
NIZKs with Maliciously Chosen CRS: Subversion

Advice-ZK and Accountable Soundness

Prabhanjan Ananth∗ Gilad Asharov† Vipul Goyal‡ Hadar Kaner§

Pratik Soni¶ Brent Waters‖

Abstract

Trusted setup is commonly used for non-interactive proof and argument systems. However,
there is no guarantee that the setup parameters in these systems are generated in a trustworthy
manner. Building upon previous works, we conduct a systematic study of non-interactive zero-
knowledge arguments in the common reference string model where the authority running the
trusted setup might be corrupted.

We explore both zero-knowledge and soundness properties in this setting.

• We consider a new notion of NIZK called subversion advice-ZK NIZK that strengthens the
notion of zero-knowledge with malicious authority security considered by Ananth, Asharov,
Dahari and Goyal (EUROCRYPT’21), and present a construction of a subversion advice-
ZK NIZK from the sub-exponential hardness of learning with errors.

• We introduce a new notion that strengthens the traditional definition of soundness, called
accountable soundness, and present generic compilers that lift any NIZK for interesting
languages in NP to additionally achieve accountable soundness.

• Finally, we combine our results for both subversion advice-ZK and accountable soundness
to achieve a subversion advice-ZK NIZK that also satisfies accountable soundness. This
results in the first NIZK construction that satisfies meaningful notions of both soundness
and zero-knowledge even for maliciously chosen CRS.

∗Department of Computer Science, UC Santa Barbara. prabhanjan@cs.ucsb.edu
†Department of Computer Science, Bar-Ilan University. gilad.asharov@biu.ac.il
‡School of Computer Science, Carnegie Mellon University and NTT Research. vipul@cmu.edu
§Department of Mathematics, Bar-Ilan University. kanerha@biu.ac.il
¶Kahlert School of Computing, University of Utah. psoni@cs.utah.edu
‖The University of Texas at Austin and NTT Research. bwaters@cs.utexas.edu

prabhanjan@cs.ucsb.edu
gilad.asharov@biu.ac.il
vipul@cmu.edu
kanerha@biu.ac.il
psoni@cs.utah.edu
bwaters@cs.utexas.edu

Contents

1 Introduction 2
1.1 Our Results . 3

2 Technical Overview 7
2.1 Subversion Advice-ZK NIZK . 7
2.2 Accountable Soundness . 10
2.3 Related Work . 14

3 Preliminaries 15
3.1 One-way Functions . 16
3.2 Commitment Schemes . 16
3.3 Non-Interactive Zero Knowledge (NIZK) . 17
3.4 Witness Indistinguishable (WI) Arguments . 17

4 Two Round Advice ZK Arguments for NP 18
4.1 Defining Advice ZK for Two Round Arguments . 18
4.2 Trapdoor Generation . 19
4.3 Construction of Two Round Advice ZK Argument . 20
4.4 Proof of Soundness . 21
4.5 Proof of Advice ZK . 23

5 Subversion Advice-ZK NIZKs 25
5.1 Defining Subversion Advice-ZK NIZKs . 25
5.2 Construction of Subversion Advice-ZK NIZKs . 26
5.3 Proof of Theorem 5.3 . 27

6 Accountable Soundness 31

7 Constructions of Non-interactive Arguments with Accountable Soundness 32
7.1 Construction for Languages in NP ∩ co-NP . 32

7.1.1 Generalization . 34
7.1.2 Examples . 34

7.2 Construction for Sparse Languages . 37
7.2.1 Examples of Sparse Languages . 40

7.3 Construction for Negligibly Sparse Languages . 40
7.4 General Feasibility for Accountable Soundness . 42

8 Combining Subversion Advice-ZK and Accountable Soundness 46

A Instantiations of Trapdoor Generation 51
A.1 Trapdoor Generation from One-Way Functions with Efficient Recognizable Range 51
A.2 Trapdoor Generation from Collision-Resistant Hash Family 51

B Subversion Advice-ZK NIZKs satisfy Subversion Witness Hiding, Subversion Function
Hiding and More 52
B.1 Subversion Witness Hiding (WH) . 52
B.2 Subversion Witness Indistinguishability (WI) . 53
B.3 Subversion Function Hiding . 54

1

1 Introduction

Zero-knowledge (ZK) proofs have transformed modern cryptography. Informally, they allow to
prove any NP statement without revealing anything but the statement’s validity, and in particular,
no information is revealed about the witness. A central question in the study of zero knowledge
is the minimal round complexity or whether one can construct a completely non-interactive proof
consisting of a single message from the prover to the verifier. Such non-interactive zero-knowledge
(NIZK) protocols are possible, but they inherently require some setup [GO94].

The standard setup is the CRS model, where the prover and the verifier share a common
reference string (CRS). Who generates the CRS? The most accepted practice is to sample the CRS
using some trusted authority. This, however, has a prominent weakness: if one knows the coins
used to sample the CRS, or if the CRS was not sampled from the right distribution, then one can
either

• break privacy, in the sense of extracting secrets from proofs that were honestly generated with
respect to the CRS; or,

• break soundness, in the sense of providing proofs of false statements, or providing proofs of
true statements but without using the corresponding witness in generating the proof.

Whether one can break privacy or not depends on the scheme. As for soundness, for standard
NIZK schemes for hard-to-decide languages, there exists an adversary that can generate a malicious
CRS and break soundness. Such an adversary is exactly the simulator used for proving that the
scheme satisfies the zero-knowledge property. The simulator generates a fake CRS and provides
proofs to statements without knowing the witnesses. The fake CRS, together with the proof, are
indistinguishable from the honest CRS and honestly generated proofs. Thereby, the simulator can
also be used to prove statements that are incorrect but are indistinguishable from correct statements
(e.g., proving statements of the form “com is a commitment of 0” while com is a commitment of 1.).
This presents an interesting phenomenon, where as part of the proof of security of the scheme (for
proving ZK), there is a description of an explicit attacker for that scheme (for breaking soundness).

Bellare, Fuchsbauer, and Scafuro [BFS16] introduced the study of subversion-resistant security
for NIZKs, toward understanding the following intriguing question: what security properties are
guaranteed if the CRS is maliciously sampled? They show that the ZK property can still be
guaranteed (this notion is called “subversion-ZK NIZK”, i.e., NIZK that provides ZK when the
CRS is subverted). However, the construction uses knowledge-type assumptions, which are non-
falsifiable. Constructing subversion-ZK NIZK based on standard cryptographic assumptions seems
unlikely: Bellare et al. [BFS16] observe that subversion-ZK NIZKs imply certain forms of two-
round ZK protocols, which, again, are only known from knowledge-type assumptions [BCPR14].
For soundness, they showed that no NIZK scheme could guarantee soundness when the CRS is
maliciously sampled, as this clashes with the ZK property required when the CRS is honestly
generated.

The current state of affairs is, therefore, unsatisfactory. On the one hand, NIZKs for all NP lan-
guages have been extensively studied but typically fail to provide security guarantees if the trusted
authority is corrupted. On the other hand, the notions of NIZKs addressing corrupted authority
are impossible to achieve or are based on non-standard cryptographic assumptions [BFS16]. This
leads us to the following question:

Is it possible to achieve a non-interactive proof system based on standard (falsifiable)
cryptographic assumptions which satisfy meaningful notions of privacy and soundness

2

even if the CRS was maliciously generated?

1.1 Our Results

We study NIZKs with subverted CRS and show how relaxed security properties of privacy and
soundness can be simultaneously achieved, even when the CRS is maliciously generated. Our
constructions are based on standard cryptographic assumptions. Of course, when the CRS is
honestly generated, our construction achieves the standard soundness and ZK properties. We
tackle privacy and soundness separately and then show how to combine them generically.

Privacy. Our goal is to start with any NIZK which provides the zero-knowledge property when
the CRS is honestly sampled and convert it into a NIZK that also achieves some privacy notion
even when the CRS is maliciously sampled. As mentioned, achieving full ZK when the CRS is
maliciously sampled based on standard cryptographic assumptions seems unlikely. Therefore, we
consider relaxations of the ZK property for the case when the CRS is maliciously sampled.

We emphasize that we aim to achieve two notions of privacy simultaneously. (1) Primary –
full ZK when the CRS is honestly generated; (2) Subverted – some relaxed notion of privacy when
the CRS is maliciously generated (a “fallback”). Several relaxed notions of privacy were previously
studied as the primary notion, such as witness indistinguishability or witness hiding. It seems
natural to adopt those notions as the fallback guarantee. However, we propose a novel notion,
which, as we will see, is strictly more robust than those notions:

Our New Privacy Notion: Subversion Advice-ZK . We compare the view of an adversary
in the real world to its view in the ideal world, where:

Real: The adversary generates some (possibly malicious) CRS∗, and then obtains honestly
generated proofs computed with respect to CRS∗ for statements of its choice (adaptively);

Ideal: The adversary generates some (possibly malicious) CRS∗, and then we sample (not
necessarily in polynomial time) one-time advice d from some distribution D(CRS∗). An
efficient simulator S then generates proofs for adversarially (adaptively) chosen statements
using the one-time advice d.

In other words, this notion requires the existence of an efficient simulator that might receive
some advice that depends on the code of the adversary sampling the CRS and the possibly malicious
CRS, but not the instances to be proven.

Philosophically, the corrupted authority cannot learn any additional information about the
witness from the NIZK proofs, beyond what is leaked by d, where d is generated from the advice
distribution. In particular, if the language we are considering is hard against sub-exponential
adversaries and moreover, the sampling from the distribution can be done in sub-exponential time
then clearly, the NIZK proofs alone cannot help the adversary to recover the witness. Indeed, we
show that our definition implies that seeing the NIZK proofs cannot provide any advantage to the
adversary in computing any deterministic predicate or function of the witness as discussed later in
more detail.

In many proofs for NIZK constructions, it is common to plant a trapdoor in the CRS to enable
simulation. Could the advice d then be simply this CRS trapdoor of a typical NIZK construction?
The answer is no, as standard security definitions for NIZKs provide no guarantee for maliciously
chosen CRS.

Our main result for subversion advice-ZK NIZK is the following:

3

Theorem 1.1 (informal). Assuming two round delayed-input publicly-verifiable witness indistin-
guishable arguments for NP, NIZK arguments for NP, subexponentially-hard collision-resistant hash
functions, and non-interactive commitments, then for every NP language L there exists a scheme
Π such that:

• Primary: Π is a NIZK argument system for L (i.e., it achieves standard ZK and soundness
when the CRS is sampled honestly as described by Π);

• Subverted: Π ensures ZK with advice when the CRS is maliciously sampled.

Interestingly all the necessary tools for Theorem 1.1 along with the NIZKs can be instanti-
ated from the subexponential hardness of the learning with errors problem. We also show that
the privacy guarantee in our notion is strictly stronger than other relaxations of ZK, such as
witness-indistinguishability and witness-hiding. We also introduce another notion, called “subver-
sion function hiding”, which informally means that whatever partial information the verifier, who
also controls the CRS, can learn from seeing a proof can be efficiently simulated. We show that
subversion advice-ZK also implies this notion.

Our notion is a special case of SPS (super polynomial simulation) ZK, introduced for inter-
active ZK proof systems by [Pas03], in which the simulator is allowed to be inefficient. However
a key difference is that for SPS-ZK, the simulator is allowed to run in superpolynomial time for
every statement. In contrast, we require our simulator to efficiently simulate proofs for multiple
statements given a one-time advice that is generated via a superpolynomial time computation.

A drawback of SPS ZK is that it is only helpful for languages that are hard against algorithms
running in super-polynomial time and, thus, not useful for “not-so-hard” languages. In contrast,
we require efficient simulation (with an advice possibly generated inefficiently but prior to seeing
the statement), which allows our notion to be meaningful also for “not-so-hard” languages. As
an example, if the language is not-so-hard and has a unique witnesses, a perfectly acceptable
construction for SPS-ZK is to just send the witness in clear (since the SPS simulator would just
brute force the witness). This is not possible in our setting.

Accountable Soundness. It has been shown [BFS16] that no scheme can simultaneously achieve
ZK in the case of honestly generated CRS, and soundness in the case of maliciously generated
CRS. We, therefore, take a different route and use the notion of accountability. Accountability in
the generation of the CRS was introduced by Ananth, Asharov, Dahari, and Goyal [AADG21]. It
guarantees that if the authority misbehaves, one can generate a publicly verifiable proof certifying
that the authority is corrupted. The work of Ananth et al. addresses only some specific settings
where the authority breaks privacy, i.e., it shows how to hold the authority accountable only if the
authority helps others to extract witnesses from honestly generated proofs. The case where the
authority helps others to break soundness, that is, helps others to prove false statements, was never
explored.

As we already mentioned, ensuring soundness even when the CRS is maliciously generated is
important. Any NIZK proof system has an adversary (i.e., the simulator for the ZK property) that
can provide proofs to statements without knowing the corresponding witness and therefore, also
prove statements that are not in the language (but are indistinguishable from factual statements).
To hold the misbehaving authority accountable, we require the following two properties:

1. Accountability. Suppose that the authority generated some malicious CRS∗, and then it
helps others to prove statements (that are either valid or invalid). The accountability property

4

guarantees that we can hold such an authority accountable by producing a piece of evidence
that can be presented in a court of law to penalize this authority. This is formalized by adding
to the NIZK scheme another algorithm, called Judge, which determines if some given piece of
evidence indicates that the CRS is corrupted.
This definition is modeled as a game between the authority A and an extractor E . If the
authority generating the CRS is engaged in the aforementioned activity, the goal of the
extractor is to generate a string that can be used to implicate the authority. Specifically,
upon receiving the CRS from the authority, the extractor can query the authority and ask
for proofs of some instances of its choice. The extractor computes, from authority-provided
proofs, a piece of evidence to implicate the authority.1

2. Defamation-free. Accountability cannot stand by itself. We complement the definition by
defining another property called defamation-free. This definition states that if the CRS is
honestly generated, then it is computationally hard to generate a piece of evidence that the
Judge would accept.

If a NIZK scheme is a traditional NIZK scheme in the case of an honestly generated CRS, and in
addition, satisfies the above two security requirements, then the scheme is a NIZK system with
accountable soundness. We show:

Theorem 1.2 (informal). Let L be a NP ∩ co-NP language. Then, every NIZK system for L can
be transformed into a NIZK system with accountable soundness.

Theorem 1.3 (informal). Let L be a sparse language.2 Then, every NIZK system for L can be
transformed into a NIZK system with accountable soundness.

It is important to note that the above transformations preserve the efficiency of the proof
system. As for Theorem 1.2, we also remark that the language L does not have to be in co-NP;
we can also handle languages in which large enough NO instances have a witness of not being in
L. We show that the above theorems capture languages and cryptosystems with practical interest.
For instance:

• ZCash: Consider the proof system that exists in the ZCash system, such as the one for
the language POUR – a user pours “old” coins into “new” coins. The statement consists
of commitments to hidden values, and we show that such a proof system is captured by a
generalization of Theorem 1.2. See Section 7.1.2 for an elaborated discussion.

• GMW compiler: A particular usage of NIZK systems is in transforming multi-party com-
putation protocols from semi-honest to malicious security. Such a transformation was first
proposed by the GMW compiler [GMW87]. We demonstrate that our results capture NIZK
languages used in the GMW compiler by considering the particular case of applying the GMW
compiler on Yao’s semi-honest two-party protocol [Yao86].

• Other cryptosystems: Our theorems can also be applied to commonly used crypto-languages,
such as proving that a given tuple is a DDH tuple (a language in NP ∩ co-NP), proving that
a particular string is an output of a pseudorandom generation (a sparse language), or that a
particular commitment is a bit commitment (a language in NP∩ co-NP). We also show other

1We stress that this extractor interacts with the malicious authority online without being able to rewind it. This
is because, in the real world, we cannot rewind such an authority.

2By “sparse” we mean that L ⊆ Σ of some domain Σ, and |L|/|Σ| is exponentially small in the security parameter.

5

examples – validity of ciphertexts, hash-time-lock contracts, and sequential composition of
hash in Section 7.1.2 and Section 7.2.1.

General feasibility for accountable soundness. Our results above for accountable soundness
are practical and do not slow down the proof system’s process. Yet, they assume some structure in
the language. We also show a general feasibility result for any NP language from subexponential
hardness assumptions. We refer the reader to the technical overview for further details.

Putting it all together. As opposed to the negative result by [BFS16], our two notions can
co-exist. Thus, we can have a NIZK scheme that provides subversion advice-ZK and accountable
soundness for the case where the CRS is maliciously sampled. Our work is in the form of gen-
eral compilers: we take an existing NIZK and uplift it to achieve this extra security. NIZKs can
be instantiated from various assumptions, including factoring [FLS90], falsifiable assumptions on
bilinear maps [CHK03, GOS06], and from the subexponential hardness of LWE [CCH+19, PS19].
This gives the first construction of NIZKs, providing reasonable notion of privacy in the subversion
setting from post-quantum assumptions. Comparatively, prior works [BFS16, AADG21] on con-
structing NIZKs that offer security for maliciously chosen CRS are based on bilinear maps and are
susceptible to quantum attacks.

When can our notions be applied? When using such notions it is imperative for a system
designer to realize when they can and cannot be successfully applied. We examine accountable
soundness and zero knowledge in turn. Our notion of soundness guarantees security against a
corrupt authority that will willingly create false proofs for any statement as a service.

In practice to hold such an attacker accountable we need two things to occur. First, the attacker
needs this service just enough that he will likely interact with someone willing to turn him in. If an
authority works to help a small cabal or even a single user cheat, it might be difficult to expose the
bad behavior. On the other hand, if the corrupted authority runs an open service or say is willing
to help for a fee, he might be more likely to be caught. Arguably, this is somewhat similar to the
problem of traitor tracing [CFN94] which shows how to trace the origin of a “pirate” decrypting
box or algorithm. But this only works if the decoding algorithm is spread widely enough where it
gets into the hands of a user that wishes to expose the corruption. Nonetheless, in our setting even
if the authority helps a single user cheat, he risks leaving a proof of bad behavior with that user
(which that user can exploit later on, e.g., by blackmailing the authority).

Second, one needs to ask what service does the authority need to provide in order to subvert
the security of our system. Running a service that will create a proof for any submitted statement
will almost certainly subvert security for most conceivable scenarios. However, it might be possible
for a more circumspect authority to subvert security by being more judicious in what statements it
will create proofs for. For example, the authority might only create a proof for a statement x under
certain conditions. The goal of such an authority is then to provide a service that gives enough to
help undermine the security of the larger system, but the service is limited in such a way that he
will not be held accountable.

This leads us to the following viewpoint. It is not prudent to simply replace a NIZK with an
accountable one in a system and presume that accountability will follow. Instead, one should define
the desired security property of the larger system and then try to prove that if security is violated
it will lead to the authority being held accountable. We believe that in some systems our notion
will be sufficient and in others it might not. For cases where it falls short we expect it will lead to
interesting open problems for strengthening accountability.

6

On the zero knowledge side it is instructive to compare our subversion notion of zero knowledge
to the work of Barak and Pass [BP04] who show how to achieve one message zero knowledge
against uniform attackers. At some level a one message zero knowledge system achieves zero
knowledge against a corrupted authority simply by the virtue of having no authority. The main
restriction on applying our subversion notion is that it is only applicable in a security game where the
attacker/authority will publish the CRS at the beginning of the security game. This will not apply
in a situation where the publication of the CRS can possibly be delayed or depend on other inputs
in the game. (Since in this situation one cannot non-uniformly pre-compute the trapdoor advice
for the CRS.) We get the usual (security against non-uniform attackers) notion of soundness when
the authority is not corrupted and either no or accountable soundness (depending if the additional
transformation is applied) if the authority is corrupted. In contrast the Barak-Pass system does
not have such a restriction since there is no CRS. However, it only maintains soundness against
uniform attackers and requires less standard assumption of the “keyless” flavor such as keyless
collision resistant hash functions.

