Efficient Multi-party Private Set Union Resistant to
Maximum Collusion Attacks

Qiang Liu' and Joon-Woo Lee!®)

! Department of Computer Science and Engineering,
Chung-Ang University, Seoul, Republic of Korea
liugiang03210@gmail. com,
jwlee281b@cau.ac.kr

Abstract. Multi-party Private Set Union (MPSU) enables multiple participants to jointly
compute the union of their private sets without leaking any additional information beyond
the resulting union. Liu et al. (ASIACRYPT 2023) presented the first MPSU protocol that
scales to large data sets, designating one participant as the ”leader” responsible for obtaining
the final union. However, this approach assumes that the leader does not collude with any
other participant, which can be impractical due to the inherent lack of mutual trust among
participants, thereby limiting its applicability.

On the other hand, the state-of-the-art protocol that allows all participants to learn the
computed union was proposed by Seo et al. (PKC 2012). While their construction achieves
O(1) round complexity, it remains secure only if fewer than half of the participants collude,
leaving open the problem of designing stronger collusion tolerance and multi-party output.

In this work, we address these limitations by first proposing Hﬁ}fﬁé‘f}j‘der that designates one
participant as leader to obtain the union result. Building upon this construction, we extend
this design to Hﬁ‘}%{}ess, which enables every participant to receive the union result simultane-
ously. Both protocols operate under the semi-honest model, tolerate maximal collusion among
participants, and efficiently handle large-scale set computation. We implement these schemes
and conducted a comprehensive comparison against state-of-the-art solutions. The result shows
that, for input sizes of 2'2 at a comparable security level, Hﬁ}fl'%‘sl%ader achieves a 663 times speedup
in online runtime compared to the state-of-the-art. Furthermore, it also remains 22 times faster
than half-collusion-tolerant protocol.

mailto:liuqiang0321@gmail.com
mailto:jwlee2815@cau.ac.krm

1 Introduction

Private Set Union (PSU) is a fundamental cryptographic protocol that enables two or more
participants to securely compute the union of their datasets without disclosing any private
information. With the growing demand for privacy protection, PSU protocols have become
increasingly vital in scenarios involving joint data analysis, finding applications in areas such as
network risk assessment [1], [2] and data mining [3], [4], where securely computing the union
of sets is crucial. For example, financial institutions like banks may need to share blacklists of
suspicious transactions or fraudulent accounts to better prevent financial fraud. These blacklists
contain sensitive information and are generated based on each bank’s risk detection strategy,
making direct sharing impractical due to privacy and security concerns. Using PSU, banks can
securely compute the union of their blacklists without revealing customer privacy or detection
strategies, thereby achieving comprehensive risk assessment and efficient collaboration while
mitigating privacy and strategy leakage inherent in traditional sharing methods.

During the past decade, Private Set Intersection (PSI) has garnered extensive research, with
two-party PSI making particularly notable progress [5-13]. The most efficient two-party PSI
protocol [12] now achieve performance comparable to that of insecure naive hashing PSI. Fur-
thermore, benefiting from advancements in two-party PSI, efficient multi-party PST (MPSI)
for large sets containing millions of items have also seen significant development [14-18]. In
contrast, PSU has received relatively less attention. For more than a decade after Kisser and
Song initially proposed the two-party PSU protocol [19], PSU remained limited to relying on
expensive additive homomorphic encryption (AHE) and complex circuits, resulting in low per-
formance that made practical large-scale set operations nearly impossible. It wasn’t until 2019,
when Kolesnikov et al. introduced the first two-party PSU protcol based on symmetric key
operations suitable for large-scale datasets [3], that significant progress was made. In the follow-
ing years, several higher-performance two-party PSU protocols were developed [20,21], building
upon Kolesnikov et al.’s work. Notably, the proposed by Zhang et al. achieved linear commu-
nication and computation complexity for PSU in 2023 [22], marking a significant breakthrough
in this field.

Similar to the situation with two-party PSU, research on MPSU has primarily relied on
expensive AHE [19,23-25] and generic MPC settings [26], keeping it largely theoretical and
inefficient and no scalable for practical use. In 2023, Liu et al. introduced the first MPSU
protocol capable of handling large sets [27], which allows a leader to obtain the computed union.
Compared to previous state-of-the art, Liu et al. achieved over a hundredfold performance
improvement. However, despite its efficiency in handling large datasets, it also has significant
limitations:

e Firstly, the protocol relies on a leader, and its security is guaranteed only when the leader
does not collude with other participants, which is impractical in real-world applications
since we cannot ensure that the leader will not collude with other participants.

e Secondly, the protocol only allows a leader to obtain the final result. Although the leader
can theoretically distribute the result to other participants honestly, in time-sensitive sce-
narios such as auctions, bidding, or decision-making processes, gaining the result first may
confer an unfair advantage. Consequently, many organizations would rather incur addi-
tional computational and communication overhead than tolerate any participant acquiring

the result before the others. Thus, the protocol may prove inadequate when faced with
the aforementioned scenarios.

Currently, the scheme [24] proposed by Seo et al. in 2012 can ensure all participants obtain
the union result simultaneously. However, it can only resist collusion attacks involving up to
half of the participants. Considering these limitations in [27] and [24], we pose the following
question:

Under the assumption of mazximal semi-honest collusion, is it possible to design two scalable
and efficient protocols: (1) a one-leader protocol in which a single participant obtains the final
union result, and (2) a leaderless protocol in which all participants receive the union result
simultaneously?

1.1 Contribution

In this work, we provide a definitive answer to the aforementioned question. Specifically, our
contribution can be summarized as follows:

e We analyze and summarize the major two-party PSU and MPSU protocols to date, and
conduct a comprehensive review and classification of their communication and computation
complexity from both two-party and multi-party perspectives.

e We propose a MPSU protocol, Hﬁi‘g‘sl‘f?der, which tolerates maximal semi-honest collusion.
The protocol is divided into an offline phase and an online phase, with the core part of the
online phase labeled as HSﬁ%gU. This design enables efficient and scalable computation for

large input sets. Upon completion of the protocol, the leader obtains the union result.

e We then extend Hl‘i/‘ff,‘é%ader to a leaderless variant, Hﬁ%ise{}ess, which also tolerates maxi-

mal semi-honest collusion and allows all participants to simultaneously obtain the union
result. Its offline phase remains the same as in Hﬁ}fl%‘sl%ader, while the online cost grows

proportionally with the number of participants.

e We implement the proposed protocols and compare them with [25] and [26] under a scenario
involving four participants. The results show that our protocols significantly outperform
the state-of-the-art schemes. Specifically, for the one-leader setting with input size 2'2, our
protocol reduces the online runtime by approximately 663 times and 22 times compared
to [25] and [26], respectively, while cutting down communication overhead by about 4
times and 471 times. Moreover, for input size 26, our protocol achieves the 568 times
reduction in communication overhead relative to [26]. The implementation is released on
Github: https://github.com/QIANG-crypto-230608/LL2024.git.

1.2 Related Work

We conduct a theoretical comparative analysis of the current major two-party PSU and MPSU
protocols under the semi-honest security setting.

Two-party PSU. Initially, in 2005, Kissner and Song proposed a pioneering PSU protocol
based on polynomial representations and AHE [19]. The union of two sets was determined by
computing the roots of the polynomial f x g, but its quadratic complexity limited its practical

https://github.com/QIANG-crypto-230608/LL2024.git

utility. Later, in 2007, Frikken introduced an improved PSU protocol with linear communication
complexity [23]. The receiver encrypts a polunomial f and sends it to the sender, who processes
each y € Y and returns the results. The receiver then decrypts these to determine the union.
Despite communication efficiency has been improved, the computational complexity remained
O(n?). In 2007, Davidson and Cid proposed an enhanced PSU protocol using Bloom Filters
(BF) along with AHE [28]. The receiver flips bits in the BF, encrypts it to create an Encrypted
Inverse BF (EIBF), and sends it to the sender. The sender processes the EIBF and returns
ciphertexts to the receiver, who decrypts them to obtain the union. While the computational
complexity is reduced to O(An), communication complexity increases to O(kAn) due to IBF
encryption and decryption.

Kolesnikov et al. (2019) introduced a PSU protocol based on symmetric key encryption [3],
utilizing the RPMT protocol to verify if an item from the sender is in the receiver’s set. This
protocol achieved a magnitude performance improvement with communication and computa-
tional complexity of O(kAlogn) and O(nlognloglogn), respectively. Later, in 2021, Garimella
et al. proposed a PSU protocol using Permuted Characteristic (PC) [10], relying on the Oblivi-
ous Switching Network (OSN) [39], which reduced the computational complexity to O(nlogn),
resulting in a performance improvement of 2 — 2.5 times over [3]. In 2022, Jia et al. further
enhanced the protocol using OSN to address input set imbalances by shuffling both the receiver’s
and sender’s sets [21], achieving a 4 — 5 times speedup compared to [3], while maintaining sim-
ilar complexity to [10]. Recently, in 2023, Zhang et al. designed a novel multi-query RPMT
(mg-RPMT) functionality for constructing their PSU protocol. They proposed two approaches:
one based on symmetric key encryption (SKE) and the other based on re-randomized public key
encryption (PKE). Their proposed achieved linear complexity with the lowest communication
cost among current protocols.

The core idea of the current two-party PSU protocols suitable for large-scale sets is that
receiver first determines whether each item in the sender’s set X belongs to the receiver’s set
Y. Subsequently, the difference Y\ X is obtained using OT protocol. However, this approach
is challenging to directly compute the union |J;_; X; using the current two-party technologies,
such as by computing the union X7 U (X2\X1)U-- - U (X, \(X1UX2U---UXp_1)), it would not
only reveal the cardinality of difference | X;\(X1UXoU---UX;_1)| but also fail to guarantuee the
privacy of the items in X;\ (X UXoU---UX;_1) during each union computation. Therefore, the
approach of two-party PSU cannot meet the privacy and security requirements of the MPSU.

MPSU. Kissner and Song proposed the earliest MPSU protcol based on polynomial rep-
resentation and AHE [19]. In their protocol, each party P; (i € [t]) represents their input set
Xi = {xi1, T2, ..., Tin} as a polynomial f;(z) = H?Zl(m—xj), whose roots are the set items. The
product of these polynomials represents the union of all input sets. Their approach requires a
large number of AHE operations and high-degree polynomial evaluations with a computational
complexity of O(t3n?). Subsequently, Frikken proposed an improved method based on the ideas
in [19], but it still requires O(#*nlogn) multiplication operations [23]. In their protocol, party
Py encrypts f; using AHE and sends it to P, who then evaluates it for each item in set Xs.
The difference set X5\ X; is then computed based on these evaluations, which can be repeated
for additional sets to compute the final union. In 2012, Seo et al. proposed a new approach
based on rational polynomial functions and reversed Laurent series, associating each party’s
input set with a rational function and providing constant-round complexity [24]. Although it
improves efficiency compared to [19], [23], its security is limited to scenarios where at most ¢/2
parties collude. Gong et al. proposed a constant-round MPSU protocol based on AHE and BF

in 2022 [25]. The protocol first constructs a BF to store the union and exploits the no-collision
property of BF to determine if each position is mapped by only one item, thereby identifying
the items in the set. With the length of the BF depends on the statistical security parameter
and the union size, resulting in a large number of AHE operations and computational overhead,
making it impractical.

