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Abstract. The growing adoption of secure multi-party computation
(MPC) has driven the development of efficient symmetric key primi-
tives tailored for MPC. Recent advancements, such as the alternating
moduli paradigm, have shown promise but leave room for cryptographic
and practical improvements. In this paper, we analyze a family of weak
pseudorandom functions (wPRF) proposed at Crypto 2024, focusing on
the One-to-One parameter sets. We demonstrate that these configura-
tions fail to achieve their intended one-to-one mappings and exploit this
observation to develop an efficient key recovery attack.
The attacks reveal significant vulnerabilities, reducing the complexity of
key recovery to O(2λ/2 log2 λ) for the Standard One-to-One wPRF and
O(20.84λ) for the Reversed Moduli variant – both substantially below
their claimed λ-bit security. We validate our findings through experimen-
tal evaluations, confirming alignment between predicted and observed
attack complexities.
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1 Introduction

The rise of interest in secure multi-party computation (MPC) and the grow-
ing threat of quantum computers have created an urgent need for efficient and
quantum-resistant symmetric key primitives specifically designed for use in MPC
settings. While classic symmetric key primitives hold promise due to their sim-
plicity and performance potential, existing constructions were developed for dif-
ferent (and usually incompatible) settings and often have algebraic structures
that quantum computers could exploit. This necessitates new designs that avoid
such vulnerabilities while being suitable for MPC.

Important cryptographic tasks, such as ring signatures, oblivious pseudoran-
dom functions (OPRFs), verifiable random functions (VRFs), and blind signa-
tures, require efficient solutions tailored to these evolving challenges [16,11,15,14,5].
Ideally, these primitives should be evaluable in a single round of communication
using linear secret-sharing techniques. While there has been progress in adapting



existing symmetric key primitives for MPC [2,3,10,8,12,13], many constructions
still require too many communication rounds or involve high overheads [4]. This
inefficiency stems in part from the difficulty of balancing low-depth functions,
which are essential for efficiency in MPC settings, with security requirements.

To address these issues, Boneh et al. [4] introduced the alternating moduli
paradigm, separating the requirements for MPC efficiency from those for cryp-
tographic security. By alternating linear operations over different moduli, they
built a depth-2 weak pseudorandom function (wPRF) that can be securely eval-
uated in a single communication round after preprocessing. Dinur et al. [9] ex-
tended this work by introducing new one-way functions (OWFs), pseudorandom
generators (PRGs), and wPRFs within the same framework. They showed that
their OWF could be used to build a post-quantum signature scheme with good
efficiency. Despite these advances, the protocols built around these constructions
often fell short of state-of-the-art performance. Moreover, the 2PC protocols for
these constructions require significant preprocessing time to generate correlated
randomness, with communication overheads higher than desired.

Building on this line of work, Alamati et al. [1] revisited the alternating mod-
uli paradigm to propose a new wPRF that improves on previous constructions
in terms of efficiency and practicality. According to the authors, their design sig-
nificantly reduces communication and computational costs, particularly in the
main evaluation phase, and minimizes the need for oblivious transfers. In terms
of cryptanalysis, they argue that the security of their wPRF depends on the
hardness of solving sparse multivariate polynomial systems over F3 or, in the
dual form, on sparse multilinear interpolation. This argument is used by the au-
thors to justify their focus on subset-sum attacks as the primary cryptanalytic
threat. However, our analysis shows that other potential attack vectors remain
relevant and deserve further attention.

Our Contributions. In this paper we present cryptanalysis of the One-to-One
parameter sets proposed by Alamati et al. for their alternating moduli wPRF.
We show that the suggested parameter sets named One-to-One do not give the
approxiamtely one-to-one mappings they are supposed to do. We use this obser-
vation to present a novel key recovery attack against the Standard One-to-One
parameter set of the wPRF. Our attack achieves a complexity of O(2λ/2 log2 λ),
significantly lower than the claimed λ-bit security level.