Open problems. We believe that a systematic study of the notions of accountability in the CRS
model is an exciting line of research. Our work leaves open some interesting problems. In our
definition of accountable soundness, we considered the most basic setting where the extractor has
full control over the statement. That is, we capture only the setting where the authority runs some
service in which it receives queries x and replies with proofs π without ever seeing the corresponding
witnesses. Already addressing this basic setting is challenging and requires interesting technical
work.

In reality, the authority might only answer limited types of statements, or with each query of
some statement x, it might be willing to answer only on statement f(x) for some function f . It is
intriguing to understand under what functions f achieving accountable soundness is possible.

As for subverted advice ZK NIZK, our results are limited to NIZKs only, while exploring anal-
ogous definitions for two-party and multiparty computation is an interesting future direction.

2 Technical Overview

In this section, we give an overview of our techniques where Section 2.1 presents our new notion of
subversion advice-ZK, and Section 2.2 discusses accountable soundness.

2.1 Subversion Advice-ZK NIZK

Let us recall the setting. We have an authority A that samples a malicious common reference string
CRS∗. We want to ensure that some meaningful notion of privacy prevails for proofs of statements
computed using CRS∗. We propose the following definition. For every authority A, there exists
a distribution D (not necessarily efficient to sample from) along with an efficient ppt simulator
S such that the view of the adversary is computationally-indistinguishable in the following two
processes:

• Real: The adversary generates some (possibly malicious) CRS∗ and then obtains honestly
generated proofs proven with respect to CRS∗ for statements chosen by the adversary;

• Ideal: The adversary generates some (possibly malicious) CRS∗. We sample d ← D(CRS∗).
The adversary repeatedly gives some statements in which an efficient simulator S generates
proofs with the help of the advice d and with respect to the flawed CRS∗.

7

We refer to a NIZK that additionally satisfies the above property as subversion advice-ZK NIZK.
See Section 5.1 for a formal definition. We emphasize that the distribution D, although inefficient
to sample from, is independent of the statement/witness. In fact, in Definition 5.1, we explicitly
require sampling from D to run in some fixed superpolynomial time S(·), where S is function of
the security parameter λ but independent of the hardness of L.3

A discussion. How well does this notion protect the witness w? To get some sense of the privacy
guarantee, we compare it to several other privacy notions. Those notions were studied as the
primary security notion, i.e., the privacy guarantee when the CRS is honestly generated. In the
following, we adopt those notions as the fallback guarantee while requiring NIZK as the primary
notion:

• Subversion Witness-Indistinguishability: Witness-Indistinguishability (WI) [FS90] means
that one cannot distinguish between proofs that were generated by different witnesses. In
subversion WI [BFS16], we require standard ZK in case of honestly generated CRS, but when
the CRS is maliciously generated, then two proofs generated with different witnesses are in-
distinguishable. This notion is meaningless for languages where each instance has a unique
witness (in which case, a proof system that completely reveals the witness satisfies this no-
tion). Moreover, subversion WI allows leaking bits of the witness (as long as those bits do
not help to identify which one of the witnesses was used), whereas ours does not allow such a
leakage. Our notion implies subversion witness indistinguishability, and is strictly stronger.
We refer to Appendix B for a formalization of this argument.

• Subversion Witness Hiding: Witness hiding (WH) [FS90] ensures that one cannot learn
the entire witness from the proof (unless such a witness can be efficiently computed from the
statement alone). In subversion WH, we require that this holds even if the CRS is maliciously
generated. However, the proof can reveal some bits of the witness as long as they do not allow
for efficiently recovering the witness. Our notion implies subversion WH, and this notion is
weaker than ours. We formalize this argument in Appendix B.

• Subversion Super-Polynomial Simulation (SPS) NIZK: Introduced for interactive pro-
tocols in the plain model, the notion of SPS-ZK [Pas03] allows the simulator to run in some
fixed super-polynomial time for every statement. Therefore, in the subversion setting, one
can also consider a NIZK that satisfies subversion SPS-ZK as the fallback guarantee. This is a
natural security guarantee; and our notion implies it in a strong sense albeit in the non-black-
box simulation setting since the advice distribution could depend on the code of the corrupt
authority. In particular, our simulator can efficiently simulate proofs for multiple statements
when given a one-time advice string generated via some super-polynomial time computation.

In Appendix B, we introduce a new notion called “function hiding” which is a strengthening of
witness hiding. Roughly, function hiding requires that the NIZK should not give any advantage to
the adversary in guessing any deterministic function or predicate of the witness. The probability of
such a guess being correct should remain similar before and after seeing the NIZK. We show that
subversion advice-ZK for NIZKs implies subversion function hiding.

On the strength of our definition. Philosophically, our notion enables that whatever the
adversary learns from multiple proofs from the honest prover, it could have computed on its own by
running in time S(λ)+poly(λ) on the CRS where S is some a-priori fixed superpolynomial function.

3In our construction, S can be set to be 2ω(log λ) assuming 2λ
ϵ

-hardness of either a one-way permutation or a
collision-resistant hash function.

8

Perhaps, the S-time computed advice given to the simulator (akin to preprocessing of the language)
may reveal some information to the adversary. But, similarly to the case of SPS-ZK for interactive
protocols [Pas03], the exact information revealed and its impact on security depends on several
factors, including the hardness of the language, the adversary, and the considered application. For
example, consider an adversary that embeds some “hard” instance x∗ in the CRS, then the S-time
computed advice could reveal a witness w∗ for x∗. What meaningful guarantees does our notion
provide for the adversary’s chosen statement x? We elaborate this below:

1. When the statement x is chosen independently of the malicious CRS and the language L is
hard-on-the-average for polynomial-time algorithms, then our notion essentially says that any
information the verifier learnt by talking to the prover can be simulated by first performing a
super-polynomial time instance-independent processing (i.e., this phase does not depend on
x) and then running a PPT algorithm on x.

2. The statement x being dependent on the CRS requires more care. The extreme case is where
x = x∗, i.e., the statement is the statement embedded in the CRS. In that case, our real-world
proofs may completely reveal the witness w = w∗, if the language L has unique witnesses. In
that case and for that particular instance, our notion provides no meaningful guarantee. Such
a similar weakness also exists in SPS-ZK for interactive protocols in the plain model, where
the super-polynomial time simulator might learn a witness of a hard instance embedded by
the verifier in its messages.
On the other hand, even in the extreme case of x = x∗, but when instances in L have multiple
witnesses, there is still some privacy guarantee. This is essentially captured by the fact that
our notion implies subversion witness-indistinguishability.

Subversion Advice-ZK NIZK construction. We now show how to construct subversion advice-
ZK NIZK. We reduce this goal to a slightly weaker building block, which is a two-round argument
system (V0,P,V1) that we introduce:

• V0(1
λ): The verifier sends the first message zk1. We require that the system be delayed input ;

that is, zk1 is independent of the statement x.

• P(x, zk1, w): The prover sends the second message zk2, that depends on zk1 and x.

• V1(x, zk1, zk2): the verifier decides whether to accept or reject. We also require that this
scheme is publicly verifiable, namely, that the verifier does not keep a secret state after its
first message, and so everyone can verify the proof given the transcript (zk1, zk2).

The hiding requirement of this proof system is similar to subversion advice-ZK :

• advice-ZK: The hiding property is that for every corrupted verifier V∗, there exists a (not
necessarily efficient) distribution D, and an efficient simulator S, such that the following
holds. Given a sample d← D, the simulator can generate transcript zk1, zk2 for a statement
x that is indistinguishable from an execution of the protocol with an honest prover and with
the corrupted V∗.

Given such a primitive, it seems immediate to convert it to a NIZK proof system: Simply run
V0(1

λ) to generate zk1 and treat it as the common reference string; To prove that a statement x
is in the language we run the honest prover P on (x, zk1) and obtain π = zk2. To verify the proof,
run the verifier V1 on (x, zk1, zk2). Moreover, the subversion advice-ZK property for the case of a
maliciously generated CRS follows directly from the advice-ZK property of the two-round scheme.

9

However, the aforementioned proof system is not a NIZK. Specifically, while it provides the
“fallback” guarantee when the CRS is maliciously generated, its primary privacy notion, i.e., the
privacy guarantee when the CRS is honestly generated, is not full ZK. In that above construction,
there is no guarantee that the simulator would be efficient without the advice since the underlying
two-round scheme satisfies just ZK with advice. The simulation in ZK with advice includes the
non-efficient sampling of the advice d. To solve this problem, we wrap the construction with an
inner NIZK argument of knowledge scheme (GenCRSInner,PInner,VInner) as follows:

• To generate the CRS, we generate CRSInner according to the inner NIZK scheme, and zk1
according to the two-round accountable ZK scheme. The CRS is therefore (CRSInner, zk1).

• Given (x,w), the prover computes the second message zk2 of the two-round scheme using
(x,w) and zk1. Then, it generates using the inner NIZK scheme a proof π for the statement
“I know zk2 for which the V1(zk1, zk2) accepts”. It outputs the proof π.

• To verify a proof, we simply run the verifier of the inner NIZK scheme.

It is easy to see that this scheme satisfies completeness and soundness. Moreover, ZK with advice
in the case of malicious CRS, follows easily from the ZK with advice property of the two-round
scheme. However, now we also have an efficient simulator for the case of an honestly generated
CRS: We can use the simulator of the inner NIZK scheme to generate proofs for the statement
that the prover knows zk2 such that V1 accepts (zk1, zk2), even without knowing zk2. Thus, the
simulator does not need to know the witness w to generate zk2.

Therefore, to obtain subversion advice-ZK NIZKs, all that is left to show is how to construct a
two-round ZK with advice scheme.

Construction of Two Round ZK Argument. At a high level, the construction follows the
template of Pass’s two-round SPS-ZK protocol [Pas03]. We quickly recall their construction: the
verifier message consists of an image y = f(s) of a one-way permutation f . The prover on input a
statement witness pair (x,w) computes a non-interactive commitment c to the all-zero string and
computes a non-interactive witness-indistinguishable proof for the statement “either x ∈ L or c
commits to the pre-image of f”. The super-polynomial-time simulator for this construction first
receives the verifier message y and brute-force inverts y to get the corresponding pre-image s and
then uses s to finish the simulation.

Here, we observe that their super-polynomial-time simulator can be decomposed into an ineffi-
cient distribution D and an efficient simulator S where the inefficient distribution D is as follows:
it runs the verifier on a uniform random tape r∗ to get the first message y∗ and then runs in super-
polynomial time to brute-force invert y∗ to compute the pre-image s∗. Then, it outputs (r∗, s∗).
Now, the simulator S on input (r∗, s∗) and statement x can compute a commitment c to s∗ along
with the witness-indistinguishable proof using witness s∗.

While the above two-round construction is sufficient to get ZK with advice, it requires one-
way permutations and non-interactive witness-indistinguishable proofs (NIWIs). In Section 4, we
present a generalization of this protocol that allows us for more general instantiations, including a
post-quantum instantiation from the subexponential hardness of learning with errors problem.

2.2 Accountable Soundness

We now turn our attention to soundness. When the CRS is generated by a corrupted authority,
it could exploit the randomness used in creating the CRS to generate proofs for false statements

10

(or even true statements but without actually knowing what the witness is). We recall that one
cannot hope to provide subversion-soundness for a NIZK, as this is impossible by the negative result
by [BFS16]. Therefore, it is always possible to generate proofs for false statements when the CRS
is maliciously sampled. While we cannot prevent this behavior, we can at least hope to implicate
authorities who engage in this activity, if they ever actively use this knowledge to, for instance, sell
proofs of false statements.

Definition. Recall that our definition (which is inspired by the accountable NIZK of Ananth et
al. [AADG21]) changes the syntax of the NIZK proof system, by adding a new algorithm, called
Judge, in addition to the standard algorithms of Gen, Prove, Vrfy. The Judge algorithm receives as
an input (possibly malicious) CRS∗ together with some transcript τ and has to decide whether the
CRS∗ is corrupted or not. In addition,

• Accountability: accountability is modeled as a game between the authority A and an
extractor E . If the CRS generating authority is engaged in the aforementioned activity in
the “real world”, then there exists an extractor in an “ideal world,” where the goal of the
extractor is to generate a transcript τ that implicates the authority. The extractor, upon
receiving the CRS from the authority, can query the authority and ask for proofs of instances
of its choice. The extractor uses the information produced by the authority-provided proofs
to compute evidence τ for which Judge outputs corrupted.

• Defamation-free: As mentioned, the accountability property alone does not suffice, and
so we augment this property with defamation-freeness. This roughly states that if CRS is
honestly generated according to GenCRS, then no adversary A(CRS) can output τ such that
Judge(CRS, τ) outputs corrupted. I.e., no adversary can produce evidence that implicates an
honest authority.

Construction for languages in NP ∩ co-NP. We start with a simple example. Consider
for instance the language of DDH tuples, namely, consider some cyclic group G of order q with
generator g where the DDH problem is believed to be hard. Then, consider the following language
over G×G×G:

L = {(h1, h2, h3) | ∃x, y ∈ Zq s.t. h1 = gx, h2 = gy, h3 = gxy} .

Since for every h ∈ G there exists a unique x ∈ Zq such that h = gx, we can conclude that the
complement language L, which consists of tuples of the form (gx, gy, gz) where z ̸= xy is also in NP.
Now, consider a proof system for this problem, and assume that one generated the CRS maliciously
such that it can, given an instance (h1, h2, h3) ∈ L, generate proof π which is accepted by a verifier
(even though this algorithm does not receive the witness x and y).

Assuming DDH, this authority cannot distinguish whether a given (h1, h2, h3) is in L or in L.
To hold the authority accountable, it is enough to sample some triplet (h1, h2, h3) ̸∈ L (say, by
sampling x, y, z and then set h1 = gx, h2 = gy, and h3 = gz), use the authority to obtain a valid
proof π that “shows” that the instance is in L, and then publicize the proof π together with the
witness (x, y, z) that shows that the instance is not in L. From the soundness property of the NIZK
proof system, the only way to obtain the accepting proof π for an instance (h1, h2, h3) ̸∈ L is by
using a malicious CRS. This implies that the authority generated the CRS is corrupted.

To be slightly more formal, in the above scheme, we do not modify the way the CRS is being
generated, nor the code of the prover or the verifier. The Judge algorithm receives a (possibly
maliciously generated) CRS and a transcript τ and should decide whether the CRS is corrupted.

11

In our case, the transcript τ consists of an instance (h1, h2, h3), a proof π that is accepted by
the scheme, and a witness w (x, y, z) showing that (h1, h2, h3) ̸∈ L. The judge algorithm outputs
corrupted if indeed π is accepted but w validates that (h1, h2, h3) ̸∈ L.

Since the construction does not modify the generation of the CRS, the defamation-free property
follows directly from the soundness property of the scheme. No adversary can generate an acceptable
proof for an instance that is not in the language, and therefore it is impossible to frame an innocent
authority that generated the CRS honestly. Importantly, the resulting scheme is practical, we do
not modify the construction nor the CRS generation, and one can even use our paradigm on a
previously generated CRS that is currently in use.

Distribution over the inputs. Before proceeding to other results, we mention some property of
our definition. To have a meaningful security notion, we have to model the fact that the authority
does not know the witness of a given instance. In particular, if the authority has some auxiliary
information about the statement, then it can possibly produce the proof π honestly (i.e., using
the witness) and without forging it. To avoid this issue, we specify a distribution D such that
the inputs in the security experiment are sampled from this distribution. We stress that this
requirement is only for the accountability security experiment, and the NIZK construction satisfies
the usual definition of NIZK and is well-defined for any input.

Note that the above requires the extractor also to have some distribution D′ for which it
generates the instance (h1, h2, h3) ̸∈ L used as part of the evidence. Moreover, in our example,
the distribution D might be picking x and y at random and setting (h1, h2, h3) = (gx, gy, gxy),
whereas the distribution that the extractor uses would be picking x, y, z at random and setting
(h1, h2, h3) = (gx, gy, gz). Note that according to the DDH assumption, the malicious authority
cannot distinguish between samples of the two distributions, and if it ever produces proofs without
knowing the witness, even if it intends to do so only for statements that are in the language, then
it can also be used to generate proofs for statements that are not in the language, thereby holding
it accountable.

Additional results for accountable soundness. Motivated by the simple example of DDH, we
essentially show that accountable soundness can be achieved for any hard language in NP∩ co-NP.
By a hard language, we mean the following: it should be computationally hard to distinguish yes
instances from no instances. Essentially, the extractor generates a NO instance, receives a valid
proof for that instance, and uses the instance, the witness showing that this is indeed a NO instance,
and the proof generated by the authority – to frame the authority.

We then generalize this condition and show that it also applies to languages that are not
in NP ∩ co-NP, but for which there exists an efficiently checkable witness for some (as opposed
to all) NO instances. We show that this already gives a powerful framework and captures several
interesting languages that are used in cryptographic systems, such as non-interactive commitments,
the GMW compiler [GMW87], validity of ciphertexts, hash-time-lock contracts [ZKC], the ZCash’s
POUR transaction [BSCG+14]. See Section 7.1.2.

We then turn our attention to languages for which NO instances may not have a short validating
proof of non-membership. For example, consider the language LG, which contains strings in the
range of some length doubling pseudorandom generator G, that is, LG = {y ∈ {0, 1}ℓ : ∃ s ∈
{0, 1}ℓ/2 s.t. y = G(s)}. Then, for any ℓ-bit string y there does not (seem to) exist an efficiently
checkable witness for y /∈ LG. As a first step towards achieving accountable soundness for such
languages, we consider “sparse languages”. We also discuss a generalization to any NP language
under strong assumptions on the distribution D.

12

Sparse Languages. We show that if the language is “sparse”, namely, the number of elements
in |L| is only a negligible fraction, then it is also possible to hold the authority accountable. Here,
however, we have to modify the way the CRS is generated. In particular, if L is over ℓ-bit strings
then we add an ℓ-bit random string x∗ to the CRS. If, for instance, L had only δ ·2ℓ instances, then
for every x ∈ L it is only with δ probability that x ⊕ x∗ belongs to the language (over the choice
of x∗). By a union bound over all x ∈ L, the probability over the choice of a random x∗ that there
exists some x ∈ L such that x∗ ⊕ x ∈ L is at most δ2 · 2ℓ, which is negligible for δ = 2−ℓ/2−ω(log λ).
As such, we define the Judge to require an acceptable proof for x⊕ x∗ for some x ∈ L to deem the
CRS that contains x∗ as being corrupted.

Defamation-freeness holds since given an honestly generated CRS that contains a uniformly
random x∗, any adversary A that convinces the above Judge algorithm must find an accepting
proof for x ⊕ x∗ for some x ∈ L. But we just argued that except with negligible probability
x ⊕ x∗ is not in L. Therefore, we can use A to break the adaptive soundness of the underlying
NIZK. Additionally, we can show accountability for any distribution D on yes instances, which
is computationally indistinguishable from the uniform distribution over ℓ bit strings. Section 7.2
discusses the case of such “subexponentially sparse” languages, and we defer the case of negligibly
sparse languages to Section 7.3.

Languages captured by this approach include – outputs of pseudorandom generators or sequen-
tial composition of hash, which is a prominent benchmark for designing time- and space-efficient
arguments for RAM computations [BHR+20, BHR+21], and for proving knowledge of a T-sized
blockchain. See section 7.2.1.

General Feasibility Result. The main idea of going beyond sparse languages is to push the
sparsity requirements onto the distribution D from which the statements are sampled from. That
is, even though the language itself is not sparse, we artificially consider a subset of the language
which is sparse. The main idea is that if D needs r(λ)-bits of randomness for generating instances

where r is some polynomial, we use a PRG G : {0, 1}t(λ) → {0, 1}r(λ), and sample an instance

using D(G(s)) for a random s ∈ {0, 1}t(λ). In fact, assuming subexponentially-secure PRGs, we
can instantiate G such that it expands a t = log2(λ)-bit seed into an r length string. Therefore, the
set {D(G(s))}s∈{0,1}t is sparse, and now we can borrow ideas from our result for sparse languages.

