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Abstract. Cleve (STOC 86) shows that an honest majority is neces-
sary for MPC with guaranteed output delivery. In this paper, we show
that while an honest majority is indeed necessary, its involvement can
be minimal. We demonstrate an MPC protocol with guaranteed output
delivery, the majority of which is executed by a sequence of committees
with dishonest majority; we leverage one committee with an honest ma-
jority, each member of which does work independent of the circuit size.
Our protocol has the desirable property that every participant speaks
only once (YOSO, Crypto 2021).
As a building block of independent interest, we introduce public com-
putation, which is essentially privacy-free MPC with guaranteed output
delivery (akin to smart contracts realized on blockchains). We instanti-
ate public computation on a public bulletin board in three different ways
(with different assumption / round / space utilization trade-offs).

1 Introduction

In today’s digital world, it is desirable for lightweight clients to outsource the
evaluation of computationally demanding joint functions to service providers.
For efficiency, it is essential that each client’s work remains independent of the
function complexity (and, in particular, independent of the number of other
clients also providing input). Often, a client might additionally require privacy,
meaning that the service provider — and other clients — should learn nothing
about the client’s input apart from what is revealed by the output.

For distributed service providers consisting of many heterogeneous machines,
secure multi-party computation (MPC) [23,34] is a natural tool. As long as fewer
than a corruption threshold t of the service provider machines are compromised,
MPC protocols provide both client-side efficiency and privacy.

MPC protocols can be classified by the guarantees they offer, and by the as-
sumptions they make on the adversary’s power to corrupt machines.The strongest
guarantee an MPC protocol can make is guaranteed output delivery, where no
action corrupt machines take can prevent honest participants from obtaining
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the correct function output. Some MPC protocols offer their guarantees even
in the event that a majority of the participants are under adversarial control.
Unfortunately, Cleve [13] shows that MPC with guaranteed output delivery is
unachievable in this dishonest majority setting.

“You Only Speak Once” (YOSO) MPC, first introduced by Gentry et al
[20], is a class of MPC protocols where every participating machine speaks at
most once. In a given round, a set of machines referred to as a “committee”
speaks, after which that committee does nothing further, and the computation
is picked up by a different committee in the following round. SCALES [1] is a
related class of protocols where service provider machines are YOSO (meaning
that they speak at most once), but clients can speak multiple times.

YOSO protocol design can serve two purposes. First, machines might come
and go, and YOSO-style protocols allow machines to contribute to the com-
putation without needing to commit their resources for long. Second, YOSO
protocols enable us to keep communication complexity low in the presence of an
adversary who has the power to compromise machines adaptively. By keeping
committee members unpredictable, we can prevent an adversary from targeting
them before they speak. If the adversary targets machines after they speak, by
the time a machine is compromised that machine will no longer be relevant. In
this way, a YOSO protocol can be designed to have total communication com-
plexity sublinear in the number of available machines, despite the adversary’s
ability to corrupt a linear number of those machines.

YOSO-style protocols, where a different committee speaks in every round,
invite us to consider how much of the work truly needs to be done by honest ma-
jority committees in order to achieve guaranteed output delivery. Some YOSO
protocols (e.g. the CDN-style construction of Gentry et al [20]) already leverage
dishonest majority committees interspersed with the honest majority ones; how-
ever, all known protocols require a number of honest-majority committees that
depends on the circuit depth [20,14], or require the honest-majority committees
to do work proportional to the circuit size [28].

Our Contribution In this paper we show that a single honest-majority committee
— performing computation independent of the function being evaluated (and in
particular, independent of the number of inputs) — suffices to obtain guaranteed
output delivery. In the SCALES setting, this honest-majority committee can be
taken to be the set of clients; however, keeping the set of clients and honest-
majority committee separate allows for a dishonest majority amongst the clients.

As a building block for our YOSO MPC protocol, we introduce public com-
putation, which is essentially privacy-free MPC with guaranteed output delivery
(akin to smart contracts). We believe public computation to be of independent
interest. We instantiate public computation using a public bulletin board, in
three YOSO-style ways: The first two use only three rounds each, and the third
requires a logarithmic (in the size of the computation) number of rounds. Our
first approach uses no cryptographic assumptions, but requires that participants
post entire computation transcripts. The second uses strong cryptographic hard-
ness assumptions (SNARKs), but reduces the amount of data posted from linear
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in the size of the computation to polynomial in the size of the input. The third
approach reaches an assumption / bulletin board space compromise: it relies only
on collision-resistant hash functions, and uses a logarithmic (in the computation
size) amount of space.

1.1 Related Work

Clients Speak Once Clients Speak More
than Once

Guaranteed
Output
Delivery

Honest Majority of
Servers

YOSO [20,28,8],
Fluid [14]

Dishonest Majority
of Servers (honest
majority of clients)

this work

Dishonest Majority
of Servers (since
Light-Weight

Honest-Majority
Committee)

this work

Security
With
Abort

Honest Majority of
Servers

Fluid [11,6]

Dishonest Majority
of Servers

Fluid [32] SCALES [1,2]

Table 1: Summary of YOSO, Fluid and SCALES Schemes. (Only protocols where
servers speak once are included.)

YOSO MPC, motivated by security against adaptive adversaries, was in-
troduced at the same time as Fluid MPC [11], a similar model motivated by
dynamic availability of computing power. Since then, several YOSO and Fluid
protocols have been described, with YOSO protocols primarily achieving guar-
anteed output delivery, and Fluid protocols focusing on security with abort, a
weaker guarantee where compromised machines might cause a denial of service.
In Table 1, we summarize existing YOSO, Fluid and SCALES constructions.

In the traditional, non-YOSO dishonest majority setting, a line of work
by Choudhuri et al investigates MPC fairness with the aid of public bulletin
boards [12]. Here, the impossibility of fairness without honest majority is over-
come with the aid of a public bulletin board and stronger cryptographic primi-
tives such as witness encryption [18].

1.2 Technical Overview

Our YOSO MPC protocol follows the template of threshold fully-homomorphic
encryption (TFHE) based protocols (e.g. [3,24,7]).
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Key Generation Phase: TFHE keys are generated.
Input Encryption Phase: Clients encrypt their inputs to the resulting
TFHE public key.
Computation Phase: The circuit is evaluated homomorphically on the en-
crypted inputs.
Output Phase: The output is decrypted by a threshold of secret key hold-
ers.

We know that we need an honest majority somewhere in order to achieve
guaranteed output delivery, thanks to the famous result of Cleve [13]. The crucial
observation is that the honest majority is only necessary in the last step — the
threshold decryption. In that step, an honest majority really is unavoidable:
since we want guaranteed output delivery, we need decryption to work even if t
key-holders don’t participate, and if t > n

2 , then the remaining n − t < n
2 < t

key-holders are able to decrypt, which contradicts privacy.
This leaves us with two sets of designated parties: clients (a majority of whom

may be corrupt) who hold input, and our single honest-majority committee in
charge of decryption. We ensure that clients and honest-majority committee
members can remain light-weight: the computation that each of them performs
is independent of the circuit and input size.

We design a protocol in which the rest of the steps are carried out by a
sequence of committees each of which has a dishonest majority. In order to
ensure the correctness of each phase of the computation, we introduce a new
primitive which we call public computation. Public computation is essentially
MPC with no privacy: its only guarantees are correctness and liveness (output
delivery). It is similar to verifiable computation [19], where a light-weight client
can verify a circuit evaluated by a powerful server in time sub-linear in the
circuit size. While verifiable computation typically relies on a secret client-side
verification key, public computation is verifiable by any third party.

Public computation helps us ensure the correctness of the first three steps.
The (dishonest majority) key generation committee produces zero knowledge
proofs of correct key generation, which are verified via public computation. The
clients then need to process only a small amount of data to extract the TFHE
public key. They, in turn, produce zero knowledge proofs of correct encryption,
which are verified before homomorphic evaluation on the ciphertexts, all done
once again via public computation.

Public Computation Protocols Our public computation protocols all leverage
a public bulletin board. We use this bulletin board to enable participants to
accuse other participants of not following a protocol by pointing to locations on
the bulletin board where there is an error. By specifying where on the bulletin
board each participant should post their message, we allow verifiable accusations
of message omission in addition to accusations of malformed messages.

Remark 1. A public bulletin board is a form of consensus, the implementation
of which over traditional channels (e.g. blockchain-style) requires an honest ma-
jority. We view the public bulletin board as a basic resource (e.g., perhaps a
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blockchain is available for our use) rather than a sub-protocol. Lifting reliance
on the public bulletin board is an interesting and important open problem.

We describe three public computation protocols: the naive protocol, the
SNARK-based protocol and the bisection protocol.

