
Breaking the Shadow

Key Recovery Attack on Full-Round Shadow Block
Ciphers with Minimal Data

Anda Che1 and Shahram Rasoolzadeh2

1 School of Cryptology, University of Chinese Academy of Science, Beijing, China,
cheanda22@mails.ucas.ac.cn

2 Chair for Symmetric Cryptography, Ruhr University Bochum, Bochum, Germany,
shahram.rasoolzadeh@rub.de

Abstract. Shadow is a family of lightweight block ciphers introduced
by Guo, Li, and Liu in 2021, with Shadow-32 having a 32-bit block size
and a 64-bit key, and Shadow-64 having a 64-bit block size and a 128-bit
key. Both variants use a generalized Feistel network with four branches,
incorporating the AND-Rotation-XOR operation similar to the Simon
family for their bridging function.
This paper reveals that the security claims of the Shadow family are
not as strong as suggested. We present a key recovery attack that can
retrieve the sequence of round keys used for encryption with only two
known plaintext/ciphertext pairs, requiring time and memory complex-
ity of 243.23 encryptions and 221.62 blocks of memory for Shadow-32,
and complexity of 281.32 encryptions and 240.66 blocks of memory for
Shadow-64. Notably, this attack is independent of the number of rounds
and the bridging function employed.
Furthermore, we critically evaluate one of the recent cryptanalysis on
Shadow ciphers and identify significant flaws in the proposed key recov-
ery attacks. In particular, we demonstrate that the distinguisher used in
impossible differential attacks by [LLCW23] is ineffective for key recov-
ery, despite their higher claimed complexities compared to ours.

Keywords: Shadow· Invariants · Key Schedule

1 Introduction

There is an increasing demand for secure and efficient cryptographic primitives
to safeguard the growing number of resource-constrained devices that are becom-
ing integral to our daily lives. Notable examples include RFID tags and nodes in
sensor networks, which are key components of the Internet of Things (IoT). The
Shadow family of lightweight block ciphers, introduced by Guo et al. [GLL21],
is designed to secure data transmission in IoT environments. Shadow employs a
combination of AND-Rotation-XOR operations and a generalized Feistel struc-
ture, with round operations that share similarities with those in the Simon block
cipher family [BSS+13].

2 Anda Che and Shahram Rasoolzadeh

While the designers evaluated the security of Shadow against various types
of cryptanalysis, Kim et al. [KSK+23] identified a structural invariant in the
round functions of Shadow. Using this invariant, they demonstrated that it is
possible to recover the 64-bit key of (full-round) Shadow-32 with a complexity of
248 encryptions and the 128-bit key of (full-round) Shadow-64 with a complexity
of 296 encryptions.

Subsequently, Mirzaei et al. [MAA24] introduced an integral attack target-
ing 14 out of the 16 rounds of Shadow-32. Their attack requires 231 chosen
plaintext-ciphertext pairs, 256.43 encryptions, and 224 bytes of memory.

Later, Liu et al. [LLCW23] by applying the structural invariant discovered
in [KSK+23], proposed impossible differential distinguishers for both versions of
Shadow and extended these distinguishers to a full-round key recovery attack.
Their approach requires 230 chosen plaintext-ciphertext pairs, 248 encryptions,
and 243 blocks of memory for Shadow-32, and 261 chosen plaintext-ciphertext
pairs, 296 encryptions, and 296 blocks of memory for Shadow-64. However, as
discussed in Section 5, this attack has technical flaws and is not feasible for key
recovery.

More recently, Li et al. [LLB+24] proposed a differential attack on full-
round Shadow ciphers. Their attack has a complexity of 215 chosen plaintext-
ciphertext pairs and 250.69 times solving quadratic equations for Shadow-32,
and 232.6 chosen plaintext-ciphertext pairs and 2101.5 times solving quadratic
equations for Shadow-64. As mentioned in [LLB+24], solving these quadratic
equations can be more time-consuming than performing a single Shadow en-
cryption.

Our Contribution. In this paper, we examine the properties of the Shadow
round functions and key schedule. Building on the structural invariant discov-
ered by Kim et al. [KSK+23] and the additional properties presented in this
work, we demonstrate that the Shadow-32 block cipher can be compromised
with a practical time complexity, and Shadow-64 block cipher can be compro-
mised with a not-out-of-reach time complexity. Our attacks are independent of
the number of rounds used for encryption, require only two known plaintext-
ciphertext pairs and a time and memory complexity of 243.23 encryptions and
221.62 blocks of memory for Shadow-32, and 281.32 encryptions and 240.66 blocks
of memory for Shadow-64.