Coming back to the NIZK construction, we define the Judge algorithm identically as before,
except that it now requires an accepting proof for x⊕ x∗ ∈ L for an x for which there exists s such
that x = D(G(s)). Recall that x∗ is a random string that is part of the CRS.

Showing defamation-freeness is now more challenging. While the high-level idea is still to
contradict the adaptive soundness of the underlying NIZK, this requires some care. Specifically,
let A with some PPT adversary that given an honestly generated CRS containing a uniform string
x∗ convinces the Judge with some non-negligible probability ϵ. In particular, A finds some random
string s and an accepting proof for x⊕x∗ where x = D(G(s)). Then consider the following sequence
of hybrids.

1. Hybrid Hyb1: it is identical to the defamation-free experiment except we change the winning
condition for A. Specifically, Hyb1 while generating the CRS that contains x∗, also samples a
t-bit string s∗ as a guess for A’s string s. Then, we let A win Hyb1 only if it finds an accepting
proof for x⊕ x∗ for x = D(G(s)) and it is the case that s = s∗. Then, it is then clear that A
wins Hyb1 with probability ϵ/2t.

2. Hybrid Hyb2: it is identical to the Hyb1, except we generate the string x∗ embedded inside

13

the CRS differently. In particular, after sampling the guess s∗, Hyb1 programs x∗ such that
the string D(G(s∗))⊕ x∗ is a NO instance sampled from some distribution DNo.

The only difference between Hyb2 and Hyb1 is the distribution of the string x′ = D(G(s∗))⊕x∗.
In particular, in Hyb1, the string x′ is actually distributed according to the uniform distribu-
tion, whereas in Hyb2 it is distributed according to DNo. Then if the two distributions are δ-
indistinguishable then A wins Hyb2 with probability at least ϵ/2t − δ. Finally, note that if A wins
Hyb2, then it wins by finding an accepting proof for a false statement x⊕ x∗ where x = D(G(s∗)).
This is because D(G(s∗))⊕ x∗ was a NO instance, and A wins only if s = s∗.

Now, A can be used to build a cheating prover that breaks the adaptive soundness of the
underlying soundness with probability ϵ/2t − δ. Then, if δ = 2−λ

ϵ
and t = log(λ), we arrive at

a contradiction as long as the adaptive soundness of the underlying NIZK is such that no PPT
adversary can break soundness with probability better than 2−λ

ϵ
. This concludes the discussion on

defamation-freeness. Identical to the case of sparse languages, accountability can be shown for D
which are indistinguishable from the uniform distribution over ℓ bit strings.

There are a few caveats associated with the above construction. First, the construction (i.e.,
Judge) depends on the distribution D, which means that for different distributions, we need a
different construction. Moreover, it requires somewhat strong assumptions (sub-exponential - in-
distinguishability), whereas our previous results were based on standard security. We bring this
result as evidence that the general problem of (practical) accountable soundness for every NP
language is intriguing and requires further investigation.

2.3 Related Work

To better understand the role of trust in CRS generation, a number of works have studied relaxed
settings: Groth and Ostrovsky study the multi-string model [GO07] where multiple authorities
individually publish common reference strings with only a majority of them are guaranteed to
be honest. Garg et al.[GGJS11] study replacing a single CRS generating authority in UC with
multiple, untrusted authorities. Bellare et al. [BFS16] introduce and study the feasibility of security
properties retained by a NIZK under a maliciously chosen CRS, and Ananth et al. [AADG21] study
accountability in the CRS generation.

In addition, numerous works have considered relaxed security notions for privacy to get non-
interactive constructions in the plain model (one that does not require any common reference
string). These include witness-indistinguishability [DN07], super polynomial simulation security [Pas03,
BP04], and witness-hiding [KZ20].

Two works that come closest in spirit to ours are that of [BFS16] and [AADG21], which we give
a detailed comparison next.

Comparison with [BFS16]. Bellare, Fuchsbauer, and Scafuro [BFS16] introduced the study of
subversion-resistant security for NIZKs. Specifically, this asks what security properties are guaran-
teed if the CRS is maliciously sampled. They show a construction of a NIZK system in which the
witness is protected (i.e., satisfies ZK) even if the CRS is maliciously sampled. However, the con-
struction relies on knowledge-type assumptions, which are non-falsifiable (specifically, a knowledge-
of-exponent assumption in a group equipped with a bilinear map). Constructing subversion-ZK
NIZK based on standard cryptographic assumptions seems unlikely. This is because subversion-ZK
NIZKs immediately imply two-round ZK protocols, which again are only known from knowledge-
type assumptions. Our construction achieves a weaker notion of security than full ZK (in case of a

14

corrupted CRS) but is based on standard assumptions.

Comparison with [AADG21]. Recently, Ananth et al. [AADG21] propose a notion of account-
ability towards addressing trust assumptions in the CRS generation procedure. More specifically,
they consider a CRS generation authority that extracts witnesses from NIZK proofs generated us-
ing the maliciously sampled CRS, and then sells these witnesses for monetary benefit on the black
market.

Ananth et al. build a NIZK system that achieves both accountability and defamation-free prop-
erties from polynomial-time standard assumptions on bilinear maps. Our work expand their result
in two different dimensions:

1. Our subversion advice ZK NIZK subsumes accountable NIZK (see below);

2. Ananth et al. studied accountable NIZK while addressing only privacy; and we study the
orthogonal question of soundness.

Subversion advice ZK NIZKs. Our notion expands their results in three important aspects.
First, subversion advice ZK NIZK immediately satisfies the notion of accountability as formulated
by [AADG21]. Specifically, no ppt adversary, including the authority who generates the malicious
CRS∗ and perhaps knows some backdoors, can extract witnesses from proofs that were proven with
respect to CRS∗. Thus, there is no need to hold the authority accountable, as no such authority
exists. Second, the construction of [AADG21] works only for a large class of NP languages (but
not all). This, of course, limits the applicability of that result. Our construction also holds for all
NP languages. Third, the work of [AADG21] leaves open the question of how to handle authorities
that, given a proof reveals only hard-to-compute partial information about the witness instead of
the witness in its entirely. Our notion of subverted advice ZK NIZKs hides not only entire witnesses
but also any partial information about the witness.

Additional related works. The notion of accountable soundness is inspired by broadcast encryp-
tion with traitor tracing [CFN94, BSW06, NWZ15, GKW18, GKWW21], the accountable authority
of identity-based encryption [Goy07], watermarking or copy protection [GKM+19]. In all of those
works, capturing flavor of security is challenging, and there can be many perils.

Organization. In Section 3 we provide preliminaries and definitions. In Section 4, we formally
define advice ZK for two-round arguments and give our construction for NP. In Section 5, we
formally define the notion of an subversion advice-ZK NIZK, and describe our subversion advice-ZK
NIZK construction. Section 6 is devoted to defining accountable soundness and Section 7 describes
our constructions for NP ∩ coNP and sparse languages, as well as our general feasibility result for
NP. In Section 8 we build NIZKs with both subversion advice-ZK and accountable soundness.
In Appendix B, we formally show connections of our subversion advice-ZK with other notions for
subversion-security.

3 Preliminaries

Notation and Conventions. We let λ ∈ N denote the security parameter. We use ppt as a
shorthand for probabilistic polynomial time. We denote by x ← D a sampling of an instance x
according to the distribution D.

• A function µ is negligible if for every positive polynomial p(·) there exists λ0 ∈ N such that
for all λ > λ0 it holds that µ(λ) < 1/p(λ).

15

• A probability ensemble X = {X(a, λ)}a∈{0,1}∗;λ∈N is an infinite sequence of random variables
indexed by a ∈ {0, 1}∗ and λ ∈ N. In the context of zero knowledge, the value a will represent
the parties’ inputs and λ will represent the security parameter. All parties are assumed to
run in time that is polynomial in the security parameter.

• Two probability ensembles X = {X(a, λ)}a∈{0,1}∗;λ∈N, Y = {Y (a, λ)}a∈{0,1}∗;λ∈N are said
to be computationally indistinguishable, denoted by X ≈c Y , if for every non-uniform ppt
distinguisher D there exists a negligible function µ such that for every a ∈ {0, 1}∗ and every
λ ∈ N,

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ µ(λ) .

3.1 One-way Functions

A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if:

1. There exists a deterministic polynomial time algorithm that on input s computes f(s).

2. For every non-uniform ppt adversary A, there exists a negligible function µ(·) such that:

Pr
[
f(x′) = y : x←{0, 1}λ, y = f(x), x′←A(y)

]
≤ µ(λ) .

Further, we say f is T -one-way for function T : N → N, if the above holds for adversaries A
that run in time T (λ) · p(λ) for some polynomial p(·).

3.2 Commitment Schemes

We require commitment scheme that is perfectly binding and computationally hiding. The non-
interactive commitment scheme Com has the following syntax and properties:

• c ← Com(m; r): The algorithm gets m ∈ {0, 1}ℓm(λ) and randomness r ∈ {0, 1}ℓr(λ) and

outputs a commitment c ∈ {0, 1}ℓc(λ). The opening of the commitment is simply the ran-
domness r.

We require the following properties from the commitment scheme:

• Perfectly Binding: For all (m0,m1) ∈M such that m0 ̸= m1 it holds that

{Com(m0; r0)}r0∈{0,1}ℓr(λ)
⋂
{Com(m1; r1)}r1∈{0,1}ℓr(λ) = ∅ .

• Computationally Hiding: For every polynomially bounded function α(·) and every polynomial-
time non-uniform adversary A there exists a negligible function µ(·) such that every auxiliary

input z ∈ {0, 1}poly(λ), the probability that A wins the following game is at most 1/2 + µ(λ):
For security parameter λ, A(1λ, z) outputs a pair of valuesm0,m1 ∈ {0, 1}α(λ). The challenger
on input mb, for a randomly chosen bit b ∈ {0, 1}, outputs a commitment to mb. A then
outputs a bit b′ and wins iff b′ = b.

• T -Extraction: There exists a deterministic algorithm that runs in time T (λ) · p(λ) for some
polynomial p(·) such that on input any string c ∈ {0, 1}ℓc , outputs val(c) where

val(c) = m ⇐⇒ ∃r ∈ {0, 1}ℓr(λ) s.t. c = Com(m; r) .

16

3.3 Non-Interactive Zero Knowledge (NIZK)

Let L be an NP language and let RL be its associated relation. For (x, y) ∈ RL we sometimes
denote x the statement and w its associated witness.

Definition 3.1. Let L ∈ NP and let RL be the corresponding NP relation. A triple of algorithms
Π = (GenCRS,Prove,Verify) is called non-interactive zero knowledge (NIZK) argument for L if it
satisfies:

• Perfect Completeness: For all security parameters λ ∈ N and for all (x,w) ∈ RL,

Pr
[
Verify(CRS, x, π) = 1 : CRS← GenCRS(1λ); π ← Prove(CRS, x, w)

]
= 1 .

• Computational Adaptive Soundness: For every ppt prover P ∗, there exists a negligible
function µ(·) such that for all λ ∈ N:

Pr [SoundnessΠ,P ∗(λ) = 1] ≤ µ(λ) ,

where the random variable SoundnessΠ,P ∗(λ) is defined as follows:

1. CRS← GenCRS(1λ),

2. (x, π)← P ∗(λ,CRS),

3. The output of the experiment is 1 if x /∈ L ∧ Verify(CRS, x, π) = 1.

When this probability is 0, we say that Π is perfectly sound.

• Computational Zero-Knowledge: There exists a ppt simulator S = (S1,S2) where S1(1
λ)

outputs (CRSS , τ) and S2(CRSS , τ, x) outputs πS such that for all non-uniform ppt adver-
saries A: {

AO1(CRS,·,·)(CRS) : CRS← GenCRS(1λ)
}

≈c

{
AO2(CRSS ,τ,·,·)(CRSS) : (CRSS , τ)← S1(1λ)

}
where O1,O2 on input (x,w) first check that (x,w) ∈ RL, else output ⊥. Otherwise O1

outputs Prove(CRS, x, w) and O2 outputs S2(CRSS , τ, x).

3.4 Witness Indistinguishable (WI) Arguments

Definition 3.2 (Witness Indistinguishable Argument). Let L be an NP language, and let RL be
its associated relation. We say that a delayed-input two-message argument system WI = (V0,P,V1)
is witness distinguishable for L ∈ NP, if the following properties hold:

• Perfect Completeness: For every (x,w) ∈ RL and every wi1 ∈ [V0(1
λ)]

Pr [V1(x,wi1,P(x,w,wi1)) = 1] = 1 .

17

• (Two Rounds) Soundness: We say that a delayed-input two-message argument system
Π = (V0,P,V1) achieves (two-rounds) soundness if for every ppt algorithm (corrupted prover)
P ∗ there exists a negligible function µ(·) such that:

Pr [2RndSNDΠ,P ∗(λ) = 1] ≤ µ(λ)

where the random variable 2RndSNDΠ,P ∗(λ) is defined as follows:

1. m1 ← V0(1
λ),

2. (x∗,m2)← P ∗(m1),

3. The outputs of the experiment is 1 if V1(x
∗,m1,m2) = 1 and x∗ ̸∈ L.

We say that Π satisfies T -soundness for some T : N → N if the above also holds for P ∗ that
run in time T (λ) · p(λ) for some polynomial p(·).

• Witness Indistinguishability: For every polynomially bounded function s and every polynomial-
time non-uniform adversary A there exists a negligible function µ(·) such that every auxiliary
input z ∈ {0, 1}∗, the probability that A wins the following game is at most 1/2 + µ(λ):

For security parameter λ, A(1λ, z) outputs an instance x ∈ L ∩ {0, 1}s(λ), witnesses w0, w1

such that (x,w0) and (x,w1) belong to RL and the first message wi1. The challenger on input
wb, for a randomly chosen bit b ∈ {0, 1}, sends wi2 to A where wi2←P(x,wb,wi1). A then
outputs a bit b′ and wins iff b′ = b.

4 Two Round Advice ZK Arguments for NP

In this section, we build a two round argument system for NP that satisfies advice zero-knowledge.
Our construction follows the Fiat-Lapidot-Shamir (FLS) paradigm [FLS90] where: (a) the veri-
fier’s message sets up a secret trapdoor, and (b) the prover’s message contains a WI proof showing
either that the given statement is true or that it knows some trapdoor. Section 4.1 defines ad-
vice zero-knowledge, Section 4.2 gives an abstraction of the verifier’s trapdoor-generation protocol,
and Section 4.3 contains our two-round argument with formal security proofs in Section 4.4 (sound-
ness) and Section 4.5 (advice-ZK).

4.1 Defining Advice ZK for Two Round Arguments

Definition 4.1. Let L be an NP language, let RL be its associated relation and let S be some
super-polynomial function. We say that a two-message argument system Π = (V0,P,V1) satisfies
S-advice ZK if for every non-uniform ppt algorithm V∗, there exists a ppt algorithm S and an
S(λ)-time computable advice distribution D such that the distributions REALV,Π and IDEALS,Π,D
are computationally indistinguishable:
REALV∗,Π(λ):

1. On input 1λ, V∗ sends the first message zk∗1.

2. V∗ chooses statements adaptively until halting, and the experiment outputs its view upon
halting:

(a) V∗ outputs x. If x /∈ L, reply with ⊥, else let w be a witness for x.

18

(b) Compute the second message zk2 ← Prove(zk∗1, x, w) and give V∗.

IDEALS,Π,D(λ):

1. On input 1λ, V∗ sends the first message zk∗1.

2. Sample an advice string d from the distribution D(1λ, zk∗1) in S(λ) time.

3. V∗ chooses statements adaptively until halting, and the experiment outputs its view upon
halting:

(a) V∗ outputs x. If x /∈ L, reply with ⊥, else let w be a witness for x.

(b) Run S(1λ, zk∗1, x, d) and give it to V∗. Note that w is not used in this computation.

We emphasize that sampling from the advice distribution D is not efficient as it requires S time,
a-priori fixed super-polynomial function. However, upon given a sample from D, the simulator must
run in polynomial time. Philosophically, our notion ensures that whatever the adversary could have
learnt from multiple interactions, it could have efficiently computed on its own after a one-time
S time preprocessing of the language. Comparatively, the notion of superpolynomial simulation
(SPS)-ZK allows the simulator to perform superpolynomial time computations for every statement.
In this sense, our notion implies SPS-ZK with an S-time simulator with the advice distribution D
and the advice ZK simulator S acting as a single SPS simulator. In some cases though it may be
qualitatively better. E.g., consider languages where (a) statements have unique witnesses, and (b)
witnesses can be brute-forced in some superpolynomial time S. Here, for SPS-ZK with an S time
simulator, a perfectly acceptable solution is to send the witness in the clear as the proof; the S
time simulator can brute-force for it during simulation. Whereas this is not possible for S-advice
ZK as the S time computation (i.e., sampling from the advice distribution) happens even before
the instance is known.

Remark 4.2. Note that the adversary V∗ can only choose statements x. The corresponding witness
w given to the honest prover in the real experiment is computed via brute force. Our definition re-
quires indistinguishability of the two experiments irrespective of how and which witness is computed.

4.2 Trapdoor Generation

Towards constructing two round advice ZK argument, we consider a trapdoor generation scheme
which is a tuple of four algorithms (TDGen,TDCheck,TDValid,TDSol) with the following syntax:

1. TDGen(1λ) is a randomized PPT algorithm that on input the security parameter λ outputs
an element y ∈ Y.

2. TDCheck(x, y) is a deterministic PPT algorithm that on input elements x ∈ X and y ∈ Y,
outputs a bit b ∈ {0, 1}.

3. TDValid(y) is a deterministic PPT algorithm that on input element y ∈ Y, outputs a bit
b ∈ {0, 1}.

4. TDSol(y) is a deterministic algorithm (possibly inefficient) that on input element y ∈ Y,
outputs an element x′ ∈ X .

We require the following properties:

1. For every λ ∈ N we have that TDValid
(
TDGen(1λ)

)
= 1.

19

2. For every λ ∈ N and every y ∈ Y, TDValid(y) = 1 iff there exists an x ∈ X such that
TDCheck(x, y) = 1.

3. T -hardness: For every T -sized family of circuits A = {Aλ}λ there exists a negligible function
µ such that for all λ ∈ N

Pr[TDCheck(x′, y) = 1 : y←TDGen(1λ), x′←Aλ(y)] ≤ µ(λ) .

4. S-solvability: TDSol is an S(λ)-time algorithm such that for every λ ∈ N,

Pr[TDCheck(x′, y) = 1 : y←TDGen(1λ), x′ = TDSol(y)] = 1 .

In Appendix A, we provide instantiations from one-way functions with efficiently recognizable
range and collision-resistant hash functions.

4.3 Construction of Two Round Advice ZK Argument

Tools. Let L be some NP language and RL be its associated relation. Let T, S : N → N be some
super-polynomial functions. The construction of two-round advice ZK argument for L is based on
the following building blocks:

• A T -hard, S-solvable trapdoor generation protocol TD = (TDGen,TDCheck,TDValid).

• A perfectly binding and T -extractable non-interactive commitment Com (Section 3.2).

• A delayed-input, two-message, T -sound and publicly-verifiable, witness indistinguishable ar-
gument (Section 3.4) WI = (V0,P,V1) for the language:

LWI = {(x, sout, c) | ∃(w, r, sin) s.t. (x,w) ∈ RL

∨(TDCheck(sin, sout) = 1 ∧ c = Com(sin; r))} .

Construction. In our construction, the verifier runs TDGen to compute sout, and sends it along
with the first message of the WI argument. Then, upon input a statement-witness pair (x,w), the
prover computes a commitment c to 0 and proves, using the WI argument, that either (x,w) ∈ L
or c is a commitment to a valid pre-image of sout.

