
Simple Power Analysis assisted Chosen
Cipher-Text Attack on ML-KEM

Alexandre Berzati1, Andersson Calle Viera1,2,
Maya Chartouny1,3, and David Vigilant1

1 Thales DIS, France
alexandre.berzati, andersson.calle-viera, maya.saab-chartouni,

david.vigilant@thalesgroup.com
2 Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

3 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles,
78000, Versailles, France

Abstract. Recent work proposed by Bernstein et al. (from EPRINT
2024) identified two timing attacks, KyberSlash1 and KyberSlash2, tar-
geting ML-KEM decryption and encryption algorithms, respectively,
enabling efficient recovery of secret keys. To mitigate these vulnerabilities,
correctives were promptly applied across implementations. In this paper,
we demonstrate a very simple side-channel-assisted power analysis attack
on the patched implementations of ML-KEM. Our result showed that
original timing leakage can be shifted to power consumption leakage that
can be exploited on specific data. We performed a practical validation
of this attack on both the standard and a shuffled implementations of
ML-KEM on a Cortex-M4 platform, confirming its effectiveness. Our
approach enables the recovery of the ML-KEM secret key in just 30
seconds for the standard implementation, and approximately 3 hours for
the shuffled implementation, achieving a 100% success rate in both cases.

Keywords: ML-KEM · Kyber · Lattice-based cryptography · Post-quantum
cryptography · Side-channel attacks · Simple power analysis

1 Introduction

Quantum computers represent a major threat to current cryptographic systems.
Assuming that powerful enough computers will be available in the future, con-
ventional public key algorithms such as RSA [RSA78] and Diffie-Hellman key
exchange [DH76] can be broken by Shor’s [Sho94] quantum algorithm. This has
led to the development of post-quantum cryptography, which aims to create
quantum-resistant algorithms. The National Institute of Standards and Technol-
ogy (NIST) has standardized four post-quantum cryptography (PQC) algorithms.
In the key encapsulation method (KEM) category, ML-KEM [NIS23], derived
from Kyber [SAB+22], has been selected as the primary algorithm by the NIST.
Its security is based on the module learning with errors problem (MLWE) [LS15].

2 Berzati et al.

Side-channel attacks (SCA) exploit the physical implementation of cryp-
tographic systems, such as power consumption, electromagnetic emanation, or
timing information to infer secrets. In a recent work [BBB+24], Bernstein et al. re-
ported two timing attacks on ML-KEM named “KyberSlash1” and “KyberSlash2”.
The first variant targets the division step in the decryption (K-PKE.Decrypt,
Algorithm 1), which directly reveals information about the secret key. The sec-
ond variant targets the division operation in the encryption (K-PKE.Encrypt,
Algorithm 1), leaking details about the ciphertext and enabling the construction
of a plaintext-checking oracle during decapsulation, allowing key recovery. The
results demonstrated that the secret keys could be recovered within a few hours
using KyberSlash1 and a few minutes using KyberSlash2. In response to these
vulnerabilities, the reference implementation of ML-KEM was quickly updated
to counter the KyberSlash attacks. Then, a majority of other open-source imple-
mentations integrated the patch as well. Even if the reference implementation
is not expected to thwart side-channel analysis other than timing, we show in
this paper that these modifications enable a simple side-channel-assisted power
analysis attack. The attack presented here remains really practical and achieves
full key recovery in approximately 30 seconds.

Our contribution. In this article, we will present new results. In fact,

– We analyzed the implementation of a part of the ML-KEM decapsulation
procedure following the KyberSlash attacks and confirmed that it results in
data-dependent leakage that can be exploited.

– We did a practical demonstration of a chosen ciphertext attack, assisted by
simple power analysis, on ML-KEM versions 512, 768, and 1024.

– We also present a detailed attack strategy for a shuffled version of ML-KEM,
and its practical demonstration.

– Detailed notebooks are provided. They outline the end-to-end attack that
can be reproduced by anyone. We also provided a dataset of messages for
those who do not have the equipment to perform trace acquisitions for the
attack.

– Finally, we showcase how a simple modification to the code of the sensitive
function can effectively reduce the leakage without introducing any overhead.

2 Background Information

2.1 Notation

For α an even integer (resp. odd), we define r′ := r mod±α the unique - α
2 < r′ ≤

α
2 (resp. − α−1

2 ≤ r′ ≤ α−1
2) such that r′ = r mod α.

Let us define a polynomial ring R = Z[X]/(Xn + 1) with n a power of 2 and
Rq = Zq[X]/(Xn + 1). We also define Rk

q the module of rank k whose elements
are polynomials from Rq.
Polynomials from Rq are denoted by lowercase letters, e.g., v ∈ Rq. We denote
matrices and vectors with bold uppercase letters and bold lowercase letters,

SPA CCA on ML-KEM 3

e.g., A ∈ Rk×k
q and u ∈ Rk

q . Unless otherwise stated, vectors are represented
column-wise. Given a matrix A (resp. a vector u), we denote by AT (resp. uT)
its transpose. We denote f̂ the NTT representation of f .
For i ∈ [0, k[, the i-th polynomial of a vector u ∈ Rk

q will be denoted by ui.
For j ∈ [0, n[, the j-th coefficient of a polynomial v ∈ Rq will be denoted by v[j].
⌈·⌋ denotes the rounding to the nearest function, rounding to the integer superior
for ties.

2.2 ML-KEM

ML-KEM [NIS23] is a post-quantum key encapsulation mechanism currently
being standardized by NIST. It is derived from CRYSTALS-Kyber [SAB+22],
which was selected at the end of the third round of the NIST competition. This
scheme is based on lattice cryptography, with its security relying on the difficulty
of solving the module learning with errors (MLWE) problem [LS15]. ML-KEM
offers three security levels: ML-KEM-512 (corresponding to NIST security level
1), ML-KEM-768 (level 3), and ML-KEM-1024 (level 5).