Next, we adapt the key recovery attack and apply it to the Reversed Moduli
One-to-One parameter set. This variant presents some extra challenges, but the
modified attack successfully recovers the key with a complexity of O(20.84λ),
once again breaking the claimed 2λ security level. We have also considered the
Many-to-One parameter sets, but could not find any successful attacks on these
variants

We provide both theoretical complexity analyses and experimental verifica-
tion of our attacks. Our experiments confirm that the observed attack complexi-
ties closely align with the theoretical predictions. In addition to highlighting the
vulnerabilities in the current wPRF constructions, we propose potential counter-
measures to mitigate these attacks, aiming to make future constructions secure.

2



Outline of this Paper. This paper is structured as follows. In Section 2, we pro-
vide the necessary preliminaries, namely the definition and security notions of
weak pseudorandom functions and the classical and generalized birthday para-
dox. Section 3 introduces the wPRF construction by Alamati et al., explaining
its specification, variants, and recommended parameter sets. In Section 4, we de-
tail our primary contributions, including a comprehensive cryptanalysis of two
proposed wPRF parameter sets and an analysis of the theoretical complexity
of our key recovery attack. Section 5 validates our theoretical analysis through
experimental results, showcasing the feasibility and accuracy of our approach.
Finally, in Section 6, we conclude by summarizing our findings, discussing po-
tential countermeasures, and highlighting open problems for future research.

2 Preliminaries

In this section we present the foundational concepts necessary for understanding
the results and analysis in this paper. These include the definition and security
notions of weak pseudorandom functions, as well as the classical and generalized
forms of the birthday paradox.

2.1 Weak Pseudorandom Functions

The definition of a weak pseudorandom function below follows Definition 2.1
from [4].

Definition 1. A weak pseudorandom function (wPRF) is a keyed function
f : K × X → Y that, when queried on random inputs x ∈ X , is computationally
indistinguishable from a truly random function. More formally, for a randomly
selected key k ∈ K, the output f(k, x) for x sampled uniformly at random from
X is indistinguishable from the output g(x) of a random function g : X → Y to
any adversary running in time t(λ) with access to an oracle for f .

The distinction between a weak PRF and a strong PRF lies in the adversarial
query model: wPRFs restrict adversaries to query only random inputs, whereas
strong PRFs permit the adversary to query adaptive, chosen inputs.

Security Notion of a wPRF. The security of a wPRF f is quantified by the
advantage an adversary A running in time t(λ) has in distinguishing f(k, x)
from a random function. We say that f is secure if

AdvwPRF
f,A =

∣∣∣Pr[Af(k,·) = 1]− Pr[Ag(·) = 1]
∣∣∣ ≤ ϵ(λ),

where ϵ(λ) is negligible in λ. If a wPRF claims to give λ-bit security, it means
that the above security notion holds when t(λ) = 2λ. That is, A is allowed to
make up to 2λ queries to the oracle and can run in time up to 2λ.
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2.2 The Birthday Paradox and Its Generalization

The birthday paradox is a probabilistic phenomenon that explains the counterin-
tuitive likelihood of repeated outcomes when drawing samples from a finite set.
It is particularly relevant in cryptographic contexts, where it is used to estimate
the probabilities for repeated outcomes of hash functions and related structures.

Given a function that maps inputs to |Y| equally likely outputs, the birthday
paradox quantifies the number of samples required to sample the same element
twice.

Lemma 1. [6, Sec. 5.4.1] Classical Birthday Paradox. For a uniform ran-
dom distribution over |Y| possible outputs, the expected number of samples S
required to observe the first repeated outcome is:

S ≈
√
2|Y|.

The analysis given in [6] can be easily generalized to determine how many
random samples are needed to find multiple pairs of repeated outcomes. In this
paper we call this the generalized birthday paradox, noting that it differs from
other generalizations [17,7].

Lemma 2. Generalized Birthday Paradox. For a uniform random distri-
bution over |Y| possible outputs, the expected number of samples S required to
observe c pairs of repeated outcomes is given by:

S ≈
√
2|Y|c.

The generalized form reveals that the sample complexity scales proportionally
to

√
c.