In additional to using expensive AHE, employing generic Secure Multi-party Computation
(SMPC) to address the MPSU is also an interesting approach. In 2012, Blanton and Aguiar
proposed an MPSU protocol based on Oblivious Sorting and generic SMPC, which operates in
an honest majority setting [26]. The core idea is to merge all participants’ sets into a large
set, perform an oblivious sort, and then remove duplicate items by comparing adjacent items
to obtain the union. Nevertheless, due to its reliance on SMPC techniques, specifically using
Batcher’s network [30] to sort the union with O(nlog®n) comparisons, the protocol is inefficient
when handling larger set sizes or a greater number of participants.

Recently, Liu and Gao in 2023 proposed an MPSU protocol for efficiently computing large-
scale sets, based on symmetric key operations [27]. The protocol relies on a multi-party secret-
shared shuffle and a multi-query secret-shared private membership test as its core components.
Under the presence of a leader, the protocol allows the leader to obtain the union result by
interacting with other participants. However, the security of their protocol depends on the
assumption that the leader does not collude with other participants, which results in weaker
security guarantees.

Following, we summarize the communication and computational complexity, as well as the
encryption operations used in two-party PSU schemes, in Table 1. Additionally, Table 2 presents
a comparison of the communication and computational complexity, resistance to collusion at-
tacks, and encryption operations for MPSU schemes.

Protocol Year | Comm. Comp. Enc. ope.

[19] 2005 O(n?) O(n?)
[23] 2007 O(n) O(nloglogn) PKE
28] 2017 | O(n) On)

PKE based [22] | 2023 | O(n) O(n)
(3] 2019 | O(nlogn) | O(nlognloglogn)
Eﬂ ;83; O(nlogn) O(nlogn) SKE

SKE-based [22] | 2023 O(n) O(n)

Table 1: Asymptotic communication and computation complexities of semi-honest secure Two-
party PSU protocols. Note: Comm./Comp.: Communication/Computational complexity; Enc.
ope.: Encryption operations; PKE: Public-key encryotion operations; SKE: Symmetric key en-
cryotion operations; n: Size of sets.

2 Preliminaries

2.1 Notation
2

ERE

Assume P; (i € [t]) denotes a participant, and X; = {z},x

by each participant P;, where 2} (j € [n]) denotes the j-th item in set X;. [n] denotes the set

., o'} represents the set held

Protocol Year Comm. Comp. Threshold Ope.

26 2012 | O(t*nlog®(nt)) | O(t*nlog®(nt)) < [t/2] Oblivious sorting
24 2012 O(t3n?) O(t'n?) < [t/2] SKE
27 2023 | O(#’nlog(tn)) O(tn) < t (leader no colludes with others)
19 2005 O(fn) 0(t%n?) <1
23 2007 O(t?n) O(t?>nlogn) <t
% 2022 O(in) O(in) <1 PKE

Our one-leader - O(t?n) O(t?n) <t

Our leaderless - O(t3n) O(t3n) <t

Table 2: Asymptotic communication and computation complexities of semi-honest secure
MPSU protocols. Note: Comm./Comp.: Communication complexity/Computational complex-
ity; Ope.: Operation technique; PKE: Public-key encryotion operations; SKE: Symmetric key
encryotion operations; t: Number of parties; n: Size of sets.

{1,2,..,n}. K, X\ are the computational security parameter and the statistical security parameter

respectively. r S {0, 1}€ denotes a randomly generated binary number r with bit length £. ||
represents the string concatenation operator, such taht a||b means concatenating strings a and
b. Pseudorandom function is denoted by PRF, and probabilistic polynomial-time is abbreviated
as PPT.

2.2 Security Model

In this work, we consider the adversaries are semi-honest, or honest-but-curious, meaning that
adversaries strictly follow the protocol specifications but attempt to learn additional information
by examining the protocol transcripts. We use the ”simulation paradigm” method from [31] to
prove the semi-honest security, with the specific definition given below.

Definition 2.1. Let f : ({0,1}*)! — ({0,1}*)! be an t-ary functionality, where f;(x1,...,2¢)
denotes the i-th item of f(x1,...,x¢). For I = (i1,...,i%) C [t], we let fr(x1,...,x;) denote the

subsequence f; (x1,...,x¢),....fi, (1, ...,2¢). Let II be an t-party protocol for computing f. The
view of the i-th party during an execution of II on x = (x1,...,x¢) is denoted by View! (z).
For I = (iy,...,i1), we let View!(z) = (I, View;! (E),...,Viewgc(i)). We say that I1 privately
computes f if there exists a PPT algorithm, denoted Sim, such that for every I C [t], it holds
that

llle

{(SIm(L, @iy o 3,), f1(@)), F@))} {View(2), Output™ (2)}

({0,1}*)* ze({0,13)7

where OutputH(E) denotes the output sequence of all parties during the execution represented in

View! (z).

2.3 Building Blocks

Oblivious Programmable PRF An Oblivious PRF (ORRF) [32] allows the sender to learn
the PRF key k, while the receiver learns F'(k, z), where F' is a PRF and x is the receiver’s input.
In an Oblivious Programmable PRF (OPPRF) [14], the PRF further allows to ”program” the
output of F' on a limited number of inputs, namely P = {(,y;)}je[n), Which means that the
PRF value for z; is encoded as y;. The receiver’s input is {g;};cy. After the execution, the

sender obtains (k, hint), while the receiver learns the PRF output {F(k,hint,g;)};cy and the
hint. Importantly, the receiver does not know whether the obtained output items F(k, hint, ¢;)
match the sender’s programmed PRF input items y;, i.e., if ¢; = x;, then F(k, hint,q;) = y;;
otherwise, F'(k,hint,¢;) is pseudorandom. The ideal functionality Foppgrr is given in Fig. 1.

Functionality Fopprr

Parameters:
e Two parties: Sender S and Receiver R;
e A Programmable PRF F' with the key generation algorithm KeyGen(-);
e Upper bound n on the number of points to be programmed;
e Upper bound t on the number of queries.
Functionality:
1. Wait for input P = {(z1,¥1), .., (Tn, yn)} from the sender S;
2. Wait for input {qi,...,q:} from the receiver R;
3. Run (k, hint) < KeyGen(P) and compute F'(k,hint, q1), ..., F'(k, hint, q;);
4. Give output (k, hint) to the sender S and output (hint, {F'(k, hint,q;)}icy)) to the
receiver R.

Fig. 1. Ideal Functionality for Oblivous Programmble PRF.

Permute + Share The Permute + Share (PS) functionality Fpg was proposed by Chase et
al. in 2020 [33]. In this functionality, there are two participants, namely a sender and a receiver.
The sender holds a set {x1,...,z,} of size n, where each item has a bit length of ¢, while the
receiver chooses a permutation function 7 to permute the n items. The goal of Fpg is for the
sender to learn the share values {sﬂ(l), ...,sw(n)}, while the receiver obtains the other shared
values {sr(1) © Tr(1), -+ Sr(n) © Tr(n)}- The concrete ideal functionality Fpg is shown in Fig. 2.

Functionality Fpg

Parameters:
e Two parties: Sender S and Receiver R.
Functionality:
1. Wait for input {z1,...,z,} € ({0,1}%)" from the sender S;
2. Wait for input a permutation 7 : [n] — [n] from the receiver R;
3. Generate the shares {sy(1), ... Sz} € ({0,1}%)";
4. Give output {sx(1), .-, Sr(n)} to the sender S and output {sx(1) @ Tr(1)s - Sr(n) @
Tr(n)} to the receiver R.

Fig. 2. Ideal Functionality for Permute 4+ Share.

Private Equality Test Private Equality Test (PEqT) is used to determine whether two
strings are equal. More specifically, two participants, namely a sender and a receiver, each hold
a string x and y respectively. By invoking the PEqT functionality, both participants input their
respective strings x and y, and eventually the sender obtains an output bit b, while the receiver
obtains an output bit b*, such that if x = y, then b ® b* = 0; otherwise, b @ b* = 1. The ideal
functionality Fprqr is illustrated in Fig. 3.

Functionality FpgqT

Parameters:
e Two parties: Sender S and Receiver R.
Functionality:
1. Wait for input x from the sender S;
2. Wait for input y from the receiver R;
3. Generate b and b* satisfying that if z = y, b & b* = 0, otherwise, b ® b* = 1;
4. Give output b to the sender S and output b* to the receiver R.

Fig. 3. Ideal Functionality for Private Equality Test

1-out-of-2 OT Extension 1l-out-of-2 OT Extension ((f)—OTe) is a major cryptology building
block [34]. It allows the sender input n message pairs (zf, z}) with each message is ¢-bit, while
the receiver holds n-bit choice vector b. At the end, the receiver obtains the output result mém,
but the sender obtains nothing. The ideal functionality]:(f)-OTe is shown in Fig. 4

Functionality F, (2)
1

-OTe

Parameters:
e Two parties: Sender S and Receiver R;
e Computational security parameter k;
e Number of based-OTs g = k.
Functionality:
1. Wait for input (zf,z%) € ({0,1}%)?" from the sender S;
2. Wait for input choice vector b € {0,1}" from the receiver R;
3. Give output (:U;[l], - acg[n]) to the receiver R.

Fig. 4. Ideal Functionality for 1-out-of-2 OT Extension

Simple Hashing In the simple hashing scheme, 5 hash functions hq,--- ,hg : {0,1}* — [b]
are used to map n items into b bins By,---,B,. Each item z; (i € [n]) is added to bins
By () Bho(a:): -+ » Bhg(ar), regardless of whether those bins are already occupied. In other
words, an item can be assigned to multiple bins, which introduces redundancy in data dis-
tribution, thereby improving the flexibility and reliability of data retrieval. According to the

inequality, when hashing n items into b bins, the maximum bin size p can be set to ensure that
except with a probability of 27*, no bin will contain more than p items [35]. Specifically, p
satisfies the condition
Pr[3bin with > p items] < b[3 7" (M- ()1 =)

Cuckoo Hashing Cuckoo Hashing was introduced by Pagh and Rodler in 2001 [36]. It uses
multiple hash functions hi, ho,...,hy to map items to bins in a hash table of size b = en.
The distinctive feature of Cuckoo Hashing is its ability to ensure that each bin contains only
one item, thereby maintaining structural simplicity and minimizing collisions. The core of this
technique lies in a deterministic eviction process. When an item x is inserted, it is initially
hashed into one of the bins By, (1), Bhy(a)s - - - » Bh,(2)- If all designated bins are occupied, the
algorithm randomly selects one of the occupied bins, evicts the item currently in that bin, and
re-inserts it into another bin determined by a different hash function. This process is repeated
iteratively until either a vacant bin is found, or the number of evictions reaches a predefined
threshold, indicating that insertion into the regular hash table is infeasible. In such cases,
the item is placed into a small auxiliary space called the "stash,” reserved for overflow items.
Mathematical analysis of Cuckoo Hashing shows that, by appropriately tuning the parameters
~v and ¢, the stash size can be minimized to zero in most practical scenarios while maintaining
a failure probability as low as 27* [6].

