
Post-Quantum Privacy for Traceable
Receipt-Free Encryption

Paola de Perthuis1 and Thomas Peters2

1 Centrum Wiskunde & Informatica (CWI), Nederland
2 Université Catholique de Louvain (UCLouvain), Belgique

Abstract. Traceable Receipt-free Encryption (TREnc) has recently be-
en introduced as a verifiable public-key encryption primitive endowed
with a unique security model. In a nutshell, TREnc allows randomizing
ciphertexts in transit in order to remove any subliminal information up to
a public trace that ensures the non-malleability of the underlying plain-
text. A remarkable property of TREnc is the indistinguishability of the
randomization of chosen ciphertexts against traceable chosen-ciphertext
attacks (TCCA). The main application lies in voting systems by allowing
voters to encrypt their votes, tracing whether a published ballot takes
their choices into account, and preventing them from proving how they
voted. While being a very promising primitive, the few existing TREnc
mechanisms solely rely on discrete-logarithm related assumptions mak-
ing them vulnerable to the well-known record-now/decrypt-later attack
in the wait of quantum computers.
We address this limitation by building the first TREnc whose privacy
withstands the advent of quantum adversaries in the future. To de-
sign our construction, we first generalize the original TREnc primitive
that is too restrictive to be easily compatible with built-in lattice-based
semantically-secure encryption. Our more flexible model keeps all the in-
gredients generically implying receipt-free voting. Our instantiation re-
lies on Ring Learning With Errors (RLWE) with pairing-based statistical
zero-knowledge simulation sound proofs from Groth-Sahai, and further
enjoys a public-coin common reference string removing the need of a
trusted setup.

1 Introduction

After its first definition in 2022 [DPP22], Traceable Receipt-free ENCryption
(TREnc) has moved from the initial theoretical construction to very recently a
more practical one [DPP24] removing the need for a trusted setup and offering
tighter reductions, along with a Rust implementation.

TREnc schemes come with a new privacy notion, Indinstinguishability under
Traceable Chosen Ciphertext Attacks (TCCA), which extends the more classical
CPA and CCA notions to one in which, with access to a decryption oracle, and
ciphertexts marked with a tag, the adversary chooses two ciphertexts with a
same tag in the challenge phase (instead of cleartexts in the usual notions), and
receives a randomization of one of them, for which she must guess the original

ciphertext. After receiving the challenge, she still has access to a decryption
oracle, but now only for ciphertexts with a tag different from the challenge one.

A Post-Quantum Security Tradeoff. The current work goes further by provid-
ing the first TREnc construction with post-quantum IND-CPA security, using
RLWE-based ciphertexts. This approach paves the way to fully post-quantum
security in the following way: it is useful in a context in which quantum comput-
ers would not be able to perform online attacks now, but could be developed in
the future, and pose an a posteriori threat on the confidentiality of votes – if one
considers an election use-case. To jeopardize the result of an election, a quan-
tum computer would need to be operational at the moment of the vote, and the
same would be necessary to use that quantum power to infer private informa-
tion by interacting with users. However, once the voting is processed, registered
ciphertexts and proofs of consistency are still vulnerable to future attacks to un-
cover the secret information they hide, and should thus be even more carefully
protected, including against quantum computers. Such a priorization of security
properties has already been done in previous works (for example, in [BdPP23]
for a Key-Encapsulation Mechanism). This work’s construction achieves this by
encrypting votes with a post-quantum lattice-based scheme, and building the
proofs ensuring the correction of the operations performed on them that are
statistically hiding, and thus masking private information against any kind of
adversary.

Building a TREnc scheme that would be totally post-quantum, even for on-
line security properties, would require using post-quantum publicly verifiable se-
curity proofs that would be randomizable, and, for know construction techniques,
post-quantum linearly homomorphic only structure-preserving signatures. Our
scheme results in public keys on 128KB, and ciphertexts on 56 to 69MB – making
it usable in a real-life context – however, if we were to resort to state-of-the-art
post-quantum primitives for the aforementioned building blocks, the random-
izablity and linearly-only homomorphic requirements on their properties would
probably yield unpractical ciphertexts sizes, if achievable.

Concerning the post-quantum Linearly-Only Homomorphic Signature build-
ing block, the litterature provides solutions for binary fields [BF11], or solutions
with both additive and multiplicative homomorphism [GVW15], but it is not
immediately clear whether these constructions would allow linear-only homo-
morphism over big prime fields. If they did, their sizes would scale in the vector
length and be three orders of magnitude bigger than the ones used in our con-
struction.

Moreover, post-quantom randomizable zero-knowledge proofs would proba-
bly not be achievable with Multi-Party Computations in the Head (MPCitH)
types of techniques, but, as we would need a weak randomization notion prevent-
ing from distinguishing the original randomized proof, but not requiring random-
ized proofs to have the same distribution as original ones, they should probably
be constructible from lattices assumptions, though no out-of-the-box construc-
tion is provided in the litterature. For instance, [LNP22] provides zero-knowledge
lattice-based proofs that should be randomizable for linear statements (though

2

nothing is mentionned about this property in the paper), but not directly for
quadratic ones, because of the non-malleability induced by their challenge; and
our construction relies on quadratic statements.

Simpler Simulation-Sound Proofs for TREnc. Our construction makes use of a
simpler simulation-sound proof technique than the one of [DPP24], which was
based on the Ràfols branching technique on Groth-Sahai (GS) proofs [Ràf15].
Simulation-Sound proofs have the advantage of making the generation of proofs
of false statements hard for an attacker, even when she has received simulated
proofs for false statements of her choice, which will be important in the ciphertext
privacy security game, in which an attacker, even after receiving a ciphertext
with simulated proofs in the challenge phase, should not be able to generated
new simulated ciphertexts with the same trace, and ask for their decryption.

Simulation soundness through OR proofs was already exibited in [Gro06,
CKLM12], but with different security notions, in which these proofs were not
randomizable and were used in constructions with privacy notions in which plain-
texts are used as a challenge, rather than ciphertexts as in TCCA. Moreover,
in our construction, all proofs are associated to a tag; however, in the TCCA
security proof, the adversary may send as a challenge two ciphertexts associated
with a tag for which she has already queried a decryption (and this property
will be useful to attain receipt freeness in the subsequent voting scheme). This
means that the public key may not be programmed to embed the tag of the
challenge ciphertexts.

In [DPP24], the OR proofs are done by generating an additive share of a
Groth-Sahai Common Reference String (CRS), in which if the original CRS is
perfectly binding, then at least one of the shared CRSs is, resulting in proofs for
which the randomization, also redistributing these shares, are not conceptually
simple. Our simulation-sound proofs rely on a Linearly-Homomorphic Structure
Preserving signature scheme, already using in the rest of the protocol for tracing
properties, but now used in the OR proof, relying on the fact that signatures of
null vectors are trivial to generate, and signing either the original statement or
a tag-specific vector, in the case of simulated proofs.

Generalizing TREnc Security Notions. Our construction also generalizes the ini-
tial definitions of TREnc to a context in which the distribution of ciphertexts
changes after the entity in charge of granting the Traceable-Chosen Ciphertext
Attacks (TCCA) security by a redistribution of their randomness has handled
them; indeed, previous constructions from ElGamal ciphertexts did not raise
this question as the randomized ciphertexts followed the same noise distribution
as fresh ones, but updating the randomness of RLWE-based ciphertexts without
knowing their decryption key generally leads to an augmentation of their noise
levels; a process which is irreversible without using the bootstrapping techniques
requiring circular security that are implemented in Fully-Homomorphic Encryp-
tion schemes. In this line, we also stress the differences between the TCCA
notion and a Randomizability one in which the added noise would statistically
hide the old one (using noise flooding techniques, which is also achievable with

3

the construction described here). To achieve this, perfectly hiding GS proofs are
performed on all the bits used in the ciphertext construction and randomization,
also allowing a fine-grained control on the message space, and naturally the in-
clusion of the proof of any statement on the encrypted message, which is a new
functionality for TREnc constructions.

Our generalization of TREnc notions also requires a new definition of their
ciphertext privacy, as with distinct randomized and fresh ciphertexts spaces, it
is not directly implied by the TCCA-security anymore.

A Public-Coin CRS Generation. Finally, using GS proofs on group elements
committed using common-reference string elements drawn using public random-
ness, in the perfectly witness-indistinguishable mode of this proof system, allows
us to remove the need for a trusted setup, which may not be realistic in real-
life scenarios. As the current construction uses a public-coin perfectly witness-
indistinguishable Groth-Sahai common reference string, it generalizes the TREnc
notion of verifiability in a way in which, though the normal key derivation does
not allow the verification of ciphertexts being in the range of correct encryptions
and randomizations, there exists an indistinguishable key generation algorithm
which comes with a trapdoor allowing this verification; previous works exploited
particular cases in which the range could easily be verified, but this is not gen-
erally true, as captured by this more universal definition.

Technical Overview

Simulation-Sound Proofs from LHSP Signatures. One building-block of this
work’s construction is a new, statistically hiding, simulation-sound proof from
Linearly-Homomorphic Structure-Preserving (LHSP) signatures and Groth-Sahai
commitments, which is simpler than [DPP24]’s based on [Ràf15], which required
a Groth-Sahai CRS randomization.

This new simulation-sound proof works in the following way: when setting up
the system, two group elements are selected using public-coin randomness, and
will be used as an LHSP scheme’s public key, as well as other group elements
that will be used as a Groth-Sahai common reference string (CRS), that will
perfectly hide committed group elements.

From there, to each proof is associated a tag τ , and a vector vτ Ð pG, τGq,
where G is a public group generator, and an integer b multiplying the generator
G is committed using a Groth-Sahai perfectly witness-indistinguishable CRS.
Then, the proof statement will be of the following form, denoting QpX,Xq “

pq1pX,Xq, . . . , qnpX,Xqq “ p0, . . . , 0q the original statement on group elements
forming a solution in the variables pX,Xq, that is made simulation-sound with
our framework: “I know a signature on p1 ´ bqpG, τGq and b ¨ QpX,Xq “

p0, . . . , 0q.”.
It is trivial to sign a null vector with an LHSP signature scheme, whatever

the public key, so honest proofs will be made setting b Ð 1, and indeed prove
the knowledge of a solution to the system QpX,Xq “ p0, . . . , 0q. However, simu-
lated proofs will use a perfectly indistinguishable CRS generation, in which the

4

simulator will keep an LHSP secret key with respect to the public key in the
CRS. With this key, she will be able to use b Ð 0 in the proof, signing vτ while
proving a trivial statement p0, . . . , 0q “ p0, . . . , 0q in the other part of the proof.
As LHSP signatures can only be reused to sign linear combinations of known
signed vectors, the adversary will not be able to reuse this simulated proof for
new tags, under the Symmetric eXternal Diffie-Hellman (SXDH) assumption,
making it simulation-sound.

Building a TREnc Scheme on Top of Lattice-Based Ciphertexts. Randomizing
Learning With Errors (LWE) (or Ring-LWE) based ciphertexts generally intro-
duces a change in the distribution of their randomness with respect to fresh
ones; in fact, the randomness introduced should be carefully controlled, as when
it overlaps a threshold, it may change the result of the decryption. In this work,
the noise is decomposed into bits, used to perform a linear combination of public
elements to generate the ciphertexts; this linear encryption operation, and the
fact that committed witnesses are bits, are proven in the Groth-Sahai frame-
work, using vectors of group elements whose exponents are (R)LWE ciphertext
components, to be perfectly witness-indistinguishable and randomizable. This
also leads to a natural functionality allowing to additionally provide the system
with the proof of any kind of statement on the encrypted messages, which is a
new TREnc functionality that is relevant for voting applications.

Moreover, in previous TREnc constructions, the encryptor would sign several
vectors to allow the simulated proof to generate a signature for any ciphertext;
however, in our contruction, because of the noise growth in (R)LWE ciphertexts,
the additional rows would allow teh randomizer to change the ciphertext decryp-
tion. We thus resort to zero-knowledge proofs of a valid signature rather than
sending signatures in the clear, which allows the simulation to be performed for
the challenge ciphertext in the privacy security games. These signatures then
become directly simulatable.

2 Preliminaries

2.1 Notations

Vectors will be denoted with bold letters, such as v, and be vertical unless
stated otherwise. For v “ pv1, . . . , vnq, vris will denote vi. 0n will denote the
vector of zeros of length n. en,i will denote the i-th vector of the canonical
basis of a vectorial space of dimension n: in short, the vector with zeros in
all coordinates but the i-th, which is equal to one. } will be used to denote
the concatenation of two vectors: for instance u}v will be the concatenation of
vectors u and v. u d v “ pu1v1, . . . , unvnq will denote the pointwise product of
vectors u “ pu1, . . . , unq and v “ pv1, . . . , vnq, and xu;vy their inner-product.
Matrices will generally be underlined, such as with M . The identity matrix of
dimension n will be denoted as Idn.

Group elements will be denoted with capital letters. For G an element of an
additive group G of order q, uG will denote the vector pu1G, . . . , unGq P Gn.

5

A pairing setting pp,G, Ĝ,GT , e,G,Gq will describe two additive groups G
and Ĝ of order p, with G and G two respective generators, and a bilinear pairing
operation e : G ˆ Ĝ Ñ GT going into the multiplicative group of order p GT

generated by epG,Gq.

For any quotient ring R “ ZqrXs{rpXq, with r P ZqrXs of degree n, the
function polR : Zn

q Ñ R will associate, to any v “ pv0, . . . , vn´1q P Zn
q , the

corresponding polynomial
řn´1

i“0 viX
i P R.

