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Abstract. We construct a provably-secure structured variant of Learn-
ing with Errors (LWE) using nonassociative cyclic division algebras, as-
suming the hardness of worst-case structured lattice problems, for which
we are able to give a full search-to-decision reduction, improving upon
the construction of Grover et al. named ‘Cyclic Learning with Errors’
(CLWE). We are thus able to create structured LWE over cyclic al-
gebras without any restriction on the size of secret spaces, which was
required for CLWE as a result of its restricted security proof. We reduce
the shortest independent vectors problem in ideal lattices, obtained from
ideals in orders of such algebras, to the decision variant of LWE defined
for nonassociative CDAs. We believe this variant has greater security
and greater freedom with parameter choices than CLWE, and greater
asymptotic efficiency of multiplication than module LWE. Our reduction
requires new results in the ideal theory of such nonassociative algebras,
which may be of independent interest. We then adapt an LPR-like PKE
scheme to hold for nonassociative spaces, and discuss the efficiency and
security of our construction, showing that it is immune to certain sub-
field attacks. Finally, we give example parameters to construct algebras
for cryptographic use.

1 Introduction

In [1], Ajtai gave a reduction from the ‘shortest vector problem’ (SVP) on inte-
ger lattices to random instances of SVP on a particular class of integer lattices.
These reductions were later used to ground the security of a public key encryp-
tion (PKE) scheme [2]. Such worst-case to average-case reductions have been
acclaimed by cryptographers: they imply that if some instance of a problem is
‘hard’ (i.e. computationally intractable) then with respect to some distribution
over problem instances, a randomly selected instance will also be hard to solve.

Similar reductions for other cryptographic problems have subsequently been
obtained: in [28] it was shown that an average-case form of the ‘small integer
solutions’ (SIS) problem is at least as hard as a worst-case ‘shortest independent
vectors problem’ (SIVP), and, pertinently for this work, in [39] it was shown
that average-case ‘learning with errors’ (LWE) is at least as hard as worst-case
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SIVP.
In more detail, (search) LWE asks a solver to obtain a vector s ∈ Znq of

integers modulo q from samples of the form

(a, 〈a, s〉+ e) ∈ Znq × Zq

Here Zq = Z/qZ, e is an ‘error’ (or ‘noise’) term and a is taken uniformly at
random over the domain. One can also consider the case of errors taken from
a domain which is not discrete. The decision form of the problem is to decide
if a collection of samples is taken as above, or is sampled uniformly from the
domain.

LWE has subsequently become a centerpiece of lattice-based cryptography.
Varied functionalities, from signature schemes (e.g. [22], [11], [12]) to fully ho-
momorphic encryption (e.g. [6], [13], [9], [10]), have been obtained from the LWE
assumption. Moreover, in 2022 NIST standardized Crystals-Kyber as their post-
quantum KEM of choice, and Crystals-Dilithium as one of two standardized
post-quantum signatures [29]. Both schemes are based on structured forms of
LWE.

Schemes based on structured forms of LWE, like Kyber, aim to achieve trade-
offs between efficiency and security by using algebraic structure (e.g. from rings
of integers of number fields or modules over these rings). These structured vari-
ants include Ring LWE (RLWE) [24] using rings of integers of number fields,
Polynomial LWE [45] using a more general class of polynomial rings, and Mod-
ule LWE (MLWE) [18] using modules of finite rank over rings of integers, and
others.

In [14], a structured form of LWE was introduced, via an object known as
a cyclic division algebra (CDA), and called CLWE. This variant generalised
RLWE, and aimed to attain a comparable level of security to MLWE while
improving on its efficiency. A limitation of CLWE, however, is that while a
reduction from worst-case lattice problems to the search CLWE problem was
obtained, the reduction from the search to the decision problem only holds for a
limited set of secrets. There may thus be choices of secret for CLWE which are
in some sense structurally weak, and so no security reduction may be given for
them. In this work, we study structured LWE over a closely related family of
algebras, for which we obtain a full reduction from worst-case lattice problems.
This allows us to totally remove the restriction on the size of the set of secrets
which limited CLWE, for well-chosen parameters. We may thus be confident that
structured LWE can be created from CDAs with no possibility of structurally
weak secrets. This may suggest that the nonassociative generalisation of number
fields will prove a more fruitful structure with which to structure LWE than the
associative option.

1.1 Contributions

We introduce NCLWE, a form of structured LWE obtained by using orders of
nonassociative cyclic algebras, rather than orders of associative cyclic algebras
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as in CLWE. We briefly outline the construction of these algebras (more detail is
given in Section 3). In [14], CDAs were built by setting K = Q(ζm) to be the mth
cyclotomic field, and taking a certain finite extension L of degree [L : K] = d,
with cyclic Galois group generated by an automorphism θ such that a chosen
element γ ∈ O×

K is not in the image of the field norm NL/K(·) from L to K.
An auxiliary element u satisfying ud = γ and ux = θ(x)u was defined, and
an algebra A = L ⊕ uL ⊕ ... ⊕ ud−1L constructed. An order (full-rank discrete
subring) is then defined: Λ = OL⊕uOL⊕ ...⊕ud−1OL, called the natural order.

In this work we consider the case of γ ∈ O×
L \O

×
K . As will be seen below, the

resulting algebras A still yield CDAs and Λ is still an order, but multiplication
is not associative; for instance, u(ud−1u) = uγ, but (uud−1)u = uθ(γ). This lack
of associativity poses a number of technical problems; mathematically, results
on the ideal theory of associative Λ cannot be applied, and cryptographically,
the Regev-style cryptosystem of [14] cannot be straightforwardly mirrored for
CLWE-style samples defined from nonassociative CDAs.

In this work we overcome both of these obstacles. We begin with a study of
multiplicative ideal theory of two-sided ideals in nonassociative natural orders,
and obtain

Theorem 6. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassocia-
tive CDA and γ ∈ O×

L . Then multiplication of Λ-ideals I such that I ∩ OK is
unramified in OL yields ideals, and is commutative and associative.

We use this to give an unrestricted search-to-decision reduction for NCLWE
samples, in contrast to the partial reduction for CLWE, for certain moduli.
Below, Λ∨ is the dual of Λ.

Theorem 7, informal. Let Λ ⊂ A = (L/K, θ, γ), q ≥ 2 such that qOK =∏g
i=1 qi, and α ∈ (0, 1) such that αq ≥ ηε (Λ

∨) for negligible ε. Then there is
a probabilistic polynomial-time reduction from search NCLWEq,s,Σα,G for s in
any pairwise difference set G ⊂ Λ∨

q to decision NCLWEq,Υα .
When the qi are inert in OL and either d is prime or 1, γ, . . . , γd−1 are linearly

independent over OK/qi for each i, then there is a probabilistic polynomial-time
reduction from search NCLWEq,s,Σα to decision NCLWEq,Υα .

We then obtain a reduction from SIVP on lattices which are embeddings of
ideals of Λ in the standard manner of [18],[14], [25], which combined with The-
orem 7 yields a reduction from worst-case lattice problems to decision NCLWE.

We then relate NCLWE to cryptography by tweaking the Regev-style scheme
of [14] to maintain correctness in spite of the nonassociativity of our algebras,
when d = 2. We conclude by giving parameter suggestions for CDAs with which
to implement our scheme, with a discussion of a subspace attack on structured
LWE variants, and with numerical results from the lattice estimator [4] applied
to our parameter choices.

As mentioned above, our results introduce a structured form of LWE using
cyclic algebras which has a complete security proof. A consequence of this is
that we may have greater confidence in NCLWE than CLWE that there are no
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structurally weak choices of secret, a possibility left open by the security proofs
of [14]. We also note that nonassociative rings may be considered the least struc-
tured algebraic object used to create ring-based LWE to date (insofar as they
lack associativity and commutativity), and it may be considered advantageous
to have such unstructured LWE instances so as to hedge against the possibility
of algebraic attacks which exploit specific algebraic structures also solving our
LWE instances; for instance, attacks against LWE over cyclotomic fields may be
unlikely to also apply to LWE over nonassociative algebras.

We note that both CLWE and NCLWE are in fact instance of structured
MLWE. This is because one sample of (N)CLWE results in numerous correlated
samples of MLWE. It is thus possible that the security of (N)CLWE is close to
that of MLWE while allowing for greater asymptotic efficiency than MLWE. We
see the exploration of this possibility as an interesting question and we leave
quantifying the gap between (N)CLWE and MLWE for future work.

1.2 Prior work

Associative cyclic division algebras were used in coding theory in [41]. Works
such as [30], [15] further developed this. Nonassociative CDAs were developed
in [46], [19], Steele’s thesis [43], and also in [42], [44], [38].

CDAs were used in cryptography to create structured LWE in [14], [25] and
for NTRU in [21]. For more on the mathematics of nonassociative rings, see [40].

The usefulness of noncommutative structures for post-quantum cryptography
was hinted at by Micciancio and Peikert in the Simons Institute Workshop on the
Mathematics of Modern Cryptography [27], where they wrote that lattice-based
cryptographic progress had been built on ‘approximation problems on point
lattices, their specializations to structured lattices arising in algebraic number
theory, and, more speculatively, problems from noncommutative algebra.’

2 Preliminaries

2.1 Lattices

A Z-lattice L is the integer linear span of a set of vectors bi, L = {
∑
i aibi : ai ∈

Z}. We may write the bi as the columns of a matrix B and refer to the lattice
L = L(B) defined by the span of the columns of B. More generally, if V is a finite-
dimensional vector space over a field K and R is a discrete subring of K then an
R-lattice in V is a subspace L ⊂ V such that L is a finitely-generated R-module.
Equivalently, L is a finitely-generated torsion-free R-module. If dimZ(R) =
dimQ(V ), we call R an order. An order is maximal if it is maximal with re-
spect to inclusion. An R-lattice L is called full if it contains a K-basis of V , so
V = KL. Fixing a basis B of V , the R-linear span of B is a full lattice. We will
be concerned with full lattices in V = Rn.

Definition 1. Let L be a lattice, and Rn be endowed with inner product 〈·, ·〉.
Then the set L∨ = {v ∈ Rn : 〈L, v〉 ⊂ Z} is called the dual lattice of L.
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Definition 2. Let L ⊂ Rn be a lattice and ‖ · ‖ be a norm. Then λi(L) denotes
the ith successive minimum of L with respect to the norm ‖ · ‖, that is the
minimum length of a set of i linearly independent vectors in L, where the length
of a set of vectors {x1, . . . ,xn} is maxi (‖xi‖).

2.2 Discrete Gaussians

Equip Rn with the Euclidean norm ‖·‖2 = ‖·‖, and let a ∈ Rn and r > 0. Define
the Gaussian function by ρr,a : Rn → (0, 1],x 7→ exp

(
−π‖x− a‖/r2

)
. Then the

Gaussian distribution Dr is defined by the probability density function 1
rρr,0.

Let b1, . . . ,bn be a basis of Rn and r = (r1, . . . , rn) ∈ Rn. An elliptical Gaus-
sian distribution Dr over Rn is obtained by sampling xi ← Dri independently
for all i 6= j and outputting

∑n
i=1 xibi. If the ri are all identical, Dr is spherical.

For a lattice L, let ρr(L) =
∑
x∈L ρr(x). Then for x ∈ L, the discrete Gaus-

sian distribution DL,r outputs x with probability ρr(x)
ρr(L) .

The smoothing parameter, introduced in [28], will be used throughout:

Definition 3. Let L be a lattice and ε > 0. Then the smoothing parameter ηε(L)
of L is the smallest r > 0 such that ρ1/r (L∨/{0}) ≤ ε.

The statistical distance between distributions D,D′ over a discrete set S
is denoted ∆(D,D′) = 1

2

∑
x∈S |D(x) − D′(x)|. We may denote the uniform

distribution over S by U(S). We also need the following statistical lemma:

Lemma 1. [28, Lemma 4.1] For a lattice L over Rn, ε > 0, r ≥ ηε(L), and x ∈
Rn, the statistical distance between (Dr + x) mod L and the uniform distribution
modulo L is bounded above by ε/2. Equivalently, ρr(L+ x) ∈

[
1−ε
1+ε , 1

]
· ρr(L)

2.3 Number Fields

An algebraic number field is a field containing Q with finite index. An example of
an algebraic number field is a cyclotomic field, obtained by adjoining a primitive
mth root of unity ζm to Q for Q(ζm), which has degree [Q(ζm) : Q] = ϕ(m)
where ϕ is the Euler totient function. Cyclotomic fields are examples of Galois
fields. These are characterised by the property that their set of automorphisms
has a group structure.

Let L/K be a Galois extension of algebraic number fields. The ring of integers
of K is denoted OK and is the maximal order of K, and similarly for OL and L.
Given a prime ideal p of OK , the ideal pOL =

∏g
i=1 Pei factors into a number of

powers of prime OL-ideals Pi. It is a standard result that efg = [L : K], where
f = [OL/Pi : OK/p]. If e = 1, p is called unramified. If g = [L : K], p completely
splits. If f = [L : K], p is inert.

2.4 Lattice Problems

We next define lattice problems used in our reductions for the nonassociative
setting outlined below . We parameterise our problems by an algebraic space
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A which may be embedded into Rn for some n, containing an order AZ over
which lattices are defined; for example, Q-SVPξ refers to lattice problems over
Z-lattices; K-SVPξ refers to SVP in an ideal lattice I of the ring of integers
of K; and A-SVPξ refers to SVP in an ideal lattice of the natural order of a
cyclic algebra A (definitions below), with respective norms ‖ · ‖. Below, L is an
AZ-lattice embedded into Rm.