Compress and Decompress. ML-KEM uses several mechanisms to compress and
decompress the size of ciphertexts. The same methods are used to map bits
elements to coefficients from Zq which allow to recover a message bit even after
small noise is added to it. Conversely, we can also map elements from Zq to bits
using the same methods. Let us describe how they work.
Compressd lossily compresses an element from Zq to Z2d with 2d < q:

Compressd : Zq −→ Z2d

x 7−→
⌈2d

q
· x

⌋
mod 2d.

Decompressd takes an element in Z2d and maps it to an element in Zq.

Decompressd : Z2d −→ Zq

y 7−→
⌈ q

2d
· y

⌋
.

Algorithm 1 outlines a simplified view of the key-generation, encryption, and
decryption processes of the internal ML-KEM, public key encryption algorithm
(PKE). SampleA is the function generating a uniformly random matrix Â in
the NTT domain. SampleB samples coefficients from the centered binomial
distribution.

KeyGen. In the KeyGen process, an LWE instance (Â, t̂ = Â · ŝ + ê mod q) is
computed, where Â is uniformly generated using a seed ρ, the secret ŝ and the
error error ê are sampled from the same centered binomial distribution. The
public key consists of (ρ, t̂), while the secret key is ŝ.

4 Berzati et al.

Encryption. To encrypt a message m, a vector y and errors e1 and e2 are
generated, all drawn from a centered binomial distribution. Two LWE instances
are then constructed, which (up to some details) are represented as (AT y +
e1, tT y + e2). Next, µ is computed as ⌈q

2m⌋ and added to the right-hand side of
the pair. Finally, the resulting pair (u, v) is compressed into (c1, c2).

Algorithm 1 K-PKE
1: K-PKE.KeyGen(d)
2: (ρ, σ)← G(d||k)
3: Â← SampleA(ρ)
4: s← SampleB(σ, coins0)
5: e← SampleB(σ, coins1)
6: ŝ← NTT(s)
7: ê← NTT(e)
8: t̂← Â ◦ ŝ + ê
9: return

(
ekPKE = (t̂||ρ), dkPKE = (ŝ)

)
10: K-PKE.Encrypt(ekPKE, m, r)
11: Â← ExpandA(ρ)
12: y← SampleB(r, coins2)
13: e1 ← SampleB(r, coins3)
14: e2 ← SampleB(r, coins4)
15: ŷ← NTT(y)
16: u← NTT−1(ÂT ◦ ŷ) + e1

17: µ← Decompress1(ByteDecode1(m)) = ⌈ q2m⌋

18: v ← NTT−1(t̂T ◦ ŷ) + e2 + µ

19: c1 ← Compressdu
(u)

20: c2 ← Compressdv
(v)

21: return c = (c1||c2)

22: K-PKE.Decrypt(dkPKE, c)
23: u′ ← Decompressdu

(c1)
24: v′ ← Decompressdv

(c2)
25: w ← v′ −NTT−1(ŝT ◦NTT(u′))
26: m← Compress1(w)
27: return m

Decryption. To decrypt, the values (u′, v′) are first recovered from (c1, c2), with
∆u = u′ − u and ∆v = v′ − v representing the differences between the received
and original values. The decryption procedure then computes w = v′ − sT u′,

SPA CCA on ML-KEM 5

serving as an approximation of the message polynomial. Specifically, we have:

w = v′ − sT u′

= v + ∆v − sT (u + ∆u)
= tT y + e2 + µ + ∆v − sT (AT y + e1 + ∆u

= (As + e)T y + e2 + µ + ∆v − sT (AT y + e1 + ∆u)
= µ +

(
eT y + e2 + ∆v − sT e1 − sT ∆u

)
=

⌈q

2m
⌋

+ ε

(1)

where ε = eT y+e2 +∆v −sT e1 −sT ∆u is the noise. The approximate polynomial
w is decoded into the message m, one bit at a time using the function Compress1.
Informally, it can be described as follows: if a given coefficient of the polynomial
w[i] is within the range [q/4, 3q/4[, then mi = 1; otherwise, mi = 0.

KEM. The CPA-secure PKE is converted into a CCA-secure KEM using the
well-known Fujisaki-Okamoto (FO) transformation [FO99] and is described in
Algorithm 2.
Algorithm 2 ML-KEM
1: ML-KEM.KeyGen(d,z)
2: (ekPKE, dkPKE)← K-PKE.KeyGen(d)
3: ek← ekPKE
4: dk← (dkPKE ∥ ek ∥ H(ek) ∥ z)
5: return (ek, dk)

6: ML-KEM.Encaps(ek,m)
7: (K, r)← G(m ∥ H(ek))
8: c← K-PKE.Encrypt(ek, m, r)
9: return (K, c)

10: ML-KEM.Decaps(dk,c)
11: m′ ← K-PKE.Decrypt(dkPKE, c)
12: (K′, r′)← SHA3(m′ ∥ h)
13: K ← SHAKE256(z ∥ c)
14: c′ ← K-PKE.Encrypt(ekPKE, m′, r′)
15: if c ̸= c′ then
16: K′ ← K̄
17: return K′

2.3 Simple Power Analysis

Side-channel attacks exploit unintended information emitted from devices activity,
such as timing, electromagnetic (EM) emissions, or power consumption, to infer
secret information. One of the most accessible forms of SCA, and certainly the
most visually intuitive, is Simple Power Analysis (SPA). SPA leverages distinct
fluctuations in power consumption, or EM traces to differentiate the operations

6 Berzati et al.

performed by a device. Compared to other types of SCA, an SPA requires minimal
equipment, is relatively little invasive, and can necessitate only a few traces to
perform the attack. When dealing with cryptographic operations SPA focuses on
analyzing the traces of a device to extract information about secret data.

A well-known example of SPA is the attack on the square-and-multiply
algorithm, commonly used in modular exponentiation. This algorithm’s sequence
of squaring (bit to 0 and bit to 1) and conditional multiplication (only bit to 1)
reveals patterns in the power traces depending on the bit values of the exponent.
By observing these power variations, an attacker can deduce the entire secret
exponent bit by bit.