Moreover, for any x in Zq, rxsq will denote the (or a if there are two) smallest
representative of x in Z in absolute value.

For any integers a ď b, va; bw will denote the set: tx P Z|a ď x ď bu. Given a

finite set S, x $
Ð S will mean that x is sampled from the uniform distribution US

on S. Given two distributions D0 and D1, and a Probabilistic Polynomial Time
(PPT) adversary A, her distinguishing advantage on these distributions will be

defined as: AdvD0,D1

A “

∣∣∣Pr
x

$
ÐD0

tApxq “ 0u ´ Pr
x

$
ÐD1

tApxq “ 0u

∣∣∣.
ExpCPAA pλq:

ppk, skq
$

Ð KeyGenp1λq

pm0,m1, stq
$

Ð A1ppkq

b $
Ð t0; 1u

if m0 R M or m1 R M
then return 0

c˚ $
Ð Encppk,mbq

b1 $
Ð A2pc˚, stq

if b1
“ b return 1, else return 0

Fig. 1. IND-CPA security experi-
ment

IND-CPA security will be attained, for
a public-key encryption scheme pKeyGen,
Enc,Decq with message space M, when for
any PPT adversary A “ pA1,A2q, A’s prob-
ability of winning the security game defined
in figure 2.1 (i. e., having it output 1), is neg-
ligibly close to one half in the security param-
eter λ.

2.2 Hard Problems

Our construction will rely on the hardness of
classical cryptographic problems; the Chosen
Plaintext Attack (CPA) privacy of encrypted messages will rely on the Learning
With Errors (LWE) one, stated hereafter:

Definition 1 (The Learning With Errors (LWE) Average-Case Deci-
sion Assumption). states, with respect to q, n P N, and an error distribution
χ, that the two following distributions are computationally hard to distinguish:

D0 “

!

pa, xa; sy ` eq P Zn
q ˆ Zq|a, s $

Ð Zn
q , e

$
Ð χ

)

D1 “

!

pa, bq P Zn
q ˆ Zq|a $

Ð Zn
q , b

$
Ð Zq

)

;

this statement is expressed with respect to any Probabilistic Polynomial Time
(PPT) adversary A and security parameter λ P N, as: AdvD´LWE

A pλq “ neglpλq,

where AdvD´LWE
A pλq denotes A’s advantage, when receiving an element of Dβ for

β $
Ð t0; 1u, in guessing the value of β.

and more precisely, on its cyclotomic ring variant:

6

Definition 2 (The Ring-LWE Average-Case Decision Assumption). states,
with respect to q, n P N, r P ZqrXs a cyclotomic polynomial of degree n, and an
error distribution χ on R, where R Ð ZqrXs{rpXq, that the two following dis-
tributions are computationally hard to distinguish:

D0 “

!

pa, a ¨ s ` eq P R2|a, s $
Ð R, e $

Ð χ
)

D1 “

!

pa, bq P R2|a, b $
Ð R

)

;

this statement is expressed with respect to any Probabilistic Polynomial Time
(PPT) adversary A and security parameter λ P N, as: AdvD´RLWE

A pλq “ neglpλq,

where AdvD´RLWE
A pλq denotes A’s advantage, when receiving an element of Db

for b $
Ð t0; 1u, in guessing the value of b.

The Traceability and Traceable Chosen Ciphertext Attack (TCCA) security
of the scheme will rely on the SXDH assumption, presented hereafter:

Definition 3 (The Decisional Diffie-Hellman (DDH) Assumption). states,
with respect to a group pG,`q of prime order p, that given one of its generators,
G, the two following distributions are computationally hard to distinguish:

D0 “

!

paG, bG, abGq|a, b $
Ð Zp

)

D1 “

!

paG, bG, cGq|a, b, c $
Ð Zp

)

;

this statement is expressed with respect to any PPT adversary A and security
parameter λ P N, as: AdvDDH,G

A pλq “ neglpλq, where AdvDDH,G
A pλq denotes A’s

advantage, when receiving an element of Db for b $
Ð t0; 1u, in guessing the value

of b.

Definition 4 (The Symmetric eXternal Diffie-Hellman (SXDH) As-
sumption). states, with respect to two additive groups of primer order p, G
and Ĝ, and a bilinear pairing operation e : G ˆ Ĝ Ñ GT mapping elements
into the multiplicative group GT of order p, the DDH assumption is true both in
G and in Ĝ; this statement is expressed with respect to any PPT adversary A
and security parameter λ P N, as: AdvSXDH

A pλq “ neglpλq, where AdvSXDH
A pλq “

maxtAdvDDH,G
A pλq,AdvDDH,Ĝ

A pλqu.

Finally, the TCCA security will also rely on the resistance of hash functions
against collisions, a property stated here:

Definition 5 (Collision Resistance). A family of functions Fh “ thk : t0; 1unpkq

Ñ t0; 1umpkquk lists collision-resistant hash functions if for any k, npkq ě mpkq,
and there exists a PPT algorithm Sampl outputting, on input a security param-
eter λ P N, hk in the family, such that for any PPT adversary A:

Pr

#

tx ‰ yu X thkpxq “ hkpyqu

ˇ

ˇ

ˇ

ˇ

ˇ

hk
$

Ð Samplp1λq

px, yq
$

Ð Aphk, 1
λq

+

ď neglpλq.

7

2.3 An RLWE-Based Ciphertext Instantiation

A simple example of such a scheme would be, stating with the FV scheme [FV12]
with multiplicative depth zero, defining the plaintext spaceRt “ ZtrXs{pXn`1q,
with n a power of two, and the ciphertext space R2

p with Rp “ ZprXs{pXn `1q,
σ Ps0; 1r a noise parameter, ∆ Ð tq{tu, and Γ “ pq, t, n, σq the parameter set.
χs will denote the gaussian distribution on Rp with standard deviation s.

KeyGenp1λ, Γ q Ñ psk, pkq: samples a $
Ð Rp, and s $

Ð Zn
q , sets s Ð polRp

psq,

samples e $
Ð χσ, sets: pp, p1q Ð pr´pa ¨ s ` eqsq, aq P R2

p, pk Ð pp, p1, ∆, σq

and sk Ð s, and returns psk, pkq.

Encpkpmq Ñ pc, c1q: samples e1, e2
$

Ð χσ, u P t0; 1un, sets u Ð polRp
puq, and

returns: pc, c1q Ð prp¨u`e1`∆¨rmstsq, rp1 ¨u`e2sqq. The gaussian distribution
χσ may also be given as an optional argument to the encryption function.

Decskppc, c1qq Ñ m: computes: d Ð rc ` s ¨ c1s, and returns: m Ð rtd{∆sst.

The ciphertexts in this scheme can be added with linear homorphism, up to a
certain bound. For any x in Za, rxsa will denote its representative in

0

´
P

a
2

T

;
X

a
2

\8

,
when applied to a vector it will denote the operation applied to each of its
components, and for any x in Ra, rxsa will denote the representative of x reduced
by the quotient polynomial (Xn ` 1 in our case) of Ra with coefficients in
0

´
P

a
2

T

;
X

a
2

\8

.
In [FV12], the authors show that this scheme grants semantic security from

RLWE, even if s is drawn from t0; 1un rather than over Zn
q optimizing the size

of the secret key [ACPS09, LPR10]. The statistical correctness in also shown
in [FV12].

2.4 Linearly-Homomorphic Structure-Preserving Signatures

These signatures consist of two group elements signing a vector with components
in the same group (first primitives stemming from [AFG`10,AHO10]), with the
additional property (from [LPJY14]) that a linear combination of signatures
will yield a signature on the corresponding linear combination of vectors. The
algorithms of such an LHSP scheme are recalled hereafter:

KeyGenppp, nq Ñ ppk, skq: on input the public parameters pp describing additive

groups of primer order p, G and Ĝ, generators G and H of Ĝ, and a bilinear
pairing operation e : G ˆ Ĝ Ñ GT mapping elements into the multiplicative
group GT of order p, and the vector length n P N (of polynomial size), this

algorithm draws χ1, . . . χn, γ1, . . . , γn
$

Ð Zp, sets, for each index i in v1;nw,
Gi Ð χiG ` γiH, and then the secret key to: sk Ð pppχi, γiqqiPv1;nw, ppq, and
the public key to pk Ð ppG1, . . . ,Gnq, ppq, finally outputting: ppk, skq.

Signpsk, pM1, . . . ,Mnqq Ñ σ: on input sk parsed as an output of KeyGen and
pM1, . . . ,Mnq P Gn, the algorithm sets and returns: σ Ð pΣ1, Σ2q Ð p

řn
i“1

χiMi,
řn

i“1 γiMiq.

8

SignDerppk, pωiq
m
i“1, pσiq

m
i“1q Ñ σ: on input pk parsed as an output of KeyGen,

pω1, . . . , ωmq P Zm
p , for a natural m, and the σi’s parsed as outputs of Sign,

this algorithm derives a signature on the linear combination with weights ωi

of vectors they sign by outputting: σ Ð pΣ1, Σ2q Ð
řm

i“1 ωiσi.
Verppk, σ, pM1, . . . ,Mnqq Ñ b: parsing pk as a corresponding output of KeyGen,

σ “ pΣ1, Σ2q as an output of Sign, the algorithm outputs b Ð 1 if and only
if: epΣ1,GqepΣ2,Hq “

śn
i“1 epMi,Giq; else, it outputs b Ð 0.

2.5 The Groth Sahai Proof System

Provided by Groth and Sahai’s seminal work in [GS08], this proof system, in
a commit and prove framework, allows the randomization of commitments and
proofs. Furthermore, it grants witness-indistinguishable proofs of quadratic re-
lations (on scalars, groups elements, or a mix of both, in a pairing setting), and
can be used in two indistinguishable modes, one of which leads to perfectly bind-
ing and the other to perfectly hiding proofs, and witness-indistinguishability is
shown with algorithms that allow the simulation of reference strings and proofs
that are indistinguishable from those in the non-simulated setting.

In this work, Groth-Sahai (GS) algorithms will be used with a public-coin
generation in the perfectly witness-indistinguishable case, and we will only use
the framework to check pairing-product equations between group elements; more-
over, no simulation of the CRS will be required. We thus only present this par-
ticular case of Groth-Sahai proofs, with the following algorithms:

Setupp1λq Ñ pp: on input the security parameter λ P N, returns public param-

eters pp providing a pairing setting with: pp Ð pp,G, Ĝ,GT , e,G,Gq;
BCRSGenpppq Ñ crs: on input pp parsed as an output of Setup, generates a com-

mon reference string in the perfectly binding mode; the algorithm draws
a, t, a, t $

Ð Zp, and sets:U1 Ð pG, aGq,U2 Ð ptG, taGq,U1 Ð pG, aGq,U2 Ð

ptG, taGq, finally returning: crs Ð pU1,U2,U1,U2q.
HCRSGenpppq Ñ crs: on input pp parsed as an output of Setup, generates (except

with negligible probability in λ) a common reference string in the perfectly
witness-indistinguishable (hiding) mode, by setting and returning: crs Ð

pU1,U2,U1,U2q
$

Ð G2 ˆ Ĝ2.
Com&Prppp, crs, w, Eq Ñ π: for the set of equations E (each one of them defined

by equation-specific vectors A,A, matrices Γ and resulting elements TT as
defined afterwards), and a witness w listing:X P Gn,X P Ĝk, that will verify
all the equations at once, this algorithm will enable the proof of the set of
pairing-product equations defined in E , of the form xA;XyxX;AyXTΓX “

TT , for A P Gk,A P Ĝn, Γ P Znˆk
p , TT P GT , in the variables X P Ĝk,X P

Gn, where the multiplication operation between an element of G and an
element Ĝ is the pairing operation e, and the addition operation in GT is
actually a multiplication, as GT is a multiplicative group: i. e., with A “

pA1, . . . , Akq P Gk,X “ pX1, . . . ,Xkq P Ĝk, xA;Xy “
śk

i“1 epAi, Xiq P GT .

1. To prove that pX,X,x, xq is a valid witness for the set of equations, the
algorithm first commits to each one of its elements:

9

– to commit to X P Gn, it draws R P Znˆ2
p and sets: ComX Ð

X ¨ p0, 1q ` R

ˆ

UT
1

UT
2

˙

P Gnˆ2;

– similarly, to commit to Xi P Ĝk, it draws R P Zkˆ2
p and sets:

ComX Ð X ¨ p0, 1q ` R

ˆ

UT
1

UT
2

˙

P Ĝkˆ2;

2. then, the algorithm generates proofs for each of the equations to be
proven, that will be stored in a proof list Π of length the number of
equations in E ; for each pairing product equation of index ℓ in the set
of equations, defined by Aℓ P Gk,Aℓ P Ĝn, Γ ℓ P Znˆk

p , and TT,ℓ P GT , it

draws T ℓ
$

Ð Z2ˆ2
p and sets:

πℓ Ð RT
¨ pAℓ ¨ p0, 1qq ` RTΓ ℓ ¨ pX ¨ p0, 1qq ` pRTΓ ℓR ´ TT

ℓ q

ˆ

UT
1

UT
2

˙

P Ĝ2ˆ2

θℓ Ð RT
¨ pAℓ ¨ p0, 1qq ` RTΓT

ℓ ¨ pX ¨ p0, 1qq ` T ℓ

ˆ

UT
1

UT
2

˙

P G2ˆ2

then places pπℓ, θℓq in the ℓ-th coordinate of Π;

As shown in [GS08], in the particular case where the equations are lin-
ear, they can be shown using only group elements (for more detail,
see [GS08]).