3 A new weak PRF

At Crypto 2024, Alamati et al. [1] introduced a novel wPRF tailored for efficient
multiparty computation (MPC) applications. This construction builds upon and
generalizes the alternating moduli paradigm initially proposed by Boneh et al.
[4]. This paradigm, which alternates computations over two distinct moduli,
typically F2 followed by F3, has demonstrated significant potential for achieving
both simplicity and efficiency in advanced cryptographic protocols.

We explore the details of Alamati et al.’s new wPRF constructions, and
discuss their recommended parameter sets to achieve λ-bit security under various
constraints.

Specification. In their work [4], Boneh et al. considered the function

f(K, x) := g(K ·2 x), where g(w) =
∑
i

wi mod 3.
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Here ·p denotes multiplication modulo p, the matrix K ∈ Fm×n
2 is the secret

key and K ·2 x ∈ Fm
2 is embedded into Fm

3 component-wise in the natural way.
Extensions [9] to this idea defined the wPRF

f(K, x) := B ·3 (K ·2 x),

where K is a square matrix and B is a compressing matrix.
To improve upon Boneh et al.’s construction, Alamati et al. propose a new

wPRF that optimises the end-to-end cost of MPC protocols while enhancing
performance during the main computation phase, thus significantly improving
communication complexity and computational efficiency. The construction relies
on three core components:

1. Non-linear combination of the input and key modulo two.
2. Matrix multiplication modulo two.
3. Natural modulus conversion followed by a public compressing linear map B.

Definition of the Standard wPRF. The proposed standard (F2,F3)-wPRF
is defined as:

F (k, x) := B ·3 (A ·2 [k ⊙2 x]) ,

where:

– x, k ∈ Fn
2 are random vectors representing the input and key,

– A ∈ Fm×n
2 is a random matrix,

– B ∈ Ft×m
3 is a random compressing matrix (i.e., t < m).

Here ⊙p denotes component-wise multiplication modulo p.
A visual representation of the construction of the wPRF is given in Fig. 1.

Fig. 1: Construction of the standard version of the new wPRF.
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Variants of the Standard wPRF. The generalized (Fp,Fq)-wPRF extends this
concept to arbitrary primes p and q in the natural way as

F (k, x) := B ·q (A ·p [k ⊙p x]) ,

where x, k ∈ Fn
p , A ∈ Fm×n

p , and B ∈ Ft×m
q .

For scenarios requiring binary secret-sharing outputs, Alamati et al. propose the
Reversed Moduli (F3,F2)-wPRF:

F (k, x) := B ·2 (A ·3 [k ⊙3 x]) ,

where the roles of the moduli are reversed.

Parameters. Table 2 summarizes the recommended parameter sets from [1]
across the different wPRF constructions. Alamati et al. divide the parameter sets
into two groups, namely One-to-One parameters and Many-to-One parameters.
The authors claim λ-bit security for each parameter set.

One-to-One Parameters. The One-to-One parameter set is designed with the aim
of giving a (roughly) one-to-one mapping between inputs and outputs. Specifi-
cally, the input space and output space are of the same size, and for any given
input x the authors claim we can expect a unique corresponding output y. This
setup is their most conservative alternative.

Many-to-One Parameters. As the name suggests, the Many-to-One parameter
set has a larger input space than output space. For any given output y there
should be many multiple values for x mapping to y, leading to a many-to-one
mapping between inputs and outputs.

Table 1: Recommended parameter sets for the wPRF for λ-bit security.

Variant
One-to-One Many-to-One

n m t n m t

(F2,F3)-wPRF 2λ 7.06λ
2λ

log2(3)
4λ 2λ

λ

log2(3)

(F3,F2)-wPRF
2λ

log2(3)

7.06λ

log2(3)
2λ

4λ

log2(3)
2λ λ

4 Our Attack

In this section, we present a key recovery attack against the two One-to-One pa-
rameter sets proposed by the authors. This attack exploits weaknesses in these
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parameter sets, and efficiently identifies key bits using collisions. The attack is
able to recover the key in O(2λ/2 log2 λ) calls to the wPRF in the standard
version and in O(20.84λ) calls to the wPRF in the reversed moduli variant,
demonstrating a significant reduction in complexity compared to the claimed
2λ calls. The attack begins with an analysis of the Standard One-to-One wPRF
to establish the basic methodology. Following this, we demonstrate how the at-
tack can be modified to the Reversed Moduli variant, overcoming its additional
complexities.

