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Abstract

Multi-input functional encryption is a primitive that allows for the evalu-
ation of an ℓ-ary function over multiple ciphertexts, without learning any
information about the underlying plaintexts. This type of computation is
useful in many cases where one has to compute over encrypted data, such
as privacy-preserving cloud services, federated learning, or more gener-
ally delegation of computation from multiple clients. It has recently been
shown by Alborch et al. in PETS ’24 to be useful to construct a ran-
domized functional encryption scheme for obtaining differentially private
data analysis over an encrypted database supporting linear queries.
In this work we propose the first secret-key multi-input quadratic
functional encryption scheme satisfying simulation security. Current con-
structions supporting quadratic functionalities, proposed by Agrawal
et al. in CRYPTO ’21 and TCC ’22, only reach indistinguishibility-
based security. Our proposed construction is generic, and for a concrete
instantiation, we propose a new function-hiding inner-product func-
tional encryption scheme proven simulation secure against one challenge
ciphertext in the standard model, which is of independent interest.
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We then use these two results to construct an efficient random-
ized quadratic functional encryption scheme, from which we obtain
differentially private data analysis over an encrypted database sup-
porting quadratic queries. Finally, we give and fully benchmark an
implementation of the randomized scheme. This work is an extended
version of the paper “Simulation Secure Multi-Input Quadratic Func-
tional Encryption” at SAC ’24, where the multi-input quadratic func-
tional encryption scheme and function-hiding inner-product functional
encryption schemes were first presented (Section 3 and Seciton 4).

Keywords: Functional Encryption, Multi-input, Randomized, Quadratic
Functions, Differential Privacy

1 Introduction

Functional encryption is a generalization of public key encryption first for-
malized in [1, 2], allowing for more control over the access on encrypted data.
In general terms, this means that there is an authority who generates func-
tional keys related to a function f . When combined with a ciphertext cx of
a plaintext x during the decryption process, f(x) is recovered. The security
guarantees that no other information about x is leaked apart from fi(x) for
all functions fi queried.

The versatility of this definition has allowed the concept to be applied to
many different privacy preserving problems. For example, predicate encryp-
tion such as identity-based encryption [3] and attribute-based encryption [4]
have been used to regulate fine-grained access of users to data. The way they
achieve this is, at a high-level, by defining a function that outputs the message
only if a certain predicate is verified. In the case of identity-based encryption
this predicate is linked to the identity of the user, while in attribute-based
encryption it is linked to some attributes of the user.

Another route taken with functional encryption for privacy purposes was
introduced by Goyal et al. in [5], where they consider the case of outputs
following a randomized function applied to the plaintext instead of a deter-
ministic one. This is made with the objective to eventually mix functional
encryption with differential privacy, another privacy enhancing technologies.
More recently, Alborch et al. [6] and Zalonis et al. [7] studied the particular
case of linear queries, for which they give efficient constructions. The objective
of this work is to continue this line of work and give a solution for quadratic
queries.

On the construction of functional encryption (FE) for some specific func-
tionalities, Abdalla et al. in [8] gave the first instantiation for inner product
(IPFE) from standard assumptions. Soon a plethora of so called IPFE satis-
fying different security models or based on different assumptions appeared
[9, 10, 11]. Another set of works, first introduced in [12], refer to quadratic
functions (QFE), for which papers in [13, 14, 15] propose instantiations in
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the standard model. For higher degrees it is known that succinct degree-3
functional encryption implies indistinguishability obfuscation [16] as long as
there exist pseudo-random generators of block-wise locality 3, but there are
no known schemes based on polynomial assumptions.

The security of functional encryption has been known to be delicate to
define from its initial formalization [1, 2]. This is due to the difficulty to incor-
porate the inherent leakage f(x) into the security definition. There are two
different approaches: indistinguishability-based security and simulation-based
security. The first one requires for the adversary to be unable to distinguish
between two plaintexts x0, x1 given a ciphertext of one of them and several
functional keys skfi . However, for this definition to make sense, it is required
that fi(x0) = fi(x1) is satisfied. This limits its applicability and makes it inad-
equate for some functionalities [1]. The second one requires the scheme to be
indistinguishable from a simulator taking as inputs the inherent leakage from
the scheme, in other words, the information released to the adversary through
execution of the scheme like the output. It is known that this definition is
strictly stronger than indistinguishability-based security. but also that there
are some impossibility results [1, 2, 17]. In either case, there are also two cases
that could be treated. If the adversary can only request functional keys after
sending all the challenges, it is called selective, while if the adversary has no
restriction on when it can request functional keys it is called adaptive. In this
work we focus on selective simulation security against one challenge cipher-
text, and multiple functional keys, which makes sense in our real-life use-case,
where a database owner outsources their database by encrypting it and then an
analyst can perform several differentially private queries over that encrypted
data.

Multi-input functional encryption.

Multi-input functional encryption (MIFE) is a generalization of functional
encryption first proposed by Goldwasser et al. in [18]. The main objective is
to divide the plaintext into several parts (called inputs) so that they can be
encrypted in independent executions of the encryption algorithm. In this case,
the output of the decryption is a function taking all inputs as variables. This
models a situation where data to be encrypted may not arrive all at the same
time, while still be needed all together to obtain the evaluation of the desired
function. This primitive is useful in many real-life use cases related to privacy-
preserving cloud services, federated learning, or more generally delegation of
computation to a more powerful entity.

Multi-input functional encryption for general purpose is difficult to achieve
(as its single-input counterpart) and has strong implications, e.g., indistin-
guishability obfuscation [18]. However, for concrete families of functions some
instantiations have been found. In the case of inner-product, the first proposal
was by Abdalla et al. [19] with a secret-key multi-input scheme. It was followed
by a transformation from single-input IPFE to the multi-input case [20] still in
the secret-key setting that requires no other assumptions apart from the one of
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the single-input scheme. For quadratic functionalities, only two proposals exist
by Agrawal et al. [21, 22] in which they give specific instantiations of secret-key
multi-input quadratic functional encryption schemes based on function-hiding
functional encryption. Such constructions are proven secure in the indistin-
guishability setting and, as far as we know, it does not exist any construction
for a multi-input quadratic functional encryption scheme satisfying simulation
security. Our main purpose in this paper is to fill this gap.

The focus on secret key constructions comes from the fact that a public
key multi-input functional encryption is easily constructed from a single-input
functional encryption [19, 21] (for both linear and quadratic functionalities).
However, these instantiations cannot be trivially transformed into secret key by
considering the public key as part of the master secret key due to the inherent
leakage of the functionalities. For a more detailed analysis of this issue, we
refer to [19, Section 1.1] and [21, Section 1.2, Appendix A.2].

Function-hiding functional encryption.

As in [19, 21], our MIQFE is based on a function-hiding IPFE (FH-IPFE).
Function-hiding is an additional security property for functional encryption,
first proposed by Shen et al. in [23]. Analogously to the ciphertext protecting
the plaintext x, the functional key is in this setting required to protect the
function f . In other words, the adversary only learns f(x) and no other infor-
mation about either x or f . Once again, given the power the adversary has
in the public-key setting to encrypt any message, public-key function-hiding
schemes are unfeasible. By giving the adversary the possibility of encrypting
any plaintext, the function “hidden” in the functional key can be recovered.

In the case of IPFE, several function-hiding constructions exist, most of the
time based on bilinear pairings and secure in the standard model [24, 25, 26, 27]
(especially because a recent result shows that Learning With Errors based
constructions are impossible [28]). Security-wise, as explained above, we need
simulation based security for our multi-input quadratic FE. Regarding the
literature on the subject, it only remains the scheme by Kim et al. in [29]
which achieves such security in the Generic Group Model.

Randomized functional encryption.

Randomized functional encryption (RFE) is a generalization of functional
encryption first proposed by Goyal et al. in [5]. It considers functional
encryption schemes whose output is not a deterministic function, but rather
a probabilistic function over the plaintext. Importantly, the output distri-
butions should be independent between different ciphertexts and different
functional keys. This primitive models situations where the desired output is
a distribution based on the data, rather than a deterministic value.

Generic transformations from deterministic to randomized functional
encryption exist [30, 31] but require extra assumptions and result in inefficient
constructions. As such, the main areas of interest are to give efficient instantia-
tions for some concrete families of randomized functions, that incur in minimal



SIM Secure MIQFE: Applications to DP 5

over cost with respect to deterministic schemes. One of the main applica-
tions of randomized functional encryption is to perform differentially private
data analysis over encrypted data, with some recent constructions allowing
linear queries [6, 7]. Our objective in this paper is to construct a randomized
functional encryption scheme for quadratic functionalities.

Differential privacy.

Differential privacy (DP) is a private data mechanism property first proposed
by Dwork et al. in [32]. The main objective is to release noisy data statistics in
such a way that both the privacy and utility loss can be precisely calibrated. To
do so, the distribution of the noisy statistics coming from two databases which
differ in one individual are verified to be statistically close, with respect to
some privacy parameters. This ensures that the information of any individual
is protected, while information of the whole database at large remains useful
and significant.

This concept and its usefulness have been greatly studied both by aca-
demics, as shown by the recent survey by Desfontaines and Péjo [33] where
they compile over 200 different variants proposed in literature for different
use-cases, as well as by the industry, where deployment of differential privacy
includes the US Census Bureau [34] supporting analysis on travel patterns
through their OnTheMap project [35], Google training next-word prediction
models [36], or Microsoft collecting telemetry data privately [37] among many
other.

Quadratic queries.