3. Finally, the algorithm returns: π Ð pComX}ComX,Π, Eq.

Randppp, crs, πq Ñ rπ: parsing π as an output of Com&Pr, this algorithm:

– picks rR $
Ð Znˆ2

p and sets: ĆComX Ð ComX ` rR

ˆ

UT
1

UT
2

˙

P Gnˆ2;

– picks rR $
Ð Zkˆ2

p and sets: ĆComX Ð ComX ` rR

ˆ

UT
1

UT
2

˙

P Ĝkˆ2;

and then updates proofs in the following way; for each pairing-product equa-
tion of index ℓ, of the form: xA;XyxX;AyXTΓX “ epG,Gℓq P GT , defined

by: Aℓ P Gk,Aℓ P Ĝn, Γ ℓ P Znˆk
p , and TT,ℓ “ epG,Gℓq P GT , it draws

rT ℓ
$

Ð Z2ˆ2
p , and sets:

rπℓ Ð πℓ ` rR
T

¨

´

Aℓ ¨ p0, 1q ` Γ ℓ
ĆComX

¯

´ rT
T

ℓ

ˆ

UT
1

UT
2

˙

P Ĝ2ˆ2

rθℓ Ð θℓ ` rR
T

¨
`

Aℓ ¨ p0, 1q ` ΓT
ℓ ComX

˘

` rT ℓ

ˆ

UT
1

UT
2

˙

P G2ˆ2;

Finally, ĂΠ is set as pprπ1,
rθ1q, . . . , prπL,

rθLqq, considering the equation indices
ℓ ranged from 1 to L. In the particular case where the equations are lin-
ear and the optimization from [GS08] is used, the randomization follows
straightforwardly.

The algorithm returns: rπ Ð pĆComX}ĆComX,ĂΠ, Eq.

10

Vfppp, crs, πq Ñ b: parsing the proof π as pComX}ComX,Π, Eq, for each pairing-

product equation in E of index ℓ, defined by Aℓ P Gk,Aℓ P Ĝn, Γ ℓ P

Znˆk
p , TT,ℓ P GT , the algorithm verifies that:

ppA ¨ p0, 1qq ‚ ComXqdpComX ‚ pA ¨ p0, 1qqq d pComX ‚ Γ ℓComXq

“

ˆ

1 1
1 TT,ℓ

˙

d

ˆˆ

UT
1

UT
2

˙

‚ πℓ

˙

d

ˆ

θℓ ‚

ˆ

UT
1

UT
2

˙˙

,

where B ‚ B denotes, for B “ pBi,jqi,j P Gmˆ2,B “ pBi,jqi,j P Ĝmˆ2:

B ‚ B Ð

ˆ
śm

i“1 epBi,1,Bi,1q
śm

i“1 epBi,1,Bi,2q
śm

i“1 epBi,2,Bi,1q
śm

i“1 epBi,2,Bi,2q

˙

P G2ˆ2
T .

If any of the equation checks does not pass, the algorithm returns b Ð 0;
else, it returns b Ð 1.

3 Generalizing TREnc

In our construction, the use of lattice-based ciphertexts implies that their ran-
domized version will not have the same noise distribution as their fresh coun-
terparts. In previous TREnc constructions, they did, and the TCCA security
thus implied privacy of fresh ciphertexts with a weak CCA notion (of CCA se-
curity for ciphertexts with an adversarially-chosen tag). This is not the case for
the current constructions, and as a consequence, we had to generalize previous
TREnc security notions.

Moreover, we underline that the TREnc randomization notion does not need
to redistribute ciphertexts’ randomness in the whole randomness space, and not
even in an exponentially bigger space as the one of fresh ciphertexts, as in usual
noise flooding approaches that seek to mask all the noise information to a lattice
ciphertext decryptor. In a TREnc scheme, randomization may be done with a
simple addition of a fresh encryption of zero, under (R)LWE.

Additionally, in Traceability and Verifiability security notions, the adversary
is provided with the secret-key, as these security notions should hold even against
authorities in a voting system, in order to ensure the correctness of the results
with respect to participants’ intentions.

Definition 6 (Traceable Receipt-Free Encryption, extension of [DPP22]).
A Traceable Receipt-Free Encryption scheme (TREnc) is a public key encryption
scheme pGen,Enc,Decq augmented with a triple of algorithms pTrace,Rand,Verq:

Genp1λq generates and outputs a public-secret key pair ppk, skq;
Encppk,mq is split into two probabilistic sub-algorithms. First, it runs the link

key generation algorithm LGenppkq which outputs an ephemeral secret link
key lk. Second, it runs the linked encryption algorithm LEncppk, lk,mq which
outputs a ciphertext c encrypting m, and including a trace as defined next;

Traceppk, cq is a public algorithm that returns a trace t on input a ciphertext c.

11

Randppk, cq partially randomizes the ciphertext c and returns a ciphertext c1;

Verppk, c, ℓq outputs 1 if the ciphertext c is deemed valid according to the context
ℓ P tfresh, randu, and 0 otherwise.

The message space M is implicitly defined by the public key pk. By definition,
the ciphertext space Cfresh is the image of M by Encppk, ¨q, and similarly, the
ciphertext space Crand is the image of Cfresh by Randppk, ¨q. The public key pk can
be made implicit everywhere when it is identifiable from the context.

A TREnc must satisfy several correctness conditions: (Link traceability) For
every pk in the range of Gen, every lk in the range of LGenppkq, the encryptions
of every pair of messages pm0,m1q trace to “each other”, that is, it always holds
that Traceppk, LEncppk, lk,m0qq “ Traceppk, LEncppk, lk,m1qq; (Publicly Trace-
able Randomization) For every pk in the range of Gen, every message m and
every c in the range of Encppk,mq, we have that Decpsk, cq “ Decpsk,Randppk, cqq

and Traceppk, cq “ Traceppk,Randppk, cqq; (Honest verifiability) For every pk in
the range of Gen, every messages m, and every ciphertext c P Cfresh, it holds that
Verppk,Encppk,mq, freshq “ 1 and Verppk,Randppk, cq, randq “ 1.

In the original definition Cfresh and Crand are equal, and Ver is independent
of the context ℓ P tfresh, randu. The novel general case given here also allows
these spaces to be disjoint and even to easily recognize that a valid ciphertext
for one context does not belong to ciphertext space of the other context, as in
our new construction. The main generalization of the primitive comes to define
Rand for a one-time execution while, in the original syntax, Rand can still be
applied serially on its outputs. In [DPP22], a TREnc further comes with a strong
randomization property which, while elegant, is not needed to keep the essence
of the notions allowing to generically build a receipt-free voting system.

We now turn to the security model satisfied by a (general) TREnc. We start
with the verifiability that we extend to the different contexts ℓ P tfresh, randu.
Intuitively, it should be hard given sk to produce a valid ciphertext c for one
context such that c is not in the corresponding ciphertext space Cℓ. That is, there
must exist some message m, some link key lk, and some coins that can explain
c as a run of the appropriate algorithms even if they are not easily computable.
However, to prove the verifiability criteria, one often needs an efficient way to
check if the adversary is successful or not. Unlike [DPP22], we thus explicitly
require the existence of this algorithm in the definition.

Definition 7 (Verifiability, modified from [DPP22]). A TREnc is verifi-
able if it exists efficient SimGen and Check such that:

1. tppk, skq Ð Genp1λqu «c tppk, skq | ppk, sk, tkq Ð SimGenp1λqu;

2. For any ppk, sk, tkq Ð SimGenp1λq and any context ℓ P tfresh, randu, we have
Checkptk, ¨, ℓq P t0, 1u, and for all c, PrrCheckptk, c, ℓqq “ 0 ^ c P Cℓs “

neglpλq;

3. For every PPT adversary A, PrrVerppk, c, ℓq “ 1 ^ Checkptk, c, ℓq “ 0 |

ppk, sk, tkq Ð SimGenp1λq, c Ð Appk, skqs “ neglpλq.

12

The traceability notion ensures the orignal encryptor of a message that any
(randomized) ciphertext with the same trace contain the same message even
against the decryptor (as long as the encryptor uses the link key generated by
LGen a single time). This notion is particularly usefull in a voting system where
voters keep track of their randomized ballots while being sure that the authorities
cannot alter their votes. We slightly generalized the notion due to [DPP22] by
granted the adversary with an oracle that produces fresh ciphertexts on input
a plaintext. This allows for a more general learning phase, and the adversary
is successful if it can produce a ciphertext that traces to one of the returned
oracle’s ciphertexts while decrypting to another message than the original. The
earlier notion reduces to a single query.

Definition 8 (Traceability, extended from [DPP22]). A TREnc is trace-
able if for every PPT adversary A, the experiment ExpTraceA pλq defined in figure 3
returns 1 with a negligible probability in λ. The traceability advantage is defined
as AdvTraceA pλq “ PrrExpTraceA pλq “ 1s.

ExpTraceA pλq:

ppk, skq
$

Ð Genp1λq

L Ð H

c˚ $
Ð AOEncpskq

if Dpm, cq P L : Traceppk, cq “ Traceppk, c˚
q

and Verppk, c˚, randq “ 1
and Decpsk, c˚

q ‰ m
then return 1

else return 0.

Fig. 2. The traceability experiment. On input
a message mi, the oracle OEnc returns ci Ð

Encppk,miq and updates L Ð L Y tpmi, ciqu.

We stress that if an adversary
is able to produce a ciphertext c˚

such that Verppk, c˚, freshq “ 1 in
place of Verppk, c˚, randq “ 1 in the
traceable experiment, it can simply
output c˚ Ð Randppk, c˚q to win
the game.

The privacy notion of the orig-
inal TREnc is the indistinguisha-
bility of the randomization of
adversarially-chosen valid cipher-
texts that trace to each other with
access to a decryption oracle. This
is the TCCA notion which deviates from most of the existing game-based pri-
vacy notions whose indistinguishability is defined by encrypting adversarially
chosen messages. The TCCA notion implies that any subliminal information
maliciously added to an adversarially computed ciphertext does not help the
adversary to distinguish which ciphertext has been processed by Rand. By en-
crypting a vote with a TCCA TREnc, the voter is unable to explain the content
of its randomized version, hence the receipt-freeness.

Definition 9 (TCCA, adapted from [DPP22]). A TREnc is TCCA secure
if for every PPT adversary A “ pA1,A2q, the experiment ExpTCCA

A pλq defined
in Figure 3 returns 1 with a probability negligibly close to 1

2 in λ, meaning that
A’s advantage in distinguishing b is negligible in λ.

In the TCCA and wCCA security games, the adversary is allowed to use a
challenge tag which is equal to a tag of a ciphertext that was previously queried
to the decryption oracle (though such a tag may not be queried to the oracle after

13

receiving the challenge); this detail is important when transforming the TREnc
construction into a voting scheme, in order to attain receipt-freeness, the notion
preventing participants from sellingn their votes. Indeed, in the security games,
the TCCA adversary will need to simulate an election result taking challenge
ciphertexts into account without the decryption key, and will achieve this by
querying the decryption of ciphertexts with the same tag beforehand.

ExpTCCA
A pλq:

ppk, skq
$

Ð Genp1λq

pc0, c1, stq
$

Ð ADecp¨q

1 ppkq

b $
Ð t0; 1u

if Traceppk, c0q ‰ Traceppk, c1q

or Verppk, c0, freshq ‰ 1
or Verppk, c1, freshq ‰ 1
then return 0

c˚ $
Ð Randppk, cbq

b1 $
Ð ADec˚p¨q

2 pc˚, stq
if b1

“ b return 1, else return 0

ExpwCCAA pλq:

ppk, skq
$

Ð Genp1λq

pm0,m1, lk, stq
$

Ð ADecp¨q

1 ppkq

b $
Ð t0; 1u

if lk R LGenp1λq

or m0 R M or m1 R M
then return 0

c˚ $
Ð LEncppk, lk,mbq

b1 $
Ð ADec˚p¨q

2 pc˚, stq
if b1

“ b return 1, else return 0

Fig. 3. TCCA and wCCA security experiments; A2 has access to a decryption oracle
Dec˚

p¨q which returns a decryption of any input ciphertext c such that Traceppk, cq ‰

Traceppk, c˚
q, and that there exists ℓ P tfresh, randu such that Verppk, c, ℓq “ 1, and

returns K for any input ciphertext not meeting this condition, as well as to a Decp¨q

oracle doing exactly the same, but without the condition on the queries’ trace.

This notion says nothing about the privacy of the encryption of chosen mes-
sages. Up to now, Enc could be the identity function or any function leaking
its input. However, in a voting system, for instance, the ballot privacy should
hold against the randomizing server that is only trusted for the receipt-freeness.
In [DPP22], it has been shown that a TREnc that is also strongly randomizable
when Cfresh “ Crand automatically provides the privacy of the encryption. That
is because the randomization fully redistribute the ciphertext among those that
have the same encryted message and the same trace. Therefore, after encrypting
a message we can always indistinguishably randomize it and rely on the TCCA
security. Since in general a TREnc does not necessarily satisfy this property,
it must come with an additional privacy notion for the fresh ciphertexts. Here,
we adopt the adaptive-tag weak CCA notion of [MRY04] defined for tag-based
encryption, and naturally adapt it to our syntax as adaptive-trace weak CCA
security of TREnc.