In the following, let X denote the input space, let M denote the output space
of the multiplication using the matrix A, and let Y denote the output space of
the wPRF.

One-to-One? We target the proposed parameter sets where the input space has
size |X| = 22λ (= 3(2λ/ log2 3)), the intermediate space has size |M | = 27.06λ (=
3(7.06λ/ log2 3)), and the output space size is |Y | = 32λ/ log2 3 = 22λ. The authors
argue that these configurations result in a (roughly) one-to-one mapping between
inputs and outputs, but this does not hold once the wPRF is instantiated with
a fixed key k. We exploit this observation to construct a key recovery attack.

– Standard One-to-One. Define h1 as the Hamming weight of k, and h0 =
2λ−h1 as the number of zeros in k. For a key k chosen uniformly at random
we expect h1 ≈ h0 ≈ λ, following a binomial distribution. In positions
where ki = 0, the value of xi is irrelevant, as ki ⊙ xi will always equal zero.
This implies that 2h0 distinct values of x will give the same input to the
multiplication with A, and the weak PRF can never recover from this 2h0-
to-1 sub-mapping, meaning that the whole F becomes a 2h0-to-1 mapping
once the key is fixed. The image of F , denoted as im(F ), will therefore be
of size 2h1 ≈ 2λ instead of 22λ.

– Reversed Moduli One-to-One. Extending the notation, let hi be the number
of elements in k that have the value i (for i = 0, 1, 2). For a uniformly random

key k, we expect h0 ≈ h1 ≈ h2 ≈ 2λ

3 log2(3)
. Similarly to the standard case,

the operation k ⊙ x will induce a 3h0-to-1 sub-mapping, which can be ex-
pressed as 22λ−log2(3)(h1+h2)-to-1. Thus, im(F ) will be of size 2log2(3)(h1+h2),
with an expected value of 24λ/3, instead of the intended 22λ.

4.1 Key Recovery Attack on One-to-One Standard wPRF

Our attack aims to recover the key k by finding pairs x, x′ such that F (k, x) =
F (k, x′). Whenever this occurs we say we have a collision. The attack is described
in Algorithm 1 and explained in the following.

We initialize a key K as K = [1, 1, 1, . . . , 1] and iteratively refine it towards
the correct key k by identifying positions in k that must be 0. The idea is to
query the weak PRF on random inputs, building up a table of input and output
values (x, y). By the birthday paradox, collisions are expected to appear after
collecting

√
2|im(F )| = 2(h1+1)/2 samples.
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For two inputs x and x′ producing the same output y, if xi ̸= x′
i, then ki

must be zero because the differing input bits would otherwise result in differ-
ent values in M . Note that the size of M is 27.06λ which is much larger than
the size of X. So the probability of creating collisions after multiplying k ⊙ x
with A becomes negligible since there are only 2h1 different values going into
multiplication with B, which is much smaller than |Y | = 22λ. Therefore, with
overwhelming probability, the only source of collisions comes from the 2h0 -to-1
mapping of x ⊙ k, which means that each collision reveals some positions in k
that must be zero.

To further analyze the key recovery, let

J0 = {i|ki = 0} and J1 = {i|ki = 1}.

For two colliding inputs x, x′, let X= = X=(x, x
′) = {i|xi = x′

i} and X̸= =
X̸=(x, x

′) = {i|xi ̸= x′
i}.