Definition 4. For an approximation factor ξ = ξ(n) ≥ 1, the (approximate)
Shortest Vector Problem, A-SVPξ, is to find an element a ∈ L \ 0 such that
‖a‖ ≤ ξ · λ1(L).

Definition 5. The (approximate) Shortest Independent Vectors Problem, A-
SIVPξ, is to find n := [L : Z] linearly independent non-zero vectors x1, . . . ,xn
over Z such that maxi (‖xi‖) ≤ ξ · λn(L), where ξ ≥ 1.

Definition 6. The Discrete Gaussian Sampling problem, denoted A-DGSξ, is
to sample a discrete Gaussian DL,ξ, for some parameter ξ > 0.

For A a number field, d ≥ 1, and e ∈ Ad let ‖e‖2,∞ = maxj

√∑d−1
i=0 |σj (ei)|

2,
where the σj are the A-embeddings A ↪→ C. We now define the bounded distance
decoding (BDD) problems we require.

Definition 7. Let δ < λ1(L)/2 and ψ be an error distribution. Then the A-
BDDL,δ problem, on input y = x+ e for x ∈ L and e← ψ satisfying ‖e‖2,∞ ≤ δ,
is to compute x.

Definition 8. For any q ≥ 2 the qA-BDDL,d problem is as follows: given an
instance of the A-BDDL,δ problem y = x+e with solution x ∈ I and error e← ψ
satisfying ‖e‖2,∞ ≤ δ, output x mod qL.

The above two BDD problems are straightforwardly extended to cyclic alge-
bras by considering the error terms as vectors with entries in a number field.

2.5 Learning with Errors

Learning with Errors (LWE) was introduced in [39] by Regev. An LWE sample
is constructed by first sampling a← Znq uniformly at random for some modulus
q ≥ 2 and rank n. One then takes a secret s ∈ Znq , samples an error e← ψ from
an error distribution ψ over Zq, and outputs

(a, 〈a, s〉+ e mod q) ∈ Znq × Zq

The search problem is to recover s from polynomially many independent samples,
and the decision problem is to decide whether a collection of samples comprises
samples taken uniformly random over the domain, or whether they are a collec-
tion of independent LWE samples.
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One can batch together multiple LWE samples as follows: if there are ` LWE
samples (ai, 〈ai, s〉+ ei mod q), one can write

(A,As+ e mod q) ∈ Z`×nq × Znq

where A has ith row ai and the ith entry of e is ei. One can take ψ to be an error
distribution over a continuous domain, if desired. A reduction from SIVP to the
decision LWE problem was given, relating the hardness of LWE to worst-case
lattice problems which are currently intractable for well-chosen parameters.

We conclude by observing two issues with LWE: first, that for large values
of n, matrix-vector multiplication is not efficient, and second, that storing an
LWE sample requires storing n2+n values from Zq, which for large n is a strong
requirement. For these reasons and more, variants of LWE have been introduced
using algebraic structure to alleviate these concerns, which we explore below.

2.6 Ring LWE

Two works adapted LWE to polynomial rings [45], [24]. The latter of these
introduced Ring LWE, using rings of integers of Galois number fields, in par-
ticular those of cyclotomic fields K = Q(ζm) ∼= Q[x]/Φm(x) generated by a
primitive mth root of unity (or the roots of the mth cyclotomic polynomial
Φm(x)). For example, when m is a power of two and K = Q[x]/f(x) with
f(x) = xm + 1, fixing a basis {1, x, ..., xm−1}, one can write multiplication of
polynomials a = a0+a1x+ ..., s = s0+s1x+ ... ∈ Z[x]/f(x)Z[x] as matrix-vector
multiplication

vec(a · s) =


a0 −am−1 ... −a1
a1 a0 ... −a2
... ... ... ...

am−1 am−2 ... a0




s0
s1
...

sm−1


In this manner one can replace As+ e in LWE samples with polynomial multi-
plication a · s+ e in the ring of integers OK . Clearly one need only store the m
coefficients of a and the m coefficients of a · s + e to store an RLWE key, and
fast algorithms exist for polynomial multiplication. Expanding RLWE samples
over the integers, one obtains a number of correlated LWE instances.

RLWE was extended to modules of finite rank over number fields, called
MLWE [18]. Here one takes s ∈ O`Kq

, samples a ← O`Kq
uniformly and e ← ψ

over OKq
and outputs (a, 〈a, s〉+e mod q) ∈ O`Kq

×OKq
, where OKq

= OK/qOK
and ` > 0 is the module rank.

We also introduce here the dual form of RLWE. Let TrK/Q(·) denote the field
trace. We define the codifferent as

O∨
K := {x ∈ K : TrK/Q(xOK) ⊂ Z}.

We then define a dual form of RLWE by taking s ∈ O∨
Kq

, a ∈ OKq
, and e ← ψ

where ψ samples over OKq
, and outputting (a, 1q (a · s) + e mod O∨

K). This can
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again be straightforwardly turned into a module problem.
Rather than simply taking the coefficients of polynomials to obtain LWE-

style problems, one can instead consider the canonical embedding of K into
R[K:Q]. If K/Q is a finite Galois number field and [K : Q] = n, then there exists
an α with minimal polynomial mα(x) such that K = Q[x]/(mα(x)) ∼= Q(α).
Since K is Galois, it has n distinct automorphisms which are defined by their
action on α, and the automorphisms each extend to a unique embedding K ↪→ C.
If σi(K) ⊂ R, for an embedding σi, then σi is called real, and is otherwise called
complex. There are r1 real embeddings and r2 pairs of complex embeddings of
K, satisfying r1 + 2r2 = n. Ordering the real embeddings first, and then the
complex embeddings such that σr1+j = σr1+r2+j for 1 ≤ j ≤ r2, we define

Definition 9. The canonical embedding σK : K ↪→ Rr1 × C2r2 is defined by

x 7→ (σ1(x), ..., σn(x)), for x ∈ K

and imσK ⊂ H := {(x1, ..., xn) ∈ Rr1 × C2r2 : xr1+r2+j = xr1+j , 1 ≤ j ≤ r2}.

As inner product spaces H ∼= Rn. Note σK(x) + σK(y) = σK(x + y), so
an algebraic lattice in K has image under σK a lattice in Rn, and σK(xy) =
σK(x)?σK(y) where ? denotes entry-wise products of vectors. The norm ‖x‖ :=
‖σK(x)‖2 can then be defined, and lattice problems with respect to this norm
reduced to RLWE.

2.7 Cyclic LWE

In [14], LWE was adapted to the algebraic setting of cyclic division algebras.
These are rings which are also vector spaces over a number field, and this LWE
variant targeted achieving comparable security to MLWE while attaining a level
of efficiency comparable with that of RLWE. The cyclic algebras used are defined
by a pair of number fields L,K where L/K is a degree d extension with cyclic
Galois group generated by an element θ, and K := Q(ζm) is cyclotomic. To form
a cyclic algebra, one defines an element u by the properties ud = γ for some
γ ∈ OK , and ux = θ(x)u for all x ∈ L, and sets

A := L⊕ uL⊕ ...⊕ ud−1L

This contains a subring which is also a lattice, denoted

Λ := OL ⊕ uOL ⊕ ...⊕ ud−1OL

and called the natural order. To illustrate multiplication of algebra elements,
consider the case d = 2 and a = a0 + ua1, s = s0 + us1. Then

a · s = a0s0 + γθ(a1)s1 + u (a1s0 + θ(a0)s1)

As in prior LWE variants, a matrix representation φ can be obtained by fixing
the basis 1, u, ..., ud−1 and computing the multiplication of a generic element
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a = a0 + ua0 + ... + ud−1ad−1 ∈ A with an element s ∈ A in the basis. This is
a linear transformation, so the vector of coefficients of a · s can be written as
matrix-vector multiplication:

vec(a · s) = φ(x)s =


a0 γθ(ad−1) . . . γθ

d−1(a1)
a1 θ(a0) . . . γθd−1(a2)
. . . . . . . . . . . .
ad−1 θ(ad−2) . . . θd−1(a0)




s0
s1
...

sd−1


We can also define a duality via a trace form: set Tr(x) := TrK/Q ◦ trace(φ(x)),
for x ∈ A. This is a symmetric map, and we define Λ∨ := {x ∈ A : Tr(xΛ) ⊂ Z}.
An LWE-style distribution was then defined:

Definition 10. Let L/K be a Galois extension of number fields of dimensions
[L : K] = d, [K : Q] = n, with cyclic Galois group generated by θ. Let A :=
(L/K, θ, γ) be the resulting cyclic algebra with center K and invariant u with
ud = γ ∈ OK . Let Λ be the natural order of A, and Λq = Λ/qΛ. Let LR =
L ⊗ R. For an error distribution ψ over ⊕d−1

i=0 u
iLR, an integer modulus q ≥ 2,

and a secret s ∈ Λ∨
q , a sample from the CLWE distribution ΠC

q,s,ψ is obtained
by sampling a ← Λq uniformly at random, e ← ψ, and outputting (a, b) =
(a, (a · s)/q + e mod Λ∨) ∈ Λq ×

(
⊕d−1
i=0 u

iLR
)
/Λ∨.

Search and decision problems were defined in the standard way:

Definition 11. Let Ψ be a family of error distributions over
⊕d−1

i=0 u
iLR. Then

the search CLWE problem, denoted by CLWE q,s,ψ, is to recover s from a col-
lection of independent samples from ΠC

q,s,ψ for arbitrary s ∈ Λ∨
q and ψ ∈ Ψ .

Definition 12. Let Υ be some distribution on a family of error distributions over⊕d−1
i=0 u

iLR and UA denote the uniform distribution on
(
Λq,
(⊕d−1

i=0 u
iLR

)
/Λ∨

)
.

Then, the decision CLWE problem, written DCLWEq,Υ , is on input a collection
of independent samples from either ΠC

q,s,ψ for a random choice of (s, ψ) ←
U
(
Λ∨
q

)
×Υ or from UΛ, to decide which is the case with non-negligible advantage.

To see that these definitions do yield structured LWE instances, one can
expand them using the map φ to obtain equations over OLq , which can then
be expanded over Zq. Security reductions were also proved. The hardness of the
search problem was obtained from ideal SIVP on ideals in Λ, with respect to the
family of error distributions comprising Gaussians over ⊕d−1

i=0 u
iLR which have

every marginal distribution Gaussian of parameter rij at most α, denoted Σα.

Theorem 1. [14, Corollary 1] Let A = (L/K, θ, γ) be a CDA with |γ| = 1 such
that the natural order Λ is maximal, and let α ∈ (0, 1) and q unramified in
L be such that αq ≥ ω(

√
log nd2). Then, there is a polynomial-time quantum

reduction from A-SIVPξ to search CLWEq,s,Σα
for any

√
8nd2 ·ξ = (ω(

√
dn)/α).

A restricted search-to-decision reduction was also obtained:
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Theorem 2. Let K = Q(ζm), Λ be the natural order of a CDA A = (L/K, θ, γ),
q ∈ poly(n), and assume that αq ≥ ηε (Λ∨) for a negligible ε = ε(n). Then, there
is a probabilistic reduction from search CLWEq,Σα,G for any pairwise difference
set G ⊂ Λ∨

q to decision CLWEq,Υα which runs in time polynomial in n.

Above, a pairwise difference set G ⊂ Λ∨
q is a set such that the difference of

any two elements is invertible. We now discuss the search-to-decision reduction
in more detail, and explain why the restriction to such sets was necessary.

We first observe a technical difference between the search-to-decision reduc-
tions for CLWE and for RLWE. Both reductions require a Chinese Remainder
Theorem (CRT) decomposition modulo q: the reduction for RLWE used a CRT
on OK/qOK to rewrite the quotient as the products of quotients by prime ideals
of OK , whereas the CLWE reduction used a CRT-style isomorphism which gives
an isomorphism

Λ/qΛ ∼=
g∏
i=1

((OL/qiOL)/(OK/qi), θ, γ)

where qOK =
∏g
i=1 qi, which for primes unramified in OL is a direct product

of (generalised) cyclic algebras over finite fields OK/qi. The algebra of the right
hand side induced by qi was labelled Ri. However these algebras are not division
algebras, but rather each Ri is isomorphic to a matrix ring over a finite field,
rather than simply a finite field (which is what is obtained for the corresponding
step for RLWE). Let us work through the consequences.

The critical step in the reduction reduces search CLWE ‘modulo Ri’ to a
hybrid distribution. This hybrid distribution is denoted Ais,Σ , and is defined
over Λq× (⊕iuiLR)/Λ

∨ by sampling (a, b)← ΠC
q,s,Σ and outputting (a, b+h/q),

where h ∈ Λ∨
q is uniformly random and independent modulo Rj for all j ≤ i,

and 0 modulo the remaining Rj . Then worst-case decision CLWE modulo Ri,
WDCLWEiq,Σ , is, given access to Ajs,Σ for arbitrary s ∈ Λ∨

q , Σ ∈ Σα, and j ∈
{i− 1, i}, to find j, for i ∈ Zg.

The reduction, given a CLWE sample (a, b), guesses s with g and computes

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Λq × (⊕iuiLR)/Λ
∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i, and h ∈ Λ∨
q

is uniformly random and independent mod Rj for all j < i, and 0 mod the
remaining Rj . Observe

b′ = b+ (h+ vg)/q = as/q + e+ h/q + vg/q = ((a+ v)s+ h+ v(g − s)) /q + e.