Outline of the Paper. We bring the specification of Shadow in Section 2. In
Section 3, we represent the structural invariant property on Shadow. We present
a key recovery attack on full-round Shadow in Section 4. Then, in Section 5 we
show the flaws in the attack of [LLCW23]. We conclude our work in Section 6.

2 Shadow Specification

Shadow is a family of lightweight block ciphers with the following characteris-
tics:

Breaking the Shadow 3

– Shadow-32: 32-bit block size, 64-bit key size, and 16 rounds.

– Shadow-64: 64-bit block size, 128-bit key size, and 32 rounds.

The overall structure of both ciphers is the same up to the size of the words
used in encryption, and all the round functions are identical except for the values
of the round keys. It applies a generalized Feistel network with four branches and
actually each round of Shadow consists of two Fiestel rounds, both applying
the same bridging functions but with different shuffling between the branches.

We will use (Xr
0 , X

r
1 , X

r
2 , X

r
3) and (Y r

0 , Y
r
1 , Y

r
2 , Y

r
3) to denote the state values

and (Kr
0 ,K

r
1 ,K

r
2 ,K

r
3) to denote the round key values in the r-th round where

each Xr
i , Y

r
i and Kr

i are w-bit words with w = 8 for Shadow-32 and w = 16
for Shadow-64.

The bridging function F uses a similar function as in the Simon family of
block ciphers:

F (X) = (X ≪ 1) ∧ (X ≪ 7)⊕ (X ≪ 2),

where ∧ and ⊕ denote the bit-wise And and Xor operations, respectively, and
X ≪ i denotes the rotation of the w-bit word to the left by i bits.

In the Shadow encryption process, the plaintext P = (P0, P1, P2, P3) is
initialized as the first intermediate state (X0

0 , X
0
1 , X

0
2 , X

0
3). The encryption then

proceeds through a fixed number of rounds R, where each round consists of two
Feistel rounds. The round function is defined as follows:

Y r
0 = F (Xr

0)⊕Xr
1 ⊕Kr

0

Y r
1 = Xr

0

Y r
2 = F (Xr

2)⊕Xr
3 ⊕Kr

1

Y r
3 = Xr

2

and

Xr+1

0 = Y r
2

Xr+1
1 = F (Y r

0)⊕ Y r
1 ⊕Kr

2

Xr+1
2 = Y r

0

Xr+1
3 = F (Y r

2)⊕ Y r
3 ⊕Kr

3

Here, (Xr
0 , X

r
1 , X

r
2 , X

r
3) represents the input state, and (Y r

0 , Y
r
1 , Y

r
2 , Y

r
3) denotes

the intermediate state between the two Feistel rounds in the r-th round of
Shadow. After applying the round function for R times, the final state is
(XR

0 , XR
1 , XR

2 , XR
3) and the ciphertext C = (C0, C1, C2, C3) is then produced

as (XR
2 , XR

1 , XR
0 , XR

3). Note that the exchange in the position of XR
0 and XR

2

for the ciphertext arises from omitting the second permutation of the branches
in the final round. We depict two consecutive rounds of Shadow in Figure 1.

Shadow-4w uses a key of length 8w bits. Based on the size of the plaintext
block, the cipher employs two similar key schedules to generate the round keys.

For Shadow-32, the key is represented as a 64-bit bit-array (k0, . . . , k63). In
each round r, the state of the key is updated as follows:

1. The bits (k3, k4, k5, k6, k7) are XORed with the round constant (c0, c1, c2, c3,
c4), which represents the binary form of the round counter.

4 Anda Che and Shahram Rasoolzadeh

F F

F F

Xr
0 Xr

1 Xr
2 Xr

3

Y r
0 Y r

1 Y r
2 Y r

3

Kr
0 Kr

1

Kr
2 Kr

3

F F

F F

Xr+1
0 Xr+1

1 Xr+1
2 Xr+1

3

Y r+1
0 Y r+1

1 Y r+1
2 Y r+1

3

Kr+1
0 Kr+1

1

Kr+1
2 Kr+1

3

Xr+2
0 Xr+2

1 Xr+2
2 Xr+2

3

Fig. 1. Two Consecutive Rounds of Shadow.