Encryption Scheme In our constructed protocols, the AHR-TPKE (Additively Homomor-
phic Re-randomizable TPKE) scheme is used. We provide the formal definition of AHR-TPKE
as given in Appendix A following the description in [37].

3 Technique Overview

We present the ideal functionality of the MPSU we aim to achieve, as shown in Fig. 5. Assume
there are t participants Pi,...,P; each holding a set X; = {a%,...,2,} of size n, where the
maximum bit length of items in the set is £. This ideal functionality encompasses both the one-
leader and leaderless settings. In both scenarios, t participants P; input their respective sets X;
to compute the union of all input sets. However, under the one-leader mode, only the leader
receives the computed union Ule X;, whereas in the leaderless mode, all participants obtain
the union simultaneously. It is worth noting that the ideal functionality can easily compute the
union of all input sets, and ensure that each participant obtains the result. However, during the
execution, no additional information beyond the final output should be disclosed.

Based on the ideal functionality presented in Fig. 5, we design our MPSU protocols under the
semi-honest security model that can resist collusion by up to ¢t —1 adversarial participants among
t participants. Before diving into the technical overview of our MPSUs, we briefly describe a
interesting module that plays a fundamental role in our designed MPSU protocols.

Batched Equality-tested Oblivious Random Generation (BEtORG) is constructed in this
work as a interesting block of our MPSU protocol, and the flow is illustrated in Fig. 6. As
shown in Fig. 6, the BEtORG protocol begins by invoking the PEqQT functionality n times to
determine the relationship between z; and y; for each pair. Specifically, in each PEqT invocation,
a bit value is sent to the sender and the receiver, denoted e; and é;, respectively. It holds that

Functionality Fypsu

Parameters:
e { parties Py, ..., Py and the set size n;
e The maximum bit length of all items is £
Functionality:
1. Wait for input set X; = {2}, ...,2%} € ({0,1}*)" from P;;
2. (a) One-leader: Give output J;_; X; to P;.
(b) Leaderless: Give output Uﬁzl X, to P, ..., P; simultaneously.

Fig. 5. Ideal Functionality for Multi-party Private Set Union

Sender (X) Receiver (Y)
X i . Y
Fori € [n]: N :
Xi i
e; PEqQT 5;
If x;=y;, e; @ &; = 0; otherwise,e; D &; = 1

Iy

{(re; Te;@1)Yiem) 1s randomly selected

~ {(rep Tei@1)Yiem) 5 Eéi =&@d(1)"
o Mg = - (_1)-0Te {rzJicm)

{(Fep T o) Yicin) {bi}iern) = {re }iem
%

— >

Fig. 6. Hlustration of The BEtORG Protocol

if ©; = y;, then e; ® €; = 0; otherwise, e; & €; = 1. Next, the sender randomly generates
n pairs of strings {(re,,7e;@1) }icin) as inputs for the 1-out-of-2 OTe, while the receiver inputs
€ = € @ {1}". As a result, the receiver obtains the n obliviously transferred string {re, }ic[n-
More specifically, if BEtORG is treated as a block box, where the sender and the receiver input
their sets X and Y, the final output will provide each party with a respective result: the sender
will obtain {(re;,7e,a1}icn), denoted as {(a;, @;}ic)n), While the receiver will obtain {rg, }icjn),
denoted as {b;}ic[,- In other words, apart from the final output obtained by themselves, the
participants cannot obtain any other private information.

3.1 Our One-leader MPSU Protocol

Fig. 7 (a) and (b) respectively illustrate the overall workflow of II{PSdeader anqd the detailed
flowchart of its online phase. As shown in Fig. 7 (a), for simplicity, we take four participants
as an example to illustrate the joint computation. The four participants P; jointly execute the
threshold re-randomizable PKE scheme to generate a shared public key pk and individual secret
key sk;. Simultaneously, based on their respective sets X;, each participant also constructs their

10

Pl:Xl
PZ:XZ
P3: X5

P4:X4

online

l

(pk, sky), XS1, XC, EXCy

(pk, sky), XS5, XCp EXC) [——>
(pk,sks), XS3,XC3, EXCy >
(pk,sky), XS4, XCy EXC,,

Core
ypsy

:> Sh;rfﬂe

Joint
Decryption

Shuffled UL, X;

(a) Flowchart of TIgngdeader

Core
HMPSU

Py Py Ps

Py Py P,

) Py

Pl —_—

| Fopprr I | Fopprr |

.

I Fopprr

FPS

Fps

Fps

Py

~ —
a

P
i
I
|
I

Fopprr H

i

i

|

Fp

i

.
.
i

Joint
Decryption
+

Shuffle

P, ;

!
!
i [P.P.Pa]

:

' ' '
| 1 '

Py

Shuffled U, X;
—

(b) Flowchart of The Detailed Online Phase of TI35gs?"

online
Pi: X1 || [@hsk.xs, xcy BXC, | n5s,
Joint
Py X, (Pk,sk3), XS5, XCy EXC, Decryption
+
p Shuffle

Py X, (pk, sks), XS5, XCq) EXC,

P4: X4 (Pk,skq), XS4, XCyy EXC, sy

(c) Flowchart of The Protocol IT\jssriess

Fig. 7. Hlustration of Our New MPSU Protocols for 4 Participants.

own simple hashing table XS;, cuckoo hashing table XC;, and encrypted cuckoo hashing table
EXC;, all with a maximum bin size b. Notably, for j € [b], EXC;[j] = Enc(pk, H (XC;[5])||XC;[4])-

After the preparation phase is completed, each of the four participants P; provides the
constructed inputs ((pk, sk;), XS;, XC;, EXC;) to the online phase. As illustrated in Fig. 7 (a),
the online phase consists of two parts. First, the intermediate output is computed through the
Hf/ﬁé”gU. Then, this output undergoes partial decryption and shuffling sequentially through each
participant, until the final participant, P4, completes the process and computes the final union
set, that is shuffled |Ji_, X;.

The above provided an overview of our Hﬁ}fﬁ‘sl%ader protocol execution process. Next, we pro-
vide a detailed breakdown of the online phase in the Hﬁj‘gg%lder, as depicted in Fig. 7 (b). First,
the operation flow of H&%‘gU is as follows. The first stage within Hl(\j/fggU is the Fopprr+Fps
execution phase. (1) P; (i € [4]) runs Fopprr with other P; (j € {i +1,..,4}), where P; acts

11

as the sender and P; acts as the receiver. (2) Using the results from Fopprr, P; then runs Fpg
with other P;, where P; acts as the sender and P; acts as the receiver. Next is the second stage
of execution within HI\C/I%‘;U. Initially, P; and P, execute Fpriorg, where P; acts as the sender
and P» acts as the receiver. Then, P; uses the result from Fggiorg to mask the items in EXCyq,
and sends the masked data to Ps. For simplicity, we denote the masked and transmitted data as
packaged[P;]. Subsequently, P2 combines its own data with packaged|[P;], and repeats the above
process with P3. This process continues sequentially until P3 and P4 complete the operation,
with P4 finally obtaining the data, denoted as packaged[P;P2Ps] from Ps.

Following, the second phase of the online phase, namely the joint decryption and shuffle
phase, proceeds as follows. In this phase, the four participants sequentially perform partially
decryption operations and shuffle the partially decrypted results. Once P, completes this pro-
cess, it receives the computed data, which corresponds to the shuffled set (X7 U Xo U X3) \ Xy.
Then the P, performs the operation ((X; U X2 U X3)\ X4) U Xy = Ule X;. This marks the
completion of Hﬁlf,‘sl‘f?der protocol. It is worth noting that during the joint decryption + shuffle
in the online phase, the decrypted data is randomly shuffled, meaning that the order of final
output union set is different each time.

3.2 Our Leaderless MPSU Protocol

Our Hﬁ%igf}ess protocol is an extension of the Hﬁfff;sl%ader protocol, as illustrated in Fig. 7 (¢). From

the flowchart, it is clear that the offline phase follows the same steps as the Hl?}fl‘%‘slﬁder protocol.
This includes a series of set processing and computation steps, as well as the collaborative
execution of the key generation algorithm for the encryption scheme by all participants. These
steps produce the required inputs for the online phase, namely ((pk, sk;), XS;, XC;, EXC;).

In the online phase, the Hﬁaﬁigf}ess protocol extends the Hl‘i/rﬁi‘s{%ader protocol. Specifically, as

described in Fig. 7 (b), running HS[OF%U enables the last participant in the protocol to obtain valid
leaderless Core

output information. Thus, in ILFFESG®, we run IIypE; four times, with each participant taking
on different roles during these runs. This ensures that, by the end of the protocol execution,
each participant has obtained valid output information.

During the subsequent joint decryption and shuffle phase, all participants execute the fol-
lowing operations in parallel to ensure that each participant simultaneously obtains the union
output. Specifically, for i € [4], the joint decryption and shuffle operations are sequentially
performed in the order P; — P;jr1 — Pito — Pirs, where the indices are computed modulo
5 with an offset of +1. At the end of this process, P;13 obtains the shuffled union set. It is
important to note that, since the participants corresponding to each position vary with different
values of i, the above process can be executed in parallel even in a single-threaded setting. This
ensures that all participants simultaneously obtain the computed union set upon completion of
the protocol. However, due to the random shuffling at each step, the union sets obtained by
each participant, while identical in terms of elements, will have random orderings.

Summary, we have provided a detailed overview of the overall flow of our proposed protocols.
In the next section, we will present a complete description and analysis of our protocols.

4 New MPSU protocol

In this section, we provide a detailed construction and analysis of the aforementioned Hﬁ}fﬁ‘sl‘f?der

and Hﬁaléig{}ess protocols. A key building used in the protocols is IIggiora, which is newly

12

developed in this work. Below, we first describe this new building block in detail, followed by a
through introduction to Hﬂ‘l‘%‘sl‘ff‘der and Hffﬁise{}ess.