If the guess g = s, then (a′, b′) is a sample from Ai−1
s,Σ . However, if g 6= s, we do

not find that the resulting distribution is Ais,Σ unless g − s is invertible modulo
Ri, that is, invertible in some matrix ring over a finite field. To ensure this
holds, [14] restricted the secret space for this step of the reduction to a ‘pairwise
difference set’ G ⊂ Λ∨

q , which under the CRT-style map is a direct product
of sets Gi ⊂ Ri, characterised by the property that the difference of any two
elements of Gi inverts. Such a set is of size at most |Gi| ≤ qd when [L : K] = d,
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rather than the full secret space of size qd2 . As a result, there is currently no
unrestricted reduction from computationally hard lattice problems to decision
CLWE. It is the purpose of the present work to circumvent this problem by
pivoting to nonassociative algebras.

The CLWE problem was applied to cryptography to design a public key
encryption scheme. We also note [21], [25], [20] contributing to the study of
CLWE.

3 Nonassociative Cyclic Algebras

We begin by defining nonassociative cyclic algebras. Recall a ring is nonassocia-
tive if

a(bc) = (ab)c

does not always hold, for ring elements a, b, c.

Definition 13. Let K be a degree n number field and L a cyclic Galois extension
of degree d over K. Let θ generate the Galois group of L/K. Let γ ∈ L. We call

A = L⊕ uL⊕ ...⊕ ud−1L,

where u is an auxiliary element subject to ud = γ and to xu = uθ(x) for all
x ∈ L, a cyclic algebra. Fixing the basis

{
1, u, . . . , ud−1

}
, we define multiplication

on uix and ujy for x, y ∈ L, 0 ≤ i, j, < d by

(
uix
) (
ujy
)
=

{
ui+jθj(x)y if i+ j < d
ui+j−dγθj(x)y if i+ j ≥ d

and extend this linearly to all of A. We denote this algebra by A = (L/K, θ, γ).

When γ ∈ L\K, the above algebra is not associative: observe (u ·ud−1) ·u =
ud · u = γu = uθ(γ), but u · (ud−1 · u) = u · ud = uγ. We refer to A as a
nonassociative cyclic algebra to emphasise this property. We measure lack of
associativity with

Definition 14. The associator of A is [x, y, z] := (xy)z−x(yz). The left nucleus
is Nucl(A) := {x ∈ A : [x,A,A] = 0}. The middle and right nuclei are defined
similarly. The nucleus N (A) is N (A) := Nucl(A) ∩Nucm(A) ∩Nucr(A).

The nuclei are associative subalgebras of A.

Definition 15. The commuter ofA is Comm(A) = {x ∈ A : xy = yx for all y ∈
A}. The center of A is Z(A) = Comm(A) ∩Nuc(A). An algebra A is central if
Z(A) = K. An algebra A is simple if it contains no non-trivial two-sided ideals.

Proposition 1. For a nonassociative cyclic algebra A = (L/K, θ, γ), we have
N (A) = L and Comm(A) = K, and A is a central simple K-algebra.

Proof. Corollary 3.2.6 and Proposition 3.2.7 from [43].
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We state a characterisation of the ‘division’ property of algebras:

Definition 16. A unital algebra over a field is a division algebra if every non-
zero element has a left and a right inverse.

One can also say an algebra is division if left (and right) multiplication defines
a bijective map from the algebra to itself. Thus there are no zero divisors in a
division algebra. An algebra element may have distinct left and right inverses.
We state a criterion for an associative cyclic algebra to be division, which we
emphasize does not apply in the nonassociative case:

Lemma 2. [3] Let A = (L/K, θ, γ) be an associative cyclic algebra. Then A is a
division algebra if and only if γi is a non-norm element, i.e. @x ∈ L : NL/K(x) =
γi, for i = 1, ..., [L : K]− 1.

Such elements γ as in the above lemma are called ‘non-norm elements’. We
now state a corresponding result for nonassociative cyclic algebras:

Proposition 2. Let A be a nonassociative cyclic algebra of prime degree p.
Then A is a division algebra. If A has arbitrary degree d and the elements
1, γ, ..., γd−1 are linearly independent over K, then A is a division algebra. If γ
is not contained in any proper subfield of L, A is a division algebra.

Proof. Corollary 3.2.11 and Theorem 3.2.10 of [43].

The search for non-norm elements, i.e. elements of the ground field K which
aren’t realisable as the norm of any element of L, is a key part of the construc-
tion of associative CDAs. When taken for γ, as we saw above, they ensure the
algebra is division. Their importance is paralleled by their rarity, and several,
often convoluted, methods have been developed to obtain them (e.g. [25]). How-
ever, as shown in the above theorem, it is much easier in the nonassociative case
to guarantee a cyclic algebra is division; indeed, in the degree p case it holds
automatically.

Example: Let K = Q(ζm) and L = Q(ζpm) where p and m are coprime. Then
ζp /∈ K, and L/K is cyclic and Galois. Then (L/K, θ, ζpm) is a nonassociative
cyclic division algebra.

Finally, we introduce a mild generalisation of cyclic algebras:

Definition 17. Let S/R be a finite extension of commutative rings and G = 〈θ〉
be a finite cyclic group of order d acting on S with trivial action on R. Let γ ∈ S
and u such that ux = θ(x)u for all x ∈ S and ud = γ. Then we call

A = (S/R, θ, γ) := ⊕d−1
i=0 u

iS

equipped with multiplication as in Definition 13 a generalised cyclic algebra.
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3.1 Matrix Representation

As explained above, one can consider RLWE as a structured form of LWE by
fixing a Z-basis of OK and writing a ·s as φ(a)s, where φ(a) is the matrix defined
by multiplication by a on the fixed basis and s is the coefficient vector of s. This
yields a number of correlated LWE samples equal to the dimension of the ring.
As noted, MLWE and CLWE are also structured forms of LWE. In the case
of nonassociative algebras, there is again a matrix representation arising from
multiplication on a fixed basis in the nonassociative algebra; however, unlike
in associative cases, this defines an embedding into a vector space of matrices,
rather than a ring, so is not multiplicative. That is, φ(as) 6= φ(a)φ(s). Non-
multiplicativity follows from the fact that matrix multiplication is associative;
thus there could be no multiplicative map from a nonassociative ring into a
matrix ring. This additive map is sufficient for our purposes, and will enable us
to define a trace map as in the associative case.

The representation is as before: left multiplication by a = a0 + ua1 + · · · +
ud−1ad−1 on the basis {ui} inside (L/K, θ, γ) yields the following matrix:

φ(a) =


a0 γθ (ad−1) γθ

2 (ad−2) · · · γθd−1 (a1)
a1 θ (a0) γθ2 (ad−1) · · · γθd−1 (a2)
...

...
... . . .

...
ad−1 θ (ad−2) θ2 (ad−3) · · · θd−1 (a0)


So a sample of nonassociative CLWE defined below yields m correlated

MLWE samples from one nonassociative CLWE sample.

3.2 Integral Structures in Nonassociative Algebras

In order to define the lattice problems we will use in our reduction, we need to
define orders and ideals in nonassociative algebras. The primary reference for
this section is [37]. Set A = (L/K, θ, γ) with γ ∈ L \K such that A is a division
algebra.

Recall an OK-lattice is a finitely generated torsion-free OK-module. We de-
fine the natural order of a nonassociative CDA (L/K, θ, γ) identically as for
CLWE: Λ =

⊕d−1
i=0 u

iOL. Then:
Proposition 3. If γ ∈ OL \ OK , Λ is an order of A = (L/K, θ, γ).

Proof. Λ is clearly an OK-module. To see multiplicative closure, we demonstrate
the case of d = 2. Let a, b ∈ Λ and observe

a · b = (a0 + ua1) · (b0 + ub1) = a0b0 + u(θ(a0)b1 + a1b0) + γa1b1,

which lies in Λ if γ ∈ OL. So Λ is a subring (this holds for all d ∈ Z≥1) and is
discrete by virtue of OL being a lattice inside L.

Note however that if γ ∈ L \OL, Λ is not multiplicatively closed. We proceed to
study ideals in Λ, properties of which we redefine for the nonassociative setting.
An ‘ideal’ will refer to a two-sided ideal (unless specified otherwise).
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Definition 18. A one-sided Λ-ideal I ⊂ A is an additively closed set closed
under multiplication from Λ on one side, e.g. I is a right ideal if IΛ ⊂ I. A
two-sided ideal is closed additively and under multiplication by Λ on both sides.

Definition 19. An ideal is maximal if it is not properly contained in any other
proper ideal. An ideal is prime if it is a maximal two-sided ideal.

Definition 20. The sum and product of two ideals I,J are defined as usual;
I+J = {i+j : i ∈ I, j ∈ J } and I·J = {

∑m
k=1 ik · jk : ik ∈ I, jk ∈ J ,m <∞} .

A two-sided ideal I is fractional if cI = J for a two-sided ideal J and c ∈ K.

The sum of two fractional ideals can clearly be seen to yield another frac-
tional ideal. The product of two ideals in a nonassociative space less clearly
yields another ideal, however. In the following pages we develop an ideal theory
that will permit us to prove a security reduction for nonassociative CLWE from
nonassociative ideal lattices. We recall and extend a number of results from [37].

Let q ∈ Z be a prime. Then q ∈ Comm(A) and qΛ is a two-sided ideal of Λ.
Let I ⊂ OK be an ideal. Then we have the following product

IΛ =

{∑
i

aixi | ai ∈ I, xi ∈ Λ

}
=

{
d−1∑
i=0

uiai | ai ∈ IOL

}
,

which is a two-sided ideal of Λ.

Proposition 4. Let J ⊂ Λ be a two-sided ideal. Then I = J ∩OL is a non-zero
ideal of OL. If I is an ideal of K, then IΛ ∩ OK = I.

Proof. Lemma 5.1 and Remark 5.2 of [37].

Proposition 5. Let A = (L/K, θ, γ) be a nonassociative CDA with γ ∈ O×
L \O

×
K

and natural order Λ. Let I ⊂ Λ be a two-sided ideal. Then θ(I ∩OL) = I ∩OL.

Proof. Suppose θ(I ∩OL) 6= I ∩OL. So there exists x ∈ I ∩OL such that θ(x) 6∈
I ∩OL. As I is two-sided, Iu ⊂ I, so xu = uθ(x) ∈ I. Moreover, ud−1I ⊂ I, so
ud−1(uθ(x)) = udθ(x) = γθ(x) ∈ I. Since γ is a unit, γ−1I ⊂ I, so γ−1(γθ(x)) =
θ(x) ⊂ I. Finally, θ(x) ∈ OL, so θ(x) ∈ I ∩ OL - a contradiction.

This result in fact holds for generalised cyclic algebras when γ is a unit. We
now recall that if I = qs11 · · · q

st
t is an ideal of OK , then we have

OK/I = OK/qs11 · · · q
st
t
∼= OK/qs11 × · · · × OK/q

st
t

and
OL/IOL = OL/qs11 · · · q

st
t OL ∼= OL/q

st
t OL × · · · × OL/q

st
t OL.

Below is a version of the Chinese remainder theorem (CRT) for Λ:
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Theorem 3. For I = qs11 · · · q
st
t an ideal of OK , we have

Λ/IΛ ∼=
(
(OL/IOL) / (OK/I) , θ̄, γ + IOL

)
=

d−1⊕
i=0

ui (OL/IOL)

∼=
(
(OL/qs11 OL) / (OK/q

s1
1 ) , θ̄, γ + qs11

)
× · · ·

· · · ×
(
(OL/qstt OL) / (OK/q

st
t ) , θ̄, γ + qstt

)
,

where θ̄ is defined by its actions on the quotients θ̄ (x+ qsii OL) = θ(x) + qsii OL.

Proof. [37], Theorem 5.3 and Lemma 5.4.

In an abuse of notation, we may write θ for θ̄. Below, we study quotients
Λ/IΛ in greater detail.

4 Multiplicative Ideal Theory of Nonassociative Orders

In this section we classify unramified two-sided ideals of natural orders in CDAs
of the form (L/K, θ, γ) where K = Q(ζm) and γ ∈ O×

L \ O
×
K , and use this to

prove that multiplication of such ideals is associative and commutative, and that
inverses and duals of such ideals can be meaningfully defined. Our strategy to
achieve this classification is by induction; we begin by proving, as a base case,
that under weak conditions quotient rings of Λ by prime ideals are simple. We
then give our induction proof, which essentially claims that two-sided ideals of
Λ are twisted direct sums of ideals of OL. The desired multiplicative properties
then follow.

4.1 Unramified Primes: Inert and Split

Recall for fixed prime ideal q ⊂ OK we have [L : K] = eLfLgL with gL the
number of primes in the factorization of qOL, eL the ramification index and fL
the inertial degree. We presently consider cases where eL = 1, so [L : K] = fLgL.
Let γ ∈ OL \ OK .

First, suppose gL = 1, so q is inert in L. Then fL = [L : K] = d and
L̄ := OL/qOL is a cyclic Galois extension of K̄ := OK/q of degree d. Then

Proposition 6. [37, Theorem 6.1] Let q be a prime ideal in OK which is inert
in OL, and qOL = Q,Q a prime ideal in OL. Let γ̄ = γ mod q. Then

Λ/qΛ ∼=
(
(OL/qOL)/(OK/q), σ̄, γ̄

)
= (L̄/K̄, σ̄, γ̄)

is a nonassociative cyclic algebra of degree d over K̄. If d is prime or 1, γ̄, ..., γ̄d−1

are linearly independent over K̄, then this is a central simple division algebra
and the only proper two-sided ideal J of Λ containing q is

qΛ =

d−1⊕
j=0

ujqOL.
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Proof. Note γ /∈ q, i.e. γ̄ ∈ (OK/q)×, so Λ/qΛ ∼= ((OL/qOL)/(OK/q), θ̄, γ̄) is
a degree d nonassociative cyclic algebra over OK/q. By Proposition 2, if d is
prime or if 1, γ̄, . . . , γ̄d−1 are linearly independent over OK/q, Λ/qΛ is a division
algebra, so any two-sided ideal is trivial. Hence by the correspondence between
ideals of Λ containing qΛ and ideals of Λ/qΛ the only proper two-sided ideal J
of Λ containing q is qΛ.