Naive Public Computation Protocol The naive protocol does not use
any additional cryptographic hardness assumptions, and relies on two dishonest-
majority committees. Each member of the first committee evaluates the entire
circuit and posts a transcript of its evaluation to the bulletin board. Each
member of the second committee checks each posted transcript, and posts a
pointer to the first incorrect gate of every faulty evaluation. To extract the
output, a party only needs to read and check the accusations before extract-
ing the output from a transcript with no valid accusations against it. Since
each accusation points to a constant-size error, and the size of the output
itself does not depend on the circuit or input sizes, the complexity of the
output-reader only depends (quadratically) on the committee size m.
SNARK-based Public Computation Protocol The naive protocol has
the downside of posting entire circuit evaluation transcripts to the bulletin
board, which uses a lot of space. In our SNARK-based protocol, members
of the first committee instead compute and post the output together with
a compact zero-knowledge proof (SNARK) that the output is correct. This
is similar to zero-knowledge roll-ups [16], which leverage the succinctness of
SNARKs to prove correct execution of committed blockchain transactions
without explicit verification of the transactions themselves. However, the
verification complexity of such a proof in [16] still depends on the input size.
To lift the dependency of output extraction complexity on input size, we have
members of the first committee also include a transcript of the evaluation of
the verification circuit. The second committee then checks these circuits and
posts accusations, much like they do in the naive protocol.
Bisection Public Computation Protocol The bisection protocol falls some-
where in between the naive protocol and the SNARK-based protocol, both in
terms of assumptions and in terms of bulletin board space utilization. It uses
Merkle tree commitments [31] (which rely on collision-resistant hashing), and
bulletin board space dependant logarithmically on the circuit size. In the bi-
section protocol, members of the first committee post commitments to their
circuit evaluation transcripts. Subsequent dishonest-majority committees en-
gage in an interactive binary search for the first disagreeing locations in these
transcripts; once found, these locations can be used to identify which of two
disagreeing transcripts is erroneous. This interactive approach to resolve dis-
putes is inspired from [15].

2 Preliminaries

2.1 YOSO Secure Multiparty Computation (MPC) Definitions

In this section we recap (verbatim from [28]) what it means for an MPC protocol
to be YOSO secure. The YOSO model [20] makes a crucial separation between
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physical machines and the roles which they play in the protocol. In this paper,
we describe our YOSO MPC protocols in terms of roles. We ignore how roles
are assigned to machines; we assume the availability of a role assignment func-
tionality which allows point-to-point communication and broadcast messages
between roles. Mechanisms which realize such a role assignment functionality
were described by Benhamouda et al [5], Gentry et al [21] and Canetti et al
[10]. The YOSO model uses the UC framework [9], with roles instead of physical
machines as the participants. Every participant is ‘YOSO-ified’, meaning that as
soon as she speaks for the first time, she is killed. A protocol Π YOSO-realizes
a functionality F if the YOSO-ification of Π UC-realizes F 2.1.1.

2.1.1 UC MPC Consider a protocol Π = (R1, . . . ,Ru) described as a tuple of
roles Ri, each of which is a probabilistic polynomial-time (PPT) machine. Some
of those roles are input roles, who, when they speak, provide an input. Other
roles are there to assist in computing a function C on the provided inputs.

In a real-world execution of protocol Π with environment E and adversary
A, the PPT environment E provides the input x = (x1, . . . , xℓ) to the protocol’s
input roles. The environment also communicates with the PPT adversary A.
We consider a synchronous model, where the protocol is executed in rounds; in
each round, some roles speak (or post to a public bulletin board). During the
execution of the protocol, the corrupt roles receive arbitrary instructions from A,
while the honest roles faithfully follow the instructions of the protocol using the
input they were given. We consider the adversary A to be rushing, i.e., during
every round the adversary can see the messages the honest roles sent before
producing messages from corrupt roles. At the end of the protocol execution,

the environment E produces a binary output. Let REALΠ,A,E(1
1λ) denote the

random variable (over the random coins used by all roles) representing E ’s output
in the real world.

Now, consider an ideal-world execution with the same environment E , but
with an ideal-world adversary S. In the ideal-world execution, instead of running
the protocol Π, the roles turn to a trusted party to compute C on the input
given to them by E . This trusted party receives the inputs x1, . . . , xℓ from the
input roles, and broadcasts C(x1, . . . , xℓ). We call this trusted party the ideal
functionality FMPC (described later in Section 3.3) for the computation of C with

guaranteed output delivery. Let IDEALFMPC,S,E(1
1λ) denote the random variable

(over the random coins used by S) representing E ’s output in the ideal world.

Definition 1 (UC Security [9]). Let C : ({0, 1}∗)ℓ → {0, 1}∗ be an ℓ-input
function. A protocol Π = (R1, . . . ,Ru) UC-securely computes C if for every PPT
real-world adversary A there exists a PPT ideal-world adversary (or simulator)

S such that, for any PPT environment E, it holds that REALΠ,A,E(1
1λ) and

IDEALFMPC,S,E(1
1λ) are indistinguishable for any large enough security param-

eter 1λ.



YOSO-GOD 7

2.1.2 The Adversary’s Corruption Power Canetti et al [10] formalize
a compiler that takes a YOSO MPC protocol described in terms of abstract
roles and translates it to a YOSO MPC protocol described in terms of real ma-
chines. They show that the resulting protocol will be secure against an adversary
with the ability to adaptively corrupt machines even if the original (abstract)
protocol is only secure against an adversary who statically corrupts roles (i.e.
decides which roles to corrupt before the protocol begins). We therefore focus
on adversaries making static corruptions.

Our protocols proceed in rounds, where in every round, members of a com-
mittee speak. We assume that the adversary is able to corrupt a majority — but
not everyone — on each committee. Our MPC protocol additionally relies on a
single committee where only a minority of members may be corrupt.

3 Ideal Functionalities

In this section, we describe our ideal functionalities. The protocols in this paper
are designed to offer guaranteed output delivery, meaning that no matter how
corrupt parties misbehave, they cannot prevent protocol completion. Our ideal
functionalities allow the simulator to trigger output delivery in order to model
the passage of an appropriate number of rounds. This appears to allow the ad-
versary to stall output delivery indefinitely, which contradicts our claim that our
protocols deliver output no matter what. However, we recall that functionalities
are meant to model safety guarantees but not liveness guarantees [9]; we instead
argue guaranteed output delivery separately as a property of our protocols.

3.1 Public Bulletin Board (Fbb)

We consider the bulletin board in Fig. 1 as the only communication channel for
honest parties. Following the approach of previous works [2,33,12], we assume
that messages can be written and read at indexed locations, thus avoiding the
need to read the entire bulletin board transcript to retrieve information. In
particular,

1. Our bulletin board supports random access reads, allowing participants to
access specific locations without reading the entirety of the bulletin board
contents. This is important in order for select parties’ computation and com-
munication complexity to remain independent of the amount of information
posted.

2. Our bulletin board enforces a gating function for writes, ensuring that des-
ignated space on the board is only used by parties who are instructed by the
protocol to post there.

While such a Fbb functionality can be realized with an honest majority com-
mittee, we emphasize that we are not “offloading” MPC related work to this
committee, or pushing complexities “down the stack” to the protocol realizing



8 Bhadauria et al.

Fbb. The only computation required by Fbb is the evaluation of the gating func-
tion which is polylogarithmic in the required protocol message locations when
naively implemented as a table lookup: The number of required message lo-
cations is either linear (ΠPubComp-Naive) or logarithmic (ΠPubComp-Bisection) in the
MPC circuit and input clients, implying a logarithmic sized index input. The
gating function lookup itself would be logarithmic in the message locations.

If our bulletin board functionality is instantiated with a blockchain, such a
polylogarithmic gating function can easily be added to the validator code or de-
ployed as a smart contract. Given the complexity of the gating function outlined
above, it is clear such validators are not contributing to the MPC computation
itself by evaluating the gating function alone.

Functionality Fbb

The functionality is parameterized by a gating function G = {loc : (P, r)}, which
specifies for every location loc on the bulletin board, which party (P ) is allowed
to post there and in which round (r).
The functionality initializes an empty bulletin board bb = {}, and a round
counter c = 0.
Tick: On (tick) from the simulator, increment the round counter c = c+ 1.
Post: On (write, loc, msg) from party P :

– Send (P,write, loc, msg) to the simulator; wait to receive continue.
– Retrieve (Ploc, rloc) from G[loc].
– If (a) bb[loc] is empty, (b) c = rloc and (c) P = Ploc: Set bb[loc] = msg.

Read: On (read, loc) from P , return bb[loc] to P .

Fig. 1: Functionality Fbb

3.2 Public Computation (FPubComp)

We define an ideal functionality FPubComp in Fig. 2, which is parameterized by cir-
cuits C1, ..., Cl and gating function G. Let I be the set of parties who hold inputs,
InputWires be the set of input wires across all circuits, and OutputWires be the
set of output wires. The gating function G : InputWires → OutputWires ∪ I
specifies where inputs come from (outputs of other circuits, or input-holding
parties). An input wire belonging to circuit i should take input from a party or
from an output wire belonging to an earlier circuit (< i).