Construction 4.3: Two-round advice ZK argument

Vzk
0 (1λ):

1. Sample sout←TDGen(1λ)

2. Sample the first message wi1←WI.V0(1
λ) of the WI protocol

3. Output zk1 = (sout,wi1).

Pzk(1λ, x, w, zk1):

1. Parse zk1 as (sout,wi1)

2. If TDValid(sout) ̸= 1 then abort and output ⊥
3. Compute a commitment c = Com(0; r) using randomness r ← {0, 1}poly(λ).
4. Compute wi2 ←WI.P ((x, sout, c), (w,⊥,⊥),wi1).
5. Output zk2 = (c,wi2).

20

Vzk
1 (1λ, x, (zk1, zk2)):

1. Parse zk1 as (sout,wi1), and zk2 = (c,wi2).

2. Accept iff WI.V1((x, sout, c), (wi1,wi2)) = 1.

Before proceeding to the formal theorem, we highlight that:

1. The construction is two-message (verifier to prover; prover to verifier).

2. Delayed-input: the first message of the verifier is independent of the instance.

3. Publicly verifiable: The verifier does not store a secret state after its first message. The
decision to accept/reject depends only on the transcript.

Theorem 4.4. Let L be an NP language, and T (·), S(·) be super-polynomial functions. Assume
(TDGen,TDCheck,TDValid) is T -hard and S-solvable, Com is a T -extractable non-interactive com-
mitment scheme, and WI = (V0,P,V1) is a two-message delayed-input, publicly-verifiable, witness-
indistinguishable T -adaptively sound argument for LWI. Then, Construction 4.3 is a two-round
delayed-input, publicly-verifiable argument for L with T -adaptive soundness and S-advice ZK.

Before proving Theorem 4.4, we make some remarks. Recently, Kuykendall and Zhandry [KZ20]
built a two round witness-hiding argument from perfectly sound non-interactive witness-
indistinguishable proofs (NIWIs) and subexponentially-secure injective one-way functions with ef-
ficiently recognizable codomain. In comparison, instantiating trapdoor generation protocol with
one-way functions with efficiently recognizable range, we get a two-round advice ZK construction
from two-round WI adaptively-sound arguments and subexponentially-secure non-interactive com-
mitments and one-way functions with efficiently recognizable codomain. This is an improvement
over [KZ20] as (a) advice ZK implies the witness-hiding notion considered in [KZ20], (b) we re-
quire two-round WI arguments as opposed to NIWI proofs. Also, our framework allows for more
instantiations including from only post-quantum assumptions: trapdoor generation protocol from
T -secure collision-resistant hash functions based on subexponential SIS [Ajt96], and T -extractable
non-interactive commitments [GHKW17] and two-round delayed-input publicly-verifiable WI ar-
guments from subexponential LWE [LVW19, BFJ+20].

Proof of Theorem 4.4. First, note that completeness is straightforward. Secondly, the delayed-
input and public-verifiability properties are inherited directly from the underlying WI protocol.
We give formal proofs for the soundness and advice ZK properties in Section 4.4 and Section 4.5
respectively, which together will conclude the proof of Theorem 4.4.

4.4 Proof of Soundness

Lemma 4.5. The construction 4.3 is T -sound.

Proof. We will show that every non-uniform adversary P ∗ running in time T (λ) · poly(λ) there
exists a negligible function µ(·) such that:

Pr[2RndSNDZK,P ∗(λ) = 1] ≤ µ(λ) .

To show this we consider the following two hybrids:.

• Hyb0: This is the soundness security game played by P ∗. In particular,

21

1. The challenger in the soundness game first honestly samples the first verifier message
zk1 = (sout,wi1) as specified in 4.3.

2. Run P ∗(1λ, zk1) to get (x, zk2).

3. Parse zk2 = (c,wi2).

4. The output of the hybrid is 1 iff x /∈ L and (wi1,wi2) is accepted by the WI verifier on
the statement (x, sout, c).

• Hyb1: This hybrid is identical to Hyb0, except that we change the winning condition for P ∗:
The output of the hybrid is 1 iff Hyb0 = 1 and the commitment c is a commitment to sin for
which TDCheck(sin, sout) = 0.

For a fixed corrupted T -time prover P ∗ denote by pb the probability that P ∗ wins Hybb, for
b ∈ {0, 1}. We have the following claims:

Claim 4.6. Assuming that TD is a trapdoor generation protocol which satisfies T -hardness, and
Com is a perfectly binding T -extractable commitment scheme. For every corrupted T -time prover
P ∗ there exists a negligible µ(·) such that p0 − p1 ≤ µ(λ).

Proof. Let sin, r be the opening of the commitment c sent by P ∗. P ∗ is invoked on zk1 and outputs
(x, zk2). We have that:

p0 = Pr
[
(x ̸∈ L ∧ Vzk

1 (x, zk1, zk2) = 1) ∧ (TDCheck(sout, sin) = 0 ∨ TDCheck(sout, sin) = 1)
]

= Pr
[
(x ̸∈ L ∧ Vzk

1 (x, zk1, zk2) = 1) ∧ TDCheck(sout, sin) = 0
]

+Pr
[
(x ̸∈ L ∧ Vzk

1 (x, zk1, zk2) = 1) ∧ TDCheck(sout, sin) = 1
]

= p1 + Pr
[
(x ̸∈ L ∧ Vzk

1 (x, zk1, zk2) = 1) ∧ TDCheck(sout, sin) = 1
]
.

Assume towards a contradiction that p0− p1 ≥ ϵ(λ) for some non-negligible ϵ(·). We show that P ∗

can be used to construct a T -time adversary A for the T -hardness game of the trapdoor generation
protocol TD: Upon a given input y ← TDGen(1λ), A computes wi1 ← WI.V0(1

λ) and parses
zk1 = (y,wi1). It runs P

∗(zk1) and obtains its output (x, zk2). It parses zk2 = (c,wi2) and extracts
(sin, r) from c with brute-force in time T (λ) · p(λ) for some polynomial p. A outputs sin.
A runs in time T (λ) · q(λ) for some polynomial q(·). From the binding property of Com, sin

is indeed the unique value of c. Moreover, A perfectly simulates 2RndSNDZK,P ∗(λ) for P ∗ and
therefore with probability at least ϵ(λ), A breaks the T -hardness of TD. ■

Claim 4.7. By the T -adaptive computational soundness of the WI argument, there exists a negli-
gible function µ such that p1 ≤ µ(λ).

Proof. Assume there exists a corrupted T -time prover P ∗ which wins in Hyb1 with non-negligible
probability. We show that P ∗ can be used to construct a corrupted T -time prover PWI that
breaks the soundness property of WI: Upon an honestly generated input wi1, PWI computes sout ←
TDGen(1λ) and parses zk1 = (sout,wi1). It runs P ∗(zk1) and obtains its output (x, zk2 = (c,wi2)).
PWI outputs ((x, sout, c),wi2).

PWI perfectly simulates P ∗ in Hyb1. Therefore, if P
∗ wins Hyb1, we have with probability at least

ϵ(λ) that x ̸∈ L, WI.V1 ((x, sout, c), zk1, zk2) = 1 and TDCheck(sin, sout) = 0 where sout is the unique
de-commitment value of c (this is by the definition of Hyb1 and the binding property of Com). This

22

implies that with non-negligible probability ϵ(λ), (x, sout, c) ̸∈ Lwi and WI.V1 ((x, sout, c),wi1,wi2) =
1, which breaks the soundness property of WI. ■

Combining Claim 4.6 and Claim 4.7 we have that there exists a negligible function µ(·) such
that p0 ≤ µ. This concludes the proof of Lemma 4.5.

4.5 Proof of Advice ZK

Lemma 4.8. The construction 4.3 is S-advice ZK as per Definition 4.1.

Proof. We will show that for every non-uniform ppt adversary V∗ there exists an S-time computable
advice distribution D and a ppt simulator S such that for every (x,w) ∈ RL the distributions
REALV∗,Π(λ) and IDEALS,Π,D(λ) defined in Definition 4.1 are computationally indistinguishable.

We first define the advice distribution D and the simulator S:
Recall that in the IDEALS,Π,D(λ), V

∗ first outputs zk1, and then the advice distribution outputs
some string d that would help the simulator. Advice Distribution D(1λ, zk1):

1. Parse zk1 = (sout,wi1).

2. If TDValid(sout) ̸= 1: set sin = ⊥.
3. Else: set sin = TDSol(sout).

4. Output sin.

Simulator S(1λ, zk1, x, d):

1. Parse d = sin.

2. If sin = ⊥, then send the prover message ⊥ to V∗ and output its view.

3. Otherwise, parse zk1 = (sout,wi1).

4. Compute a non-interactive commitment c = Com(sin; r) to sin using randomness

r←{0, 1}poly(λ).
5. Compute wi2 using (sin, r) as the witness. That is, wi2←WI.Prove((x, sout, c), (⊥, sin, r),wi1).
6. Send (x, zk2 = (c,wi2)) to V∗ and output its view.

First, note that sampling from D can be computed by an S-time algorithm as TDSol is an S-time
algorithm. Next, to show that the view of the adversary is computationally-indistinguishable in
both executions REALV∗,Π and IDEALS,Π,D, consider the adversary V∗, and let zk1 be its first
message. Run d ← D(1λ, zk1). We show that its view in each iteration is computationally-
indistinguishable. Specifically, let (x,w) be the instance that the adversary outputs in the current
iteration such that RL(x,w) = 1. Consider the following sequence of distributions G0, G1 and G2:

• Distribution G0(λ, zk1, x, w, d): This distribution is identical to the view of the adversary
in the current iteration in the real. In particular,

1. Parse zk1 = (sout,wi1).

2. Compute the prover message Pzk(x,w, zk1) honestly by first computing a commitment
c to 0 and then computing wi2 for the statement (x, sout, c) using the witness w.

3. Send (x, c,wi2) to V∗ .

• Distribution G1(λ, zk1, x, w, d): Parse d = sin. This game is identical to distribution G0,
except that the commitment c inside Pzk(x,w, zk1) is computed for sin instead of being a

commitment to 0 as in G0. That is, c = Com(sin; r) for a random r ← {0, 1}poly(λ).

23

• Distributions G2(λ, zk1, x, w, d): We further modify Pzk(x,w, zk1). Now, wi2 is generated
using the witness (sin, r) where r is the random coins used to compute the commitment c.
Note that the proof that the verifier receives is the output of S(1λ, zk1, x, d).

We show that the distributions G0 and G2 are computationally indistinguishable. First, we
show that G0 and G1 are computationally indistinguishable due to the non-uniform hiding of
the commitment scheme and G1 and G2 are indistinguishable due to the non-uniform witness
indistinguishability of the WI scheme. To conclude the proof, we remark that once the view of
the adversary in some particular distribution is computationally-indistinguishable then its output
(i.e., the instance (x,w)) is also computationally-indistinguishable, as follows from a simple hybrid
argument.

Claim 4.9. By the non-uniform hiding of the commitment scheme, the distributions G1 and G2

are computationally indistinguishable.

Proof. Note that the only difference between G2 and G1 is how the commitment c is generated.
Specifically, notice that in G1, c is a commitment to 0 whereas in G2, c is a commitment sin. Let us
assume for contradiction that there exists some ppt distinguisher D, a polynomial p(·) such that
for infinitely many λ ∈ N, D distinguishes the two distributions with advantage 1/p(n).

By a standard averaging argument, there exists a 1/2p(n) fraction of the outputs d of the advice
distribution D, such that, conditioned on such a d occurring in both G1 and G2, D’s advantage in
distinguishing the two distributions is at least 1/2p(n). Fix one such d = (rA, sin). Then, using d we
build a non-uniform adversary B that breaks the hiding of the commitment scheme with advantage
1/2p(n).

Specifically, B is given d, x, w as non-uniform advice. Recall that d = (rA, sin) where rA is
random coins of A and TDCheck(sin, sout) = 1 where sout is defined by rA. Let (sout,wi1) be the
output of A run with coins rA. B then gives the commitment challenger the message m0 = 0 and
m1 = sin and receives a commitment c to mb for a randomly chosen b. It then computes wi2 for the
statement (x, c) by using the witness w. It runs A on inputs (x, c,wi2) to generate the view of A.
As its guess for the challenge bit b, it outputs whatever D outputs on the view of A.

First note that B runs in polynomial time. Second, note that when the commitment challenge
bit b is 0, then B perfectly emulates game G1 for A conditioned on d being the output of the
advice distribution. When b = 1, B perfectly emulates game G2 for A conditioned on d being the
output of the advice distribution. Since, conditioned on d being the output of D, the distinguisherD
distinguishes the two distributions with advantage 1/2p(n), we have that B breaks the non-uniform
hiding of the commitment scheme with advantage 1/2p(n).

This contradicts the non-uniform hiding of the commitment scheme. ■

Claim 4.10. By the non-uniform witness-indistinguishability of the WI argument, the distributions
G2 and G3 are computationally indistinguishable.

Proof. Note that the only difference between G2 and G3 is the witness used in computing the
WI proof. Specifically, notice that in G2, the WI proof is computed using the witness w for the
statement x whereas in G3 the WI proof is computed using the witness (sin, r). Let us assume for
contradiction that there exists some ppt distinguisher D, a polynomial p such that for infinitely
many λ ∈ N, D distinguishes the two distributions with advantage 1/p(n).

By a standard averaging argument, there exists a 1/2p(n) fraction of the outputs d of the advice
distribution D, such that, conditioned on such a d occuring in both G1 and G2, D’s advantage in

24

distinguishing the two distributions is at least 1/2p(n). Fix one such d = (rA, sin). Then, using d we
build a non-uniform adversary B that breaks the hiding of the commitment scheme with advantage
1/2p(n).

Specifically, B is given d, x, w as non-uniform advice. Recall that d = (rA, sin) where rA is
random coins of A and TDCheck(sin, sout) = 1 where sout is defined by rA. Let (sout,wi1) be
the output of A run with coins rA. B then computes a non-interactive commitment c to sin
using randomness r. B then forwards to the witness-indistinguishability challenger the statement
(x, sout, c) as well as the two witnesses w0 = w and w1 = (sin, r). B then receives wi2 computed
using the witness wb for a randomly chosen bit b. It runs A on inputs (x, c,wi2) to generate the
view of A. As its guess for the challenge bit b, it outputs whatever D outputs on the view of A.

First note that B runs in polynomial time. Second, note that when the commitment challenge
bit b is 0, then B perfectly emulates game G2 for A conditioned on d being the output of the
advice distribution. When b = 1, B perfectly emulates game G3 for A conditioned on d being the
output of the advice distribution. Since, conditioned on d being the output of D, the distinguisherD
distinguishes the two distributions with advantage 1/2p(n), we have that B breaks the non-uniform
witness-indistinguishability of the WI argument with advantage 1/2p(n). ■

Combining Claim 4.9 and Claim 4.10, concludes the proof of Lemma 4.8.

5 Subversion Advice-ZK NIZKs

In this section, we first give the formal definition of an subversion advice-ZK NIZK in Section 5.1.
Then, in Section 5.2 we proceed to give our construction which converts any NIZK for NP into a
subversion advice-ZK NIZK for NP while relying on two-round advice zero-knowledge arguments
from Section 4.3.

5.1 Defining Subversion Advice-ZK NIZKs

Definition 5.1. Let L be an NP language, and let RL be its associated relation. Let S be some
super-polynomial function. A NIZK argument Π = (GenCRS,Prove,Verify) for L is an S-subversion
advice-ZK NIZK if for every non-uniform ppt adversary A, there exists a ppt S and an S(·)-
time computable advice distribution D such that the output of the following two distributions are
computationally-indistinguishable:

REALA,Π(λ):

1. Obtain CRS∗ ← A(1λ).
2. A chooses statements adaptively until halting, and the experiment outputs its view upon halt-

ing:

(a) A queries on x. If x /∈ L, A receives ⊥. Else, it receives π = Prove(CRS∗, x, w) where w
is a witness for x.

IDEALS,Π,D(λ):

1. Obtain CRS∗ ← A(1λ).
2. Sample an advice string d from the distribution D(1λ,CRS∗) in S(1λ) time.

3. A chooses statements adaptively until halting, and the experiment outputs its view upon halt-
ing:

25

(a) A queries on x. If x /∈ L, A receives ⊥. Else, it receives π = S(1λ,CRS∗, x, d). Note
that S does not use w.

5.2 Construction of Subversion Advice-ZK NIZKs

Tools. Let L be an NP language and RL be its associated relation. For T, S : N → N be some
super-polynomial functions, we use the following building blocks:

• A delayed-input two-message publicly-verifiable S-advice ZK argument ZK = (V0,P,V1) (Def-
inition 4.1) with perfect completeness and T -adaptive soundness for L.

• A non-interactive perfectly binding and T -extractable commitment Com (Section 3.2) .

• An adaptively-sound NIZK argument NIZK = (GenCRS,Prove,Verify) (Definition 3.1) for the
associated relation of the language

LInner = {(x, zk1, c) | ∃ (zk2, r) s.t. ZK.V1(x, zk1, zk2) = 1 ∧ c = Com(zk2; r)} .

We describe below the construction and the theorem (proven in Section 5.3).

Construction 5.2: Subversion Advice-ZK NIZK Π

GenCRS(1λ):

1. Generate CRSInner ← NIZK.GenCRS(1λ).

2. Compute zk1 ← ZK.V0(1
λ).

3. CRS = (CRSInner, zk1).

Prove(CRS, x, w), where x ∈ {0, 1}λ:

1. Parse CRS as (CRSInner, zk1).

2. zk2 ← ZK.P(x, zk1, w).

3. c = Com(zk2; r) for a random r ∈ {0, 1}poly(λ).
4. Compute πInner = NIZK.Prove (CRSInner, (x, zk1, c), (zk2, r)).

5. Output π = (πInner, c).

Verify (CRS, x, π):

1. Parse CRS as (CRSInner, zk1) and π as (πInner, c).

2. Output the decision of NIZK.Verify (CRSInner, (x, zk1, c), πInner).

Theorem 5.3. Let L be any NP language, let T, S : N → N be some superpolynomial functions.
Then, Π is an adaptively-sound S-subversion advice-ZK NIZK argument for L assuming

1. ZK is a delayed-input, publicly-verifiable two-message S-advice ZK argument with perfect
completeness and T -adaptive soundness;

2. NIZK is an adaptively-sound NIZK argument system for the language LInner;

3. Com be a non-interactive, perfectly binding, and T -extractable commitment.

26

5.3 Proof of Theorem 5.3

We show completeness, soundness and zero-knowledge, where the CRS is honestly generated. This
would show that Π is a NIZK. Moreover, we will show the subversion advice-ZK property, for the
case of a maliciously generated CRS.

Perfect Completeness. Let (x,w) ∈ RL and let π = Prove(CRS, x, w). That is, π = (πInner, c),
where πInner = NIZK.Prove (CRSInner, (x, zk1, c), (zk2, r)) and zk2 ← ZK.P(x, zk1, w) and r is the ran-
domness such that c = Com(zk2; r). From the completeness of the two-round advice ZK argument
it holds that ZK.V1(x, zk1, zk2) = 1. Thus, it holds that (zk2, r) is a valid witness for (x, zk1, c) in
the inner language LInner. Then, from perfect completeness of the inner NIZK argument, we have
that

Pr [NIZK.Verify(CRSInner, (x, zk1, c), πInner) = 1] = 1 .

Adaptive Soundness. We show that for every ppt corrupted prover P ∗ there exists a negligible
function µ(·) such that for every λ ∈ N,

Pr [SoundnessΠ,P ∗(λ) = 1] ≤ µ(λ) .

Towards that end, we consider the following hybrids:

• Hyb0: This is the real soundness game for Π played by P ∗. Recall that in this hybrid, an
honestly generated CRS is chosen according to GenCRS(1λ). Then the corrupted prover P ∗ is
invoked on CRS, and outputs a statement-proof pair (x∗, π). The output of this hybrid is 1 if
x∗ /∈ L and Verify(CRS, x∗, π) = 1. Recall from the construction that CRS is to be parsed as
the tuple (CRSInner, zk1) and π is to be parsed as the tuple = (πInner, c). Then, the winning
condition can be stated more precisely as follows:

Hyb0 outputs 1 if x∗ /∈ L ∧ NIZK.Verify(CRSInner, (x
∗, zk1, c), πInner) = 1 .