Next, consider the case when eL = 1 but gL > 1. This is the split case, in
which qOL = Q1...QgL . As in the associative setting, it was shown in [37, §7.3]
that Λ/qΛ ∼=

((
L̄(1) × · · · × L̄(g)

)
/K̄, θ̄, γ̄

)
, where L̄(i) = OL/Qi. To prove that

this quotient is a simple ring, we first require some definitions.

Definition 21. Let G be a group. A ring R is G-graded if there are additive
subgroups Rg ⊂ R, for g ∈ G, such that R =

⊕
g∈GRg and RgRh ⊆ Rg+h, for

g, h ∈ G. If RgRh = Rg+h, for g, h ∈ G, then R is strongly G-graded.

Let I be an OK-ideal. Consider Λ/IΛ = ⊕d−1
i=0 u

i (OL/IOL). Setting G =
Z/dZ and Ri = uiOL/IOL, one can see that the Ri are additive subgroups,
and

RiRj = (uiOL/IOL)(ujOL/IOL) = ui+jθj(OL/IOL)OL/IOL = Ri+j

So Λ/IΛ is a strongly Z/dZ-graded ring.

Definition 22. Let G be a group and J a two-sided ideal of a ring R. Then J
is G-graded if J =

⊕
g∈G (J ∩Rg). The ring R is called G-graded simple if the

only G-graded ideals of R are {0} and R.

We now show Λ/IΛ is Z/dZ-graded simple for certain ideals I.

Lemma 3. Let γ ∈ O×
L \ O

×
K . Let I = q ⊂ OK be a prime ideal unramified in

OL. Then Λ/IΛ is Z/dZ-graded simple.

Proof. Equip Λ/IΛ with the Z/dZ grading as before. We need to show, for any
Z/dZ-graded ideal J , that in fact J = ⊕i∈Z/dZJ ∩ uiOL/IOL is 0 or Λ/IΛ.
Write IOL =

∏
iQi. By the correspondence between ideals of Λ containing IΛ

and ideals of Λ/IΛ and an abuse of notation, write the ideal as J /IΛ. Then
J /IΛ∩

∏
iOL/Qi is an ideal of

∏
iOL/Qi, so has the form

∏
i∈S Qi/

∏g
i=1Qi for

some S ⊂ [g]. Moreover, by Proposition 5, we must have θ(J /IΛ∩
∏
iOL/Qi) =

θ(
∏
i∈S Qi/

∏g
i=1Qi) =

∏
i∈S Qi/

∏g
i=1Qi. But the Galois action on the primes

Qi above q is transitive, so θ cannot fix any such product except when S =
{1, ..., g} or S = ∅. Thus J /IΛ ∩ OL/IOL = J /IΛ ∩R0 is 0 or OL/IOL.

Since J /IΛ is an ideal and γ is invertible, ujJ /IΛ = J /IΛ, so

J /IΛ ∩Ri = ui · J /IΛ ∩ ui · R0 = ui(J /IΛ ∩R0)

=

{
0 if J /IΛ ∩R0 = 0

uiOL/IOL if J /IΛ ∩R0 = OL/IOL.

So either J /IΛ is ⊕i∈Z/dZ0 = 0 or ⊕i∈Z/dZu
iOL/IOL = Λ/IΛ.
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A group G is hypercentral if every non-trivial factor group of G has a non-
trivial center. In particular, any abelian group is hypercentral. We now state

Theorem 4. [, Theorem 4] If a nonassociative unital ring is graded by a hyper-
central group, then the ring is simple if and only if it is graded simple and the
center of the ring is a field.

From the above discussion we can conclude

Proposition 7. Let q be a prime OK-ideal such that qOL = Q1...Qg where Qi
is a prime OL-ideal, i = 1, ..., g. Let γ ∈ O×

L \ O
×
K . Then

Λ/qΛ ∼=
((
L̄(1) × · · · × L̄(g)

)
/K̄, θ̄, γ̄

)
is a generalised nonassociative cyclic algebra of degree d = g over K̄. The only
proper two-sided ideal J of Λ that contains q is

J = qΛ =

d−1⊕
j=0

ujqOL

Proof. The first statement is shown in [37, §7.3]. The second follows since 1.
Z/dZ is hypercentral, 2. the center of Λ/qΛ is a field, and 3. Λ/qΛ is Z/dZ-
graded simple (Lemma 3). Then Theorem 4 implies Λ/qΛ is simple and hence
qΛ is maximal in Λ.

Although we cannot prove a general result on the factorisation of ideals in
nonassociative natural orders, we can prove the following theorem, an analogue
of which was given in a concurrent work [26] for associative CDAs; we prove it
here for nonassociative CDAs.

Theorem 5. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassociative
CDA and γ ∈ OL. Let I ⊂ Λ be an integral two-sided ideal and I = I ∩K. If
the prime factors of I are unramified in L and γ 6≡ 0 mod I, then I = IΛ.

The proof of the theorem requires a corollary of Propositions 6 and 7:

Corollary 1. Suppose that p is a prime in OK , such that p is unramified in L,
with γ 6≡ 0 mod p. Then the only proper two-sided ideal I of Λ containing p−1

is p−1Λ = ⊕d−1
i=0 u

ip−1OL.

Proof. If there is a proper ideal J strictly containing p−1Λ, then p2J is a proper
ideal strictly containing pΛ, which contradicts Propositions 6 and 7.

We use transfinite induction over a tuple (e1, ..., en) ∈ Zn≥1, which requires a
well-ordering on Zn≥1. Define the following well-ordering: let (e1, ..., en) ∈ Zn≥1.
Given n-tuples (e1, ..., en), (f1, ..., fn), we say (e1, ..., en) > (f1, ..., fn) ∈ Zn≥1 if∏n

1 p
ei
i >

∏n
1 p

fi
i , where pi is the ith prime. For fixed n, the smallest element

is (1, ..., 1). Since this is a total order, and since any subset of n-tuples has a
smallest element, this is a well-ordering of Zn≥1.
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Proof of Theorem 5. Suppose that I maximally contains a subideal I which is
unramified in L, that is, I is the largest OK-ideal contained in I. Suppose
I = pe11 pe22 ...p

en
n , for distinct primes pi, and positive integers ei. We claim that

when the largest OK-ideal of I has this form, then I = IΛ.
We want to show that I = pe11 ...p

en
n Λ. First, note that I is contained in a

maximal ideal M, which contains some prime ideal r of OK , and so we have
M = rΛ, and pe11 ...p

en
n Λ ⊂ I ( rΛ. But pe11 ...penn ⊂ r implies that r = pi for some

i; without loss of generality suppose r = p1, and write pe11 ...p
en
n Λ ⊂ I ( p1Λ.

Proceed by double induction on n ∈ N≥1 and (e1, ..., en) ∈ Z≥1 × ... × Z≥1.
The statement is true in the case n = 1, e1 = 1 by Propositions 6 and 7. We first
prove the statement for n = 1, and use induction on e1. Suppose the statement
holds for e′1 < e1 and suppose I contains pe11 and no larger OK-ideal. Then
we have pe11 Λ ⊂ I ( p1Λ. Then p−1

1 I is integral, and the largest OK-ideal it
contains is pe1−1

1 , so p−1
1 I = pe1−1

1 Λ by hypothesis. Hence I = pe11 Λ, as required.
Next, we show the statement for (1, ..., 1) and any n by inducting on n.

Suppose I = p1p2...pn, for distinct primes pi. Note that I is contained in a
maximal ideal M, which contains some prime ideal r of OK , and so we have
M = rΛ, and p1...pnΛ ⊂ I ( rΛ. But p1...pn ⊂ r implies that r = pi for some
i; without loss of generality suppose r = p1, and write p1...pnΛ ⊂ I ( p1Λ. We
now claim that if p1...pn is the largest OK-ideal in I, then I = p1...pnΛ.

We have seen that the n = 1 case is true. Proceeding by induction, suppose
the statement is true for n < k, and consider an integral ideal I such that
p1...pk−1pk is the largest OK-ideal in I. We have p1...pk−1pkΛ ⊂ I ( p1Λ.
Consider p−1

1 I; we have p2...pk−1pkΛ ⊂ p−1
1 I ( Λ, so p−1

1 I is integral. Then
observe that the largest OK-ideal contained in p−1

k I is p1...pk−1, so by induction
we have p−1

k I = p1...pk−1Λ, and hence I = p1...pk−1pkΛ, as required.
Now suppose the statement is true for n < k and (e′1, ..., e

′
n) = (e1, ..., en) ∈

Zn≥1, and true for n = k and (e′1, ..., e
′
k) < (e1, ..., ek), and consider an ideal I such

that pe11 ...p
ek−1

k−1 p
ek
k is the largest OK-ideal in I. Like before, pe11 ...p

ek−1

k−1 p
ek
k Λ ⊂

I ( pkΛ (simply relabel the primes for this to hold). Again, p−1
k I is integral,

and observe that the largest OK-ideal contained in p−1
k I is pe11 ...p

ek−1
k . We split

into two cases: ek − 1 = 0, and ek − 1 > 0.
When ek − 1 > 0, we use induction on (e′1, ..., e

′
k), and since (e1, ..., ek − 1) <

(e1, ..., ek), by hypothesis have p−1
k I = pe11 ...p

ek−1
k Λ. Hence I = pe11 ...p

ek−1

k−1 p
ek
k Λ,

as required.
When ek − 1 = 0, the largest OK-ideal contained in p−1

k I is pe11 ...p
ek−1

k−1 . We
then induct on n, since n = k − 1 < k, to obtain p−1

k I = pe11 ...p
ek−1

k−1 Λ and hence
I = pe11 ...p

ek−1

k−1 pk, as required.

When γ is a unit, this fully characterises unramified ideals in the natural order
of the CDAs we consider. The following result then follows:

Theorem 6. Let Λ ⊂ A = (L/K, θ, γ) be the natural order of a nonassociative
CDA and γ ∈ O×

L . Then multiplication of Λ-ideals I such that I ∩ OK is
unramified in OL yields ideals, and is commutative and associative.
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Proof. Let I and J be two-sided ideals of Λ. Write Ī = I ∩L. Then I = ĪΛ and
J = J̄Λ. Then, using that L = N (A), we have IJ = (ĪΛ)(J̄Λ) = (Ī(ΛJ̄))Λ =
(Ī)θ(J̄)Λ))Λ = ĪJ̄Λ. It can be seen by a similar argument that ĪJ̄Λ is a two-
sided ideal of Λ.

Next note that the product of two ideals whose OK-intersections are ideals
unramified in OL is an ideal which also has OK-intersection unramified in OL,
so this set of ideals is closed under taking products.

Moreover, IJ = (ĪΛ)(J̄Λ) = ĪJ̄Λ = J̄ ĪΛ = (J̄Λ)(ĪΛ) = JI, so ideal
multiplication is commutative.

Finally, let K also be a two-sided Λ-ideal. Then (IJ)K = (ĪJ̄Λ)K̄Λ =
ĪJ̄K̄Λ = ĪΛ(J̄K̄Λ) = I(JK). So ideal multiplication is also associative.

For convenience we will call the two-sided ideals satisfying the condition of
the theorem ‘unramified ideals of Λ’.

4.2 Inverse Ideals

Let A = (L/K, θ, γ) with γ ∈ O×
L \ O

×
K , and let I = ĪΛ be a two-sided un-

ramified ideal of Λ. Then, writing J = Ī−1Λ, we have I · J = (ĪΛ)(Ī−1Λ) =
(ΛĪ)(Ī−1Λ) = Λ(Ī(Ī−1Λ)) = Λ((ĪĪ−1)Λ) = Λ(OLΛ) = Λ. Motivated by this,
we give the following definition:

Definition 23. Let A = (L/K, θ, γ) with γ ∈ O×
L \ O

×
K , and let I = ĪΛ be a

two-sided unramified ideal of Λ. Then the inverse of I is I−1 := Ī−1Λ.

Note all ideals of Λ as in the definition are invertible. Furthermore, observe
that I−1 is additively closed, and closed under multiplication on the right from
Λ. Moreover, since θ(Ī) = Ī by Proposition 5, we have ĪĪ−1 = OL implies
θ(Ī)θ(Ī−1) = Īθ(Ī−1) = OL, and hence OLθ(Ī−1) = Ī−1OL. Since Ī−1 is an
OL-ideal, θ(Ī−1) is also an OL-ideal, and we obtain θ(Ī−1) = Ī−1. So θ fixes
Ī−1. Then ΛI−1 = Λ(Ī−1Λ) = Λ(Λθ(Ī−1)) = Λ(ΛĪ−1) = (ΛΛ)Ī−1 = ΛĪ−1 =
Ī−1Λ = I−1, and I−1 is closed under multiplication from the left too. So I−1

is a fractional Λ-ideal.
Clearly this means that (I−1)−1 = I, so left and right inverse ideals coincide,

and hence each unramified ideal has a unique inverse ideal.