Definition 10 (wCCA, adapted from [MRY04]). A TREnc is adaptive-
trace weakly CCA secure if for every PPT adversary A “ pA1,A2q, the experi-
ment ExpwCCAA pλq defined in Figure 3 returns 1 with a probability negligibly close
to 1

2 in λ, meaning that A’s advantage in distinguishing b is negligible in λ.

While a selective-trace notion of wCCA might be enough in some application,
the TCCA notion already requires an adaptive-trace flavor as the trace is chosen
by the adversary when it sends c0 and c1 at the beginning of the challenge phase.

14

4 An LWE-based TREnc Scheme

This description uses the Groth-Sahai scheme, denoted GS, the LHSP signature
scheme, as well as an FV post-quantum Public-Key Encryption scheme PQPKE
(though it may naturally be generalized to any LWE-based scheme).

4.1 Initialization Algorithm Gen

Input: the security parameter λ P N.

Computations: picks, with public coin randomness, a pairing setting pp “

pp,G, Ĝ,GT , e,G,Gq
$

Ð GS.Setupp1λq, for which the SXDH assumption is as-

sumed to hold with at least λ bits of security. The algorithm then draws H $
Ð G,

H $
Ð Ĝ, φ “ pU1,U2,U1,U2q

$
Ð GS.HCRSGenpppq, H a collision-free function

mapping elements to Zp, spk Ð pGspk,1,Gspk,2q
$

Ð Ĝ2, and sets: crs Ð ppp,φ, H,
H, spk,Hq.

Then, it generates, with t Ð 2, psk, pkq
$

Ð PQPKE.KeyGenp1λ, pp, t, n, σqq,
where the FV parameters pn, σq are taken with respect to p defined in pp to
give an efficient scheme with a security on λ bits for noise terms drawn from χσ

while allowing the decryption of ciphertext with a noise drawn from 2χσ to be
correct except with negligible probability in λ: denoting B the smallest natural
such that except with negligible probability, elements drawn from χσ are in vBw,
ciphertexts with noises e, e1 in polRp

pv2Bwq will always be decrypted correctly.

Output: the algorithm sets PK Ð ppk, crsq and returns: pPK, skq.

4.2 Encryption Algorithm Enc

Input: PK, parsed as an output of Gen, and m “ pm1, . . . ,mnq P t0; 1un.

Post-Quantum Ciphertext Generation An encryption of m “ polRt
pmq P

polRt
pt0; 1unq Ă Rt is computed drawing u “ pu1, . . . , unq

$
Ð t0; 1un, e, e1 $

Ð χσ

and, parsing pk as pp, p1, ∆, σq, as:

pc, c1q Ð pp ¨ u ` ∆ ¨ rmst ` e, p1 ¨ u ` e1q;

denoting a ÞÑ pol´1
Rp

paq the function which, given a P Rp, returns a P Zn
p

such that: apXq “ xa; p1, X, . . . ,Xn´1qy, and naming: p “ pp1, . . . , pnq Ð

pol´1
Rp

ppq,p1 “ pp1
1, . . . , p

1
nq Ð pol´1

Rp
pp1q, e “ pe1, . . . , enq Ð pol´1

Rp
peq, e1 “

pe1
1, . . . , e

1
nq Ð pol´1

Rp
peq, c “ pc1, . . . , cnq Ð pol´1

Rp
pcq, c1 “ pc1

1, . . . , c
1
nq Ð pol´1

Rp
pc1q,

one has, as Rp is a cyclotomic ring:

c “

˜

n
ÿ

k“1

pkur1´ksn`1 ` ∆m1 ` e1, . . . ,
n
ÿ

k“1

pkun`1´k ` ∆mn ` en

¸

15

c1 “

˜

n
ÿ

k“1

p1
kur1´ksn`1 ` e1

1, . . . ,
n
ÿ

k“1

p1
kun`1´k ` e1

n

¸

and c}c1 may, except with negligible probability in λ (if this unlucky event
happens, then the algorithm aborts), be expressed as the bit decomposition
of pm1, . . . ,mn, u1, . . . , un, e1, . . . , en, e

1
1, . . . , e

1
nqT , denoted w “ pw1, . . . , wN qT ,

with N “ 2ntlog2pBqu, times a public matrix P of Z2np1`tlog2pBquq
p deterministi-

cally determined by pk:

P Ð

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

∆ 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . ∆ 0 . . . 0
p1 . . . pn p1

1 . . . p1
n

...
. . .

. . .
...

p2 . . . p1 p1
2 . . . p1

1

2tlog2pBqu 0 . . . 0

2tlog2pBqu´1 0 . . .
...

...
...

1 0 . . .

0 2tlog2pBqu 0 . . .
...

...
...

...
1 0 . . . 0

...
. . .

. . .
...

. 0 2tlog2pBqu

...
...

...
...

0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The algorithm sets: Bfresh Ð tlog2pBqu, N Ð 2np1`Bfreshq, and names P ’s rows:
p1, . . . ,pN P Z2n

p .

16

Tracing and Validity Simulation-Sound Proofs Denoting, for BRand “

Bfresh, rN Ð np1 ` 2BRandq, the following matrix of ZĂNˆ2n
p :

rP Ð

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p1 . . . pn p1
1 . . . p1

n

...
. . .

. . .
...

p2 . . . p1 p1
2 . . . p1

1

2BRand 0 . . . 0
2BRand´1 0 . . .

...
...

...
1 0 . . .
0 2BRand 0 . . .
...

...
...

...
1 0 . . . 0

...
. . .

. . .
...

. 0 2BRand

...
...

...
...

0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

determined deterministically from pk, naming rP ’s rows: rp1, . . . , rpĂN
P Z2n

p , the
algorithm proceeds with the following steps:

1. the algorithm sets: b Ð 1 (meaning that the proof will not be simulated);

2. it then generates the one-time signature key pair: posk, opkq
$

Ð LHSP.KeyGen

pppp,Hq, 2n ` 1 ` rNq;
3. denoting:

T Ð

¨

˚

˚

˚

˚

˚

˚

˚

˝

cT c1T 1 0 . . . 0

rpT
1 0 1

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

rpT
ĂN

0 . . . 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨ G

for each i in
1

1; 1 ` rN
9

, the algorithm signs the i-th row T i of T , with:

σi Ð LHSP.Signposk, bT iq;

4. then, in the Groth-Sahai framework, and setting the tag τ Ð Hpopk,PKq, it
generates a proof of knowledge of a solution – colored in orange for witnesses
in G, and in cyan for witnesses in Ĝ, and denoting O1 and O2 the element O
provided in two distinct commitments, to the following system of equations,
denoting pi “ ppi,1, . . . , pi,2nq, rpi “ prpi,1, . . . , rpi,2nq, encoded into ESiSo, as
well as rP Ă

1

1; rN
9

ˆ v1; 2nw a subset made of indices pi, jq such that every

17

rpi,j ‰ 0 is present exactly once, and ϕ a function associating to every pi, jq

in
1

1; rN
9

ˆ v1; 2nw such that rpi,j ‰ 0 the pri,rjq P rP such that rpi,j “ rp
ri,rj :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

epc1G, bGq “ epbc1G,Gq

...
epc1

nG, bGq “ epbc1
nG,Gq

@pi, jq P rP : eprpi,jG, bGq “ epbrpi,jG,Gq

epG, bGq “ epbG,Gq

@i P

1

1; 1 ` rN
9

:

epσi,1G,Gqepσi,2G,Hq “ epbG,Gopk,2n`iq
ś

jPv1;2nw

ϕpi,jq‰K

epbtϕpi,jqG,Gopk,jq

@j P v1;nw :
śN

i“1 epwiG, bGqpi,j “ epcjG, bGq
śN

i“1 epwiG, bGqpi,n`j “ epc1
jG, bGq

@i P v1;Nw : epwiG,wiGq “ epG,wiGq

epwiG,Gq “ epG,wiGq

epO1,GqepO2,Hq “ epp1 ´ bqG,Gspk,1qepp1 ´ bqτG,Gspk,2q

epG, bGqepp1 ´ bqG,Gq “ epG,Gq

epτG, bGqepp1 ´ bqτG,Gq “ epτG,Gq

with:

ΠSiSo “ pCom, π, ESiSoq
$

Ð GS.Com&Prppp,φ, w, ESiSoq,

and denoting: Com “ ComB}pComσ,iqi}ppComT i,jqjqi}ComB,G}ComW }ComW

}Comσ,τ }Comτ and π “ pπB,i,jq
iPv1;ĂNw,jPv1;2nw

}pπ1, πB,k`1qkPv1;Nw}pπSign,iqi

}pπIP,jqj}pπBit,kqkPv1;Nw}πτ .

Output: the algorithm sets the whole TREnc ciphertext to: C Ð ppc, c1q, opk,
ΠSiSoq, and returns: posk, Cq.

4.3 Tracing Algorithm Trace

On input a ciphertext C, parsed as an output of Enc, this algorithm returns opk.

4.4 Randomization Algorithm Rand

Input: PK parsed as an output of Gen, and C parsed as an output of Enc.

18

Randomized Ciphertext Generation To randomize pc, c1q, the algorithm

draws ru $
Ð t0; 1unzt0nu, re,re1 $

Ð χ2λσ, and sets, with ru Ð polRp
pruq:

prc,rc1q Ð pc, c1q ` pp ¨ ru ` re, p1 ¨ ru ` re1q.

It now denotes rc “ prc1, . . . , rcnq Ð pol´1
Rp

prcq, rc1
“ prc1

1, . . . , rcn
1
q Ð pol´1

Rp
prc1q,

rw “ pĂw1, . . . , rw
ĂN

q P t0; 1u
ĂN (with rN Ð np1 ` 2BRandq) the vector of the bit

decomposition of ru}pol´1
Rp

preq}pol´1
Rp

pre1q.

Tracing and Validity Proofs Using the proof ΠSiSo kept in C, the algorithm
processes the following steps:

1. it modifies ESiSo into ĆESiSo encoding the following system of equations in
variables X, pYjqj , p rZkqk, prZkqk, pX1, X2q, pZiqi, pZiqi, pX 1

1, X
1
2q, pY 1

1 , Y
1
2q:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

eprc1G,Xq “ epY1,Gq

...
ep rcn

1G,Xq “ epY2n,Gq

epG,Xq “ epY2n`1,Gq

@k P

1

1; rN
9

: ep rZk,Xq “ epY2n`1`k,Gq

(1a)

epX1,GqepX2,Hq “
ś2n`1`ĂN

j“1 epYj ,Gopk,jq (1b)

@j P v1;nw :
śN

i“1 epZi,Xqpi,j ¨
ś

ĂN
k“1 ep rZk,Xqrpi,j “ eprcjG,Xq

śN
i“1 epZi,Xqpi,j`n ¨

ś
ĂN
k“1 ep rZk,Xqrpi,j`n “ eprcj

1G,Xq

(1c)

@i P v1;Nw : epZi,Ziq “ epG,Ziq

epZi,Gq “ epG,Ziq (1d)

@k P

1

1; rN
9

: ep rZi, rZiq “ epG, rZiq

ep rZi,Gq “ epG, rZiq
(1e)

epX 1
1,GqepX 1

2,Hq “ epY 1
1 ,Gspk,1qepY 1

2 ,Gspk,2q

epG,XqepY 1
1 ,Gq “ epG,Gq

epτG,XqepY 1
2 ,Gq “ epτG,Gq

(1f)

2. and then computes of proof of knowledge of a solution in the following man-
ner:
– to obtain proofs and commitments for equations 1a and 1b, it computes:

@j P v1; 2nw : ComB, rT ,j Ð

ĂN
ÿ

i“1

Ăwi ¨ ComT i,j

ComB, rT ,2n`1 Ð ComB,G

19

@j P

1

2n ` 2; 2n ` 1 ` rN
9

: ComB, rT ,j Ð rwj´2n´1 ¨ ComB,G

Comσ Ð Comσ,1 `

ĂN
ÿ

i“1

Ăwi ¨ Comσ,i`1

@j P v1; 2nw : πB,j Ð πB,1,j `

ĂN
ÿ

i“1

Ăwi ¨ πB,i`1,j

πB,2n`1 Ð πB,1

@k P

1

1; rN
9

: πB,2n`1`k Ð rwk ¨ πB,1

πSign,opk Ð πSign,1 `

ĂN
ÿ

i“1

Ăwi ¨ πSign,i`1

– a proof for equations 1c is also obtained using pπIP,jqj , ComB and ComW ,
along with the new rw vector, using the homomorphism of Groth-Sahai
proofs; the algorithm commits to rwG with null randomness, comput-
ing: Com

ĂW
Ð rwG ¨ p0, 1q and setting Com

W } ĂW
Ð ComW }Com

ĂW
;

ˆˆ

O O
O O

˙

,

ˆ

O O
O O

˙˙

is then a trivial proof of knowledge of a solution

to:

#

ś
ĂN
i“1 ep rZi,Xqrpi,j “ epprcj ´ cjqG,Xq

ś
ĂN
i“1 ep rZi,Xqrpi,j`n “ epprcj

1
´ c1

jqG,Xq

with respect to ComB and Com
ĂW
, and thus pπIP,rand,jqj Ð pπIP,jqj yields

a proof of equations 1c with respect to ComB and Com
W } ĂW

;

– a proof of the equations 1d is already provided by pπBit,kqkPv1;Nw, which
is renamed as: pπBit,fresh,kqkPv1;Nw;

– to build a proof of equations 1e, the algorithm uses Com
ĂW
, along with a

new commitment Com
ĂW

to rw ¨G (yielding Com
W}ĂW

Ð ComW}Com
ĂW
),

to build corresponding proofs pπBit,Rand,kq
kPv1;ĂNw

using Com
ĂW
’s known

randomness;
– finally, a proof of knowledge of a solution to equations 1f is already

provided by πτ , with respect to ComB, Comσ,τ and Comτ .
3. the algorithm then randomizes all the above proofs and commitments in the

Groth-Sahai framework, which yields:

ĆCom Ð ĆComB}ĆComσ}ĆComB, rT }ĆCom
W } ĂW

}ĆCom
W}ĂW

}ĆComσ,τ }ĆComτ

rπ Ð prπB,jqj}rπSign,opk}prπIP,fresh,jqj}prπIP,rand,jqj}prπBit,fresh,iqi}prπBit,Rand,iqi}rπτ

as a proof of knowledge rΠSiSo Ð pĆCom, rπ, rESiSoq with fresh randomness.