• Hyb1: In this hybrid, we require a stronger winning condition. In particular, the win-
ning condition is identical to Hyb0 except that we additionally require that (x∗, zk1, c) be
in the language LInner. In particular, this means that the value ˜zk2 = val(c) commit-
ted inside c is an accepting second message for the statement x∗ w.r.t. the two-round
argument verifier ZK.V1. The winning condition can be more precisely stated as fol-
lows: Hyb1 outputs 1 if (1) x∗ /∈ L; (2) NIZK.Verify(CRSInner, (x

∗, zk1, c), πInner) = 1; (3)
NIZK.Verify(CRSInner, (x

∗, zk1, c), πInner) = 1 ∧ ZK.V1(x
∗, zk1, val(c)) = 1.

Let P ∗ be a non-uniform ppt corrupted prover P ∗, and denote by pi the success probability of
P ∗ in Hybi for i ∈ {0, 1}.

Claim 5.4. By the adaptive soundness of NIZK, for every non-uniform ppt corrupted prover P ∗

there exists a negligible function µ0(·) such that p0 − p1 ≤ µ0(λ).

Proof. Assume there exists a corrupted prover P ∗ and a non-negligible function ϵ(·) such that
p0− p1 ≥ ϵ(λ). We show that P ∗ can be used to construct a cheating prover PNIZK that breaks the
adaptive-soundness of the NIZK for the language LInner: On input an honestly generated CRSInner,
PNIZK samples zk1←ZK.V0(1

λ) and sets CRS = (CRSInner, zk1). It then invokes P ∗ on input CRS to
receive (x∗, π = (πInner, c)). It then outputs the statement (x∗, zk1, c) along with πInner as the proof.

27

To analyse the success probability of PNIZK, first recall that by our assumption that p0 − p1 ≥
ϵ(λ), this implies that the output of PNIZK is such that

Pr [x∗ /∈ L ∧ NIZK.Verify(CRSInner, (x
∗, zk1, c), πInner) = 1

∧ZK.V1(x
∗, zk1, val(c)) ̸= 1] ≥ ϵ(λ) .

If ZK.V1(x
∗, zk1, val(c)) ̸= 1 then this implies that (x∗, zk1, c) /∈ LInner. Therefore, we have that

Pr [(x∗, zk1, c) /∈ LInner ∧ NIZK.Verify∗(CRSInner, (x
∗, zk1, c), πInner) = 1] ≥ ϵ(λ) .

This contradicts the adaptive-soundness of the NIZK. ■

Claim 5.5. By the T -adaptive soundness property of ZK and T -extractability of Com, for every
non-uniform ppt corrupted prover P ∗ there exists a negligible function µ1(·) such that p1 ≤ µ1(λ).

Proof. Assume there exists a corrupted prover P ∗ and a non-negligible function ϵ(·) such that
p1 ≥ ϵ(λ). We show that P ∗ can be used to construct a T -time cheating prover PZK that breaks
the T -adaptive-soundness of the two round ZK argument for the language L: On input the first
message zk1 of the two-round argument ZK, PZK samples CRSInner via NIZK.GenCRS(1λ) and sets
CRS = (CRSInner, zk1). It then invokes P ∗ on CRS to receive (x∗, π = (πInner, c)) as the output. It
then runs the T -time extractor for the commitment scheme Com to extract ˜zk2 from the commitment
c, that is, ˜zk2 = val(c). It then outputs the statement x∗ along with the second message ˜zk2.

To analyse the success probability of PZK, first recall that by our assumption that p1 ≥ ϵ(λ) we
have that,

Pr [x∗ /∈ L ∧ NIZK.Verify∗(CRSInner, (x
∗, zk1, c), πInner) = 1

∧ZK.V1(x
∗, zk1, val(c)) = 1] ≥ ϵ(λ) .

Then, by the perfect T -extraction of Com we have that ˜zk2 equals val(c). Therefore, the output
(x∗, ˜zk2) of PZK is such that

Pr [x∗ /∈ L ∧ ZK.V1(x
∗, zk1, val(c)) = 1] ≥ ϵ(λ) .

This contradicts the T -adaptive soundness of the two round argument ZK. ■

Combining the above two claims, we conclude that for every non-uniform ppt corrupted prover
P ∗ there exists a negligible function µ := µ0 + µ1 such that

Pr [SoundnessΠ,P ∗(λ) = 1] ≤ µ(λ) .

Zero Knowledge. We first give the zero-knowledge simulator S for Π. S samples a simulated
CRS (CRSInner, zk1) where CRSInner is generated using the zero-knowledge simulator SInner of NIZK
and zk1 is honestly generated using ZK.V0. On each query x, S computes a commitment c to all
zero strings, and runs SInner to generate a simulated proof πInner for the statement (x, zk1, c), and
outputs π = (πInner, c).

We show zero-knowledge by considering the following three hybrids.

• Hyb0: This is the real world for the ZK property of Π. The adversary receives an honestly
generated CRS, and on each query (x,w), the experiment checks that (x,w) ∈ RL. If so, it
replies with Prove(CRS, x, w). Otherwise, it replies with ⊥. The output of the experiment is
the view of the adversary.

28

• Hyb1: This hybrid is identical to Hyb0 except we use the ZK simulator SInner to compute
simulated proofs. More specifically, the simulator S generates CRS = (CRSInner, zk1), where
CRSInner is generated by SInner, and zk1 is honestly generated according to ZK.V0(1

λ). On each
query (x,w), the experiment checks that (x,w) ∈ RL. If so, it first computes an accepting zk2
by running ZK.Prove(x, zk1, w) and then computes a commitment c to zk2. It then runs SInner
to generate a simulated proof πInner for the statement (x, zk1, c), and returns π = (πInner, c).

• Hyb2: This hybrid is identical to Hyb1 except that S, for every query, generates the com-
mitment c as a commitment to the value 0. More specifically, the simulator generates
CRS = (CRSInner, zk1), where CRSInner is generated by SInner, and zk1 is honestly generated
according to ZK.V0(1

λ). On each query (x,w), the experiment checks that (x,w) ∈ RL. If
so, it first computes an accepting zk2 by running ZK.Prove(x, zk1, w) and then computes a
commitment c to zk2. It then runs SInner to generate a simulated proof πInner for the statement
(x, zk1, c), and returns π = (πInner, c).

Claim 5.6. By the zero-knowledge property of NIZK and the perfect completeness of the two round
argument ZK, the view of the adversary A in Hyb0 and Hyb1 are indistinguishable.

Proof. Assume there exists such adversary A for which there exists a non-uniform ppt distinguisher
D that can distinguish with non-negligible probability between A’s output in Hyb0 and Hyb1. We
show that A can be used to construct a non-uniform ppt adversary AInner that breaks the zero-
knowledge of NIZK: AInner receives CRSInner (generated by either NIZK.GenCRS(1λ) or SInner(1λ)).
It computes zk1 ← ZK.V0(1

λ) and sends CRS = (CRSInner, zk1) to A. On each query (x,w) that
A makes to its oracle, AInner computes zk2 as in Prove and then computes a commitment c to zk2
using randomness r. It then queries its oracle on ((x, zk1, c), (zk2, r)). It receives the oracle’s output
πInner and sends (πInner, c) to A. It outputs A’s output.

First, by the perfect completeness of the two-round argument, we have that for any query
(x,w) ∈ L by A, the query ((x, zk1, c), (zk2, r)) generated by AInner is such that (x, zk1, c) ∈ LInner

where (zk2, r) is the witness. Now, D can be used as a distinguisher for NIZK: If AInner is interacting
with the real experiment, then it perfectly simulates A in Hyb0. If AInner is interacting with the
SInner, then it perfectly simulates A in Hyb1. Since D can distinguish between A’s output in both
executions, then it distinguishes between AInner’s outputs between the real experiment and the
simulated experiment with non-negligible probability as well, violating the zero-knowledge property
of NIZK. ■

Claim 5.7. By the hiding of the commitment scheme Com, the view of the adversary A in Hyb1
and Hyb2 are indistinguishable.

Proof. Assume there exists such adversary A for which there exists a non-uniform ppt distinguisher
D that can distinguish with non-negligible probability between A’s output in Hyb1 and Hyb2. We
show that A can be used to construct a non-uniform ppt adversary B that breaks the hiding of
Com:

B first computes CRS = (CRSInner, zk1) as in Hyb1. That is, CRSInner is computed by running
SInner and zk1 is computed honestly. On each query (x,w) that A makes to its oracle, B computes
zk2 as in Prove, and then forwards (zk2, 0

λ) as the two challenge messages for the hiding game.
Upon receiving the challenge commitment c∗ (which is either a commitment to zk2 or to 0λ), B
runs SInner on the statement (x, zk1, c

∗) to generate a simulated proof πInner. It sends (πInner, c
∗) to

29

A. It outputs A’s output. It then runs the distinguisher D on A’s view and outputs whatever it
outputs.

If B is interacting with the challenger of the hiding game of Com with challenge bit b = 0, then
it perfectly simulates A in Hyb1. Otherwise, when b = 1, then B perfectly simulates A in Hyb2.
Since D can distinguish between A’s output in both executions, then it distinguisher between the
case of b = 0 and b = 1. ■

Subversion Advice-ZK NIZK. We show that for every ppt adversary A, there exists a ppt sim-
ulator S and an advice distribution D such that the distributions REALA,Π(λ) and IDEALS,Π,D(λ)
defined in Definition 5.1 are computationally indistinguishable.

We first give the description of the D and S. Towards this, it will be helpful to consider the
following ppt adversary AZK for the advice -ZK property of ZK = (V0,P,V1). In particular:

1. AZK runs A(1λ) to generate CRS = (CRSInner, zk1).

2. It forwards zk1 as its first message.

3. For each iteration until A halts:

(a) When A queries on (x,w), it outputs (x,w).

(b) Then, upon receiving zk2 from the challenger, it internally computes πInner identically to
the honest prover algorithm Prove. In particular, it computes a commitment c to zk2
using randomness r and then computes a NIZK proof for the statement (x, zk1, c) using
witness (zk2, r).

(c) It then sends π = (πInner, c) to A.
4. When A halts, AZK simply outputs A’s view.

Now, since ZK = (V0,P,V1) satisfies advice ZK, we know that for AZK as constructed above
there exists an advice distribution DZK and SZK such that REALAZK,ZK(λ), and IDEALSZK,ZK,DZK

(λ)
(as defined in Definition 4.1) are computationally indistinguishable. We will use DZK and SZK to
define D and S respectively in a straightforward way.

Advice Distribution D(1λ,CRS):

1. Sample an advice dZK from DZK(1
λ,CRSInner).

2. Output d = dZK.

Simulator S(1λ,CRS, x, d):

1. Parse CRS = (CRSInner, zk1) and d = dZK.

2. Run SZK(1λ,CRSInner, x, dZK) to compute zk2.

3. Abort if ZK.Verify(x, zk1, zk2) ̸= 1.

4. Compute πInner like the honest prover algorithm Prove. That is, computes a commitment c to
zk2 using randomness r and then computes a NIZK proof for the statement (x, zk1, c) using
witness (zk2, r).

5. Send (x, π = (πInner, c)) to A and output its view.

First note that since DZK can be computed by an S-time algorithm, we have that D also can be
computed by an S-time algorithm. To conclude the proof we observe that A’s view in REALA,Π(λ) is
identical to AZK’s view in REALAZK,ZK(λ). Similarly, A’s view in IDEALS,Π,D(λ) is identical to AZK’s
view in IDEALSZK,ZK,DZK

(λ). Then, the proof follows by the computationally indistinguishability of
REALAZK,ZK(λ) and IDEALSZK,ZK,DZK

(λ).

30

6 Accountable Soundness

In this section, we define accountable soundness for any non-interactive argument system in the
CRS model which captures both NIZKs and SNARGs.

There are two aspects to our definition, depending on whether the CRS is honestly or maliciously
generated. When the CRS is honestly generated, we require that the scheme satisfies the same
traditional security requirements (e.g., either be a NIZK or a SNARG). In the latter case, we want
to prevent the authority from running a service in which it provides accepting proofs for (either
valid or invalid) statements without receiving the corresponding witness. If it does run such a
service, we should be able to implicate the malicious authority for its wrongdoing. We define an
extractor that interacts with the malicious authority and comes up with a piece of evidence τ that
can be presented to a Judge, defined by a Judge algorithm, who verifies whether the presented piece
of evidence is valid. At the same time, we require that no efficient adversary can compute a piece
of evidence that can falsely accuse an honest authority.

Consider a non-interactive argument system consisting of a triplet of algorithms Π =
(GenCRS,Prove,Verify). In addition, we define a ppt algorithm Judge, which is necessary to define
accountable soundness for maliciously

• b← Judge(CRS, τ) where b ∈ {honest, corrupted}: The algorithm receives as input the (possi-
bly corrupted) CRS and some transcript τ , and outputs a bit b, indicating whether the CRS
CRS is corrupted of not.

Definition 6.1 (Argument System with Accountable Soundness). Let L ∈ NP. We say that
a non-interactive argument system Π = (GenCRS,Prove,Verify, Judge) for L achieves accountable
soundness with respect to distribution D if all the following properties hold:

1. (Accountability:) There exists a ppt extractor E, such that for every (possibly stateful)
ppt adversary A there is a negligible function µ(·) such that for all λ:

|Pr [AccSnd.REALΠ,A(λ) = 1]− Pr [AccSnd.IDEALΠ,A,E(λ) = 1]| ≤ µ(λ)

where random variables AccSnd.REALΠ,A(λ), AccSnd.IDEALΠ,A,E(λ) are:

AccSnd.REALΠ,A(λ):

• CRS∗ ← A(1λ);
• x← D(1λ);
• Query A on x and receive back a proof π.

• The output is 1 iff
Verify(CRS∗, x, π)=1.

AccSnd.IDEALΠ,A,E(λ):

• CRS∗ ← A(1λ);
• E(CRS∗) outputs some query x.

• The adversary A receives x and outputs
a proof π.

• Give π to E which replies with τ .

• The output is 1 iff Judge(CRS∗, τ) =
corrupted.

2. (Defamation-free:) For every ppt adversary A, there exists a negligible function µ(·), such
that for all λ ∈ N:

Pr [Judge(CRS, τ) = corrupted : CRS← GenCRS(1λ); τ ← A(CRS)] ≤ µ(λ) .

We next define NIZKs (resp., SNARGs) with accountable soundness.

31

Definition 6.2. A non-interactive argument system Π = (GenCRS,Prove,Verify, Judge) for any
NP language L is a NIZK (resp., SNARG) with accountable soundness w.r.t. distribution D if
(GenCRS,Prove,Verify) is a NIZK (resp., SNARG) for L and it satisfies accountable soundness
w.r.t. D.

Notation. For a distribution D over RL ⊆ {0, 1}∗ × {0, 1}∗ (i.e., pairs of instances and their
associated witnesses), we denote by M(DRL) the marginal distribution over the instances only
where the distributions are parameterized by the security parameter.

Comparison with Ananth et al. [AADG21]. Our definition is inspired by the definition of
accountability of Ananth et al. [AADG21]. Their definition is with respect to an authority who
helps others to open witnesses of proofs proven with respect to the maliciously generated CRS∗.
We highlight few differences from the definition of [AADG21]:

• Universal extractor: The definition of [AADG21] requires that for every malicious author-
ity A there exists an extractor, whereas we require a universal extractor that works for all
possible malicious authorities. Ours is a stronger definition, and we believe it is more nat-
ural. Specifically, if one identifies that the authority misbehaves, our definition guarantees
explicit instructions on how to hold the authority accountable, as opposed to the definition
in [AADG21] which only guarantees the existence of such instructions which may additionally
depend on the specific code of the authority.

• Probability of errors: The definition in [AADG21] allows a gap between the probability
that the adversary succeeds in the real, vs. the probability that the extractor succeeds to
hold the authority accountable in the ideal. Specifically, it just requires that if the authority
succeeds with some non-negligible probability in the real, then the extractor succeeds with
some non-negligible probability in the ideal. The gap between the two might be large. We
require that the gap between the two is only negligible.

7 Constructions of Non-interactive Arguments with Accountable
Soundness

In this section, we provide several constructions of non-interactive arguments with accountable
soundness. Section 7.1 gives a construction for languages in NP ∩ co-NP and its generalization.
But, this construction crucially relies on the ability to efficiently sample NO instances along with an
efficiently checkable witness of non-membership. Towards capturing general languages, we discuss
sparse languages in Section 7.2 and Section 7.3, and also give a general feasibility result for NP
in Section 7.4. A particularly interesting aspect of our constructions is that we only add a (short)
random string to the CRS of an non-interactive argument system, and do not change the prover and
the verifier algorithms. Thus, our constructions preserve the privacy (e.g., ZK) and the efficiency
(e.g., succinctness and prover/verifier time) properties of the underlying non-interactive argument.

7.1 Construction for Languages in NP ∩ co-NP

Let L be a NP∩coNP language with relations RL and RL over L and its complement L respectively.
Let Π′ = (GenCRS′,Prove′,Verify′) be any non-interactive argument system for L. We present the
construction Π below followed by the security theorem and its proof.

32

Construction 7.1: Non-interactive argument with accountable sndness

GenCRS(1λ): Output CRS←GenCRS′(1λ).
Prove(CRS, x, w): Output π←Prove′(CRS, x, w).
Verify (CRS, x, π): Output b←Verify′(CRS, x, π).
Judge (CRS∗, τ = (x∗, π∗, w∗)):

• Output b = corrupted iff Verify(CRS∗, x∗, π∗) = 1 ∧ RL(x
∗, w∗) = 1.

Theorem 7.2. Let L be any NP ∩ coNP language, and RL and RL be the relations for L and its
complement L. Let Π′ = (GenCRS′,Prove′,Verify′) be a non-interactive adaptively sound argument
for the language L. Then, the above construction Π is a non-interactive argument system for L
with accountable soundness w.r.t. any distribution D over {0, 1}∗ for which there exists a distri-
bution DRNo over RL such that the marginal distribution M(DRNo) and D are computationally
indistinguishable. Further, if Π′ is a NIZK (resp., SNARG) then Π is a NIZK (resp., SNARG)
with accountable soundness for D.

Proof. The completeness and soundness properties hold by the completeness and soundness of the
non-interactive argument Π′. Moreover, GenCRS, Prove and Verify are identical to GenCRS′, Prove′

and Verify′ respectively. Therefore, if Π′ is a NIZK (resp., SNARG), then so is Π. Next, we show
that the accountability and defamation free properties hold:

Accountability. We describe the extractor E :

1. It receives (possibly maliciously generated) CRS∗ generated by the authority.

2. Sample (x,w) from DRNo(1
λ).

3. Query A on x and receive back π.

4. Output τ = (x,w, π).

We claim that the view of the malicious authority is indistinguishable between AccSnd.REAL and
AccSnd.IDEAL. In AccSnd.REAL, the authority receives x sampled according to D. In the ideal, the
extractor samples (x,w) according to DRNo, and then gives x to the authority. This is equivalent
to sampling from M(DRNo), and according to our assumption, M(DRNo) ≈c D.

We conclude that the authority provides a valid proof to the extractor query with probability
negligibly close to the probability in the real experiment. Whenever the authority provides a
valid proof in the ideal, the extractor provides τ that makes Judge accept, and the output of
AccSnd.IDEAL is 1.

Defamation Free. We show that for an honestly generated CRS CRS ← GenCRS(1λ), no ppt
adversary A can output τ = (x∗, π∗, w∗) for which Judge accepts with non-negligible probability.