4.3 Dual Ideals

When the algebra A is associative, the dual lattice of Λ is defined as

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

where Tr refers to the trace defined Tr(a) := TrK/Q(Trace(φ(a))). Note Tr(·) is
a linear map and non-degenerate, and Λ∨ is additively closed. This is (in the
associative scenario) extended to ideals I of Λ as follows: the dual of an ideal is
defined as

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.
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However, when A is nonassociative the Tr(·) map is not symmetric (that is,
Tr(xy) 6= Tr(yx)), which causes many familiar results not to hold in the case
of nonassociative algebras. This can be seen from the matrix representation:
since φ : A → Md(L) is not a homomorphism of rings but merely of vector
spaces, φ(xy) 6= φ(x)φ(y), so in general Tr(xy) = TK/Q ◦Trace(φ(xy)) 6= TK/Q ◦
Trace(φ(x)φ(y)) = TK/Q ◦ Trace(φ(y)φ(x)) = Tr(yx). It is hence not clear what
the definition of I∨ should be for ideals in orders in nonassociative algebras. In
the absence of a symmetric trace form, we make the following definition:

Definition 24. Let Λ be the natural order of cyclic division algebraA = (L/K, θ, γ),
with γ ∈ O×

L and [L : K] = d. Let I be an ideal of Λ and Ī = I ∩ L. Then the
dual ideal I∨ of I is defined as

I∨ = Ī∨Λ

Before we prove properties of I∨, note that it immediately bears some sim-
ilarities to the usual notion of the dual ideal of, say, an ideal in the ring of
integers in a number field. For integral ideals, we have I ⊂ Λ ⊂ I∨, and I∨ is an
OK-module. Moreover, (I∨)∨ = (Ī∨Λ)∨ = (Ī∨Λ ∩ L)∨Λ = (Ī∨)∨Λ = ĪΛ = I.
Finally, I∨ = Ī∨Λ = (Ī−1O∨

L)Λ = (Ī−1Λ)(O∨
LΛ) = I−1Λ∨. We now show:

Proposition 8. Let I ⊂ Λ be a two-sided integral unramified ideal. Then I∨ is
a two-sided fractional ideal of Λ.

Proof. First, note additive closure is immediate since both Ī∨ and Λ are addi-
tively closed.

Next, since Ī∨ ⊂ L = N (A) we have that if x ∈ Λ, then I∨x = (Ī∨Λ)x =
Ī∨(Λx) ⊂ Ī∨Λ = I∨, so I∨ is closed under multiplication from Λ on the right.

To see left multiplication is closed: we have θ(I∨) = θ(Ī∨Λ) = θ(Ī∨)θ(Λ) =
θ(Ī∨)Λ, where θ acts on Λ coefficient-wise, and is the identity on ui for all i.
Letting x ∈ Λ, consider x · I∨ = x(Ī∨Λ) = (xĪ∨)Λ. In moving elements of Ī∨
past x, powers of the automorphism θ are applied to Ī∨ (corresponding to the
power of u being ‘moved past’ by the element of Ī∨). So if θ(Ī∨) = Ī∨, we would
have: (xĪ∨)Λ = (Ī∨x)Λ = Ī∨(xΛ) ⊂ Ī∨Λ = I∨, as required.

We conclude the proof by showing that θ(Ī∨) = Ī∨. Let m ⊂ OL be an ideal
such that θ(m) = m, and x ∈ m∨. We need θ(x) ∈ m∨, that is, TL/Q(θ(x)y) ∈
Z for any y ∈ m. Because Gal(L/K) is cyclic, we can say TL/Q(θ(x)y) =
TL/Q(xθ

−1(y)); since θ(m) = m, θ−1(y) ∈ m, and so TL/Q(θ(x)y) = TL/Q(xθ
−1(y)) ∈

Z. Thus θ(x) ∈ m∨, and so θ(m∨) ⊂ m∨. Replacing m with Ī, this implies that
I∨ is a two-sided fractional Λ-ideal.

Proposition 9. Let γ ∈ O×
L and I ⊂ Λ be a two-sided integral unramified ideal.

Set JI := {x ∈ A : Tr(xy) ∈ Z for all y ∈ I}. Then I∨ = JI .
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Proof. We begin by showing I∨ ⊂ JI . We have

Tr(I∨I) = Tr((Ī∨Λ)(ĪΛ))
= Tr((Ī∨(ΛĪ))Λ)
= Tr((Ī∨(θ(Ī)Λ))Λ)
= Tr((Ī∨(ĪΛ))Λ)
= Tr((Ī∨Ī)Λ).

Since Tr(uizi) = 0 if i 6= 0, we get Tr((Ī∨Ī)Λ) = TL/Q((Ī∨Ī)OL) = TL/Q(Ī∨Ī) ∈
Z, since γ ∈ OL. So for integral Λ-ideals, I∨ = Ī∨Λ satisfies Tr(I∨I) ⊂ Z and
(similarly) Tr(II∨) ⊂ Z, so I∨ ⊂ JI .

It remains to show that JI ⊆ I∨. Take some x ∈ JI , and y ∈ I. Write x = ab
with a ∈ L and b ∈ Λ (this can be done for any algebra element). We want to
show that x can be written in the form a′b′, where a′ ∈ Ī∨ and b′ ∈ Λ. Thus if
a ∈ Ī∨, we will be done.

By definition, Tr(xI) ⊂ Z. This implies that Tr(xĪ) ⊂ Z. Substituting for x,
we obtain Tr((ab)Ī) ⊂ Z. We can rearrange to obtain Tr((aĪ)b) ⊂ Z. Expanding
b into the form b =

∑d−1
i=0 u

ibi where the bi ∈ OL and applying additivity of the
trace, we have Tr((aĪ)b) = TL/Q(aĪb0) ⊂ Z. So ab0 ∈ Ī∨.

Now, note that uI ⊂ I. Moreover, up to application by θ and multiplication
by γ, we can move any coefficient of x ∈ Λ into the 0th position; if x = ⊕d−1

i=0 u
ixi,

we can place xj in the 0th position via xud−j = γθd−j(xj) + uγθd−j(xj+1) +

... + ud−1θd−j(xj−1). Using this trick, one can obtain θi(a)bi ∈ I
∨ as follows:

Z ⊃ Tr(x(ud−iI)) = Tr((ab)(ud−iI)) = Tr(((ab)ud−i)I) = Tr((a(bud−i))I) =

TL/Q(aγθ
d−i(bi)I), so aθd−i(bi) ∈ I

∨, and hence θi(a)bi ∈ I
∨. Now observe

that ab = ab0 + uθ(a)b1 + ... + ud−1θd−1(a)bd−1, so ab ∈ ⊕d−1
i=0 u

iI∨ = I∨Λ, as
required.

5 Nonassociative Cyclic Learning with Errors

We begin by defining lattices from ideal lattices in nonassociative algebras. Below
n = [K : Q].

5.1 Ideals as Lattices and the Canonical Embedding

Since an ideal of an order is an additive subgroup of a lattice, it is itself a lattice.
We embed order ideals in nonassociative CDAs into Rnd2 using the canonical
embedding as above, to obtain lattices in Rnd2 . To do this, we consider the matrix
representations of order elements, vectorise the columns to obtain vectors with
d2 entries, and apply the canonical embedding of K, which yields a lattice of
dimension nd2. We take norms of algebra elements by taking the sum of the
squares of the Frobenius norm of their matrix representation under the presence
of K-embeddings; that is, for x ∈ A we have ‖x‖2 =

∑n
i=1 ‖αi(φ(x))‖2F , where

‖ · ‖F denotes the Frobenius norm and αi(φ(x)) the application of αi ∈ Emb(K)
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to the entries of φ(x). If |γ| = 1 this norm is submultiplicative, such as when γ
is a root of unity.

Recall the family of error distributions used for CLWE:

Definition 25. Let Σα be the set of Gaussian distributions Σ over
⊕d−1

i=0 u
iLR

with Gaussian marginal distributions of parameters ri,j ≤ α.

We use the same distributions mutatis mutandis in the nonassociative setting.

5.2 NCLWE

We now define the nonassociative CLWE (NCLWE) distribution. We superscript
the NCLWE distribution (and the lattice problems on ideals in nonassociative
orders referred to below) by a ‘ν’ to distinguish them from associative variants
of the problems.

Definition 26. Let L/K be a Galois extension of number fields of dimension
[L : K] = d, [K : Q] = n with cyclic Galois group generated by θ : L → L.
Let A := (L/K, θ, γ) be the resulting nonassociative cyclic algebra with center
K and element u satisfying ud = γ ∈ OL \ OK . Let Λ be the natural order
of A. For an error distribution ψ over

⊕d−1
i=0 u

iLR, an integer modulus q ≥ 2,
and a secret s ∈ Λ∨

q a sample from the NCLWE distribution Πν
q,s,ψ is obtained

by sampling a ← Λq uniformly at random, sampling e ← ψ, and outputting
(a, b) = (a, (a · s)/q + e mod Λ∨) ∈ Λq ×

(
⊕d−1
i=0 u

iLR
)
/Λ∨

From this distribution we give search and decision problems:

Definition 27. Let Ψ be a family of error distributions over
⊕d−1

i=0 u
iLR. Let

Πν
q,s,ψ be a NCLWE distribution for parameters q ≥ 2, s ∈ Λ∨

q , and error
distribution ψ ∈ Ψ . Then, the search NCLWE problem, denoted SNCLWEq,s,ψ,
is to recover s ∈ Λ∨

q from a collection of independent samples from Πν
q,s,ψ.

Definition 28. Let Υ be a distribution on a family of error distributions Σα over⊕d−1
i=0 u

iLR and UΛ the uniform distribution on Λq ×
(⊕d−1

i=0 u
iLR

)
/Λ∨. Then

the decision NCLWE problem, DNCLWEq,Υ , is on input a number of independent
samples from either Πν

q,s,ψ for a random choice of (s, ψ)← U
(
Λ∨
q

)
×Υ , or from

UΛ, to decide which with non-negligible advantage.

6 Search-to-Decision Reduction for NCLWE

Recall the statement of Theorem 3: for I = qs11 ...q
st
t ⊂ OK an ideal, we have

Λ/IΛ ∼=
(
(OL/IOL) / (OK/I) , θ̄, γ + IOL

)
=

d−1⊕
i=0

ui (OL/IOL)

∼=
(
(OL/qs11 OL) / (OK/q

s1
1 ) , θ̄, γ̄1

)
× ...×

(
(OL/qstt OL) / (OK/q

st
t ) , θ̄, γ̄t

)
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where γ̄i = γ + qs11 . In the following proof, we write this as

Λ/IΛ ∼= R1 × ...×Rt.

The Ri-NCLWEq,s,Σα
problem is to find the value s mod Ri given access to the

NCLWE distribution Πν
q,s,Σ for some Σ ∈ Σα. We begin the reduction with the

following lemma:

Lemma 4. Let q completely split in OK and unramified in OL, and Σα be
as in Definition 25. There is a deterministic polynomial time reduction from
SNCLWEq,s,Σα

to Ri-NCLWEq,s,Σα
.

Proof. Mutatis mutandis identical to [14, Lemma 13].

We now define an intermediate distribution as follows: for s ∈ Λ∨
q , distri-

bution Σ over
⊕

j u
jLR, and i ∈ [n], we define a sample from the distribution

Πν i
q,s,Σ over Λq×

(⊕d−1
i=0 u

iLR

)
/Λ∨ by taking (a, b)← Πν

q,s,Σ and h ∈ Λ∨
q which

is uniformly random and independent mod Rj , j ≤ i and 0 mod Rj , j > i, and
outputting (a, b+ h/q). Set Πν 0

q,s,Σ = Πν
q,s,Σ .

Using this distribution we define a worst-case decision problem with respect
to one Ri and reduce it to the search problem Ri-NCLWE.

Definition 29. For 0 < i ≤ n and family of error distributions Σα, the W-D-
NCLWEiq,s,Σα

problem is the problem of finding j given oracle access to Πν j
q,s,Σ

for j ∈ {i− 1, i} and valid NCLWE secret and error distribution pair (s,Σ).

Recall q is a prime which factors in OK as qOK =
∏gK
i=1 qi such that qi is

unramified in OL for all i, that is qiOL =
∏gL
i=1Qi. In the next step of the

reduction, when gL > 1 we restrict the secret space such that the secret is to
be chosen from a space G in which the difference of any two elements inverts.
These sets were called ‘pairwise difference sets’ in [14], and the decomposition
into Ri implies G ∼= G1 × ...×Gt for Gi ∈ Ri, a fact we use below. The variant
of SNCLWE with secrets restricted to such a G is denoted SNCLWEq,s,Σα,G and
similarly for the other distributions already defined. Moreover, the above Lemma
4 holds when the secret is restricted to such sets G. However, when gL = 1, qi
is inert in OL and by the proof of Proposition 6 Ri is a division algebra. In this
case, there is no need to restrict the secret space, since the difference of two
distinct elements in a division algebra inverts by definition, and Gi = Ri.

Lemma 5. Let γ ∈ O×
L \ O

×
K , qOK =

∏g
i=1 qi, and K̄(i) = OK/qi. Then if

s ∈ G there is a ppt. reduction from Ri-NCLWEq,s,Σα,G to W-D-NCLWEiq,s,Σα

for any 0 < i ≤ n.
When the qi are inert in OL for i = 1, ..., g and either d = [L : K] is prime or

1, γ̄, . . . , γ̄d−1 are linearly independent over K̄(i), then for any s ∈ Ri there is a
ppt. reduction from Ri-NCLWEq,s,Σα

to W-D-NCLWEiq,s,Σα
for any 0 < i ≤ n.