Output: the algorithm sets the TREnc ciphertext to: rC Ð pprc,rc1q, opk, rΠSiSoq,
and returns it.

20

4.5 Verification Algorithm Vf

Input: PK parsed as a such-named output of Gen, C as a corresponding output
of Enc or Rand, and a label ℓ P tfresh, randu indicating whether it should be
validated as an output of Enc or of Rand.

Computations and Output: First, the algorithm verifies that the system of
equations ESiSo described in ΠSiSo indeed corresponds to pc, c1q, opk (by verifying
that τ Ð Hpopk,PKq was correctly derived), and the public vector values p, rp,
and public parameters pp; if not, it sets and returns b Ð 0. Then, it checks
whether: GS.Vfppp,φ, ΠSiSoq “ 1, and if not, sets and returns b Ð 0.

4.6 Decryption Algorithm Dec

Taking as input sk and PK parsed as corresponding outputs of Gen, and C parsed
as an output of Enc or Rand, this algorithm returns: K if VfpC,PK, freshq “

VfpC,PK, randq “ 0; and else: m Ð PQPKE.Decpsk, pc, c1qq.

5 Security of the Protocol

The TREnc “ pGen,Enc,Trace,Rand,Dec,Vfq scheme described in Section 4
is showed to verify security properties of Traceable Receipt-free Encryption
(TREnc) schemes.

Theorem 11 (Correctness of TREnc). TREnc is correct under the correctness
of PQPKE, GS proofs, and LHSP signatures.

Proof. Straightforward.

Theorem 12 (Verifiability of TREnc). TREnc is verifiable under the SXDH
assumption. More precisely, for any PPT adversary A and security parameter
λ P N, AdvVer,TREncA pλq ď 6 ¨ AdvSXDH

A pλq.

Proof. This theorem is first proven for the fresh-ciphertext verifiability, then
the randomized-ciphertext one, using in each case a sequence of games, given a
security parameter λ P N; but first of all, we show that the key generation algo-
rithm may be simulated in an indistinguishable way allowing to check whether
ciphertexts are in the encryption or randomization ranges efficiently:

– a challenger C sets pPK0, sk0q
$

Ð Genp1λq, and pPK1, sk1q drawn also following
the Gen algorithm for the input λ, except that now, when generating PK1,
the challenger uses the Groth-Sahai CRS: φ1

$
Ð GS.BCRSGenpppq instead of

PK0’s φ0
$

Ð GS.HCRSGenpppq, generating this common reference string in a
now extractable mode, by keeping the trapdoor scalars a and a providing the
factor between φ0’s first and second components in memory; this is denoted

with: pPK1, sk1, pa, aqq
$

Ð SimGenp1λq;

21

– C then draws b $
Ð t0; 1u and returns pPKb, skbq to a PPT adverary A, who

answers with a guess b1, and winning if it is equal to b.
– the difference between the distributions of pPK0, sk0q and pPK1, sk1q is two

SXDH distinguishers, soA’s advantage is this game is bounded by 2¨AdvSXDH
A

pλq.

Then, the sequence of game is described from this simulated key generation:

Game G0: is the original security game for the verifiability of fresh cipher-
texts. A challenger C sets pPK, sk, pa, aqq

$
Ð SimGenp1λq, then sends over

pPK, skq to a PPT adversary A; A then replies with C, and wins the game if
VerpPK, C, freshq “ 1 and C R C0; C can efficiently check whether an element
is in C0 using sk, as the PQPKE decryption operation yields the unique de-
composition of C’s pc, c1q component with respect to p, p1 and ∆ as u,m, e, e1

in pc, c1q “ pp ¨ u ` ∆rmst ` e, p1 ¨ u ` e1q such that e, e1 P polRp
pv∆w

n
q and

m P polRp
pvtw

n
q, and pa, aq allows the extraction of elements committed us-

ing the common reference string of PK. A’s winning probability in this game

is denoted: Pr
!

SG0

A pλq “ 1
)

“ Pr
!

ExpVer,freshA pλq “ 1
)

.

Game G1: is identical to the previous game, except that now, in the final step
deciding on the adversary’s success, if VerpPK, C, freshq “ 1, the challenger
extracts the value committed to in the ComB component of Com, bG, and
declares the game lost by A if b ‰ 1.
If b ‰ 1, then C extracts the values committed to in Comσ,τ and Comτ inside
of Com, στ “ pΣ1, Σ2q and pT1, T2q respectively. The perfect soundness of
proofs made with the perfectly binding φ then ensures that:

$

’

&

’

%

epS1,GqepS2,Hq “ epT1,Gspk,1qepT2,Gspk,2q

epT1,Gq “ epp1 ´ bqG,Gq

epT2,Gq “ epτp1 ´ bqG,Gq

epS1,GqepS2,Hq “ epp1 ´ bqG,Gspk,1qepτp1 ´ bqG,Gspk,2q

with 1 ´ b ‰ 0, which would yield an efficient SXDH solver. Thus:∣∣∣PrtSG1

A pλqu ´ PrtExpG0

A pλqu

∣∣∣ ď AdvSXDH
A pλq.

Game G2: is as the previous game, but now, if VerpPK, C, freshq “ 1, the
challenger extracts, from Com’s Comσ,1 component, and using a, the value σ,

and then checks, whether the vector C Ð pc1, . . . , cn, c
1

1, . . . , c
1

n, 1, 0, . . . , 0q ¨

G P G2n`1`ĂN
p (obtained straightforwardly from C’s pc, c

1

q component), is
such that LHSP.VerpC, σ, opkq outputs 1 – if not, C declares the game lost
by A.
She also extracts σi from each other Comσ,i commitment, and verifies that
LHSP.Verpprpi´1}ei`1qG, σi, opkq “ 1, denoting peiqi the canonical basis of

Zp1`ĂNqˆp1`ĂNq
p .

She then proceeds to extract W “ pWiqi and W “ pWiqi from ComW and
ComW. For each index i, she verifies that: epWi ´ G,Wiq “ 1T , epWi,Gq “

22

epG,Wiq (which shows that there exists wi P t0; 1u such that Wi “ wiG and
Wi “ wiG). For each j P v1;nw, she checks that:

N
ź

i“1

epWi,Gqpi,j “ epcjG,Gq

N
ź

i“1

epWi,Gqpi,j`n “ epc1
jG,Gq

If any of the above tests failed to pass, the challenger declares that the ad-
versary lost the game. The perfectly binding property of φ ensures that they
never fail after VerpPK, C, freshq has passed with b “ 1, so the adversary’s
success probability is unchanged: PrtSG2

A pλqu “ PrtSG1

A pλqu.
In this last game, the challenger has found, as W was shown to have com-
ponents in tO,Gu, a vector of bits w such that W “ wG, and equivalently
m P polRt

pt0; 1unq, u P polRp
pt0; 1unq, and e, e

1

0 P polRp
pvBwq such that:

pc, c1q “ pp ¨ u`∆rmst ` e, p1 ¨ u` e1q, which means that C is in C0, and thus
the adversary is incapable of winning.

Finally: Pr
!

ExpVer,freshA pλq “ 1
)

ď AdvSXDH
A pλq.

The second proof for the randomized ciphertext verifiability is very similar
to the above one, except that more bits are committed and extracted to make
room for the bigger C1 space, according to the sequence of games presented in
Appendix A.1.

From the above sequences of games: Pr
!

ExpVer,TREncA pλq “ 1
)

ď AdvSXDH
A pλq,

so finally, the verifiability from the fresh and randomized cases, and the distin-
guishing advatage between the honest and simulated key generations is granted

with: Pr
!

ExpVerA pλq “ 1
)

ď 4 ¨ AdvSXDH
A pλq.

Theorem 13 (Traceability of TREnc). TREnc is traceable under the SXDH
assumption. More precisely, for any security parameter λ P N and PPT adver-
sary A: PrtExpTraceA pλq “ 1u ď 2´2n ` 1

p ` 4 ¨ AdvSXDH
A pλq.

Proof. The following sequence of game reduces the traceability of the scheme to
a game in which the adversary’s best strategy is to provide a random output.

Game G0: is the initial traceability security game for TREnc “ pGen,Enc,
Trace,Rand,Ver,Decq. Let A be a stateful PPT adversary, λ P N, pPK, skq
$

Ð Genp1λq. A1 is provided with pPK, skq, has access to an encryption oracle
provided by C, and queries Q messages in t0; 1un. The challenger, C, then
sets, for each query of index i, mi P t0; 1un: poski, Ciq Ð EncpPK,miq, and
returns Ci toA. At one pointA returns the ciphertext C˚, and wins the game
iff there exists an index i P v1;Qw such that TracepPK, Ciq “ TracepPK, C˚q,
there exists ℓ P tfresh, randu such that VerpPK, C˚, ℓq “ 1, and Decpsk, C˚q ‰

mi, which happens with probability PrtSG0

A pλqu “ PrtExpTraceA pλqu.
Game G1: is exactly the same as the initial game, except that now, when gen-

erating PK, the challenger uses the Groth-Sahai CRS: φ $
Ð GS.BCRSGenpppq

instead of the previous game’s φ $
Ð GS.HCRSGenpppq, generating this com-

mon reference string in a now extractable mode.

23

In this new game, the components of the vectors in φ form a Diffie-Hellman
tuple in G and another one in Ĝ, whereas they did not in G0.
The difference between both games is two SXDH distinguishers, and the
probability PrtSG1

A pλqu that A will win the current game is thus bounded

with:
∣∣∣PrtSG1

A pλqu ´ PrtExpTraceA pλqu

∣∣∣ ď 2 ¨ AdvSXDH
A pλq.

Game G2: is identical to the previous game, except that now, in the execution
of GS.BCRSGenpppq to generate φ, after a and a are drawn at random in
Zp to set second vector components as this multiple of the first ones (a for

elements in G and a for elements in Ĝ), a and a are kept by the challenger as
a trapdoor that will allow to extract elements committed using this common
reference string. The distribution of what is send to the adversary is not
changed, but now in the final step deciding on the adversary’s success, if
opkq “ opk˚, Decpsk, C˚q ‰ mq, and there is an ℓ P tfresh, randu such that
VerpPK, C˚, ℓq “ 1, when proceeding to the verification of C˚, the challenger
extracts the value committed to in the Com˚

B component of Com, b˚G, and
declares the game lost by A if b˚ ‰ 1.
If b˚ ‰ 1, then C extracts the values committed to in Com˚

σ,τ and Com˚
τ inside

of Com, σ˚
τ “ pΣ˚

1 , Σ
˚
2 q and pT˚

1 , T
˚
2 q respectively. The perfect soundness of

proofs made with the perfectly binding φ then ensures that:

$

’

&

’

%

epS˚
1 ,GqepS˚

2 ,Hq “ epT˚
1 ,Gspk,1qepT˚

2 ,Gspk,2q

epT˚
1 ,Gq “ epp1 ´ b˚qG,Gq

epT˚
2 ,Gq “ epτp1 ´ b˚qG,Gq

epS˚
1 ,GqepS˚

2 ,Hq “ epp1 ´ b˚qG,Gspk,1qepτp1 ´ b˚qG,Gspk,2q

with 1´b˚ ‰ 0, finding such a signature happens with probability 1
p plus A’s

SXDH advantage. Thus:
∣∣∣PrtSG2

A pλqu ´ PrtExpG1

A pλqu

∣∣∣ ď 1
p ` AdvSXDH

A pλq.

Game G3: is as the previous game, but now, if VerpPK, C˚, randq “ 1, C ex-

tracts ĂW
˚

from Com˚
ĂW
; then, from the commitment Com˚’s Com˚

σ com-

ponent if VerpPK, C˚, randq “ 1, or its Com˚
σ,1 component if VerpPK, C˚,

freshq “ 1, the challenger extracts, using a, σ˚, and then checks, if VerpPK,

C˚, freshq “ 1 whether the vector C˚
Ð pc˚

1 , . . . , c
˚
n, c

1
˚
1 , . . . , c

1
˚
n , 1, 0, . . . , 0q ¨

G P G2n`1`ĂN
p (obtained straightforwardly from C˚’s pc˚, c

1
˚q component),

and if VerpPK, C˚, randq “ 1, the vector C˚
Ð pc˚

1 , . . . , c
˚
n, c

1
˚
1 , . . . , c

1
˚
n , 1q ¨

G}ĂW
˚

P G2n`1`ĂN
p , is such that LHSP.VerpC˚, σ˚, opk˚

q outputs 1 – if not,
C declares the game lost by A.
If VerpPK, C˚, freshq “ 1, she also extracts σ˚

i from each other Com˚
σ,i com-

mitment, and verifies that LHSP.Verpprpi´1}ei`1qG, σ˚
i , opk

˚
q “ 1, denoting

peiqi the canonical basis of Zp1`ĂNqˆp1`ĂNq
p .