We abuse the notion of wires slightly; our wires do not carry bits, but in-
stead carry entire values (e.g. ciphertexts, proofs, etc). Sometimes, for simplicity,
multiple values are grouped on a single wire.
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Functionality FPubComp

The functionality is parameterized by circuits C1, ..., Cl, and gating function G.
The functionality initializes an empty map of inputs Inputs = {}, and an empty
map of outputs Outputs = {}.
Input: On (input, inputwire, x) from P :

– Send “P assignes x to inputwire” to the simulator.
– If G[inputwire] = P and inputwire is not in Inputs, store

Inputs[inputwire] = x.

Compute: On (compute, i) from the simulator:

– Store a default value ⊥ for each input wire without an assigned value.
– Evaluate Ci on the inputs to get the output y.
– Store y as Outputs[i] = y.
– Additionally store y in Inputs, for all input wires upon which it will be used.

Output: On (output, i) from P :

– If i is in Outputs, send Outputs[i] to P .
– Otherwise, send ⊥ to P .

Fig. 2: Functionality FPubComp

Smart contracts and FPubComp: FPubComp is similar to smart contracts realized
by blockchain protocols. Both expose an interface which permits computation
over public inputs. However, the simplicity of FPubComp avoids many complica-
tions of UC functionalities [4,29] intended to accurately model the security of
blockchain protocols. Additionally, blockchain protocols require an honest ma-
jority of servers to evaluate the public computation, whereas in this work, the
computation is performed by members of dishonest majority committees only.

As detailed in Section 4, this is achieved by observing that the single honest
server can always expose cheating behaviour by pointing towards a constant
number of locations in Fbb. In a nutshell, a computation server posting either
the full computation transcript, a commitment thereof or a zero knowledge proof
of correct computation, exposes itself to accusations by subsequent verification
servers; such accusations can be verified by the output reader in time independent
of the computation.

3.3 Secure Computation (FMPC)

Finally, we define an MPC functionality FMPC in Fig. 3. It is parameterized
by a circuit C and a gating function G, which specifies which input should be
provided by which party.
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Unlike public computation, which does not hide any of the inputs from the
adversary, MPC is designed to keep honest parties’ inputs private. So, FMPC

does not forward the inputs themselves to the simulator.

Functionality FMPC

The functionality is parameterized by a C, and gating function G.
The functionality initializes an empty map of inputs Inputs = {}.
Input: On (input, inputwire, x) from P :

– Send “P assigns a value to inputwire” to the simulator.
– If G[inputwire] = P and inputwire is not in Inputs, store

Inputs[inputwire] = x.

Compute: On (compute) from the simulator:

– Store a default value ⊥ for each input wire without an assigned value.
– Evaluate C on the inputs to get the output y.
– Store the output y.

Output: On (output) from P :

– If an output has been stored, send it to P .
– Otherwise, send ⊥ to P .

Fig. 3: Secure Computation (FMPC)

4 Verifiable Computation Protocols

In this section we describe our instantiations of FPubComp. Our three protocols
are ΠPubComp-Naive, ΠPubComp-SNARG, and ΠPubComp-Bisection.

ΠPubComp-Naive uses no cryptographic assumptions and only requires three
rounds, but takes up a lot of bulletin board space.

ΠPubComp-SNARG uses SNARGs to reduce the amount of bulletin board space
used, but the space complexity remains linear in the number of inputs to the
computation being verified.

ΠPubComp-Bisection is a compromise which requires more rounds and lighter as-
sumptions (hash functions) while still using much less bulletin board space than
the naive protocol. In contrast to ΠPubComp-Naive/SNARG, the Fbb space complex-
ity of ΠPubComp-Bisection is sub-linear in both the number of computation inputs
(and the overall computation), a desirable property in the setting of outsourced
computation with many input providing clients.

Table 2 summarizes the trade-offs accross the three constructions.
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ΠPubComp-Naive ΠPubComp-SNARG,
instantiated
with [25]

ΠPubComp-Bis-Pair ΠPubComp-Bis-Runoff

CSi

Computation
Complexity

O(|C|) Oλ(|C| ·
log(|C|))

Oλ(|C|) Oλ(|C|)

Fbb Write
Complexity

O(|C|) Oλ(ℓ) Oλ(1) Oλ(1)

VSi

Computation
Complexity

O(m|C|) Oλ(mℓ) Oλ(|C|+
m2 log(|C|))

Oλ(|C|+
m log(|C|))

Fbb Write
Complexity

O(m) O(m) Oλ(m
2 ·

log(|C|))
Oλ(m log(|C|))

Total Fbb Write Complexity O(m|C|+m2) Oλ(mℓ) +
O(m2)

Oλ(m
3 ·

log(|C|)2)
Oλ(m

2 · log(m) ·
log(|C|)2)

Output Fbb Read Complexity O(m2) O(m2) Oλ(m
3 ·

log(|C|)2)
Oλ(m

2 · log(m) ·
log(|C|)2)

Round complexity 3 3 O(log(|C|)) O(log(|C|) ·
log(m))

Assumptions None Trusted
Setup (CRS)
+ SNARK

collision
resistant hash

(CRH)

collision
resistant hash

(CRH)

Table 2: Comparison of Public Computation Protocols. Let λ be the security
parameter; m be the size of a dishonest-majority committee (e.g. there are m
computation servers and m verification servers); |C| be the size of the circuit, ℓ
be the input size; and Oλ hides poly(λ) factor. We assume that the output is of
constant size.
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4.1 Naive Protocol ΠPubComp-Naive

Our Naive protocol (Fig. 4) proceeds in three rounds: In the first round, input-
holders provide their input via the bulletin board. In the second round, a dishonest-
majority committee of servers which we will call compute servers posts messages
to the bulletin board; in the third round, another dishonest-majority committee
of servers which we will call verification servers posts. The computation output
will be determined from the verification servers’ (short) posts, and by (a small
number of) random accesses to the rest of the bulletin board.

Our protocols make use of the bulletin board functionality Fbb. As discussed
in Section 3.1, Fbb is parameterized by a gating function Gbb. We define the
following bulletin board locations, the posting rules for which are hard-coded
into Gbb:

locinput,i: the location where Pi’s input should be written, in round 1.
loccomp,i: the location where compute server CSi should post in round 2. The
compute servers may post a lot of data; we let loccomp,i,outp be the location
within loccomp,i where the actual circuit output should be written.
locver,i: the location where verification server VSi should post in round 3.

Some of these locations need to be broken down into more specific addresses,
for the sake of efficiency. We will handle this in prose.

The public computation functionality FPubComp handles reactive computation
by evaluating a sequence of circuits, each of which can take previous outputs
or fresh values as input. In the interest of simplicity we describe our public
computation protocols for a single circuit C.

4.1.1 Security

Theorem 1 (Security of ΠPubComp-Naive). ΠPubComp-Naive securely realizes FPubComp

if at least one computation server and at least one verification server is honest.

Proof (Proof of Theorem 1). This protocol does not use any cryptographic prim-
itives. We can specify a simulator which faithfully executes the role of honest
input parties, at least one honest compute server, and at least one honest veri-
fication server. (It would advance the bulletin board round counter in between
rounds.)

This is guaranteed to provide the correct output because the honest compute
server — in both the real and the simulated execution — will post the correct
function output. The honest verification server — in both the real and the sim-
ulated execution — will post valid accusations against all compute servers who
did not compute correctly. No accusations against the honest compute server
will verify, so the correct output can always be extracted.

4.1.2 Efficiency Let m be the number of verification servers (which is equal
to the number of compute servers), and |C| be the size of the circuit.
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ΠPubComp-Naive

Input: In order to provide an input, party Pi sends (write, locinput,i, xi) to Fbb.
Compute: Computation proceeds in two rounds.

– Computation: Each computation server CSi does the following:
• Read all of the inputs from the bulletin board by sending

(read, locinput1), . . . , (read, locinputℓ) to Fbb. (If C takes previous out-
puts as input, those can similarly be read from the bulletin board.)

• Evaluate C on the inputs. Let tscpti denote CSi’s entire evaluation
transcript, consisting of the values on all of the wires in the circuit.

• Posts tscpti to the bulletin board by sending (write, loccomp,i, tscpti)
to Fbb.

– Verification: Each verification server VSi does the following:
• Initialize an empty set of accusations Accusationsi.
• Read all of the inputs from the bulletin board.
• Compute the circuit on the inputs to obtain the output y.
• Read each compute server’s output yj from the bulletin board by sending

(read, loccomp,j,outp) to Fbb.
∗ If yj = y, move on to the next compute server.
∗ Otherwise, read CSj ’s entire transcript tscptj from the bulletin

board by sending (read, loccomp,j) to Fbb. Check the transcript. Let
locerr,j denote the location of the first erroneous gate in the tran-
script. Add (j, locerr,j) to Accusationsi.

• Post Accusationsi to the bulletin board by sending
(write, locver,i, Accusationsi) to Fbb.