Proof. We will guess the secret s with a value g; we can do this efficiently since
there are only |Gi| ≤ qd

2

= poly(n) possible values of smodRi, with d considered
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to be some small constant. To transform Πν
q,s,Σ into either Πν i−1

q,s,Σ if g = s

modRi or Πν i
q,s,Σ otherwise, for g ∈ Λ∨

q we take a sample (a, b)← Πν
q,s,Σ and set

(a′, b′) := (a+ v, b+ (h+ vg)/q) ∈ Λq ×

(
d−1⊕
i=0

uiLR

)
/Λ∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i and h ∈ Λ∨
q

is uniformly random and independent mod Rj , j < i and 0 on the other Rj .
Note a′ ∈ Λq is uniformly distributed. We now consider the distribution of b′.
Conditioning on a fixed a′, we have

b′ = b+ (h+ vg)/q = (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s)) /q + e,

where e ∼ Σ. Now observe: if g = s mod Ri, then v(g−s) = 0 mod Ri, so (a′, b′)

is distributed according to
∏ν i−1
q,s,Σ . However, if g 6= s, then v(g− s) is uniformly

random mod Ri (since g − s inverts by definition of G) and 0 modulo the other
Rj . We then set h′ = h+v(g−s) and the distribution of (a′, b′) is exactly Πν i

q,s,Σ .
The second statement follows since we may choose Gi = Ri.

We now move to obtain a reduction from a worst-case problem to an average-
case problem. This section is mutatis mutandis identical to the corresponding
section of [14] (and is very similar to that of [24]) and is included for complete-
ness.

Definition 30. The distribution Υα on the set of possible error distributions is
defined by choosing an error distribution Σ ← Σα and adding it to Dr, where
ri = α((nd2)1/4 · √yi) for y1, . . . , ynd2 sampled from Γ (2, 1).

Definition 31. For i ∈ [n] and distribution Υα over possible error distributions,
an algorithm solves the DNCLWEiq,Υα

problem if with non-negligible probability
over (s,Σ)← U

(
Λ∨
q

)
× Υα it has a non-negligible difference in acceptance prob-

ability on inputs from Πν i
q,s,Σ and

∏ν i−1
q,s,Σ .

Lemma 6. For any α > 0 and i ∈ [n] there is a randomized polynomial-time
reduction from W-D-NCLWEiq,s,Σα

to DNCLWEiq,Υα
.

Proof. To sample from Υα we sample from Σα and add an elliptical Gaussian;
this is as in [24, Lemma 5.12], and so, replacing each instance of mod qiR

∨ with
mod Ri, and Rq with Λq, since associativity isn’t used the proof is the same.

Lemma 7. Let Υα be as above and s ∈ Λ∨
q . Then given a DNCLWEq,Υα

oracle
O, there exists an efficient algorithm that solves DNCLWEiq,Υα

for some i ∈ [n]

Proof. As in [24, Lemma 5.14] but for replacing the indexing set Z∗
m by [n].

We finally obtain:
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Theorem 7. Let Λ be the natural order of a nonassociative CDAA = (L/K, θ, γ),
γ ∈ O×

L \ O
×
K , d = [L : K], q ≥ 2 such that qOK =

∏g
i=1 qi and αq ≥ ηε (Λ

∨)
for negligible ε = ε(n). Then there is a ppt. reduction from SNCLWEq,s,Σα,G for
any pairwise difference set G ⊂ Λ∨

q to DNCLWEq,Υα .
When the qi are inert in OL and either d is prime or 1, γ̄, . . . , γ̄d−1 are

linearly independent over K̄(i), for each i, then there is a ppt. reduction from
SNCLWEq,s,Σα to DNCLWEq,Υα .

7 Hardness of Search NCLWE

We demonstrate the hardness of NCLWE, using the same strategy as [14]. Since
the lattices obtained from our algebras can be seen as module lattices (i.e. the
lattices are isomorphic to module lattices as OK-modules), there is a reduction
from A-SIVPνξ to A-DGSνξ [39, Lemma 3.17]. We will need some lemmas.

7.1 Technical Lemmas

The results below are proved for a CDA A = (L/K, θ, γ) with γ ∈ O×
L \ O

×
K ,

since they implicitly require the above results on products, inverses, and duals
of ideals.

Lemma 8. Let I be an unramified ideal of the natural order Λ, and let J = qΛ,
where q ∈ Z is prime and qOK =

∏r
i=1 qi is a decomposition into prime ideals.

Furthermore, let the qi be unramified in OL. Assume γ /∈ qi for each i. Then,
there exists an element t ∈ I ∩ OK such that t · I−1 ⊂ Λ is coprime to J , and
we can compute such a t efficiently given I and the prime factorization of J .

Proof. Denote I ∩OK by Ī, which is an OK-ideal. We know, by [24], that there
exists a t ∈ Ī such that t · Ī−1 and qΛ ∩ OK are coprime as OK-ideals, with
t ∈ Ī \

∏
i qiĪ. Suppose t · I−1 + qΛ 6= Λ. Then, since they are both two-sided

ideals whose sum is a proper ideal, they must be contained in some maximal
ideal. By Propositions 6 and 7 above, this maximal ideal must have the form
qiΛ, for some i. Thus t ·I−1 ⊂ qiΛ and t ∈ qiIΛ∩OK = qiI ∩OK (note that the
product qiIΛ is well-defined). Since t and qi are central this is a contradiction,
and the final equality is a consequence of Proposition 4.

Lemma 9. Let A and q be as in Lemma 8. Let I ⊂ Λ be unramified and
J = qΛ, with t ∈ I ∩ OK such that t · I−1 and qΛ are coprime as ideals,
and let P be an arbitrary fractional ideal of Λ. Assume γ /∈ qi for each i.
Then the map χt : A → A, x 7→ t · x induces an OK-module isomorphism from
P/J · P → I · P/I · J · P. Furthermore, we can efficiently compute the inverse.

Proof. Identical mutatis mutandis to [14, Lemma 7], using t ∈ Z(A) and Lemma
8.
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7.2 Reducing Ideal SIVP to Search NCLWE

We now adapt the security proof of [14] to nonassociative CDAs. It proceeds
similarly; both our lattices and the lattices of [14] are modules over OK , so they
are module lattices as used in [18]. Thus the results of the latter paper that
adapt for CLWE often adapt for NCLWE. Moreover, nonassociativity will not
prove a large obstacle in the proofs - the primary result threatened by lack of
associativity is Lemma 11, yet we circumnavigate this issue via the centrality of
the element t from Lemma 9.

Lemma 10. For any q ≥ 2 there is a deterministic polynomial time reduction
from A-BDDν

I,d to qA-BDDν
I,d.

Proof. Proved in [39, Lemma 3.5], for arbitrary lattices.

Lemma 11. There is a probabilistic polynomial time algorithm that given a
prime q ∈ Z, α ∈ (0, 1), unramified fractional Λ-ideal I∨, a qA-BDDν

I∨,αqω(
√

log(nd))/
√
2ndr

instance y = x+e with x ∈ I∨, r ≥
√
2qη(I), and samples from DI,r′ with r′ ≥ r,

outputs samples of negligible statistical distance from the NCLWE distribution
Πν
q,s,Σ, where s = χt (x mod qI∨) ∈ Λ∨

q and Σ ∈ Σα.

Proof. The first step of the proof is to compute an element t ∈ I such that
I−1 · t and qΛ are coprime via Lemma 8. We then create a sample according to
the NCLWE distribution by taking a Gaussian sample z ← DI,r′ and setting

(a, b) =
(
χ−1
t (z mod qI), (z · y)/q + e′ mod Λ∨) ∈ (Λq ×(d−1⊕

i=0

uiLR

)
/Λ∨

)

where e′ ← Dα/
√
2. Since r ≥ q · η(I), by Lemma 1 the probability of obtaining

any given z mod qI lies in
[
1−ε
1+ε , 1

]
·β for some β > 0, so the statistical distance

between z mod qI and the uniform distribution is at most 2ε. Since χt is a bijec-
tion, a = χ−1

t (z mod qI) is at most statistical distance 2ε from being uniformly
distributed over Λq. Finally, we show that b has the shape (a · s)/q + e′′, for an
error e′′ and uniformly random s, conditioned on some fixed value of a. We have

b = (z · y)/q + e′ = (z · x)/q + (z · e)/q + e′ mod Λ∨

By construction z = t · a mod Λ∨
q . Since t ∈ Z(A), we have (z · x)/q = ((a · t) ·

x)/q = (a · (t · x))/q = (a · s)/q mod Λ∨ for s := χt (x mod qI∨) . If x is uniform
over I∨q , then s is uniformly random over Λ∨

q since χt is bijective. Finally, the
analysis of the error proceeds identically to [14, Lemma 10].

The above two lemmas reduce BDD to NCLWE. We combine this with a
(quantum) proof that given a BDD oracle, we can output a sample from a
discrete Gaussian, to recover the iterative step (as in the CLWE reduction).
This then implies a reduction from DGS to NCLWE. The quantum step is:
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Lemma 12. There is an efficient quantum algorithm that given any nd2 dimen-
sional lattice L := σA(I) for some ideal I ⊂ Λ, 0 < δ < λ1 (L∗) /(2

√
2nd), and

an oracle that solves A-BDDν
L∗,δ with all but negligible probability, outputs an

independent sample from DL,
√
dω(

√
log(nd))/

√
2δ∗ .

Proof. Our lattices are a kind of module lattice (as modules over OK), so the
adaptation of [18] holds in this case too.

We combine these three results to obtain:

Theorem 8. Given an oracle that solves SNCLWEq,s,Σα
for α ∈ (0, 1), q ≥ 2,

an unramified ideal I ⊂ Λ, an r ≥
√
2q·η(I) satisfying r′ := r·ω(

√
log nd2)/(αq) >√

2nd2/λ1 (I∨) , and polynomially many samples from DI,r, there exists an ef-
ficient quantum algorithm that outputs an independent sample from DI,r′ .

Using this theorem, we can obtain:

Theorem 9. Let A = (L/K, θ, γ) be a nonassociative CDA, γ ∈ O×
L \ O

×
K ,

and |γ| = 1. Let α = α(n) ∈ (0, 1) and q ≥ 2 unramified in L be parame-
ters such that αq ≥ ω(1). Let I be an unramified ideal of Λ. Then there is
a polynomial-time quantum reduction from A-DGSνξ to SNCLWEq,s,Σα

for any
ξ = r

√
dω(
√
log nd)/αq, where r >

√
2q · ηε(I).

Proof. We prove the result in the standard iterative manner; for a large value of
r, e.g. r ≥ 22NλN (I), start by sampling classically from DI,r. Then apply the
above theorem to obtain a polynomial number of samples from DI,r′ . Iterating
this step gives samples from progressively narrower distributions, until we arrive
at the desired parameter s ≥ ξ.

7.3 On SIVP in Number Fields and Cyclic Division Algebras

Here we comment on SIVP over ideal lattices in number fields, and SIVP over
ideal lattices in CDAs. Let I = IΛ be an ideal of Λ. Suppose the prime factors
of I are unframified in OL. Then it is shown in a concurrent (currently unpub-
lished) work [26] that if one solves SIVP in IOL, one solves SIVP in I. If one
solves SIVP in IOL, one obtains nd short independent vectors in IOL. Denote
these vectors by xi, i = 1, ..., nd. One can then consider these vectors as elements
of Λ: xi = xi · (1 + u · 0 + ...ud−1 · 0) = xi ∈ Λ. Moreover, these vectors clearly
belong to I, as do ujxi, for j = 0, ..., d− 1 and i = 1, ..., nd, when γ ∈ O×

L . This
gives nd2 short independent vectors in I, that is, a solution to I-SIVP.

Thus it suffices to solve SIVP in ideal lattices of OL rather than in ideal
lattices of Λ. However, the SIVP to search NCLWE reduction only gives a lower
bound on the security of NCLWE; we expect the hardness of NCLWE to be
significantly greater than SIVP in OL. In the associative setting, the work [26]
provides two reductions linking SIVP on ideal lattices and structured module lat-
tices respectively to CLWE. We leave it as future work to see if these reductions
extend to NCLWE.



28 Andrew Mendelsohn & Cong Ling

8 NCLWE and Cryptography

Here we give a PKE scheme whose hardness is based on NCLWE. We discuss its
efficiency, sample parameters, and security against attacks. Our scheme is given
for d = 2.

8.1 PKE from Nonassociative LWE

Let A := (L/K, θ, γ), where A is a CDA, Σ be an error distribution, and q a
prime completely split in OK , factorising as qOK =

∏[K:Q]
i=1 qi with prime factors

qi inert in OL. We denote the coefficient vector of a = a0+ua1+ . . .+u
d−1ad−1

by a = (a0, a1, . . . , ad−1) . Note OL/qOL has a polynomial-size representation
of dimension nd, so in our scheme below we can encode a binary message
m ∈ {0, 1}nd2 as an element of Λq by sending each block of nd entries of m
to a coefficient of an element of Λ. Recall the Regev-style CLWE-based scheme,
similar to the ‘LPR’ scheme of [24]:

Key generation Generate a CLWE sample (a, b := a · s + e), where a ∈ Λq is
uniformly random and e← Σ, and output public key (a, b).

Encryption To encrypt m ∈ {0, 1}nd2 , sample t, e1, e2 ← Σ and output

(u,v) :=
(
φ(a)T t + e1, φ(b)

T t + e2 +
⌈q
2

⌋
·m
)

Decryption To decrypt, compute c = v− φ(s)Tu and recover each coordinate
of m by rounding the entries of c to 0 or

⌈
q
2

⌋
, and output 0 or 1 respectively.

This scheme is not directly applicable to our context, since the matrix repre-
sentation of nonassociative algebra elements is not multiplicative, i.e. φ(a)φ(s) 6=
φ(as). To see this explicitly, let d = 2 and a = a0 + ua1, s = s0 + us1. Then

φ(a) =

(
a0 γθ(a1)
a1 θ(a0)

)
and φ(s) =

(
s0 γθ(s1)
s1 θ(s0)

)
.

Thus
φ(a)φ(s) =

(
a0s0 + γθ(a1)s1 a0γθ(s1) + γθ(a1)θ(s0)
a1s0 + θ(a0)s1 a1γθ(s1) + θ(a0)θ(s0)

)
.