Quadratic queries in the context of statistical analysis are defined for some
data points x = (x1, . . . , xn) as

q(x) =
∑

i,j∈[k]

ai,j · xi · xj +

k∑
i=0

bi · xi + c

for some k > 1 and fixed query weights ai,j , bi, c. Some notable examples
are quadratic regressions, used for example in modeling chemical reactions
in function of temperature, and χ2 testing [38], a well-known hypothesis test
where the quadratic form is constructed as follows. Let x1, . . . , xn be a set of
observations and h1, . . . , hn be a null hypothesis an analyst wants to verify.
We define the database x = (x1, . . . , xn, 1) and the quadratic function F

F =


1/h1 −2

. . . −2
1/hn −2∑

hi

 .
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Then the evaluation x⊤Fx outputs the χ2 test of the null hypothesis
h1, . . . , hn over the observations x1, . . . , xn,

∑
(xi − hi)

2/hi.
In the context of differential privacy, private χ2 testing has been studied

both by itself [39] and in the broader context of private hypothesis testing [40].

1.1 Contributions

Our first contribution is the transformation from any function-hiding inner-
product functional encryption to a multi-input quadratic functional encryption
achieving selective simulation security for one ciphertext in the secret key
setting, with a ciphertext size of O(nℓ2) where ℓ is the number of inputs and n
the size of these inputs. This is the first instantiation of multi-input quadratic
functional encryption scheme satisfying simulation security. To achieve this we
rely on the single-input quadratic functional encryption scheme of [15, Section
3], using techniques from the multi-input inner-product functional encryption
scheme from [20, Section 3].

This transformation is based on a simulation secure function-hiding inner-
product functional encryption for which we give a new instantiation in the
standard model, based on the DDH-based inner-product scheme in [8, Section
3] and inspired by the partially function-hiding inner-product scheme in [15,
Section 4]. This is the first simulation secure function-hiding inner-product
scheme in the standard model. These first two constructions were presented in
SAC 2024 [41].

Finally, using our first contribution we construct an efficient secret-key
randomized quadratic functional encryption satisfying selective simulation
security against one challenge ciphertext. This is the first efficient scheme of
this kind with minimal over cost with respect to deterministic quadratic func-
tional encryption. This, due to a recent result in [6], allows us to construct a
scheme to respond to differentially private quadratic queries. We use this result
to construct a scheme to respond to private χ2 tests over encrypted observa-
tions, for which we provide a differential privacy analyze, implement and fully
benchmark.

1.2 State of the Art

In quadratic functional encryption, the function is generally defined by a
matrix F ∈ Zn×n

p with F (x) = x⊤Fx. Based on that, it is trivial to construct
a “naive” single-input quadratic functional encryption scheme from any single-
input inner-product functional encryption scheme, in which the functions are
defined by a vector y ∈ Zn

p with y(x) = x⊤y. For such a generic construction,

we first observe that x⊤Fx = (x ⊗ x)⊤vect(F ) where ⊗ denotes the Kro-
necker product and vect(F ) is the vectorization of F . From that, a naive QFE
can be constructed as follows.

Encryption Scheme 1 (Naive QFE)
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• QFE.Enc(x) : Compute cx ← IPFE.Enc(x⊗ x).
• QFE.KeyGen(F ) : Compute skF ← IPFE.KeyGen(vect(F )).
• QFE.Dec(cx, skF ) : Compute (x⊗ x)⊤vect(F )← IPFE.Dec(cx, skF ).

But it is obvious that this leads to quadratic ciphertext sizes. Hence, con-
structions for single-input quadratic functional encryption are centered on
achieving linear-size ciphertexts. However, such a naive approach does not
work in the multi-input setting since we would need Enc(xi ⊗ xj) and xi,xj

to be encrypted independently.
There are only two proposals for multi-input quadratic functional encryp-

tion [21, 22]. In both, they adapt the single-input quadratic scheme from Lin
[14] to the multi-input setting. The high level idea is to use function-hiding
inner-product functional encryption. More specifically, during the encryption,
every input is used as an input of both encryption and key generation of the
function-hiding inner-product scheme. They achieve selective indistinguisha-
bility security for many challenge plaintexts, based on the security of the
underlying scheme. In [21] they make use of two extra functionalities, namely
predicated inner-product functional encryption and mixed group inner-product
functional encryption, while in [22] the instantiation is simplified, while achiev-
ing a stronger sense of security allowing corruption of inputs, still in the
indistinguishability based setting.

Another work by Gay [15] gives a transformation from “partially”
function-hiding inner-product functional encryption to public-key single-input
quadratic functional encryption scheme. This way, it achieves semi-adaptive
simulation security for one ciphertext. Abdalla et al. in [20] gave a trans-
formation from standard inner-product functional encryption to secret-key
multi-input inner-product functional encryption scheme, achieving selective
simulation security for one ciphertext and adaptive indistinguishability secu-
rity for many ciphertexts. We will use elements of both these transformations
to construct ours.

Efficiency-wise, let us consider an input plaintext of size nℓ, either by
ℓ inputs of size n or a single input of size nℓ. The previous naive con-
struction of a single-input quadratic functional encryption scheme achieves
simulation-security with O(n2ℓ2)-bit size ciphertexts. On the other hand, Gay
[15] proposes a simulation secure single-input quadratic functional encryption
with ciphertext of size O(nℓ). The ciphertext size of the multi-input inner
product functional encryption from [20] is also O(nℓ). In this work, we show
that upgrading a single-input quadratic functional encryption to multi-input
in simulation based security can be done at a cost linear in ℓ, leading to a
ciphertext size of O(nℓ2). With indistinguishability based security, the scheme
in [22] achieves a ciphertext of size O(nℓ). For a summary, see Table 1.

Concerning simulation secure function-hiding inner-product FE, there only
exists by Kim et al.’s protocol in [29], where they achieve adaptive simulation
security against many challenge ciphertexts by constraining themselves to the
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Table 1 Relevant functional encryption schemes, where ℓ refers to the number of inputs
and n to the size of each input. For a fair comparison we consider the single-input schemes
as one input of size nℓ. PFH stands for partially function-hiding.

Proposal Starting building block Functionality SIM security Ciphertext size
Naive (1) IPFE QFE ✓ O(n2ℓ2)

[15] PFH-IPFE QFE ✓ O(nℓ)
[20] IPFE MIPFE ✓ O(nℓ)
[22] FH-IPFE MIQFE ✗ O(nℓ)

Our work FH-IPFE MIQFE ✓ O(nℓ2)

generic group model (GGM). Since this is an oracle-based model, the impos-
sibility results for adaptive simulation security [1, 2, 17] no longer hold. There
is also [42] which claims a function-hiding inner-product functional encryption
scheme simulation secure against many challenge ciphertexts in the standard
model, which is known to be impossible even in the non function-hiding setting.

Finally, regarding the use of functional encryption to instantiate efficient
schemes to provide differential privacy for computation over encrypted data,
there are two recent works that give solutions to computing private inner-
products. In [7], Zalonis et al. use function-hiding inner-product functional
encryption to give their instantiation by hiding the differentially private noise
in the functional key. They give an instantiation for noisy multi-input inner-
product functional encryption secure for one ciphertext which they use to
privately perform counting queries over private medical data. In [6], Alborch
et al. use multi-input inner-product functional encryption to give their instan-
tiation being able to avoid function-hiding and most importantly pairings.
They give an instantiation of randomized inner-product functional encryption
secure for one ciphertext which they use to privately perform linear queries
over private data.

1.3 Technical Overview

Multi-input Quadratic Functional Encryption Scheme.

Our objective is to construct a simulation sound multi-input quadratic func-
tional encryption scheme. One approach could have been to prove that the
schemes [21, 22] are simulation sound. However, the way both these schemes
are constructed from the single-input quadratic functional encryption scheme
by Lin [14] makes it impossible. Indeed, during the encryption of input xi

they run both the encryption and key generation algorithms of a function-
hiding inner-product. Then during decryption, they multiply all the results
of the decryptions of all the cross terms i, j by the coefficients of the matrix
Fi,j to obtain the desired result. Because there are several inputs to be
encrypted independently, using both the encryption and key generation algo-
rithms, the selective simulation soundness for one challenge ciphertext in the
multi-input scheme would require adaptive simulation soundness for several
challenge ciphertexts. But adaptive simulation soundness is hard to achieve
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for non function-hiding functional encryption in the standard model [1], and
even more in the case of function-hiding functional encryption.

Our idea is hence to start from the single-input quadratic functional encryp-
tion scheme in [15] based on partially function-hiding inner-product functional
encryption. Function-hiding is said to be partial when decryption keys par-
tially hide their underlying function (see [15] for details). Such a construction
is sketched below, in the secret key setting to simplify the reading.

Encryption Scheme 2 (Simplified Figure 4, [15])

• QFE.SetUp(1κ) : Sample a ∈ Z2
p, B ∈ Z3×2

p , U ∈ Zn×2
p and V ∈ Zm×3

p .
Define

M :=

(
a⊗ (Idm|V B) | 0

0 | Idn ⊗B

)
,

and run (IPFE.pk, IPFE.msk) ← IPFE.SetUp(1κ, [M ]1). Output QFE.msk =
(a,B,U ,V , IPFE.pk, IPFE.msk)

• QFE.Enc(x) : Sample r
$←− Zp and s

$←− Z2
p and compute

[ct1x]1 := [x+Uar]1, [ct2x]2 := [x+ V Bs]2,

IPFE.c← IPFE.Enc

IPFE.pk,

r ⊗
(
x
s

)
x⊗ s

 .

Output cx = ([ct1x]1, [ct
2
x]2, IPFE.c).

• QFE.KeyGen(F ) : Compute

IPFE.sk ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U⊤F )
vect(FV )

))
.

Output skF = (F , IPFE.sk).
• QFE.Dec(cx, skF ) : Compute

[d]T ← IPFE.Dec(IPFE.c, IPFE.sk), [v]T := e([ct1x]1,F [ct2x]2)− [d]T

Output log([v]T ) if v ∈ [0, n2 ·B3] and ⊥ otherwise.