As we find more collisions, we progressively update K by changing 1-bits in
K to 0 for all indices in X̸=. For each collision, we know that J1 ⊆ X= and that
X̸= ⊆ J0. For positions i ∈ J0, we have either xi = x′

i or xi ̸= x′
i with equal

probability since both x and x′ are drawn uniformly at random. We therefore
expect that only half of the set J0 will be revealed from any one collision. With
further collisions we learn more positions of J0, but as the inputs are drawn
uniformly at random, collisions are independent of each other and new collisions
are only expected to reveal half of the so far unrevealed positions where ki = 0.
This suggests that the Hamming distance between K and k is halved with each
collision. Specifically, the expected Hamming distance after c collisions have been
found can be expressed as

dc = h0/2
c. (1)

Collision Saturation Point. As the attack progresses, the number of new
revealed positions in J0 diminishes with each new collision, as many zeros in k
have already been determined. At some stage it becomes more efficient to per-
form an exhaustive search among keys with small Hamming distances from the
current guess K. The switch should occur when the expected cost of generating
the (c+1)-th collision exceeds the expected cost of exhaustive search among the
vectors with hamming distance dc from K.

Cost of New Collision. Using the generalized birthday paradox, the expected
number of samples required to find c collisions is

√
2h1+1c. To find the (c+1)-th

collision after already having generated c collisions, the number of new queries
we need is √

2h1+1(c+ 1)−
√
2h1+1c = 2(h1+1)/2(

√
c+ 1−

√
c). (2)

The total cost of generating the (c+1)-th collision is dominated by this number
of queries since verifying whether we have a new collision can be done in constant
time by storing (x, y)-pairs in a hash table.
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Cost of Exhaustive Search. For exhaustive search, we consider all keys within a
Hamming distance of dc from K. Note that we only need to search for possible
keys by changing 1-bits in K to 0, and never changing 0-bits to 1. We therefore
call this search as searching within the one-sided Hamming distance from K.

The number of keys to search is therefore
⌈dc⌉∑
j=1

(
H1

j

)
, where H1 is the current

Hamming weight of K. To verify each key candidate, we compute three outputs
using the current key guess and some x that has already been queried. The
number three is chosen somewhat arbitrarily, but should guarantee that only
the correct key will pass the verification. In the worst case, this results in a total
cost of

3 ·
⌈dc⌉∑
j=1

(
H1

j

)
queries.

Finally, we insert h0 = h1 = λ, their expected values, in equations (2) and
(1) to compute the point to switch to exhaustive search. To minimize the attack
cost, the transition to exhaustive search should occur when c collisions have been
found and

3 ·
⌈λ/2c⌉∑
j=1

(
H1

j

)
< 2(λ+1)/2 · (

√
c+ 1−

√
c). (3)

Of course, we are not guaranteed that the correct key has Hamming distance less
than dc whenever (3) is satisfied. If the exhaustive search fails to find the correct
key on the first try, we simply find one more collision and then try exhaustive
search again.

Complexity Analysis. We measure the complexity of the attack in terms of the
needed number of queries to the weak PRF. The attack proceeds by identifying
collisions until a transition point is reached, at which point exhaustive search
on the key is performed. Let C represent the number of collisions found at the
transition point. We know that C ≤ log2 λ, since for C = log2 λ and H1 ≤ n = 2λ
Inequality (3) always holds for λ ≥ 17.

As discussed above, the total number of samples required to recover the key
is approximately

√
2λ+1C + 3 ·

⌈λ/2C⌉∑
j=1

(
H1

j

)
,

where H1 represents the Hamming weight of the guessed key after C collisions.

By construction of K, we can estimate H1 as h1 +
h0

2C
≈ λ+

λ

2C
.

With C = log2 λ the sum in the expression above will stop at j = 1, and
consequently, the complexity of the attack is of the order

O
(
2λ/2 log2 λ

)
.
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Algorithm 1 Key Recovery Attack
Require: Input-output oracle O, security parameter λ
Ensure: Recovered key k

K ← [1, 1, . . . , 1]
P ← ∅
c← 0
H1 ← n
while Correct key not found do

repeat
Collect a new input-output pair (x, y) using O
if (x′, y) ∈ P for some x′ ̸= x then

for i ∈ X ̸= do
if Ki = 1 then

Ki ← 0
H1 ← H1 − 1

end if
end for
c← c+ 1

end if
Add (x, y) to P

until Collision is found

if 3 ·
⌈λ/2c⌉∑
j=1

(
H1

j

)
≤ 2(λ+1)/2 · (

√
c+ 1−

√
c) then

for each k′ with one-sided Hamming distance at most dc from K do
if k′ matches 3 input-output pairs from P then

return k′

end if
end for

end if
end while
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The total cost of the attack is thus significantly lower than 2λ, highlighting a
clear compromise of the claimed security level.