On the other hand, a · s = a0s0 + γθ(a1)s1 + u(a1s0 + θ(a0)s1), and

φ(as) =

(
a0s0 + γθ(a1)s1 γθ(a1)θ(s0) + γa0θ(s1)
a1s0 + θ(a0)s1 θ(a0)θ(s0) + θ(γ)a1θ(s1)

)
.

So one can see that

φ(as)− φ(a)φ(s) =
(
0 0
0 (θ(γ)− γ)a1θ(s1)

)
.
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Thus when one computes c = v− φ(s)Tu, one is left with

c =

(
0 0
0 (θ(γ)− γ)a1θ(s1)

)
t + e′ +

⌈q
2

⌋
m, (1)

where e′ is an error term. One could absorb (θ(γ) − γ)a1θ(s1) into e′, and if
(θ(γ)−γ)a1θ(s1) is small proceed as usual; however, a ∈ Λq is uniformly random
so this has low chance of success. One could encrypt a message with 0 in the
lower entry, i.e. m = (m 0)T , and only run the decryption on the entries of c
for which φ(as)−φ(a)φ(s) = 0. However, this restricts the number of bits which
can be sent. These observations lead us to the following adapted scheme.

8.2 LPR-Style Cryptosystem

Below the index i runs from 1 to 2. For an n-dimensional vector v the notation
ṽ denotes the vector (vn−i)i, and ṽ denotes an algebra element with vector of
coefficients ṽ.

Key generation Generate two NCLWE samples (ai, bi := ai · si + ei), where
ai is sampled uniformly at random, si ∈ Λq is small, and ei ← Σ, and output
public keys (ai, bi).
Encryption To encrypt m ∈ {0, 1}2n, place the entries of m as an element m
of Λq and set m1 := m, m2 := m̃. Sample ti ← Λq, ei,1, ei,2 ← Σ and output

(ui,vi) :=
(
φ(ai)

T ti + ei,1, φ(bi)T ti + ei,2 +
⌊q
2

⌋
·mi

)
Decryption To decrypt, compute ci = vi − φ(si)Tui, and recover half the co-
ordinates of mi by rounding the top 1

2 [A : Q] entries of ci to 0 or
⌊
q
2

⌋
, and

outputting 0 or 1 respectively.

This is IND-CPA secure under NCLWE because the two encryptions (of the
mi) are independent. We now prove this.

Lemma 13. Let A = (L/K, θ, γ) be a nonassociative cyclic division algebra
with [L : K] = 2, where γ ∈ O×

L is a unit. Then

1. There exists another cyclic algebra A′ =
(
L/K, θ, θ(γ)−1

)
with matrix rep-

resentation φ′ (·) and natural order Λ′ such that for any a ∈ A there exists
a′ ∈ Λ′ satisfying φ(a)T = φ′ (a′). Moreover, A′ is a division algebra, and
Λ′
q and Λq are canonically isomorphic as additive groups.

2. If θ(γ) = γ−1, we may take A = A′ and there exists a′ ∈ Λ satisfying
φ(a)T = φ (a′).

Proof. The proof of the first statement is identical to [14, Lemma 19]. For the

second statement, recall φ(a) =
(
a0 γθ(a1)
a1 θ(a0)

)
so φ(a)T =

(
a0 a1

γθ(a1) θ(a0)

)
. Now,

set
a′ := a0 + uγθ(a1)
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Then φ(a′) =

(
a0 γθ(γθ(a1))

γθ(a1) θ(a0)

)
=

(
a0 a1

γθ(a1) θ(a0)

)
. Comparison yields the

result.

An example algebra satisfying the second property is A = (Q(ζm)/Q(ζm +
ζ−1
m ), θ, ζm), m > 2.

We say a scheme is IND-CPA secure if any probabilistic polynomial time
(ppt.) adversary has only negligible advantage in the PubK experiment:

Definition 32. ([17]) Let Π = (Gen, Enc, Dec) be a PKE scheme, and A be
an adversary. Say Π is indistinguishable under chosen-plaintext attack if a ppt.
adversary in the following experiment PubKA,Π(n) has negligible advantage:

1. Gen is run to obtain keys (pk, sk).
2. Adversary A is given pk, and outputs a pair of equal-length messages m0,m1.
3. A uniform bit b ∈ {0, 1} is chosen, and then a challenge ciphertext c ←

Encpk (mb) is computed and given to A.
4. A outputs a bit b′. The output of the experiment is 1 if b′ = b, and 0 otherwise.

If b′ = b we say that A succeeds.

That is, Pr [PubKA,Π(n) = 1] ≤ 1
2 + neg(n).

We now prove our scheme is IND-CPA secure, assuming NCLWE is in-
tractable.

Lemma 14. Let A = (L/K, θ, γ) be a nonassociative cyclic division algebra
with [L : K] = 2, where γ is a unit and θ(γ) = γ−1. Then the above scheme is
correct if ∥∥∥∥e3 +

⌈q
2

⌋
·m−

(
s0 s1
0 0

)
e1 −

(
0 0

θ(s0) θ(s1)

)
e2

∥∥∥∥
∞
≤
⌈q
4

⌋
and is IND-CPA secure, assuming the hardness of NCLWE.

Proof. The correctness condition follows from the computation of Section 8.1.
For IND-CPA security, the adversary receives public key (a1, b1, a2, b2). Un-

der the NCLWE assumption, this four-tuple is indistinguishable from uniformly
random (i.e. distinguishable with at most negligible advantage). Note the pairs
(a1, b1) and (a2, b2) are independent. We may thus replace b1, b2 by uniformly
random elements b′1, b′2 and proceed with the experiment. The adversary then
receives an encryption of mb of the form (u1,v1,u2,v2), for b ∈ {0, 1}. Since the
four-tuple (u1,v1−

⌊
q
2

⌋
m,u2,v2−

⌊
q
2

⌋
m̃) is a tuple of valid independent NCLWE

samples in A′ (by Lemma 13), we have that (u1,v1 −
⌊
q
2

⌋
m,u2,v2 −

⌊
q
2

⌋
m̃) is

indistinguishable from a uniformly random four-tuple (with at most negligible
advantage) under the NCLWE assumption. We then obtain that (u1,v1,u2,v2)
is also close to uniform, and we conclude that the adversary has at most negli-
gible advantage.
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We close this section with a remark. The above scheme encrypts a message of
dimension nd2 by performing two independent Regev-style encryptions. While
this scheme is IND-CPA secure, it is of course less efficient than only needing to
perform one Regev-style encryption. By inspecting Equation (1), one can see that
if a1 and s1 are both small elements, they may be absorbed into the error term
and rounded away. Thus, making the assumption that NCLWE samples of the
form (a, b) = (a0 + ua1, (a0 + ua1) · (s0 + us1) + (e0 + ue1)) provide intractable
instances of LWE when a1 and s1 have bounded magnitudes, one could obtain
IND-CPA security of a PKE scheme which only requires one round of Regev-
style encryption. Since we could not prove such intractability for these instances,
we make no such claim but leave it as an open problem.

8.3 Operational Complexity

An algorithm was given in [14] to compute the complexity of the multiplication
φ(a)s, where a and s are algebra elements in an associative CDA and q is unram-
ified in K. The complexity of this algorithm was estimated at O

(
N logN/d2

)
+

Õ
(
Ndω−2

)
, where ω is the exponent of matrix multiplication and N = nd2.

This is an improvement over that coming from module elements in the same di-
mension. We note that such an algorithm also applies to the nonassociative case,
because the algorithm relies on the CDAs being quotients of skew polynomial
rings, as are the algebras of this work [37]. In this section we provide exposition
of our algorithm.

Our multiplication algorithm uses the CRT-style map of (3) to decompose
the problem of multiplying elements of Λq into a number of more tractable mul-
tiplications, when q has ‘good’ ramification properties. We do this by viewing
our algebras as quotients of skew polynomial rings, and so via the CRT we may
apply the algorithm of [33]1. We may then invert the CRT to obtain the result of
the multiplication. We study the complexity of this algorithm and compare it to
the corresponding complexity of other algebraically structured LWE instances.
Below, ω ∈ [2, 2.373] denotes the exponent of matrix multiplication.

Background on Skew Polynomial Rings Let R be a commutative ring with
1 ∈ R, and let θ be an endomorphism of R. Then we may define a noncom-
mutative ring of polynomials in an indeterminate u with coefficients in R, by
defining addition coefficientwise and defining multiplication of polynomials in
the standard manner, subject to the condition

ux = θ(x)u for all x ∈ R

We denote the ring of such polynomials by R[u, θ], known as a skew polynomial
ring, and note R[u, θ] = {

∑n
i=0 u

ixi : xi ∈ R,n <∞}. We remark that one may
define left division by an element b ∈ R[u, θ], since for all a ∈ R[u, θ], there exists
a unique pair k, r ∈ R[u, θ] such that a = bk + r with deg(r) < d [31]. We will
1 We also note the earlier version [34].
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take R = F to be a field from now on, and θ an automorphism.
Let Fθ be the fixed field of θ, defined Fθ = {x ∈ F : θ(x) = x}. Suppose θ has

order d. Then Fθ[ud] is the largest commutative subring of F[u, θ]. The elements
of this subring are called central and generate two-sided ideals of F[u, θ]. The
quotients of F[u, θ] by ideals generated by central elements are associative rings.
If, however, we consider the quotient of F[u, θ] by monic elements of the form
f(u) with coefficients not in Fθ, we may obtain a nonassociative ring on the set
of polynomials of degree less than d [37] by defining multiplication of a and b as

a · b = ab mod f(u) (2)

where ‘mod’ means we perform left division and take the remainder. We let
Fqm [u, θ]<d denote the set of skew polynomials of degree less than d.

We now focus on quotients of F[u, θ] by (ud − γ)F[u, θ] for γ ∈ F such that
θ(γ) 6= γ. As stated above, from this we obtain a nonassociative ring. In the fol-
lowing, we assume that we have choices of d and γ which obtain nonassociative
division algebras as in [37], and we thus have (F/Fθ, θ, γ) ∼= F[u, θ]/(ud−γ)F[u, θ]
[35, 36, 7]. Thus quotients of skew polynomial rings yield nonassociative cyclic
algebras.

For more on skew polynomials, see [31] or [16, Chapter 8].

Quotients of Natural Orders We now let q ∈ Z be a prime completely split
into factors qi in OK which are inert in OL. Write this as qOK =

∏[K:Q]
i=1 qi, as

a product of prime ideals. We then recall the CRT-style isomorphism

Λq ∼=
[K:Q]∏
i=1

((OL/qiOL) / (OK/qi) , θi, γi) (3)

We may thus use this isomorphism to reduce our problem in Λq to problems in
the factors ((OL/qiOL) / (OK/qi) , θi, γi) on the right hand side of (3) for each i,
where γi = γ mod qiOL and θi is the action of θ modulo qi, which are generalised
cyclic algebras. Since we assumed the qi are inert in OL, qiOL is a prime ideal,
say Qi, and we find OL/qiOL = OL/Qi ∼= Fq[L:K] , while OK/qi ∼= Fq. This gives
us

((OL/qiOL) / (OK/qi) , θi, γi) ∼= (Fq[L:K]/Fq, θi, γi), (4)

So we in fact have cyclic algebras over finite fields on the right hand side (not
generalised cyclic algebras). These cyclic algebras may then be interpreted as
quotients of skew polynomial rings Fq[L:K] [u, θi] by an ideal generated by ud−γi,
as described above.

We close this section with a discussion of the complexity of the CRT-style
map of (3), when K is a cyclotomic field. We follow [14, Appendix F]. The
isomorphism sends

d−1∑
j=0

ujxj →
n⊗
i=1

d−1∑
j=0

uj (xj mod qiOL)
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Thus the CRT-style map sends each uj-coefficient to its mod qiOL ‘parts’ via
the standard CRT for number fields. The result of [14, Appendix F5] was that
when the qi are inert in OL, this decomposition can be performed in time
O(nd2 log n). The method for performing this relies on the following observation:
since the quotient OL/qiOL is a vector space over OK/qi, we can decompose an
arbitrary OKq

basis `1, . . . , `d of OLq
into [K : Q] bases `j = (`1,j , . . . , `n,j) such

that each `i,1, . . . , `i,d (of qiOL parts) is a basis of the vector space basis over
OK/qi.

Now take any integral OK-basis `1, . . . , `d of OL. Compute and store the
`j mod qiOL, for each i and j. The CRT-style map then splits each of the ui-
coefficients of an element of Λq into its mod qiOL parts. We store elements
of OLq as OK-combinations of the chosen basis, that is as ` =

∑d
j=1 `jkj for

kj ∈ OKq . We may then split ` ∈ OLq into its OL/qi parts in time O(d ·n log n),
since

d∑
j=1

`jkj mod qiOL =

d∑
j=1

(`j mod qiOL) · (kj mod qiOL)

where the kj mod qi may be computed in time O(n log n) by the standard cyclo-
tomic field CRT and the `j mod qi mod OL were precomputed. Since we have d
ui-coefficients, we obtain a complexity of O(nd2 log n).

To invert the CRT-style map after performing computations in its range, we
must rewrite the resulting elements (of whatever computations have been per-
formed) in our chosen basis of the decomposition step. Since OL mod qiOL is a
d-dimensional vector space over OK/qi, we may precompute a suitable change
of basis matrix over OK/qi in time Õ (dω). Since we have to do this for the of n
rings, which each have d coordinates, the total complexity of this is Õ

(
ndω+1

)
.