Suppose that there exists a ppt adversary A and a non-negligible function ϵ(·) such that
Pr[Judge(CRS,A(CRS)) = corrupted] ≥ ϵ(λ) for an honestly generated CRS ← GenCRS(1λ). We
show that A can be used to construct a ppt corrupted prover P that breaks the adaptive soundness
property of the inner NIZK system Π′ = (GenCRS′,Prove′,Verify′) with non-negligible probability:
Given an honestly generated CRS′ ← GenCRS′(1λ) as an input, P sets CRS = CRS′ and runs
A(CRS) to obtain it’s output τ . It parses τ = (x∗, π∗, w∗) and outputs (x∗, π∗).

First, since A is a ppt algorithm, then so is P . Second, P perfectly simulates A in the
defamation-free experiment. Therefore, A outputs τ = (x∗, π∗, w∗) such that Pr[Judge(CRS, τ) =

33

corrupted] ≥ ϵ(λ). That is, Verify(CRS, x∗, π∗) = 1 and (x∗, w∗) ∈ RL. Thus, we have
Verify(CRS, x∗, π∗) = Verify′(CRS, x∗, π∗) = 1 and x∗ ̸∈ L. Overall, the following violates the
adaptive soundness property of Π′:

Pr[SoundnessΠ′,P (λ) = 1] = Pr[Verify′(CRS, x∗, π∗) = 1 ∧ x∗ ̸∈ L]

= Pr[Verify(CRS, x∗, π∗) = 1 ∧ x∗ ̸∈ L]

= Pr[Verify(CRS, x∗, π∗) = 1 ∧ (∃w∗ : (x∗, w∗) ∈ RL)] ≥ ϵ(λ) .

7.1.1 Generalization

The class NP ∩ coNP is both theoretically and practically relevant as it contains many interesting
cryptographic languages. However, for a language L to be in NP∩coNP, all NO instances must have
an efficiently checkable witness for non-membership in L. But Theorem 7.2’s proof readily extends
to languages L where only sufficiently large (but still only negligible fraction) of the NO instances
have such a witness. More formally, Theorem 7.2’s proof only requires the existence of a subset
LNo of its complement L along with an efficiently checkable relation RNo over LNo. In particular,
we require that for any x: x ∈ LNo iff ∃w s.t. RNo(x,w) = 1. This is a strict generalization of
NP ∩ coNP and it allows us to capture more languages.

Then, consider a minor modification of the construction Π where the Judge algorithm uses the
relation RNo instead of RL. Then, this modified construction achieves accountable soundness for
distributions D as long as there exist a computationally indistinguishable distribution DRNo over
RNo. We formalize this in the subsequent theorem whose proof is identical to that of Theorem 7.2.

Theorem 7.3. Let L be any NP language, RL be the its relation. For LNo ⊆ L̄, let RNo be
the its relation. Let Π′ be a non-interactive adaptively sound argument for L. Then, there ex-
ists a non-interactive argument system with accountable soundness w.r.t. any distribution D over
{0, 1}∗ assuming the existence of a distribution DRNo over RNo such that the marginal distribution
M(DRNo) and D are computationally indistinguishable. Further, if Π′ is a NIZK (resp., SNARG)
then Π is a NIZK (resp., SNARG) with accountable soundness for D.

7.1.2 Examples

We present examples of several languages beyond NP ∩ co-NP for which accountable soundness is
achievable. A key feature of these languages is that the instances contain commitments/encryptions
where the plaintext satisfies an efficiently verifiable relation (e.g., preimage of a one-way function).
For such languages, we can exhibit LNo (and RNo) and DRNo relying on semantic-security of the
commitments/encryptions.

GMW Compiler on Yao’s 2PC. The GMW compiler [GMW87] is a central compilation tech-
nique in cryptography that allows to upgrade any multi-party computation protocol with semi-
honest security to malicious security. For simplicity, we discuss applying the GMW compiler to
Yao’s semi-honest secure 2PC protocol [Yao86]. Recall, Yao’s protocol relies on a two-round oblivi-
ous transfer protocol (OT1,OT2,OT3) where OT1 (resp., OT2) computes receiver’s (resp., sender’s)
message, and the receiver uses OT3 to compute its output, and a garbled circuit Garble = (Gen,Eval).
In the protocol, the receiver first generates and sends ot1 on its input b ∈ {0, 1}, followed by the
sender garbling the circuit C(x, ·) that has its input x hardwired and generating appropriate ot2

34

w.r.t. the keys obtained by the garbling. To get malicious security, the sender also sends a NIZK
proof for the following language that shows that the message is well-formed:

LGMW =
{
(ot1, ot2, Ĉ) : ∃(x, rOT, rGC) s.t.

(Ĉ,k0,k1)=Gen(C(x,·);rGC)
ot2=OT2(ot1,k0,k1;rOT)

}
.

This language may not be in NP ∩ co-NP as LGMW consists of strings (ot1, ot2, Ĉ) where Ĉ
may be outside the range of the Gen algorithm for which no efficiently checkable witness may
exist. However, consider the subset LNo ⊆ LGMW containing tuples (ot1, ot2, Ĉ) where Ĉ garbles a
constant function:

LNo =
{
(ot1, ot2, Ĉ) : ∃(b, r, x, rOT, rGC) s.t.

ot1=OT1(b;r);z=C(x,b);(Ĉ,k0,k1)=Gen(z;rGC)
ot2=OT2(ot1,k0,k1;rOT)

}
.

The associated relation RNo takes an instance (ot1, ot2, Ĉ) and a witness (b, r, x, rOT, rGC), and
verifies that Ĉ is indeed a garbling of the constant function that outputs z = C(x, b). Given
any NIZK for LGMW, we can obtain another NIZK that achieves accountable soundness w.r.t. the
uniform distribution D over LGMW: the required distribution DRNo is the uniform distribution over
RLNo

, and computational indistinguishability follows from the security of garbling.

ZCash’s POUR transaction. The ZCash cryptocurrency [BSCG+14] uses ZK-SNARKs for pri-
vacy. ZK-SNARKs are NIZKs with short proofs and a polylogarithmic time verifier. In ZCash,
such NIZKs are used for its POUR transaction that allows any user to pour the value of two of
its coins (cold1 , cold2) into two new coins while preserving the monetary value. Here, a user needs
to generate its new coins cnew1 , cnew2 and post hiding commitments to the description of these coins
along with a NIZK proof that proves (among other things) (a) ownership of old coins cold1 , cold2 ,
(b) well-formedness of new coins cnew1 , cnew2 , and (c) the total value in old coins and new coins are
equal, that is, vnew1 + vnew2 = vold1 + vold2 . At a high level, LNo contains instances which are identical
except that the condition (c) is not satisfied. The hiding of the commitment scheme will ensure
that random instances from LPOUR and LNo are indistinguishable.

Please refer to [BSCG+14] for a formal description of LPOUR; we only discuss a simpler ab-
straction below. The instances in LPOUR are tuples (rt, snold1 , snold2 , cnew1 , cnew2) with the witness
{(pathi, coldi , roldi , voldi , rnewi , vnewi , snnewi)}i∈[1,2] where:

1. for both i ∈ {1, 2}:

(a) pathi is the Merkle membership proof for coldi w.r.t. the Merkle root rt.

(b) coldi = Com(snoldi ||voldi ; roldi); cnewi = Com(snnewi ||vnewi ; rnewi).

2. vold1 + vold2 = vnew1 + vnew2 .

Note that LPOUR may not be in NP ∩ coNP as LPOUR contains instances where strings cnew

may be outside the range of Com, and there may not be any efficiently checkable witness for this.
However, let LNo be the subset of LPOUR that samples instances identically to LPOUR except that
condition (2) doesn’t hold for the new coins. One can verify that LNo has an efficient-to-compute
relation RNo.

For accountable soundness, consider the distribution D that samples instances from LPOUR

while using uniform randomness to compute c where D may choose values (and other attributes
of the coins) arbitrarily. Then, we can transform any NIZK for LPOUR to additionally achieve
accountable soundness for D: the required distribution DRNo over RLNo

is the uniform distribution,

35

and the required computational indistinguishability follows from the hiding of Com. Recall that
our compiler for achieving accountable soundness only adds the Judge algorithm without changing
the underlying NIZK’s CRS as well as Prove/Verify algorithms. Therefore, we can already upgrade
ZK-SNARKs, currently implemented in ZCash, to satisfy accountable soundness.

Non-interactive Commitments. Let Com be any perfectly binding non-interactive commitment
scheme. Then, consider the language Lc,1 = {c : ∃r s.t. c = Com(1; r)}. This language may not
be in NP ∩ co-NP as Lc,1 also consists of strings outside the range of Com for which no efficiently
checkable witness may exist. However, for LNo = {c : ∃r s.t. c = Com(0; r)} there exists an
efficiently checkable relation RNo such that for every c ∈ LNo there exists some witness r for which
RNo(c, r) = 1 (and vice versa). For accountable soundness, a particularly interesting distribution
D is the uniform distribution over Lc,1 for which the uniform distribution over RLNo

satisfies the
required computational indistinguishability due to the hiding of Com.

Validity of Ciphertexts. Next, we consider the NP language that consists of well-formed cipher-
texts where the plaintext satisfies a publicly-verifiable relation. NIZKs for such languages have
appeared in several different applications including providing range proofs [BBB+18] and building
verifiable timed signatures [TBM+20]. For simplicitly, we choose to describe the language w.r.t.
encryption schemes but our ideas would also extend to languages where that use primitives like
commitments or time-lock puzzles in place of encryption schemes.

As mentioned above the language is parametrized by some PKE encryption scheme
(KgGen,Enc,Dec) and a signature scheme (KgGen, Sign,Ver). The language is as follows:

L = {(pk, vk, ct) : ∃(m,σ, r) : ct = Enc(pk,m||σ; r) ∧ Ver(vk,m, σ) = 1} .

This language may not be in NP ∩ co-NP as L consists of strings (pk, vk, ct) where ct may
be outside the range of the Enc algorithm for which no efficienctly checkable witness may exist.
However, consider the following subset LNo ⊆ L̄ which contains tuples (pk, vk, ct) where ct encrypts
0λ:

LNo =
{
(pk, vk, ct) : ∃r : ct = Enc(pk, 0λ; r)

}
.

For the above language, there does exists an associated relation RNo that on inputs a statement
(pk, vk, ct) and a witness r outputs 1 iff the ct is an encryption of 0λ using randomness r. For
accountable soundness, consider the distribution D that samples instances from L while using
randomness used to sample pk, vk and compute the ciphertext ct uniformly at random. In particular,
D may choose the plaintext to be encrypted arbitarily. Then, we can transform any NIZK for L
to additionally achieve accountable soundness for D: the required distribution DRNo over RLNo

is
the uniform distribution and the required computational indistinguishability would follow from the
semantic security of the PKE scheme.

Hash-time-lock Contracts. Hash-time-lock contracts (HTLC) are a type of smart contracts sup-
ported by Bitcoin and used in several blockchain applications. An HTLC allows a party to redeem
a transaction containing some hash value h if they can produce a pre-image (under SHA256) of h.
Such contracts along with NIZKs have recently found applications in zero-knowledge contingency
payments to execute fair sale of NP secrets [ZKC]. Specifically, Alice wanting to sell a witness w
for some NP statement x generates a secret-key k for some encryption scheme and computes (h, ct)
where h = SHA256(k) and ct is an encryption of w under k. It additionally computes a NIZK proof
π to show the well-formedness of (h, ct) and sends the tuple (h, ct, π) to Bob. Then, Bob generates
a hash-time-lock contract w.r.t. the hash h included by Alice. To redeem, Alice needs to post the

36

pre-image of h on the blockchain which would also allow Bob to learn the witness w via decrypting
ct using the posted pre-image.

More formally, Alice generates a NIZK proof for the following language:

L = {(x, h, ct) : ∃(k,w) s.t. h = SHA256(k) ∧ w = Dec(k, ct) ∧R(x,w) = 1} .

This language may not be in NP∩co-NP as L consists of strings (x, h, ct) where ctmay be outside
the range of the Enc algorithm and no efficienctly checkable witness may exist. However, consider
the following subset LNo ⊆ L which contains tuples (x, h, ct) where ct encrypts a non-witness (e.g.,
a special symbol ⊥):

LNo = {(x, h, ct) : ∃(k, r) s.t. h = SHA256(k) ∧ ct = Enc(k,⊥; r)} .

For the above language, there does exist an associated relation RNo that on inputs a statement
(x, h, ct) and a witness k, r outputs 1 iff ct is an encryption of ⊥ under key k and randomness r.

For accountable soundness, consider the distribution D that samples instances from L while
using randomness used to sample k and compute the ciphertext ct uniformly at random. In par-
ticular, D may choose the plaintext to be encrypted arbitarily. Then, we can transform any NIZK
for L to additionally achieve accountable soundness for D: the required distribution DRNo over
RLNo

is the uniform distribution and the required computational indistinguishability would follow
from the semantic security of the encryption scheme. Note here that we require semantic security
even in the presence of the leakage h which is the hash of the corresponding secret-key. If h is
sufficiently compressing then we can show that the secret-key has enough min-entropy and relyin
on the standard notion of semantic security. Else, modelling SHA256 as a one-way function, we
would need a symmetric-key encryption scheme which is leakage-resilient against computational
leakages of secret-key.

7.2 Construction for Sparse Languages

In this section, we focus on languages where it may not be possible to sample NO instances along
with their witness. In particular, the idea is to “force” a successful defamation-freeness adversary
to find accepting proofs for NO instances. We rely on the “sparsity” of the underlying language L
to achieve this. We next formally define the notion of δ-sparsity and then state our theorem.

Sparsity. For security parameter λ, let L ⊆ {0, 1}ℓ(λ) be a language with instances of length ℓ(λ).
Then, for a function δ = δ(λ), L is δ-sparse if |L| ≤ 2ℓ · δ.

Theorem 7.4. Let L be a δ-sparse language over ℓ bit strings and Π′ be a non-interactive adaptively
sound argument for L. Then, there exists a non-interactive argument system Π with accountable
soundness w.r.t. any distribution D = DRyes over RL as long as M(DRyes) is computationally
indistinguishable from Uℓ and δ2 · 2ℓ is negligible in λ. Further, if Π′ is a NIZK (resp., SNARG)
then Π is a NIZK (resp., SNARG) with accountable soundness for D.

Proof. Towards proving Theorem 7.4, we first outline the construction and discuss the security
proof.

Construction We now give our construction for δ-sparse languages L, for, e.g., δ = 2−3ℓ/4

and ℓ ∈ poly(λ). Let L be any such language in NP, and let Π′ = (GenCRS′,Prove′,Verify′)
be a non-interactive argument system for L. We present the following construction Π =
(GenCRS,Prove,Verify, Judge) of an non-interactive argument with accountable soundness:

37

Construction 7.5: Accountable soundness for sparse languages

GenCRS(1λ):

1. Run CRSΠ = GenCRS′(1λ).

2. Sample x∗←Uℓ.
3. Output CRS = (CRSΠ, x

∗).

Prove(CRS, x, w) where CRS = (CRSΠ, x
∗):

1. Output π = Prove′(CRSΠ, x, w).

Verify (CRS, x, π) where CRS = (CRSΠ, x
∗):

1. Output b = Verify′(CRSΠ, x, π).

Judge (CRS = (CRSΠ, x∗), τ = (x,w, π)):

1. If CRS is not well-formed (i.e., CRS ̸= (CRSΠ, x
∗)) then output corrupted.

2. Otherwise, output corrupted iff RL(x,w) = 1, and Verify(CRS, x∗ ⊕ x, π) = 1.
(Note that π is a proof for the statement is x∗ ⊕ x and not x.)

Security Proof. The completeness and soundness properties hold by the completeness and sound-
ness of the non-interactive argument Π′. Moreover, GenCRS is identical to GenCRS′ except that we
add random string x∗ of length ℓ in the CRS, and Prove and Verify algorithms ignore x∗ and behave
identically to Prove′ and Verify′. Therefore, if Π′ is a NIZK (resp., SNARG), we can conclude that
so is Π.

Next, we show that the accountability and defamation free properties hold:

Accountability. We present the extractor Ext. Let A be some ppt adversary. The extractor has
one black-box query to the adversary A, after A gives out CRS∗.

1. The extractor is invoked on an input CRS∗. If CRS∗ is not of the form of (CRSΠ, x
∗) then just

use x∗ = 0.

2. It samples (x,w)← DRyes and queries A on x∗ ⊕ x, to receive π.

3. It outputs τ = (x,w, π).

Recall that in real world, A is queried on some random x sampled from DRyes whereas in the ideal
world the extractor samples some x ∈ L, but then queriesA on the input x⊕x∗. We proceed to show
that AccSnd.REALΠ,A(λ), AccSnd.IDEALΠ,A,E(λ) are negligibly close via the following sequence of
hybrids.

• Hybrid Hyb0: This is identical to AccSnd.REALΠ,A,E(λ). More specifically,

1. CRS = (CRS∗, x∗)←A(λ).
2. Sample (x,w)←DRYes.

3. Query A on x to get back π.

4. Output 1 iff Verify(CRS, x, π) = 1.

38

• Hybrid Hyb1: This is identical to Hyb0 except that x←Uℓ.

• Hybrid Hyb2: This is identical to Hyb1 except that A is queried on the statement x ⊕ x∗

instead of querying it on x (as in Hyb1) where x←Uℓ. Furthermore, the winning condition of
this hybrid is now changed: Hyb2 outputs 1 only if Verify(CRS, x⊕ x∗, π) = 1.

• Hybrid Hyb3: This is identical to Hyb2 except that we switch to sampling (x,w)←DRYes.
Recall that the output of hybrid is 1 if Verify(CRS, x⊕ x∗, π).

• Hybrid Hyb4: This hybrid is identical to Hyb3 except that the output condition of this hybrid
is now changed: Hyb4 output 1 if Verify(CRS, x ⊕ x∗, π) = 1 ∧ RL(x,w) = 1. This is the
identical to AccSnd.IDEALΠ,A,E .

For each i ∈ {0, . . . , 4}, let pi be the probability that the hybrid Hybi outputs 1. To conclude
the proof we need to argue that there exists some negligible function µ such that |p0 − p4| ≤ µ(λ).
First, by the indistinguishability of M(DRYes) and Uℓ, we can conclude that there exist negligible
functions µ01, µ23 such that |p0 − p1| ≤ µ01 as well as |p2 − p3| ≤ µ23. Furthermore, p1 = p2 as the
two hybrids Hyb1 and Hyb2 are identical. Finally, we argue that p3 = p4: the only difference between
the hybrids Hyb3 and Hyb4 are their respective winning conditions: in particular, Hyb3 outputs 1
only if Verify(CRS, x⊕x∗, π) = 1 whereas Hyb4 additionally also need RL(x,w) = 1. However, note
that in both hybrids RL(x,w) = 1 and so p3 = p4. Therefore, |p0 − p4| is upperbounded by the
negligible function µ = µ01 + µ23.

Defamation free. We show that it is infeasible to frame an honestly generated CRS. First, we
claim that

Pr
x∗←Uℓ

[∃x ∈ L s.t. x∗ ⊕ x ∈ L] ≤
∑
x∈L

Pr
x∗←Uℓ

[x∗ ⊕ x ∈ L] ≤ |L| |L|
2ℓ

= δ2 · 2ℓ ,

which is negligible according to our assumption in the theorem statement.
Now, fix some ppt adversary A. Denote by winA the event in which CRS = (CRSΠ, x

∗) is
chosen honestly according to GenCRS(1λ), and then A, on input CRS outputs (x,w, π) such that
Judge((CRSΠ, x

∗), (x,w, π)) = corrupted.

Pr [winA] = Pr [winA ∧ x⊕ x∗ ̸∈ L] + Pr [winA ∧ x⊕ x∗ ∈ L]

≤ Pr [winA ∧ x⊕ x∗ ̸∈ L] + δ2 · 2ℓ

where the latter holds since the probability is taken also over the choice of the x∗ (as part of the
honestly generated CRS), and thus the probability that there exists a x ∈ L such that x⊕ x∗ ∈ L
is at most δ2 · 2ℓ. Thus, if there exists an adversary that can break defamation free, we can use
the adversary to break the soundness of the underlying NIZK: on an honestly generated CRSΠ ←
GenCRS′(1λ) we choose a random x∗ and run A on (CRSΠ, x

∗). When A outputs (x,w, π) such
that Judge((CRSΠ, x

∗), (x,w, π)) = corrupted then with non-negligible probability it holds that
x ⊕ x∗ ̸∈ L, but Verify′(CRSΠ, x

∗ ⊕ x, π) = 1, in contradiction to the soundness property of the
underlying NIZK system.