Output: Party P does the following to retrieve the output of C:

– Read each verification server VSi’s accusations by sending (read, locver,i) to
Fbb.

– Check each of those accusations (j, locerr,j) by sending (read, locerr,j) to Fbb

and verifying that the gate found there was indeed evaluated incorrectly.
– Read the output from loccomp,i,outp for a compute server CSi with no valid

accusations against her.

Fig. 4: Protocol ΠPubComp-Naive
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Bulletin Board Space The amount of bulletin board space used is dominated by
(a) m transcripts of the circuit evaluation, which amounts to O(m|C|) space,
and (b) accusations posted by the verification servers which amounts to O(m2)
space. The total space used is thus O(m|C|+m2).

Reading the Output To read the output, party P accesses O(m) accusation
messages on the bulletin board; each message is up to O(m) in size, and points to
up to O(m) other (constant-size) locations. So, P must read O(m2) information
from the bulletin board.

4.2 SNARG Protocol ΠPubComp-SNARG

In ΠPubComp-SNARG (Fig. 5), we decrease the amount of data posted to the bulletin
board by using SNARGs (Appendix A.2) to compress the transcript. We leverage
two properties of SNARGs: proof succinctness, and verification efficiency (verifi-
cation should be sublinear in the circuit size)4. Essentially, ΠPubComp-SNARG runs
ΠPubComp-Naive on the SNARG verification circuit.

The computation servers use a SNARG to prove that the circuit C was
correctly evaluated on the inputs (x1, . . . , xℓ). Our statement will consist of the
inputs and output (x1, . . . , xℓ, y), and the witness of correct computation can be
e.g. the computation transcript tscpt. A statement, witness pair is considered
to be in the relation if the witness is a valid transcript demonstrating that
y = C(x1, . . . , xℓ).

Let VC denote the verification circuit used to evaluate the SNARG verification
algorithm Verify. Even though the CRS is linear in the circuit size (O(|C|)), the
verifier needs to read only O(ℓ) pre-determined entries of the CRS. Therefore,
in the verification circuit VC, we hardcode a small part of the CRS of size O(ℓ).
Note that VC still has a linear dependency on the number of circuit inputs,
implying that the space required for communication on the bulletin board will
scale with the number of inputs; this dependency is overcome in ΠPubComp-Bisection

(Section 4.3) at the cost of additional protocol rounds.

4.2.1 Security

Theorem 2 (Security of ΠPubComp-SNARK). ΠPubComp-SNARG securely realizes
FPubComp if the SNARG used satisfies Soundness (defined in Definition 7), and
if at least one computation server and one verification server is honest.

Proof (Proof of Theorem 2). We can specify a simulator which faithfully executes
the role of honest input parties, at least one honest compute server, and at
least one honest verification server. (It would advance the bulletin board round
counter in between rounds.) This is same as the simulator in the Theorem 1.

4 Pre-processing SNARGs give us both those properties. In our work, we focus on the
SNARK presented by Groth16 [26] (every SNARK satisfies properties of SNARG),
which provides a proof length Oλ(1) and verification complexity of Oλ(ℓ) where ℓ is
the size of the input and Oλ(·) hide poly(λ) factors.
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ΠPubComp-SNARG

Input: In order to provide an input, party Pi sends (write, locinput,i, xi) to Fbb.
Compute: Computation proceeds in two rounds.

– Computation: Each computation server CSi does the following:
• Read all of the inputs from the bulletin board by sending

(read, locinput1), . . . , (read, locinputℓ) to Fbb. (If C takes previous out-
puts as input, those can similarly be read from the bulletin board.)

• Evaluate C on the inputs and obtains an output yi. Let wi be CSi’s
evaluation transcript.

• Compute πi ← Prove(crs, ϕi = (x1, . . . , xℓ, yi), wi).
• Evaluate VCa on (ϕi, πi). Let tscpti denote CSi’s entire evaluation tran-

script, consisting of the values on all of the wires in the circuit VC.
• Post (πi, tscpti) to the bulletin board by sending

(write, loccomp,i, (πi, tscpti)) to Fbb.
– Verification: Each verification server VSi does exactly what it would have

done in ΠPubComp-Naive.

Output: Party P does exactly what it would have done in ΠPubComp-Naive.

a VC is a circuit which emulates the algorithm Verify(crs, ϕi, πi). Only a small
part of crs is encoded in the circuit as the verifier does not need the whole
CRS.

Fig. 5: Protocol ΠPubComp-SNARG
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In the simulated execution, correct output is guaranteed because the honest
compute servers will post the correct function output and the honest verification
server will post valid accusations against all the compute servers who did not
compute correctly. This is similar to the proof of Theorem 1.

In the real execution, the compute servers first compute the function, provide
a SNARG proof and the verification transcript of the SNARG proof. The only
case where the real execution deviates from the simulated execution is when
a dishonest compute server generates a SNARG proof for fake output ŷ and
provides an incorrect SNARG which gets accepted by the Verify algorithm of
SNARG. No verification server will accuse this dishonest server and two outputs
will exist, breaking correctness. The SNARG soundness property (Definition 7)
ensures that a valid proof is generated for a statement not in the language (or
in our case, for a wrong output) only with negligible probability.

4.2.2 Efficiency Let m be the number of verification servers (which is equal
to the number of compute servers), |C| be the size of the circuit and ℓ be the
total size of all the inputs put together.

Bulletin Board Space The amount of bulletin board space used is dominated
by m SNARG proofs and m transcripts of the verification circuit. If the proof
size is O(|π|) and the verification computation is O(v), then the amount of
bulletin board space posted by the compute committees is O(m(|π|+v)). In our
work, we plug in the SNARK due to Groth [25], which has a proof size Oλ(1)
and verification complexity Oλ(ℓ), reducing our bulletin board complexity to
Oλ(mℓ). The verification servers additionally post O(m) size messages, using
O(m2) bulletin board space; the total amount of bulletin board space used is
thus Oλ(mℓ) +O(m2).

Reading the Output As the output stage is identical to ΠPubComp-Naive, party P
reads only O(m2) information from the bulletin board.

4.3 Bisection protocol ΠPubComp-Bisection

In ΠPubComp-Bisection, we further decrease the amount of data posted by leveraging
interaction, as inspired by [15]. The protocol starts with several servers comput-
ing the circuit we wish to evaluate, and committing to their entire computation
transcript. We begin with a simplified case where only two persistent servers
participate, which we formalize as ΠPubComp-Bis-2PC-Persist in Section 4.3.1.

Looking forward, while this protocol executed by two persistent computation
servers is non-YOSO, it serves as a stepping-stone towards a YOSO-fied ver-
sion in Section 4.3.1 for ephemeral committees and 2 commitments. Finally, we
present two general YOSO protocols ΠPubComp-Bis-Pair and ΠPubComp-Bis-Runoff for
m commitments and ephemeral servers in Section 4.3.3. We use ΠPubComp-Bis-2PC

as a subroutine.
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4.3.1 Bisection Protocol with Two Transcript Commitments We start
with two computation servers CS1 and CS2. Each server evaluates the circuit. To
avoid explicitly posting each wire assignment to Fbb, we require both servers to
post a Merkle commitment of the circuit evaluation transcript. The transcript
will consist of (input or gate output) wire value assignments w1, . . . , w|C|, for a
unique topological wire ordering5 of C’s gates, where the last wire value w|C| = y
corresponds to the output.

Given that the topological ordering of wires is uniquely defined, two differing
evaluations of the circuit will result in inconsistent Merkle roots. We will exploit
this to guarantee the elimination of at least one commitment by communicating
only a logarithmic amount of data to Fbb.

com1

L1

L2 R2

R1

com2

L′
1

L2 R′
2

R′
1

Fig. 6: In these two Merkle trees with distinct roots, the difference between
com1 and com2 indicates an inconsistency in the committed wire assignments.
To identify the first disagreement in the topologically ordered transcripts, the
verification servers then open the roots in the second round, exposing L1 ̸=
L′
1 and R1 ̸= R′

1, which indicates disagreements in both halves of committed
transcripts. In the third round, the verification servers open the children of L1

and L′
1, exposing the first disagreeing leaves R2 ̸= R′

2 of the topologically ordered
transcripts committed to com1 and com2.

For two inconsistent commitments com1 ̸= com2 to differing evaluations, there
must exist a first Merkle tree leaf position corresponding to a wire in C at which
com1 and com2 commit to different values. If this is an input wire, one of the
transcripts must have used an incorrect input; if this is a gate output wire, one
of the transcripts must contain an incorrect evaluation of that gate (since this is
the first inconsistency, and thus the two transcripts must agree on the inputs to
that gate). Given the opening of such a leaf position for both com1 and com2, an
observer can identify at least one of the two committed transcripts as incorrect.