4.1 New Building Block

As mentioned above, we construct a new building block called “Batched Equality-tested Obliv-
ious Random Generation” (BEtORG), whose ideal functionality is shown in Fig. 8. In this
construction, the sender and receiver hold sets {z;}iep, € ({0,1}9)™ and {y;}iepn € ({0,139,
respectively, and use them as inputs to the functionality Fggiorg. Finally, the sender obtains
the set {(a;,@;)}ic[n) and the receiver obtains the set {b; };c|,), satisfying that if z; = y;, b; = a;;
otherwise, b; = a;. During the functionality execution, the string pairs of set {(a’,a;)}ic[n)

is generated randomly, satisfying that (a;,a;) & ({0,1}9)2. Subsequently, a conditional set
{bi}icn) is generated, where b; € {0, 1}*. The term ”conditional” means that if ; # y;, b; = a;;
otherwise, b; = @;. Finally, set {(ai, @;)}ic[n) i3 output to the sender, while {b;};c[, is output to
the receiver. It is worth noting that upon completion of the functionality Fgrtora, neither the
sender nor the receiver can distinguish whether b, = a; or b; = a;.

Functionality Fprtora

Parameters:
e Two parties: Sender S and Receiver R.
Functionality:
1. Wait for input set {z1,...,z,} € ({0,1}%)" from the sender S;
2. Wait for input set {y1, ..., yn} € ({0,1}¥)" from the receiver R;
3. Generate n string pairs {(a;, @;) };e|n) randomly. Construct a conditional set {b; };cn],
s.t. if x; # y;, then b; = a;; otherwise set b; = a;;

4. Give output {(ai, @;)}ie[n) to the sender S, and output {b;};c|n) to the receiver R.

Fig. 8. Ideal Functionality for Batched Equality-tested Oblivious Randomness Generation

According to the description of the functionality Feriora above, we constructed a concrete
protocol IIggtora, as shown in Fig. 9. The protocol is designed with Fpgqr, F, (2)-or 88 the main
building blocks. For a more detailed description of the protocol, the sender and receiver first
invoke Fprqr n times, where each time two parties input an item, x; and y;, respectively. In the
end of Fpgqr, the sender and receiver each obtain a bit value, denoted as e; and &; (i.e, if z; = y;,
then e; @ é; = 0; otherwise, e; @ é; = 1). Next, based on the vector e of length n bits, the sender
randomly generates n pairs of strings (re,,7e,@1), each with a bit length of ¢, while ensuring
that the two strings in each generated pair are distinct. After this, the sender and receiver call
]:(?)_OT, where the sender inputs the constructed random string pairs {(re,, 7e,@1) }ic[n], and the

receiver inputs the vector € = € @ {1}". After the completion of]:(2)-OT’ the receiver obtains
1

the set {Tgi}ie[n], while the sender obtains nothing. Upon completion of the protocol IIggtora,
the sender holds {(a;, @) }icpn) = {(méi, xzi@)}ie[n]v while the receiver holds {b; };cn) = {7¢, }ic[n-
We show the security of IIggtorg in Theorem 4.1 as below.

13

Protocol IIggtora

Inputs:
e Sender S: set {1, ...,x,} € ({0,1})™;
e Receiver R: set {y1,...,yn} € ({0,1}9)".
Protocol:
1. For i € [n]: S and R invoke Fpgqr, where S acts as sender with input z; and R
acts as receiver with input y;. S obtains the output e; and R obtains the output é;;
2. S randomly selects n pairs of strings {(re,, 7e;1) }icjn] & ({0,1}%)?", ensuring that
the two strings in each pair are distinct;
3. § and R invoke]:(f)-OTev where S acts as sender with input {(re;, 7e,@1) }icpn) and
R acts as receiver with input € = € @ {1}". R obtains the output {rz, };c[n, where
if €; = e;, re; = re,, otherwise, rs; = re,@1;

4. S obtains {(ai, @) }icfn) = {(Te;s Te;@1) biepn)» R obtains {b; }icin) = {7¢, bieln)-

Fig. 9. Batched Equality-tested Oblivious Randomness Generation Protocol

Theorem 4.1. The protocol in Fig. 9 securely computes Fpriorg against semi-honest adver-
saries in the (Fpggr and f(z)_OT)-hybrid model.
1

Proof. We will demonstrate that for any adversary A, we can construct a simulator Sim that
simulates the view of the corrupted sender S and the corrupted receiver R, such that the
produced transcript in the ideal-world is distinguishable from that in the real-world in any PPT
environment.

Corrupted S: The simulator Sim simulates a real execution in which § is corrupted. Since
A is semi-honest, Sim can directly obtain the input set {zi,...,z,} of S and externally send
it to Fpetorca. Upon receiving x; from A, Sim randomly selects e; & {0,1}, and simulates
the execution of Ilpgqr. Upon receiving the input {(re;,7z,e1)}icn for H@)_OT from A, Sim
simulates the execution of II 2.0t

Next, we demonstrate that the outputs generated by Sim are indistinguishable from the real
view of § through the use of the following hybrids:

Hybrid 0 S’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of Ilpggt is replaced by e;,
which is chosen by Sim, and Sim invokes the Fpgqr simulator to generate the simulated
view for §. The computational indistinguishability between the view in simulation and
that in the real protocol is ensured by the security of the protocol Ilpgq.

Hybrid 2 This hybrid is identical to Hybrid 1, except that Sim runs the simulator ‘F(Q)-OTe to
1

generate the simulated view for §. The computational indistinguishability between the
view in simulation and that in the real protocol is ensured by the security of the protocol
H(?)_OTe. The bybrid is the view output by Sim.

14

Corrupted R: The simulator Sim simulates a real execution in which R is corrupted. Since
A is semi-honest, Sim can directly obtain the input set {yi,...,y,} of R and externally send it

to FertorGg. Upon receiving y; from A, Sim randomly selects €; & {0,1}, and simulates the
execution of Ilpgqr. Upon receiving the input € for H(Q)—OTe from A, and obtaining the output
1

78, ...,7s } from FEtorG, Sim simulates the execution of IT 2 with {rz,,...,rz } as output.
1 n (3)-OTe 1 n p
1

Following, we demonstrate that the outputs generated by Sim are indistinguishable from the
real view of R through the use of the following hybrids:

Hybrid 0 R’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of Ilpgqt is replaced by é;,
which is chosen by Sim, and Sim invokes the Fpgqr simulator to generate the simulated
view for R. The computational indistinguishability between the view in simulation and
that in the real protocol is ensured by the security of the protocol Ilpgq.

Hybrid 2 This hybrid is identical to Hybrid 1, except that the output of H(f)-OTe is replaced by
{re,,...,re, } output by Fpgrtorg, and Sim invokes the ’F@)—OTe simulator to generate the
simulated view for R. Regardless of whether r;, is generated by H@)_OTe or FBEtORG, it
holds that if x; # y;, then rs, = r.,; otherwise rs;, = r¢,¢1. The computational indistin-
guishability between the view in simulation and that in the real protocol is ensured by the
security of the protocol H@)_OTG.

4.2 New MPSU Protocol TIgcader

In this section, we provide detailed information about our constructed MPSU protocol (Hgfg-sl%ader),

which is used to realize the one-leader scenario of the Fypgy described in Fig. 5. The complete
Hﬁ/}‘gsl%ader is shown in Fig. 10, with the core part HS&{%U, shown in Fig. 11. ‘ ‘

In the TIgRedeader each of the ¢ participants P; (i € [t]) holds a set X; = {z%,...,2%}. During
the preparation phase, the ¢ participants jointly invoke the AHR-TPKE scheme, allowing each
participant to obtain a joint public key pk and their respective private key sk;. Next, each
participant P; constructs a simple hashing table XS; and a Cuckoo hashing table XC; using
hashing functions hi, ..., hg, where the simple hashing tables contain b bins with a maximum
capacity of m items per bin, and cuckoo hashing tables contain b bins with each bin can hold at
most one item. Subsequently, an encrypted cuckoo hashing table EXC; is constructed for each P;
such that each item in the j-th bin of EXC; is represented as EXC;[j] = Enc(pk, H (XC;[4])||XC;[4])-

After completing the above process, the first step involves all participants P, ..., P; jointly
executing HS&{%U, where only P; obtains the valid output. The detailed process is as follows.
We use Fopprr to anonymize the items, followed by Fpg to shuffle the anonymized items.
Next, we utilize Fgrtorg to securely determine whether the shuffled and anonymized items are
equal. Afterward, the results are encrypted using the AHR-TPKE scheme, then packaged and
transmitted to the next participant. The use of AHR-TPKE ensures protection against privacy
leakage due to possible collusion between participants. After conducting Fggtorg comparisons ¢
times and sequentially encrypting and packaging items for transmission, the leader P; eventually

15

RIS one-leader
Protocol 155

Parameters:
e Hashing functions hy, ho, ..., hg: {0,1}4 — [b];
e A simple hashing table based on hq,hs,...,hg, with b = €-n bins and bin size
m = O(log(fn));
e A cuckoo hashing table based on hq, ha, ..., hg, with b = € - n bins and no stash;
e A collision-against hash function H(z) : {0,1}* — {0,1}*;
e A AHR-TPKE schem (Setup, KeyGen, Enc, ShareDec, Combine).
Inputs:
e t parties P; (i € [t]): X; = {z},...,a7} € ({0,1}*)™.
Preparation:
e Each P; (i € [t]) jointly run pp < Setup(1®) and KeyGen(pp,t,t) to obtain their
respective keypair (pk, sk;);
e Each P; (i € [t]) respectively inserts the set X; into the simple hashing table XS;
and the cuckoo hashing table XC;, and fills the empty bins with the dummy d in
XC;. Let denote XS;[j] and XC;[j] as the items in i-th bins, where j € [b]. Each P;
(7 € [t]) respectively constructs EXC;, s.t. EXC;[j] = Enc(pk, H (XC;[j])||XC;[4]).
Protocol:
1. Py,..., Py jointly execute the HE/IOngU’ and then 7P; obtains the ciphertexts
{ct, ...,cl(tt_l)b}. Py sends {c}, "'7c€t—1)b} to Py;

2. For k € [t — 1]: Py decrypts and shuffles {c’ffl, ...,c](ctill)b} obtaining {c}, ..., c’(“til)b},

where ¢ = c!; Py sends {ck, ..., C?t—l)b} to Pri1;

3. P, constructs a empty set Z; and decrypts {c’i_l,...,c'ét_fl)b} obtaining

{m1,...;mqu_1)p}. For k € [(t — 1)b]: P, checks whether my = H(s)|[s, and sy # d,
if yes, setting Z; = Z; U {sx}; Finally, P, obtains Z; U X;.

