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Abstract. RSA is widely used in modern cryptographic practice, with
certain RSA-based protocols relying on the secrecy of p and q. A common
approach is to use secure multiparty computation to address the privacy
concerns of p and q. Specifically constrained to distributed RSA modu-
lus generation protocols, the biprimality test for Blum integers N = pq,
where p ≡ q ≡ 3 (mod 4) are two primes, proposed by Boneh and
Franklin (2001) is the most commonly used. Over the past 20 years, the
worst-case acceptance rate of this test has been consistently assumed to
be 1/2 under the condition gcd(pq, p + q − 1) = 1. In this paper, we
demonstrate that for the Boneh-Franklin test, the acceptance probabil-
ity is at most 1/4, rather than 1/2, except in the specific case where
p = q = 3. We establish that the value of 1/4 represents the tightest
upper bound. This finding significantly enhances the practical effective-
ness of the Boneh-Franklin test: achieving equivalent soundness for the
RSA modulus now requires only half the number of iterations previously
deemed necessary. Furthermore, we propose a generalized biprimality
test based on the Lucas sequence. In the worst case, the acceptance rate
of the proposed test is at most 1/4 + 1.25/(pmin − 3), where pmin is the
smallest prime factors of N . Simulation study suggests that this test
is generally more efficient than the Boneh-Franklin test for detecting
when N is not an RSA modulus. Additionally, this test is applicable to
generating arbitrary RSA moduli for arbitrary odd primes p, q. A cor-
responding protocol is developed for this test, validated for resilience
against semi-honest adversaries, and shown to be applicable to most
known distributed RSA modulus generation protocols. After thoroughly
analyzing and comparing well-known protocols for Blum integers, includ-
ing the variant Miller-Rabin test used by Burkhardt et al. (CCS 2023),
the Boneh-Franklin test, and our proposed Lucas-type test, our proposed
protocol test is also highly competitive in verifying whether N is an RSA
modulus.

1 Introduction

The RSA cryptosystem [34] is one of the pioneering and widely used public key
cryptosystems. In classical scenarios, two large distinct primes, p and q, are ini-
tially generated as secret keys, and the public key, N = pq, is derived as the
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product of these two distinct primes. However, this method may introduce a
vulnerability due to a single point of attack. To mitigate this concern, multi-
party computation (MPC) becomes crucial, allowing participants to collectively
compute a function using inputs from all parties while preserving the confiden-
tiality of each party’s input. This feature is essential for various cryptographic
protocols and primitives, including threshold homomorphic encryption [22, 25],
time-lock puzzles [1, 30, 35], accumulators [4, 7, 28], and verifiable delay func-
tions [6, 15,20,26,32,37].

The goal is that, provided with n parties, of which any t < n can potentially
be compromised by an adversary, we seek a secure protocol that generates a
random and valid RSA modulus N = pq, where p and q are two distinct
primes of a specified size. The objective is to ensure that the adversary gains no
knowledge except for N from the protocol while maintaining the privacy of p and
q. The concept of such a protocol consists of two parts: (a) Prime Candidate
Sieving: participants generate a potential RSA modulus N that does not divide
by a prime less than a predetermined integer B; and (b) Biprimality test: the
candidate N is repeatedly tested by a biprimality test. If N is rejected by the
biprimality test, then the process starts over.

The current fastest approach for part (a) fundamentally involves generating
candidates N using the Chinese Remainder Theorem (CRT) [13,36] such that N
is coprime to all small primes. For part (b), two primality tests, Miller-Rabin
(primality) test (cf. [12, Section 3.2]) and Boneh-Franklin’s (biprimality)
tests (cf, Theorem 1), were commonly employed. Currently, both methods are
specifically restricted to the scenario where p ≡ q ≡ 3 (mod 4). In the worst case,
the Miller-Rabin test may accept a composite with a probability of 1/4 [11,33].
Regarding Boneh-Franklin test, in their original findings [8], they proved that
the acceptance with a probability in the worst scenes is at most 1/2. In addi-
tion, based on the average estimation results [16, 17], Miller-Rabin can achieve
soundness error no greater than 2−67 with only two executions, when the pub-
lic key N = pq is 2048-bit. The similar results for the Boneh-Franklin test are
still an open question to date [14, 17]. Therefore, to reach the same soundness
error, the Boneh-Franklin test requires 67 checks, significantly increasing the
verification cost. In the paper by Burkhardt et al. [12], owing to the superior
discriminative power of variant Miller-Rabin test3, it demonstrates enhanced ef-
ficiency, although the expense of running a single MPC version of the variant
Miller-Rabin test exceeds that of the Boneh-Franklin test.

However, in practical applications, we observe two key obstacles when apply-
ing Burkhardt et al.’s approach using the Miller-Rabin test. First, they assume
that p and q are of equal length (cf. [12, Input assumptions]). Second, the aver-
aged results of Miller-Rabin test rely on the assumption that p and q are selected
from a uniform distribution. However, all known algorithms for distributed RSA
modulus generation [8, 13, 14, 17, 21, 36] do not produce p and q from a uniform
distribution, which is a distribution of a sum of uniform variables actually. As a

3 The variant Miller-Rabin test they used is a special case of the original Miller-Rabin
test. See Subsection 5.1
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result, directly applying the average results of the Miller-Rabin test in practical
scenarios remains constrained and requires further investigation.

For current distributed RSA-moduli protocols, extensive research has focused
on Prime Candidate Sieving, but research on biprimality tests remains limited.
In this paper, we focus on the following questions.

Which of the Boneh-Franklin or Miller-Rabin tests offers greater advantages
for determining RSA moduli? Are there more efficient or general alternatives

to biprimality tests?

1.1 Our contribution

Our paper aims to develop an optimal biprimality test that improves efficiency
and relaxes existing limitations. The first finding is that, in the worst-case sce-
nario, the probability of the commonly used Boneh-Franklin test accepting a
non-RSA modulus is 1/4 instead of 1/2, thus improving the current upper bound.
In the next subsection, Technical Overview, we will explain why we are able to
obtain this result. Additionally, we have identified the necessary and sufficient
conditions for the types of p and q that lead to the worst acceptance rate (cf.
Corollary 1). We also observe that there are infinitely many pairs of p and q that
yield the worst acceptance rate.

Secondly, a novel Lucas (biprimality) test is proposed to improve the effi-
ciency. Inspired by classical Lucas primality tests, we naturally consider

Z(D,N) :=

{
(P,Q)

P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, 0 ≤ P,Q < N

}
,

and

LPBP(D,N, e4) :=

{
(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, (αβ−1)e4 = ±1 (mod NOD)

}
.

Here α, β are the two distinct roots of the quadratic polynomial x2 − Px + Q,
the ring of integer OD of the quadratic field extension Q(

√
D), and e4 := (p +

[−1
p ])(q + [−1

q ])/4. In particular, if p ≡ q ≡ 3 (mod 4), e4 = (p − 1)(q − 1)/4 is

introduced by Boneh-Franklin. Our findings indicate that |LPBP(D,N, e4)| <
|Z(D,N)|, whenN is an RSA modulus. Fortunately, the set LPBP(D,N, e4) and

the set Z+1(D,N) := Z(D,N) ∩ {(P,Q) |
[
Q
N

]
= 1} exhibit features similar to

those considered in the Boneh-Franklin test (cf. Theorem 1 and 2). This enables
us to use the proposed Lucas test to determine whether N is an RSA modulus.
From this point forward, we will refer to the proposed Lucas test as the Lucas
test for convenience.

Why is the Lucas test more effective than the Boneh-Franklin test in deter-
mining whether N is an RSA modulus? Both tests consider a set G and its subset
H, satisfying the condition that if N is an RSA modulus, then |G| = |H|, and
otherwise |H| < |G|. In the two tests, p ≡ q ≡ 3 (mod 4), and N = pq =

∏
i p

ri
i .
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According to the counting formula of non-perfect-square N (cf. Theorem 1,
Proposition 1), the size |G| of Boneh-Franklin approximates the size |G| of Lu-
cas test when pi are sufficiently large for all i. However, for |H|, the Boneh-
Franklin test (resp. Lucas test) results in a count 2

∏
i gcd(e4, pi − 1) (resp.∏

i

(
gcd(e4, pi − 1) − 1

)
+
∏

i gcd(e4, pi − 1)). This observation shows that in
most cases, it is likely to find a pi such that gcd(e4, pi − 1) = 1. Consequently,
the number of elements in |H| for the Boneh-Franklin test will be twice that
of the Lucas test. In summary, the Lucas test often achieves nearly twice the
probability of detecting that N is not an RSA modulus when randomly selecting
elements from G, and pi sufficiently large for all i. Practically, ensuring N has no
small prime factors pi is straightforward via trial division, which is a necessary
step in any known efficient distributed RSA modulus generation protocol. Table
3 indirectly suggests that when p and q are randomly selected from a specific
distribution, performing the same number of biprimality tests makes it highly
likely that the Lucas test will achieve a better security level compared to the
Miller-Rabin test (cf. [16]).

The improvement involves of proposed Lucas biprimality test relaxing the
restrictions imposed by current distributed RSA protocols, which require the
primes p and q to satisfy p ≡ q ≡ 3 (mod 4). In practical cryptography, the
assumption that p ≡ q ≡ 3 (mod 4) is common. To the best of our knowl-
edge, only the work by Boudabra et al. [9], which proposes a variant of KMOV
cryptosystems [18, 29] for signature and encryption, requires the condition p ≡
q ≡ 1 (mod 4). Consequently, this aspect of our research leans more toward
theoretical completeness compared to other protocols.

Compared to the Boneh-Franklin’s protocol, our proposed protocol requires

sampling an integer D to satisfy a special condition
[−D

N

]
= 1, and

[
−D
p

]
= −1.

Specifically, when considering p ≡ q ≡ 3 (mod 4), D can be directly chosen
as 1 (i.e. no additional leakage, as in the case of the Boneh-Franklin protocol).
However, in the other cases, although we can find an integer D such that

[−D
N

]
=

1 without leaking information about p and q, the probability that
[
−D
p

]
= −1

is only 1
2 because p (mod D) is almost uniformly distributed in ZD. The failed

D might leak some information about p and q (i.e. because for a given D, the
Jacobi symbols of the secret p and q can be learned). Nonetheless, since we only
need to select one D that satisfies the required condition and p, q have large
bit-lengths, the leaked information is nearly negligible.

We summarize the comparison of the three tests in Table 1. The proposed
protocol for cases where p ≡ q ≡ 3 (mod 4) is also highly competitive compared
to the Boneh-Franklin test. For other scenarios, our proposed test is advised
for generating RSA moduli. Additionally, we conducted a performance evalua-
tion using real experimental data, comparing the Boneh-Franklin test with our
proposed tests on a standard laptop, as detailed in Subsection 5.3.
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Table 1: Ranking Features of Three Tests: A Comparative Overview

Method Boneh-Franklin Variant
Miller-Rabin

Proposed test

The worst case excluding special
conditions

1/2 → 1/4 1/4 1/4 + 1.25/(pmin − 3)

Exceptional p = q = 3 p, q ≤ 9 pmin < 11

Extra assumption gcd(pq, e4) = 1 equal-length1 gcd(pq, e4) = 1

Detecting of non-RSA moduli 3 1 2

MPC Protocol efficiency 1 3 1

Local computation efficiency 1 3 2

Leakage No No Blum:No;
Non-Blum: Negligible.