5 An arithmetic circuit always has a topological ordering, which follows from its in-
terpretation as a DAG, for which a topological ordering always exists. To ensure
that the topological ordering for any circuit is uniquely defined, we simply assume
a concrete, pre-defined deterministic sorting algorithm for this purpose (e.g. [27]).
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Finding this leaf position via interactive binary search gives a public com-
putation protocol for two parties, at least one of which is honest. We describe
this protocol ΠPubComp-Bis-2PC-Persist (Fig. 7), where two parties CS1 and CS2 (each
given the entire tree corresponding to com1 and com2 respectively) find the first
index of their conflict. In each round of ΠPubComp-Bis-2PC-Persist, CS1 and CS2 post
the child nodes of the same single internal node position for each of the Merkle
tree commitments.

ΠPubComp-Bis-2PC-Persist makes use of the following bulletin board locations:

locinput,i is where Clienti posts their input.
loccommit,i is where CSi posts their Merkle tree root.
locver,r,i is where CSi posts their rth pair of Merkle tree nodes.
locaccuse,i is where CSi posts their accusation against CSj .

Towards adapting ΠPubComp-Bis-2C-Persist for ephemeral, stateless servers which
only speak once, we highlight that any cheating in ΠPubComp-Bis-2C-Persist is already
publicly observable by reading Oλ(log(|C|)) bits on Fbb. This facilitates the
introduction of dedicated verification servers, which can show up, verify and
extend the state of the protocol execution from bulletin board messages alone.

Lemma 1. Adversarial behaviour in ΠPubComp-Bis-2C-Persist is publicly detectable
by reading at most Oλ(log(|C|)) bits from Fbb.

Proof. (Sketch) The deterministic computation performed by parties on public
inputs on Fbb is fixed. Once a party has posted the merkle tree root of its
evaluation transcript, it has committed to all the internal nodes it can open
during the verification phase, or otherwise breaks collision resistance of the hash
function. As a consequence, the path that is traversed duringΠPubComp-Bis-2C-Persist

is also fixed, as this is solely a function of the internal node values in the merkle
trees of both parties.

Once the adversary has posted an incorrect (yi, comi) during the computation
phase, any adversarial strategy is restricted to

Case 1. Completing the rest of the protocol honestly
Case 2. Deviating from the protocol by

a. Sending an invalid message.
b. Remaining silent.

Case 1: Completing the protocol honestly after posting an incorrect (y, com)
will either expose the first wire assignment which differs to that of the hon-
est party, hereby exposing the incorrect computation transcript, or if com is
well-formed, expose the last committed output wire (wire assignments are in
topological order), which is inconsistent with y posted by the adversary in the
computation phase.

Case 2a: Extending the merkle tree opening along an incorrect path with
valid openings of internal nodes implies breaking collision resistance. Otherwise,
an invalid opening of a node in the merkle tree is publicly observable once it is
posted to Fbb.
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ΠPubComp-Bis-2C-Persist

Input: In order to provide an input, party Pi sends (write, locinput,i, xi) to Fbb.
Compute:

– Computation: Each computation server CSi for i ∈ [1, 2] does the following:
• Read all of the inputs from the bulletin board by sending

(read, locinput,1), . . . , (read, locinput,ℓ) to Fbb.
• Evaluate C on the inputs and obtain an output yi. Let tscpti be CSi’s

evaluation transcript with the gate wire assignments in topological order
of the circuit.

• Compute comi ← Commit(tscpti).
• Post (yi, comi) to the bulletin board by sending

(write, loccommit,i, (yi, comi)) to Fbb.
• Let curNodei = comi.
• Read the other party’s commitment curNodej from the bulletin board

by sending (read, loccommit,j) to Fbb.
– Verification: For each round r ∈ [2, . . . , log(|C|)], each server CSi for i ∈

[1, 2] does the following:

• Let Lr,i, Rr,i be the children of curNodei in CSi’s Merkle tree.
• Send (write, locver,r,i, (curNodei, Lr,i, Rr,i)) to Fbb.
• Read the other party’s children (Lr,j , Rr,j) from the bulletin board by

sending (read, locver,r,j) to Fbb.
• If Commit(Lr,j , Rr,j) ̸= curNodej : accuse the other party by writing a

pointer to the inconsistency at locaccuse,i on the bulletin board.
• Otherwise:

∗ If Lr,i ̸= Lr,j : set curNodei = Lr,i and curNodej = Lr,j .
∗ Otherwise: set curNodei = Rr,i and curNodej = Rr,j .

In round r = log(|C|) + 1, we should have reached the leaves of our Merkle
trees. Each server CSi for i ∈ [1, 2] does the following:
• Write the leaf node to locver,r,i. If the leaf node represents a gate output

wire, also decommit the two input wires for that gate.
• Accuse the other party by writing a pointer to their leaf node. If the leaf

node represents a gate output wire, the other party’s gate evaluation
must be faulty, since the two evaluations agree on all prior wire values.

• If com1 = com2, but y1 ̸= y2, accuse the other party by posting an opening
of the last wire (yi) and a pointer to their output.

Output: Party P checks both accusations, and reads the output from locinput,i
for CSi without a valid accusation against it.

Fig. 7: Protocol ΠPubComp-Bis-2C-Persist
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Case 2b: Silence by a party is publicly observable by reading a single, dedi-
cated location for the specific party and round on Fbb.

Posting a correct (y, com) during the the computation phase restricts any
subsequent adversarial behaviour to sending an invalid message or remaining
silent, both which can be detected with location lookups on Fbb.

The entire protocol transcript occupies at most O(log(|C|) · poly(λ)) bits on
Fbb; the protocol specifies O(log(|C|)) internal node openings of poly(λ) size.

4.3.2 Bisection Protocol with Two Commitments: the YOSO Version
Our next challenge is to modify this two-server protocol so that no server is
required to speak more than once (Fig. 8). We can do this by making a simple
observation: our public computation has no private inputs, and the state of an
honest server can be deterministically recomputed by any other honest party.

We introduce log(|C|) committees, where the committee for round r ∈ [2,
. . . , log(|C|) + 1] consists of m verification servers VSr,1, . . . ,VSr,m. Each server
VSr,i posts to locver,r,i. In each round r, server VSr,i computes the circuit C
anew, determines which prior round r − 1 servers it supports, and publishes a
pointer to their bulletin board posts along with its own (Lr,i, Rr,i), extending
the path of nodes opened by the prior r − 1 servers that VSr,i deems honest.

We finish with an accusation committee. Accusations are a bit involved,
since each round comprises m posts and multiple servers might support the
same Merkle tree root. An accusation now points out that in an entire round,
a given Merkle tree root has no valid support. Validating an accusation of no
support can be achieved with m location lookups on Fbb and concluding that
the internal path of a merkle tree was not extended correctly by any party.

In order to extract output, P will only have to read O(m2 + log(|C|)) data
from the bulletin board: P will need to go through m accusations, each of which
will point at a m-sized round. In order to verify gates, it will need to verify entire
log(|C|)-sized paths through the Merkle trees (to validate the gate inputs).

4.3.3 General YOSO Bisection Protocol The binary search style nature
of the bisection protocol does not obviously generalize to a higher number m of
disagreeing Merkle roots. We could run the two-root protocol ΠPubComp-Bis-2C in
parallel for every pair of roots; this would yield bulletin board and extraction

complexities that are
(
m
2

)
= m(m−1)

2 times those of the two-root protocol. This
is formalized in Fig. 9.

Here, we emphasize that in each
(
m
2

)
parallel execution of the two-root pro-

tocol, it is no longer given that one of the commitment roots is honest. Thus, the
honest verifier VSr,i which recomputes the circuit C correctly will not extend
internal nodes of any two-root subprotocol instance which does not include a
correct root. Nonetheless, the honest server can actively provide accusations for
any publicly detectable cheating (Lemma 1) for all O(m2) two-root executions.
A root which obtains no valid accusations in all two-root executions is output
by the output reader.



YOSO-GOD 21

ΠPubComp-Bis-2C

Input: In order to provide an input, party Pi sends (write, locinput,i, xi) to Fbb.
Compute:

– Computation: Each computation server CSi for i ∈ [1, 2] performs computa-
tion as in ΠPubComp-Bisection-2PC-static, but terminates after posting the output yi
and evaluation transcript commitment comi to the bulletin board.

– Verification: For each round r ∈ [1, ..., log(|C|)], each verification server VSi

performs the following:
• Perform the same steps as computation servers to obtain (yi, comi).

For round r = 1, each VSi then performs the following:
• Let L1,i, R1,i be the children of comi. VSi sends

(write, locver,1,i, (comi, L1,i, R1,i)) to Fbb.

For each r ∈ [2, . . . , log(|C|)], each VSi then performs the following:

• Read the computation messages sent by each computation server CSj by
sending (read, loccomp,j) to Fbb.

• Read all verification messages sent by each verification server VSj in prior
rounds by sending (read, r′ < r, locver,j) to Fbb.

• VSi replays all prior verification rounds.
For r′ ∈ [1, ..., r − 1]

∗ If r′ = 1, set currNodei = comi and currNodej = comj , such that
{comi, comj} is equal to the set of commitments posted by the two
computation servers.