Fig. 10. Hﬁlf_’,‘sl%ader Protocol Achieving One-leader Fypsy

receives the encrypted set, which consists of encrypted {EXC; U ... U EXC;} \ EXC; and random
values, where each EXC; (j € [t]) is shuffled by Fps.

In the second step, a joint decryption and shuffle process is executed sequentially in the order
P1 — Py — ... = P; to recover the information. Since P, performs the final decryption, the
recovered information is ultimately held by P,. Then P; performs the final verification step to
filter out random values, retaining only the items of {X; U...U X;}\ X; and storing them in the
set Z;, as described in Step 3 of the Hﬂlg‘é%?‘der protocol. Finally, P; computes Z; U X; to obtain
the final shuffled union of items.

Correctness The first potential point of collusion occurs during the execution of Fopprr in
Step 1 of H%%FS{%, Le., if XC;j[k] ¢ XSq[k] (where j € [t], ¢ € {j +1,...,t}, an k € [b]) but w}’ =
F(KE?, hint}? XC;[k]). Therefore, to reduce the probability of such a collision to a negligible

16

Core
HMPSU

1. Each P; (j € [t]) randomly selects j-1 string group {r}''}, ..., {r}7 ™"} & ({0,1}%)b where
k € [b]; Then each P; (j € [t]) severally invokes Fopprr Wlth all parties in Z = {Pj11, ..., P}
in parallel:

a) P, acts as sender with input {(XSy[k][1],7%7), ..., (XSy[k][m],7#7)}, and P; acts as
receiver with input {XC;[k]}, where k € [b] and g € {j +1,...,t}; A ‘
b) P; obtains (hint?’, {w{’ .. wl’}) and P, obtains (hint®/, {KI7, .. KI’}),

where wi’ = F(K{/, hint"/,XC;[k]). Specifically, if XC;[k] € XS,[k], then
F(KP, hlntq’j XC;[k]) = ri7; otherwise, F(KC{7, hint?7 XC,[k]) # ri;
2. Each P; (j € [t]) randomly selects a permutation function m; : [b] — [b]; Then each P;

(€ [t]) severally invokes Fpg with all parties in Z = {Pj41, ..., P} in parallel:
a) P; acts as sender with input 7;, and P, acts as receiver with input {r{”, ..., r{"},
where ¢ € {j + 1,...,t}; . , , , ,
b) P; obtains {s{7,...,s{”’} and P, obtains {51, ..., 57}, where s}’ & §{7 = ri’jj(k) and
k€ [bl;
3. For j € [t — 1], t parties sequentially execute the following processes:
a) P; invokes Fprrorca with Pjii:

J+1, Jj+lq _ j+1,q ®

— Pj acts as sender with input {{sw] ™ “}rcp}qcp), Where swy
]+(1k’;169§]>’;ﬂ(ak’q@bp), and Pj1 acts as receiver with input {{s Deew Faels

J+1,q ~J+ 'q J+ 'q
— P; obtains {{(a) eew) feep) and Pji1 obtains {{b,“}rep teeri
Jrla ~§€+1’q, then :EJH’q bj,Jrl’q, otherwise ij 4= 7+1’q,

where if swy,
b) P; sends {{Ai’q}ke[b]}qe[j] and {{{kaq}ke[b]}qe[j]}le{j+2,...,t} to Pjy1, where
ALY = (EXC,[my (b)) @ a1}

AL = (AT @ BL7) a1 Enc(pk,0) @ a7}

Jj+1,q

l.q l,q j>q+1 (p,q D,q Jj+1,p
ka _Sk EBU) (k) @P q+1 (ak; @bk)@ak} .

Then PJH computes each sw Teb) 1., ; Specifically, when j =t — 1, P;_; only sends
{{At }ke[b]}qe [t—1) to Ps. Then P only computes {(At 1 qEBbt = 1)+H Enc(pk,0))},
denote as {c1, ..., ct—1)};

Fig. 11. The core protocol of TIghcleader

level, specifically 27, the output bit length ¢ of PRF function F is typically set to A+log(e-n).
Additionally, in 3) of HS[%PS{% , items in P; are compared sequentially with those in P; 1 to check
for duplicates, where j € [t]. If duplicates are found, the duplicate items in P; are randomized,
while retaining the items in Pj41, as described in Appendix B. This process continues until
P; obtains the {{X; U...U X;} \ X; + random values}. Eventually after joint decryption and
shuffling, P; performs a verification to remove the random values and retain {X; U...UX;}\ X,
thereby obtaining the final shuffled union set {{X; U.. U X;} \ X;} U X, = Ué’:l X;. In the
above process, potential errors may arise, such as decrypted item being random value that still
pass Py’s union check (i.e., zp = H(sk)||sx when s is a random value), or item belonging to the
union failing the check. However, the properties of the AHR-TPKE and the collision-resistant
hash function ensures that the probability of such errors is negligible.

17

Security The security of Hﬁ}flg‘shff‘der is proved as follows.

Theorem 4.2. The protocol in Fig. 10 securely computes Fypsy of one-leader scenario against
any number of corrupt, colluding, semi-honest parties in the (AHR-TPKE, Fopprr, Fps, and
FBEtorG)-hybrid model.

Proof. All interactions between participants in Hﬁ?ﬁg‘{?der occur within online phase, that is

Hf/ﬁng and joint decryption + shuffling operation. Assuming P; (where i € [t]) is honest and
I ={(P1,...,P)\Pi} is a colluding coalition, to satisfy the correctness of Theorem 4.2, we need
to prove that P; can resist coalition attacks when it respectively assumes the roles P, ..., P;.
That is, for any adversary A, we can construct a simulator Sim that simulates the view of the
corrupted coalition I, such that the produced transcript in the idel-world is distinguishable from
that in the real-world in any PPT environment. Since P, ..., P;—1 perform the same role in the
protocol, we will prove in two different cases: when P; acts as the leader P;, when P; acts as
the other participant roles.

(1) P; acts as the leader P; and I acts as the {Py, ..., Pr_1}. The simulator Sim simulates a real
execution. Since A is semi-honest, Sim can obtain the input Ix = {X3,..., X;—1} of I directly,
and externally send Iy to Fypsy. When receiving {XC;[1], ..., XC;[b]} (j € [t — 1]) from A, Sim
randomly selects (hint', {wZ’j }) (where k € [b]), and simulates the execution of Iloppry, where
P; acts as the receiver and P; acts as the sender. Once receiving the permutation function =;
from A, Sim checks if it is a permutation of b items. If yes, Sim randomly selects {stl’j s e sZ’j }
where szj € {0,1}*2, and simulates the execution of IIpg, where P; acts as the sender and
P, acts as the receiver. After obtaining the {{swi’q}ke[b]}qe[t,l] from A, Sim randomly selects
{{(ay?, @) Yhep) bgel—1) and simulates the execution Ipgiora, where 7,1 acts as the sender
and P, acts as the receiver. Once obtaining {{A?l’q}ke[b}}qeﬁ_” from A, and also obtaining
{c, ..., C]Etfl)b} from A, Sim simulates the set {ctl_l, ey cﬁt_fl)b} that joint decryption after ¢ — 1
rounds.

Next, we demonstrate that the outputs generated by Sim are indistinguishable from the real
view of I through the use of the following hybrids:

Hybrid 0 I’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that the output of Ilgppgrr is replaced by
(hint™7 {w!?, .., wZ’j}), chosen by Sim, when P; (where j € [t —1]) acts as the receiver and
jointly invokes with P;. Afterwords, Sim invokes the Fopprp simulator to simulate the t—1
calls and generate the simulated view for I. Since each invocation is independent of the
others, i.e., the invocation between Py, ..., P;_1 and P, are independent, the computational
indistinguishability between the simulated view and the real protocol view is ensured by
the security of Ilopprr.

Hybrid 2 This hybrid is identical to Hybrid 1, except that the output of Ilpg is replaced by
{s47, ..., 507}, chosen by Sim, when P; (where j € [t — 1]) acts as the sender and jointly
calls with P;. Afterwords, Sim invokes the Fpg simulator to simulate the ¢ — 1 calls and
generate the simulated view for I. Since each invocation is independent of the others,
i.e., the invocation between P, ..., P._1 and P; are independent, the computational indis-
tinguishability between the simulated view and the real protocol view is ensured by the
security of Ilps.

18

Hybrid 3 This hybrid is identical to Hybrid 2, except that the output of IIggiorg is replaced by
{(a9,a9), ... (azq, dz’q)}, chosen by Sim, when P;_; acts as the sender and jointly calls
with P;. Afterwords Sim invokes the Fpriorg simulator to simulate the invocation and
generate the simulated view for I. The computational indistinguishability between the

simulated view and the real protocol view is ensured by the security of IIggiorc-

Hybrid 4 This hybrid is identical to Hybrid 3, except that the joint decryption result of the ¢t — 1
participants in [is replaced by {c"fl, ey Cz;—ll)b}’ chosen by Sim. Afterwords, Sim invokes
the joint decryption simulator to simulate the invocation and generate the simulated view
for I. The computational indistinguishability between the simulated view and the real
protocol view is ensured by the security of AHR-TPKE and randomly shuffling. This
hybrid is the view output by the simulator Sim.

(2) P; acts as the P; (where j € [t — 1]) and I acts as the {P1,....,P:} \ P;. The sim-
ulator Sim simulates a real execution. Since A is semi-honest, Sim can obtain the input

= {Xl,.. Xt} \ X; of I directly, and externally send Ix to Fypsy. When obtaining
{(XSq[K][1], 7E7), ..., (XSq[k][m], r?)} (where ¢ € {j+1, ..., t} and k € [b]) apd {XCp[1], ..., XCp[b]}
(where p € [j —1]), Sim randomly selects (hint%’, {qu’j o, KPP} and (hint?? {w]®, ... wb’p}) re-
spectively. Then, Sim simulates the execution of IIopprr. Specifically, for {(XS,[k][1], k,’])y eens
(XS4 k] [m],rg’j)}, Sim simulates the scenario where P, acts as the sender and P; acts as the
receiver. For {XCp[1],...,XC,[b]}, Sim simulates the scenario where P, acts as the receiver and
Pj acts as the sender. Once obtaining 7, (where ¢ € {j +1,...,t}) and {r?, .., r?} (where
p € [j —1]), Sim randomly selects {s?7,...,s7} and {7, ..., sb’p} respectively. Then, Sim
simulates the execution of IIpg. Specifically, for m,, Sim simulates the scenario where P, acts
as the sender and P; acts as the receiver. For {r{’p s ey ri’p }, Sim simulates the scenario where
P, acts as the receiver and P; acts as the sender. Upon obtaining {{Swﬂq}ke[b]}qe[j—l} from
A, Sim randomly selects {(]1‘1 ~j1q),. , (iq, j’q)} and simulates the Ilpgiorg, where Pj_q
acts as the sender and P; acts as the receiver. Upon obtaining {sJH’] ~j+1’j } from A, Sim

{a] H’J a’l +1’j} and simulates the IIggtorg, where P acts as the sender

randomly selects
and Pj41 acts as the receiver. Once obtaining ({A2"}, ..., {A}7}} from A, and also obtaining
{d,. ’CZt 1)b} from A, Sim simulates the set {mj,...,m_1),} representing decrypted message
after joint decryption of ¢ rounds. After obtaining the shuffled Z; = UZ 1 X; from Fypsy, Sim
computes X; = Z;\Ix and sets m; = H(X;[i])||X;[i] for i € [|X;|]. Then, Sim randomly selects
m; & {0,1}% for i € {\X]| +1,...,(t —1)b}, where ?; represents the bit length of the sequential
items in the set Ix plus ¢. Finally, Sim sends the randomly shuffled {my,...,m_1)} to A.