Thus the complexity of decomposing and inverting via the CRT-style map is

O(nd2 log n) + Õ
(
ndω+1

)
The Puchinger-Wachter-Zeh (PW-Z) Algorithm In [34, 33] the authors
give an algorithm for performing multiplication in skew polynomial rings over
finite fields. We omit the details of their algorithm for brevity; it may be found
in [33, Algorithm 1]2. Below we use the algorithm as a black-box, and require
only a statement on its complexity:

Theorem 10. [33, Theorem 7] Let a, b ∈ Fqm [u, θ]≤s, s
∗ := d

√
s+ 1e. Then

c = a · b can be calculated in O
(
s

3
2

)
field operations, plus the cost of multiplying

an s∗ × s∗ with an s∗ × (s+ s∗) matrix, using [33, Algorithm 1].

The authors give a more precise estimate of the asymptotic complexity of
their algorithm; letMqm(s) denote the complexity of multiplying two skew poly-
nomials from Fqm [u, θ]≤s, and ω denote the exponent of matrix multiplication.

2 Cf. [34, Algorithm 2].
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Corollary 2. [33, Corollary 8] One has

Mqm(s) ∈ O (s∗ · (s∗)ω) ⊆ O
(
s

ω+1
2

)
We now combine a number of the above observations. Suppose we have two el-

ements a, b of ((OL/qiOL) / (OK/qi) , θi, γi). This is isomorphic to (Fq[L:K]/Fq, θi, γi),
which in turn can be realised as the quotient Fq[L:K] [u, θi]/(u

d−γi)Fq[L:K] . There
is a natural inclusion map

ι : Fq[L:K] [u, θi]/(u
d − γi)Fq[L:K] [u, θi] ↪→ Fq[L:K] [u, θi]

which takes an element of Fq[L:K] [u, θi]/(u
d−γi)Fq[L:K] [u, θi] and simply drops the

quotient ring structure. This allows us to run algorithms for skew polynomial
rings on elements obtained from quotients of natural orders in nonassociative
cyclic algebras. We use this remark below as the center of our algorithm.

Applying the above to our setting, so taking s = d−1 and using Corollary 2,
we find that the complexity of the PW-Z algorithm applied to each ring mod qi

is O
(
(d− 1)

ω+1
2

)
. For simplicity we will upper bound this by O

(
d

ω+1
2

)
. Since

we must perform this n times, we have a final complexity of O
(
nd

ω+1
2

)
.

The authors go on to to prove that their multiplication algorithm implies
a division algorithm for skew polynomials of complexity Õ(s

min
(

ω+1
2 ,1.635

)
) for

skew polynomials of degree at most s [33, Corollary 10]. With s = d−1 as above,

this becomes Õ
(
(d− 1)

min
(

ω+1
2 ,1.635

))
. Since this is less (ignoring log factors)

than the complexity of multiplication, we ignore this complexity below, beyond
factoring in this log factor into our analysis.

Our Algorithm We now outline our algorithm. Our method consists of applying
the CRT-style map to our algebra elements a, b to obtain a, b ∈ ((OL/qiOL) / (OK/qi) , θi, γi),
for i = 1, ..., [K : Q]. We then map these images to ι(a), ι(b) ∈ Fq[L:K] [u, θi] as at
the end of the previous section, for each i, and apply the Puchinger-Wachter-Zeh
(PW-Z) algorithm to these images. Taking the output of the PW-Z algorithm
and running left division with respect to (ud− γi)Fq[L:K] [u, θi] yields an element
of the nonassociative ring described at the beginning of this discussion, which is
isomorphic to ((OL/qiOL) / (OK/qi) , θi, γi). We then invert the tuple of prod-
ucts in these latter CDAs under the CRT-style map to obtain our product in
Λq. A step-by-step description may be found in Algorithm 1.

Since the bottlenecks of our algorithm are computing the CRT and perform-
ing multiplication, we estimate a final complexity of

O(nd2 log n) + Õ
(
ndω+1

)
+ Õ

(
nd

ω+1
2

)
= O(nd2 log n) + Õ

(
ndω+1

)
The complexity of our algorithm is essentially the same as that of [14, Appendix
F], except we replace its use of the algorithm of [8] with the PW-Z algorithm.
This is because we cannot apply the algorithm of [8] to our skew polynomial
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Algorithm 1: Fast multiplication of elements of Λq
Input: Two elements a, b of Λq

Output: The product a · b ∈ Λq

1: Compute the images of a, b under the CRT-style map of (3) in
((OL/qiOL) / (OK/qi) , θi, γi), for each i.

2: Compute isomorphisms OL/qiOL
∼= Fq[L:K] and OK/qi ∼= Fq, for each i.

3: Compute ι(a), ι(b) ∈ Fq[L:K] [u, θi], for each i.
4: Compute ι(a)ι(b) ∈ Fq[L:K] [u, θi] via the PW-Z algorithm, for each i.
5: Compute ι(a) · ι(b) = ι(a)ι(b) mod ud − γi ∈ Fq[L:K] [u, θi]/(u

d − γi)Fq[L:K] [u, θi],
for each i.

6: Compute the image of ι(a) · ι(b) ∈ Fq[L:K] [u, θi]/(u
d − γi)Fq[L:K] [u, θi] in

((OL/qiOL) / (OK/qi) , θi, γi), for each i.
7: Return the inverse of the CRT-style map in Λq on the resulting tuple.

rings, since it requires γ to fulfill certain conditions which are not met when
γ ∈ OL \ OK .

Comparison Between Algebraic Structures In this section we fix the total
dimension of the ambient algebraic structure as an integer N , and compare the
complexities of multiplication in such spaces in such dimensions. We follow [14,
Section 5.3] in the comparison of these alternatives via the study of the product
As over Zq, equipped with various structures.

1. The ring case: here N = n and we may write As over Zq as multiplication
of ring elements via the left regular representation a · s in Zq[X]/

(
XN + 1

)
.

Via CRT analysis in dimension N described in [23], the complexity of this
multiplication is dominated by the CRT map, which has time complexity
O(N logN), but includes a coordinatewise multiplication step which requires
time O(N).

2. The module case: here the module rank is d, N = nd, and A is a d×d matrix
over Zq[X]/

(
XN + 1

)
. One can compute As by applying the CRT coordi-

natewise in dimension n on A and s. This requires d2+ d applications of the
CRT, for a total asymptotic complexity of O

(
d2n log n

)
= O(Nd log(N/d)).

There is again a coordinatewise multiplication step requiring time O(Nd).
3. The associative cyclic algebra case: here N = nd2 and A is the matrix

obtained from the left regular representation φ(a) of an element a ∈ Λq.
In [14], the complexity of the multiplication φ(a) · vec(s) was estimated as
O
(
N log

(
N/d2

))
+Õ

(
Ndω−1

)
in the case where q is inert in L [14, Appendix

F5]. Here the second term comes from the skew polynomial multiplication
algorithm of [8], and the first from the CRT map.

4. The nonassociative cyclic algebra case: again we have N = nd2 and A is
the matrix obtained from the left regular representation φ(a) of an ele-
ment a ∈ Λq. We estimated our complexity as O(nd2 log n) + Õ

(
ndω+1

)
=

O(N logN/d2)+ Õ
(
Ndω−1

)
, which is identical to the associative case. Note
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that this is not surprising: multiplying two elements does not require asso-
ciativity.

8.4 Concrete Algebras for NCLWE

Here we detail a variety of methods to construct nonassociative CDAs from
cyclotomic fields (and their subfields). We pay particular attention to cases when
[A : Q] = 3 · 2r for some r, since [14] could not give such constructions.

A method to construct nonassociative CDAs was given above: let K = Q(ζm)
and L = Q(ζpm) with gcd(p,m) = 1. Then ζpm /∈ K and L/K is cyclic, so
since ζpm does not lie in a proper subfield of L, by Proposition 2 the algebra
(L/K, θ, ζpm) is a nonassociative CDA. Since [L : K] = p − 1, when p = 3 we
have an appropriate degree algebra for the above PKE scheme. Note we can let
γ = ζkpm for any k such that gcd(pm, k) = 1, since these are primitive pmth roots
of unity, and no primitive pmth root of unity lies in a proper subfield. Moreover,
for prime power m = qr we can create extensions by setting p to be a power of
q; that is, p and m do not need to be coprime, but need to be chosen such that
L/K is cyclic. Below is a table of parameters for possible algebras:

m p [K : Q] [L : K] [A : Q]
128 5 64 4 1024
256 3,4 128 2 512
256 5 128 4 2048
512 3,4 256 2 1024
243 3,4 162 2 648
243 5 162 4 2592
125 3,4 100 2 400
125 5 100 4 1600
625 3,4 500 2 2000
343 3,4 294 2 1176

Table 1: Even Low-degree Nonassociative Algebras

Alternatively, let L = Q(ζpm) = Q(ζ3r·2k), K = Q(ζ3r−1·2k). Then [L : Q] =
φ(3r · 2k) = 3r−1 · 2k, [K : Q] = φ(3r−1 · 2k) = 3r−22k, and [L : K] = 3. Note
L/K is cyclic, so A = (L/K, θ, ζ3r·2k) is a nonassociative CDA. Below is a table
of parameters for possible algebras:

m K p L [K : Q] [A : Q]
64 Q(ζ192) 9 Q(ζ576) 64 576
64 Q(ζ576) 27 Q(ζ1728) 192 1728
128 Q(ζ384) 9 Q(ζ1152) 128 1152
128 Q(ζ1152) 27 Q(ζ3456) 384 3456
256 Q(ζ768) 9 Q(ζ2304) 256 2304

Table 2: Cubic-degree Nonassociative Algebras
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Now, consider the case when K is strictly contained within a cyclotomic field.
The simplest example of this is A = (Q(ζm)/Q(ζm + ζ−1

m ), θ, ζm), m > 2. For
examples with [A : Q] divisible only by powers of 2 and 3, proceed as fol-
lows: set v = 2k, w = 9, Q(ζvw)

+ = Q(ζvw + ζ−1
vw ). Then A = (L/K, θ, γ) =

(Q(ζvw)/Q(ζvw)
+, θ, ζvw) has dimension [L : Q][L : K] = 2φ(v)φ(w) = 2k · 6 =

2k+13. This creates a cyclic division algebra which has degree divisible by only
one power of 3. We can also create algebras with degree divisible by higher
powers of 3. Below is a table of parameters for possible algebras:

v w L [L : Q] [A : Q]
64 27 Q(ζ1728) 576 1152
128 9 Q(ζ1152) 384 768
128 27 Q(ζ3456) 1152 2304
256 9 Q(ζ2304) 768 1536
512 9 Q(ζ4608) 1536 3072

Table 3: Nonassociative Algebras Over Maximal Real Subfields

Another way of constructing algebras with similar sizes to those above is as
follows. Let p = 7 and m = 2r. Setting L = Q(ζ7·2r ) and K = Q(ζ2r ,

√
−7),

[L : K] is cyclic as Q(
√
−7) is the unique quadratic subfield of Q(ζ7), and we

have [L : K] = 3, [K : Q] = 2r, so [A : Q] = 9 · 2r.
Finally, we give a construction where |γ| 6= 1. This leads to some distortion of

the error in the proof of Lemma 11, but aside from this does not lead to significant
complications. Let K = Q(ζpk), where (p, 7) = 1, and L = Q(ζpk , ζ7+ζ

−1
7 ). Then

[L : K] = 3 and A = (L/K, θ, ζ7 + ζ−1
7 ) is a CDA of degree 9(p − 1)pk−1 over

Q. In particular, we can construct a degree three extension where p = 2, and K
has power of two degree. Below is a table of parameters for such algebras.

pk [L : Q] [A : Q]
128 192 576
256 384 1152
512 768 2304
243 243 729
125 300 900

Table 4: Nonassociative Algebras of Cubic Degree over Prime-power Cyclotomic
Fields

8.5 Attacking NCLWE

Subfield Attacks A form of structured LWE named multivariate LWE (mLWE)
[32] was attacked in [5]. The attack found a homomorphism from the mLWE sam-
ple domain into a subfield, where mLWE is defined over the tensor product of
number fields. If a mLWE sample is defined over Zq[x]/(x2

r1
+1)⊗Zq[x]/(x2

r2
+

1), 1 < r2 ≤ r1, then one can map a sample of dimension r1r2 to r2 samples
of dimension r1 (see [5] for details). We argue that NCLWE is immune to this
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attack for the same reason as is CLWE. Let A = (L/K, θ, γ) be a nonassociative
CDA. Suppose there exists a homomorphism χ : A → L. The restriction of χ to
L is an automorphism of L, so χ must satisfy χ(u) · χ(`) = χ(u`) = χ(θ(`)u) =
χ(u) · χ(θ(`)) for any ` ∈ L. However, this implies χ is not injective on L, and
thus there is no homomorphism to a maximal (or any other) subfield. So our
construction is immune from this dimension-reducing attack.

Plain Lattice Attacks Here we provide results from the lattice estimator of the
cost of attacking out constructions, using plain lattice attacks. Here the attacks
are run by ignoring the algebraic structure of the underlying lattice problems.
This cost estimate is obtained by using the lattice estimator3 [4] with similar
parameters for the secret and error as Kyber512, but using lattice dimensions
from examples in the previous section. We allow the estimator as many samples
as the dimension of the corresponding lattice problem. We use a value of q
completely split in L. The ‘meaning’ of the rop results in the final column is
to give a rough idea of the number of ring operations required to solve the
corresponding LWE instances, and is thus a measure of security. We list the
minimum base-2 logarithms of these rop values over all attacks costed by the
estimator.

[A : Q] q min log rop

512 7681 127.5
576 7489 143.7
648 2917 182.9
768 3457 209.9
900 7001 228.5
1024 7681 258.9
1152 3457 319.9
1176 8233 297.5
1536 18433 364.5

Table 5: Cost of Plain Lattice Attacks
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