At a high level, there are two one-time pads ct1x, ct
2
x which are combined as

ct1x
⊤Fct2x to give the desired value x⊤Fx plus some extra terms. The inner-

product functional encryption scheme is used to compute these extra terms so
they can be subtracted in the end. Eventually, the partially function-hiding
property is used to ensure that the functional key does not leak too much
information about U and V (in concrete, [ctix]i remain indistinguishable from
random).
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The first idea that comes to mind to extend this scheme from single-input
to multi-input would be to encrypt each input and substitute the (partially
function-hiding) inner-product functional encryption scheme for a (partially
func-tion-hiding) multi-input one. However, the decryption phase necessitates
to eliminate the extra terms coming from e([ct1xi

]1,Fi,j [ct
2
xj
]2):

e([ct1xi
]1,Fi,j [ct

2
xj
]2) = [x⊤

i Fi,jxj ]T + [x⊤
i Fi,jV Bsi]T

+ [Uar⊤i Fi, jxj ]T + [Uar⊤i Fi, jV Bsi]T .

This elimination could be done using the IPFE encryption. In this case, we
would need the ciphertext and functional key to be

IPFE.c̃i,j ← IPFE.Enc

IPFE.pk,

ri ⊗
(
xj

sj

)
xi ⊗ sj

 ,

IPFE.s̃ki,j ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U⊤Fi,j)
vect(Fi,jV )

))
.

However, xi and xj should be encrypted in different independent instances
of the encryption algorithm and therefore such ciphertext cannot be created.
To circumvent this issue we use two main properties of the multi-input scheme.
Firstly, we use the fact that during decryption, all partial decryptions (for
i, j ∈ [ℓ]) will be added altogether, and in particular IPFE.ci,j and IPFE.cj,i.
This allows us to “interweave” the ciphertexts, where in input i we compute
half of what is needed for e([ctxi ]1,Fi,j [ctxj ]2) and half of what is needed
for e([ctxj ]1,Fj,i[ctxi ]2), while the other two halves are computed on input j.
Therefore, combining the decryptions of IPFE.ci,j and IPFE.cj,i we obtain all
the extra terms resulting from e([ctxi ]1,Fi,j [ctxj ]2) and e([ctxj ]1,Fj,i[ctxi ]2).
More specifically, by computing the following where the changes are squared

IPFE.ci,j ← IPFE.Enc

IPFE.pk,

rj ⊗
(

xi

si

)
xi ⊗ sj

 ,

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.msk,

(
vect(U⊤ Fj,i )

vect(Fi,jV )

))
,

which given the linearity of inner product, during decryption we get for any
i, j ∈ [ℓ],

IPFE.Dec(IPFE.ci,j , IPFE.ski,j) + IPFE.Dec(IPFE.cj,i, IPFE.skj,i)
=

IPFE.Dec(IPFE.c̃i,j , IPFE.s̃ki,j) + IPFE.Dec(IPFE.c̃j,i, IPFE.s̃kj,i)
which is what we need to eliminate the extra terms appearing in both crossed
terms i, j and j, i.
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Secondly, we use the fact that we are in the secret-key setting. As such
we can presample the random values we will use in the encryption algorithm
during the set up. From the encryption of a specific input, this gives us access
to the values of all the rest of the inputs.

Furthermore, this use of secret-key cryptography allows us to directly base
ourselves in function-hiding inner-product functional encryption, without the
need to use its “partial” version (the scheme from [15] cannot do so since
public-key function-hiding functional encryption is impossible). We also sim-
plify the scheme to require less security assumptions. Eventually, the security
of our scheme depends solely on the security of the underlying function-hiding
inner-product functional encryption scheme.

The final step of our transformation is to use the argument in [20] to make
sure that the correct result can only be obtained when all the inputs are taken
into account. More precisely, they encrypt a one-time pad w + x and then
compute an extra zky = w⊤y during key generation, which one is finally
substracted during decryption to obtain the real value. This holds as long as
there are less functional key queries than the size of the vector since w will
still have enough entropy to make zkF indistinguishable from random.

Function-hiding Inner-product Functional Encryption
Scheme.

Similarly to the construction of partially function-hiding functional encryption
from [15, Section 4], we construct our function-hiding inner product func-
tional encryption scheme by layering two instances of a non function-hiding
scheme (one in and one out) as follows: EncFH(x) = Encout(KeyGenin(x)) and
KeyGenFH(y) = KeyGenout(Encin(y)). Then, decryption is done through the
use of a bilinear pairing. This allows us to protect both the plaintext in the
ciphertext and the function in the functional key.

The instantiation in [15, Section 4] is based on the non function-hiding
scheme from [9, Section 3], since it intends to achieve simulation security in
the public key setting and as such it needs an extra slot to handle this. In our
case, given that we are in the secret key setting, basing ourselves in the scheme
from [8, Section 3] is enough. As such we use a different approach than [15] to
simulate the functional keys, where we use the Q-fold DDH assumption instead
of the “1”-fold DDH one. This allows us to have slightly smaller ciphertexts
and functional keys (one less slot) than the construction in [15].

This layering approach is very similar to the function-hiding inner prod-
uct functional encryption scheme given in [14, Section 6.3]. Indeed, the crucial
difference is the order in which the layers are set. In their case they have
EncFH(x) = KeyGenout(Encin(x)) and KeyGenFH(y) = Encout(KeyGenin(y)).
However, this set up does not work for proving simulation security. As evidence,
let us denote keyout, keyin the keys for each layer of non function-hiding inner-
product functional encryption. When simulating the function-hiding ciphertext
by simulating the encryption in the inner layer, the simulated ciphertext will
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still depend on (non-simulated) keyout. Then, when simulating the function-
hiding functional key by simulating the encryption in the outer layer, the key
we need to simulate is both in the ciphertext and functional key, which are
in two different groups. As such, trying to use the DDH assumption (in which
[8] is based) to simulate this functional key will not work since there will be
one element in G1 and another in G2: the bilinear pairing trivially breaks the
scheme.

In our case, when simulating the function-hiding ciphertext by simulating
the encryption in the outer layer, the ciphertext no longer depends on keyin and
as such we are free to use the DDH assumption to simulate the function-hiding
functional key, simulating the encryption in the inner layer.

Randomized Quadratic Functional Encryption Scheme.

Our objective is to build a simulation secure randomized quadratic functional
encryption scheme, in other words, a scheme for which given an encryption of
a plaintext x and a functional key related to a quadratic function F and some
probability distribution D, the decryption algorithm output is distributed as
x⊤Fx + D. One first approach to build a randomized quadratic functional
encryption scheme would be to take a function-hiding functional encryption
scheme for quadratic functionalities and hide the noise in the functional key,
in a similar fashion as [7]. However, no such scheme is known. On top of that,
such a scheme would need to “encrypt” the quadratic function which grows
quadratically with respect to the size of the plaintext. This means that the
functional keys would grow much faster than the plaintext.

Another approach would be to use a two-input quadratic functional encryp-
tion and use one input to encrypt the plaintext during the encryption of the
randomized scheme and the other to encrypt the noise during the key genera-
tion of the randomized scheme, similarly to the concept of the solution of [6].
However, basing the security of the randomized scheme directly on the two-
input scheme as a blackbox would require a two-input scheme which should
be simulation secure against many challenge ciphertexts (one per randomized
functional key). Furthermore, given that the noise is added linearly at the end
(without squaring), encrypting it through a quadratic scheme does not seem
optimal.

Therefore, we look more in details our specific instantiation of multi-input
quadratic functional encryption. During the encryption, as said before, there
are two separate parts, a one-time pad ctx = x + c · u and a function-hiding
inner-product ciphertext IPFE.c. Then during encryption, the one-time pads
are applied to the quadratic function to obtain x⊤Fx+ γ, where γ are some
extra terms we want to eliminate. We do so by using the function-hiding inner-
product scheme to compute γ. The objective is to obtain x⊤Fx+ e for some
e ← D. Then, note that changing the one-time pad to incorporate this noise
in the first computation obtaining x⊤Fx + e + γ and then eliminate γ gives
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the same output as not modifying the one-time pad and having the function-
hiding inner-product scheme output γ − e. As such, using a function-hiding
randomized inner-product scheme should suffice.

This, however, leaves two unanswered questions. Firstly, the known ran-
domized inner-product functional encryption schemes [6] do not consider
function-hiding. Secondly, it is unclear if releasing e together with γ gives
the adversary more information about e than only obtaining x⊤Fx+ e (thus
compromising simulation security). By using the ideas from our instantiation
of multi-input quadratic functional encryption we handle both issues, since
the one-time pad w in the function-hiding inner-product encryption together
with a one-time pad for the noise allows us to prove simulation security and
maintains the function-hiding properties.

2 Preliminaries

One-dimensional elements will be noted as lower-case letters (x, y, . . .), while
vectors will use bold lower-case letters (x,y, . . .) and matrices will use bold
upper-case letters (M ,U ,V , . . .). Let D be a probability distribution, x← D
means the element x is sampled from the distribution D, while for any set

Y, y $←− Y means that y is sampled uniformly at random from Y. Finally, a
function f is said to be negligible over n (f = negl(n)) if for all k ∈ N>0, there
exists n0 ∈ N>0 such that for any n > n0 then |f(n)| < 1/nk.

2.1 Pairing Groups

This work makes use of asymmetric pairing groups, inherited from function-
hiding functional encryption. Let G1,G2,GT be three additive cyclic groups
of order a prime p. Let P1, P2 be generators of G1 and G2 respectively and let
e : G1×G2 → GT be an efficiently computable (non-degenerate) bilinear map.
This means that e(αP1, βP2) = α · βPT for any α, β ∈ Zp where we define
PT := e(P1, P2).

For s ∈ {1, 2, T} and a matrix A = (aij) ∈ Zn×m
p for any n,m ≥ 1 we

define [A]s as the representation of A in the group Gs. In other words, [A]s =
(aijPs) ∈ Gn×m

s .For any two matrices A,B ∈ Zn×m
p , e([A]1, [B]2) := [AB]T

and for s ∈ {1, 2, T} we have [A]s + [B]s := [A+B]s.
Finally, we define the PPT algorithm PGGen that, on input a security

parameter κ, outputs a set (G1,G2,GT , p, P1, P2, e) where p is a 2κ-bit prime.