RSA Moduli Type Blum Blum Arbitrary

The numbers in the table represent rankings and NA indicates that there are no known results available. The worst
case excluding special conditions is derived from Theorem 1, 2, and Lemma 5. Exceptional means that the
exclusion of the worst-case scenario. Extra assumption means the additional conditions required by each test. The
ranking for Detecting of non-RSA moduli comes from the Table 3. The ranking for MPC protocol efficiency
comes from the Subsection 5.2. Finally, the ranking for Local computation efficiency is based on the comparison
of local computations in Subsection 5.2, and Protocol 4, 5, and 6. The Blum moduli in the RSA Moduli Type
require the condition p ≡ q ≡ 3 (mod 4). pmin is the smallest prime factor of N = pq.
1 The condition of equal-length for primes p, q implies that gcd(pq, e4) = gcd(pq, p + q − 1) = 1.

1.2 Technical Overview

First, let us explain why the worst-case acceptance rate can be improved. In the
original Boneh-Franklin’s proof, the condition gcd

(
pq, (p−1)(q−1)

)
= 1 was not

assumed. However, this led to a non-RSA modulus N (i.e. p = pd1
1 , q = pd2

2 , d1 >
0, and q ≡ 1 (mod pd1−1

1 ), where p1, p2 are distinct primes) but always still passes
the test. To address this issue, the assumption gcd

(
pq, (p − 1)(q − 1)

)
= 1 was

introduced to exclude these pathological cases4. However, in the original proof
(i.e. they proved BF(N, e4) ⊊ G(N)), the condition gcd

(
pq, (p− 1)(q − 1)

)
= 1

was not easy to apply directly. Here

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
⊂ G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
,

and
[ ·
·
]
is the Jacobi symbol.

To effectively utilize the conditions gcd
(
pq, (p−1)(q−1)

)
= 1, we adopted an

alternative approach using two key facts, which allowed us to derive an accurate
counting formula of BF(N, e4) successfully.

– The oddness of e4 (i.e. p ≡ q ≡ 3 (mod 4)) gives that the mapping g 7→ −g
being bijective allows us∣∣{g ∈ Z×

N | g
e4 ≡ ±1 (mod N)}

∣∣ = 2
∣∣{g ∈ Z×

N | g
e4 ≡ 1 (mod N)}

∣∣ .
4 Another method involves multiple verifications of an exponential operation in(

ZN [x]/(x2 + 1)
)×

/Z×
N .
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– By applying CRT (Chinese Remainder Theorem), we convert the count-
ing problems of {g ∈ Z×

N | ge4 ≡ 1 (mod N)}, into the finite product of
BF(prii , e4) ⊂ (Z/prii Z)×. Moreover, the number of e4-roots of 1 in a cyclic
group (i.e. (Z/prii Z)×) can be easily derived (cf. Lemma 1).

When N is not square-free, the quotient |BF(N, e4)|/|G(N)| is relatively
straightforward. However, when N is square-free, we need to carefully analyze
how the ratio of the quotient |BF(N, e4)|/|G(N)| changes. In the worst-case
scenario (e.g. the cases N = p1p2p3 and N = p1p2p3p4), we found that the worst-
case acceptance rate is 1/4 instead of 1/2. For example, consider the case p = p1
and q = p2p3. We can assume that p1 ≡ p2 ≡ 3 (mod 4), and p3 ≡ 1 (mod 4),
and pi − 1 = 2kidi, where di is odd for all 1 ≤ i ≤ 3, and k1 = k2 = 1, k3 ≥ 2.
Then Lemma 3 says that

|BF(N, e4)|
|G(N)|

=
2
∏3

i=1 gcd(e4, di)

2−1
∏3

i=1(pi − 1)
≤ 4d1d2d3

2k1+k2+k3d1d2d3
≤ 1

4
.

In summary, the main difference between this approach and the original proof is
that the original method could only show that BF(N, e4) is a subgroup of G(N),
without providing any insight into the relative size. In contrast, our method
accurately computes the exact counts of them. The same proof of the strategy
can also be applied to the proposed Lucas test, which is more complex in proving
LPBP(D,N, e4) ⊂ Z+1(D,N), and counting the two sets.

In the proposed Lucas test, one of the key points is proving that, regardless
of the form of p, q the set LPBP(D,N, e4) is always a subset Z+1(D,N) for any
odd integers N and an integer D with [−D

N ] = 1, and [−D
p ] = −1. In the original

Boneh-Franklin paper, this was straightforward because p ≡ q ≡ 3 (mod 4),
and e4 is odd, so we have the result BF(N, e4) ⊂ G(N) easily by the following
observation: [ g

N

]e4
=

[
ge4

N

]
=

[
±1
N

]
= 1.

However, in our case, αβ−1 does not belong to ZN , so this trick must be ap-
plied with caution. Recall that α, β are the two distinct roots of the quadratic
polynomial x2 − Px+Q. In our study (cf. Proposition 2), we found that when(
αβ−1

)e4 ≡ ±1 (mod NOD), β2e4 will belong to ZN . Using this fact, we can

express (αβ)e4 as
(
αβ−1

)e4 × β2e4 , where all three elements belong to ZN , and
apply the same method to complete proof.

In terms of security proof, to successfully simulate the transcript of proposed
Lucas protocol, we must carefully construct a method to generate a uniform

distribution over L = {P ∈ ZN | [P
2−D
N ] = 1}. In the scenario considered

by Boneh-Franklin, they encountered a situation where controlling b = 0 or
b = 1 to ensure that a2(−1)b could be determined, where a ∈ Z×

N , was sufficient
for simulation. However, in our case, due to the more complex situation (i.e.,

not just p ≡ q ≡ 3 (mod 4)), we found that uniformly selecting v+w
√
D

v−w
√
D

with

v2−w2D ∈ Z×
N for all v, w ∈ ZN can produce the desired uniform distribution of
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the set L. This construction is quite natural because, the selection αβ−1 = P+
√
D

P−
√
D

in the proposed Lucas test follows this form.
Overall, the proposed protocol for the Lucas test closely resembles the Boneh-

Franklin protocol, with the key distinction that, for cases where p ̸≡ 3 (mod 4) or
q ̸≡ 3 (mod 4), it is essential to select a D that satisfies the condition [−D

N ] = 1,

and [−D
p ] = −1. In the remaining part, participants use their respective secrets

regarding p and q to jointly compute (αβ−1)e4 . Next, for the gcd test, we verify
gcd(N, e4) = gcd

(
N, p[−1

q ]+q[−1
p ]+ [−1

N ]
)
= 1. The parties Pi jointly generate a

random number r and then use MPC multiplication to compute r
(
p[−1

q ]+q[−1
p ]+

[−1
N ]
)
. We also need to compute the value of [−D

p ]. As proposed in [24], this can
be done by first jointly generating s, then jointly computing and publishing
s2p (mod D) thus obtaining [ pD ]. It can be computed using the basic rules of the
Legendre symbol (cf. πLeg).

1.3 Related work

Boneh and Franklin [8] first proposed the distributed RSA moduli generation.
They provided an efficient distributed RSA moduli test protocol which can test
if N = pq is an RSA modulus without needing to know information about p
and q and is secure in semi-honest adversary model against an honest majority.
They prove their test has the property that it always accepts when N is an RSA
modulus, and otherwise accepts with probability at most 1/2. In their paper, they
offered two types of biprimality test. Excluding identical verification steps, one
involves multiple checks for gcd(pq, (p− 1)(q − 1)) = 1, while the other involves

multiple verifications of an exponential operation in
(
ZN [x]/(x2 + 1)

)×
/Z×

N .
The current mainstream approach mostly involves checking the version where
gcd(pq, p+q−1) = 1. Algesheimer et al. [2] proposed a distributed Miller–Rabin
test that achieves semi-honest security against a dishonest majority. Following
that, there are several related papers [12, 17] that utilize the Miller-Rabin test
to design biprimality tests. Regarding the estimation of the average error in
primality tests, Damg̊ard et al. [16] obtained an upper bound for the Miller-Rabin
case. Einsele et al. [19] provided an upper bound for the case of Lucas strong
primes. For articles addressing the optimization of RSA moduli candidates and
proposing a more secure security model, Burkhardt et al.’s paper [12] underwent
a comprehensive review.

2 Preliminaries

Basic notations. Let P be the set of all primes, N be the nature numbers, and
Z be the ring of integers. For a finite set S, |S| means the cardinality of S. Let
ZN be the additive group of order N , and Z×

N be the multiplicative group in ZN .
Moreover, |Z×

N | = ϕ(N), where ϕ is the Euler’s totient function. For an interval
I, we set P(I) := {p ∈ P | p ∈ I}. The greatest common divisor of two positive
integers x and y ∈ N is denoted by gcd(x, y). Let [a]m(resp. [a]Z) be the secure
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additive sharing of value a in the integer domain Zm (resp. Z). That is each of
the participants, {Pi}ni=1, has their own secret ai ∈ Zm(resp. ai ∈ Z) such that∑n

i=1 ai ≡ a (mod m) (resp.
∑n

i=1 ai = a).

For ease of reference, we present some symbols that have already appeared
elsewhere. Given two odd positive integers p, q and a positive integer n, set

e4(= e4(p, q)) := 1
4

(
p +

[
−1
p

] )(
q +

[
−1
q

] )
. Here

[ ·
·
]
is the Jacobi symbol. For

odd integers p, q, we set

MR(p) := {g ∈ Z×
p | g(p−1)/2 ≡ ±1 (mod p)},

BF(N, e4) :=
{
g ∈ Z×

N | g
e4 ≡ ±1 (mod N)

}
, G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [ gN ] = 1

}
,

Zϵ(D,N) :=

{
(P,Q)

P 2 − 4Q = D (mod N),
[
Q
N

]
= ϵ,

gcd(Q,N) = 1, 0 ≤ P,Q < N

}
, for ϵ ∈ {±1},

and

LPBP(D,N, e4) :=

{
(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, (αβ−1)e4 = ±1 (mod N)

}
.

If p ≡ q ≡ 3 (mod 4), the set BF(N, e4) (resp. LPBP(D,N, e4)) is a subgroup
(resp. subset) of G(N) (resp. Z+1(D,N)) (cf. Proposition 2).

Given that p ≡ q ≡ 3 (mod 4) and a perfect square D, we are interested

in studying the following two quantities: βLucas(D,N, e4) :=
|LPBP(D,N,e4)|

|Z+1(D,N)| , and

βBF(N, e4) :=
|BF(N,e4)|

|G(N)| , where two quantities are used to evaluate the propor-

tion of randomly selected elements in the set of denominators that pass the
test when N = pq is not an RSA modulus. These values always belong to the
range [0, 1], and the smaller the value, the easier it is to determine that p and q
are not an RSA modulus. In fact, Proposition 1 and Proposition 2 implies that
βLucas(D,N, e4) is independent of the chosen of perfect squaresD. For simplicity,
when we write βLucas(N, e4) = βLucas(1, N, e4).

2.1 Two Mathematical Results

Lemma 1. [3, Lemma 2.1 ] Let G be a cyclic group and d an integer. There
are exactly gcd(d, |G|) dth-root of 1 in G.