2. The bits (k56, k57, k58, k59, k60, k61, k62, k63) are updated using the following
equations which is called the NX operation:

k56 ← k56 ∧ (k56 ⊕ k62)

k57 ← k57 ∧ (k57 ⊕ k63)

k58 ← k58 ∧ (k58 ⊕ k56 ⊕ k62)

k59 ← k59 ∧ (k59 ⊕ k57 ⊕ k63)

k60 ← k60 ∧ (k60 ⊕ k58 ⊕ k56 ⊕ k62)

k61 ← k61 ∧ (k61 ⊕ k59 ⊕ k57 ⊕ k63)

k62 ← k62 ∧ (k62 ⊕ k60 ⊕ k58 ⊕ k56 ⊕ k62)

k63 ← k63 ∧ (k63 ⊕ k61 ⊕ k59 ⊕ k57 ⊕ k63)

3. Each bit of the key state is then permuted according to the permutation P64

defined in Table 1. Specifically,

ki ← kP64(i) ∀i

Note that this bit-wise permutation, can also be considered as a nibble-wise
permutation on the nibbles of the key state.

Breaking the Shadow 5

Table 1. The Permutation in the Shadow-32 Key Schedule.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 56 57 58 59 16 17 18 19 20 21 22 23 24 25 26 27

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 60 61 62 63 28 29 30 31 32 33 34 35 36 37 38 39

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4. After these operations, the round keys are produced as follows:
Kr

0 = (k00, k01, k02, k03, k08, k09, k10, k11)

Kr
1 = (k04, k05, k06, k07, k12, k13, k14, k15)

Kr
2 = (k16, k17, k18, k19, k24, k25, k26, k27)

Kr
3 = (k20, k21, k22, k23, k28, k29, k30, k31)

For Shadow-64, the key is represented as a 128-bit bit-array (k0, . . . , k127).
In each round r, the state of the key is updated as follows:

1. The bits (k2, k3, k4, k5, k6, k7) are XORed with the round constant (c0, c1, c2,
c3, c4, c5), which represents the binary form of the round counter.

2. The bits (k104, . . . , k127) are updated using the following equations which is
called the NX operation:

k104 ← k104 ∧ (k104 ⊕ k126)

k105 ← k105 ∧ (k105 ⊕ k127)

k106 ← k106 ∧ (k106 ⊕ k104 ⊕ k126)

k107 ← k107 ∧ (k107 ⊕ k105 ⊕ k127)

k108 ← k108 ∧ (k108 ⊕ k106 ⊕ k104 ⊕ k126)

k109 ← k109 ∧ (k109 ⊕ k107 ⊕ k105 ⊕ k127)

k110 ← k110 ∧ (k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)

k111 ← k111 ∧ (k111 ⊕ k109 ⊕ k107 ⊕ k105 ⊕ k127)

. . .

k126 ← k126 ∧ (k126 ⊕ k124 ⊕ . . .⊕ k106 ⊕ k104 ⊕ k126)

k127 ← k127 ∧ (k127 ⊕ k125 ⊕ . . .⊕ k107 ⊕ k105 ⊕ k127)

3. Each bit of the key state is then permuted according to the permutation
P128 defined in Table 2. Specifically,

ki ← kP128(i) ∀i

6 Anda Che and Shahram Rasoolzadeh

Table 2. The Permutation in the Shadow-64 Key Schedule.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 104 105 106 107 32 33 34 35 36 37 38 39 40 41 42 43

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 108 109 110 111 44 45 46 47 48 49 50 51 52 53 54 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 112 113 114 115 56 57 58 59 60 61 62 63 64 65 66 67

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 116 117 118 119 68 69 70 71 72 73 74 75 76 77 78 79

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P (i) 120 121 122 123 80 81 82 83 84 85 86 87 88 89 90 91

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P (i) 124 125 126 127 92 93 94 95 96 97 98 99 100 101 102 103

i 96 97 98 99 z 85 86 87 88 89 90 91 92 93 94 95

P (i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P (i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Again, this bit-wise permutation can also be viewed as a nibble-wise permu-
tation of the key state nibbles.

4. After these operations, the round keys are produced as follows:
Kr

0 = (k00, k01, k02, k03, k04, k05, k06, k07, k16, k17, k18, k19, k24, k25, k26, k27)

Kr
1 = (k08, k09, k10, k11, k12, k13, k14, k15, k24, k25, k26, k27, k28, k29, k30, k31)

Kr
2 = (k32, k33, k34, k35, k36, k37, k38, k39, k48, k49, k50, k51, k56, k57, k58, k59)

Kr
3 = (k40, k41, k42, k43, k44, k45, k46, k47, k52, k53, k54, k55, k60, k61, k62, k63)

3 Structural Invariant on Shadow

In this section, we present a structural invariant for Shadow encryption, as
outlined in the following theorem. We emphasize that this property on Shadow
was first demonstrated in [KSK+23].