She then proceeds to extract, if VerpPK, C˚, freshq “ 1, W ˚
“ pW˚

i qi and
W˚

“ pW˚
i qi from Com˚

W and Com˚
W, and if VerpPK, C˚, randq “ 1, W ˚

“

pW˚
i qi, ĂW

˚

“ pĂW˚
k qk, W˚

“ pW˚
i qi and ĂW

˚

“ pĂW˚
i qi from Com˚

W } ĂW

24

and Com˚

W}ĂW
. For each index i, she verifies that: epW˚

i ´ G,W˚
i q “ 1T ,

epW˚
i ,Gq “ epG,W˚

i q (which shows that W˚
i P tO,Gu), and additionally

if VerpPK, C˚, randq “ 1, for each index k that: epĂW˚
i ´ G,ĂW˚

i q “ 1T and

epĂW˚
i ,Gq “ epG,ĂW˚

i q.
Then,
– if VerpPK, C˚, freshq “ 1, for each j P v1;nw, she checks that:

N
ź

i“1

epW˚
i ,Gqpi,j “ epcjG,Gq

N
ź

i“1

epW˚
i ,Gqpi,j`n “ epc1

jG,Gq;

– if VerpPK, C˚, randq “ 1, for each j P v1;nw, she checks that:

N
ź

i“1

epW˚
i ,Gqpi,j ¨

ĂN
ź

i“1

epĂW˚
i ,Gqrpi,j “ epcjG,Gq

N
ź

i“1

epW˚
i ,Gqpi,j`n ¨

ĂN
ź

i“1

epĂW˚
i ,Gqrpi,j`n “ epc1

jG,Gq

If any of the above tests failed to pass, the challenger declares that the
adversary lost the game. The perfectly binding property of φ ensures that
they never fail after VerpPK, C˚, ℓq has passed with b˚ “ 1, so the adversary’s
success probability is unchanged: PrtSG3

A pλqu “ PrtSG2

A pλqu.
Game G4: is as the previous game, except that C now declares the game lost

for A if, for any encryption requests q, q1 P v1;Qw, opkq “ opkq1 . For any

pair of indices, this event happens with probability 1

p2n`1` ĂN
, indepentently

of other pairs:
∣∣∣PrtSG4

A pλqu ´ PrtSG3

A pλqu

∣∣∣ ď
Q2

p2n`1` ĂN
ď 2´n´ĂN{2 ď 2´2n as

Q ď 2λ with A being polynomial time.
Game G5: is as the previous game, but now, denoting q P v1;Qw the index

such that TracepCqq “ TracepC˚q, w˚ “ pw˚
i qi the vector of bits such that

W ˚
“ w˚G, and if if VerpPK, C˚, randq “ 1, rw˚

“ p rw˚
k qk the vector of bits

such that ĂW
˚

“ rw˚G, C declares the game lost for A if:
– if VerpPK, C˚, freshq “ 1, pc˚

1 , . . . , c
1
˚
n q ‰ pc1, . . . , c

1
nq (where pc1, . . . , c

1
nq “

pol´1
Rp

pcqq}pol´1
Rp

pc1
qq);

– if VerpPK, C˚, randq “ 1,
ř

iPv1;Nw
w˚

i ¨ pi ‰ pc1, . . . , c
1
nq, that is: if C˚

‰

pc1, . . . , c
1
n, 1, 0, . . . , 0q`

ř
ĂN
k“1 rw˚

k prpk}ek`1q “ T q,1`
ř

ĂN
k“1 Ăwk

˚
T k`1 (whe-

re T q,1 is the first vector of Cq’s tracing matrix).
The above equalities pass if and only if C˚ is in spantT q,1, . . . ,T q,ĂN`1

u, as

the rightmost block of T is Id
ĂN`1

, the identity matrix of ZpĂN`1qˆpĂN`1q
p , and

rwG “ ĂW .
If C˚ were not in spantT q,1, . . . ,T q,ĂN`1

u, then when LHSP.VerpC˚, σ˚, opk˚
q “

1, C˚ and σ˚ would yield an SXDH solver, so:
∣∣∣PrtSG5

A pλqu ´ PrtExpG4

A pλqu

∣∣∣
ď AdvSXDH

A pλq.

25

Game G6: is as the previous game, except that now, C declares the game
lost for A if Decpsk, C˚q ‰ mq. As C has obtained pw˚

i qi, pĂwk
˚

qk such that

pc˚
1 , . . . , c

1
˚
n q “

ř

iPv1;Nw
w˚

i pi`
ř

kPv1;ĂNw
Ăwk

˚
rpk, pc1, . . . , c

1
nq “

ř

iPv1;Nw
w˚

i pi,

and verified that the w˚
i ’s and Ăwi

˚
’s are in t0; 1u, then it equivalently means

that she knows m˚ P polRt
pt0; 1unq, u˚

0 , u
˚
1 P polRp

pt0; 1unq, e˚
0 , e

1
˚
0 P polRp

pv2Bwq, and e˚
1 , e

1
˚
1 P polRp

p
0

2λ`1B
8

q such that:

#

pc˚, c
1
˚q “ pp ¨ pu˚

0 ` u˚
1 q ` ∆rm˚st ` e˚

0 ` e˚
1 , p

1 ¨ pu˚
0 ` u˚

1 q ` e
1
˚
0 ` e

1
˚
1 q,

pcq, c
1

qq “ pp ¨ u˚
0 ` ∆rm˚st ` e˚

0 , p
1 ¨ u˚

0 ` e
1
˚
0 q,

and thus, as 2B ď ∆: PQPKE.Decppc˚, c
1
˚qq “ PQPKE.Decppcq, c

1
qqq “ m˚,

so Decpsk, C˚q “ Decpsk, Cqq “ mq (under the correctness of the scheme),

so: PrtSG6

A pλqu “ PrtExpG5

A pλqu. Moreover, this ensures that A can never

win the game, as Decpsk, C˚q “ mq, so in this last game: PrtSG6

A pλqu “ 0.

Finally: PrtExpTraceA pλqu ď 2´2n ` 1
p ` 4 ¨ AdvSXDH

A pλq.

Theorem 14 (TCCA Security of TREnc). TREnc is TCCA-secure under
the SXDH and RLWE assumptions and the security of the hash function against
collisions. More precisely, for any PPT adversary A and security parameter
λ P N: AdvTCCA

A pλq ď Advcoll,HA pλq ` 1
p ` 3 ¨ AdvSXDH

A pλq ` AdvRLWE
A pλq.

Proof. The following sequence of games reduces the TCCA one to one in which
the challenge sent to the adversary does not depend on the target bit b she
should get, thus leading to a null advantage.

Game G0: is the original TCCA-security game. Let A “ pA1,A2q be a PPT

adversary, λ P N a security parameter. The challenger, C, runs pPK, skq
$

Ð

Genp1λq, then sends PK over to A1, who, having an oracle-access to the Dec
algorithm, outputs a state st and two ciphertexts, C˚

0 and C˚
1 .

The challenger then checks that TracepPK, C˚
0 q “ TracepPK, C˚

1 q, that VfpPK,
C˚

0 , freshq “ 1, and that VfpPK, C˚
1 , freshq “ 1, declaring the game lost

for A if any of the above conditions is not met; else, she goes on draw-
ing b $

Ð t0; 1u, setting C˚ $
Ð RandpPK, C˚

b q, and returns C˚ to A2, who,
taking it as input along with the state st and having access to a decryp-
tion oracle returning results only when queried on ciphertexts C such that
TracepPK, Cq ‰ TracepPK, C˚q, outputs a guess b1 for the value of b; A then
wins only if b1 is equal to b, with a success probability denoted: PrtSG0

A pλqu “

PrtExpTCCA
A pλqu.

Game G1: is as the previous game, except that now, the challenger aborts
and declares the game lost by the adversary if at any point A produces two
ciphertexts (including as oracle queries) C and C 1 such that, denoting opk Ð

TracepPK, Cq and opk1
Ð TracepPK, C 1q, opk ‰ opk1 but Hpopk,PKq “

Hpopk1,PKq. This event happens only if a collision is found on H, thus the
adversary’s success probability loss with respect to the previous game is

bounded in the following way:
∣∣∣PrtSG1

A pλqu ´ PrtSG0

A pλqu

∣∣∣ ď Advcoll,HA pλq.

26

Game G2: is as the previous game, except that now, in the execution of the
Gen algorithm outputting pPK, skq, C now replaces the generation of spk as a

random draw from Ĝ2 by: pspk, sskq
$

Ð LHSP.KeyGenpppp,Hq, 2q, generating
a signature key pair for which spk will be included in the common reference
string in PK, while C keeps ssk in memory to be be able to sign elements
with a corresponding key later on. The view of A is not altered since the
LHSP.KeyGen-generated spk also follows a uniform distribution on Ĝ2, so
PrtSG2

A pλqu “ PrtSG1

A pλqu.
Game G3: is as the previous game, but now, when generating C˚, the chal-

lenger sets b Ð 0, and uses the witness bG Ð O for the X variable of the rESiSo
system of equations, along with Yi Ð O for each index i P

1

1; 2n ` 1 ` rN
9

,

pX1, X2q Ð pO,Oq, for each i P v1;Nw, pZi,Ziq Ð pO,Oq, and for each

k P

1

1; rN
9

, prZk, rZkq Ð pO, Oq. C also sets: pY 1
1 , Y

1
2q Ð pG, τ˚Gq (where

τ˚ “ Hpopk˚,PKqq), and generates a signature on this vector with: σ˚
τ Ð

LHSP.Signpssk, pG, τ˚Gqq, then finally setting pX 1
1, X

1
2q Ð σ˚

τ as the final

component of the solution w˚ to rESiSo that will be used; C then sets: Π˚ Ð

pCom˚, π˚, rESiSoq
$

Ð GS.Com&Prppp,φ, w˚, rESiSoq, and, still using the same
pc˚, c

1
˚q and opk˚ components of C˚ as in the previous game, now sets:

C˚ Ð ppc˚, c
1
˚q, opk˚, Π˚q before returning C˚ to A.

The honest randomization of C˚
b was not modified, and as φ was gener-

ated in the Groth-Sahai perfectly witness-indistinguishable mode, the use
of the new witness w˚ in the Groth-Sahai proof leaves this game perfectly
indistinguishable from the previous one: PrtSG3

A pλqu “ PrtSG2

A pλqu.
Game G4: is as the previous game, except that now, the challenger uses:

φ $
Ð GS.BCRSGenpppq in the generation of the Groth-Sahai reference string

included in PK, now using the perfectly binding mode.
In this new game, the components of the vectors in φ form a Diffie-Hellman
tuple in G and another one in Ĝ, whereas they did not in G3.
The difference between both games is two SXDH distinguishers, and the
probability PrtSG4

A pλqu that A will win the current game is thus bounded

by:
∣∣∣PrtSG4

A pλqu ´ PrtExpG3

A pλqu

∣∣∣ ď 2 ¨ AdvSXDH
A pλq.

Game G5: is identical to the previous game except that now, when computing
φ $

Ð GS.BCRSGenpppq, the challenger keeps in memory the trapdoor scalars
a and a that are the secret multiplicative factors of second vector components
in G and Ĝ respectively. The knowledge of a and a will allow C to extract the
unique values encoded in each Groth-Sahai commitment that is valid with
respect to φ. The distribution of what is sent to A remains unchanged, so:
PrtSG5

A pλqu “ PrtSG4

A pλqu.
Game G6: is as the previous game, except that now, the challenger uses a and

a to extract the value encoded in the ComB,k component of Comk, for each
oracle query of index k, asking for the decryption of Ck such that there exists
ℓk P tfresh, randu such that VerpPK, Ck, ℓkq “ 1 and that TracepPK, Ckq ‰

TracepPK, C˚q if C˚ has already been released (else the oracle answers with
K). Indeed, as Ck passes the verification test, its commitments and proofs

27

are valid, and the corresponding value bkG may be extracted using a. C now
answers K to the query if bk ‰ 1.
If bk ‰ 1, then C extracts the values committed to in Comσ,τ,k and Comτ,k

inside of Comk, denoting them στ,k “ pΣk,1, Σk,2q and pTk,1, Tk,2q respec-
tively. The perfect soundness of proofs made with the perfectly binding φ
then ensures that:

$

’

&

’

%

epSk,1,GqepSk,2,Hq “ epTk,1,Gspk,1qepTk,2,Gspk,2q

epTk,1,Gq “ epp1 ´ bkqG,Gq

epTk,2,Gq “ epτkp1 ´ bkqG,Gq

epSk,1,GqepSk,2,Hq “ epp1 ´ bkqG,Gspk,1qepτkp1 ´ bkqG,Gspk,2q

with 1 ´ bk ‰ 0. If the corresponding index k was queried:
– after A sent C˚

0 and C˚
1 to C, then it is valid only if opkk ‰ opk˚ and

thus τk ‰ τ˚; hence, if A were able to produce such a ciphertext with a
probability not negligibly close to 1

p , without having recieved any proof

corresponding to τk (as pG, τkGq is then not in the span of pG, τ˚Gq), it
would yield an efficient SXDH distinguisher;

– if it was queried before A sent C˚
0 and C˚

1 to C, then the above argument
also holds when τk ‰ τ˚. If one had τk “ τ˚, it also implies that A was
able to find an answer to the SXDH instance defined by spk; it is equal
to the answer provided by ssk with probability 1

p , and else, for a different
basis decomposition, yields an efficient SXDH solver.