Lemma 2 (Hensel’s Lemma). Let f(x) be a polynomial with integer coeffi-
cients, and k be a positive integer. If p is a prime number and r is an integer
such that f(r) ≡ 0 (mod pk), and f ′(r) ̸≡ 0 (mod p) then, there exists an integer
s such that f(s) ≡ 0 (mod pk+1) and r ≡ s (mod pk).
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2.2 Lucas Pseudo-primes

We recall Lucas sequence and some results [3]. Let P and Q be integers and D :=
P 2 − 4Q. The Lucas sequence (Uk, Vk) that is associated with the parameters
P,Q are defined as, for k ≥ 0,{

Uk+2 = PUk+1 −QUk;

Vk+2 = PVk+1 −QVk,
with

{
U0 = 0, U1 = 1;

V0 = 2, V1 = P.

It is well known that Up−[Dp ]
≡ 0 (mod p) for any prime p ∤ 2QD. For the

Lucas sequence [3, Section 3], (Uk, Vk) associated with P,Q and P 2 − 4Q ̸= 0,
we have the general formula: for all k ∈ N,

Uk =
αk − βk

α− β
, Vk = αk + βk,

where α, β are two distinct roots of the polynomial x2−Px+Q. Let OD be the
ring of integers of a quadratic field Q(

√
D), and τ := αβ−1. If N ∤ 2QD, then

we have, for k ∈ N,

N | Uk if and only if τk ≡ 1 (mod NOD). (1)

Given an element u + v
√
D ∈ Q(

√
D), the norm map is given by N(u +

v
√
D) = u2 − v2D ∈ Q. When x ∈ OD, the norm N(x) ∈ Z. Consider the

multiplicative group of norm 1 elements denoted by ̂(OD/N
)
in a free Z/NZ-

algebra of rank 2. This group is the image of the set

{x ∈ OD | N(x) ≡ 1 (mod N)}

by the canonical map OD → OD/N.

2.3 The Security Model

Our focus is on static semi-honest adversaries. ”Static” implies that the ad-
versary is limited to selecting a set of parties to corrupt before the protocol
execution starts and is not allowed to change this set afterward. Semi-honest
adversaries participate in the protocol honestly but attempt to glean as much
information as possible from the messages received from other parties. Here, we
adopt the definition provided in [36, Definition 7.5.1], as follows.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n−ary functionality, where fi(x1, . . . , xn)
denotes the i-th element of f(x1, . . . , xn). For I = {i1, . . . it} ⊂ {1, . . . , n}, we let
fI(x1, . . . , xn) denote the subsequence fi1(x1, . . . , xn), . . . , fit(x1, . . . , xn). Let Π
be an n-party protocol for computing f . The view of the i−th party during an
execution ofΠ on x = (x1, . . . , xn), denoted VIEWΠ

i (x), is (xi, ri,mi1 , . . . ,miℓ),
where ri represents the outcome of the i−th party’s internal coin tosses, and
mij represents the j−th message it has received. For I = {i1, . . . , it}, we let

VIEWΠ
I (x) := (I,VIEWΠ

i1 (x), . . . , VIEWΠ
it (x)).
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Definition 1. We say that Π privately computes f if there exists a probabilistic
polynomial-time algorithm, denoted S, such that for every I ⊆ {1, . . . , n}, it holds
that

{(S(I, (xi1 , . . . , xit), fI(x)), f(x))}x∈({0,1}∗)n

c≡{( VIEWΠ
I (x), OUTPUTΠ(x))}x∈({0,1}∗)n .

Here OUTPUTΠ(x) denotes the output sequence of all parties during the execu-

tion represented in VIEWΠ
I (x), and

c≡ is computationally indistinguishable of
two distribution ensembles.

3 Refine Boneh-Franklin Biprimality Testing

We show that in the worst-case scenario, the value 1/4 is the tightest upper
bound of the Boneh-Franklin test, and provide the sufficient and necessary con-
ditions for the worst-case scenario of p and q. The counting formula of BF(N, e4)
is given as below.

Lemma 3. Let p ≡ q ≡ 3 (mod 4), and gcd
(
pq, e4

)
= 1. Assume that N =∏s

i=1 p
ri
i , where pi is prime for all i, then we have

|BF(N, e4)| = 2 ·
s∏

i=1

gcd(e4, di).

Here pi − 1 = 2kidi with 2 ∤ di for all 1 ≤ i ≤ s.

Proof. Since e4 is odd, we have

|{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}| = |{g ∈ Z×
N | g

e4 ≡ −1 (mod N)}|

by the bijective map g 7→ −g, which implies that

|BF(N, e4)| = 2 · |{g ∈ Z×
N | g

e4 ≡ 1 (mod N)}|.

According to CRT, we reduce the problem to count the cardinality of e4-th roots
of 1 in (Z/prii Z)× which are cyclic groups for all i [27, Theorem 3, Chapter 4],
since N is odd. Combining this fact, gcd(pq, e4) = 1, and Lemma 1, one has the
number of e4-th roots of 1 in the group (Z/prii Z)× is

gcd(e4, p
ri−1
i (pi − 1)) = gcd(e4, di).

The above discussion implies the desired result.

Before diving into the proof of the main theorem, we recall that if p ≡ q ≡
3 (mod 4) and N = pq, then BF(N, e4) is a subgroup of G(N).
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Theorem 1 (Boneh-Franklin biprimality test). Let p ≡ q ≡ 3 (mod 4),
and gcd

(
pq, e4

)
= 1, where e4 = (p− 1)(q − 1)/4. Assume that N := pq. If p, q

are both distinct primes, then we have BF(N, e4) = G(N). For the other cases,
we have |BF(N, e4)| ≤ |G(N)|/4, except for the case p = q = 3.

Proof. Recall that pi − 1 = 2kidi with odd di for all i as the same notations
in the Lemma 3. At first, consider the case p, q are distinct primes. Meanwhile,
we also have e4 = d1d2 and k1 = k2 = 1. Note that if N is not perfect square,
then |G(N)| = ϕ(N)/2; Otherwise, |G(N)| = ϕ(N). The proof of this case is
completed by the following equality:

|BF(N, e4)| = 2gcd(e4, d1) · gcd(e4, d2) = 2d1d2 = ϕ(N)/2.

Now, assume that the number of prime factors of N is greater than 2. Con-
sider the case perfect square N . Lemma (3) implies that

βBF(N, e4) =
|BF(N, e4)|
|G(N)|

=
2
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤
2
∏s

i=1 di∏s
i=1 p

ri−1
i (pi − 1)

=
2
∏s

i=1 2
−ki∏s

i=1 p
ri−1
i

< 21−1 · 5−1 =
1

5
,

except for the case p = q = 3.
Consider the case N is non square-free (i.e. there exists i such that ri ≥ 2)

and non-perfect-square. The condition non-perfect-square means that s ≥ 2.
If not, s = 1, then N = pr11 . Since p ≡ q ≡ 3 (mod 4), which implies that
N ≡ 1 (mod 4) and p1 ≡ 3 (mod 4), and r1 is even, which gives a contradiction.
Now, one has

βBF(N, e4) =
4
∏s

i=1 gcd(e4, di)∏s
i=1 p

ri−1
i (pi − 1)

≤ 2−k1−...−ks+2

(
s∏

i=1

pri−1
i

)−1

.

If there exists pi ≥ 5 with ri ≥ 2 then

βBF(N, e4) ≤ 22−1−1 · 5−1 = 1/5.

Additionally, if s ≥ 3, then

βBF(N, e4) ≤ 22−1−1−1 · 3−1 = 1/6.

Therefore, we only consider the case N = 3r1
∏s

i=2 pi with r1 = 2 due to

βBF(N, e4) ≤ 22−1−1 · 3−2 = 1/9 as r1 ≥ 3.

As for the case s = 2, then p2 ≡ 1 (mod 4) since N ≡ 1 (mod 4). This case also
implies that

βBF(N, e4) ≤ 22−1−2 · 3−1 = 1/6.

In conclusion, when N is non-square-free with s ≥ 2, βBF(N, e4) ≤ 1/6. When
N is square-free, we consider the case s = 3. Because p ≡ q ≡ 3 (mod 4), two
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elements of the set {p1, p2, p3} are 3 module 4 and one of it is 1 module 4, which
gives the bound

βBF(N, e4) ≤ 2−k1−...−ks+2 = 22−1−1−2 = 1/4.

For all s ≥ 4, we have βBF(N, e4) ≤ 2−k1−...−ks+2 ≤ 2−2, since ki ≥ 1 for all i.

Based on the proof of Theorem 1, we can establish the following sufficient
and necessary conditions for the worst-case scenario to occur.

Corollary 1. Assume that the assumption of Theorem 1 holds. |BF(N, e4)| =
|G(N)|/4 if and only if one of the two situations occurred without considering
the symmetry of p and q. 1). s = 3, gcd(e4, di) = di, p = p1p2, and q = p3,
where p1 ≡ 5 (mod 8), and p2 ≡ p3 ≡ 3 (mod 4). 2). s = 4, gcd(e4, di) = di,
p = p1p2p3, and q = p4, where pi ≡ 3 (mod 4) for all 1 ≤ i ≤ s.

The bound in the result of Theorem 1 is tight. Taking p1 = 3, p2 = 5, and
p3 ≡ 23 (mod 420), Dirichlet Theorem5 says that there are infinitely many N =
(p1p2)p3 such that |BF(N, e4)| = |G(N)|/4, since gcd(N, e4) = gcd (15q, 7(q − 1)) =
1 and gcd(420, 23) = 1.

4 The Lucas Biprimality Test

In this section, we introduce another test for identifying RSA moduli for odd
integers p, q with gcd

(
pq, (p+ [−1

p ])(q + [−1
q ])
)
= 1, and subsequently provide a

distributed protocol that is resilient to semi-honest adversaries.

4.1 A Lucas Biprimality Testing

The proof of the Lucas biprimality testing is similar to the proof process in the
Boneh-Franklin test. First, we derive the formulas for the number of elements
in LPBP(D,N, e4) and Z+1(D,N). Next, we also analyze the upper bound of
their quotient (i.e., the acceptance rate) in the worst-case scenario. To begin, we
examine the special case where N = pr.

Lemma 4. Let p be an odd prime, and D be an element of Z×
p , then for ϵ ∈

{±1},

|Zϵ(D, pr)| =


(
1+ϵ
2

)
pr−1

(
p−

[
D
p

]
− 1
)
, if 2 | r;

pr−1

[
(p−[Dp ]−1)−ϵ

2

]
, if 2 ∤ r.

Proof. In the case where 2 | r, the condition
[
Q
pr

]
= 1 always holds. Therefore,

|Z+1(D, pr)| = |Z(D, pr)|. In the special case r = 1, it is sufficient to consider the

5 If gcd(a, n) = 1, then there exists infinite prime x with x ≡ a (mod n) [31, Corollary
13.8].
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cardinality of the set {P ∈ Zp|P 2 = D+4Q, 0 < Q < p}. Note that the equation

x2 = D has two (resp. zero) solutions in Zp if
[
D
p

]
= 1(resp.