4.2 Attack on One-to-One Reversed Moduli wPRF

We adapt the collision-based key recovery attack methodology used in the stan-
dard parameter set to the One-to-One reversed moduli wPRF. The key difference
in this variant is that non-zero key positions can take two distinct values, re-
quiring modifications to our approach. The modified attack still remains feasible
and reveals vulnerabilities in the construction. Below, we detail the process and
analyze its computational complexity.

Collisions: Finding Zero Key Positions. The first step of the attack is to
identify the positions in the key k where ki = 0. To achieve this, we employ the
same method of finding collisions used previously in the standard case. By the
birthday paradox, we expect collisions to appear after collecting approximately√

2|im(F )| = 2(log2(3)(h1+h2)+1)/2 ≈ 2(4λ+3)/6

samples.
In this setting, the size of the domain M is again significantly larger than the

size of the input space X, ensuring that collisions arise from the 3h0 -to-1 mapping
induced by x⊙k with overwhelming probability. Therefore, each collision reveals
information about positions in k where ki = 0.

Let J0 = {i | ki = 0} and x and x′ two colliding inputs as before. We again
have

X̸= = X̸=(x, x
′) = {i|xi ̸= x′

i} ⊆ J0.

For positions i ∈ J0, we have either xi = x′
i or xi ̸= x′

i, but these events
do not occur with equal probability in the reversed moduli case. Since x takes
values in F3, we have xi ̸= x′

i with probability 2/3. Thus, we expect to recover
approximately 2/3 of J0 from any given collision. This higher recovery rate,
compared to the standard wPRF, reduces the number of collisions required to
fully determine J0.

We continue generating collisions until we have likely identified all zero po-
sitions in the key. To estimate the number of collisions required, we analyze the
probability of revealing additional zeroes as we accumulate collisions. As dis-
cussed, the first collision is expected to reveal approximately 2/3 ·h0 zeroes. The
second collision builds upon this and reveals another 2/32 · h0 zeroes. Follow-
ing this reasoning, after c collisions, the total number of zeroes revealed can be
expressed as

c∑
i=1

2

3i
· h0.
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After having found c collisions, the number of remaining zero positions in k yet
to be identified is therefore given by

h0 −
c∑

i=1

2

3i
· h0 =

(
1−

c∑
i=1

2

3i

)
h0.

To ensure all zero positions are likely identified, the number of remaining posi-
tions must be less than 1, i.e.,(

1−
c∑

i=1

2

3i

)
h0 ≈

(
1−

c∑
i=1

2

3i

)
2λ

3 log2(3)
< 1.

This expression can be solved for c in order to find the minimum expected
number of collisions after which we should identify all zero positions of the key.
To ensure that all zero positions are found with high probability, we add a small
safety margin. Specifically, we can multiply the derived value for c by three,
and in any case the complexity of determining all zero positions is of the order
O(log3(λ)) collisions.

Exhaustive Search over Non-Zero Key Positions. Once the positions in J0
are determined, the values of the remaining positions J1 ∪ J2 = {i | ki ∈ {1, 2}}
remain unknown. These positions are expected to constitute 2/3 of the key.
However, for these positions, each ki can only take two possible values, 1 or 2

since all 0’s have been detected. For a key of length n =
2λ

log2 3
, the total number

of candidates for the remaining key components is therefore

2(2/3)·(2λ/ log2 3) ≈ 20.84λ.

The correctness of any candidate key can be verified by querying the wPRF on
three input-output pairs as before. Thus, the exhaustive search over all possible
keys in J1 ∪ J2 requires 3 · 20.84λ queries.