2.2 The DDH Assumption

Let p be a prime number, we define the following distribution, using the frame-

work from [43]. The DDH distribution over Z2
p samples t

$←− Zp and outputs

t := (1, t)⊤.
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Definition 1 Let κ ∈ N>0 be a security parameter and s ∈ {1, 2, T}. For any PPT
adversary A we define the following advantage

AdvDDH
Gs

(A) := |Pr[1← A(1κ,PG, [t]s, [tr]s)]− Pr[1← A(1κ,PG, [t]s, [w]s)]|,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r
$←− Zp and

w
$←− Z2

p. We say that the Decisional Diffie-Hellman (DDH) assumption holds if for

all PPT adversaries A AdvDDH
Gs

(A) ≤ neq(κ).

We are also interested in the case where Q independent queries are asked,
with same t but different ri, and its relationship to the base DDH.

Definition 2 Let κ ∈ N>0 be a security parameter and s ∈ {1, 2, T}. For any PPT
adversary A we define the following advantage

AdvQ-DDH
Gs

(A) := |Pr[1← A(1κ,PG, [t]s, [tr⊤]s)]− Pr[1← A(1κ,PG, [t]s, [W ]s)]|,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r
$←− ZQ

p and

W
$←− Z2×Q

p . We say that the Q-fold Decisional Diffie-Hellman (Q-DDH) assumption

holds if for all PPT adversaries A AdvQ-DDH
Gs

(A) ≤ neq(κ).

More concretely we will use the random self-reducibility of the Q-fold DDH
assumption.

Lemma 1 (Random Self-reducibility,[43]) Let Q > 1, and s ∈ {1, 2, T}. Then, for
any PPT adversary A there exists a PPT adversary B such that

AdvQ-DDH
Gs

(A) ≤ AdvDDH
Gs

(B) + 1

p− 1
,

where the probability is taken over PG ← PGGen(1κ), t ← DDH, r
$←− ZQ

p and

W
$←− Z2×Q

p .

2.3 Functional Encryption

Functional encryption is a generalization of encryption first formalized by
Boneh et al. [1] and O’Neill [2], in which the decryption algorithm no longer
outputs necessarily the plaintext, but a function applied to this plaintext. This
is achieved through the generation of functional keys related to the specific
function wanted to be applied. Such schemes are defined as follows in the
secret-key setting.

Definition 3 (Functional Encryption Scheme) Let κ ∈ N>0 be a security parameter
and F be a family of functions. A function f ∈ F is defined as f : X → S. We define
a secret-key functional encryption scheme the following tuple of PPT algorithms:
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• FE.SetUp(1κ,F) : given the security parameter κ and the family of functions
F as input, it outputs some public parameters FE.param and a master secret
key FE.msk. We will assume the public parameters as inputs in all other
algorithms.

• FE.Enc(FE.msk, x) : given the master secret key FE.msk and a plaintext
x ∈ X as inputs, it outputs a ciphertext cx.

• FE.KeyGen(FE.msk, f) : given the master secret key FE.msk and a function
f ∈ F as inputs, it outputs a functional key skf .

• FE.Dec(cx, skf ) : given a ciphertext cx and a functional key skf as inputs,
it outputs a value in S or ⊥ if it fails.

The correctness notion for such schemes is as follows.

Definition 4 (Correctness of Functional Encryption) Let κ ∈ N>0 be a security
parameter and FE = (FE.SetUp,FE.Enc, FE.KeyGen,FE.Dec) be a secret-key func-
tional encryption scheme. We say it is correct if for any x ∈ X and f ∈ F we
have

Pr
[
FE.Dec(cx, skf ) ̸= f(x)

]
= negl(κ)

where the distribution is taken over FE.msk ← FE.SetUp(1κ,F), cx ← FE.Enc
(FE.msk, x) and skf ← FE.KeyGen(FE.msk, f).

2.3.1 Multi-input Functional Encryption

As mentioned in Section 1, multi-input functional encryption is a generalisa-
tion of functional encryption which divides the plaintext into ℓ inputs to be
encrypted independently. For this case, the standard definitions are as follows.

Definition 5 (Multi-input Functional Encryption Scheme) Let κ ∈ N>0 be a secu-
rity parameter, ℓ ∈ N>0 be the number of inputs and F be a family of ℓ-ary functions.
A function f ∈ F is defined as f : X1×. . .×Xℓ → S. We define a secret-key multi-input
quadratic functional encryption scheme as the following tuple of PPT algorithms:

• MIFE.SetUp(1κ,F): given the security parameter 1κ and a family of ℓ-ary
functions F , it outputs some public parameters MIFE.param a master secret
key MIFE.msk. We will assume the public parameters as inputs in all other
algorithms.

• MIFE.Enc(MIFE.msk, i, xi): given the master secret key MIFE.msk, an input
number i ∈ [ℓ] and xi ∈ Xi, it outputs a ciphertext cxi

.
• MIFE.KeyGen(MIFE.msk, f): given the master secret key MIFE.msk and a
function f ∈ F as inputs, it outputs a functional decryption key skf .

• MIFE.Dec(cx1
, . . . , cxℓ

, skf ): a deterministic algorithm that given ciphertexts
cx1

, . . . , cxℓ
and a functional key skf as inputs, it outputs a value in S, or

⊥ if it fails.

The correctness notion for these schemes goes as follows.
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Definition 6 (Correctness of Multi-input Functional Encryption) Let κ ∈ N>0

be a security parameter, ℓ ∈ N>0 be the number of inputs and MIFE =
(MIFE.SetUp,MIFE.Enc,MIFE.KeyGen,MIFE.Dec) be a secret-key multi-input func-
tional encryption scheme. We say it is correct if for any x1 ∈ X1, . . . , xℓ ∈ Xℓ and
f ∈ F we have

Pr
[
MIFE.Dec(cx1 , . . . , cxℓ , skf ) ̸= f(x1, . . . , xℓ)

]
= negl(κ)

where the distribution is taken over MIFE.msk ← MIFE.SetUp(1κ,F), cxi ←
MIFE.Enc(MIFE.msk, i, xi) for all i ∈ [ℓ] and skf ← MIFE.KeyGen(MIFE.msk, f).

As explained in Section 1, there are two main ways to classify security
definitions for functional encryption: indistinguishability based or simulation
based and selective or adaptive. In this work we are interested in selective
simulation security for one challenge ciphertext, for which we give the definition
below.

Definition 7 (Simulation Security for Multi-input Functional Encryption) Let
κ ∈ N>0 be a security parameter, ℓ ∈ N>0 be the number of inputs
and MIFE = (MIFE.SetUp,MIFE.Enc, MIFE.KeyGen,MIFE.Dec) be a secret-
key multi-input functional encryption scheme. For any PPT simulator S :=
(MIFE.SetUpSim,MIFE.EncSim,MIFE.KeyGenSim) and any PPT adversary A we
define the experiments in Table 2 where the oracles are described as follows.

1. Real Experiment: OMIFE.KeyGen(MIFE.msk, ·) takes as input a function f ∈
F and outputs skf ← MIFE.KeyGen(MIFE.msk, f).

2. Ideal Experiment: ÕMIFE.KeyGen(MIFE.m̃sk, x1, . . . , xℓ, ·) takes as input

a function f ∈ F , computes v = f(x1, . . . , xℓ) and outputs s̃kf ←
MIFE.KeyGen Sim(MIFE.m̃sk, v, f).

We say MIFE is one selective multi-input simulation secure if there exists a PPT
simulator S := (MIFE.SetUpSim,MIFE.EncSim,MIFE.KeyGenSim) such that for all
PPT adversary A the following inequality holds.

AdvMI-SIM
MIFE (A) = |Pr[1← ExprealA (1κ)]− Pr[1← ExpidealA (1κ)]| ≤ negl(κ)

2.3.2 Function-hiding Functional Encryption

As mentioned in Section 1, function-hiding functional encryption is a restric-
tion of functional encryption which guarantees privacy for the function from
the functional key, as well as the standard privacy for the message from the
ciphertext. The security definition in the simulation security setting is then as
follows.

Definition 8 (Simulation Security of Function-hiding Functional Encryption) Let
κ ∈ N>0 be a security parameter, n ∈ N>0 be the dimension, and FE =
(FE.SetUp,FE.Enc,FE.KeyGen,FE.Dec) be a secret-key functional encryption scheme.
For any PPT simulator S := (FE.SetUpSim,FE.EncSim,FE.KeyGen Sim) and any PPT
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Table 2 Real and ideal experiments in SEL-SIM security for MIQFE.

ExprealA (1κ):
1: MIFE.msk← MIQFE.SetUp(1κ,F)
2: ({xi}i∈[ℓ], st1)← A1(1

κ) where xi ∈ Xi

3: For all i ∈ [ℓ], cxi ← MIFE.Enc(MIFE.msk, i,xi)

4: γ ← AOMIFE.KeyGen(msk,·)
2 ({cxi

}i∈ℓ, st1)

ExpidealA,S (1κ):

1: MIFE.m̃sk← MIFE.SetUpSim(1κ,F)
2: ({xi}i∈[ℓ], st1)← A1(1

κ) where xi ∈ Xi

3: For all i ∈ [ℓ], c̃xi
← MIFE.EncSim(MIFE.m̃sk, i)

4: γ ← AÕMIFE.KeyGen(MIFE.m̃sk,{xi}i∈[ℓ],·)
2 ({c̃xi

}i∈[ℓ], st1)

Table 3 Real and ideal experiments in function-hiding SEL-SIM security for FE.

ExprealA (1κ):
1: FE.msk← FE.SetUp(1κ,F)
2: (x, st1)← A1(1

κ) where x ∈ X
3: cx ← FE.Enc(FE.msk, x)

4: γ ← AOFE.KeyGen(FE.msk,·)
2 (cx, st1)

ExpidealA,S (1κ):

1: FE.m̃sk← FE.SetUpSim(1κ,F)
2: (x, st1)← A1(1

κ) where x ∈ X
3: c̃x ← FE.EncSim(FE.m̃sk)

4: γ ← AÕFE.KeyGen(FE.m̃sk,x,·)
2 (c̃x, st1)

adversary A we define the experiments in Table 3 where the oracles are described as
follows.