[
D
p

]
= −1),

there are p−1
2 −

1+[Dp ]
2 values of Q such that x2 = D + 4Q has two distinct

solutions. Additionally, there is one value of Q (specifically Q = −D
4 ) for which

x2 = D + 4Q has a single solution. Thus, the total number of solutions is given

by (p−1
2 −

1+[Dp ]
2 ) · 2 + 1 = p −

[
D
p

]
− 1. For r > 1, the desired result can be

obtained using Hensel’s lemma (cf. Lemma 2).
As for the case 2 ∤ r, we first consider the case r = 1 and ϵ = 1. Then we can

assume that Q = Q′2. It implies that Z+1(D, p), which is equal to{
(P,Q′)

(P/2)2 = (Q′)2 +D/4 (mod p), gcd(Q′, p) = 1,
0 ≤ P < p, 1 ≤ Q′ ≤ (p− 1)/2.

}
.

Now, for counting the above set, we study the following sum

(p−1)/2∑
i=1

[
i2 +D/4

p

]
=
−1−

[
D
p

]
2

(by Lemma 6),

which gives us the relation

|S−1| = |S+1|+
1 +

[
D
p

]
2

, (2)

where Sϵ =
{
1 ≤ i ≤ (p− 1)/2

∣∣ [ i2+D/4
p

]
= ϵ, i2 ̸≡ −D/4 (mod p)

}
(i.e. if there

exists i such that i2 ≡ −D/4 (mod p), then
[
i2+D/4

p

]
= 0).

Note that |S+1| + |S−1| depends on whether exist i such that i2 = −D
4 .

Specifically,

|S+1|+ |S−1| = p− 1

2
−

1 +
[
−D
p

]
2

. (3)

Moreover, for each i ∈ S+1, we can find two distinct solutions for (x/2)2 =

i2 + D/4. If
[
−(D/4)

p

]
=
[
−D
p

]
= 1, then an additional solution can be found

(i.e. (0, −D
4 ) ∈ Z+1(D, p)). Therefore,

|Z+1(D, p)| = 2 · |S+1|+
1 +

[
−D
p

]
2

. (4)

Combining (2), (3), and (4) gives that

∣∣Z+1(D, p)
∣∣ = p−

[
D
p

]
− 2

2
.
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Furthermore,

∣∣Z−1(D, p)
∣∣ = |Z(D, p)| −

∣∣Z+1(D, p)
∣∣ = p−

[
D

p

]
− 1−

p−
[
D
p

]
− 2

2

 =
p−

[
D
p

]
2

.

The proof is complete by Hensel’s Lemma (cf. Lemma 2) for the general case
r ≥ 2.

The counting formula of general N is given as below.

Proposition 1. Let D be an integer and N :=

s∏
i=1

prii be a positive integer with

gcd(N, 2D) = 1. Write S = S0∪S1, where Sj := {i | ri ≡ j (mod 2), 1 ≤ i ≤ s}.
Then, one has, if N is not a perfect square in Z,

|Z+1(D,N)| =

[∏
i∈S pri−1

i

2

][∏
i∈S0

(
pi −

[
D

pi

]
− 1

)]

·

[∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]
.

Otherwise, if N is a perfect square,

|Z+1(D,N)| =
∏
i∈S

pri−1
i

(
pi −

[
D

pi

]
− 1

)
.

Proof. If N is a perfect square, we obtain the desired result from Lemma 4 and
CRT. If N is not a square, from CRT we have

|Z+1(D,N)| =

[∏
i∈S0

|Z(D, prii )|

] ∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )|

 .

Using Lemma 4 and CRT, we only need to prove

∑
ϵ1·...·ϵ|S1|=1

∏
i∈S1

|Zϵi(D, prii )| =

[∏
i∈S1

pri−1
i

][∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]/
2.

This proof can be concluded through mathematical induction on the cardinality
of |S1|. When |S1| = 1, it follows that ϵ must equal 1, leading to the desired

result. Assuming that |S1| = k, the equality is satisfied. Let Ai = pi −
[
D
pi

]
− 1.
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Then, when |S1| = k + 1, we have∑
ϵ1·...·ϵk+1=1

∏
i∈S1

|Zϵi(D, prii )|

=|Z−1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=−1

k∏
i=1

|Zϵi(D, prii )|+ |Z+1(D, p
rk+1

k+1 )| ·
∑

ϵ1·...·ϵk=1

k∏
i=1

|Zϵi(D, prii )|

=

[∏k+1
i=1 pri−1

i

][
Ak+1 + 1

][
2
∏k

i=1 Ai − (
∏k

i=1 Ai + (−1)k)
]

4

+

[∏k+1
i=1 pri−1

i

][
Ak+1 − 1

][∏k
i=1 Ai + (−1)k

]
4

=

[∏
i∈S1

pri−1
i

][∏
i∈S1

Ai + (−1)|S1|

]/
2 =

[∏
i∈S1

pri−1
i

][∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

]/
2.

Next, we study the cardinality of the set LPBP and prove that it is a subset
of Z+1.

Proposition 2. Let p, q be positive odd integers, N = pq =
∏s

i=1 p
ri
i , and D

be an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. Then we

have the set LPBP(D,N, e4) is a subset of Z+1(D,N). Furthermore assuming
gcd(N, e4) = 1, its cardinality is given by

|LPBP(D,N, e4)| =
s∏

i=1

(
gcd(e4, di)− 1

)
+

s∏
i=1

gcd(e4, di).

Here pi −
[
D
pi

]
= 2kidi with 2 ∤ di for all 1 ≤ i ≤ s .

Proof. For sake of proving LPBP(D,N, e4) ⊂ Z+1(D,N), we need to prove that
taking any pair (P,Q) ∈ LPBP(D,N, e4) then one has (αβ−1)e4 ≡ ±1 (modNOD),
where α, β are two distinct roots of the polynomial x2 − Px+Q, which implies

that
[
Q
N

]
= 1. Note that (αβ−1)e4 ≡ ±1 (mod NOD) can be viewed as an ele-

ment in Z×
N , and Q = αβ ∈ Z×

N imply that (β)2e4 ∈ Z×
N . Because e4 is odd, we

have [
Q

N

]
=

[
Q

N

]e4
=

[
(αβ)e4

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
.

Recall that (αβ−1)e4 ≡ ±1 (mod N), then αe4 = ±(β)e4 , which implies that
(P +

√
D)e4 = ±(P −

√
D)e4 (mod NOD). Now, consider the case (P +

√
D)e4 =

−(P −
√
D)e4 (mod NOD). Write (P +

√
D)e4 = A + B

√
D (mod NOD),

where A =

e4∑
i=0:
2∤i

(
e4
i

)
P iD(e4−i)/2 and B =

e4∑
i=0:
2|i

(
e4
i

)
P iD(e4−1−i)/2. Then −(P −

√
D)e4 = −A+ B

√
D (mod NOD). Therefore, the equality A+ B

√
D ≡ −A+
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B
√
D (mod NOD) gives us A ≡ 0 (mod NOD), since N is odd. Now, we have

βe4 =

(
P +

√
D

2

)e4

≡ B(
√
D)

2e4
(mod NOD),

which implies that β2e4 ≡ 2−2e4B2D (mod N). In conclusion, when (αβ−1)e4 ≡
−1 (mod NOD), we have[

Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
D

N

] [
−1
N

]
=

[
D

p

] [
D

q

] [
−1
p

] [
−1
q

]
= 1.

Similarly, when αe4 = βe4 , we have βe4 ≡ 2−e4A (mod N), which gives us[
Q

N

]
=

[
β2e4

N

] [
(αβ−1)e4

N

]
=

[
2−2e4A2

N

] [
1

N

]
= 1.

The proof of the cardinality of LPBP(D,N, e4) can be found in [3, Section
1.4].

Finally, the acceptance rate, βLucas, in this test is estimated as follows.

Theorem 2. Let p, q be odd integers, gcd
(
pq, e4

)
= 1. Set N = pq. Assume

that D is an integer in Z with gcd(2D,N) = 1, and
[
−D
p

]
=
[
−D
q

]
= −1. If p, q

are both distinct primes, then we have LPBP(D,N, e4) = Z+1(D,N). For the
remainder cases, set pmin be the minimal prime factor of N . Assume pmin ≥ 11,
then we have

βLucas(D,N, e4) =
|LPBP(D,N, e4)|
|Z+1(D,N)|

<
1

4
+

1.25

pmin − 3
.

Proof. Consider the case p, q are distinct primes. Set p1 = p and p2 = q. Recall

that pi−
[
D
pi

]
= 2di for all i. Thus, one has e4 =

(p−[Dp ])(q−[
D
q ])

4 = d1d2. Now, we

only need to prove that |Z+1(D,N)| = |LPBP(D,N, e4)|, because Proposition 2
says that LPBP(D,N, e4) is a subset of Z+1(D,N). The proof can be completed
by the following equality:

|LPBP(D,N, e4)| =
(
gcd(e4, d1)− 1

)
·
(
gcd(e4, d2)− 1

)
+ gcd(e4, d1) · gcd(e4, d2)

=(d1 − 1)(d2 − 1) + d1d2 =
(2d1 − 1)(2d2 − 1) + 1

2
= |Z+1(D,N)|.

Consider the case perfect square N . Proposition 1, and Proposition 2 imply
that

βLucas(D,N, e4) ≤

(
2∏s

i=1 p
ri−1
i

)(∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)

)

≤

(
2∏s

i=1 p
ri−1
i

)(
s∏

i=1

(
1

2
+

1

2(pi − 2)

))
≤
(
2

7

)(
1

2
+

1

10

)
=

6

35
,
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for all pi ≥ 7.
Note that

∏
i∈S0

(
pi −

[
D

pi

]
− 1

)(∏
i∈S1

(
pi −

[
D

pi

]
− 1

)
+ (−1)|S1|

)
≥
∏
i∈S0

(pi − 2)

(∏
i∈S1

(pi − 2)− 1

)
.

Similarly for the case non-square-free (i.e. there exists an i such that ri ≥ 2)
and non-perfect-square N (i.e. |S1| ≥ 1), Proposition 1, and Proposition 2 imply
that

βLucas(D,N, e4) ≤

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1 2

−ki(pi − 1)∏s
i=1(pi − 2)−

∏
i∈S0

(pi − 2)

)

=

(
4∏s

i=1 p
ri−1
i

)( ∏s
i=1

(
1
2 + 1

2(pi−2)

)
1−

(∏
i∈S1

(pi − 2)
)−1

)
≤
(

4

11

)( 1
2 + 1

18

1− 9−1

)
=

5

22
,

for all pi ≥ 11. When N is square-free. Consider the case s = 3. Then there

exists one of {p1, p2, p3} is 4 | pi −
[
D
pi

]
. If not, for all pi −

[
D
pi

]
= 2di with

odd di hold, which is equivalent to pi ≡ −
[
D
pi

]
(mod 4). Since s = 3, we can

assume without loss of generality that p = p1 and q = p2p3. For such q and the

assumption
[
−D
q

]
= −1, we have

q ≡
[

D

p2p3

]
≡
[
D

q

]
= −

[
−1
q

]
(mod 4) =

{
1, if q ≡ 3 (mod 4);

3, if q ≡ 1 (mod 4).