Theorem 1. For Shadow encryption, the following properties hold:{
Y r
0 ⊕ Y r

2 ⊕ Y r+2k
0 ⊕ Y r+2k

2 =
⊕k

i=1

(
Kr+2i−1

2 ⊕Kr+2i−1
3 ⊕Kr+2i

0 ⊕Kr+2i
1

)
Y r
1 ⊕ Y r

3 ⊕ Y r+2k
1 ⊕ Y r+2k

3 =
⊕k−1

i=0

(
Kr+2i

2 ⊕Kr+2i
3 ⊕Kr+2i+1

0 ⊕Kr+2i+1
1

)

Breaking the Shadow 7

Equivalently:
Xr

0 ⊕Xr
2 ⊕Xr+2k

0 ⊕Xr+2k
2 =

⊕k−1
i=0

(
Kr+2i

2 ⊕Kr+2i
3 ⊕Kr+2i+1

0 ⊕Kr+2i+1
1

)
,

Xr
1 ⊕Xr

3 ⊕Xr+2k
1 ⊕Xr+2k

3 ⊕ F (Xr
0)⊕ F (Xr

2)⊕ F (Xr+2k
0)⊕ F (Xr+2k

2)

=
⊕k−1

i=0

(
Kr+2i

0 ⊕Kr+2i
1 ⊕Kr+2i+1

2 ⊕Kr+2i+1
3

)
.

Consequently:
P0 ⊕ P2 ⊕ C0 ⊕ C2 =

⊕R/2−1
i=0

(
K2i

2 ⊕K2i
3 ⊕K2i+1

0 ⊕K2i+1
1

)
,

P1 ⊕ P3 ⊕ C1 ⊕ C3 ⊕ F (P0)⊕ F (P2)⊕ F (C0)⊕ F (C2)

=
⊕R/2−1

i=0

(
K2i

0 ⊕K2i
1 ⊕K2i+1

2 ⊕K2i+1
3

)
.

(1)

Proof. To prove the invariant, we analyze the Shadow encryption process over
multiple rounds. First, consider the second half of the r-th round and the first
half of the (r + 1)-th round. We have the following equations:

Xr+1
0 = Y r

2

Xr+1
1 = F (Y r

0)⊕ Y r
1 ⊕Kr

2

Xr+1
2 = Y r

0

Xr+1
3 = F (Y r

2)⊕ Y r
3 ⊕Kr

3

and

Y r+1
0 = F (Xr+1

0)⊕Xr+1
1 ⊕Kr+1

0

Y r+1
1 = Xr+1

0

Y r+1
2 = F (Xr+1

2)⊕Xr+1
3 ⊕Kr+1

1

Y r+1
3 = Xr+1

2

Combining these two sets of equations, we obtain:
Y r+1
0 = F (Y r

2)⊕ F (Y r
0)⊕ Y r

1 ⊕Kr
2 ⊕Kr+1

0

Y r+1
1 = Y r

2

Y r+1
2 = F (Y r

0)⊕ F (Y r
2)⊕ Y r

3 ⊕Kr
3 ⊕Kr+1

1

Y r+1
3 = Y r

0

Adding the first and third equations, and the second and fourth equations, we
get: {

Y r+1
0 ⊕ Y r+1

2 = Y r
1 ⊕ Y r

3 ⊕Kr
2 ⊕Kr

3 ⊕Kr+1
0 ⊕Kr+1

1

Y r+1
1 ⊕ Y r+1

3 = Y r
0 ⊕ Y r

2

Repeating these equations for another round, we obtain the following two-round
equations:{

Y r+2
0 ⊕ Y r+2

2 = Y r
0 ⊕ Y r

2 ⊕Kr+1
2 ⊕Kr+1

3 ⊕Kr+2
0 ⊕Kr+2

1

Y r+2
1 ⊕ Y r+2

3 = Y r
1 ⊕ Y r

3 ⊕Kr
2 ⊕Kr

3 ⊕Kr+1
0 ⊕Kr+1

1

By repeating these equations for k times, we derive the following equations for
2k consecutive rounds:{
Y r
0 ⊕ Y r