1. Real Experiment: OFE.KeyGen(FE.msk, ·) takes as input a function f ∈ F
and outputs skf ← FE.KeyGen(FE.msk, f).

2. Ideal Experiment: ÕFE.KeyGen(FE.m̃sk, x, ·) takes as input a function f ∈
F , computes v = f(x) and outputs s̃kf ← FE.KeyGenSim(FE.m̃sk, v).

We say FE is one selective function-hiding simulation secure if there exists a
PPT simulator S := (FE.SetUpSim,FE.EncSim,FE.KeyGenSim) such that for all PPT
adversary A the following inequality holds.

AdvFH-SIM
FE (A) = |Pr[1← ExprealA (1κ)]− Pr[1← ExpidealA (1κ)]| ≤ negl(κ)

The reason why this security definition captures function-hiding is the fact
that FE.KeyGenSim takes as inputs only the simulated keys and the output
of the function applied to the challenge. If this is satisfied, then the only
information leaked from the ciphertext and functional key is the output of the
function, since they both can be simulated only knowing this information.

2.3.3 Randomized Functional Encryption

Randomized functional encryption is a generalization of functional encryption
first formalized by Goyal et al. [5], in which the decryption algorithm no longer
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outputs a deterministic function applied to the plaintext, but a randomized
function, in such a way that the distributions are independent for different
functional keys. We define a randomized function as f̂ : X × R → S, where
r ∈ R is understood as the seed for the probabilistic sampling of the random-
ized function f̂ and as such, as true randomness completely unknown to the
adversary. Such schemes are defined as follows in the secret-key setting.

Definition 9 (Randomized Functional Encryption Scheme) Let κ ∈ N>0 be a secu-
rity parameter and F̂ be a family of randomized functions. We define a secret-key
functional encryption scheme the following tuple of PPT algorithms:

• RFE.SetUp(1κ,F) : given the security parameter κ and the family of ran-
domized functions F̂ as input, it outputs some public parameters RFE.param
and a master secret key RFE.msk. We will assume the public parameters as
inputs in all other algorithms.

• RFE.Enc(RFE.msk, x) : given the master secret key RFE.msk and a plaintext
x ∈ X as inputs, it outputs a ciphertext cx.

• RFE.KeyGen(RFE.msk, f) : given the master secret key RFE.msk and a

description of the randomized function f̂ ∈ F̂ as inputs, it outputs a
functional key skf̂ .

• RFE.Dec(cx, skf̂ ) : given a ciphertext cx and a functional key skf̂ as inputs,
it outputs a value in S or ⊥ if it fails.

The correctness notion for such schemes is differs from Definition 10 due
to the probabilistic nature of the output. The definition is as follows, for a one
ciphertext scheme.

Definition 10 (Correctness of Randomized Functional Encryption) Let κ ∈ N>0

be a security parameter and RFE = (RFE.SetUp,RFE.Enc,RFE.KeyGen, RFE.Dec)
be a secret-key randomized functional encryption scheme supporting the family of
randomized functions F̂ . We say it is correct if for any plaintext x and any set of
randomized functions f̂1, . . . , f̂Q ∈ F̂ the following distributions are computationally
indistinguishable:

• Real(1κ, F̂) := {vi ← Dec(cx, skf̂i)}i∈[Q], where

(RFE.param,RFE.msk)← RFE.SetUp(1κ)
cx ← RFE.Enc(RFE.msk, x).

skf̂i ← RFE.KeyGen(RFE.msk, f̂ i) for all i ∈ [Q].

• Ideal(1κ, F̂) := {f̂ i(x; ri)}i∈[Q] where ri ← R.

Concerning the security definition, we take the slightly stronger one given
in [6] instead of the one given in [5], since it is the security definition that
reduces to computational differential privacy (as shown in [6]). We change the
notation to be more coherent with the rest of this work. Where they define the
oracle ÕFE.KeyGen with access to another oracle KeyIdeal it can query to receive
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Table 4 Real and ideal experiments in function-hiding SEL-SIM security for FE.

ExprealA (1κ):

1: RFE.msk← RFE.SetUp(1κ, F̂)
2: (x, st1)← A1(1

κ) where x ∈ X
3: cx ← RFE.Enc(RFE.msk, x)

4: γ ← AORFE.KeyGen(RFE.msk,·)
2 (cx, st1)

ExpidealA,S (1κ):

1: RFE.m̃sk← RFE.SetUpSim(1κ,F)
2: (x, st1)← A1(1

κ) where x ∈ X
3: c̃x ← RFE.EncSim(RFE.m̃sk)

4: γ ← AÕRFE.KeyGen(RFE.m̃sk,x,·)
2 (c̃x, st1)

for each randomized function f̂ the value v = f̂(x; r) with some r ← R, we
assume v as an input to the simulated oracle.

Definition 11 (Simulation Security of Randomized Functional Encryption)
Let κ ∈ N>0 be a security parameter, n ∈ N>0 be the dimension, and
RFE = (RFE.SetUp,RFE.Enc,RFE.KeyGen,RFE.Dec) be a secret-key randomized
functional encryption scheme. For any PPT simulator S := (RFE.SetUpSim,
RFE.EncSim,RFE.KeyGenSim) and any PPT adversary A we define the experiments
in Table 4 where the oracles are described as follows.

1. Real Experiment: ORFE.KeyGen(RFE.msk, ·) takes as input a randomized

function f̂ ∈ F̂ and outputs skf̂ ← RFE.KeyGen(RFE.msk,̂ ).

2. Ideal Experiment: ÕRFE.KeyGen(RFE.m̃sk, x, ·) takes as input a randomized

function v = f̂ ∈ F̂ , computes f̂(x; r) for some r ← R and outputs s̃kf̂ ←
RFE.KeyGenSim(RFE.m̃sk, v).

We say RFE is one selective simulation secure if there exists a PPT simulator
S := (RFE.SetUpSim,RFE.EncSim,RFE.KeyGenSim) such that for all PPT adversary
A the following inequality holds.

AdvSIMRFE(A) = |Pr[1← ExprealA (1κ)]− Pr[1← ExpidealA (1κ)]| ≤ negl(κ)

2.4 Differential Privacy

Differential privacy is a private data mechanism property first proposed by
Dwork et al. [32], which allows for release of data analytics over private data in
such a way that the privacy loss is easily analyzable. This property concerns the
so called privacy mechanisms, randomized functions which on input a database
and a query output a noisy response to the query applied to the database.
In other words, we define a privacy mechanism over a family of queries F as
M : X × M × R → S, where S is contained in the multidimensional real
numbers. This property only compares outputs of the mechanism applied to
neighbouring databases, which are databases differing in only one individual,
since it wants to verify that the privacy of the individual (opposing to groups)
is not compromised. In this work we formally define neighbouring databases
as follows.
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Definition 12 (Neighbouring Databases) Two databases x, x′ are said to be
neighbouring

∥x− x′∥1 ≤ 1.

This means that for two databases to be neighbouring they must differ
at most in one entry and at most by a difference of one. Having defined
neighbouring databases, the differential privacy property goes as follows.

Definition 13 (Differential Privacy) Let ϵ, δ be two real numbers and F a family
of queries. A prrivacy mechanism for F , M : X × F × R → S is said to be (ϵ, δ)-
differential private ((ϵ, δ)-DP) if for all S ⊆ S, any query f ∈ F , every pair of
neighbouring databases x, x′ ∈ X and r, r′ ←R

Pr [M(x, f ; r) ∈ S] ≤ eϵ · Pr
[
M(x′, f ; r′) ∈ S

]
+ δ.

Note that this definition only considers mechanisms where only one single
query is asked. If we want to handle multiple queries selectively, the same
definition works, one can just consider the set of queries f1, . . . , fQ as a new
bigger query F to analyze with the output being contained in SQ. However
if the queries are adaptive we can use the following property of differential
privacy.

Proposition 2 (Sequential Composition, [44]) Let M be a mechanism allowing Q
adaptive queries to a mechanismM′ : X ×F ×R → S satisfying (ϵ, δ)-DP. ThenM
satisfies (Q · ϵ,Q · δ)-DP.

Finally, two additional concepts that are useful to calibrate the added noise
and then to evaluate how good the mechanism is, are as follows.

Definition 14 (Sensitivity) Let x, x′ ∈ X be two neighbouring databases. The
ℓ1-sensitivity of a function f is

∆f := max
x,x′neighbouring

∥f(x)− f(x′)∥1.

This can be naturally extended to the ℓ1-sensitivity of a family of queries F by taking
the maximum over the family, which we will denote as ∆F .

Definition 15 (Utility) Let M : X × F × R → S, M(x, f ; r) = f(x) + e(r) be a
differentially private mechanism. We sayM is (α, β)-useful if

Pr [|M(x, f ; r)− f(x)| ≤ α] ≥ 1− β

for any x ∈ X , f,∈ F and r ←R.

For our instantiation we will use the well-known geometric mechanism as
proposed by [45], where they show that it is an optimal mechanism. The exact
parameters and utility of the geometric mechanism is as follows.



SIM Secure MIQFE: Applications to DP 21

Lemma 3 (Privacy of Geometric Mechanism) Let X be a database space, S = ZQ,
F be a family of queries, let D be a random variable, Dϵ ∼ Geo(exp(−ϵ/ ∆F )), where
∆F is as in Definition 14. Then the geometric mechanism defined as

M(x, f ; r) := f(x) + e(rf )

where x ∈ X and e(rf )← Dϵ is (ϵ, 0)-DP.

Lemma 4 (Utility of Geometric Mechanism) The Geometric mechanism as

described in Lemma 3 is
(
O
(
1
ϵ

)
·∆F · log

(
β
2

)
, β

)
-useful.