It gives a contradiction. Therefore, applying Lemma 7, we obtain that

βLucas(D,N, e4) <
1

4

( ∏3
i=1(pi − 1)∏3

i=1(pi − 2)− 1

)
<

1

4

(
(pmin − 1)3

(pmin − 2)3 − 1

)
.

Similarly, as s = 4, we have

βLucas(D,N, e4) <
1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.

When s ≥ 5, applying the following fact∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

( ∏4
i=1(pi − 1)∏4

i=1(pi − 2)− 1

)( ∏s
i=5(pi − 1)∏s

i=5(pi − 2)− 1

)
,

and Lemma 8 with j = 5, we arrive that, for s ≥ 5,

βLucas(D,N, e4) ≤22−k1−...−ks

∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
<

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
.
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Lastly, we have

1

4

(
(pmin − 1)4

(pmin − 2)4 − 1

)
=

1

4
+

1

4

(
(pmin − 1)4 − (pmin − 2)4 + 1

(pmin − 2)4 − 1

)
=
1

4
+

1

4

(
4

(pmin − 2)− 1
+

2

(pmin − 2)2 + 1

)
<

1

4
+

1.25

pmin − 3
.

The proof is complete.

4.2 The Proposed Protocol

We propose a protocol based on Theorem 2 and provide its security proof under
the semi-honest adversary model. First, we consider the following functionality
and then propose its realization πLucas(n, κ#D).

Functionality 1 FBiprime(n)

Inputs: Each party Pi has a public number N = pq, p (mod 4), q (mod 4),
shares [p]Z and [q]Z, where pi ≡ qi ≡ 0 (mod 4) for all 2 ≤ i ≤ n.

Outputs:
If p ≡ q ≡ 3 (mod 4):

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives
(1, ϕ).

• Otherwise, each party receives (0, {pi, qi}ni=1).

Else:

• If p ̸= q are both primes and gcd(N, e4) = 1, then each party receives

(1, {
[
Dk

p

]
}i∈Smin), where

Smin :=

{
Dk ∈ P([3, Dmin])

∣∣∣∣ [−Dk

N

]
= 1

}
,

and Dmin is the minimal odd prime such that
[
−Dmin

p

]
= −1.

• Otherwise, each party receives (0, {pi, qi}ni=1).

In order to design a protocol to securely compute FBiprime, we need function-

ality FLeg to compute the quadratic symbol
[
−D
p

]
.
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Functionality 2 FLeg(n)

Inputs: Each party Pi has a share [p]Z, p (mod 4), and a prime D with
gcd(D, p) = 1.

Outputs: Each party Pi receives the value
[
−D
p

]
.

Lucas biptimality test πLucas protocol consists of two parts: verifying that
gcd(e4, N) = 1, and performing the exponential test from Theorem 2. The prob-
ability of N being an RSA modulus increases with the number of successful
exponential tests.

Protocol 1 Lucas Biprimality Test πLucas(n, κ#D)

Inputs: Each party Pi has p (mod 4), q (mod 4), N and [p]Z, [q]Z, where pi ≡
qi ≡ 0 (mod 4) for all 2 ≤ i ≤ n.

Outputs:

(
1,
{[

Dk

p

]}
i∈Smin

)
or (0, {pi, qi}ni=1).

Select an appropriate D:

1. If p ≡ q ≡ 3 (mod 4), parties set D = 1, Smin := ϕ, and go to the step 5.
2. Else, parties find the minimal k such that

[−Dk

N

]
= 1, where D1 = 3, D2 =

5, D3 = 7, . . . is the odd prime number sequence.

3. The party Pi sends ([p]Z, p (mod 4), Dk) to FLeg to obtain
[
Dk

p

]
and adds

Dk to Smin.

4. If
[
−Dk

p

]
= −1 then parties set D = Dk. Else parties find next k such that[−Dk

N

]
= 1 and restart from step 3.

Exponential verification: For 1 ≤ j ≤ κ#D:

5. Parties agree on a random Pj ∈ ZN and letQj := (P 2
j −D)/4. If gcd(N,Qj) ̸=

1, then broadcast pi, qi and output (0, {pi, qi}ni=1).

6. If
[
Qj

N

]
̸= 1, then restart from the previous step.

7. The party P1 sets (i.e. the value
[
−1
p

]
,
[
−1
q

]
are determined by the inputs:

p (mod 4), q (mod 4))

y1,j := (αjβ
−1
j )(N+p1[−1

q ]+q1[−1
p ]+[−1

N ])/4 ∈ Z×
N and the other parties set

yi,j := (αjβ
−1
j )(pi[−1

q ]+qi[−1
p ])/4 ∈ Z×

N for all 2 ≤ i ≤ n, where αj and βj are

two roots of the polynomial x2 − Pjx + Qj . Party Pi sends yi,j to FShuffle

and then obtain uj .
8. All parties check uj ≡ ±1 (mod NOD). If the check fails then they broadcast

pi, qi and return (0, {pi, qi}ni=1).

GCD Test
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9. Each party randomly generates shares [r]N . They send ([r]N , (p[−1
q ]+q[−1

p ]+

[−1
N ])) to FModMul to obtain [z]N .

10. Each party broadcasts zi, then they check if gcd(N, z) = 1. If the check fails
they broadcast pi, qi and return (0, {pi, qi}ni=1).

If all verification pass, then output

(
1,
{[

Dk

p

]}
i∈Smin

)
.

A security proof of πLucas under the semi-honest adversary model is provided
below.

Theorem 3. Let p and q be odd integers, N = pq, and D be an integer with[
−D
p

]
=
[
−D
q

]
= −1, and gcd(D,N) = 1. The inputs to Pi are given as

(N, [p]Z, [q]Z).

If pmin ≥ 11, then the Protocol πLucas securely computes the functionality FBiprime

in the FShuffle, FModMul-hybrid model and in the presence of a static semi-honest
adversary corrupting up to n− 1 parties.

Proof. Correctness. Assuming p > q are both primes(i.e. the case p < q is simi-
lar) with gcd(N, e4) = 1, we show that such p and q do not output (0, {pi, qi}ni=1)
with overwhelming probability. Let ϵLen := | log2 p− log2 q |. Note that for any
1 ≤ j ≤ κ#D,

P[gcd(Qj , N) = 1]

=P[(P 2
j −D)/4 ∈ Z×

N ] ≥ 1− N − ϕ(N)

ϕ(N)/4
≥ 1− 4(p+ q − 1)

ϕ(N)
≥ 1− 4

2p− 1

q2 − 1

≥1− 16p

q2
≥ 1− 2− log2 q+ϵLen+4, (5)

which implies that such p, q will pass all tests in step 5 with overwhelming
probability(cf. Remark 1). For the check of step 8, by Theorem 2, we have
uj = (αβ−1)e4 ≡ ±1 (mod NOD) for all 1 ≤ j ≤ κ#D. Using the similar
argument as in (5), we may assume r ∈ Z×

N which implies

gcd(N, z) = gcd(N, e4) = 1.

The output of πLucas is

(
1,
{[

Di

p

]}
i∈Smin

)
. In the case where gcd(N, e4) ̸= 1,

we have gcd(N, z) > 1, and both πLucas and FBiprime output (0, {pi, qi}ni=1).
When p and q are not distinct primes but gcd(N, e4) = 1, the probability of
exponential test pass is not greater than 1

4 + 1.25
pmin−3 , according to Theorem 2.

Hence the probability of πLucas outputting

(
1,
{[

Di

p

]}
i∈Smin

)
is bounded by

( 14 + 1.25
pmin−3 )

κ#D .
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Privacy. Let P∗ be the set of corrupt parties. We show that a simulator S can
be constructed to simulate the transcript of πLucas. If the input of S is

(P∗, N, {pi, qi}i∈P∗ , 0, {pi, qi}ni=1),

then S only needs to follow the honest parties’ strategy to simulate the view of
the protocol. Therefore, we consider the case S is given the input(

P∗, N, {pi, qi}i∈P∗ , 1,

{[
Di

p

]}
i∈Smin

)
.

1: For all 1 ≤ j ≤ κ#D, S randomly samples (vj , wj) ∈ ZN ×ZN with gcd(v2j −
w2

jD,N) = 1, bj ∈ {0, 1}, and sets aj =
vj+wj

√
D

vj−wj

√
D
, P ′

j ∈ ZN such that the two

roots of polynomial x2−P ′
jx+Q′

j are β′
j :=

√
D

a2
j ·(−1)bj−1

and α′
j := β′

j +
√
D.

2: The simulator S randomly generates z′ ∈ Z×
N , and it’s additive shares [z′]N .

3: The adversary S outputs(
P∗, N, {pi, qi}i∈P∗ , {P ′

j , (−1)bj}
κ#D

i=1 , [z′]N , {z′i}ni=1

)
.

First, we argue that P ′
j ∈ ZN with overwhelming probability. Note that

P ′
j =α′

j + β′
j

=
2
√
D(vj − wj

√
D)2

(vj + wj

√
D)2 · (−1)bj − (vj − wj

√
D)2

+
√
D

=

(
v2j + w2

jD

2vjwj

)1−2bj

Dbj ∈ ZN .

Secondly, we show that the distribution of (P ′
j , (−1)bj ) generated by the

simulator is indistinguishable from the distribution of the real-world transcript
(Pj , uj) = (Pj , (αjβ

−1
j )e4). Note that (α′

jβ
′−1
j )e4 = ((β′

j+
√
D)β′−1

j )e4 = (a2j (−1)bj )e4 .
Due to the symmetry between p and q, we only need to consider proving

(a2j )
e4 ≡ 1 (mod pOD).

Since p, q are odd primes and e4 is odd, we have

1. If
[
D
p

]
= −1, we have

(
vj + wj

√
D

vj − wj

√
D

)2e4

≡

(
N

(
vj + wj

√
D

vj − wj

√
D

))(q+[−1
q ])/2

≡ 1 (mod pOD).

2. If
[
D
p

]
= 1 (i.e.

√
D ∈ Z×

p ), one has
(

vj+wj

√
D

vj−wj

√
D

)(p+[−1
p ])(q+[−1

q ])/2

≡ 1 (mod pOD),

by Euler theorem.
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Therefore, (α′
jβ

′−1
j )e4 ≡ (−1)bj (mod NOD) by CRT. Furthermore, the distri-

bution of P ′
j produced by the simulator S at the step 1 and Proposition 4 says

that the distributions of Pj and P ′
j are identical. Lastly, gcd(N, e4) = 1 implies

that (p[−1
q ] + q[−1

p ] + [−1
N ]) ∈ Z×

N , and z ≡ r(p[−1
q ] + q[−1

p ] + [−1
N ]) (mod N) is

uniformly distributed in ZN . The statistical distance between the distributions
of z and z′ is

1

2

 ∑
x∈ϕ(N)

(
1

ϕ(N)
− 1

N
) +

∑
x∈N\ϕ(N)

1

N

 =
N − ϕ(N)

N
,

which is negligible using a similar argument as in (5). We conclude that the joint
distribution of the outputs generated by S and FBiprime, and of the view and
output of an execution πLucas are indistinguishable.

Remark 1. In the practical scenario (e.g. [13]), distributed RSA moduli protocols

generate p =

n∑
i=1

pi and q =

n∑
i=1

qi, where pi and qi are uniformly sampled from

[0, 2κ−log2 n]. This implies max(p, q) is at most κ-bits and

P[min(p, q) is larger than (κ− log2 n− 80)-bits ] ≥ 1− 2−80n.