Such an example demonstrates that even the simplest SCA can be remarkably
powerful in recovering secret information. In the following, we will show how to
use an SPA to recover the full secret ML-KEM secret key with only three traces.

2.4 Prior Work

CCA assisted with SCA. The FO transform offers guaranteed security against
chosen-ciphertext attacks (CCA). However, for real-life implementations, an
attacker can access side-channel information during the process, which can be
used as a distinguisher to mount hybrid SCA assisted CCA. Without loss of
generality, we will explain the general methodology when applied to ML-KEM-512,
but the type of attack applies to the other two security levels as well.

Let us recall that the secret key vector s ∈ Rk
q is of the form:

∀ i ∈ [0, k[, si = si[0]X0 + si[1]X1 + · · · + si[n − 1]Xn−1.

For ML-KEM-512, we have η1 = 3, so ∀ j ∈ [0, n[, si[j] ∈ [−3, 3].

The ciphertext is of the form c = (c1, c2) and in the decryption procedure we
have u′ = Decompressdu

(c1) ∈ Rk
q and v′ = Decompressdv

(c2) ∈ Rq where:

∀i ∈ [0, k[, u′
i = u′

i[0]X0 + u′
i[1]X1 + · · · + u′

i[n − 1]Xn−1, and

v′ = v′[0]X0 + · · · + v′[n − 1]Xn−1.

For ML-KEM-512, we have k = 2, i.e., s = (s0, s1) and u′ = (u′
0, u′

1).
In the decryption procedure inside the decapsulation, we compute:

w = v′ − sT u′. (2)

Let us denote by V ∈ Zq and U ∈ Zq two carefully chosen values4 such that
u′ = (UX0, 0) and v′ = V X0 + · · · + V Xn−1.

Figure 1a shows a visualization of the computation of w for a normal ciphertext
while Figure 1b shows the same computation for a chosen ciphertext.
4 U is chosen to scale the possible values of s just enough to be at the border q

4 or
3× q

4 . Then, adding different V allows us to distinguish the correct value.

SPA CCA on ML-KEM 7

v′ − s0 s1 ×
u′
1

u′
0

(a) A normal valid ciphertext.

V X0 + · · ·+ V Xn−1 − s0 s1 ×
0

UX0

(b) A crafted ciphertext.

Fig. 1: Decryption equation computed when different type of ciphertext are used.

For the second case, which typically corresponds to some type of ciphertext
chosen by an attacker, we can further develop equation (2) as follows:

w = v′ − sT u′ = V X0 + · · · + V Xn−1 − s0 × UX0

= V X0 + · · · + V Xn−1 −
(
Us0[0]X0 + · · · + Us0[n − 1]Xn−1)

= (V − Us0[0])X0 + · · · + (V − Us0[n − 1])Xn−1.

(3)

After decoding this quantity onto the message bits, each coefficient can only take
one of two values, 0 or 1, depending on the values of the message polynomial.
More precisely, for j ∈ [0, n[, the message coefficient w[j] = V − Us0[j] is
decoded into the message bit m[j], with m[j] = Compress1(w[j]). Based on its
possible values, we are able to infer two conditions on the coefficients of the secret
polynomial s0:

– If m[j] = 1 we know that (V − Us0[j]) ∈ [q/4, 3q/4[.
– If m[j] = 0 we know that (V − Us0[j]) ∈ [0, q/4[∪[3q/4, q[.

Thus, the knowledge of the value of the bit m[j] for different tuples U, V
can be used as a binary distinguisher for the possible values of s0[j] ∈ [−3, 3].
For successive carefully chosen ciphertext, this method allows to recover the
entire secret key. Different variants of this attack exist in the literature [BDH+19,
QCZ+21, XPR+22, RBRC22, SCZ+23, RRD+23, TUX+23]. The main difference
being the number of bits of the message that can be recovered per query to the
decapsulation procedure and the operation targeted by the attack.

KyberSlash. In a recent work [BBB+24], Bernstein et al. proposed a timing
attack on ML-KEM. The core idea is to exploit non constant time divisions on
certain platforms. They proposed two variants of the attack, “KyberSlash1” and
“KyberSlash2”.

The first variant targets the division step in the decryption (K-PKE.Decrypt 1):
t = (((t << 1) + KYBER_Q /2)/ KYBER_Q) & 1;

Since t can be a coefficient of the message m, leakage on this value can be exploited
by an attacker to gain sensitive information. By crafting specific ciphertexts, this
variable execution time can be used to recover the entire secret key.

8 Berzati et al.

The second variant targets the division operation in the encryption (K-
PKE.Encrypt 1):

t[j] = ((((uint16_t)u << 4) + KYBER_Q /2)/ KYBER_Q) & 15;

For this attack, timing leakages reveals details about the ciphertext and enables
the construction of a plaintext-checking oracle during decapsulation, allowing
full key recovery.

The results demonstrated that the secret keys could be recovered reliably
within a few hours using KyberSlash1 and a few minutes using KyberSlash2. To
counter this attack, dedicated modifications were made to the reference imple-
mentation of the ML-KEM. However, as we will show later, these modifications
enable a simple side-channel attack assisted with chosen ciphertext attack.

3 New Theoretical Leakage

In this section, we highlight a new potential leakage arising from the new imple-
mentation of the polynomial compression in the decryption (K-PKE.Decrypt 1)
after “KyberSlash1”. We briefly start by explaining the differences between the
specification of the compression routine and its implementation. Then, we present
the post-”KyberSlash1” implementation, followed by an analysis of the newly
generated leakage.

3.1 Difference Between Specification and Implementation

The ML-KEM specification, Algorithm 2, uses a generic compression function
as defined in Section 2.2. From an algorithmic perspective, this allows to set
parameters du, dv, and 1 to compress u, v, and the message polynomial w,
respectively. However, in practice, the implementation separates these cases into
three distinct functions:

– polyvec compress for compressing the vector u,
– poly compress for compressing the polynomial v,
– poly tomsg for compressing the message polynomial w.