3 Multi-input Quadratic Functional Encryption
Scheme

In this section we describe our multi-input quadratic functional encryption
scheme for bounded-norm quadratic functionalities. We first describe the fam-
ily of functions we want to cover. Let Fn,ℓ

Q,B : (J0, BKn)ℓ → J0, (nℓ)2 · B3K be

the family of ℓ-ary functions such that a function F ∈ Fn,ℓ
Q,B is defined by a

matrix in J0, BKnℓ×nℓ which we note as

F =

F1,1 · · · F1,ℓ

...
. . .

...
Fℓ,1 · · · Fℓ,ℓ


with Fi,j ∈ J0, BKn×n, and applied to (x1, . . . ,xℓ) ∈ (J0, BKn)ℓ gives F (x1, . . . ,
xℓ) :=

∑
x⊤
i Fi,jxj for i, j ∈ [ℓ].

Our MIQFE scheme is based on a function-hiding inner-product functional
encryption, whose family of functions is F̃2n

IP : Z2n
p → GT (for some PG =

(G1,G2,GT , p, P1, P2, e) ← PGGen(1κ)). A function y ∈ F̃2n
IP is defined by a

vector in Z2n
p and applied to z gives y(z) :=

[
z⊤y

]
T
.

3.1 Description of the Scheme

Let IPFE = (IPFE.SetUp, IPFE.Enc, IPFE.KeyGen, IPFE.Dec) be a function-
hiding inner-product functional encryption scheme for the family of functions
F̃2n

IP . Below is a description of our MIQFE scheme for the family of functions

Fn,ℓ
Q,B .

Encryption Scheme 3 (MIQFE Scheme)

• MIQFE.SetUp(1κ,Fn,ℓ
Q,B) : Sample PG = (G1,G2,GT , p, P1, P2, e)← PGGen

(1κ), ui
$←− Zn

p and ci
$←− Zp for i ∈ [ℓ] and sample wi,j

$←− Z2n
p for i, j ∈ [ℓ].

Run IPFE.mski,j ← IPFE.SetUp(1κ, F̃2n
IP ,PG) for i, j ∈ [ℓ]. Output

MIQFE.param = PG and
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MIQFE.msk = ({ui, ci}i∈[ℓ], {wi,j , IPFE.mski,j}i,j∈[ℓ]).

• MIQFE.Enc(MIQFE.msk, i,xi) : Compute

ctxi
:= xi + ciui ∈ Zn

p ,

IPFE.ci,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j + cj

(
ctxi

xi

))
for j ∈ [ℓ].

Output MIQFE.ci = (ctxi , {IPFE.ci,j}j∈[ℓ]).
• MIQFE.KeyGen(MIQFE.msk,F ) : Compute

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
u⊤
j Fj,i

Fi,juj

))
for i, j ∈ [ℓ],

zkF ←
∑

i,j∈[ℓ]

w⊤
i,j

(
u⊤
j Fj,i

Fi,juj

)
.

Output MIQFE.skF = (F , {IPFE.ski,j}i,j∈[ℓ], zkF ).
• MIQFE.Dec(MIQFE.c1, . . . ,MIQFE.cℓ,MIQFE.skF ) : Compute

[di,j ]T ← IPFE.Dec(IPFE.ci,j , IPFE.ski,j)

[v]T :=

 ∑
i,j∈[ℓ]

[ct⊤xi
Fi,jctxj

]T − [di,j ]T

+ [zkF ]T

Output log([v]T ) if v ∈ [0, (nℓ)2 ·B3] and ⊥ otherwise.

Remark 1 We define the output of the functions y to be in GT to be compatible with
existing function-hiding IPFE and only for that. Designing such a scheme without
pairings is a hard open problem. This means that all schemes require bounded inputs
to have a bounded output from which the discrete logarithm can be computed.
Therefore, this requires us to perform the operations for the decryption algorithm

in the exponent, since the input wi,j + cj

(
ctxi

xi

)
is not bounded by definition thus

making it unfeasible to compute di,j in plain.
This means then that we add no extra pairing operations on top of those needed

for the function-hiding scheme. As such, were there to be a scheme without pairings
or allowing non-bounded inputs this property would immediately translate to our
construction.

3.2 Correctness and Security

Proposition 5 The MIQFE scheme defined in Section 3.1 is a correct multi-input

functional encryption scheme for Fn,ℓ
Q,B as long as IPFE is a correct scheme for F̃2n

IP .
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Proof For ease of notation and reading we will leave out the [.]T . First we have

ct⊤xi
Fi,jctxj = x⊤

i Fi,jxj + ciu
⊤
i Fi,jxj + x⊤

i Fi,jcjuj + ciu
⊤
i Fi,jcjuj

from which we want to cancel out everything but x⊤
i Fi,jxj .

Let us take a look at di,j . Given that IPFE is a correct scheme for Fn
IP we have

that

di,j =

(
wi,j +

(
cjctxi

cjxi

))⊤ (
u⊤
j Fj,i

Fi,juj

)
= w⊤

i,j

(
u⊤
j Fj,i

Fi,juj

)
+ cjx

⊤
i (u⊤

j Fj,i) + cjciu
⊤
i (u⊤

j Fj,i) + cjx
⊤
i Fi,juj

= w⊤
i,j

(
u⊤
j Fj,i

Fi,juj

)
+ cju

⊤
j Fj,ixi + cju

⊤
j Fj,iciui + x⊤

i Fi,jcjuj .

Note that only the third term of ctxiFi,jctxj will cancel out, but at the same
time the second and fourth terms of ctxjFj,ictxi appear. This means that by adding
over all i, j ∈ [ℓ] all cancels out and we get∑

i,j∈[ℓ]

ct⊤xi
Fi,jctxj − di,j =

∑
i,j∈[ℓ]

x⊤
i Fi,jxj +

∑
i,j∈ℓ

w⊤
i,j

(
u⊤
j Fj,i

Fi,juj

)
which by construction of zkF means that

v =
∑

i,j∈[ℓ]

x⊤
i Fi,jxj .

□

Theorem 6 The MIQFE scheme described in 3 is one selective multi-input simu-
lation secure, if the underlying inner-product functional encryption scheme is one
selective function-hiding simulation secure. In other words, for any PPT adversary
A there exist PPT adversaries B such that

AdvMI−SIM
MIQFE (A) ≤ ℓ2 · AdvFH-SIM

IPFE (B) + ℓ

p
.

Proof Let A be a PPT adversary playing the 1-SEL-SIM security game for MIQFE,
and let κ ∈ N be a security parameter. We will prove the result through a
series of games Game i for i ∈ {0, 1, 2, 3, 4}, defined in Figure 1 with changes
in Game i + 1 being over Game i. We show that ExprealA (1κ) = Game 0 ≈s

Game 1 ≈s Game 2 ≈s Game 3 ≈c Game 4 = ExpidealA,S (1κ). Let also IPFE.Sim =
(IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim) be the simulator for function-hiding
1-SEL-SIM for the IPFE scheme.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0 it
interacts with a PPT adversary A′ as in Game i, otherwise it interacts as in Game
i+ 1. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We define (for

i = 0, 1, 2, 3) Advi(i+1)(A′) :=
∣∣∣Pr [b̃ = 1|b = 0

]
− Pr

[
b̃ = 1|b = 1

]∣∣∣ .
Game 0.

This is the real experiment for 1-SEL-SIM security for MIQFE.
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Game 0, Game 1 , Game 2 Game 3 Game 4

MIQFE.SetUpi(1κ,Fn
B,ℓ) :

PG ← PGGen(1κ),ui
$←− Zn

p for i ∈ [ℓ],wi,j
$←− Z2n

p for i, j ∈ [ℓ]

ci
$←− Zp for i ∈ [ℓ]. If any ci = 0 abort.

IPFE.mski,j ← IPFE.SetUp(1κ, F̃2n
IP ,PG), IPFE.msk′i,j = IPFE.mski,j for i, j ∈ [ℓ],

IPFE.m̃ski,j ← IPFE.SetUpSim(1κ, F̃2n
IP ,PG), IPFE.msk′i,j = IPFE.m̃ski,j for i, j ∈ [ℓ]

MIQFE.param = PG, MIQFE.msk =
(
{ui, ci}i∈[ℓ], {wi,j , IPFE.msk′i,j}i,j∈[ℓ]

)
MIQFE.Enci(MIQFE.msk, i, xi) :

ũi = ui, ũi = ui − c−1
i xi

c̃txi
= xi + ciũi,

(
note that c̃txi

= ciui

)
IPFE.ci,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j + cj

(
c̃txi

xi

))
, IPFE.c′i,j = IPFE.ci,j for j ∈ ℓ

IPFE.c̃i,j ← IPFE.EncSim(IPFE.m̃ski,j) , IPFE.c
′
i,j = IPFE.c̃i,j for i, j ∈ [ℓ]

sti = 0, sti = ũi , sti = 0

MIQFE.ci = (c̃txi
, {IPFE.c′i,j}j∈[ℓ])

MIQFE.KeyGeni(MIQFE.msk,{sti}i∈[ℓ], v, F ) : For i, j ∈ [ℓ], w̃i,j
$←− Zp

di,j = 0, di,j =

(
wi,j + cj

(
c̃txi

ci(ui − ũi)

))⊤(
ũ⊤
j Fj,i

Fi,jũj

)

di,j = w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)⊤(
ũ⊤
j Fj,i

Fi,jũj

)
if Fi,j ̸= 0 or Fj,i ̸= 0, else di,j = w̃i,j = 0

di,j = w̃i,j + c̃t
⊤
xj
Fj,ic̃txi

if Fi,j ̸= 0 or Fj,i ̸= 0, else di,j = w̃i,j = 0

IPFE.ski,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
ũ⊤
j Fj,i

Fi,jũj

))
, IPFE.sk′i,j = IPFE.ski,j

IPFE.s̃ki,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j), IPFE.sk
′
i,j = IPFE.s̃ki,j

zkF =
∑

i,j∈[ℓ]

w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
, z̃kF =

∑
i,j∈[ℓ]

w̃i,j , z̃kF = v +
∑

i,j∈[ℓ]

w̃i,j

MIQFE.skF = (F , {IPFE.sk′i,j}i,j∈[ℓ], zkF )

Fig. 1 Games for the security proof of the MIQFE scheme from Encryption Scheme 3.