Therefore, ϵLen ≤ 80+log2 n (i.e. 2− log2 q+ϵLen+4 is negligible) with overwhelming
probability.

For completeness, we provide πLeg which is a protocol that securely realizes
Functionality FLeg. A similar protocol for computing the Legendre symbol was
proposed in [24] but was not proven in detail.

Protocol 2 Legendre symbol πLeg(n)

Inputs: Each party Pi has [p]Z, p (mod 4), and a prime D with gcd(D, p) = 1.

Outputs:
[
−D
p

]
.

1. Each party randomly sample si ∈ ZD sends (si, si, D) to FModMul to obtain
[s2]D.

2. Each party sends ([s2]D, pi (mod D), D) to FModMul to obtain [s2p]D.
3. Each party opens [s2p]D. If gcd(s2p,D) ̸= 1, then restarts to the step 1.

Otherwise, output

−
[
s2p
D

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

s2p
D

]
, otherwise.

Proposition 3. Protocol πLeg securely computes the functionality FLeg in FModMul-
hybrid model in the presence of a static semi-honest adversary corrupting up to
n− 1 parties.
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Proof. We construct the simulator S to simulate the transcript of πLeg. Suppose
S is given input (

P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
.

1: S uniformly samples s ∈ Z×
D and si ∈ ZD for i ∈ {1, . . . , n} such that∑n

i=1 si ≡ s (mod D).
2: S uniformly samples s′i ∈ ZD for i ∈ {1, . . . , n} such that

∑n
i=1 s

′
i ≡

s2 (mod D).
3: S uniformly samples r ∈ Z×

D such that

[ r
D

]
=

−
[
−D
p

]
, if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);[

−D
p

]
, otherwise.

4: S uniformly samples ri ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 ri ≡
r (mod D).

5: S outputs

({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

Because FLeg is a deterministic function, we only need to prove

{S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[−D
p

])
} c≡ {viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}

for any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n − 1, {pi}ni=1 and prime D. In the beginning,
fixed any {pi}ni=1 and D, we claim that the output of

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
and the view

view
πLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)

are identical. Observe that[ p
D

]
=

[
D

p

]
· (−1)

p−1
2

D−1
2 =

[
−D
p

]
·
[
−1
p

]
· (−1)

p−1
2

D−1
2

=

[
−D
p

]
· (−1)

p−1
2 · (−1)

p−1
2

D−1
2

implies that
[
p
D

]
=
[
r
D

]
. The facts thatD is a prime, and s is uniformly randomly

chosen from Z×
D, which gives us the identical distribution between {s2p | s ∈ Z×

D}
with

{
r ∈ Z×

D |
[
r
D

]
= (−1)

(p−1)(D−3)
4

[
−D
p

] }
. Due to |P∗| < n, si, s

′
i in the

view
πLeg

P∗ (P∗, N, {pi}i∈P∗ , p (mod 4), D) and

S
(
P∗, N, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])
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are both independently and uniformly distributed in ZD. We conclude that for
any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n− 1, {pi}ni=1, and prime D{

S
(
P∗, {pi}i∈P∗ , p (mod 4), D,

[
−D
p

])}
≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ , {s2pi}i∈P∗ , {s2pi}i∈{1,...,n}\P∗)

≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}.

5 Implementation, Benchmarks, and Evaluation

In this section, we first experimentally evaluate the effectiveness of the Boneh-
Franklin, the Miller-Rabin test, and the proposed test. In subsection 5.2, we
compare the widely used protocols based on the variant Miller-Rabin test by
Burkhardt et al. [12, FIGURE 6.1], the Boneh-Franklin test [21], and the pro-
posed protocol. In subsection 5.3, we implement both the Boneh-Franklin test
and our protocol independently and present runtime data from executions per-
formed on a laptop.

5.1 Comparing the effectives of Three Tests

We begin by recalling the variant Miller-Rabin test [12] and determine which of
the three tests, Boneh-Franklin, the variant Miller-Rabin test or our proposed
Lucas test, is more effective at identifying when N is not an RSA modulus.
Consider N = pq with p ≡ q ≡ 3 (mod 4) and f ∈ {p, q}. The algorithm of the
variant Miller-Rabin test is as follows:

1. Uniformly sample an element v ∈ Z×
N

6 (i.e. in [12], v is chosen in ZN ).

2. Compute γ = v
f−1
2 (mod N).

3. If γ ≡ ±1 (mod f), then output probably prime. Otherwise output com-
posite.

The biprimality test proposed in [12, 17] applies the variant Miller-Rabin test
separately to f ∈ {p, q}. Therefore, for any N = pq with p ≡ q ≡ 3 (mod 4) and
gcd(N, e4) = 1 the probability that N passes the process is (cf. Lemma 5)

|MR(p)||MR(q)|
ϕ(p)ϕ(q)

=4

∏
pi|p
pi∤q

gcd(di,
p−1
2 )

pri−1
i (pi − 1)


∏

pi|q
pi∤p

gcd(di,
q−1
2 )

pri−1
i (pi − 1)


 ∏

pi|gcd(p,q)

gcd(di,
p−1
2 ) gcd(di,

q−1
2 )

pri−2
i (pi − 1)2

 .

6 We narrow the selection range of v from ZN to Z×
N because an element v ∈ ZN\Z×

N

will let the test output composite even when f is prime.
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In particular, when p = q is prime, such an RSA modulus candidate p, q will
always pass this algorithm’s test with 100% certainty. Therefore, we recommend
incorporating a check to verify whether N is a perfect square to exclude this
case. Notably, the papers [12,17] do not include this check.

We simplify the formula comparing any two of these tests and analyze the re-
sulting ratios under three different scenarios. Although no formal proof provides
a quantitative conclusion, our concrete experiments offer some insight.

Variant Miller-Rabin VS Boneh-Franklin Test Let 1P(·) be the indicator
function of positive integers. Lemma 3 and Lemma 5 say that

βBF(N, e4)

βMR(p)βMR(q)
=

(
1

1P(
√
N) + 1

)∏
pi|p
pi∤q

gcd(e4, di)

gcd(di,
p−1
2

)

∏

pi|q
pi∤p

gcd(e4, di)

gcd(di,
q−1
2

)


·

 ∏
pi|gcd(p,q)

(pi − 1) gcd(e4, di
)

pi gcd(di,
p−1
2

)
gcd

(
di,

q−1
2

)
 .

Table 2: Count how many non-RSA moduli p, q satisfy β :=
βBF(N, e4)/(βMR(p)βMR(q)) > γ or < γ, which run over all 12569 ≤ p < q ≤ U
with p ≡ q ≡ 3 (mod 4), and pmin = 53.

U β < 1 β = 1 β > 1 β > 2 β > 4

360003 0.37% 48.59% 51.037% 51.035% 26.205%

Lucas Test VS Boneh-Franklin Test One has

βLucas(N, e4)

βBF(N, e4)
=

[∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏s

i=1 gcd(e4, di)

]
·

[ ∏s
i=1(pi − 1)∏

i∈S0
(pi − 2)

(∏
i∈S1

(pi − 2) + 1P(|S1|)(−1)|S1|
)]

Table 3: Count how many non-RSA moduli p, q satisfy β := βLucas(N,e4)
βBF(N,e4)

> γ or

< γ, which run over all 43 ≤ p < q ≤ U with p ≡ q ≡ 3 (mod 4), and pmin = 31.

U β < 0.55 β < 0.75 β < 0.95 β > 1

336003 69.63% 80.41% 92.33% 0.02595%
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Lucas Test VS Variant Miller-Rabin Test The formula of the ratio in this
case is the most complex.

βLucas(N, e4)

βMR(p)βMR(q)
=

[∏s
i=1(gcd(e4, di)− 1) +

∏s
i=1 gcd(e4, di)

2
∏

pi|p gcd(
p−1
2 , di)

∏
pi|q gcd(

q−1
2 , di)

]

·

[ (∏s
i=1(pi − 1)

)(∏
pi|gcd(p,q)(1− p−1

i )
)∏

i∈S0
(pi − 2)

(∏
i∈S1

(pi − 2) + 1P(|S1|)(−1)|S1|
)] .

Table 4: Count how many non-RSA moduli p, q satisfy β := βLucas(N,e4)
βMR(p)βMR(q) > γ

or < γ, which run over all 12569 ≤ p < q ≤ U with p ≡ q ≡ 3 (mod 4), and
pmin = 53.

U β < 1 β = 1 β > 1 β > 2 β > 4

360003 48.94% 0.024% 51.037% 31.469% 20.11%

The three charts demonstrate that, among the three tests, the ability to
identify non-RSA moduli shows a slight advantage for the Variant Miller-Rabin
test over the Lucas test (cf. Table 4, β < 1 : 48.94%), and a significant advantage
for the Lucas test over the Boneh-Franklin test (cf. Table 3, β > 1 : 0.02595%).

5.2 Comparison of Computational Cost for Three Tests

Burkhardt et al. [12] demonstrated that their protocol exhibits superior efficiency
compared to the Boneh-Franklin test presented by Frederiksen et al. [21] at
the same security level. In their comparisons between the Boneh-Franklin and
Miller-Rabin tests, the Boneh-Franklin test required more iterations to achieve
equivalent soundness due to its original acceptance rate of 1/2 in the worst case.
To analyze the effectiveness of the three protocols, including the Lucas test, we
employ the terminology used in Burkhardt et al.’s paper (cf. Section 6.5).

1. For the Boneh-Franklin test, we randomly select g ∈ ZN satisfying
[
g
N

]
= 1.

Similarly, the Lucas test involves randomly selecting P ∈ ZN such that[
P 2−1
N

]
= 1. On average, it takes two attempts to obtain such g or P . In

contrast, the variant Miller-Rabin test requires selecting two γ ∈ ZN to
verify if p and q are primes, respectively. Moreover, if we assume a semi-
honest model, Party 1 can make both of these selections. Consequently, the
time consumed for these two steps is essentially identical across all protocols.

2. Next, during the verification computation, the computational complexity of
the Boneh-Franklin test is lower than that of the Miller-Rabin test for all
parties except Party 1. This is because the Boneh-Franklin test calculates
g(pi+qi)/4, while the Miller-Rabin test performs two calculations of gpi/2.
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The computational complexity of the Lucas test is equivalent to that of the
Boneh-Franklin test. For Party 1, the computational complexity across all
protocols is nearly the same. Although the exponents in the Boneh-Franklin
and Lucas tests are approximately 2048 bits, and the Miller-Rabin test com-
putes two different bases of about 1024 bits each, the expected number of
squarings and multiplications required by both protocols is similar, given the
commonly used Binary Exponentiation method. In this aspect, the Boneh-
Franklin test holds a slight advantage.

3. In the third step, both the Boneh-Franklin test and the Lucas test type utilize
the same macros, including RandomSample, Int-to-Mod, Mult, and OpenAll.
These need to be executed only once when p, q are provided (i.e. check
gcd(N, e4) = 1). In contrast, the Miller-Rabin test employs more macros,
and within the Divisible macro, both the input size and the number of cal-
culations are greater than those in the Boneh-Franklin test. Thus, in this
third step, the Boneh-Franklin test and the Lucas test type demonstrate a
significant advantage.