Next, we demonstrate that the outputs generated by Sim are indistinguishability from the
view of I through the use of the following hybrids:

Hybrid 0 I’s view in the real protocol.

Hybrid 1 This hybrid is identical to Hybrid 0, except that when Pj41, ..., P; act as the sender and
jointly invoke Ilopprr with P;, the output is replaced by (hint?7, {IC‘f’j, A ng’j}) (where
qg € {j +1,...,t}), chosen by Sim. Similarly, when Pi,...,P;_; act as the receiver and
jointly invoke Ilopprr with P;, the output is replaced by (hint®, {wf’j s wf’j }) (where
p € [j—1]), also chosen by Sim. Then, Sim invokes the Fopprr simulator to simulate the t—

19

1 invocations and generate a simulated view for I. Since each invocation is independent of
the others, the security of Ilppprr ensures the computational indistinguishability between
the simulated view and the real protocol view.

Hybrid 2 This hybrid is identical to Hybrid 1, except that when PJH, ..., Pt act as the receiver and
jointly invoke ITpg with P;, the output is replaced by {57, .. sb’J} (where g € {j+1,...,t}),
chosen by Sim. Similarly, when Py,...,P;_1 act as the sender and jointly invoke Ilpg with
Pj, the output is replaced by {8{’1’ s si’p } (where p € [j — 1]), also chosen by Sim. Then,
Sim invokes the Fpg simulator to simulate the t — 1 invocations and generate a simulated
view for I. Since each invocation is independent of the others, the security of IIpg and the
random permutation functions ensures the computational indistinguishability between the
simulated view and the real protocol view.

Hybrid 3 This hybrid is identical to Hybrid 2, except that when P;_; acts as the sender and
jointly invokes Ilpgiorg with Pj, the output is replaced by {(a{q,&]lq), el (a{)q,aiq)}
(where ¢ € [j—1]), chosen by Sim. Afterwards, Sim invokes the Fpgiorg simulator to simu-
late the invocation and generate a simulated view for I. Additionally, when P; 1 acts as the
receiver and jointly invokes IIggtora with P;, the output is replaced by {bj +1’q bj +1’q}

(where ¢ € [j]), chosen by Sim. Subsequently, Sim calls the Fpgtorc Slmulator again to

simulate the invocation and generate a simulated view for I. The security of Ilggiora

ensures that the simulated views in both cases are computationally indistinguishable from

the views in the real protocol.

Hybrid 4 This hybrid is identical to Hybrid 3, except that the {c{™! .- (t 1 »} obtained by Py

is randomized due to {c{, e t 1) »} is randomly chosen by Sim at P;. Subsequently,
Sim invokes the joint decryptlon sunulator to simulate the invocation and generate a sim-
ulated view for I. Consequently, the final decrypted information {my,...,m_1)} is also
changed. The security of AHR-TPKE and random shuffling ensure that the simulated
view is computationally indistinguishable from the real protocol view. This hybrid is the
view output by the simulator Sim.

4.3 New MPSU Protocol I1igssrless

The Hﬁaﬁise{}ess protocol is an extension of the IIR}5g leader protocol, with the same offline operations.
The distinction lies in the extended online phase7 as detalled in Fig. 12. Specifically, by executing
Hg/ﬁ%ng t times, each participant assumes a different role within Hg/f}ng during each execution.
This ensures that after ¢t executions, all ¢ participants have played the role of internal P; and
obtained valid output results. Subsequently, all participants perform the linear decryption and
shuffle operations in parallel, following the order P;y; — -+ — Pit4—1 — Piyt, where i € [t], and
the index calculation omits the (mod (¢+1))+1 modulus rule. It is worth noting that during the
parallel execution of linear operations, since the participants in each linear stage are distinct,
even in a single-threaded setting, all participants can still complete the linear computation
simultaneously. Finally, each participant sequentially verifies the decrypted information, removes
the random values, and obtains the final union set. Due to the shuffle operations performed

20

during the decryption phase, while all participants obtain identical items in their union set, the
order of items in each participant’s set is randomized.

. y leaderless
Protocol II5St

Protocol:
1. All participants execute I3 for ¢ rounds. In the i-th round (where i € [t]),
Pi, Pit1, ---, Pixt—1 sequentially take on the roles of Py, P1, ..., Pr_1 within SIOFEgU,

where indices omit (mod (¢ + 1)) + 1. At the end of each round of {3, P
obtains the output set {ci, ..., cét_l)b} and sends it to Pjy1.

2. Execute the following operations in parallel: For ¢ € [t], P; performs decryption and
shuffle operations on {c{_l,...,czt__ll)b}, generating a new set {c{,...,cgt_l)b}, and
sends it to Pji1, where j € {i +1,...,i+¢— 1}. Note that indices omit the rule (
mod (t+ 1))+ 1 and * = ¢.

3. Each P; (Whgre i€ [n]) constructs a empty set Z; and decrypts {c’fl, ...,cé;_ll)b}
obtaiging {mll,...,m%t_l)b}. For k € [(t — 1)b]: P; checks whether mj = H(s})||s},
and s, # d, if yes, setting Z; = Z; U {s}.}; Finally, P; obtains Z; U Xj.

Fig. 12. Hﬁaﬁiée{}ess Protocol Achieving Leaderless Fypsu

Since the offline phase of the Hﬁ%{}ess protocol is identical to that of the Hi‘fl‘?,‘é%ader protocol,

and its online phase can be regarded as t independent executions of the Hf\)}ﬁ%‘é‘{f‘der’s online phase,

proving the correctness and security of the Hﬁ}fl‘%‘sl‘fj‘der is sufficient to establish the correctness

and security of the H%\‘}agée{}ess. The correctness and security of the ﬁ‘ﬁ%‘slff?der have been detailed

in Section 4.2. Therefore, we can directly derive the following theorem.

Theorem 4.3. The protocol in Fig. 12 securely computes Fypsy of leaderless scenario against
any number of corrupt, colluding, semi-honest parties in the (AHR-TPKE, Fopprr, Fps, and
FpEtora)-hybrid model.

4.4 Efficiency Optimization Strategy

Recall that in our protocols, during 3) of Hf/ﬁé"gU, each internal participant P; (where j € [t])

should send relevant data to Pj41 after running the Fggiora. To ensure secure transmission and
resist collusion among semi-honest participants, we use the AHR-TPKE scheme to continuously
re-randomize the data to be transmitted. This process involves two steps: first, computing
Enc(pk,0), and second, performing homomorphic addition +g. It is worth noting that the
majority of the runtime in this part is consumed by Enc(pk,0), while the time spent on +p
is significantly lower, approximately T, ~ 5% X Tenc(pk,0)- Therefore, generating a sufficient
number of Enc(pk, 0) during the preparation phase, and only performing 4y during the online
phase can significantly improve the protocol’s efficiency.

4.5 Cost Analysis

During the interaction phase, our ﬁ?ﬁ'sl%ader protocol is executed through Hg&ng and the joint

decryption + shuffle operations. The theoretical computational and communication complexities

21

are analyzed in detail in Table 3.

We assume there are t participants, each holding a set of size n. Recalling our Hﬁ}[‘f,‘slﬁjider,
each participant first jointly calls the AHR-TPKE scheme to obtain a joint public key and an
individual private key, and inserts the items into a simple hash table and a cuckoo hash table
respectively using v hash functions (with a encrypted Cuckoo hash table also constructed). The
cuckoo hash table contains en items, while the simple hash table contains yn items. Then, the
t participants proceed with executing HSFﬁgU t times, involving the execution of Ilopprr, Ilpg,
IIgEtora, as well as encryption, decryption operations of the AHE-TPKE scheme.

For the implementation of IIopprp, we used the batched OPPRF from [38] to hide the
number of items in each bin. Specifically, the complexity for computing hints and communication
is linear, i.e., O(yn), and the sender additionally needs O(enlog(en)) to compute the PRF
values. Thus, in one round execution of Hg{ggU, IIopprr results in a computational complexity
of O(A(y + elog(en))n) and a communication complexity of O(Ayn), where A = Zf;i i

We use the construction from [39] to implement IIpg, resulting in a computational complexity
of O(enlog(en)). Thus, in one round execution of TI{ %S, Ips results in O(Aen log(en)) for both
computation and communication complexity.

Our Ilggtora consists of pgqr and 11 (3)-0Te’ both of which exhibit linear complexity. Thus,

the computational and communication complexity of Ilpgiorg are O(en). Therefore, in one
round execution of Hl(\jﬁé”gU, II (2)-0Te results in O(Aen) for both computation and communication

complexity. Additionally, in the encryption phase, there are O(Aen) encryption operations, while
the decryption phase involves O(t%en) decryption operations.

FOPPRF Fps Fprtorcg | Encryption | Decryption
Comp. | O(A(y + elog(en))n) | O(Aenlog(en)) | O(Aen) O(Aen) O(t%en)
Comm. O(Arn) O(Aenlog(en)) | O(Aen) O(Aen) O(t%en)

Table 3: The theoretical complexities of TI{$:%;. Note: Comm./Comp.: Communication /Com-
putational complexity; ¢: Number of parties; n: Size of sets; A = Zf;} 7; v: Number of hashing
functions (in Simple hashing table and cuckoo hashing table); en: Number of bins of Simple
hashing table and cuckoo hashing table.

For our Hﬁa}ﬁigf}ess protocol, it can be considered as ¢ invocations of the Hﬁfl‘i'sl‘{‘}‘der protocol.
Thus, it is clear and intuitive that its computational complexity and communication complexity
are t times that of the ﬁ/?}‘?,'sl;‘fjader . Additionally, in Hﬁ%igf}ess, each participant sequentially
assumes all roles within the ¢ rounds of HSﬁ%gU. Consequently, after ¢t rounds, the computational
and communication overhead for each participant equals the overhead incurred by a single round
of HgfggU. Similarly, after ¢ parallel rounds of joint decryption and shuffle operations, the
computational and communication overhead for each participant equals the overhead of a single
round of joint decryption and shuffle. Therefore, in Hﬁaiﬁise{}ess, the total computational and
communication overhead for each participant is identical and equals the overhead incurred by a

single round of TIgfgdeader,

5 Performance Evaluation

In this section, we experimentally evaluate the performance of our MPSU protocols and compare
with the previous work.