Furthermore, rounding is performed on coefficients values in] − 1664, 1664],
meaning:

– m[j] = 1 if w[j] ∈]−1664, −832[∪ [832, 1664[.

– m[j] = 0 if w[j] ∈ [−832, 832[.

In the next section, we will focus on the poly tomsg implementation to describe
the new attack path.

SPA CCA on ML-KEM 9

3.2 Post-KyberSlash poly tomsg Implementation

The release of the KyberSlash attacks [BBB+24], which exploit timing vulner-
abilities in the reference implementation of the poly tomsg function, led the
authors of the reference implementation to release a patched version5. Once
released it became the new standard across multiple implementations such
as [KSSW22, KPR+, BDK+, KLJJ].

Figure 2 presents the updated implementation of the poly tomsg function.

1 void poly_tomsg (uint8_t msg[KYBER_INDCPA_MSGBYTES],
2 const poly *a){
3 unsigned int i,j;
4 uint32_t t;
5 for(i=0;i< KYBER_N /8;i++) {
6 msg[i] = 0;
7 for(j=0;j <8;j++) {
8 t = a-> coeffs [8*i+j];
9 // t += ((int16_t)t >> 15) & KYBER_Q ;

10 // t = (((t << 1) + KYBER_Q /2)/ KYBER_Q) & 1;
11 t <<= 1;
12 t += 1665;
13 t *= 80635;
14 t >>= 28;
15 t &= 1;
16 msg[i] |= t << j;
17 }
18 }
19 }

Fig. 2: C Code of the new poly tomsg implementation.

One of the modifications addressed the critical division by q, which on some
platforms, was not constant-time and therefore vulnerable to timing attacks,
as highlighted in ”KyberSlash1”. To resolve this, the updated implementation
adopts an approach inspired by Barrett reduction, i.e., approximating the division
by q using a precomputed constant. Specifically, for a given a, the division a

q

is approximated by computing (a × x)
2s

, where x =
⌈2s

q

⌋
. If x

2s
is a sufficiently

accurate approximation of 1
q

, the results remain identical. This method offers two
significant advantages. First, it avoids the need to normalize values back to the
positive range Zq, as the approximation naturally handles this. Second, it replaces

5 https://github.com/pq-crystals/kyber/commit/bc8e640727b5178eb1c65867d6ba6599b3ad88e5

https://github.com/pq-crystals/kyber/commit/bc8e640727b5178eb1c65867d6ba6599b3ad88e5

10 Berzati et al.

costly and potentially insecure division operations with efficient multiplications
and bit-shifts, which are constant-time and thus secure.

In the patched ML-KEM implementation, the authors chose s = 28 resulting

in x =
⌈228

q

⌋
= 80635, as shown line 13 of Figure 2.

3.3 Newly Generated Leakage
Our analysis started by observing that from Figure 2, the decoding of the message
involves a lot of arithmetic operations involving signed and unsigned data. Since
q is relatively small, we decided to enumerate, for all the possible values of a
message, the Hamming Weights (HW) resulting from each C step of poly tomsg.
This result is illustrated in Figure 3.

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += 1665;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += 1665;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

Fig. 3: HW evolution given the steps of the poly tomsg function, (: coefficients
rounded to 0, : coefficients rounded to 1)

First, we observe two distinct classes of HW based on whether the coefficient is
negative or positive, which is expected due to the two’s complement representation
of negative values. Then, shifting right by 1 doesn’t produce significative change
in the HW. Next, when 1665 is added to the coefficient, a noticeable difference
in HW is visible between negative coefficients in the range of] − 1664, −832[and
all the remaining coefficients. After multiplying each coefficient by 80635, a slight
difference remains visible between these two classes. Finally, extracting the bit
28 also produces difference in HW which is expected since we want to recover a
bit sign from coefficients rounded to 0 and 1.

SPA CCA on ML-KEM 11

In the following, we have chosen to focus the analysis on negative messages
since it allows to exhibit two classes with strong difference in HW. The first class
contains coefficients of the message in the range [−832, 0[and the second class
contains coefficients in the range] − 1664, −832[.

For the first class, Figure 4 provides a visual representation of the effect of
the shift by 1 and the addition by 1664 on the coefficient t.

−1664 −832 0 1664

t

(a) Initial value of t

−1664 −832 0 1664

t

(b) Result of t after shift by 1

−1664 −832 0 1664

t

(c) Result of t after addition by 1665

Fig. 4: Representation of steps in lines 12 and 13 from Fig. 2 for for t ∈ [−832, 0[.

The coefficients initially in the [−832, 0[are transformed into positive values
within the range]0, 1664[at the end of the addition by 1665.

For the second class, Figure 5 provides the same visual representation of the
effect of the shift by 1 and the addition by 1664.

−3329 −1664 −832 0

t

(a) Initial value of t

−3329 −1664 −832 0

t

(b) Result of t after shift by 1

−3329 −1664 −832 0

t

(c) Result of t after addition by 1665

Fig. 5: Representation of steps in lines 12 and 13 from Fig. 2 for t ∈]−1664, −832[.

This time, after the addition, the coefficients in the range] − 1664, −832[are
transformed into negative values within the range] − 1664, 0[.

Consequently, the clear HW difference between the two classes is explained
because in the first class the negative coefficients become positive and in the second

12 Berzati et al.

class the negative coefficients remain negative. This clear difference in HW from
negative values rounded to 0 and rounded to 1 could potentially be observable on
side channel traces, where either power consumption or electromagnetic emissions
are directly linked to the HW of values.

4 Exploiting the New Leakage

Having established a clear HW difference between the two classes, in Section 4.3
we first perform a t-test to confirm the difference between negative coefficients
rounded to 0 and negative coefficients rounded to 1. We then demonstrate its
practical exploitation on the poly tomsg function. As seen in Section 2.4, side-
channel information can be used as an oracle to mount hybrid SCA assisted CCA
targeting the decapsulation procedure.