From the above analysis at p ≡ q ≡ 3 (mod 4), it is evident that in terms of
overall computational efficiency, the Boneh-Franklin test is the most optimal.
However, the Lucas test type is not far behind, with the difference mainly aris-
ing from local computations. Given the current computational power, the gap
between the two is nearly negligible.

5.3 Implementation

Our experiment is mainly composed of three parts (cf. Section 6.5):

1. Generate an RSA modulus candidate: Utilizing the CRT-Sampling pro-
tocol [13, Protocol 4.4] generates N , pi, qi, and {pi (mod 4), qi (mod 4)}ni=1

satisfying p =
∑

i pi ≡ 3 (mod 4) and q =
∑

i qi ≡ 3 (mod 4). Meanwhile,
set a parameter B to check that no prime smaller than B dividing N = pq.
In our case, B = 62017. For N = 2048 (resp. 3072) bits, passing this check
implies approximately a 0.0767% (resp. 0.0341%) probability that both p
and q are prime. This is based on DeBruijn’s formula [10]: for a k bit integer
p,

Pr(p ∈ P| trial division up to B) ∼ 2.57 · lnB · k−1.

Like most experiments, our MPC multiplication with secret-sharing is pro-
posed by Gennaro et al. [23, Figure 2], assuming an honest majority.

2. A biprimality test: We continue checking the exponential conditions re-
quired by both biprimality tests until the soundness error is reduced to 2−80.

3. Verify gcd(pq, (p +
[
−1
p

]
)(q +

[
−1
p

]
)) = 1 : Sample an r ∈ Z×

N , calculate

z = r(p
[
−1
q

]
+q
[
−1
p

]
+
[−1
N

]
), and check gcd(pq, z) = 1. If the check failure,

then return to step 1.
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The scheme is implemented by the Golang programming language and its
provided ”math/big” library. In order to achieve a probability of accepting a non-
RSA modulus at least 2−80, we set 40 iteration for the two biprimality tests. The
experiments were conducted with N set to 2048 bits and 3072 bits, and involved
2, 3, to 4 parties. All programs were executed in a single-threaded manner on an
Apple M2 with 16GB LPDDR5 RAM in the 13-inch (2022) MacBook Pro. The
running times are presented in Table 5.

Table 5: The mean ± standard deviation of execution time (in seconds) for our
methods and the competing method.

Proposed test Boheh-Franklin

N = 2048

n = 2 18.84± 18.50 20.47± 19.64
n = 3 33.01± 35.36 43.46± 42.68
n = 4 59.67± 60.12 64.16± 61.07

N = 3072

n = 2 117.59± 119.24 109.66± 119.97
n = 3 174.59± 200.88 169.81± 161.44
n = 4 232.81± 249.38 274.67± 273.64

In our experiments, both the Lucas test and the Boneh-Franklin test demon-
strated distinct advantages in average execution time. We observed that when
N is not an RSA modulus, both tests effectively identified this in a single run.
Thus, performance variations are likely due to the probability of generating an
RSA modulus during the selection of p and q, rather than significant differences
between the tests themselves.

Additionally, data comparisons in Table 4 indicate that the variant Miller-
Rabin test and Lucas test maintain a competitive edge. If a more accurate prob-
ability distribution for the variant Miller-Rabin test is obtained, we believe that
the Lucas test would remain competitive with just one or two additional execu-
tions.

Regarding computational complexity within the MPC protocol (cf. Subsec-
tion 5.2), the Lucas test and Boneh-Franklin test are comparable, both out-
performing the variant Miller-Rabin test. Importantly, the most efficient Prime
Candidate Sampling methods [13, 36] cannot be directly applied to Burkhardt
et al.’s approach, as they cannot guarantee equal length for p and q. Specifically,
Chen et al. [13] restrict pi and qi to the interval [0, 2κ−log2 n], while Guilhem et
al. [36] use [2κ−1, 2κ−1+80]. Thus, in generating p and q, the variant Miller-Rabin
test incurs additional time overhead compared to the Boneh-Franklin test and
Lucas test. In conclusion, assuming the local computation overhead difference
between the Boneh-Franklin test and the Lucas test is negligible, the proposed
Lucas test is highly competitive.
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Appendix 6 Appendix

We detail the number of elements in the set related to MR(p) for the Miller-Rabin
test when p ≡ 3 (mod 4) in Subsection 6.1. Subsection 6.2 includes missing proofs
related to the Lucas test. Subsection 6.3 examines the distribution consistency
required in Theorem 3, while Subsection 6.4 covers missing protocols utilized
within the main protocol. For ease of comparison, we summarize the three RSA
modulus protocols in Subsection 6.5.

6.1 Variant Miller-Rabin Test

For completeness, we provide the formula for the number of variants of the
Miller-Rabin test, which proof is similar to Theorem 1.

Lemma 5. Let p =

s∏
i=1

prii ≡ 3 (mod 4). Then

|MR
(
p
)
| = 2

s∏
i

gcd
(
(p− 1)/2, di

)
.

Proof. Since (p− 1)/2 is odd, we have

|{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}| = |{g ∈ Z×

p | g(p−1)/2 ≡ −1 (mod p)}|

and

|MR(p)| = 2 · |{g ∈ Z×
p | g(p−1)/2 ≡ 1 (mod p)}|.

Similar to Lemma 3, we consider the problem of counting the cardinality of
(p−1)

2 -th roots of 1 in (Z/prii Z)× using CRT. Combining the fact (Z/prii Z)× is

cyclic, gcd(p, (p−1)/2) = 1, and Lemma 1, one has the number of (p−1)
2 -th roots

of 1 in the group (Z/prii Z)× is

gcd((p− 1)/2, pri−1
i (pi − 1)) = gcd((p− 1)/2, di).

The above discussion implies the desired result.

6.2 Missing Proofs of Theorem 2

Some lemmas are used in Theorem 4.

Lemma 6. Let p be an odd prime and D ̸≡ 0 (mod p). Then

(p−1)/2∑
i=1

[
i2 +D

p

]
=
−1−

[
D
p

]
2

.
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Proof. First, we prove that

p∑
i=1

[
i2 +D

p

]
= −1.

According to Euler’s criterion, the above considering sum can be written as

p∑
i=1

(i2 +D)
p−1
2 .

Since Z×
p is a cyclic group, there exists a generator g, which induces that

p−1∑
i=1

ik (mod p) =

p−2∑
i=0

gik (mod p) =

{
0, if p− 1 ∤ k;
−1, if p− 1 | k.

Therefore, applying this fact and expending (i2 +D)
p−1
2 , one has

p∑
i=1

[
i2 +D

p

]
≡

p−1
2∑

ℓ=0

(p−1
2

ℓ

)
Dℓ

p∑
i=1

ip−1−2ℓ ≡
p∑

i=1

1 +

p∑
i=1

ip−1 ≡ −1 (mod p).

Notice that ∣∣∣∣∣
p∑

i=1

[
i2 +D

p

]∣∣∣∣∣ ≤ p,

which implies that

p∑
i=1

[
i2 +D

p

]
= −1 or p−1. However, if

p∑
i=1

[
i2 +D

p

]
= p−1,

then we must have p−1 terms equal to 1 and exactly 1 term a2+D ≡ 0 (mod p)
with a ≡ −a (mod p), which implies that a ≡ 0 (mod p), since p is odd. Therefore,
one has D ≡ 0 (mod p), which gives us a contradiction.

The proof is completed by the above fact and the following observation.

2

p−1
2∑

i=1

[
i2 +D

p

]
=

p−1∑
i=1

[
i2 +D

p

]
= −1−

[
D

p

]
.

Lemma 7. Let pi > 3 be distinct primes and s ≥ 1. Then∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
≤ (pmin − 1)s

(pmin − 2)s − 1
.

Here pmin := min
1≤i≤s

{pi}.

Proof. Observe that∏s
i=1(pi − 1)∏s

i=1(pi − 2)− 1
=

(∏s
i=1(pi − 1)∏s
i=1(pi − 2)

)( ∏s
i=1(pi − 2)∏s

i=1(pi − 2)− 1

)
.
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Since (pi − 1)/(pi − 2) is a decreasing function for pi, we have

s∏
i=1

(
pi − 1

pi − 2

)
≤ (pmin − 1)s

(pmin − 2)s
.

The proof is completed by the facts that x/(x− 1) is decreasing and
∏s

i=1(pi −
2) ≥ (pmin − 2)s.

Lemma 8. Let pi > 5 be distinct primes and s ≥ 1. Then for any 1 ≤ j ≤ s,

s∏
i=j

(pi − 1) <

s∏
i=j

2(pi − 2)− 2s−j+1.

Proof. For all pi ≥ 5, we have

s∏
i=j

(pi − 1) + 2s−j+1 ≤
s∏

i=j

(
(pi − 1) + 2

)
=

s∏
i=j

(pi + 1) ≤
s∏

i=j

2(pi − 2).

6.3 The Identical Distributions of Pj and P ′
j in Theorem 3

To investigate the distribution of Pj and P ′
j , we will examine the relationship

between Sreal(m,b) and Sideal(m,b) given a positive integer m and b ∈ {0, 1}. Here

Sreal(m,b) :=

{
P ∈ Zm

∣∣∣∣ [ (P 2 −D)/4

m

]
= (−1)b

}
, and

Sideal(m,b) :=

{
2
√
D

a2(−1)b − 1
+
√
D

∣∣∣∣ a =
v + w

√
D

v − w
√
D
, v,w ∈ Zm, v2 − w2D ∈ Z×

m,

a2(−1)b ̸≡ 1 (mod m)

}
.

Then we have

Lemma 9. If p is an odd prime, and D is an integer with
[
−D
p

]
= −1, then we

have Sreal(p,b) = Sideal(p,b) for b ∈ {0, 1}.

Proof. For any P ′ ∈ Sideal(p,b), we have

(P ′2 −D)/4 =

(( √
D

a2(−1)b − 1

)( √
D

a2(−1)b − 1
+
√
D

))

=D

[
(v2 − w2D)2(−1)b(

(v + w
√
D)2(−1)b − (v − w

√
D)2

)2
]
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Therefore,

[
(P ′2 −D)/4

p

]
=


[
1/(v2w2)

p

]
= 1 , if b = 0;

[
−D/(v2+w2D)2

p

]
= −1 , if b = 1.

We derive
[
(P ′2−D)/4

p

]
= (−1)b and Sreal(p,b) ⊇ Sideal(p,b). On the other hand,

let P be an element in Sreal(p,b). We assume that there exist

a ∈

{
v + w

√
D

v − w
√
D

∣∣∣∣(v, w) ∈ Zp × Zp, v
2 − w2D ∈ Z×

p , a
2(−1)b ̸≡ 1 (mod p)

}

such that a2(−1)b = P+
√
D

P−
√
D
̸≡ 1 (mod p). Then we have

P ≡ 2
√
D

P+
√
D

P−
√
D
− 1

+
√
D ≡ 2

√
D

a2(−1)b − 1
+
√
D (mod p),

which implies Sreal(p,b) ⊆ Sideal(p,b). To prove the assumption, we split it into
two cases.
Case1:

[
D
p

]
= 1 (i.e.

√
D ∈ Z×

p ).

