. In 2022 IEEE/ACM 30th International Symposium on
Quality of Service, IWQoS 2022. https://ieeexplore.ieee.org/abstract/document/
9812897.

[26] Marina Blanton and Everaldo AguiarAuthors. 2012. Private and oblivious set and multiset
operations. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2012. https://doi.org/10.1145/2414456.2414479

27

https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.56553/popets-2022-0073
https://doi.org/10.1145/3488932.3523254
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://www.usenix.org/conference/usenixsecurity22/presentation/jia
https://www.usenix.org/conference/usenixsecurity22/presentation/jia
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-cong
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-cong
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-642-30057-8_24
https://doi.org/10.1007/978-3-642-30057-8_24
https://ieeexplore.ieee.org/abstract/document/9812897
https://ieeexplore.ieee.org/abstract/document/9812897
https://doi.org/10.1145/2414456.2414479

[27] Xiang Liu and Ying Gao. 2023. Scalable multi-party private set union from multi-
query secret-shared private membership test. In International Conference on the The-
ory and Application of Cryptology and Information Security. https://doi.org/10.1007/
978-981-99-8721-4_8

[28] Jiahui Gao, Son Nguyen, Ni Trieu. 2024. Toward A Practical Multi-party Private Set Union.
In PETS 2024. https://doi.org/10.56553/popets-2024-0133

[29] Alex Davidson and Carlos Cid. 2017. An Efficient Toolkit for Computing Private Set Op-
erations. In ACISP 2017. https://doi.org/10.1007/978-3-319-59870-3_15

[30] Payman Mohassel and Seyed Saeed Sadeghian. 2013. How to Hide Circuits in MPC an
Efficient Framework for Private Function Evaluation. In EUROCRYPT 2013. https://
doi.org/10.1007/978-3-642-38348-9_33

[31] K. E. Batcher. 1968. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, spring joint computer conference, AFIPS 1968. https://doi.org/10.
1145/1468075.1468121

[32] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press. https://doi.org/10.1017/CBO9780511721656

[33] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Keyword
Search and Oblivious Pseudorandom Functions. In Theory of Cryptography, Second The-
ory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12,
2005, Proceedings (Lecture Notes in Computer Science, Vol. 3378), Joe Kilian (Ed.).
https://doi.org/10.1007/978-3-540-30576-7_17

[34] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-Shared Shuffle. In Ad-
vances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea, December
7-11, 2020, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 12493), Shiho
Moriai and Huaxiong Wang (Eds.). https://doi.org/10.1007/978-3-030-64840-4_12

[35] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for transferring
short secrets. In CRYPTO 2013. https://doi.org/10.1007/978-3-642-40084-1_4

[36] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algor ithms. In Cambridge
University Press.

[37] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms 51, 2
(2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[38] Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, Jelle Vos. 2021. Prac-
tical multi-party private set intersection protocols. In IEEE Transactions on Information
Forensics and Security. https://ieeexplore.ieee.org/document/9564039

[39] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. 2019. Efficient
circuit-based PSI with linear communication. In EUROCRYPT 2019. https://doi.org/
10.1007/978-3-030-17659-4_5

28

https://doi.org/10.1007/978-981-99-8721-4_8
https://doi.org/10.1007/978-981-99-8721-4_8
https://doi.org/10.56553/popets-2024-0133
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-030-64840-4_12
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1016/j.jalgor.2003.12.002
https://ieeexplore.ieee.org/document/9564039
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5

[40] Payman Mohassel and Seyed Saeed Sadeghian. 2013. How to Hide Circuits in MPC an
Efficient Framework for Private Function Evaluation. In EUROCRYPT 2013. https://
doi.org/10.1007/978-3-642-38348-9_33

[41] Nishanth Chandran, Divya Gupta, Akash Shah. 2022. Circuit-PSI with linear complexity
via relaxed batch OPPRF. In Proceedings on Privacy Enhancing Technologies. https://
doi.org/10.2478/popets-2022-0018

A AH Re-randomizable Threshold PKE

A.1 Public-key Encryption.

A Public-key Encryption (PKE) scheme is a tuple of four probabilistic polynomial-time algo-
rithms:

• Setup(1κ): On input the security parameter κ outputs public parameters pp, which include
the description of the message and ciphertext spaceM, C.

• KeyGen(pp): On input the public parameter pp, outputs a keypair (pk, sk).

• Enc(pk,m): On input a public key pk and a message m ∈M, outputs a ciphertext c ∈ C.

• Dec(sk, c): On input a secret key sk and a ciphertext c ∈ C, outputs a message m ∈M or
a symbol ⊥.

Correctness. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), any m ∈ M, any
c← Enc(pk,m), and any c∗ ← Enc(pk,m), it holds that Dec(sk, c) = Dec(sk, c∗) = m.

Indistinguishablility. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), and any
(m0,m1) ∈ M, the distribution c0 ← Enc(pk,m0) and the distribution c1 ← Enc(pk,m1) are
indentical.