4.1 Experimental Setup

The evaluation was done on a ChipWhisperer-Lite 32-bit [OC14], with an
STM32F3 micro-controller. We chose this target as it is often used in aca-
demic research targeting embedded systems. We used the ChipWhisperer built-in
FPGA to perform the acquisition of the power consumption traces at 4 samples
per cycle. We targeted the C reference implementation from [BDK+] as it is the
default one that serves as a base layer for most of the other implementations. We
compiled the ML-KEM-512 version using gcc-arm cross-compiler arm-none-eabi-
gcc 12.2.1, with the option -Os. The trace analysis and statistical testing is done
in Python, using the “numpy” [HMvdW+20] and “scipy” [VGO+20] packages.
All the materials used to capture and process the traces, as well as the complete
attack, will soon be available as Jupyter notebooks.

4.2 Identifying Operation

The first step is to precisely identify the location where the 256 coefficients are
processed within the poly tomsg function. In a non-profiled setting, detecting
clear repeating patterns in the power consumption trace is helpful for building
an attack as straightforward as possible.

In Figure 6a, we can observe the same repeating pattern occurring 32 times,
each one spanning around 500 samples. Those patterns should correspond to the
for loop line 5 of the C code in Figure 2. Figure 6b corresponds to a zoomed
view on the first 510 samples. We can see repeating patterns, specifically 8 of
them, which have been highlighted for better visibility. Looking at the C code in
Figure 2 allows to identify those patters to the second for loop line 7.

SPA CCA on ML-KEM 13

0 2000 4000 6000 8000 10000 12000 14000 16000
samples

0.4

0.3

0.2

0.1

0.0

0.1

0.2

po
we

r

(a) 10 traces for complete poly tomsg execution on 16000 samples

0 100 200 300 400 500
samples

0.4

0.3

0.2

0.1

0.0

0.1

0.2

po
we

r

(b) 10 traces for poly tomsg execution zoomed on the 8 first coefficients

Fig. 6: 10 power consumption traces for random inputs of poly tomsg

Each of the identified colored patterns correspond to the execution of the
assembly code snippet shown in Figure 7.

1 ...
2 ldrsh.w r3 , [r4], #2 ; t = a-> coeffs [8*i+j];
3 ldrb.w ip , [r0]
4 lsls r3 , r3 , #1 ; t <<= 1;
5 addw r3 , r3 , #1665 ; t += 1665;
6 muls r3 , r7 ; t *= 80635;
7 ubfx r3 , r3 , #28, #1 ; t >>= 28; and t &= 1;
8 lsls r3 , r1
9 adds r1 , #1

10 orr.w r3 , r3 , ip
11 cmp r1 , #8
12 strb r3 , [r0 , #0]
13 ...

Fig. 7: Assembly code on Cortex-M4
According to our analysis in Section 3.3, the instructions that should provide

side-channel information should be the addw and perhaps the muls. Prior work
often exploits the leakage produced from the right shift by 28 but in our case due
to the the compiler optimization flag -Os, this shift and the next and are actually

14 Berzati et al.

merged into an ubfx instruction. The direct extraction of the bit 28 could result
in less visible leakage in this case. Having clearly identified the targeted operation,
we can now start the attack.

4.3 Building Reference Means

In all the rest, we consider i ∈ [0, k[and j ∈ [0, n[. Following our previous nota-
tions, during the decapsulation algorithm, within the poly tomsg, we compute
w = v′ − sT u′ as described in Equation 3.
Our objective is to determine two sets of U and V coefficients such that
wj = V − Usi[j] is negative and has a specific rounding regardless of the value of
the secret in J−η1, η1K. For the first set we want all the message’s coefficients to
be rounded to 0, which we will refer to as D0. For the other set, we want all the
message’s coefficients to be rounded to 1 and it will be denoted by D1.

For D0, we set V as the center of the interval [−832, 0[, i.e., V = −416. For
U , we must select a value that ensures wi remains within [−832, 0[regardless of
the secret’s value. Therefore, we choose U such that −832 < −416 + si[j]U < 0,
i.e., |U | < 416 · 1

η1
. For our attack we restrict the values to 0 < U < 416 · 1

η1
·

Similarly, for D1, we set V = −1248 as the center of the interval]−1664, −832[,
and we also choose U such that 0 < U < 416 · 1

η1
.

Note that the chosen values of U and V for D0 and D1 correspond to their
decompressed forms. However, the compressed representations of U and V must
be sent to the decapsulation algorithm, where they will be decompressed to match
the specified values. In other words, we are looking for a y such that:

0 < Decompressdu
(y) = U < 416 · 1

η1
·

Table 1 summarizes the possible ciphertexts to build D0 and D0 depending
on the security version of ML-KEM.

D0 D1

U max V U max V

ML-KEM-512 137 -416 137 -1248

ML-KEM-768 205 -416 205 -1248

ML-KEM-1024 206 -416 206 -1248

Table 1: Ciphertexts used for the attack on ML-KEM.

SPA CCA on ML-KEM 15

Based on Table 1, for ML-KEM-512, we have 137 = Decompress10(42); for
ML-KEM-768, we have 205 = Decompress10(63); and for ML-KEM-1024, we
have 206 = Decompress11(127).

T-test between values. To determine if there is a difference between the class
D0 and D1 we performed a specific t-test as specified in [GJJR11, SM15]. We
collected 42 power consumption traces on the ChipWhisperer for both classes.
Figure 8 represents 10 traces among the 42 for each class, together with the
corresponding t-test result.

0 100 200 300 400 500
samples

0.4

0.3

0.2

0.1

0.0

0.1

0.2

po
we

r

50

25

0

25

50

75

100

125

t-v
al

ue

Fig. 8: 10 traces for each class and t-test (: coefficients from D0, : coefficients
from D1, : t-test result).

Here, we can see that each pattern shows a significant t-value at the beginning
and at the end of each window, indicating potentially exploitable leakage.

Figure 9 highlights the 57 samples corresponding to the 256 coefficients from
the poly tomsg function, superposed in the same figure. In addition to the t-test
results, this confirms clear differences between the traces of coefficients from D0
and coefficients from D1, specifically between the samples 5 and 12.