Thus: ∣∣∣PrtSG6

A pλqu ´ PrtExpG5

A pλqu

∣∣∣ ď
1

p
` AdvSXDH

A pλq.

Game G7: is as the previous game, though now the challenger also extracts
the following values:
– W k “ pWk,iqi,Wk “ pWk,iqi from Comk,W ,Comk,W respectively if

VerpPK, Ck, freshq “ 1;

– W k, ĂW k “ pĂWk,iqi,Wk, ĂWk “ pĂWk,iqi from Com
k,W } ĂW

,Com
k,W}ĂW

respectively if VerpPK, Ck, randq “ 1.
The prefect soundness of Groth-Sahai proofs verified with φ then ensures
that, denoting ck “ pck,1, . . . , c

1
k,nq Ð pol´1

Rp
pckq}pol´1

Rp
pc1

kq:

– if VerpPK, Ck, freshq “ 1:

@i P v1;Nw : epWk,i ´ G,Wk,iq “ 1T

epWk,i,Gq “ epG,Wk,iq

so, as W k’s components are in tO,Gu, this provides a vector of bits

pwk,1, . . . , wk,N q such that, because of the verified equations:
řN

i“1 wk,i ¨

pi “ ck and thus also yields mk P polRt
pt0; 1unq, uk P polRp

pt0; 1unq,

and ek, e
1

k P polRp
pv2Bwq such that:

pck, c
1

kq “ pp ¨ uk ` ∆rmkst ` ek, p
1 ¨ uk ` e

1

kq;

28

– similarly if VerpPK, Ck, randq “ 1:

@i P v1;Nw : epWk,i ´ G,Wk,iq “ 1T , epWk,i,Gq “ epG,Wk,iq

@l P

1

1; rN
9

: epĂWk,i ´ G,ĂWk,iq “ 1T , epĂWk,i,Gq “ epG,ĂWk,iq

so W k P tO,GuN and ĂW k P tO,Gu
ĂN , and they provide vectors of bits

wk “ pwk,iqi and rwk “ p rwk,iqi such that pW k}ĂW kq “ pwk}rwkqG, and

that, because of the verified equations:
řN

i“1 wk,i ¨ pi `
ř

ĂN
l“1 rwk,lrpl “ ck

So C has obtained: mk P polRt
pt0; 1unq, uk,ruk P polRp

pt0; 1unq, ek, e
1

k P

polRp
pv2Bwq, and rek,re

1

k P polRp
p
0

2λ`1B
8

q such that:

pck, c
1

kq “ pp ¨ puk ` rukq ` ∆rmkst ` ek ` rek, p
1 ¨ puk ` rukq ` e

1

k ` re
1

kq;

and the PQPKE decryption algorithm will thus return mk on input pck, c
1
kq

and the secret key corresponding to pk, sk. So now, instead of using sk to
answer a valid query Ck, C uses the above extracted vectors to find and
return mk.
Under the perfect binding property of φ, the mk computed with this new
method is identical to the one found using sk, so: PrtSG7

A pλqu “ PrtSG6

A pλqu.
Game G8: is as the previous game, though now C is not provided with sk; as

she was not using it, this does not change the distribution of reponses with
respect to the previous game: PrtSG8

A pλqu “ PrtSG7

A pλqu.

Game G9: is as the previous game, but now the challenger draws b $
Ð Rp

and sets: pc˚, c
1
˚q Ð pc˚

b , c
˚
b q ` pb ¨ u˚

1 ` e˚
1 , p

1 ¨ u˚
1 ` e

1
˚
1 q inside of C˚. The

adversary’s advantage in distinguishing this game from the previous one is
her advantage in the RLWE security game, challenged with either pp1, bq or
pp1,´p1 ¨ s ` eq, for p1 drawn uniformly at random in Rp, so:∣∣∣PrtSG9

A pλqu ´ PrtSG8

A pλqu

∣∣∣ ď AdvRLWE
A pλq.

Game G10: is as the previous game, though now, the challenger sets pc˚, c
1
˚q

$
Ð

R2
p. As u˚

1 is in polRp
pt0; 1unzt0nuq, which contains only invertible elements

of Rp, for each element px, x1q P R2
p:

Pr
pa,bq

$
ÐR2

p

!

pc˚
b , c

˚
b q ` pb ¨ u˚

1 ` e˚
1 , a ¨ u˚

1 ` e
1
˚
1 q “ px, x1q

)

“ Pr
pa,bq

$
ÐR2

p

!

pc˚
b , c

˚
b q ` pe˚

1 , e
1
˚
1 q ` pb, aq “ px, x1q

)

“ Pr
pa,bq

$
ÐR2

p

␣

pb, aq “ px, x1q
(

“
1

|Rp|2
“ p´2n

So this game is perfectly indistinguishable from the previous one: PrtSG10

A pλqu

“ PrtSG9

A pλqu.
In this last game, all of C’s answers are built without using sk, and are
independent of b; therefore, A’s advantage is null.

29

As a result: AdvTCCA
A pλq ď Advcoll,HA pλq ` 1

p ` 3 ¨ AdvSXDH
A pλq ` AdvRLWE

A pλq. [\

Theorem 15 (wCCA Security of TREnc). TREnc is wCCA-secure under
the SXDH and RLWE assumptions and the security of the hash function against
collisions. More precisely, for any PPT adversary A and security parameter
λ P N: AdvwCCA

A pλq ď Advcoll,HA pλq ` 1
p ` 3 ¨ AdvSXDH

A pλq ` AdvRLWE
A pλq.

Proof. Obtained straighforwardly following the TCCA proof steps (the only dif-
ference being that in the challenge phase, the adversary now sends cleartexts,
and gets a fresh ciphertext as an answer), as ciphertexts before and after the
randomization have the same FV structure.

Theorem 16 (Post-Quantum IND-CPA Security of TREnc). TREnc is
IND-CPA-secure under the RLWE assumption; for any PPT adversary A, Adv
CPA,TREnc
A pλq ď AdvRLWE

A pλq.

Proof. Let λ P N, A “ pA1,A2q be a PPT adversary.

Game G0: is the original security game; with pPK, skq
$

Ð Genp1λq, A1 is pro-
vided with PK, returns a state st and two messages m0,m1 P t0; 1un; the

challenger draws b $
Ð t0; 1u, sets Cb

$
Ð EncpPK,mbq, and returns pst, Cbq to

A2. A2 then returns b1 and wins iff it is equal to b.
Game G1: is as the previous game, but now, the challenger keeps a simula-

tion trapdoor when generating the Groth-Sahai CRS (with now none-public

coins). The distribution of PK is not altered, so AdvG1

A pλq “ AdvCPA,TREncA pλq.
Game G2: is as the previous game, but now, using the Groth-Sahai CRS trap-

door, the challenger simulates the Groth-Sahai commitments and proofs.
Under the perfect witness-indistinguishability of the CRS used: AdvG2

A pλq “

AdvG1

A pλq.
Game G3: is as the previous game, but now the challenger, not receiving sk

in the initialization, replaces the RLWE encryption to be sent to A2 to one
replacing pk with pp1, bq, for b $

Ð Rp; the difference between this game and

the previous one is an RLWE distinguisher, so:
∣∣∣AdvG3

A pλq ´ AdvG2

A pλq

∣∣∣ ď

AdvRLWE
A pλq.

Game G4: is as the previous game, except that now, the challenger takes a
uniformly random element of R2

p as the previous RLWE encryption to be
returned to A2. As b acted as a perfect mask in the previous game, this
is statistically indistinguishable: AdvG4

A pλq “ AdvG3

A pλq. In this last game,
what is returned to the adversary is completely independent from b, so her
advantage is null.

Finally, AdvCPA,TREncA pλq ď AdvRLWE
A pλq. [\

6 Applications

Efficiency Public-keys consist of 5 elements of G, 7 elements of Ĝ, and a public
key of the post-quantum LWE-based scheme, given by 2n elements of Zp in the

30

case of the FV instantiation; according to the [APS15] estimator, with p on 129
bits, and a standard deviation σ Ð 1, n Ð 212 will provide an LWE security on
more than 142 bits (so a reasonable RLWE security); taking G elements on 310

bits and Ĝ elements on 620 bits will then lead to public keys on 128 KB.

A fresh ciphertext consists of 32n ` 6Bfresh ` 10N ` 2 rN ` 26 “ 54n `

tlog2pBqup6 ` 24nq ` 26 elements of G, 10N ` 2 rN ` 26n ` 4Bfresh ` 19 “

48n ` p24n ` 4qtlog2pBqu ` 19 elements of Ĝ, and one LWE-based ciphertext,
consisting of 2n elements of Zp in the case of the FV instantiation; for a secu-
rity on 128 bits, this will represent, with the selected parameters and B “ 10σ,
around 55.5MB.

A randomized ciphertext consists of 26 ` 20n ` 16 rN ` 10N ď 26 ` 2np10 `

26tlog2pBquq elements of G, 19 ` 10N ` 14 rN ` 18n ď 19 ` 2np9 ` 24tlog2pBquq

elements of Ĝ, and one LWE-based ciphertext, consisting of 2n elements of Zp

in the case of the FV instantiation; for a security on 128 bits, this will represent,
with the selected parameters, around 69.1MB.

Receipt-Free & Ballot-Private EVoting The design of the TREnc primi-
tive in [DPP22] was motivated by capturing simple yet sufficient conditions of
a verifiable public-key encryption that naturally yields a voting system with a
non-interactive voting process that offers ballot privacy and receipt freeness. The
main definitional novelty to generically build a receipt-free voting system lied
both in the ability for the users/voters to trace their encrypted messages/votes
when their ciphertexts/ballots appear on a bulletin board after being random-
ized/processed by a randomizing server while being sure that their content has
been altered even by the authorities (traceability), and in the privacy notion
defined for the first time as an indistinguishability notion achieved by random-
ization (TCCA). Even if the randomizing server is deemed honest to provide the
receipt-freeness by honestly randomizing valid ciphertext before publishing them
on a bulletin board, the server is considered malicious when it comes to prove the
ballot privacy. Roughly speaking, this notion is satisfied if no efficient adversary
is able to distinguish whether honest ballots are compatible with the result of
the election [BCG`15]. Although the trust model differs for receipt freeness and
ballot privacy, a voting system based on a TCCA-secure TREnc that also enjoys
a strong randomization notion [DPP22] is naturally ballot private.

In our more general definition of TREnc, it is straightforward to see that the
adaptive-trace weak CCA notion given in Defintion 10 is sufficient to imply the
ballot privacy of a voting system that encrypts votes with a TREnc. Moreover,
our TCCA definition is still equivalent of the original definition as long as the
chosen ciphertexts are valid for the fresh ciphertext space Cfresh. Since a verifiable
TREnc allows identifying those ciphertexts and since the generic voting system
of [DPP22] defines the voting algorithm essentially as the encryption of the
encoded-vote message, we keep the receipt freeness.

31

6.1 Voting System Security Notions

The generic transformation of our TREnc construction into a voting scheme
follows the same recipy as the one of the original paper [DPP22]; we recall the
corresponding definitions and security notions here.

Definition 17 (Voting System (from [DPP22])). A Voting System is a tu-
ple of probabilistic polynomial-time algorithms (SetupElection, Vote, ProcessBal-
lot, TraceBallot,Valid,Append,Publish,VerifyVote,Tally,VerifyResult) associated to
a result function ρm : Vm Y K Ñ R where V is the set of valid votes and R is
the result space such that:

SetupElectionp1λq Ñ ppk, skq: on input a security parameter λ, generates the pub-
lic and secret key pair ppk, skq of the election.

Votepid, vq Ñ pb, auxq: when receiving a voter id and a vote v, outputs a ballot b
and auxiliary data aux. It will also be possible to call Votepid, v, auxq in order
to obtain a ballot (without auxiliary data this time) for the vote v using aux.
This auxiliary data will be useful to define security and enables the creation
of ballots that share the same aux.

ProcessBallotpbq Ñ rb: on input a ballot b, outputs an updated ballot rb. In our

case, rb will be a rerandomization of b.
TraceBallotpbq Ñ τ : on input a ballot b, outputs a tag τ . The tag is the informa-

tion that a voter can use to trace her ballot, using the VerifyVote algorithm.
ValidpBB, bq Ñ b: on input a ballot box BB and ballot b, outputs 1 if and only if

the ballot is valid, and else 0.

AppendpBB, bq Ñ ĂBB: on input a ballot box BB and ballot b, appends ProcessBal-
lotpbq to BB iff ValidpBB, bq “ 1, and then returns the updated (or identical)

ballot box ĂBB.
PublishpBBq Ñ PBB: on input a ballot box BB, outputs the public view PBB of

BB, which is the one that is used to verify the election. Depending on the
context, it may for instance be used to remove some voter credentials.

VerifyVotepPBB, τq Ñ b: on input a public ballot box PBB and tag τ , outputs a
bit b equal to 1 iff the vote corresponding to the tag τ (which is specific to a
voter) has been processed and recorded properly.

TallypBB, skq Ñ pr, Πq: on input a ballot box BB and the election secret key sk,
outputs the tally r and a proof Π that the tally is correct with respect to the
result function ρm.

VerifyResultpPBB, r, Πq Ñ b: on input a public ballot box PBB, tally result r and
tally proof Π, outputs a bit b equal to 1 if and only if Π is a valid proof that
r is the election result, computed with respect to ρm, corresponding to the
ballots on PBB.

For all of these algorithms except SetupElection, the public key of the election pk
is an implicit argument.