Game 1.

In this Game we are changing the ciphertext ctxi to ciui which is random, and
then change ui to ũi := ui − c−1

i xi in the rest of algorithms to maintain coherence.
Also, since we need ci ̸= 0, we will abort SetUp whenever this is not satisfied. Then,
distinguishing Games is distinguishing between ui and ũi.

First we show that coherence is kept. Indeed,

[ṽ]T =

 ∑
i,j∈[ℓ]

[c̃txiFi,j c̃txj ]T − [di,j ]T

+ [zkF ]T

=

 ∑
i,j∈[ℓ]

[
ciu

⊤
i Fi,jcjuj

]
T
−

[(
wi,j + cj

(
c̃txixi

))⊤ (
ũ⊤
j Fj,i

Fi,jũj

)]
T


+

 ∑
i,j∈[ℓ]

w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
T
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=
∑

i,j∈[ℓ]

[
ciu

⊤
i Fi,jcjuj

]
T
− [cjciu

⊤
i (uj − c−1

j xj)
⊤Fj,i]T

− [cjx
⊤
i Fi,j(uj − c−1

j xj)]T

=
∑

i,j∈[ℓ]

[
ciu

⊤
i Fi,jcjuj

]
T
− [cju

⊤
j Fj,iciui]T + [x⊤

j Fj,iciui]T

− [x⊤
i Fi,jcjuj ]T + [x⊤

i Fi,jxj ]T

=

 ∑
i,j∈[ℓ]

x⊤
i Fi,jxj


T

.

Then, for the change in ci, the probability to abort during SetUp is 1/p for all
i ∈ [ℓ] independently. Then, as long as ui and ũi are indistinguishable, so will be
Game 0 and Game 1. Now, ũi will exist as long as ci has an inverse, which it will
since ci ̸= 0, and given that ui is sampled uniformly at random in Zn

p and used only
once (we are proving one selective security), then ui and ũi are computationally
indistinguishable. Therefore, for any PPT adversary A′, Adv01(A′) ≤ ℓ/p.

Game 2.

In this Game we are substituting the IPFE algorithms (IPFE.SetUp,
IPFE.Enc, IPFE.KeyGen) used to compute di,j which we do not modify, by their
corresponding simulators (IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim), so dis-
tinguishing between games would imply an adversary breaking 1-SEL-SIM security
for IPFE.

More formally, we prove in Lemma 7 that for any PPT adversary A′, there exists
a PPT adversary B such that Adv12(A′) ≤ ℓ2 · AdvFH-SIM

IPFE (B). The intuition is that
through the use of a Hybrid argument, we swap in the simulators for every di,j with
i, j ∈ [ℓ].

Game 3.

In this Game we change the construction of di,j , more specifically we swap

w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
for a random value w̃i,j , as long as Fj,i ̸= 0 or Fi,j ̸= 0. Otherwise

we keep the value at 0. First we show that coherence is held. Indeed,

[zkF ]T −
∑

i,j∈[ℓ]

[di,j ]T =

=

 ∑
i,j∈[ℓ]

w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
−

∑
i,j∈[ℓ]

(
wi,j + cj

(
c̃txi

ci(ui − ũi)

))⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
T

=

 ∑
i,j∈[ℓ]

cj

(
c̃txi

ci(ui − ũi)

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
T

,

[z̃kF ]T −
∑

i,j∈[ℓ]

[d̃i,j ]T =

 ∑
i,j∈[ℓ]

w̃i,j −
∑

i,j∈[ℓ]

w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
T
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=

 ∑
i,j∈[ℓ]

cj

(
c̃txi

ci(ui − ũi)

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
T

.

Then, since each wi,j is sampled uniformly at random in Z2n
p , as long as the

adversary has access to less than 2n different samples of w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
, it is still

indistinguishable from random due to the remaining entropy of wi,j . This is an argu-
ment used in [46] to show that their multi-input inner-product scheme is simulation
sound. Therefore, for any PPT adversary A′, Adv23(A′) = 0.

Game 4.

In this Game we finish the simulation by changing one last time the construction

of di,j . More specifically we change di,j from w̃i,j + cj

(
c̃txi

ci(ui − ũi)

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
to w̃i,j + c̃t

⊤
xj

Fj,ic̃txi and modify zkF from
∑

i,j∈[ℓ] w̃i,j to v +
∑

i,j∈[ℓ] w̃i,j to
maintain coherence. Notably, it is in this step where the function-hiding property of
the underlying IPFE scheme is relevant since we can run the key generation simulator
only knowing the desired output, and no other information about the linear function.
It is also in this change where the “interweaving” of the IPFE ciphertexts commented
in the technical overview can be seen.

Firstly, we show that coherence is held. Indeed, in Game 3 we have

z̃k
(3)
F =

∑
i,j∈[ℓ]

d̃
(3)
i,j − cj

(
c̃txi

xi

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
since ci(ui − ũi) = xi by definition of ũi. and in Game 4 we get∑
i,j∈[ℓ]

d̃
(4)
i,j − cj

(
c̃txi

xi

)⊤ (
ũ⊤
j Fj,i

Fi,jũj

)
=

=
∑

i,j∈[ℓ]

d̃
(4)
i,j −

(
(cjciui)

⊤(uj − c−1
j xj)

⊤Fi,j + cjxiFi,j(uj − c−1
j xj)

)
=

∑
i,j∈[ℓ]

d̃
(4)
i,j −

(
cju

⊤
j Fj,iciui − x⊤

j Fj,iciui + x⊤
i Fi,jcjuj − x⊤

i Fi,jxj

)
=

∑
i,j∈[ℓ]

w̃i,j + c̃t
⊤
xj

Fj,ic̃txi −
(
c̃t

⊤
xj

Fj,ic̃txi − x⊤
i Fi,jxj

)
= v +

∑
i,j∈[ℓ]

w̃i,j

= z̃k
(4)
F .

It is in this equality that we see the “interweaving” at work, since x⊤
j Fj,iciui and

x⊤
i Fi,jcjuj get canceled only because we are adding for all i, j ∈ [ℓ]. Then, as long

as d̃
(3)
i,j and d̃

(4)
i,j are indistinguishable, then z̃k

(3)
F and z̃k

(4)
F are also indistinguishable.

To complete the argument, we note that since w̃i,j is sampled uniformly at random,

then d̃
(3)
i,j is indistinguishable from w̃i,j which in turn is indistinguishable from d̃

(4)
i,j .

All in all, for any PPT adversary A′, Adv34(A′) = 0.
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Hybrid Hι
η

MIQFE.SetUpi(1κ,Fn
B,ℓ) :

PG ← PGGen(1κ),ui
$←− Zn

p for i ∈ [ℓ],wi,j
$←− Z2n

p for i, j ∈ [ℓ] ci
$←− Zp for i ∈ [ℓ]. If any ci = 0 abort.

-if (i, j) <L (η, ι) : IPFE.msk′i,j ← IPFE.SetUpSim(1κ, F̃2n
IP ,PG),

-if (i, j) = (η, ι) : IPFE.msk′i,j ← IPFE.SetUpSim(1κ, F̃2n
IP ,PG) ,

-if (i, j) >L (η, ι) : IPFE.msk′i,j ← IPFE.SetUp(1κ, F̃2n
IP ,PG),

MIQFE.msk =
(
{ui, ci}i∈[ℓ], {wi,j , IPFE.msk′i,j}i,j∈[ℓ]

)
MIQFE.Enci(MIQFE.msk, i, xi) :

ũi = ui − c−1
i xi, c̃txi = ciui, sti = ũi

-if (i, j) <L (η, ι) : IPFE.c′i,j ← IPFE.EncSim(IPFE.m̃ski,j)

-if (i, j) = (η, ι) : IPFE.c′i,j ← IPFE.EncSim(IPFE.m̃ski,j)

-if (i, j) >L (η, ι) : IPFE.c′i,j ← IPFE.Enc

(
IPFE.mski,j ,wi,j +

(
cj c̃txi

cjxi

))
MIQFE.ci = (c̃txi

, {IPFE.c′i,j}j∈[ℓ])

MIQFE.KeyGeni(MIQFE.msk,{sti}i∈[ℓ], v, F ) : For i, j ∈ [ℓ]

di,j =

(
wi,j +

(
cj c̃txi

cjci(ui − ũi)

))⊤(
ũ⊤
j Fj,i

Fi,jũj

)
, zkF =

∑
i,j∈[ℓ]

w⊤
i,j

(
ũ⊤
j Fj,i

Fi,jũj

)
-if (i, j) <L (η, ι) : IPFE.sk′i,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j)

-if (i, j) = (η, ι) : IPFE.sk′i,j ← IPFE.KeyGenSim(IPFE.m̃ski,j , di,j)

-if (i, j) >L (η, ι) : IPFE.sk′i,j ← IPFE.KeyGen

(
IPFE.mski,j ,

(
ũ⊤
j Fj,i

Fi,jũj

))
MIQFE.skF = (F , {IPFE.sk′i,j}i,j∈[ℓ], zkF )

Fig. 2 Games for the hybrid argument in Lemma 7. Changes are squared.

Finally, adding it all up, and considering that Game 0 is the real experiment and
Game 4 is the ideal experiment, we get

AdvMI−SIM
MIQFE (A) = Adv01(A) + Adv12(A) + Adv23(A) + Adv34(A)

≤ ℓ2 · AdvFH-SIM
IPFE (B) + ℓ

p
.