Security. Formally, a PKE scheme is considered indistinguishability under chosen plaintext
attack if for any PPT algorithm A = (A1,A2):

AdvA(1κ) = Pr

b = b
′
:

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m0,m1)← A1(pp, pk);

b
$← {0, 1};

c← Enc(pk,mb);
b′ ← A2(pp, c)

−
1

2

is negligible in κ.
Informally, a PKE scheme with message space M and ciphertext space C is additively ho-

momorphic if for all (pk, sk) ← KeyGen(pp), all m0,m1 ∈ M and arbitrary constant a, such
that

• Dec(sk,Enc(pk,m0) +H Enc(pk,m1)) = m0 +m1

• Dec(sk, aEnc(pk,m0)) = am0

Notably, an additively homomorphic PKE scheme satisfies that re-randomizable algorithm
ReRand, s.t. ReRand(pk,Enc(pk,m1)) = Enc(pk,m1) +H Enc(pk, 0).

29

https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.2478/popets-2022-0018
https://doi.org/10.2478/popets-2022-0018

A.2 Threshold PKE

Threshold PKE (TPKE) scheme is an advanced variant of PKE scheme, where the secret key
is split among several participants instead of being held by a single party. Specifically, in a
threshold system denoted as (k, t)-TPKE, the secret key sk of a PKE scheme is distributed
among t participants, each holding a secret share ski. The system ensures that decryption is
only possible if a subset of at least k participants collaboratively decrypt the message, combining
their shares. The key generation in TPKE can be done in two ways: either through a distributed
key generation algorithm KeyGen, which securely generates ski among the participants without
revealing the entire secret key to any single entity, or by relying on a trusted third party to
generate and distribute ski. The encryption algorithm Enc works similarly to the regular PKE,
using the public key pk generated in the KeyGen.

For decryption algorithm Dec, TPKE involves two main algorithms:

1. Share Decryption (ShareDec): Each of the k participants uses their ski to produce a
partial decryption of the ciphertext, resulting in decryption shares ci.

2. Combining Algorithm (Combine): The decryption shares c1, ..., ck are combined with
the public key pk to produce the final plaintext m (or output ⊥ to indicate an invalid
decryption).

Similarly, if a TPKE scheme satisfies both the additive homomorphism property and the
re-randomization condition of a PKE scheme, we say that the TPKE is Additively Homo-
morphic Re-randomizable TPKE (AHR-TPKE).

B Remark on Sequential Re-randomization Encryption Based
on AHR-TPKE

Remark 1. Assume there exists a set {x1, ..., xn} and a AHR-TPKE scheme (Setup,KeyGen,
Enc,ShareDec,Combine). There are t participants who jointly execute pp ← Setup(1κ) and
KeyGen(pp, k, n), and each participant Pi obtains their own keypair (pk, ski), where k ≤ t is
threshold. For i ∈ [t] and j ∈ [n], we have the following inductive definition based on mathe-
matical induction:

• For i = 1, Ai
j is defined as:

A1
j = Enc(pk, xj)⊕ a1j

• For 2 ≤ i ≤ t− 1, Ai−1
j is defined, then Ai

j is defined as:

Ai
j =

(
(Ai−1

j ⊕ bi−1j

)
+H Enc(pk, 0))⊕ aij

• For i = t, At−1
j is defined, then Ai

j is defined as:

At
j = At−1

j ⊕ bt−1j

30

, where aij and bij are randomly selected strings. For each aij and bij , if (a
i
j ⊕ bij) = 0, At

j =
c = Enc(pk, xj) +H Enc(pk, 0) +H ...+H Enc(pk, 0), that is, xj has undergone initial encryption
followed by t − 2 rounds of re-randomization. At this point, xj can be recovered by having
k out of the t participants compute jointly Combine(c, {ShareDec(sk∗1, c), ...,ShareDec(sk∗k, c)}),
where {sk∗1, · · · , sk∗k} ⊆ {sk1, · · · ,n }. Conversely, if for each aij and bij , there exists at least one

aij ⊕ bij ̸= 0, then xj cannot be recovered. The correctness and security are ensured by the
encryption/decryption and re-randomization properties of the AHR-TPKE.

31

	Introduction
	Contribution
	Related Work

	Preliminaries
	Notation
	Security Model
	Building Blocks

	Technique Overview
	Our One-leader MPSU Protocol
	Our Leaderless MPSU Protocol

	New MPSU protocol
	New Building Block
	New MPSU Protocol one-leaderMPSU
	New MPSU Protocol MPSUleaderless
	Efficiency Optimization Strategy
	Cost Analysis

	Performance Evaluation
	Performance of Our Proposed
	Comparison with Previous Work

	Acknowledgement
	AH Re-randomizable Threshold PKE
	Public-key Encryption.
	Threshold PKE

	Remark on Sequential Re-randomization Encryption Based on AHR-TPKE