2 ⊕ Y r+2k
0 ⊕ Y r+2k

2 =
⊕k

i=1

(
Kr+2i−1

2 ⊕Kr+2i−1
3 ⊕Kr+2i

0 ⊕Kr+2i
1

)
Y r
1 ⊕ Y r

3 ⊕ Y r+2k
1 ⊕ Y r+2k

3 =
⊕k−1

i=0

(
Kr+2i

2 ⊕Kr+2i
3 ⊕Kr+2i+1

0 ⊕Kr+2i+1
1

)

8 Anda Che and Shahram Rasoolzadeh

By substituting the definitions of Y r and Y r+2k, we get:
Xr

1 ⊕Xr
3 ⊕Xr+2k

1 ⊕Xr+2k
3 ⊕ F (Xr

0)⊕ F (Xr
2)⊕ F (Xr+2k

0)⊕ F (Xr+2k
2)⊕

Kr
2 ⊕Kr

3 ⊕Kr+2k
2 ⊕Kr+2k

3 =
⊕k

i=1

(
Kr+2i−1

2 ⊕Kr+2i−1
3 ⊕Kr+2i

0 ⊕Kr+2i
1

)
Xr

0 ⊕Xr
2 ⊕Xr+2k

0 ⊕Xr+2k
2 =

⊕k−1
i=0

(
Kr+2i

2 ⊕Kr+2i
3 ⊕Kr+2i+1

0 ⊕Kr+2i+1
1

)
Thus, we have established the properties as claimed. For the relation between
the plaintext and ciphertext words, we set r to zero and k to R/2, assuming that
R is always an even integer. ⊓⊔

Remark 1. In the Shadow encryption, for any plaintext-ciphertext pair, the
following phrases are always constant:{

P0 ⊕ P2 ⊕ C0 ⊕ C2

P1 ⊕ P3 ⊕ C1 ⊕ C3 ⊕ F (P0)⊕ F (P2)⊕ F (C0)⊕ F (C2)

In [KSK+23], the authors applied the invariant described in Remark 1 for a
distinguishing attack on Shadow ciphers. In this attack, the adversary, given
access to two known plaintext-ciphertext pairs, can determine if these pairs are
encrypted using the Shadow cipher. This enables the attacker to distinguish
the Shadow cipher from a random permutation with a success probability of
1−2−2w, where w represents the word size: 1−2−16 for Shadow-32 and 1−2−32

for Shadow-64.
Additionally, the authors of [KSK+23] leveraged the properties in Theorem 1

to slightly accelerate the exhaustive search for the correct key used in the encryp-
tion. To achieve this, they query two known plaintext-ciphertext pairs. Using one
of the pairs, they compute the values on the left side of Equation (1). They then
guess the full-length key K, compute the round keys using Shadow’s key sched-
ule, and substitute these round keys into the right side of Equation (1). They
check if these values match those computed using the first plaintext-ciphertext
pair. If there is no match, the guessed key is incorrect. Otherwise, they use the
computed round keys to encrypt the two queried plaintexts and verify if the
results match the corresponding ciphertexts.

Because Shadow-4w uses an 8w-bit key, the exhaustive search attack in
[KSK+23] requires 28w evaluations of the key schedule. Since computing the
key schedule is as computationally intensive as encrypting a plaintext, the time
complexity of their attack is only marginally better than a simple exhaustive
search attack.

In the next section, we will present an accelerated exhaustive search for
Shadow that offers significantly better complexity than a straightforward ex-
haustive search.

4 Key Recovery Attacks on Shadow

In this section, we discuss several techniques for key recovery attacks on Shadow
ciphers. We begin by analyzing basic properties of the key schedule and demon-

Breaking the Shadow 9

strate that it is feasible to recover the full-length key with 26w Shadow en-
cryptions, utilizing 23w blocks of 4w bits (which is the same as the block size of
the encryption). Next, we delve deeper into the properties of the key schedule
to enhance the efficiency of our attack. We show that by using only two known
plaintext-ciphertext pairs, 221.62 blocks of memory and 243.23 encryptions for
Shadow-32, and 240.66 blocks of memory and 281.32 encryptions for Shadow-
32, and it is possible to recover the sequence of round keys used for encryption.

4.1 The First Key Recovery Attack

In each operation of the Shadow key schedule, key variables with even indices
never interact with key variables with odd indices. Therefore, the entire key
schedule, which operates on 8w bits, can be divided into two similar smaller key
schedules, each operating on 4w bits: one updates the key state variables with
even indices, and the other updates the key state variables with odd indices.
Note that these two smaller key schedules, aside from the round constants, are
identical.

Moreover, since the round key bits share the same odd-even parity as the
key state variables, we can split Equation (1) into two parts: one w-bit condition
that depends only on the key state variables with even indices, and another w-bit
condition that depends only on the key state variables with odd indices.