· If only one computation commitment was posted, send an
accusation of the silent computation server CSj by sending
(write, locaccuse,r,i, j) to Fbb and terminate.

∗ Let Lr′,i, Rr′,i be children of currNodei computed by VSi.
∗ Let Lr′,j , Rr′,j be children of currNodej posted by prior verification

servers.
· If no valid children were posted to Fbb by prior verification servers,
point out the lack of support for the CSj which posted the merkle
root of currNodej by sending (write, locaccuse,r,i,CSj) to Fbb and
terminate.

∗ If Lr′,i ̸= Lr′,j , set currNodei ̸= Lr′,i.
∗ Otherwise, set currNodei ̸= Rr′,i.

• VSi sends (write, locver,r,i, (Lr−1,j , (Lr,i, Rr,i)) to Fbb.

In round r = log(|C|)+1, each VSi follows the same steps as in the last round
of ΠPubComp-Bis-2C-Persist and writes accusations pointing to invalid wires.

Output: Party P checks all accusations, and reads the output from locinput,i for
CSi without a valid accusation against it.

Fig. 8: Protocol ΠPubComp-Bis-2C
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We note an optimization implemented in ΠPubComp-Bis (Fig. 9) which does
not require the full complexity of

(
m
2

)
bisection protocol instances. Here, the

honest servers will only run the bisection protocol for m − 1 pairs of servers.
For simplicity, assume CSi is honest. Then honest verification servers will run
the bisection protocol for the commitment and output from computation server
pairs (CSi,CS1), (CSi,CS2), ..., (CSi,CSm). Each cheating CSj will receive valid
accusations in the process of running the bisection protocol for these m−1 pairs
of computation commitments. If there are multiple honest computation servers
that post correctly computed outputs and commitments, the verification servers
can canonically select, for example, one with the highest index and match its
commitment against all other commitments in the same fashion.

ΠPubComp-Bis

Input: In order to provide an input, party Pi sends (write, locinput,i, xi) to Fbb.

Compute:

– Computation: Each computation server CSi performs computation as in
ΠPubComp-Bis-2C. Let coms = {com1, ..., comm} be the commitments posted by
computation servers, where comi = ⊥ if a computation server remains silent.

– Verification: For each round r ∈ [1, ..., log(|C|)], each verification server VSi

canonically decides on one honest computation server CSh∈H and performs
m − 1 executions of the verification subroutine in ΠPubComp-Bis-2C in parallel,
for each distinct pair (comh, comj∈CS\h).

Output: Party P checks all accusations posted from all parallel executions, and
reads the output from locoutput,i for CSi without a valid accusation against it.

Fig. 9: Protocol ΠPubComp-Bis

4.3.4 Security

Theorem 3 (Security of ΠPubComp-Bis). ΠPubComp-Bis securely realizes FPubComp

as long as at least one computation server and at least one verification server is
honest.

Proof (Proof of Theorem 3). The simulator follows that of Thm. 1.
The simulator fails if the simulated public computation protocol cannot de-

liver a definitive, publicly verifying output. This occurs when the simulated bi-
section protocol cannot resolve two inconsistent (commitment, output) pairs, of
which one is honestly computed. In this case, the path of internal node openings
follows the protocol correctly, but results in two opened leaves that are identical,
valid wire assignments - since the computation is deterministic, this implies a
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violation of the collision resistance property of the hash function with which the
Merkle tree is instantiated.

4.3.5 Efficiency

Bulletin Board Space First, we analyze the efficiency of ΠPubComp-Bis-2PC. Each
of the two compute servers posts a single hash, which takes Oλ(1) space. Each
verification server posts at most Oλ(log(|C|)) data (e.g. when having to open
input wires to a gate). After log(|C|) rounds where m servers post in each round,
this amounts to Oλ(m log(|C|)2) data on the bulletin board.

In ΠPubComp-Bis, we generalize the protocol to m compute servers instead of
two. Running ΠPubComp-Bis-2PC pairwise for m− 1 pairs induces an increase in all
complexities by factor m.

Reading the Output The output is extracted from the entire bulletin board tran-
script.

5 MPC Protocol

In this section we instantiate FMPC. Our MPC protocol uses threshold fully
homomorphic encryption (TFHE, Appendix A.1), succinct non-interactive zero-
knowledge (zkSNARK, Appendix A.2)), and public computation FPubComp.

Our protocol proceeds in several phases:

Key Generation: A dishonest-majority committee of key generation servers
K1, . . . ,Km generates the TFHE keys. FPubComp checks that the keys were
generated correctly (by checking the zero knowledge proofs provided by the
key generation servers).
Input: The clients Client1, . . . ,Clientℓ encrypt their inputs to the (aggre-
gated) TFHE public key. FPubComp checks the input ciphertexts (by checking
the zero knowledge proofs provided), and homomorphically evaluates the cir-
cuit C on the encrypted inputs.
Output Computation: An honest-majority committee of decryption servers
D1, . . . , Dn jointly decrypt the output. FPubComp checks that the partial de-
cryptions were produced correctly (by checking the zero knowledge proofs
provided), and aggregates the partial decryptions to produce the final out-
put.

5.1 Relations for Zero Knowledge Proofs

Zero knowledge proofs are used thrice in the protocol: the key generation servers
prove that they did their job correctly, the clients prove that their input ci-
phertexts are well-formed, and the decryption servers prove that they produced
their partial decryptions correctly. We formalize the relations for those three
zero knowledge proofs as follows:
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RKGen =

ϕ =
(ppk1, . . . , ppkn,
tpk, ct1, . . . , ctn

)
w = ρ

(tpk, {tski}i∈[n])← TFHE.KGen(ρ)
cti ← Enc(ppki, tski; ρ)


The witness for RKGen is the randomness ρ. We abuse notation slightly by

using ρ both for the generation of the TFHE keys, and for the encryption of the
secret keys to the decryption committee. We assume that ρ is sufficiently long
to enable the use of separate, independent parts of it for each operation.

REnc =

{
ϕ =

(
tpk, ct

)
w = (x, ρ)

ct← TFHE.Enc(tpk, x; ρ)

}

RPDec =

{
ϕ = ({ctj}j∈L, ct, d, tpk)
w = psk

{tskj}j∈[L] ← {Dec(psk, ctj)}j∈[L])
d← TFHE.PDec(tpk, {tskj}j∈[L], ct)

}

5.2 Circuits for Public Computation

We invoke our public computation functionality FPubComp thrice: to check and ag-
gregate the generated keys, to check the input ciphertexts and homomorphically
evaluate the circuit C, and to check and aggregate the partial decryptions. For-
mally, these computations require some inputs which are part of the setup. These
inputs include the common reference strings crsKGen, crsEnc, crsPDec, the encryp-
tion keys ppk1, . . . , ppkn belonging to the honest-majority decryption committee,
and the circuit C representing the function which our MPC aims to evaluate.
For simplicity, we assume that these are hardcoded into the circuits evaluated
by FPubComp.

We specify the three circuits CKGen, CEval and CDec evaluated by FPubComp as
follows:

CKGen({tpki, cti→1, . . . , cti→n, πi}i∈[m]) :
– Initialize a list LKGen to keep track of verifying proofs.
– For i ∈ [m]:
• Let ϕi = (ppk1, . . . , ppkn, tpki, cti→1, . . . , cti→n).
• Check πi by running Verify(crsKGen, ϕi, πi). If it verifies, add i to
LKGen.

– Aggregate the verifying TFHE public keys as tpk ← AggregateKeys({tpki}i∈LKGen
).

– Return (tpk, {cti→j}i∈LKGen,j∈[n]).
CEval(tpk, {cti, πi}i∈[ℓ]) :
– For i ∈ [ℓ]:
• Check πi by running Verify(crsEnc, ϕi = (tpk, cti), πi).
• If it does not verify, replace cti with an encryption of a default value.

– Output ct = Eval(tpk, C, ct1, . . . , ctℓ).
CDec(tpk, {ctj→i}j∈LKGen,i∈[n], ct, {di, πi}i∈[n]) :
– Initialize a list LDec to keep track of verifying proofs.
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– For i ∈ [n]:
• Check πi by running Verify(crsPDec, ϕi = ({ctj→i}j∈LKGen

, ct, d), πi).
If it verifies, add i to LDec.

– Output y = TFHE.Dec(tpk, {di}i∈LDec
).

The input wires for these circuits are specified as (KGen, 1), . . . , (KGen,m),
(Enc, 1), . . . , (Enc, ℓ), (Dec, 1), . . . , (Dec, n). Values on these wires are denoted
above in blue.

The other inputs to CEval and CDec are outputs of previous circuits. Both
CEval and CDec use tpk, which is an output of CKGen. Additionally, CDec uses
{cti→j}i∈LKGen,j∈[n], which is output by CKGen, and ct, which is output by CEval.