Since the condition in Lemma gives
[
−D
p

]
= −1, we have

[
−1
p

]
= −1. Then one

has [
(−1)b · (P +

√
D)/(P −

√
D)

p

]
=

[
(−1)b · (P +

√
D)2/(P 2 −D)

p

]

=

[
(−1)b(P 2 −D)

p

]
=

[
(−1)b

p

]
(−1)b = 1.

There exists t ∈ Z×
p such that t2 ≡ (−1)b P+

√
D

P−
√
D

(mod p). Assume t ̸≡ 1 (mod p),

we take (v, w) = ( t+1
t−1

√
D, 1) and then a2 ≡

(
v+w

√
D

v−w
√
D

)2
≡ (−1)b P+

√
D

P−
√
D

(mod p).

If t = 1, we set (v, w) = (1, 0), then a2 = 1.

Case2:
[
D
p

]
= −1.

If b = 0 (resp. b = 1), then we take (v, w) = (
P+
√

4(P 2−D)

2 , 1) ∈ Zp × Zp (resp.

(v, w) = (
D+
√

D(D−P 2)

P , 1) ∈ Zp × Zp). Racall that a = v+w
√
D

v−w
√
D
. Then, one has

a2 ≡ (−1)b P+
√
D

P−
√
D

(mod p).

Assume p is an odd prime and D ∈ Z×
p . Let

G :=

{
(a, b)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
.
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Given g1 = (a1, b1), g2 = (a2, b2) ∈ G, define g1 ∗ g2 = (a1a2 + b1b2D, a1b2 +
b1a2). Then G is a group with the identity (1, 0), and its inverse of g = (a, b) is(
a/(a2 − b2D),−b/(a2 − b2D)

)
. Let

H :=

{
a+ b

√
D

a− b
√
D
∈ Zp(

√
D)

∣∣∣∣ a, b ∈ Zp, a
2 − b2D ∈ Z×

p

}
,

which is also a group under the field multiplication. Here Zp(
√
D) is the fractional

field of the ring {a + b
√
D | a, b ∈ Zp}. The inverse of any h = a+b

√
D

a−b
√
D
∈ H is

a−b
√
D

a+b
√
D
, and the identity is 1.

Lemma 10. Let p be an odd prime, and D ∈ Z×
p . Consider a group homomor-

phism f : G→ H defined by

g = (a, b) ∈ G 7→

(
a+ b

√
D

a− b
√
D

)2

∈ H.

Then the set of f(g) forms a subgroup of H, and | ker(f)| = 2p− 2.

Proof. It is a subgroup can be verified directly using the definition. We omit this
step. The map f is a group homomorphism, which can be verified by showing
that for any (a1, b1), (a2, b2) ∈ G:

f(a1, b1)f(a2, b2) =
a1a2 + b1b2D + (a1b2 + a2b1)

√
D

a1a2 + b1b2D − (a1b2 + a2b1)
√
D

= f((a1, b1) ∗ (a2, b2)).

Let g = (a, b) ∈ G with f(g) = 1. Then
(

a+b
√
D

a−b
√
D

)2
= 1, which implies that

ab
√
D = 0. Therefore a = 0 or b = 0. If a = 0 and b ∈ Z×

p , then f(g) = 1.
Similarly, if b = 0, then a ∈ Z×

p , then f(g) = 1. In conclusion, the cardinality of
kernel of f is 2p− 2.

Proposition 4. If N = pq is an odd RSA modulus, and D is an integer with[
−D
p

]
=
[
−D
q

]
= −1, then we have Sreal(N,0) = Sideal(N,0) ∪ Sideal(N,1). Fur-

thermore, uniformly sampling u, v ∈ ZN , b ∈ {0, 1} with u2 − v2D ∈ Z×
N and

a2(−1)b ̸≡ 1 (mod N) is equivalent to randomly selecting from the set Sreal(N,0).

Proof. According to the CRT, we have

Sreal(N,0) =
(
Sreal(p,0) × Sreal(q,0)

)
∪
(
Sreal(p,1) × Sreal(q,1)

)
.

Similarly, one has

Sideal(N,0) = Sideal(p,0) × Sideal(q,0), and Sideal(N,1) = Sideal(p,1) × Sideal(q,1).

Thus, according to Lemma 9, there exists a bijective map from Sideal(N,0) ∪
Sideal(N,1) to Sreal(N,0).
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Notice that to ensure Sideal(N,b) is well-defined, we need to assume a2(−1)b ̸≡
1 (mod N). Specifically, for any odd prime p satisfying

[
−D
p

]
= −1, then this

condition is equivalent to a2 ≡ 1 mod p and b = 0, which is also equivalent to
u = 0, w ∈ Z×

p or u ∈ Z×
p , v = 0. Let TN := {(u,w) : u2 − w2D ∈ Z×

N}. Lemma
10 says that there is a surjective map f from Tp to the set Sideal(p,b) for any
b ∈ {0, 1} such that |f−1(x)| = 2p− 2 for all x ∈ Sideal(p,b). This map induces a
bijective map

Tp − {u, v | uv = 0, (u, v) ̸= (0, 0)} × Tp → Sideal(p,0) × Sideal(p,1).

In fact, the set {u, v | uv = 0, (u, v) ̸= (0, 0)} is f−1(1).
Lastly, the CRT says that TN = Tp×Tq. Therefore, there exists a map g such

that |g−1(x)| = (2p− 2)(2q − 2) for all x ∈ Sideal(N,0) ∪ Sideal(N,1). The proof is
complete.

6.4 Missing Functionalities and Protocols

The functionality describes that each party Pi has two shares, xi and yi, the
functionality outputs zi where [z]N = [xy]N and assigns to Pi.

Functionality 3 Modular Multiplication FModMul(n)

Inputs: Each party Pi has shares [x]N , [y]N and N .

Outputs: Each party has shares of [z]N = [x · y]N , with uniformly random
zi ∈ ZN for all 1 ≤ i ≤ n.

The functionality below is to ensure that participants can learn
∏

i yi without
revealing their own yi.

Functionality 4 FShuffle(n)

Inputs: Each party Pi has yi in a finite group G.

Outputs: Each party Pi receives y :=

n∏
i=1

yi ∈ G.

In the following protocol [5], each party splits their own input yi into n − 1
partitions and randomly send one share to other parties to avoid revealing their
own input yi. Every party will calculate the product of all obtained shares

∏
i zi

and publish it. Eventually, we have
∏n

i=1 zi =
∏n

i=1 yi.

Protocol 3 Shuffle πShuffle(n)
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Inputs: Each party Pi has yi ∈ (OD/N)×.

Outputs:

n∏
i=1

yi ∈ (OD/N)×.

1. Each party Pi randomly chooses xi,j ∈ (OD/N)× for all 1 ≤ j ≤ n such

that

n∏
j=1

xi,j = 1 (i.e. randomly chooses xi,j for 1 ≤ j ≤ n − 1 and x−1
i,n :=∏n−1

j=1 xi,j). Set yi,1 := xi,1 · yi and yi,j := xi,j for all 2 ≤ j ≤ n. Send yi,j to
the party Pj for all 1 ≤ j ̸= i ≤ n.

2. Each party Pi computes zi :=

n∏
j=1

yj,i. Broadcast zi to the other party Pj .

3. Outputs z :=

n∏
i=1

zi.

6.5 Three RSA Moduli Protocols

In this section, we rewrite the Lucas test using macros from [12] to facilitate com-
parison with the Boneh-Franklin test [8] and Burkhardt’s et al.’s [12] protocols.
Here, we always assum p ≡ q ≡ 3 (mod 4).

Protocol 4 Lucas Biprimality test type (n)

Inputs: Each party Pi has odd integers [p]Z, [q]Z, D = 1, and N .

Outputs:

1. Party P1 randomly chooses 0 ≤ P < N such that Q = (P 2 − D)/4 and[
Q
N

]
= 1. Send this P to the other parties.

2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N), where g := P−
√
D

P+
√
D
. The

other parties compute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to
compute v :=

∏n
i=1 vi (mod N). They then check if

v =

n∏
i=1

vi ≡ 1 (mod N).

If the test fails, return Non-biprime.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and

[q]N ← Int-to-mod(ZN , [q]Z).
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3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).
3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output Non-Biprime.

Otherwise, output Biprime.

Below is Boneh-Franklin protocol [8], as cited from the version in [12, FIG-
URE 7.1].

Protocol 5 Boneh-Franklin biprimality protocol(n)

Inputs: Each party has [p]Z, [q]Z and N . Here p ≡ q ≡ 3 (mod 4).

Outputs:

1. Party P1 randomly chooses g ∈ Z×
N and

[
g
N

]
= 1. Send this g to the other

parties.
2. Party P1 computes v1 := g(N−p1−q1+1)/4 (mod N). The other parties com-

pute vi := g−(pi+qi)/4 (mod N). Parties broadcast vi to compute v :=∏n
i=1 vi (mod N). They then check if

v =

n∏
i=1

vi ≡ ±1 (mod N).

If the test fails, return Non-biprime.
3. Parties verify gcd(N, e) = 1 as follows:

3.1 obtain [r]N ← RandomSample(ZN ).
3.2 compute [p]N ← Int-to-mod(ZN , [p]Z) and

[q]N ← Int-to-mod(ZN , [q]Z).
3.3 call [b]N ← Mult(ZN , [r]N , [p]N + [q]N − 1).
3.4 obtain b ← OpenAll(ZN , [b]N ). If b ̸= 1 then output Non-Biprime.

Otherwise, output Biprime.

Herein lies Burkhardt’s protocol. For further details, please consult [12].

Protocol 6 Miller-Rabin biprimality protocol(κlenP, s, n)

Inputs: Each party has [p]Z, [q]Z, P , Q and N . Here p ≡ q ≡ 3 (mod 4), P and
Q are primes satisfying n222κP < nP < Q.

Outputs:

1. Let G = ∅, for f ∈ {p, q} :
1.1 Pn uniformly samples v ∈ ZN and broadcasts v.

1.2 Compute <γ>N as follows: Party P1 sets γ1 := v
f1−1

2 (mod N). For

2 ≤ i ≤ n, Pi sets γi := v
fi
2 (mod N).

1.3 Obtain [γ]N ← Mul-to-Add(ZN , <γ>N ).
1.4 Compute [γ + 1]N and [γ − 1]N .
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1.5 For δ ∈ {γ + 1, γ − 1}, compute

[yδ]Q ← Divisible(κlenP, s,ZP ,ZQ, [δ]N , [f ]Z).

1.6 Compute [y]Q ← Mult(ZQ, [yγ+1]Q, [yγ−1]Q).
1.7 Reveal y ← OpenAll(ZQ, [y]Q).
1.8 If y = 0, set G = G ∪ {f}.

2. If G = {p, q} output Biprime, otherwise output Non-Biprime.

The number of macros used in each test are summarized below.

Table 6: The number of macros in biprimality tests.

# Random ♯ Int-to ♯ Mult ♯ OpenAll ♯ Mult-to

-sample -mod -add

Boneh-Franklin [21] 1 2 1 1 0
Millier-Rabin [12] ≥ 2 4 ≥ 6 ≥ 4 2
Type-(I) 1 2 1 1 0

In addition to the aforementioned, Burkhardt’s protocol includes other macros
such as Invert and Larger-domain.
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