By applying this separation to both the key schedule and Equation (1), we
can reduce the computation time required to find candidates for the entire 8w-bit
key that satisfy the 2w-bit condition specified in Equation (1).

The procedure for this attack is as follows: We perform the following steps
separately for the 4w bits of the key corresponding to the even indices and again
for the 4w bits corresponding to the odd indices. First, we guess a value for
the 4w bits of the key corresponding to the even/odd indices. Using the half
of the key schedule that operates on the variables with even/odd indices, we
compute the entire half of the round keys with even/odd indices. With these
round key variables, we can then check the w-bit condition of Equation (1) for
the even/odd indices. If the guessed 4w-bit key value satisfies the condition, we
store it in memory. On average, there are 23w candidate values for each 4w-bit
part of the key corresponding to the even/odd indices.

Subsequently, any combination of a 4w-bit key value from the memory of
candidates for the even indices and a 4w-bit key value from the memory of
candidates for the odd indices represents a candidate for the entire 8w-bit key
that satisfies Equation (1). For each such full-length key candidate, we compute
the encryption for the two known plaintexts and verify if the outputs match the
corresponding ciphertexts. If they do, we have a candidate for the correct key.

The complexity of this attack involves computing the half key schedule twice
for 24w guesses and storing the candidates in two separate memories of 23w blocks
of 4w bits each. In the second part of the attack, we perform 23w × 23w = 26w

encryptions to verify the full-length key candidates.
Note that instead of storing the 4w-bit candidates for the even and odd

indices separately, we can use a single memory table to store candidates for the

10 Anda Che and Shahram Rasoolzadeh

Table 3. The NX Mapping in the Shadow-32 Key Schedule.

k56k58k60k62 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

k′
56k

′
58k

′
60k

′
62 0000 0000 0010 0001 0100 0001 0100 0010 1000 0001 1000 0010 1000 0100 1010 0101

even indices of the key. Then, when we find a candidate for the odd indices of the
key, we perform an exhaustive search by combining this value for the odd indices
and any value for the even indices of the key stored in the memory. While this
approach makes the algorithm more complex, it reduces the memory complexity
of the attack to a single memory of 23w blocks.

4.2 The Second Key Recovery Attack

In this subsection, we delve deeper into the operations of the key schedule to
exploit new properties that enhance the complexity of our key recovery attack.

First, we analyze the NX operation, which operates on the last 8 bits in
Shadow-32 and on the last 24 bits in Shadow-64. As previously mentioned,
all key schedule operations, including NX, can be divided into two smaller parts:
one operating on even-indexed bits and the other on odd-indexed bits. In the
case of NX, it splits into two identical functions but applied to different inputs.

Here, we focus on the portion of NX that operates on the even bits, specifically
on 4 bits of (k56, k58, k60, k62) in Shadow-32 and on 12 bits of (k104, k106, . . . ,
k124, k126) in Shadow-64. For instance, in Shadow-32, the operation is defined
as follows:

k′56 = k56 ∧ (k56 ⊕ k62)

k′58 = k58 ∧ (k58 ⊕ k56 ⊕ k62)

k′60 = k60 ∧ (k60 ⊕ k58 ⊕ k56 ⊕ k62)

k′62 = k62 ∧ (k62 ⊕ k60 ⊕ k58 ⊕ k60 ⊕ k62)

We demonstrate the look-up table of this mapping in Table 3. Clearly, this
mapping is not bijective. Specifically, there are only 7 distinct outputs out of the
16 possibilities.

This means that even though the master 64-bit key for Shadow-32 encryp-
tion is chosen randomly, due to the non-bijectivity of the NX operation in the
first round, it can produce at most (7/16)2 · 264 = 72 · 256 possible different
set of round keys. Note that the power two comes from the separate considera-
tions for even-indexed and odd-indexed bits. This results in an entropy loss of
(8− 2 log2 7) ≈ 2.39 bits in the key information used in the encryption.

In the first round, the index of 8 bits from the master key those go through
NX operation are 56, . . . , 63. In the second round, the index of 8 bits from the
master key those go through this operation are 8, . . . , 15 which are not involved
in the first round. Consequently, these 8 bits, despite being chosen randomly
to initialize the master key, can only produce 72 different possibilities due to
the NX operation in the second round. This results in an additional entropy loss

Breaking the Shadow 11

of approximately 2.39 bits. Thus, the total number of possible different sets of
round keys in the key schedule of Shadow-32 is at most (7/16)4 · 264 = 74 · 248.