39

7.2.1 Examples of Sparse Languages

We next present two examples of languages that satisfy the necessary sparseness requirements.

PRG language. As an example of a language that is captured by this construction, consider the
langage which consists of outputs of pseudorandom generators. Let G : {0, 1}λ → {0, 1}ℓ(λ) be a
pseudorandom generator with expansion factor ℓ(λ). Consider the language:

L = {y ∈ {0, 1}ℓ(λ) | ∃x ∈ {0, 1}λ s.t. G(x) = y} .

DRyes is constructed in the natural way (sample x and apply G(x)). From the pseudo-randomness
property of the PRG we have that M(DRyes) is indistinguishable from Uℓ(λ), and we can construct
non-interactive arguments with accountable-soundness as long as ℓ(λ) = 2λ+ poly log(λ).

Sequential Composition of Hash. Let H : {0, 1}λ → {0, 1}λ/2 be an unkeyed hash function
(e.g., SHA-256) where λ is sufficiently large even number. We emphasize that this is just a hash
function and not a keyed hash family as typically required for complexity theoretic anaylsis. For
some repetition parameter T , consider the following language:

L =
{
xT+1 ∈ {0, 1}λ/2 : ∃x0 = (0⌊7λ/8⌋ || y) ∈ {0, 1}λ s.t. ∀i ∈ [T] xi = H(0λ/2||xi−1)

}
.

In essence, a non-interactive argument of knowledge for L proves knowledge of a structured pre-
image of a hash output obtained via repeated hashing. This language is a prominent benchmark
for designing time- and space-efficient arguments for RAM computations [BHR+20, BHR+21], and
also can be viewed as proving knowledge of a T -sized chain in a blockchain. Firstly, observe that
L has 2⌈λ/8⌉ instances, thereby it is δ-sparse for δ = 2−⌊3λ/8⌋. Secondly, for some specific hash
function H, we can potentially conjecture that the distribution that generates y as above but for
a uniformly random x0 not of the form (0λ||∗) is indistinguishable from the uniform distribution
over L. Therefore, any adaptively sound SNARG for L can then be lifted to achieve accountable
soundness w.r.t. the uniform distribution.

7.3 Construction for Negligibly Sparse Languages

The construction in Section 7.2 only covers a small subset of languages due to the required sparsity.
In this section, we present a construction for δ-sparse languages for any negligible δ. However,
this construction is worse than the above construction in two aspects: (a) the construction (in
particular, Judge) depends on the distribution D for which accountability is to be shown, and (b)
the defamation-freeness proof requires subexponential hardness assumptions. We note that the
constructions presented in Section 7.1 as well as in this section do not suffer from these limitations:
in particular, the construction is independent of the distribution D and the security proof only
requires polynomial hardness from the building blocks.

Let L be any such δ-sparse NP language. Let Π′ = (GenCRS′,Prove′,Verify′) be a non-interactive
argument system for L. Let D′ be some distribution over L using t(λ) bits of randomness, for some
appropriate t (that depends on δ). Towards the end of this section, we show how to realize such a
D′ from any distribution D additionally assuming subexponentially secure PRG.

We now give the construction Π = (GenCRS,Prove,Verify, Judge) of a non-interactive argument
system with accountable soundness:

40

Construction 7.6: NIZK with accountable soundness

GenCRS(1λ):

1. Run CRS′ = GenCRS′(1λ).

2. Sample x∗←Uℓ.
3. Output CRS = (CRS′, x∗).

Prove(CRS, x, w) where CRS = (CRS′, x∗):

1. Output π = Prove′(CRS′, x, w).

Verify (CRS, x, π) where CRS = (CRS′, x∗):

1. Output b = Verify′(CRS′, x, π).

Judge
(
CRS = (CRS′, x∗), τ = (x′, r, π)

)
:

1. If CRS is not well-formed (i.e., CRS = (CRS′, x∗)) then output corrupted.

2. Otherwise, output corrupted iff x′ = D(r), and Verify(CRS, x∗ ⊕ x′, π) = 1.

Theorem 7.7. Let δ be some negligible function and let L be δ(λ)-sparse language L over
ℓ(λ)-bit strings, and let D′ be a distribution over L using t(λ) bits of randomness. Then, if
Π′ = (GenCRS′,Prove′,Verify′) be a non-interactive adaptively sound argument for L, then the
construction Π as described above achieves satisfies accountable soundness for L w.r.t. D′ as long
as D′ ≈c Uℓ and δ · 2t is negligible in λ.
Further, if Π′ is a NIZK (resp., SNARG) then Π is a NIZK (resp., SNARG) with accountable
soundness for the distribution D.

Proof of Theorem 7.7. The completeness and soundness properties hold by the completeness and
soundness of the non-interactive argument Π′. Moreover, GenCRS is identical to GenCRS′ except
that we add random string x∗ of length ℓ in the CRS, and Prove and Verify algorithms ignore x∗

and behave identically to Prove′ and Verify′. Therefore, if Π′ is a NIZK (resp., SNARG), we can
conclude that so is Π.

Next, we proceed to show accountable soundness. Here, accountability follows identically to
the proof of accountability in Theorem 7.4. We now proceed to discuss defamation-freeness.

Recall that to show defamation-freeness, we need to show that the no PPT adversary A when
given a honestly generated CRS, can output a certificate τ = (x′, r, π) that the Judge accepts with
overwhelming probability. Recall that the Judge algorithm accepts τ iff π is an accepting proof for
x = x′ ⊕ x∗ and that x′ is chosen from the support of the distribution D′.

Towards this, we first show that, over the choice of x∗, it is only with negligible probability that
there exists any x′ in the support of the distribution D′ for which x = x∗ ⊕ x′ is even in L: By the
δ-sparseness of L we have that for every x′ in the support of D′

Pr
x∗∈Uℓ

[x∗ ⊕ x′ ∈ L] ≤ δ . (1)

Then, by a union bound over all 2t values of x′ in the support of D′ we have that,

Pr
x∗∈Uℓ

[∃x′ ∈ [D′(·)] : x∗ ⊕ x′ ∈ L] ≤ δ · 2t , (2)

41

which is negligible.
Therefore, for any A, that breaks defamation-freeness with non-negligible probability p, with

probability at least p/2, we have that A outputs a false statement x = x′ ⊕ x∗ along with an
accepting proof for it. Then, we can build a reduction to the adaptive soundness of Π′.

Existence of the distribution D′. Next, we argue that given any distribution D using poly(λ)
bits of randomness, we can construct a distribution D′ using t bits of randomness by assuming
sufficiently strong PRGs.

Claim 7.8. Let δ(λ) be negligible function, L be a δ-sparse language L over ℓ bit strings, and D be
a distribution over L using ℓr bits of randomness. Then, for t = log(1/

√
δ), assuming the existence

of a PRG G from t bits to ℓr there exists a distribution D′ over L that uses t bits of randomness.
Further, D ≈c Uℓ implies D′ ≈c Uℓ.

The construction of the distribution D′ is straightforward: D′(r) outputs D(G(r)). For inverse
subexponential functions δ = 2−λ

ϵ
for 0 < ϵ < 1, a polynomial stretch PRG would be sufficient (i.e.,

t = (λϵ)/2.). Such a PRG can be instantiated from any polynomially-secure PRG. However, for

larger δ’s (e.g., δ = 2− log2 λ) one would need a ”super-polynomial” stretch PRG G that maps seeds
of length polylog(λ) bits to strings of length poly(λ). Such a PRG can be instantiated from any sub-
exponentially-secure PRG by appropriately scaling its security parameter. The indistinguishability
of D′ from Uℓ then follows readily from the pseudorandomness of the PRG as well as the fact that
D ≈c Uℓ.

7.4 General Feasibility for Accountable Soundness

So far in this section we presented compilers to lift any non-interactive argument to additionally
satisfy accountable soundness. However, these compilers relied crucially on algebraic structures of
the language L: in Section 7.1 required the ability to sample NO instances along with a witness
where as in Section 7.2 the language was assumed to be sparse. In this section, we focus on
understanding what cryptographic assumptions are sufficient to achieve accountable soundness for
any NP language.

In particular, for any distribution D, we present a construction of a non-interactive argument
that achieves accountable soundness w.r.t. D under subexponential hardness assumptions. The
description of the construction (more specifically, the Judge) algorithm depends on the distribu-
tion D and we require D to satisfy some natural but strong properties. We proceed to give the
construction.

Construction. Let L be any language in NP on ℓ-bit strings and let D be a distribution over
L using ℓr bits of randomness. Our non-interactive argument Π = (GenCRS,Prove,Verify, Judge)
depends on another non-interactive argument Π′ = (GenCRS′,Prove′,Verify′) for L and a PRG G
from t bits to ℓr bits for parameter t to be specified shortly. The construction of Π is as follows:

Construction 7.9: NIZK with accountable soundness

GenCRS(1λ):

1. Run CRS′ = GenCRS′(1λ).

2. Sample x∗←Uℓ.

42

3. Output CRS = (CRS′, x∗).

Prove(CRS, x, w) where CRS = (CRS′, x∗):

1. Output π = Prove′(CRS′, x, w).

Verify (CRS, x, π) where CRS = (CRS′, x∗):

1. Output b = Verify′(CRS′, x, π).

Judge
(
CRS = (CRS′, x∗), τ = (x′, r, π)

)
:

1. If CRS is not well-formed (i.e., CRS = (CRS′, x∗)) then output corrupted.

2. Otherwise, output corrupted iff x′ = D(G(r)), and Verify(CRS, x∗ ⊕ x′, π) = 1.

Theorem 7.10. Let L be an NP language over ℓ bit strings. Let D be a distribution over L with
the following two properties: (a) D ≈c Uℓ, (b) there exists 0 < ϵ < 1 and a distribution DRno over
L̄ such that no PPT adversary can distinguish DRno from Uℓ with advantage better than 2−λ

ϵ
. Let

Π′ = (GenCRS′,Prove′,Verify′) be a non-interactive argument for L for which no PPT adversary
can break adaptive soundness with probability better than 2−λ

ϵ
and G be a PRG. Then, the above

construction Π is a non-interactive argument for L that satisfies accountable-soundness w.r.t. D.
Further, if Π′ is a NIZK (resp., SNARG) then Π is a NIZK (resp., SNARG) with accountable
soundness for the distribution D.

Proof. The completeness and soundness properties hold by the completeness and soundness of the
non-interactive argument Π′. Moreover, GenCRS is identical to GenCRS′ except that we add random
string x∗ of length ℓ in the CRS, and Prove and Verify algorithms ignore x∗ and behave identically
to Prove′ and Verify′. Therefore, if Π′ is a NIZK (resp., SNARG), we can conclude that so is Π.

Next, we show that Π satisfies accountable soundness w.r.t. D. For this, we first show account-
ability and then proceed to show defamation-freeness.

Accountability. We exhibit the required extractor Ext below. Let A be some ppt adversary. The
extractor has one black-box query to the adversary A, after A gives out CRS∗.

1. The extractor is invoked on an input CRS∗. If CRS∗ is not of the form of (CRSΠ, x
∗) then

output τ = ⊥.

2. Otherwise, it samples a random seed r←Uℓr for the PRG, and uses G(r) as the randomness
to sample a statement x′ from D. That is, x′ = D(G(r)).

3. It queries A on x = x∗ ⊕ x′ to get back π, and outputs τ = (x′, r, π).

We now show that AccSnd.REALΠ,A(λ), AccSnd.IDEALΠ,A,E(λ) are negligibly close. Recall
that in AccSnd.REAL, A is queried on some random x sampled from D whereas in AccSnd.IDEAL
the extractor samples some x′ from D using randomness G(r) and then queries A on the input
x = x′ ⊕ x∗. To show accountability, we consider the following set of intermediate hybrids.

Hybrid H0(λ): This is identical to the AccSnd.REAL game. More specifically,

1. Run A to get CRS = (CRS′, x∗).

43

2. x←D.

3. Query A on x to get π.

4. Output 1 iff Verify(CRS, x, π) = 1.

Hybrid H1(λ): This is identical to H0 except that x←Uℓ instead of x←D.
Hybrid H2(λ): This is identical to H1 except that A is queried on x = x′ ⊕ x∗ for x′←Uℓ.
Hybrid H3(λ): This is identical to H2 except that x′←D instead of x′←Uℓ.
Hybrid H4(λ): This is identical to H3 except that x′ is computed as D(G(r)) for a uniformly
random string r instead of x′←D.
Hybrid H5(λ): This is identical toH4 except that the winning condition is changed. In particular,
this hybrid outputs 1 iff Verify(CRS, x, π) = 1 and x′ = D(G(r)). This hybrid is identical to the
AccSnd.IDEAL game. We explicitly write down this hybrid for clarity.

1. Run A to get CRS = (CRS′, x∗).

2. Set x′ = D(G(r)) for r←Uℓr .

3. Query A on x = x∗ ⊕ x′ to get back π.

4. Output 1 iff Verify(CRS, x, π) = 1 and x′ = D(G(r)).

For Hi, let pi be the probability that Hi outputs 1. We need to show that there exists a
negligible function µ such that | p0 − p5 |≤ µ(λ).

First, note that there exists a negligible function µ03 such that | p0− p3 |≤ µ03(λ). This follows
from the indistinguishability of D and Uℓ: p0 and p1 are negligibly close due to D ≈c Uℓ. The
hybrids Hyb0 and Hyb1 are identical and hence we conclude that p1 and p2 are equal, and finally
p2 and p3 are negligible close due D ≈c Uℓ.

Secondly, the only difference between H3 and H4 is that in the former x′ is sampled from D
using a uniformly random ℓr bit string as the randomness whereas in the latter x′ is sampled from
D using G(r) as a the randomness for a uniformly random t bit string r. Therefore, by the security
of the PRG G, there exists a negligible function µ34 such that | p3 − p4 |≤ µ34(λ).

Finally, the only difference between H4 and H5 is the condition on which the hybrids output
1. Specifically, H4 outputs 1 only if Verify(CRS, x, π) = 1 whereas H5 additionally requires that
x′ = D(G(r)) when outputting 1. However, note that the view of A is identical across both
experiments and the additional condition checked in H5 is always satisfied in H5. Therefore, we
can conclude that p4 and p5 are identical. This concludes the proof of accountability.

Defamation-freeness. We need to show that for a honestly generated CRS = (CRS′, x∗), no
PPT adversary A can output a certificate τ = (x′, r, π) that the Judge algorithm accepts with
non-negligible probability. To show this we consider the following set of hybrids and highlight the
changes across hybrids in red.

Hybrid H0(λ): This hybrid is identical to the defamation-freeness game for Π. More specifically,

1. CRS′←GenCRS′(λ), x∗←Uℓ.

2. Set CRS = (CRS′, x∗).

44

3. Run A on input CRS to get back τ = (x′, r, π).

4. Output 1 iff Verify(CRS, x∗⊕, x′, π) = 1 and x′ = D(G(r)).

Hybrid H1(λ): This hybrid is identical to H0 except that the hybrid samples a guess s for the
randomness r output by A, and outputs 1 only if its guess for r is correct. More specifically,

1. CRS′←GenCRS′(λ), x∗←Uℓ.

2. Set CRS = (CRS′, x∗).

3. Compute s←Uℓr .

4. Run A on input CRS to get back τ = (x′, r, π).

5. Output 1 iff Verify(CRS, x∗⊕, x′, π) = 1 and x′ = D(G(r)) and s = r.

Hybrid H2(λ): This hybrid is identical to H1 except that sample x∗ from a syntactically different
distribution. More specifically,

1. CRS′←GenCRS′(λ).

2. x̃←Uℓ.

3. s←Uℓr , y = D(G(s)).

4. Set x∗ = x̃⊕ y.

5. Set CRS = (CRS′, x∗).

6. Run A on input CRS to get back τ = (x′, r, π).

7. Output 1 iff Verify(CRS, x∗⊕, x′, π) = 1 and x′ = D(G(r)) and s = r.

Hybrid H3(λ): This hybrid is identical to H2 except that x̃ is sampled from DRno distirbution
instead of Uℓ. More specifically,

1. CRS′←GenCRS′(λ).

2. x̃←DRno.

3. s←Uℓr , y = D(G(s)).

4. Set x∗ = x̃⊕ y.

5. Set CRS = (CRS′, x∗).

6. Run A on input CRS to get back τ = (x′, r, π).

7. Output 1 iff Verify(CRS, x∗⊕, x′, π) = 1 and x′ = D(G(r)) and s = r.

For each Hi, let pi be the probability that Hi outputs 1. We want to show that p0 is negligible
for all A. Towards this, first note that p1 = p0/2

t. The hybrids H2 and H1 are identical, hence
p2 = p1.

45

Claim 7.11. By the subexponential indistinguishability of Uℓ and DRno, we have that | p2 − p3 |≤
2−λ

ϵ
.

The only difference between H2 and H3 is that in H2 x̃ is sampled from Uℓ whereas in H3 it is
sampled from DRno. The claim follows.

We conclude the proof by upperbounding the probability p3 relying on the adaptive soundness
of Π′. At a high level, since x̃ is sampled from DRno, if H3 outputs 1 with probability p3 this
implies that A was able to come up with an accepting proof π for the statement x∗ ⊕ x′ and that
s = r. Combining these, we can conclude that x′ = y and furthermore x∗ ⊕ x′ = x̃ which is a NO
instance. Therefore, we can reduce to the adaptive soundness of Π′.

Claim 7.12. By adaptive soundness of Π′, we have that p3 ≤ 2−λ
ϵ
.

Therefore, by combining the above claims, we have that p0 ≤ 2 · 2−λϵ · 2t which is negligible for
t = λδ for 0 < δ < ϵ.

8 Combining Subversion Advice-ZK and Accountable Soundness

In this section, we build NIZKs that satisfy both subversion advice-ZK and accountable soundness.
This results in the first NIZKs that satisfy meaningful notions of privacy as well as soundness for
malicious CRS.

For languages that fit NP ∩ co-NP’s generalization defined in Section 7.1, we start by plugging
in an adaptively sound NIZK argument Π′ for NP in Theorem 5.3 to get a NIZK argument Π that
satisfies subversion advice-ZK. Then, instantiate Theorem 7.2 with such a Π to get a subversion
advice-ZK NIZK Π̃ with accountable soundness: the compiler in Theorem 7.2 preserves subversion
advice-ZK property as it doesn’t change Π’s Prove,Verify,GenCRS algorithms.

Theorem 8.1. Let L be any NP language, RL be its relation. For LNo ⊆ L̄, let RNo be its relation.
For some super-polynomial function T , assume an adaptively sound NIZK for NP, a non-interactive
perfectly binding T -extractable commitment Com, a T -hard trapdoor generation protocol, and a two-
message delayed input, publicly verifiable WI argument for NP with T -adaptive soundness.
Then, there exists a subversion advice-ZK NIZK argument for L that satisfies accountable soundness
w.r.t. distribution D as required in Theorem 7.2.

Similarly, we obtain a subversion advice-ZK NIZK with accountable soundness for sparse lan-
guages from Theorem 7.4 and Theorem 5.3.

Theorem 8.2. Let L be some δ-sparse NP language over ℓ-bit strings such that δ2 · 2ℓ is negligible.
For some super-polynomial function T , assume an adaptively sound NIZK for NP, a non-interactive
perfectly binding T -extractable commitment Com, a T -hard trapdoor generation protocol, and a two-
message delayed input, publicly verifiable WI argument for NP with T -adaptive soundness.
Then, there exists a subversion advice-ZK NIZK argument for L that satisfies accountable soundness
w.r.t. distribution D as required in Theorem 7.4.