5.3 The Protocol

We next describe our MPC protocol (Fig. 10). We assume that the following is
available prior to the execution of the protocol:

– The common reference strings crsKGen, crsEnc and crsPDec.
– The encryption keys ppk1, . . . , ppkn belonging to decryption servers.
– The circuit C to be computed.

Our protocol interacts with FPubComp which is parameterized by the circuits
described above. FPubComp expects:

– Inputs to CKGen from K1, . . . ,Km,
– Inputs to CEval from the clients Client1, . . . ,Clientℓ, and
– Inputs to CDec from D1, . . . , Dn.

Some parties need to access part of circuit outputs. The complexity of these
accesses scales with the accessed data, not with the size of the entire output.

In the above protocol, the output is assumed to be public. However, it is pos-
sible to extend it to private outputs using the following generic transformation:
Each client includes a random value (a mask) as an additional input. The circuit
computing the private outputs is now modified to compute a masked output for
each client instead. Each client retrieves and unmasks their own masked output.

5.4 Efficiency Analysis

Each client (1) reads a TFHE public key from FPubComp, (2) performs a TFHE
encryption, (3) computes a zk-SNARK proof, and (4) inputs the ciphertext and
proof back to FPubComp. Since the complexity of reading part of an output from
FPubComp should scale with the size of the part, not with the size of the en-
tire output, each client’s computation and communication complexity should be
independent of the number of clients.

Next, we note that the each member of the honest majority committee Di (a)
reads the TFHE public key and ciphertexts sent by the key generation committee
members, (b) reads the FHE output ciphertext, and (c) computes and outputs
the partial decryption along with proof of correct decryption. This incurs a
communication and computation complexity of polyλ(n,m).
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Protocol ΠYOSO

Key Generation: Each key generation server Ki does the following:
1. Generate keys (tpki, {tski→j}j∈[n])← TFHE.KGen(ρKGen,i).
2. For j ∈ [n], encrypt cti→j ← Enc(ppkj , tski→j ; ρKGen,i).
3. Let ϕKGen,i = (ppk1, . . . , ppkn, tpki, cti→1, . . . , cti→n). Compute a proof

πKGen,i ← Prove(crsKGen, ϕKGen,i, ρKGen,i).
4. Invoke FPubComp with

(
input, inputwire =

(KGen, i), (tpki, {cti→j}j∈[n], πKGen,i)
)
.

Input: Each client Clienti does the following:
1. Invoke FPubComp with (output,KGen) to obtain the TFHE public key tpk.
2. Encrypt its input xi under tpk to get cti ← TFHE.Enc(tpk, xi; ρEnc,i).
3. Let ϕEnc,i = (tpk, cti).
4. Compute a zk-SNARK proof πEnc,i ← Prove(crsEnc, ϕEnc,i, (xi, ρEnc,i)).
5. Invoke FPubComp with (input, inputwire = (Eval, i), (cti, πEnc,i)).

Output Computation: Each member Di of the honest-majority decryption
committee does the following:
1. Invoke FPubComp with (output,KGen) to obtain (tpk, {ctj→i}j∈LKGen).
2. Let tskj→i ← Dec(pski, ctj→i) for j ∈ LKGen.
3. Invoke FPubComp with (output,Eval) to obtain ct.
4. Partially decrypt ct to obtain di ← TFHE.PDec(tpk, {tskj→i}j∈[LKGen], ct).
5. Let ϕDec,i = ({ctj→i}j∈LKGen , cti, di, tpk).
6. Compute a zk-SNARK proof πDec,i ← Prove(crsPDec, ϕdec,i, pski).
7. Invoke FPubComp with (input, inputwire = (Dec, i), (di, πDec,i)).

Output: To get the output, a party P invokes FPubComp with (output,Dec) to
obtain y.

Fig. 10: Protocol ΠYOSO
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5.5 Security Analysis

We state the formal theorem and prove the security of ΠYOSO below.

Theorem 4. The protocol ΠYOSO YOSO-realizes the MPC functionality FMPC

with guaranteed output delivery in the FPubComp-hybrid model, as long as a ma-
jority of decryption servers is honest.

Proof. To prove that protocol ΠYOSO YOSO realises the functionality FMPC

with guaranteed output delivery, we will show that YoS(ΠYOSO) UC realises the
functionality FMPC. We do this by constructing a simulator S for any given
adversary A, such that

REALYoS(ΠYOSO),A,E(1
1λ) ≈ IDEALFMPC,S,E (1

1λ).

For a given adversary A, we define the simulator S in Figure 11.
First, we note that the correctness of ΠYOSO follows from the correctness

of the TFHE scheme, completeness of the zk-SNARK proof system and the
correctness of the computations done via FPubComp. Next, we argue the indistin-
guishability of the real and ideal world via a series of hybrids.

Real H0: Run everything as in the real protocol, using the honest roles in-
puts.

Hybrid H1: In this hybrid, the aggregated key during key generation in-
cludes the key of corrupt Ki only if the the randomness extracted via NIZK
is consistent with (tpki, {cti→j}j∈[n]) sent by Ki. This is unlike the previous
hybrid where the key of Ki is included as long as the zk-SNARK proof veri-
fies. Indistinguishability follows due to the simulation extractability property
(defined in 9) of the zk-SNARK used for key generation.

Hybrid H2: In this hybrid, the simulator queries the ideal functionality ob-
tained by extracting the inputs of corrupt clients from the zk-SNARK proofs
πEnc,i sent by Clienti to compute the output y. Indistinguishability follows
due to the simulation extractability property (defined in 9) of the zk-SNARK
used by the clients.

Hybrid H3: In this hybrid, the simulator switches the encryptions corre-
sponding to honest parties to encrypt 0. Indistinguishability follows from
semantic security of the TFHE scheme.
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Simulator S for ΠYOSO

Begin by obtaining the extraction trapdoor tdKGen and tdEnc, during the generation
of crsKGen, and crsEnc. Allow the adversary to control the corrupt roles, simulating
the honest roles and FPubComp. LetH and I denote the set of indices corresponding
to honest and corrupt parties respectively.

Key Generation: Initialize a list LKGen to keep track of verifying proofs.
1. Corresponding to each corrupt key generation server Ki, S

does the following upon receiving as input
(
input, inputwire =

(KGen, i), (tpki, {cti→j}j∈[n], πKGen,i)
)
on behalf of FPubComp.

– Use tdKGen to extract ρKGen,i.
– Recompute (tpki, {cti→j}j∈[n]) using ρKGen,i. If it is consistent with the

the version sent by Ki, add i to LKGen.
2. On behalf of honest Kj (j ∈ H), generate tpkj and {ctj→i}i∈[n] as per the

protocol specifications and add j ∈ LKGen.
3. Aggregate the verifying TFHE public keys as tpk ←

AggregateKeys({tpki}i∈LKGen).
4. Store (tpk, {cti→j}i∈LKGen,j∈[n]) as output of KGen.

Input: S does the following:
1. When invoked by corrupt Clienti with (output,KGen), return the previously

stored output tpk.
2. Corresponding to each corrupt client Clienti, S does the following upon

receiving as input (input, inputwire = (Eval, i), (cti, πEnc,i)) on behalf of
FPubComp.
– Use tdEnc to extract (xi, ρEnc,i).
– Recompute cti using tpk and (xi, ρEnc,i). If it is inconsistent with the

version sent by Clienti, replace it with an encryption of default input.
3. Compute ct = Eval(tpk, C, ct1, . . . , ctℓ), where ctj corresponding to j ∈ H

are replaced with encryptions of 0.
4. Store ct as output of Eval.

At this stage, S knows the inputs xi for each corrupt client Clienti. The S can
provide this to the ideal functionality FMPC to obtain the output y.

Output Computation: S does the following:
1. When invoked by corrupt Di with (output,KGen), return the previously

stored output (tpk, {ctj→i}j∈LKGen).
2. When invoked by corrupt Di with (output,Eval), return the previously

stored output ct.

Output : Return y on behalf of FPubComp when invoked by any party with
(output,Dec).

Fig. 11: Simulator for ΠYOSO
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A Building Blocks

In this section, we describe the building blocks used by our constructions. In
Section A.1 we recall threshold fully homomorphic encryption (TFHE); in Sec-
tion A.2 describe the zero knowledge tools we use. Our constructions also rely on
Merkle trees [31] and collision-resistant hashing, which we assume our readers
are familiar with.

A.1 Threshold Fully Homomorphic Encryption

In this section, we go over the definition of threshold fully homomorphic encryp-
tion (TFHE). We use the definitions and instantiation from Kolby et al [28],
which adapts the GSW-style [22] TFHE scheme from Gorden et al [24].

Syntax Kolby et al define a threshold key generation and decryption interface
permitting non-interactive key aggregation and decryption of ciphertexts. In the
non-interactive key generation phase, each key generation server sends both a
public key contribution and a sharing of the corresponding secret key contribu-
tion. Homomorphic evaluation of the desired function circuit can be performed
over ciphertexts encrypted to the same (aggregated) set of joint keys. Decryption
servers holding shares of the joint public key produce partial decryption shares
d, which are again aggregated non-interactively.