This technique does not apply to other rounds because the 8 bits affected by
the NX operation in the third round are indexed 20, . . . 27, which have already
been used in the first and second rounds.

By utilizing this property in our key recovery attack, we can improve the
complexity of the attack. Instead of guessing all 32 bits of the key corresponding
to even/odd indices, we only need to consider 72·224 possibilities for the even/odd
indices of the round keys. With these round key variables, we then check the 8-bit
condition of Equation (1) for the even/odd indices. On average, there are 72 ·216
candidate values for each part of the round keys corresponding to the even/odd
indices. By combining one candidate from each part, we compute the encryption
for the two known plaintexts and verify if the outputs match the corresponding
ciphertexts. If they match, we have a candidate for the set of round keys.

Thus, by applying this technique, we reduce the complexity of the attack to
74 · 232 ≈ 243.23 encryptions and using 72 · 216 ≈ 221.62 blocks of memory.

In the case of Shadow-64, the NX operation can be split into two parts:
one operating on 12 even-indexed bits and one on 12 odd-indexed bits. Here,
we focus on the portion of NX that operates on the even bits. Specifically, this
involves 12 bits of (k104, k106, . . . , k124, k126) in Shadow-64. This operation can
be expressed as following:

k′104 = k104 ∧ (k104 ⊕ k126)

k′106 = k106 ∧ (k106 ⊕ k104 ⊕ k126)

k′108 = k108 ∧ (k108 ⊕ k106 ⊕ k104 ⊕ k126)

k′110 = k110 ∧ (k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)

k′112 = k112 ∧ (k112 ⊕ k110 ⊕ k108 ⊕ k106 ⊕ k104 ⊕ k126)

k′114 = k114 ∧ (k114 ⊕ k112 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′116 = k116 ∧ (k116 ⊕ k114 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′118 = k118 ∧ (k118 ⊕ k116 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′120 = k120 ∧ (k120 ⊕ k118 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′122 = k122 ∧ (k122 ⊕ k120 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′124 = k124 ∧ (k124 ⊕ k122 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

k′126 = k126 ∧ (k126 ⊕ k124 ⊕ . . . ⊕ k106 ⊕ k104 ⊕ k126)

We compute the value for (k′104, k
′
106, . . . , k

′
124, k

′
126) corresponding for each

212 possible value of (k104, k106, . . . , k124, k126), and observe that the output of
this mapping can only have 322 distinct values out of the 212 possiblities.

Since this operation is non-bijective, even though the master 128-bit key for
Shadow-64 is chosen randomly, the operation in the first round can produce at
most (322/212)2 · 2128 = 1612 · 2106 possible different sets of round keys. This
results in an entropy loss of approximately (22 − 2 log2 161) ≈ 7.34 bits in the
key information used in the encryption.

12 Anda Che and Shahram Rasoolzadeh

While in the first round, the indices of 24 bits from the master key that go
through the NX operation are 104, . . . , 127, in the second round, the indices of 24
bits from the master key that are processed by this operation are 8, . . . , 31, which
were not involved in the first round. Consequently, these 24 bits, despite being
chosen randomly to initialize the master key, can only produce 3222 different
possibilities due to the NX operation in the second round. This results in an
additional entropy loss of approximately 7.34 bits. Thus, the total number of
possible different sets of round keys in the key schedule of Shadow-64 is at
most (322/212)4 · 2128 = 1614 · 284 ≈ 2113.32.

Again, this technique does not apply to other rounds because the 24-bit
indices from the master key that go through the NX operation in the third round
are 36, . . . , 55 and 108, . . . , 111, which have already been used in the first and
second rounds.

Similar to the case for Shadow-32, here as well, we can improve the at-
tack complexity by utilizing this property. Instead of guessing all 64 bits of the
key corresponding to the even/odd indices, we only need to consider 1612 · 242
possibilities for the even/odd indices of the round keys. With these round key
variables, we then check the 16-bit condition of Equation (1) for the even/odd
indices. On average, there are 1612 · 226 candidate values for each part of the
round keys corresponding to the even/odd indices. By combining one candidate
from each part, we compute the encryption for the two known plaintexts and
verify if the outputs match the corresponding ciphertexts. If they match, we
have a candidate for the set of round keys.

Thus, by applying this technique, we reduce the complexity of the attack to
approximately 1614 ·252 ≈ 281.32 encryptions and using 1612 ·226 ≈ 240.66 blocks
of memory.