0 10 20 30 40 50
samples

0.3

0.2

0.1

0.0

0.1

0.2

po
we

r

Fig. 9: Samples of the 256 coefficients of poly tomsg superposed (: coefficients
from D0, : coefficients from D1).

Therefore, for each dataset we compute the mean between the samples 5 and
12, denoted as M0 and M1. These respective means will be used as references
to test for coefficients rounded to 0 and for coefficients rounded to 1 respectively.

16 Berzati et al.

4.4 Recovering the Secret Key

With the reference means M0 and M1 established for the datasets D0 and D1,
respectively, we can now exploit crafted ciphertexts to determine wether each
coefficient of the message will be rounded to 0 or 1. This distinguisher provides
direct information on the secret key. In fact, we can adaptively select malicious
ciphertexts to partition the set of possible values of the secret key coefficient.
Accumulating a sufficient number of these queries allows to recover the exact
secret key coefficient.

Choice of U and V . We need to find malicious ciphertexts that provide infor-
mation on the secret key. To achieve this, we use the strategy from [RRD+23]
and adapt it to our use case. Note that, as we have seen on Figure 9, we can
distinguish between negative coefficients rounded to 0 and negative coefficients
rounded to 1.
Figure 10 and Figure 14 depicts the successive queries exploiting this difference,
depending on the level of ML-KEM targeted, the attack step and the rounded
values previously detected.

Start
U = 208, V = −832

{−3,−2,−1, 0}
U = 208, V = −1248

{−3,−2}
U = 208, V = −1456

{−3} {−2}

{−1, 0}
U = 208, V = −1040

{−1} {0}

{1, 2, 3}
U = 208, V = −416

{1, 2}
U = 208, V = −624

{1} {2}

{3}

0

0

0 1

1

0 1

1

0

0 1

1

Fig. 10: Query tree for ML-KEM-512 with η1 = 3.

For instance, in the case of ML-KEM-512, at the beginning of the attack
we know that sj [i] ∈ {−3, −2, −1, 0, 1, 2, 3}. We start by sending the crafted
ciphertext corresponding to U = 208 and V = −832 to the decapsulation
procedure. Then, in the decapsulation we compute w[i] = V − Usj [i] = −832 −
208sj [i]. If sj [i] ∈ {−3, −2, −1, 0} then −832 ≤ w[i] < 0 and therefore will be
rounded to 0. If sj [i] ∈ {1, 2, 3} then −1664 < w[i] < −832 and therefore will be
rounded to 1. So now we have partitioned the possible values of sj [i] depending
on the result given from our distinguisher. We continue in the same manner until
we have only one possibility for the secret coefficient targeted. We can repeat
this procedure until we find all the coefficients of the secret key. In practice, since
the coefficients are independent and because the coefficient U stays the same

SPA CCA on ML-KEM 17

throughout the whole process, we can recover all 256 coefficients of the secret in
parallel by taking v = V + V X1 + . . . + V Xn−1, as detailed in Equation 3.

4.5 Attack Validation

We compute the euclidean distance with respect to M0 and M1 and we choose
the minimal value as a metric to determine wether a new trace corresponds to a
coefficient rounded to 0 or to 1.

Number of traces. To construct the means, we can perform Decompressdu
(416· 1

η1
)

possible queries for each dataset, D0 and D1. For instance, for ML-KEM-512,
it takes around 4 minutes on our setup to collect the traces for each dataset.
After that, since we are targeting the 256 coefficients of the secret key in parallel,
we will use the windows from the 256 coefficients per query resulting in 256 ×
Decompressdu

(416 · 1
η1

) sub-traces to construct each mean.
Moreover, we need 3 traces to recover all the 256 coefficients of a polynomial

of the secret key,. Therefore, we need 3 × k traces to recover the entire secret key.
For instance, for ML-KEM-512,it takes around 30s on our setup.

Success rate. To assess the performance of our attack, we decided to test it on
the 10 first keys of the KAT files for each security level of ML-KEM. We have
found a 100% success rate each time. Table 2 summarizes the attack performance
for each security kevel of ML-KEM.

Nb of traces Nb of traces Nb of attack Success
M0 M1 traces rate

ML-KEM-512 42 42 6 100%

ML-KEM-768 63 63 9 100%

ML-KEM-1024 127 127 12 100%

Table 2: Summary of our results.

5 Application to Shuffled Implementation of poly tomsg

Shuffling is a simple and low cost countermeasure that increases the number of
traces required to perform a side-channel attack. Practical implementations often
use the Fisher-Yates algorithm [Dur64] which is an efficient and robust method
to create a random permutation.

18 Berzati et al.

5.1 Adapting the Attack Strategy

Figure 15 shows a proof of concept implementation of a shuffled poly tomsg func-
tion using the Fisher-Yates algorithm to produce a permutation denoted index.
This permutation is used as the index of the polynomial a being compressed.
Even though the order in which we store the message bits is random, we can still
exploit the same leakage as before by making some adjustments to our attack.
However, in this scenario, we can no longer perform the attack in parallel due to
the shuffling and so each coefficient must be targeted individually.

The attack proceeds as before, by first constructing the reference means M0
and M1, as detailed in Subsection 4.3. For each coefficient of the secret key, the
attacker performs queries to recover its value. This time, initial values U and V
are sent to the decapsulation algorithm to count the total number of coefficients
rounded to 1, establishing a baseline reference denoted N0. The attacker then
modifies U and V , repeats the query, and observes the updated count 1 denoted
N1. Based on these results, the attacker can compare N0 and N1 and determine
the current position in the corresponding attack tree Figure 11 for ML-KEM-512
or Figure 16 for the other security level. At each step, this allows to refine the
possible values of the secret coefficient and allows to select the next U and V
values to send with a new query. This process is iterated until a leaf is reached
and only one possible secret coefficient is left. An attacker has to repeat this
search for all the 256 × k coefficients, to recover the secret key.
Figure 11 and Figure 16 depict the successive queries to perform to recover one

SPA CCA on ML-KEM 19

secret coefficient depending on the ML-KEM security level targeted, the attack
step and the rounded values previously detected.