Kolby et al describe the following TFHE syntax. We augment their syntax
by adding the AggregateKeys algorithm (in their scheme, it is instantiated simply
by adding the public keys together), and by removing the circuit depth from the
syntax altogether (that dependency can be lifted through bootstrapping).

Setup(1λ, n; ρ)→ pp: A setup algorithm parameterized by the size n of the
honest-majority decryption committee, producing public parameters pp, which
are given as an implicit argument to all subsequent algorithms.
KGen(ρi)→ (tpki, tski) : Given public parameters pp and randomness ρi, the
key generation algorithm produces a public key tpki and a secret key tski
split into shares, such that tski = (tski,1, . . . , tski,n).
AggregateKeys({tpki}i∈K)→ tpk : Given a set of public keys, the aggregation
algorithm produces a single public key.
Enc(tpk, x; ρ)→ c : Given a public key tpk and a message x, the encryption
algorithm encrypts to a ciphertext c under randomness ρ.
Eval(C, c1, . . . , cℓ)→ c : Homomorphically evaluates circuit C on input ci-
phertexts c1, . . . , cℓ to produce c.
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PDec(tpk, tskj , c)→ dj : For a ciphertext c, encrypted under the public keys
{tpki}i∈K, and decryption secret key cskj = {tski,j}i∈K this algorithm pro-
duces a partial decryption dj .
Combine(tpk, c, {di}i∈R)→ y : Given a set of partial decryptions {di}i∈R of
size at least t+ 1, decrypts ciphertext c to obtain plaintext y.

Properties A TFHE scheme should be correct and decryption share simulatable
as defined by Kolby et al . It should also be semantically secure (Definition 2).
(We re-state this definition because we use it explicitly in our proofs.)

Definition 2 (Semantic Security [28]). A TFHE scheme is semantically se-
cure under chosen plaintext attack if, for all PPT adversaries A,

AdvIND-CPA = Pr[A wins GameIND-CPA
TFHE ]− 1

2
≤ ϵ

for a negligible function ϵ in the security parameter 1λ. Where GameIND-CPA
TFHE is

defined as described in Fig. 12 and Fig.13.

GameIND-CPA
TFHE

1: HKGen := ∅; IKGen := ∅; IComputation := ∅; Lkeys := ∅
2: O ← {OKeyGen,OKeyReg,OCorr}
3: pp← Setup(1λ, n)
4: x0, x1 ← AO(pp)
5: K ← HKGen ∪ IKGen
6: b←$ {0, 1}
7: c← Enc(AggregateKeys({pki}i∈K), xb)

8: b′ ← A{OCorr}(C)
9: if |HKGen| = 0 : A loses
10: if |IComputation| > t : A loses
11: if |x0| ̸= |x1| : A loses
12: if b = b′ : A wins
13: else A loses

Fig. 12: Semantic security realized by the TFHE scheme of [28].

Realization The TFHE scheme from [28] realizes a notion of semantic security,
reproduced in Fig. 12, which allows the adversary to choose all-but-one key
contributions during the key generation phase. This is a critical, as we only
afford a single honest majority decryption committee, but must assume dishonest
majority for all other phases including key generation.
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Oracles in GameIND-CPA
TFHE

OKeyGen(i)

1: if i ∈ HKGen ∪ IKGen ∨ i ̸∈ [n] : return ⊥
2: (pki, ski = (ski,1, . . . , ski,n))← KGen()
3: Lkeys := Lkeys ∪ {(i, pki, ski)}
4: HKGen := HKGen ∪ {i}
5: return pki

OKeyReg(i, ρi)

1: if i ∈ HKGen ∪ IKGen ∨ i ̸∈ [n] : return ⊥
2: (pki, ski)← KGen(ρi)
3: Lkeys := Lkeys ∪ {(i, pki, ski)}
4: IKGen := IKGen ∪ {i}

OCorr(j)

1: if j ̸∈ [n] : return ⊥
2: IComputation := IComputation ∪ {j}
3: cskj ← {ski,j |∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys

4: ∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys

5: return cskj

Fig. 13: Oracles used in the GameIND-CPA
TFHE .

A.2 Argument Systems and Zero Knowledge

We reproduce definitions of Succinct Non-interactive Arguments (SNARG) and
Succinct Non-Interactive Arguments of Knowledge (SNARK) from [26,30] and
standard properties such as soundness, zero-knowledge and simulation extractabil-
ity.

Definition 3 (SNARG). Let R(ϕ, ω) be an NP relation corresponding to an
NP language L. A Succinct Non-interactive Argument (SNARG) for relation R
is a tuple of algorithms (Setup,Prove,Verify) defined as follows:

- (σ, τ)← Setup(1λ): The Setup takes the security parameter λ and outputs a
common reference string (crs) σ and a simulation trapdoor τ for the relation
R.

- π ← Prove(σ, ϕ, ω): The prove algorithm takes as input the crs σ and the
statement ϕ and witness ω such that (x, ω) ∈ R and returns an argument π.

- 0/1 ← Verify(σ, ϕ, π): The verify algorithm takes as input the crs σ, the
statement ϕ and an argument π and outputs 0 or 1 corresponding to reject
and accept respectively.

Definition 4 (zk-SNARK). Let R(ϕ, ω) be an NP relation corresponding to
an NP language L. A Zero-Knowledge Non-interactive Argument of Knowledge
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(zk-SNARK) for relation R is a tuple of algorithms (Setup,Prove,Verify,Sim)
which has the same syntax as SNARG (defined in Definition 3) but with the
additional algorithm Sim defined as follows:

- π ← Sim(σ, τ, ϕ): The simulation takes as input a crs σ, a simulation trap-
door τ and a statement ϕ and returns an argument π.

Definition 5 (Succinctness). The proof string π is sublinear or polylogarith-
mic in the statement ϕ and ω.

Definition 6 (Completeness). For all λ ∈ N and ϕ ∈ L :

Pr
[
(σ, τ)← Setup(1λ);π ← Prove(σ, ϕ, ω) : Verify(σ, ϕ, π) = 1

]
= 1

Definition 7 (Soundness). A non-interactive argument scheme is sound if
for all non-uniform PPT adversary A, λ ∈ N and given auxiliary information
z, there exist a negligible function ϵ(·) :

Pr
[
(σ, τ)← Setup(1λ); (ϕ, π)← A(σ, z) : Verify(σ, ϕ, π) = 1 ∧ ϕ ̸∈ LR

]
≤ ϵ(λ)

SNARG and SNARK schemes which also satisfy zero-knowledge are zk-
SNARGs and zkSNARKs respectively.

Definition 8 (Zero-Knowledge). For all λ ∈ N and (ϕ, ω) ∈ R, auxiliary
information z and every PPT adversary A, there exist a negligible function ϵ
such that∣∣∣Pr [(σ, τ)← Setup(1λ);π ← Prove(σ, ϕ, ω) : A(σ, ϕ, π, τ) = 1

]
−Pr

[
(σ, τ)← Setup(1λ);π ← Sim(σ, ϕ, ω) : A(σ, ϕ, π, τ) = 1

]∣∣∣ ≤ ϵ(λ)

In this work, our protocols can be instantiated with a SNARG (for pub-
lic computation) and zk-SNARKs with simulation-extraction (for proving well-
formedness of encrypted messages). Simulation extractability is required by the
UC simulator of ΠYOSO in Fig.11.

Definition 9 (Strong Simulation-Extractability). A non-interactive zero-
knowledge argument scheme (Setup,Prove,Verify,Sim) is Strong Simulation Ex-
tractable if the exist an extractor E and a negligible function ϵ such that for any
PPT adversary A and R:

Pr
[
(σ, τ)← Setup(1λ); (π, ϕ)ASσ,τ (σ, );w ← E(σ, τ, ϕ, π) :

Verify(σ, ϕ, π) = 1 ∧ (ϕ, ω) ̸∈ R ∧ (π, ϕ) ̸∈ Q
]
≤ ϵ(λ)

where Sσ,τ (ϕ) is a simulation oracle that runs Sim(σ, τ, ϕ) internally and also
records (π, ϕ) ∈ Q.
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Realization In our work, we assume a zkSNARK scheme such as Groth16 [26]
in the complexity analysis of our protocols. Groth 16 offers Oλ(1) proof size
(succinctness), Oλ(|ℓ|) verification cost (sublinear in the size of the computation)
and proving time of Oλ(|C| log |C|); here, λ is the security parameter, |ℓ| is the
size of the inputs, |C| is the size of the circuit and Oλ(·) hides a multiplicative
factor of poly(λ).

In [17], they show that Groth16 is sound under the (q1, q2)−dlog assumption
in the Algebraic Group Model (AGM). To satisfy the extra property of Strong
Simulation-Extractability (defined in Definition 9), our protocol can be instan-
tiated with the Groth16 variant proposed in [30]. This will affect the complexity
with almost poly(λ) factor, maintaining overall the complexities.
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