Acknowledgements. This work was done partially when Pratik Soni was visiting Carnegie Mel-
lon University, where he was supported by a DARPA SIEVE grant, and an ACE center award from
the Algorand Foundation. Gilad Asharov and Hadar Kaner were supported by Israel Science Foun-
dation (grant No. 2439/20), JP Morgan Faculty Research Award, and European Union’s Horizon

46

2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No.
891234.

References

[AADG21] Prabhanjan Ananth, Gilad Asharov, Hila Dahari, and Vipul Goyal. Towards account-
ability in CRS generation. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021, volume 12698, pages 278–308. Springer,
2021.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC ’96, page 99–108, New York, NY, USA, 1996. Association for Computing
Machinery.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP), pages 315–334, 2018.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of
extractable one-way functions. Cryptology ePrint Archive, Paper 2014/402, 2014.
https://eprint.iacr.org/2014/402.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit
Sahai. Statistical zap arguments. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, pages 642–667, Cham, 2020. Springer Interna-
tional Publishing.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an untrusted
CRS: security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016, volume 10032 of Lecture
Notes in Computer Science, pages 777–804, 2016.

[BHR+20] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Public-coin zero-knowledge arguments with (almost) minimal time and space
overheads. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography,
pages 168–197, Cham, 2020. Springer International Publishing.

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-efficient arguments from groups of unknown order. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages
123–152, Cham, 2021. Springer International Publishing.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In Moni Naor, editor, Theory of Cryptography, pages 121–132, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

47

https://eprint.iacr.org/2014/402

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. Cryptology ePrint Archive, Paper 2014/349, 2014.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In Serge Vaudenay, editor, Advances in
Cryptology - EUROCRYPT 2006, pages 573–592, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: From practice to theory. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
page 1082–1090, New York, NY, USA, 2019. Association for Computing Machinery.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
Advances in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 257–270. Springer, 1994.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, pages
255–271, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, feb 2007.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string. In Proceedings [1990] 31st Annual Symposium on
Foundations of Computer Science, pages 308–317 vol.1, 1990.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 416–426, 1990.

[GGJS11] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Bringing people of dif-
ferent beliefs together to do uc. In Yuval Ishai, editor, Theory of Cryptography, pages
311–328, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic
approach to constructing and proving verifiable random functions. In Yael Kalai and
Leonid Reyzin, editors, Theory of Cryptography, pages 537–566, Cham, 2017. Springer
International Publishing.

[GKM+19] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. Wa-
termarking public-key cryptographic primitives. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 367–398, Cham,
2019. Springer International Publishing.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2018, page 660–670, New York, NY, USA, 2018.
Association for Computing Machinery.

48

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. Beyond software watermark-
ing: Traitor-tracing for pseudorandom functions. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 250–280, Cham,
2021. Springer International Publishing.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, page 218–229, New York, NY, USA, 1987. Association for Computing Machinery.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptol., 7(1):1–32, dec 1994.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred
Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages 323–341, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new tech-
niques for nizk. In Proceedings of the 26th Annual International Conference on Ad-
vances in Cryptology, CRYPTO’06, page 97–111, Berlin, Heidelberg, 2006. Springer-
Verlag.

[Goy07] Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In Advances
in Cryptology - CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science,
pages 430–447. Springer, 2007.

[KZ20] Benjamin Kuykendall and Mark Zhandry. Towards non-interactive witness hiding. In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th Interna-
tional Conference, TCC 2020, volume 12550 of Lecture Notes in Computer Science,
pages 627–656. Springer, 2020.

[LVW19] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. 2-message publicly ver-
ifiable wi from (subexponential) lwe. Cryptology ePrint Archive, Paper 2019/808,
2019.

[NWZ15] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How
to embed arbitrary information in a key. Cryptology ePrint Archive, Paper 2015/750,
2015.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Proceedings of the 22nd International Conference on Theory and
Applications of Cryptographic Techniques, EUROCRYPT’03, page 160–176, Berlin,
Heidelberg, 2003. Springer-Verlag.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for np from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Ad-
vances in Cryptology – CRYPTO 2019, pages 89–114, Cham, 2019. Springer Interna-
tional Publishing.

49

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döttling,
Aniket Kate, and Dominique Schröder. Verifiable timed signatures made practical. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 1733–1750, 2020.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167. IEEE Computer Society, 1986.

[ZKC] Zero-knowledge contingency payment. accessed: February 2023.

50

A Instantiations of Trapdoor Generation

A.1 Trapdoor Generation from One-Way Functions with Efficient Recognizable
Range

Let f = {fλ : Dλ → Rλ}λ be a T -one-way function. Further we assume that f has an efficient
recognizable range, that is, we assume the existence of a ppt algorithm CheckRange that for all λ
and sout ∈ Rλ:

CheckRange(sout) = 1 ⇐⇒ ∃sin ∈ Dλ s.t. fλ(sin) = sout .

We give a construction of the trapdoor generation protocol for such a one-way function:

1. TDGen(1λ) samples a random sin←Dλ and output sout = fλ(sin).

2. TDValid(sout) outputs 1 iff CheckRange(sout) = 1.

3. TDCheck(1λ, sin, sout) outputs 1 iff sout = fλ(sin).

4. TDSol on input sout ∈ Rλ finds an sin ∈ Dλ such that fλ(sin) = sout via brute-force search.

Clearly, TDValid(TDGen(1λ)) = 1. Moreover, for every sout we have that TDValid(sout) = 1
if and only if there exists an sin such that TDCheck(sin, sout) = 1, i.e., sout = fλ(sin). T -hardness
follows from the T -one-wayness of f . Finally, the correctness of TDSol is immediate.

Instantiating T -hard one-way function: For any T , a T -hard OWF g can be obtained from 2λ
ϵ
-

secure OWF f by setting λf = ω(1)·T/ϵ where λf , λ are security parameters of f and g respectively.

Then, T -hardness of g follows from the fact that for any polynomial p, p(T) < 2λ
ϵ
f . Additionally,

g satisfies S-solvability for S = 2λf = 2ω(1)T
1/ϵ

.

A.2 Trapdoor Generation from Collision-Resistant Hash Family

Let H = {hλ : {0, 1}κ(λ) × Dλ → Rλ} be a collision-resistant hash family, where for every λ ∈ N
we have |Rλ| < |Dλ|. Then consider the following construction of trapdoor generation:

1. TDGen(1λ) outputs a random hash function key sout←{0, 1}κ(λ).
2. TDValid(sout) outputs 1 iff sout ∈ {0, 1}κ(λ).
3. TDCheck(1λ, sin = (x0, x1), sout) outputs 1 iff hλ(sout, x0) = hλ(sout, x1) and x0 ̸= x1.

4. TDSol on input sout ∈ Rλ finds an sin ∈ D2
λ such that TDCheck(1λ, sin, sout) = 1 via brute-force

search.

Clearly, TDValid(TDGen(1λ)) = 1. Further, since h is compressing, for every sout there exists
sin = (x0, x1) such that TDCheck(sin, sout) = 1 and x0 ̸= x1. Finally, T -hardness follows from the
T -collision-resistance of H and the correctness of TDSol is immediate.

Instantiating T -collision resistant hash function: As described in the above subsection, for any

T , a T -collision resistant hash function g can be obtained from 2λ
ϵ
-collision resistant hash function

f by setting λf = ω(1) · T/ϵ where λf , λ are security parameters of f and g respectively. Then,

T -hardness of g follows from the fact that for any polynomial p, p(T) < 2λ
ϵ
f .

51

B Subversion Advice-ZK NIZKs satisfy Subversion Witness Hid-
ing, Subversion Function Hiding and More

In this section, we discuss the relation of our new notion of subversion advice-ZK for NIZKs with
several different notions of privacy in the subversion-setting. In particular, we show that it implies
the previously considered notion of subversion-witness-indistinguishability. We also introduce other
relaxed notions including subversion witness-hiding and subversion-function-hiding, and show that
subversion advice-ZK imply them all.

B.1 Subversion Witness Hiding (WH)

Informally, Subversion WH demands that even when the authority creates the CRS maliciously, it
still cannot recover a valid witness for the instance from the proof it was given. The adversary is
modeled as a two-stage algorithm: it first outputs a CRS CRS∗ and a secret state τ passed to the
second stage. The second stage is then defined like the honest-CRS WH game. We emphasize that
WH is meaningful only for languages that are considered ”hard” according to some distribution;
that is, it is infeasible to find a valid witness for the instance, when it is drawn from the distribution.
We first formally define ”hard” distributions.

Definition B.1. Let L be an NP language and RL be its associated relation, let D be a distribution
over instance-witness pairs of RL. We say that L is hard w.r.t. distribution D if for every non-
uniform ppt algorithm A there exists a negligible function µ(·) such that for every auxiliary input
z ∈ {0, 1}∗:

Pr
[
(x,w′) ∈ RL : (x,w)← D, w′ ← A(x, z)

]
≤ µ(λ) .

Next, we formally define subversion-witness-hiding for NIZKs.

Definition B.2 (Witness-Hiding with Subversion CRS). Let L ∈ NP and a distribution D
over its associated relation RL, L is hard w.r.t. D. We say that a NIZK argument for Π =
(GenCRS,Prove,Verify) for L is also witness hiding with subversion CRS with respect to D if for all
non-uniform ppt adversaries A there exists a negligible function µ such that:

Pr[S-WHΠ,A,D(λ) = 1] ≤ µ(λ)

where the random variable S-WHΠ,A,D(λ) is defined as follows:

S-WHΠ,A,D(λ):

1. The adversary A(1λ) outputs (subverted) CRS∗ and secret state τ .

2. (x,w)← D and then π ← Prove(CRS∗, x, w).

3. A is given (x, π).

4. A outputs w′. The output of the experiment is 1 if RL(x,w
′) = 1.

Theorem B.3. An subversion advice-ZK NIZK system Π = (GenCRS,Prove,Verify) is also sub-
version witness hiding.

Proof. Assume there exists a non-uniform ppt adversary A that wins in S-WHΠ,A,D(λ) with some
non-negligible probability ϵ(λ). That is, A does the following:

52

1. A outputs (CRS∗, τ).

2. On input (x, π) (where π is a valid proof for x), A outputs w′.

Consider the following adversary B for the subversion advice-ZK game of Π that depends on A: It
runs A(1λ) and gets (CRS∗, τ). It outputs CRS∗ as it’s first message. It samples (x,w) ← D and
queries on that instance-witness pair, and then receives back π. It sends (x, π) to A in order to
obtain w′ and outputs whatever it outputs.

Since Π is an subversion advice-ZK NIZK, there exists a non-uniform ppt simulator S
and an advice distribution DS for which REALB,Π(λ) and IDEALS,Π,DS (λ) are computationally
indistinguishable.

By the subversion advice-ZK NIZK property of Π, we can claim that B outputs a valid witness
for x with non-negligible probability. However, in order to reduce to the hardness of distribution
D, we need to somehow provide d as non-uniform advice to B. This can actually be done via
a standard averaging argument. Specifically, there exist some d in the support of DS such that
conditioned on d being given to B, it outputs a valid witness with non-negligible probability. Let
us fix such a d. Then, B with such a d hardwired as non-uniform advice contradicts the hardness
of the underlying language.

B.2 Subversion Witness Indistinguishability (WI)

Subversion WI demands that even when the authority creates the CRS maliciously, it still cannot
decide which of two witnesses of its choice were used to create a proof. The adversary is modeled
as a two-stage algorithm: it first outputs a CRS CRS∗ and a secret state τ passed to the second
stage. The second stage is then defined like the honest-CRS WI game.

Definition B.4. Let L ∈ NP and a distribution D over its associated relation RL, L is hard w.r.t.
D. We say that a NIZK argument Π = (GenCRS,Prove,Verify) for L is also witness indistinguishable
for subversion CRS if for all non-uniform ppt adversaries A, there exists a negligible function µ(·)
such that for all x ∈ L, witnesses w0, w1 of x:

Pr[S-WIΠ,A(λ, x, w0, w1) = 1] ≤ 1

2
+ µ(λ)

where the random variable S-WIΠ,A,D(λ, x, w0, w1) is defined as follows:

S-WIΠ,A(λ, x, w0, w1):

1. If (x,w0) ̸∈ RL or (x,w1) ̸∈ RL then abort and output ⊥.
2. The adversary A(1λ) outputs (subverted) CRS∗ and a secret state τ .

3. Sample b ← {0, 1} uniformly at random. Compute π = Prove(CRS∗, x, wb) and
send (x, π) to A.

4. A outputs a bit b′ ∈ {0, 1}. The output of the experiment is 1 iff b = b′.

Theorem B.5. An subversion advice-ZK NIZK system Π = (GenCRS,Prove,Verify) satisfies sub-
version witness indistinguishability.

53

Proof. Let A be a non-uniform ppt adversary for the S-WI game. We show that A can be used to
construct a non-uniform ppt adversary A′ for the REAL game of the subversion advice-ZK of Π:
On input 1λ, A′ runs A(1λ) to obtain (CRS∗, τ). It outputs CRS∗. Eventually, A′ receives (x, π) as
an input. It runs A(x, π) and outputs its output b′.
A′ is non-uniform and ppt since A is non-uniform and ppt. By the subversion advice-ZK

property of Π, there exist a non-uniform ppt simulator S and an advice distribution D for which
REALA′,Π(λ, x, wb) and IDEALS,Π,D(λ, x, wb) are indistinguishable, where b ∈ {0, 1} is the uniform
bit chosen in the game S-WI. Since the simulator’s view is independent from the used witness,
we also have that IDEALS,Π,D(λ, x, w0) and IDEALS,Π,D(λ, x, w1) are indistinguishable. Thus, from
transitivity of indistinguishability, we have that REALA′,Π(λ, x, w0) and REALA′,Π(λ, x, w1) are
indistinguishable. Therefore, there exists a negligible function µ(·) such that:

Pr
[
b′ = 0 : b′ ← A(x, π), π ← Prove(CRS∗, x, w0),CRS

∗ ← A(1λ)
]

− Pr
[
b′ = 0 : b′ ← A(x, π), π ← Prove(CRS∗, x, w1),CRS

∗ ← A(1λ)
]
≤ µ(λ)

Overall, we have that:

Pr [S-WIΠ,A(λ, x, w0, w1) = 1] =

Pr[b′ = b : b′ ← A(x, π), π ← Prove(CRS∗, x, wb),CRS
∗ ← A(1λ), b← {0, 1}]

=
1

2
· Pr

[
b′ = 0 : b′ ← A(x, π), π ← Prove(CRS∗, x, w0),CRS

∗ ← A(1λ)
]

+
1

2
· Pr

[
b′ = 1 : b′ ← A(x, π), π ← Prove(CRS∗, x, w1),CRS

∗ ← A(1λ)
]

=
1

2
· Pr

[
b′ = 0 : b′ ← A(x, π), π ← Prove(CRS∗, x, w0),CRS

∗ ← A(1λ)
]

+
1

2
·
(
1− Pr

[
b′ = 0 : b′ ← A(x, π), π ← Prove(CRS∗, x, w1),CRS

∗ ← A(1λ)
])

≤ 1

2
+

1

2
· µ(λ)

B.3 Subversion Function Hiding

We introduce a new notion of subversion-security that we call subversion function hiding. Intu-
itively, a NIZK proof system satisfies subversion function-hiding if no efficient adversary can com-
pute any efficiently computable function f(x,w) of the prover’s witness when given an honestly
generated NIZK proof for the statement x even using a maliciously sampled CRS. We emphasize
that we are only interested in hiding functions of the prover’s witness. While an extension to hide
functions of all witnesses is interesting, it is not clear how such a definition should look like. We
leave it as an open question for the future.

Definition B.6. Let L be some NP language, D be a distribution over instance-witness pairs of
L. We say that a NIZK (GenCRS,Prove,Verify) for L is subversion function-hiding if for all non-
uniform ppt verifiers V = (V0,V1) there exists a non-uniform polynomial-time simulator S such
that for all efficiently computable functions f(·)

54

if there exists a non-negligible function ϵ such that

Pr[REALpred(λ,S, f,D) = 1] ≥ ϵ(λ) ,

then there exists a non-negligible function δ such that

Pr[IDEALpred(λ,V, f,D) = 1] ≥ δ(λ) ,

where the games IDEAL and REAL are defined below:

REALpred(λ,V, f,D):

1. (CRS, τ)←V0.

2. (x,w)←D(1λ).
3. π←Prove(CRS, x, w).

4. yreal←V1(CRS, τ, x, π).

5. Output 1 iff yreal = f(x,w).

IDEALpred(λ,S, f,D):

1. (x,w)←D(1λ).
2. yideal←S(x).
3. Output 1 iff yideal = f(x,w).

Theorem B.7. An subversion advice-ZK NIZK Π = (GenCRS,Prove,Verify) satisfies subversion
function hiding.

Proof. The proof is very similar to the case of subversion witness-hiding but we include it for
completeness. Let V = (V0,V1) be a non-uniform ppt corrupted verifier for the subversion function-
hiding game. We show that V can be used to construct a non-uniform ppt adversary A for the
subversion advice-ZK game of Π: A is given 1λ as an input. It runs V0(1

λ) and obtains its output
(CRS∗, τ). It outputs CRS∗, and then being invoked on (x, π). It runs V1(CRS

∗, τ, x, π) and obtains
yreal.

Since V is non-uniform and ppt, A is also non-uniform and ppt. From the subversion advice-
ZK property of Π, there exists a ppt simulator SA and an advice distribution DA such that
REALA,Π(λ, x, w) and IDEALSA,Π,DA(λ, x, w) are indistinguishable.

Consider the following adversary S that depends on A: It gets as input x←D and a sample
d = (r, td) from DA. It first sets CRS∗ = A(r). It then runs the SA to computes a simulated proof
π′ using the trapdoor td of CRS. It sends A on (x, π′) to receive y, and outputs whatever it outputs.

By the subversion advice-ZK NIZK property of Π, we can claim that with non-negligible prob-
ability, S’s output y is indeed f(x,w). However, notice that S additionally receives a sample from
the inefficient distribution DA. To conclude the construction of the required simulator, we will have
to fix some ”good” advice d to S as non-uniform advice. This can actually be done via a standard
averaging argument. Specifically, there exist some d in the support of DA such that conditioned
on d being given to S, it’s output y is f(x,w) with non-negligible probability. Let us fix such a d.
Then, S with such a d hardwired as non-uniform advice gives us the required simulator to show
subversion function-hiding.

55

	Introduction
	Our Results

	Technical Overview
	Subversion Advice-ZK NIZK
	Accountable Soundness
	Related Work

	Preliminaries
	One-way Functions
	Commitment Schemes
	Non-Interactive Zero Knowledge (NIZK)
	Witness Indistinguishable (WI) Arguments

	Two Round Advice ZK Arguments for NP
	Defining Advice ZK for Two Round Arguments
	Trapdoor Generation
	Construction of Two Round Advice ZK Argument
	Proof of Soundness
	Proof of Advice ZK

	Subversion Advice-ZK NIZKs
	Defining Subversion Advice-ZK NIZKs
	Construction of Subversion Advice-ZK NIZKs
	Proof of Theorem 5.3

	Accountable Soundness
	Constructions of Non-interactive Arguments with Accountable Soundness
	Construction for Languages in NP TEXT co-NP
	Generalization
	Examples

	Construction for Sparse Languages
	Examples of Sparse Languages

	Construction for Negligibly Sparse Languages
	General Feasibility for Accountable Soundness

	Combining Subversion Advice-ZK and Accountable Soundness
	Instantiations of Trapdoor Generation
	Trapdoor Generation from One-Way Functions with Efficient Recognizable Range
	Trapdoor Generation from Collision-Resistant Hash Family

	Subversion Advice-ZK NIZKs satisfy Subversion Witness Hiding, Subversion Function Hiding and More
	Subversion Witness Hiding (WH)
	Subversion Witness Indistinguishability (WI)
	Subversion Function Hiding