22

Benchmarking Environment. We conduct experiments using CLion 2024.2.2 on a MacBook
Pro running a macOS 14.0, equipped with an Apple M3 Pro chip and 36GB RAM. The WAN
environment is configured with a network latency of 10ms and a bandwidth of 100Mbps.

Implementation Details. We use threshold Elgamal encryption as our AHR-TPKE scheme.
Specifically, we employ a key generation algorithm to generate moduli N of 1024 and 2058
bits, approximately corresponding to computational security parameters x of 80 and 116 bits,
respectively. Additionally, the statistical security parameter is set to A\ = 40. Furthermore,
+ = 3 hashing functions are used to respectively insert sets X; (where i € [t]) into the simple
hashing table and cuckoo hashing table, and the encrypted cuckoo hashing table, respectively.
The bin size en of each hashing table is set to 1.27n. Our protocol is written in C/C++, and
utilizes the following libraries for its implementation.

e OPPRF. We use the BTOA19 batched OPPRF structure [38] to implement the OPPRF
functionality. The implementation can be found at https://github.com/encryptogroup/
OPPRF-PST.

e PS functionality. We use the PS13 Oblivious Switching Network (OSN) structure [39] to
implement the PS functionality. The implementation can be found at https://github.
com/dujiajun/PSU.

e PEQT functionality. We use the NDA22 Private Set Membership (PSM) [40] to im-
plement the PEqT functionality. The implementation can be found at https://github.
com/shahakash28/2PC-Circuit-PSI.

e 1l-out-of-2 OTe functionality. We use the library in https://github.com/osu-crypto/
1ib0Te to implement the 1-out-of-2 OTe functionality.

e Additionally, we also OpenSSL library to construct the threshold Elgamal ecnryption
and employ the cryptoTools library as the general framework to compute hash functions,
PRNG calls, creating channels, sending 128-bit blocks and so on. The implementation can
be found at https://github.com/ladnir/cryptoTools.

5.1 Performance of Our Proposed

In our experiments, we set the set sizes to {2!2,216 220} and the number of participants to
{3,4,6,8} to examine the runtime and communication overhead of our proposed. Table 4 con-
solidates all results, presenting the runtime for both the offline phase and the execution of
Hﬁ}f}"s‘sl‘f?der during the online phase, as well as the online execution time and communication
overhead for Hﬁaﬁlgﬁle“. These results are evaluated under threshold Elgamal of 1024 and 2048.

Based on the results presented in the table, for both of our protocols, when the set size
and encryption modulus are fixed, the offline runtime increases approximately 1.5 times linearly
with the number of participants grows, while the online runtime increases by approximately 2
times linearly. Additionally, when the number of participants and set size are fixed, an increase
in the encryption modulus leads to higher runtime and communication costs due to increased
encryption/decryption computation complexity and ciphertext size. These impacts are primarily
observed during the preparation phase, including generating encrypted cuckoo hashing table,
and in HIC\J/I%gU during step 3.b, where set A is transmitted and re-randomized, as well as step 4,

23

https://github.com/encryptogroup/OPPRF-PSI
https://github.com/encryptogroup/OPPRF-PSI
https://github.com/dujiajun/PSU
https://github.com/dujiajun/PSU
https://github.com/shahakash28/2PC-Circuit-PSI
https://github.com/shahakash28/2PC-Circuit-PSI
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/ladnir/cryptoTools

Party Set | Modulus | Offline Runtime | Online Runtime Comm. Cost Online Runtime Comm. Cost
Number | Size | (bits) (s) (IIgggilender) (s) | (IIgpgdader) (MB) | (Ispdsriess) (s) | (Iggdsriess) (MB)
912 1024 7.3 18.79 20 31.81 60
2048 69.76 81.15 32 94.17 96
3 916 1024 108.48 294.27 355 498.89 1065
2048 826.91 1392.78 538 1597.41 1614
920 1024 1943.73 6035.23 2083 10032.71 6249
2048 13274.1 28691.48 9005 32688.96 27015
912 1024 9.52 37.74 41 76.52 164
2048 77.52 171.42 64 210.18 256
4 916 1024 139.07 582.77 719 1174.61 2876
2048 1034.15 2764.91 1085 3356.75 4340
920 1024 2495.75 12686.05 12279 24925.09 49116
2048 16380.24 57784.64 18131 70023.67 72524
912 1024 12.61 93.42 107 252.12 642
2048 92.57 405.06 164 563.76 984
6 916 1024 192.33 1424.94 1836 3708.49 11016
2048 1379.63 6937.53 2751 9221.08 16506
920 1024 3279.41 24395.28 31306 65855.63 187836
2048 19689.05 106843.80 45936 148304.15 275617
912 1024 15.2 167.65 204 589.82 1632
2048 123.17 797.37 311 1219.54 2488
3 916 1024 246.73 2649.95 3501 8906.13 28008
2048 1864.94 12974 5208 19230.18 8896
920 1024 4200.93 45838.73 59575 155990.17 476600
2048 23469.34 210589.13 86885 — —

Table 4: The complete offline and online runtime (seconds) and communication cost of
Hﬁ}ff{sl%*der, as well as the online runtime and communication overhead of Hi‘jﬁ;ise{}ess (N = 1024
and N = 2048). Each party’s set contains of 64-bit elements, while the collusion-against hash
function H produces outputs of 128-bit length. The decimal portion of the communication over-

head is disregarded, retained only the integer values.

where joint decryption is performed. In other parts of the protocol, the size of the encryption
modulus has minimal impact on performance.

Additionally, the computational efficiency of the Hﬁaﬁise{}ess is determined by the runtime of
t executions of HS[OFIZES’U and t joint decryption + shuffle operations. Since the t joint decryption
+ shuffle operations are executed in parallel, their total time equals the time for one operation.

Thus, the computational efficiency of the H%\e/[%ise{}ess is:

t x Runtime of TI{{psy + Runtime of 1 Joint Decryption + Shuffle.

5.2 Comparison with Previous Work

To compare the performance of our proposed, we benchmark it against the state-of-the-art
protocols operating under the semi-honest security model. Both protocols proposed in [25]
and [26] ensure that, at the end of the execution, only one party obtains the union set. However,
the protocol in [25] achieves the same security guarantees as ours - namely, it can withstand
collusion by up to ¢ — 1 participants - while the protocol [26] only tolerates collusion by up to
t/2 participants. To clearly illustrate the performance of our Hﬂlﬁgﬁ‘der, we consider a four-
party scenario under a 2048-bit modulus encryption scheme. As shown in Table 5, we compare
the online runtime and communication overhead for set sizes {2!2 216} among the protocols
from [25], [26], and our TI{sleader,

As shown in Table 5, in the scenario where only one party obtains the union, when the set
size is 2'2, the runtime of the protocol from [25] is approximately 663 times longer than ours,

24

and its communication cost is about 4 times ours. In comparison, under the same conditions,
the protocol from [26] takes about 22 times longer than ours and incurs about 471 times more
communication. When the set size increases to 2!, [26]’s communication cost is roughly 568
times ours.

Runtime (s) Comm. Cost (MB)
212 216 212 216
Ngpgaeader | 17142 | 2764.91 | 64 1085
[25] 113596.02 — 252 —
[26] 3645.39 | 63845.08 | 30117 617047

Table 5: Performance comparison of the online runtime and communication overhead of ours
with those of [25] and [26] in a 4-party scenario.

It is also worth noting that although the protocol in [24] achieves the same goal as our
Hﬁ%%{}ess, which allows all parties to obtain the union, it can only defend against collusions
involving up to t/2 participants. Moreover, since no publicly available implementation of that
protocol currently exists, we cannot conduct a direct comparison. In addition, while the protocol
in [27] achieves a one-leader scenario and does so with very high performance, its security
guarantee holds only if the leader does not collude with any other participant. This weaker
security assumption is the reason we do not provide a direct comparison here.

6 Acknowledgement

This work was supported by the Institute of Information & Communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.RS-2024-00399491,
Development of Privacy-Preserving Multiparty Computation Techniques for Secure Multiparty
Data Integration)

References

[1] Hogan K, Luther N, Schear N, et al., ”Secure multiparty computation for cooperative cyber
risk assessment,” in 2016 IEEE Cybersecurity Development (SecDev), IEEE, 2016: 75-76.

[2] Ramanathan, Sivaramakrishnan, Jelena Mirkovic, and Minlan Yu, "Blag: Improving the
accuracy of blacklists,” NDSS, 2020.

[3] Kolesnikov V, Rosulek M, Trieu N, et al., ”Scalable private set union from symmetric-key
techniques,” in International Conference on the Theory and Application of Cryptology and
Information Security, Cham: Springer International Publishing, 2019: 636-666.

[4] Nomura K, Shiraishi Y, Mohri M, et al., ”Secure association rule mining on vertically
partitioned data using private-set intersection,” in IEEFE Access, 2020, 8: 144458-144467.

[5] Kolesnikov V, Kumaresan R, Rosulek M, et al., ”Efficient batched oblivious PRF with ap-
plications to private set intersection,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016: 818-829.

25

[6]

[7]

[17]

Pinkas B, Schneider T, Zohner M, ” Scalable private set intersection based on OT extension,”
in ACM Transactions on Privacy and Security (TOPS), 2018, 21(2): 1-35.

Pinkas B, Rosulek M, Trieu N, et al., ”SpOT-light: lightweight private set intersection from
sparse OT extension,” in Advances in Cryptology—-CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part IIT 39. Springer International Publishing, 2019: 401-431.

Chase M, Miao P, ” Private set intersection in the internet setting from lightweight oblivious
PRF,” in Advances in Cryptology—CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part IIT 40. Springer International Publishing, 2020: 34-63.

Pinkas B, Rosulek M, Trieu N, et al., ”PSI from PaXoS: fast, malicious private set intersec-
tion,” in Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cham: Springer International Publishing, 2020: 739-767.

Garimella G, Pinkas B, Rosulek M, et al., ”Oblivious key-value stores and amplification
for private set intersection,” in Advances in Cryptology—CRYPTO 2021: 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Virtual Event, August 1620, 2021,
Proceedings, Part 1T 41. Springer International Publishing, 2021: 395-425.

Aranha D F, Lin C, Orlandi C, et al., ”Laconic private set-intersection from pairings,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022: 111-124.

Raghuraman S, Rindal P, ”Blazing fast PSI from improved OKVS and subfield VOLE,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022: 2505-2517.