Base-count
U = 208, V = −832, N0

U = 208, V = −1040, N1

{0} {−3,−2,−1, 1, 2, 3}
U = 107, V = −416, N2

{−3,−2,−1}
U = 107, V = −1040, N3

{−1} {−2,−3}
U = 72, V = −1040, N4

{−2} {−3}

{1, 2, 3}
U = 107, V = −624, N3

{1} {2, 3}
U = 72, V = −624, N4

{2} {3}

N1
̸= N0 N

1 = N
0

N2 = N0

N3
̸= N0 N

3 = N
0

N4
̸= N0

N
4 = N

0

N2 ̸= N0

N3
̸= N0 N

3 = N
0

N4
̸= N0

N
4 = N

0

Fig. 11: Query tree for ML-KEM-512 with η1 = 3, Ni denotes the number of
coefficients of w rounded to 1.

5.2 Attack Validation

Again, we compute the euclidean distance with respect to M0 and M1 and we
choose the minimal value to determine wether a new trace corresponds to a
coefficient rounded to 0 or to 1.

Number of traces. Following the same procedure described in Section 4.5, we
will also need Decompressdu

(416 · 1
η1

) traces to construct the means. However,
to recover the entire secret key, we need at most 5 queries per coefficient of each
polynomials. Therefore, we need at most 5 × 256 × k queries for ML-KEM-512
and at most 4 × 256 × k queries for ML-KEM-768 and ML-KEM-1024, to recover
the entire secret key. However, in practice the number of queries is significantly
reduced since the most frequently occurring value in the secret key is 0, which only
needs 2 queries for each security level of ML-KEM. In practice, for ML-KEM-512,
it took around 2 hours and 30 minutes on oursetup to recover the secret key.

Success rate. To assess the performance of our attack, we decided to test it on
the first key of the KAT files for each security level of ML-KEM. We guessed
the entire secret key each time with no error. Table 3 summarizes the attack
performance for each security kevel of ML-KEM.

20 Berzati et al.

Nb of traces Nb of traces Nb of attack Success
M0 M1 traces (worst case) rate

ML-KEM-512 42 42 2 560 100%

ML-KEM-768 63 63 3 072 100%

ML-KEM-1024 127 127 4 096 100%

Table 3: Summary of our results on the shuffled version.

6 Reducing the leakage without overhead (for Cortex M4)

From our observation of Figure 2, one main source of leakage comes from the
sign change involved by the addition at line 12. One simple way to minimize it is
to invert order of the addition and multiplication (respectively lines 12 and 13)
so that the multiplication spreads on the most significant bits and reduces the
impact of the sign change due to the addition. We intuited that this simple switch
could lead to a more gradual differentiation between the two datasets, D0 and D1,
rather than the abrupt change currently observed. Figure 12 provides a visual
representation of how this modification affects the evolution of the HW across all
potential values of a message coefficient. The difference between the two datasets

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += (1665*80635);

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += (1665*80635);

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

Fig. 12: Coefficient’s HW evolution given the computation steps , (: coefficients
rounded to 0, : coefficients rounded to 1)

has been reduced but it is important to note that this trick is not ultimate. Some
remaining slight difference still exists and might be enough to mount an SCA. It
is also important to note that the bit we want to extract, encoding the rounding

SPA CCA on ML-KEM 21

of the coefficient, is located at the position 28. This positioning leaves us with
sufficient space to introduce a constant to change the HW of the value, either into
the three most significant bits or into some of the least significant bits, as long as
this modification does not cause an overflow (carry) or an underflow (borrow).

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += 0b20000001;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += (1665*80635);

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t = a;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t <<= 1;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t *= 80635;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += 0b20000001;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t += (1665*80635);

1664 832 832 1664
0

5

10

15

20

25

30

HW

t >>= 28;

1664 832 832 1664
0

5

10

15

20

25

30

HW

t &= 1;

Fig. 13: HW evolution given the steps of the poly tomsg function, (: coefficients
rounded to 0, : coefficients rounded to 1)

7 Conclusion

Recently, the ML-KEM reference implementation has been updated to thwart
the KyberSlash threat, and this source code has been rapidly integrated into
various open-source libraries. We have shown in this paper that special care
must be taken with this piece of code if side channels are applicable. We have
presented a straightforward Simple Power Analysis that can recover the private
key in a few seconds, and a few minutes in the presence of shuffling. We describe
a simple and efficient strategy since only valid ciphertext is needed, and no clone
open device is required. From a study of the Hamming weight distributions, we
have highlighted the origin of the leakage. We exploit a sign change during the
instruction flow within the KyberSlash updated code. The advantage is that if
the right dedicated ciphertexts are used, averaging classes can be realized without
knowing the device’s private key. We showed that a simple adjustment to the
source code can significantly reduce this leakage, all while maintaining efficiency
with zero overhead. However, the proposed low-cost update does not, in theory,
completely defeat side-channel analysis. A rigorous masked implementation must
be used to achieve formal resistance when side channels are applicable.

22 Berzati et al.

References

BBB+24. Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam
Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus
Kiefer, Thales Paiva, Prasanna Ravi, and Goutam Tamvada. Kyberslash:
Exploiting secret-dependent division timings in kyber implementations.
IACR Cryptol. ePrint Arch., page 1049, 2024.

BDH+19. Ciprian Băetu, F. Betül Durak, Löıs Huguenin-Dumittan, Abdullah
Talayhan, and Serge Vaudenay. Misuse attacks on post-quantum cryp-
tosystems. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes
in Computer Science, pages 747–776, Darmstadt, Germany, May 19–23,
2019. Springer, Cham, Switzerland.

BDK+. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Kyber official implementation. https://github.com/pq-crystals/
kyber.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

Dur64. Richard Durstenfeld. Algorithm 235: Random permutation. Commun.
ACM, 7(7):420, July 1964.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Michael J. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 537–554, Santa Barbara, CA, USA, August 15–
19, 1999. Springer, Berlin, Heidelberg, Germany.