Complexity Analysis. The overall complexity of the attack consists of two
main components: identifying zero positions via collisions and performing an
exhaustive search over non-zero key positions.

Collision Complexity. By the generalized birthday paradox, the expected cost
of finding enough collisions to identify all zero positions of the key is√

2(4λ+3)/3C,

where C = O(log3(λ)) denotes the number of collisions required to fully deter-
mine J0. The total complexity of this step thus becomes O(22λ/3 log3(λ)).
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Exhaustive Search Complexity. Once the zero positions are known, the exhaus-
tive search requires testing 20.84λ key candidates, each verified with 3 queries.
This results in a total cost of

3 · 20.84λ.

Total Complexity. The overall complexity of the attack is the sum of the costs of
the collision and exhaustive search steps. Notably, the complexity is dominated
by the exhaustive search step, and so the attack has a total cost of O(20.84λ).
This is below the claimed security level of 2λ, demonstrating that the One-to-One
Reversed Moduli parameter set also is broken.

4.3 Trying the Attack on Many-to-One Parameter Sets

The attack described above does not apply to the Many-to-One variants of the
wPRF. In these cases, the input space size |X| = 24λ significantly exceeds the
output space size |Y | = 2λ, so collisions are inevitable. Since the intermediate
output space of the pointwise multiplication followed by multiplication with A
has size |M | = 22λ, these collisions will mostly arise without being linked to
k ⊙ x. More specifically, distinct points in M produce a collision in Y at a rate
of once per 2λ/2 queries, while collisions due to k ⊙ x being a 22λ-to-1 mapping
only appear at a rate of once for every 2λ queries. As a result, generating even a
single collision where x⊙ k = x′ ⊙ k will take O(2λ) time, making our approach
ineffective for these parameter sets.

5 Experimental Verification

To validate our proposed approach, we have conducted a series of low-scale ex-
periments1 in the Standard One-to-One parameter set, using λ = 28 and λ = 34
as test cases. For each scenario, we have performed 1000 independent experi-
ments to ensure statistical significance, recording the average results obtained.
Table 2 summarizes our experimental findings, which corroborate the theoretical
estimations presented in Section 4 and demonstrate the feasibility of a successful
key recovery attack.

We analyse the average complexity of the two principal components as out-
lined in Section 4: finding collisions and exhaustive search.

– Collision Finding (Ccol): We measure the average number of samples re-
quired to generate a sufficient number of collisions necessary for key recovery.

– Exhaustive Search (Cexs): Once a sufficient number of collisions have
been identified, we perform an exhaustive search over the key candidates
with small Hamming distances from the current key guess. We record the
average number of calls to F for this step.

1 The implementation details and source code can be accessed at
https://github.com/Simula-UiB/wPRF-Collision-Attack
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By combining these components, we compute the total complexity Ctot = Ccol+
Cexs of the attack. Our results demonstrate that we achieve key recovery with
complexity closely aligned with the theoretical expectation of O(2λ/2 log2(λ)):

– For λ = 28, the observed average total complexity is Ctot = 216.6, which is
consistent with the estimated complexity of 2λ/2 log2(λ) = 216.27.

– For λ = 34, the observed average total complexity is Ctot = 219.82, closely
matching the estimated complexity of 2λ/2 log2(λ) = 219.35.

Note that all 1000 experiments recovered the correct key, and that the num-
bers used to calculate Ccol and Cexs are the total number of calls to the PRF
oracle, including the cases where the attack had to go back and find one more
collision before trying exhaustive search again.

Additionally, we evaluate the accuracy of the transition step discussed in
Section 4, which estimates the optimal transition point between collision finding
and exhaustive search. Specifically, we measure the success rate of the computed
transition point C from Inequality 3 by verifying whether, after having found
C collisions, the key is successfully recovered on the first attempt at exhaustive
search. The exhaustive search will be over all key candidates with one-sided
Hamming distance dC from the current key guess K. The measured success
rates for recovering the correct key on the first attempt at exhaustive search is
76.6% for λ = 28 and 88.8% for λ = 34, indicating that the theoretical model
becomes increasingly accurate for larger values of λ.