5 Technical Flaws in the Previous Work by [LLCW23]

In this section, we critically examine the impossible differential attacks proposed
by Liu et al. in [LLCW23] on full-round Shadow block ciphers and identify flaws
in their key recovery attacks.

Liu et al. [LLCW23] present an impossible differential distinguisher for any
number of rounds of the Shadow cipher. Their approach leverages the results
from Theorem 1 to demonstrate the impossibility of certain differentials. Specif-
ically, they show that the differential

(10000000,00000000,00000000,00000000) ↛
(01000000,00000000,00000000,00000000)

is impossible for any number of rounds in Shadow-32. Similarly, they assert
that the differential

(1000000000000000,0000000000000000,0000000000000000,0000000000000000) ↛
(0100000000000000,0000000000000000,0000000000000000,0000000000000000)

Breaking the Shadow 13

is impossible for any number of rounds in Shadow-64.
To perform a key recovery attack, Liu et al. extend these differentials by one

additional round on the ciphertext side. For Shadow-32,

∆X15 = (01000000,00000000,00000000,00000000)

extends to

∆C = ∆X16 = (*0*00001,**0*01**,00000000,00000000),

with ∆C0 ⊕∆C2 = *0*00001. For Shadow-64,

∆X31 = (0100000000000000,0000000000000000,0 · · · 0,0 · · · 0)

extends to

∆C = ∆X32 = (*000000000*00001,010*0000**0001**,0 · · · 0,0 · · · 0)

with ∆C0 ⊕∆C2 = (*000000000*00001).
However, due to the structural invariant described in Equation (1), we have

∆C0 ⊕∆C2 = ∆P0 ⊕∆P2 .

In this case, ∆P0⊕∆P2 is 10000000 for Shadow-32 and 1000000000000000 for
Shadow-64. But, *0*00001 cannot be equal to 10000000, and *000000000*00001
cannot be equal to 1000000000000000. Thus, the differentials proposed by Liu
et al. cannot be used for a key recovery attack, as no differential pair will match
the required form.

Therefore, the attack methodology presented in [LLCW23] is fundamentally
flawed. The proposed differentials cannot be exploited for key recovery due to
the inherent contradiction with the structural invariant.

6 Conclusion

In this paper, we presented a comprehensive analysis of the key schedule opera-
tions in Shadow block ciphers, focusing on the NX operation and its impact on
key recovery attacks.

We introduce an attack capable of recovering the round key sequence using
only two known plaintext-ciphertext pairs. This attack requires 243.23 encryp-
tions and 221.62 blocks of memory for Shadow-32, and 281.32 encryptions with
240.66 blocks of memory for Shadow-64. Importantly, the attack’s effectiveness
does not depend on the number of rounds or the bridging function used.

Furthermore, we critically assessed a previous work of impossible differential
attack by Liu et al. [LLCW23], identifying flaws in their proposed methods. We
showed that their attacks, based on impossible differentials, cannot be applied
effectively. This critique underscores the importance of thoroughly validating
attack methodologies against cryptographic primitives.

14 Anda Che and Shahram Rasoolzadeh

References

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., page 404, 2013.

[GLL21] Ying Guo, Lang Li, and Botao Liu. Shadow: A Lightweight Block Cipher
for IoT Nodes. IEEE Internet Things J., 8(16):13014–13023, 2021.

[KSK+23] Sunyeop Kim, Myoungsu Shin, Seonkyu Kim, Hanbeom Shin, Insung Kim,
Donggeun Kwon, Dongjae Lee, Seonggyeom Kim, Deukjo Hong, Jaechul
Sung, and Seokhie Hong. Shining Light on the Shadow: Full-round Practical
Distinguisher for Lightweight Block Cipher Shadow. IACR Cryptol. ePrint
Arch., page 1200, 2023.

[LLB+24] Yanjun Li, Hao Lin, Xinjie Bi, Shanshan Huo, and Yiyi Han. MILP-based
Differential Cryptanalysis on Full-Round Shadow. J. Inf. Secur. Appl.,
81:103696, 2024.

[LLCW23] Yuting Liu, Yongqiang Li, Huiqin Chen, and Mingsheng Wang. Full-
Round Impossible Differential Attack on Shadow Block Cipher. Cybersecur.,
6(1):52, 2023.

[MAA24] Atiyeh Mirzaie, Siavash Ahmadi, and Mohammad Reza Aref. Integral
Cryptanalysis of Round-Reduced Shadow-32 for IoT Nodes. IEEE Internet
Things J., 11(6):10592–10599, 2024.