GJJR11. Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance validation. In NIST
Non-Invasive Attack Testing Workshop. National Institute of Standards
and Technology, 2011.

HMvdW+20. Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.

KLJJ. Matthias J. Kannwischer, Thing-han Lim, Ry Jones, and Nigel Jones.
MLKEM-C-EMBEDDED optimized for embedded microcontrollers.
https://github.com/pq-code-package/mlkem-c-embedded.

KPR+. Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe,
and Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM
Cortex-M4. https://github.com/mupq/pqm4.

KSSW22. Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom
Wiggers. Improving software quality in cryptography standardization
projects. In IEEE European Symposium on Security and Privacy, Eu-
roS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022, pages 19–30,
Los Alamitos, CA, USA, 2022. IEEE Computer Society.

https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/kyber
https://github.com/pq-code-package/mlkem-c-embedded
https://github.com/mupq/pqm4

SPA CCA on ML-KEM 23

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. Designs, Codes and Cryptography, 75(3):565–599,
2015.

NIS23. NIST. FIPS 203: Module-lattice-based key-encapsulation mechanism
standard. Federal Inf. Process. Stds. (NIST FIPS), National Institute of
Standards and Technology, Gaithersburg, MD, 2023. https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf.

OC14. Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-
source platform for hardware embedded security research. In Emmanuel
Prouff, editor, Constructive Side-Channel Analysis and Secure Design,
pages 243–260, Cham, 2014. Springer International Publishing.

QCZ+21. Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding.
A systematic approach and analysis of key mismatch attacks on lattice-
based NIST candidate KEMs. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, volume
13093 of Lecture Notes in Computer Science, pages 92–121, Singapore,
December 6–10, 2021. Springer, Cham, Switzerland.

RBRC22. Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chat-
topadhyay. On exploiting message leakage in (few) nist pqc candidates for
practical message recovery attacks. IEEE Transactions on Information
Forensics and Security, 17:684–699, 2022.

RRD+23. Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam
Bhasin, and Anupam Chattopadhyay. Pushing the limits of generic side-
channel attacks on LWE-based KEMs - parallel PC oracle attacks on
Kyber KEM and beyond. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2023(2):418–446, 2023.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

SAB+22. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

SCZ+23. Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang.
Find the bad apples: An efficient method for perfect key recovery under
imperfect SCA oracles - A case study of Kyber. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(1):89–112, 2023.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Santa Fe, NM, USA, November 20–22, 1994.
IEEE Computer Society Press.

SM15. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems –
CHES 2015, volume 9293 of Lecture Notes in Computer Science, pages
495–513, Saint-Malo, France, September 13–16, 2015. Springer, Berlin,
Heidelberg, Germany.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

24 Berzati et al.

TUX+23. Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi,
and Naofumi Homma. Multiple-valued plaintext-checking side-channel
attacks on post-quantum KEMs. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023(3):473–503, 2023.

VGO+20. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272,
2020.

XPR+22. Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of kyber. IEEE
Transactions on Computers, 71(9):2163–2176, 2022.

A Other security levels query tree for attack on standard
implementation

Figure 14 details all the successive queries used to mount our attack on ML-
KEM-768 and ML-KEM-1024.

Start
U = 208, V = −832

{−2,−1, 0}
U = 208, V = −1248

{−2} {−1, 0}
U = 208, V = −1040

{−1} {0}

{1, 2}
U = 208, V = −416

{1} {2}

0

0 1

0 1

1

0 1

Fig. 14: Query tree for ML-KEM-768 and ML-KEM-1024 with η1 = 2.

SPA CCA on ML-KEM 25

B Shuffled Implementation of poly tomsg

We give in figure 15 the shuffled implementation of the poly tomsg that we
targeted in Section 5.

1 static uint8_t index[KYBER_N] = {0, 1, ..., 254, 255}
2

3 void shufflepoly_tomsg (uint8_t msg[KYBER_INDCPA_MSGBYTES],
4 const poly *a){
5 unsigned int i,j;
6 uint32_t t;
7 unsigned int temp , random_index , s_i , s_j;
8 for(i = KYBER_N - 1; i >=1; --i) {
9 randombytes (& random_index , 1);

10 random_index = random_index %(i + 1);
11 temp = index[i];
12 index[i] = index[random_index];
13 index[random_index] = temp;
14 }
15 for(i = 0; i < KYBER_INDCPA_MSGBYTES ; i++){
16 msg[i] = 0;
17 }
18 for(i=0;i< KYBER_N /8;i++) {
19 for(j=0;j <8;j++) {
20 temp = index [8*i+j];
21 s_i = temp >>3;
22 s_j = temp &0x7;
23 t = a-> coeffs [temp];
24 t <<= 1;
25 t += 1665;
26 t *= 80635;
27 t >>= 28;
28 t &= 1;
29 msg[s_i] |= t << s_j;
30 }
31 }
32 }

Fig. 15: C Code of the shuffled poly tomsg implementation.

C Other security levels query tree for attack on shuffled
implementation

Figure 16 details all the successive queries used to mount our attack on the
shuffled versions of ML-KEM-768 and ML-KEM-1024.

26 Berzati et al.

Base-count
U = 208, V = −832, N0

U = 208, V = −1040, N1

{0} {−3,−2,−1, 1, 2, 3}
U = 107, V = −416, N2

{−3,−2,−1}
U = 107, V = −1040, N3

{−1} {−2}

{1, 2, 3}
U = 107, V = −624, N3

{1} {2}

N1
̸= N0 N

1 = N
0

N2 = N0

N3
̸= N0

N
3 = N

0

N
2 ̸= N

0

N3
̸= N0

N
3 = N

0

Fig. 16: Query tree for ML-KEM-768 and ML-KEM-1024 with η1 = 2, Ni denotes
the number of coefficients of w rounded to 1.

	Simple Power Analysis assisted Chosen Cipher-Text Attack on ML-KEM