Furthermore, we report the average number of collisions required to recover
the full key. Our results show that, on the average, the attack requires approx-
imately 4.39 collisions for λ = 28 and 4.19 collisions for λ = 34 to achieve full
key recovery. We would expect the number of necessary collisions to increase
for higher values of λ, as a higher λ implies, on the average, a higher Hamming
weight of the key, requiring more bits to be flipped to 0 to reach the final correct
guess of the key.

However, our experiments indicate that this is not necessarily the case. This
discrepancy may be attributed to the significant differences in the accuracy of the
computed transition point C. For λ = 28, fewer collisions should, in theory, have
been required before successfully switching to exhaustive search. Nonetheless,
due to our failure to approximate the transition point correctly in nearly 25%
of the cases, more collisions were needed than expected. As the accuracy of
C improves with higher values of λ, as seen in our results, we observe fewer
such deviations. We therefore hypothesize that this theoretical trend would hold
for higher values of λ, where the discrepancy in the transition point accuracy is
likely to diminish further, thereby reducing unexpected variations in the number
of collisions needed to recover the key through exhaustive search.

5.1 Hamming Distance Analysis

In addition to the previously described experiments, we also verify the assump-
tion that the Hamming distance between the actual key k and the guessed key
K is approximately halved with each new collision.
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Table 2: Summary of experimental results for λ = 28 and λ = 34. The columns
represent the average complexity of collision finding (Ccol), exhaustive search
(Cexs), and total complexity (Ctot). Additionally, the table reports the average
number of collisions required to achieve full key recovery and the success rate
of the transition point C estimated using Inequality 3. All values are averaged
over 1000 independent experiments.

λ Ccol Cexs Ctot # Collisions Accuracy of C (%)

28 216.6 27.64 216.6 4.39 76.6

34 219.82 210.88 219.82 4.19 88.8

We have performed 100 independent experiments for various values of λ and
recorded the average results. While the findings are consistent across different
values of λ, we present the case of λ = 34 as a representative example. Fig-
ure 2 illustrates the average decrease in Hamming distance between the current
guessed key and the actual key after each collision found.

The graph shows that the Hamming distance roughly halves with each colli-
sion, as expected.

Fig. 2: Number of found collisions vs. the average Hamming distance between
the guessed key and the actual key for λ = 34.
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6 Conclusions

In this paper we conducted a detailed cryptanalysis of the One-to-One parameter
sets in the alternating moduli wPRFs proposed by Alamati et al. Our analysis
reveals critical vulnerabilities in these constructions, allowing for efficient key
recovery attacks that compromise the claimed λ-bit security levels. Specifically,
we demonstrated an attack with complexity O(2λ/2 log2 λ) against the Standard
One-to-One wPRF and O(20.84λ) against the Reversed Moduli variant. Both at-
tacks exploit the reduction in output space caused by the 0-values in the random
but fixed key, which induces sub-mappings that are far from the intended one-
to-one mappings. The effectiveness of the attacks was further validated through
experimental implementations.

To address these vulnerabilities, we propose potential countermeasures. One
strategy is to restrict the selection of keys to elements in F∗

p, thereby excluding
0’s as coefficients in the key and making sure that no part of the input is zeroed
out as the first operation of the wPRF. The drawback of this mitigation is that
p must be greater than 2 for this countermeasure to make sense, and so one can
not have Fn

2 as the space for inputs and keys. Another approach is to replace
the pointwise multiplication operation with addition or another operation that
does not make any part of the input irrelevant.

We also identify open problems for future research. A deeper analysis of the
Many-to-One parameter sets, which were not susceptible to our current attack,
could shed light on the resilience of alternating moduli constructions in different
configurations. Additionally, studying the trade-offs between mitigation tech-
niques and their impact on performance in secure MPC environments requires
further investigation. Finally, exploring alternative low-depth cryptographic de-
signs that balance efficiency and security remains an important direction.
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