A voting system should follow the following security notions:

32

Definition 18 (Tracing Correctness (from [DPP22])). A voting system

verifies tracing correctness iff for λ P N, ppk, skq
$

Ð SetupElectionp1λq, and every

v,BB, pb, auxq
$

Ð Votepid, vq and τ Ð TraceBallotpbq,for ĂBB Ð AppendpBB, bq,
VerifyVotepPublishpBBq, τq “ 1 with overwhelming probability in λ.

Definition 19 (Receipt-Freeness (from [DPP22])). A voting system V
verifies receipt-freeness iff there exist algorithms SimSetupElection and SimProof
such that, for λ P N, any PPT adversary A’s advantage in distinguishing the
games ExpRF,0A,V pλq and ExpRF,1A,V pλq defined by the oracles in figure 6.1 is negligible
in λ.

Oinitβpλq:

ifβ “ 0
then ppk, skq

$
Ð SetupElectionp1λq

else ppk, sk, τq
$

Ð SimSetupElectionp1λq

BB0 Ð H,BB1 Ð H

return pk.

OreceiptLRpb0, b1q:

ifTraceBallotpb0q ‰ TraceBallotpb1q

or ValidpBB0, b0q “ 0
or ValidpBB1, b1q “ 0
then return K

else BB0 Ð AppendpBB0, b0q,
BB0 Ð AppendpBB0, b0q.

Oboardβ :

return PublishpBBβq.

Otallyβ :

pr, Πq
$

Ð TallypBB0, skq

if β “ 1 then Π $
Ð SimProofpBB1, r, τq

return pr, Πq.

Fig. 4. Oracles used in the ExpRF,βA,V pλq experiment, for β P t0; 1u. The adversary first

calls Oinitβpλq, and may then call the Oboard and OreceiptLR oracles as much as she
wants. She finally cacls Otally, receives the result of the election, and is requested to
output her guess β1 for the value of β, which is the output of the experiment.

Definition 20 (Ballot Traceability for Receipt-Freeness (from [DPP22])).
For every pk in the range of SetupElection, voter identity id, and pair of votes
v0, v1, for pb0, auxq

$
Ð Votepid, v0q and b1

$
Ð Votepid, v1, auxq, TraceBallotpb0q “

TraceBallotpb1q.

6.2 Voting System Security Proofs

Deriving the voting system resulting from the above TREnc as in [DPP22] also
yields a secure system with the same voting system security notions, even with
our more general TREnc ones. Independently of the TREnc scheme, the deriva-
tion of the voting scheme requires the use of a scheme computing the result of
the election from the ciphertexts (this may be done using mixnets, homomor-
phic computations, or a more general MPC procedure), along with proofs that
this result was calculated correctly. As the choice of this building block is mod-
ular with respect to our TREnc construction, we leave it to the implementor;
however, the receipt-freeness, along with relying on the TCCA security of the

33

TREnc scheme, will rely on the zero-knowledge property of the proving scheme
used for the tally calculation of an election result, providing a SimSetupElection
algorithm with ppk, skq outputs indistinguishable from the SetupElection one, and
a SimProof algorithm with outputs indistinguishable from those of Tally for an
adversary with pk. AdvSimSetup

A Electionpλq will denote an adversary A’s advan-
tage in distinguishing outputs ppk, skq from SimSetupElection or SetupElection,
and AdvSimProof

A pλq in distinguishing an output Π from SimProof or Tally, given
the corresponding result r and public key pk, for a security parameter λ.

Theorem 21 (Receipt-Freeness). If a TREnc scheme is TCCA and the tally
result is proven using a zero-knowledge scheme yielding indistinguishable algo-
rithms SimSetupElection and SetupElection, and Tally and SimProof, then the
corresponding voting system is receipt-free; more precisely, for any PPT ad-
versary A, AdvRFA pλq ď QOreceiptLR ¨ AdvTCCA

A pλq ` QOtally ¨ AdvSimProof
A pλq `

AdvSimSetupElection
A pλq, for QOreceiptLR the number of requests A makes to the

OreceiptLR oracle, and Otally the number of requests she sends to Otally.

Proof (Receipt-Freeness). Let λ P N, and A be a PPT adversary.

Game G0: is the original receipt-freeness game, in which AdvG0

A pλq “ AdvRFA pλq;
Game G1: is as the previous game, though now, even when β “ 0, SimSetup-

Election is called instead of SetupElection to set up the keys, and the chal-
lenger keeps the simulation trapdoor τ issued from the simulated election

setup generation.
∣∣∣AdvG1

A pλq ´ AdvG0

A pλq

∣∣∣ ď AdvSimSetup
A Electionpλq.

Game G2: is as the previous game, though now, even when β “ 0, the tally
proofs returned to A from Otally are generated using SimProof as in the

β “ 1 case.
∣∣∣AdvG2

A pλq ´ AdvG1

A pλq

∣∣∣ ď QOtally ¨ AdvSimProof
A pλq.

Game G3: is as the previous game, but now, when A calls the OreceiptLR
oracle, the same b1 is used for both ballot boxes (replacing the b0 that was
used with BB0). Moreover, the secret key from the generation is not re-
ceived by the challenger, who uses the decryption oracles from the TCCA
security game when asked for decryptions (refusing the decryption of bal-
lots sent to OreceiptLR). The difference between this game and the pre-
vious one is QOreceiptLR times the TCCA security game, for QOreceipt-
LR the number of requests to OreceiptLR (using QOreceiptLR hybrid games
with a TCCA difference to the previous one between the G2 and G3), and:∣∣∣AdvG3

A pλq ´ AdvG2

A pλq

∣∣∣ ď QOreceiptLR¨AdvTCCA
A pλq. In this last game, what

A receives is totally independent of β, so AdvG3

A pλq “ 0.

Finally,

AdvRFA pλq ď QOreceiptLR¨AdvTCCA
A pλq`QOtally¨AdvSimProof

A pλq`AdvSimSetupElection
A pλq.

[\

Moreover, the traceability of TREnc immediately yields the ballot traceability
of the voting scheme. As for Ballot Privacy and Verifiability, they naturally follow
as in the [DPP22] proofs.

34

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 595–618. Springer, Heidelberg, August 2009.

AFG`10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 209–236. Springer, Heidelberg, August 2010.

AHO10. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on
elements in bilinear groups for modular protocol design. Cryptology ePrint
Archive, Report 2010/133, 2010. https://eprint.iacr.org/2010/133.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

BCG`15. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. Sok: A comprehensive analysis of game-based ballot
privacy definitions. 2015 IEEE Symposium on Security and Privacy, pages
499–516, 2015.

BdPP23. Théophile Brézot, Paola de Perthuis, and David Pointcheval. Covercrypt:
an efficient early-abort kem for hidden access policies with traceability from
the ddh and lwe. LNCS, pages 372–392. Springer, Heidelberg, 2023.

BF11. Dan Boneh and David Mandell Freeman. Linearly homomorphic signa-
tures over binary fields and new tools for lattice-based signatures. In Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 1–16. Springer, Heidelberg, March
2011.

CKLM12. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. Malleable proof systems and applications. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 281–300. Springer, Heidelberg, April 2012.

DPP22. Henri Devillez, Olivier Pereira, and Thomas Peters. Traceable receipt-
free encryption. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part III, volume 13793 of LNCS, pages 273–303. Springer,
Heidelberg, December 2022.

DPP24. Henri Devillez, Olivier Pereira, and Thomas Peters. Practical traceable
receipt-free encryption. In Clemente Galdi and Duong Hieu Phan, editors,
Security and Cryptography for Networks - 14th International Conference,
SCN 2024, Amalfi, Italy, September 11-13, 2024, Proceedings, Part I, vol-
ume 14973 of Lecture Notes in Computer Science, pages 367–387. Springer,
2024.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
December 2006.

35

https://eprint.iacr.org/2010/133
https://eprint.iacr.org/2012/144

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press,
June 2015.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and
more general. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101. Springer,
Heidelberg, August 2022.

LPJY14. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability
from malleability: Simulation-sound quasi-adaptive NIZK proofs and
CCA2-secure encryption from homomorphic signatures. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 514–532. Springer, Heidelberg, May 2014.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

MRY04. Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to
non-malleability: Definitions, constructions, and applications (extended ab-
stract). In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
171–190. Springer, Heidelberg, February 2004.

Ràf15. Carla Ràfols. Stretching groth-sahai: NIZK proofs of partial satisfiability.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 247–276. Springer, Heidelberg, March 2015.

36

Appendix

A Deferred Proofs

A.1 End of the Verifiability Proof of TREnc

Game G0: is the original security game for the verifiability of randomized
ciphertexts. A challenger C sets pPK, sk, pa, aqq

$
Ð SimGenp1λq, then sends

over pPK, skq to a PPT adversary A; A then replies with C, and wins the
game if VerpPK, C, randq “ 1 and C R C1; C can efficiently check whether
an element is in C1 using sk, as the PQPKE decryption operation yields the
unique decomposition of C’s pc, c1q component with respect to p, p1 and ∆ as
u,m, e, e1 in pc, c1q “ pp ¨u`∆rmst `e, p1 ¨u`e1q such that e, e1 P polRp

pv∆w
n

q

and m P polRp
pvtw

n
q, and the trapdoor pa, aq allows the extraction of all

values committed to in GS proofs using PK’s CRS. A’s winning probability

in this game is denoted: Pr
!

SG0

A pλq “ 1
)

“ Pr
!

ExpVer,randA pλq “ 1
)

.

Game G1: is identical to the previous game, except that now, in the final step
deciding on the adversary’s success, if VerpPK, C, randq “ 1, the challenger
extracts the value committed to in the ComB component of Com, bG, and
declares the game lost by A if b ‰ 1.
If b ‰ 1, then C extracts the values committed to in Comσ,τ and Comτ inside
of Com, στ “ pΣ1, Σ2q and pT1, T2q respectively. The perfect soundness of
proofs made with the perfectly binding φ then ensures that:

$

’

&

’

%

epS1,GqepS2,Hq “ epT1,Gspk,1qepT2,Gspk,2q

epT1,Gq “ epp1 ´ bqG,Gq

epT2,Gq “ epτp1 ´ bqG,Gq

epS1,GqepS2,Hq “ epp1 ´ bqG,Gspk,1qepτp1 ´ bqG,Gspk,2q

with 1 ´ b ‰ 0, which would yield an efficient SXDH distinguisher. Thus:∣∣∣PrtSG1

A pλqu ´ PrtExpG0

A pλqu

∣∣∣ ď AdvSXDH
A pλq.

Game G2: is as the previous game, but now, if VerpPK, C, randq “ 1, the chal-
lenger extracts, from Com’s Comσ component, and using a, the value σ,
and from Com’s Com

ĂW
component, the vector ĂW “ pĂW1, . . . ,ĂW

ĂN
q, and

then checks, whether the vector C Ð pc1, . . . , cn, c
1

1, . . . , c
1

n, 1q ¨ G}ĂW P

G2n`1`ĂN
p (obtained straightforwardly from C’s pc, c

1

q component), is such
that LHSP.VerpC, σ, opkq outputs 1 – if not, C declares the game lost by A.

She then proceeds to extract W “ pWiqi, W “ pWiqi and ĂW “ pĂWiqi from
Com

W } ĂW
and Com

W}ĂW
.

For each index i, she verifies that: epWi ´G,Wiq “ 1T , epWi,Gq “ epG,Wiq

(which shows that Wi P tO,Gu), and similarly, for each index k that: epĂWi ´

G,ĂWiq “ epG,Gq and epĂWi,Gq “ epG,ĂWiq. For each j P v1;nw, she checks
that:

N
ź

i“1

epWi,Gqpi,j ¨

ĂN
ź

i“1

epĂWi,Gqrpi,j “ epcjG,Gq

N
ź

i“1

epWi,Gqpi,j`n ¨

ĂN
ź

i“1

epĂWi,Gqrpi,j`n “ epc1
jG,Gq

If any of the above tests failed to pass, the challenger declares that the ad-
versary lost the game. The perfectly binding property of φ ensures that they
never fail after VerpPK, C, randq has passed with b “ 1, so the adversary’s
success probability is unchanged: PrtSG2

A pλqu “ PrtSG1

A pλqu.

In this last game, the challenger has found, since W }ĂW is a vector whose

components are in tO,Gu, a vector of bits w}rw such that W }ĂW “ pw}rwqG,
and equivalently,m0 P polRt

pt0; 1unq, u0, u1 P polRp
pt0; 1unq, and e0, e1, e

1

0, e
1
1 P

polRp
pvBwq such that:

pc, c1q “ pp ¨ pu0 ` u1q ` ∆rm0st ` e0 ` e1, p
1 ¨ pu ` u1q ` e1

0 ` e1
1q,

which means that C is in C1, and thus the adversary is incapable of winning.

Finally: Pr
!

ExpVer,randA pλq “ 1
)

ď AdvSXDH
A pλq.

38

	Post-Quantum Privacy for Traceable Receipt-Free Encryption
	Introduction
	Preliminaries
	Notations
	Hard Problems
	An RLWE-Based Ciphertext Instantiation
	Linearly-Homomorphic Structure-Preserving Signatures
	The Groth Sahai Proof System

	Generalizing TREnc
	An LWE-based TREnc Scheme
	Initialization Algorithm Gen
	Encryption Algorithm Enc
	Tracing Algorithm Trace
	Randomization Algorithm Rand
	Verification Algorithm Vf
	Decryption Algorithm Dec

	Security of the Protocol
	Applications
	Voting System Security Notions
	Voting System Security Proofs

	Deferred Proofs
	End of the Verifiability Proof of TREnc