Bui D, Couteau G, ”"Improved private set intersection for sets with small entries,” in TACR
International Conference on Public-Key Cryptography, Cham: Springer Nature Switzerland,
2023: 190-220.

Kolesnikov V, Matania N, Pinkas B, et al., ”Practical multi-party private set intersection
from symmetric-key techniques,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017: 1257-1272.

Inbar R, Omri E, Pinkas B, ” Efficient scalable multiparty private set-intersection via garbled
bloom filters,” in International conference on security and cryptography for networks, Cham:
Springer International Publishing, 2018: 235-252.

Kavousi A, Mohajeri J, Salmasizadeh M, ”Efficient scalable multi-party private set in-
tersection using oblivious PRF,” in Security and Trust Management: 17th International
Workshop, STM 2021, Darmstadt, Germany, October 8, 2021, Proceedings 17. Springer
International Publishing, 2021: 81-99.

Gordon S D, Hazay C, Le P H, "Fully Secure PSI via MPC-in-the-Head,” in Proceedings
on Privacy Enhancing Technologies, 2022.

26

18]

[25]

[26]

[27]

Ben-Efraim A, Nissenbaum O, Omri E, et al, ”Psimple: Practical multiparty maliciously-
secure private set intersection,” in Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, 2022: 1098-1112.

Kissner L, Song D, ” Privacy-preserving set operations,” in Annual International Cryptology
Conference, Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 241-257.

Garimella G, Mohassel P, Rosulek M, et al., ”Private set operations from oblivious switch-
ing,” in TACR International Conference on Public-Key Cryptography, Cham: Springer In-
ternational Publishing, 2021: 591-617.

Jia Y, Sun S F, Zhou H S, et al., ”Shuffle-based private set union: Faster and more secure,”
in 81st USENIX Security Symposium (USENIX Security 22), 2022: 2947-2964.

Zhang C, Chen Y, Liu W, et al., "Linear private set union from {Multi-Query} reverse
private membership test,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023: 337-354.

Frikken K, ”Privacy-preserving set union,” in Applied Cryptography and Network Security:
5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007. Proceedings 5.
Springer Berlin Heidelberg, 2007: 237-252.

Seo J H, Cheon J H, Katz J, ”Constant-round multi-party private set union using reversed
laurent series,” in Public Key Cryptography—PKC 2012: 15th International Conference on
Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012.
Proceedings 15. Springer Berlin Heidelberg, 2012: 398-412.

Gong X, Hua Q S, Jin H, ”Nearly optimal protocols for computing multi-party private set
union,” in 2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS),
IEEE, 2022: 1-10.

Blanton M, Aguiar E, ”Private and oblivious set and multiset operations,” in Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security, 2012:
40-41.

Liu X, Gao Y, ”Scalable multi-party private set union from multi-query secret-shared pri-
vate membership test,” in International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore: Springer Nature Singapore, 2023: 237-271.

Davidson A, Cid C, ” An efficient toolkit for computing private set operations,” in Infor-
mation Security and Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3-5, 2017, Proceedings, Part II 22. Springer International Publishing, 2017:
261-278.

Mohassel P, Sadeghian S, ”How to hide circuits in MPC an efficient framework for private
function evaluation,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 557-574.

Batcher K E, ”Sorting networks and their applications,” in Proceedings of the April 30-May
2, 1968, spring joint computer conference, 1968: 307-314.

27

31]
32]

[34]

[39]

[40]

A

Oded G, ”"Foundations of cryptography: volume 2, basic applications,” 2009.

Freedman M J, Ishai Y, Pinkas B, et al., "Keyword search and oblivious pseudorandom
functions,” in Theory of Cryptography: Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005. Proceedings 2. Springer Berlin Heidel-
berg, 2005: 303-324.

Chase M, Ghosh E, Poburinnaya O, ”Secret-shared shuffle,” in Advances in Cryptol-
ogy—ASIACRYPT 2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Pro-
ceedings, Part III 26. Springer International Publishing, 2020: 342-372.

Kolesnikov V, Kumaresan R, "Improved OT extension for transferring short secrets,” in
Advances in Cryptology—CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part II. Springer Berlin Heidelberg, 2013:
54-70.

Motwani R, "Randomized Algor ithms,” in Cambridge University Press, 1995.

Pagh R, Rodler F F, ”Cuckoo hashing,” in European Symposium on Algorithms, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001: 121-133.

Bay A, Erkin Z, Hoepman J H, et al., "Practical multi-party private set intersection pro-
tocols,” in IEEFE Transactions on Information Forensics and Security, 2021, 17: 1-15.

Pinkas B, Schneider T, Tkachenko O, et al., ”Efficient circuit-based PSI with linear com-
munication,” in Advances in Cryptology-EUROCRYPT 2019: 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Ger-
many, May 19-23, 2019, Proceedings, Part IIT 38. Springer International Publishing, 2019:
122-153.

Mohassel P, Sadeghian S, ”How to hide circuits in MPC an efficient framework for private
function evaluation,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 557-574.

Chandran N, Gupta D, Shah A, ”Circuit-PSI with linear complexity via relaxed batch
OPPRF,” in Proceedings on Privacy Enhancing Technologies, 2022.

AH Re-randomizable Threshold PKE

A.1 Public-key Encryption.

A Public-key Encryption (PKE) scheme is a tuple of four probabilistic polynomial-time algo-
rithms:

e Setup(1”): On input the security parameter x outputs public parameters pp, which include
the description of the message and ciphertext space M, C.

e KeyGen(pp): On input the public parameter pp, outputs a keypair (pk, sk).

28

e Enc(pk,m): On input a public key pk and a message m € M, outputs a ciphertext ¢ € C.

e Dec(sk,c): On input a secret key sk and a ciphertext ¢ € C, outputs a message m € M or
a symbol L.

Correctness. For any pp < Setup(1¥), any (pk,sk) < KeyGen(pp), any m € M, any
¢ < Enc(pk,m), and any ¢* < Enc(pk,m), it holds that Dec(sk, ¢) = Dec(sk,c*) = m.

Indistinguishablility. For any pp < Setup(1”), any (pk,sk) < KeyGen(pp), and any
(mo,m1) € M, the distribution ¢y <= Enc(pk, mg) and the distribution ¢; < Enc(pk,m;) are
indentical.

Security. Formally, a PKE scheme is considered indistinguishability under chosen plaintext
attack if for any PPT algorithm A = (A, A2):

pp < Setup(1”);

(pk, sk) < KeyGen(pp);
(mo, m1) + A1(pp, pk);
b & {0,1};

¢ <+ Enc(pk, myp);

b« Az(pp,c)

Adva(1%)=Pr |b=1b":

is negligible in k.

Informally, a PKE scheme with message space M and ciphertext space C is additively ho-
momorphic if for all (pk,sk) < KeyGen(pp), all mg,m; € M and arbitrary constant a, such
that

o Dec(sk, Enc(pk,mgo) +m Enc(pk,m1)) = mo + my
e Dec(sk, aEnc(pk, mg)) = amyg

Notably, an additively homomorphic PKE scheme satisfies that re-randomizable algorithm
ReRand, s.t. ReRand(pk, Enc(pk,m1)) = Enc(pk, m1) +x Enc(pk,0).

A.2 Threshold PKE

Threshold PKE (TPKE) scheme is an advanced variant of PKE scheme, where the secret key
is split among several participants instead of being held by a single party. Specifically, in a
threshold system denoted as (k,t)-TPKE, the secret key sk of a PKE scheme is distributed
among t participants, each holding a secret share sk;. The system ensures that decryption is
only possible if a subset of at least k participants collaboratively decrypt the message, combining
their shares. The key generation in TPKE can be done in two ways: either through a distributed
key generation algorithm KeyGen, which securely generates sk; among the participants without
revealing the entire secret key to any single entity, or by relying on a trusted third party to
generate and distribute sk;. The encryption algorithm Enc works similarly to the regular PKE,
using the public key pk generated in the KeyGen.
For decryption algorithm Dec, TPKE involves two main algorithms:

1. Share Decryption (ShareDec): Each of the k participants uses their sk; to produce a
partial decryption of the ciphertext, resulting in decryption shares c;.

29

2. Combining Algorithm (Combine): The decryption shares cy, ..., ¢ are combined with
the public key pk to produce the final plaintext m (or output L to indicate an invalid
decryption).

Similarly, if a TPKE scheme satisfies both the additive homomorphism property and the
re-randomization condition of a PKE scheme, we say that the TPKE is Additively Homo-
morphic Re-randomizable TPKE (AHR-TPKE).

B Remark on Sequential Re-randomization Encryption Based
on AHR-TPKE

Remark 1. Assume there exists a set {z1,...,2,} and a AHR-TPKE scheme (Setup, KeyGen,
Enc, ShareDec, Combine). There are t participants who jointly execute pp < Setup(1) and
KeyGen(pp, k,n), and each participant P; obtains their own keypair (pk,sk;), where k < ¢ is
threshold. For ¢ € [t] and j € [n], we have the following inductive definition based on mathe-
matical induction:

e Fori=1, A; is defined as:
A]l = Enc(pk, z;) ® a}

e For2<i<t—1, A;‘fl is defined, then A;- is defined as:

Al = ((A;i—l @ bg—l) +1 Enc(pk,0)) & d

e For i =1, Az-_l is defined, then A; is defined as:

t _ gt—1 t—1
A=A e

, Where az- and bz- are randomly selected strings. For each aé and b}, if (az- &) b;) = 0, A;- =
¢ = Enc(pk, z;) +u Enc(pk,0) +5 ... +# Enc(pk,0), that is, z; has undergone initial encryption
followed by ¢ — 2 rounds of re-randomization. At this point, z; can be recovered by having
k out of the ¢ participants compute jointly Combine(c, {ShareDec(skj,), ..., ShareDec(sk}, c)}),
where {skj,--- ,sk;} C {ski, - ,, }. Conversely, if for each aé and bé., there exists at least one
aé» S5 bé. # 0, then x; cannot be recovered. The correctness and security are ensured by the
encryption/decryption and re-randomization properties of the AHR-TPKE.

30

	Introduction
	Contribution
	Related Work

	Preliminaries
	Notation
	Security Model
	Building Blocks

	Technique Overview
	Our One-leader MPSU Protocol
	Our Leaderless MPSU Protocol

	New MPSU protocol
	New Building Block
	New MPSU Protocol one-leaderMPSU
	New MPSU Protocol MPSUleaderless
	Efficiency Optimization Strategy
	Cost Analysis

	Performance Evaluation
	Performance of Our Proposed
	Comparison with Previous Work

	Acknowledgement
	AH Re-randomizable Threshold PKE
	Public-key Encryption.
	Threshold PKE

	Remark on Sequential Re-randomization Encryption Based on AHR-TPKE