□

3.3 Proof of Auxiliary Lemma

Lemma 7 For any PPT adversary A′, there exists a PPT adversary B such that

Adv12(A′) ≤ ℓ2 · AdvFH-SIM
IPFE (B).

Proof We will prove the result through a series of Hybrid Games Hι
η for ι ∈ [ℓ] and

η ∈ [ℓ], defined in Figure 2. For ease of notation we define the lexicographical order
(N2, <L) where (a, b) <L (c, d) if and only if a < c or a = c and b < d, analogously,
(a, b) >L (c, d) if and only if a > c or a = c and b > d. We show that Game 1
≈c H1

1 ≈c . . . ≈c Hℓ
1 ≈c H1

2 ≈c . . . ≈c Hℓ
ℓ = Game 2.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0 it
interacts with a PPT adversary A′ as in Hybrid Hι−1

η , otherwise it interacts as in

Hybrid Hι
η. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We define

AdvH(ι−1)ι(A
′) := |Pr[b̃ = 1|b = 0]−Pr[b̃ = 1|b = 1]| for ι ∈ [ℓ]. We define analogously

Advρ
(i−1)i

(A′) for distinguishing between Hybrid H2
i−1 and Hybrid H0

i .
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Formally speaking, going from hybrid Hι−1
η to hybrid Hι

η we are swapping the
IPFE algorithms by their respective simulators. First, we note that coherence is
held since the output of the decryption algorithm di,j is the same in both hybrids
given that cη(uη − ũη) = xη by definition of ũη. Furthermore, the plaintext

wi,j +

(
cj c̃txi

cjxi

)
is indistinguishable from random since wi,j is sampled uniformly

at random and used only once (we are proving one selective security).
Then, distinguishing the simulators in the context of the MIQFE or by their own

has the same advantage, so for any PPT adversary A′ trying to distinguish Hι−1
η

and Hι
η we can construct a PPT adversary B which distinguishes the real experiment

from the ideal experiment in the function-hiding simulation security game for IPFE.
Therefore, we get that for any PPT adversary A′ there exists a PPT adversary B
such that AdvH(ι−1)ι(A

′) ≤ AdvFH-SIM
IPFE (B).

To finalize the proof we note that going from hybrid Hℓ
η−1 to hybrid H1

η and

going from Game 1 to hybrid H1
1 are analogous to going from hybrid Hι−1

η to Hι
η as

well as the fact that Game 2 is exactly the same as hybrid Hℓ
ℓ. Since there are ℓ2

relevant changes we get

Adv12(A) = ℓ2 · AdvH(ι−1)ι(A)

≤ ℓ2 · AdvFH-SIM
IPFE (B).

□

4 Function-Hiding Inner-Product Functional
Encryption Instantiation

In the previous section we give an instantiation of a one selective multi-input
simulation secure MIQFE based on a one selective function-hiding simulation
secure IPFE scheme. As said in Section 1.2, such a scheme does not exist in
the standard model, so in this section we give a function-hiding inner-product
functional encryption scheme for bounded-norm inner-product functionalities
and prove it to be one selective function-hiding simulation secure. As explained
in Section 1.3, we will construct the scheme by layering tow instances of the
scheme [8, Section 3].

We will first describe the family of functions we want to cover. Let Fn
IP :

J0, BKn → J0, n · B2K be the family of functions such that a function y ∈ Fn
IP

is defined by a vector in J0, BK and applied to z gives y(z) := z⊤y.

4.1 Description of the Scheme

We define our scheme for the family of functions Fn
IP as defined above as follows.

Encryption Scheme 4 (Function-hiding IPFE Scheme)

• IPFE.SetUp(1κ,Fn
IP) : Sample PG = (G1,G2,GT , p, P1, P2, e) ← PGGen

(1κ), u
$←− Zn+1

p and v
$←− Zn

p . Output IPFE.param = PG and IPFE.msk =
(u,v).
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• IPFE.Enc(IPFE.msk, x) : Sample c
$←− Zp. Compute

ct1 := [c]1 ∈ G1; ct2 :=

[(
−v⊤x

x

)
+ c · u

]
1

∈ Gn+1
1

Output IPFE.cx := (ct1, ct2).

• IPFE.KeyGen(IPFE.msk, y) : Sample t
$←− Zp. Compute

sk1 :=

[
−u⊤

(
t

y + t · v

)]
2

∈ G2; sk2 :=

[(
t

y + t · v

)]
2

∈ Gn+1
2

Output IPFE.sky := (sk1, sk2).
• IPFE.Dec(IPFE.cx, IPFE.sky) : Compute [v]T := e(ct1, sk1) + e(ct2, sk2).
Output log([v]T ) if v ∈ J0, n ·B2K and ⊥ otherwise.

Remark 2 Note that this scheme is easily transformable into a scheme for the family
of functions F̃n

IP by eliminating the discrete logarithm at the end of decryption and
not bounding x and y.

4.2 Correctness and Security

Proposition 8 The IPFE scheme defined in Encryption Scheme 4 is a correct
functional encryption scheme for Fn

IP.

Proof The first pairing operation gives us

e(ct1, sk1) =

[
c · (−u)⊤

(
t

y + t · v

)]
T

,

and the second pairing operation gives us

e(ct2, sk2) =

[((
−v⊤x

x

)
+ c · u

)⊤ (
t

y + t · v

)]
T

=

[
−t · v⊤x+ x⊤y + t · x⊤v + c · u⊤

(
t

y + t · v

)]
T

=

[
x⊤y + c · u⊤

(
t

y + t · v

)]
T

.

This in turn gives us [v]T =
[
x⊤y

]
T
. □

Theorem 9 The IPFE scheme described in 4 is one selective function-hiding sim-
ulation secure, if the DDH assumption holds in group G2. In other words, for any
PPT adversary A there exists a PPT adversary B such that

AdvFH-SIM
IPFE (A) ≤ 2Qsk · AdvDDH

G2
(B) + 1

p
+

2Qsk

p− 1
.

where Qsk denotes the number of queries performed to KeyGen.
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Game 0, Game 1 , Game 2

IPFE.SetUpi(1κ,Fn
IP) :

PG ← PGGen(1κ),u
$←− Zn+1

p ,v
$←− Zn

p , c
$←− Zp, if c = 0 abort

IPFE.param = PG, IPFE.msk = (u,v, c )

IPFE.Enci(IPFE.msk, x) :

c
$←− Zp

ct1 = [c]1, ct2 =

[(
−v⊤x

x

)
+ c · u

]
1

, [ct2] = [c · u]1
IPFE.cx = (ct1, ct2)

IPFE.KeyGeni(IPFE.msk, x⊤y, y) : t
$←− Zp

sk1 =

[
−u⊤

(
t

y + t · v

)]
2

, sk1 =

[
−u⊤

(
t

y + t · v

)
+ c−1 · x⊤y

]
2

, sk1 =

[
−u⊤

(
t

t · v

)
+ c−1 · x⊤y

]
2

sk2 =

[(
t

y + t · v

)]
2

, sk2 =

[(
t

t · v

)]
2

IPFE.sky = (sk1, sk2)

Fig. 3 Games for the security proof of the IPFE from Encryption Scheme 4.

Proof Let A be a PPT adversary playing the function-hiding 1-SEL-SIM security
game for IPFE, and let κ ∈ N be a security parameter. We will prove the result
through a series of games Game i for i ∈ {0, 1, 2}, defined in Figure 3 with changes
in Game i+ 1 being over Game i. We show that ExprealA (1κ) = Game 0 ≈s Game 1

≈c Game 2 = ExpidealA,S (1κ).

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0 it
interacts with a PPT adversary A′ as in Game i, otherwise it interacts as in Game
i + 1. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. For i = 0, 1,

we define Advi(i+1)(A′) :=
∣∣∣Pr [b̃ = 1|b = 0

]
− Pr

[
b̃ = 1|b = 1

]∣∣∣ .
Game 0.

This is the real experiment for FH 1-SEL-SIM security for IPFE.

Game 1.

In this Game we change the construction of ct2 from

[(
−v⊤x

x

)
+ c · u

]
1

to

[c · u] and to keep coherence we must change sk1 from we must change sk1 =[
−u⊤

(
t

y + V t

)]
2

to

[
−u⊤

(
t

y + V t

)
+ c−1 · x⊤y

]
2

. To be able to make this

change we move the sampling of c to the SetUp and abort if c = 0.

This change can also be seen as swapping u for ũ := u− c−1 ·
(
−v⊤x

x

)
, since[(

−v⊤x
x

)
+ c · ũ

]
1

=

[(
−v⊤x

x

)
+ c ·

(
u− c−1 ·

(
−v⊤x

x

))]
1

= [c · u]1,[
−ũ⊤

(
t

y + t · v

)]
2

=

[
−
(
u− c−1 ·

(
−v⊤x

x

))⊤ (
t

y + t · v

)]
2

=

[
− u⊤

(
t

y + t · v

)
− t · c−1 · (v⊤x) + c−1 · x⊤y
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+ t · c−1 · x⊤v

]
2

=

[
−u⊤

(
t

y + t · v

)
+ c−1 · x⊤y

]
2

,

and coherence is indeed held given that

e(c̃t1, sk1) =

[
−c · u⊤

(
t

y + t · v

)
+ x⊤y

]
T

,

e(c̃t2, sk2) =

[
c · u⊤

(
t

y + t · v

)]
T

which gives [v]T = [x⊤y]T during decryption.
First, for the change in c, since we are proving one selective simulation its sam-

pling can be moved to SetUp, and the protocol will abort with probability 1/p. Then,
as long as u and ũ are indistinguishable, so will be Game 0 and Game 1. Now, ũ will
exist as long as c has an inverse, which it will since c ̸= 0, and given that u is sam-
pled uniformly at random in Zn+1

p and used only once (we are proving one selective
security), then u and ũ are indistinguishable. Therefore, for any PPT adversary A′,
Adv01(A′) ≤ 1/p.

Game 2.

In this Game we finish the simulation by changing in both sk1 and sk2 the vector(
t

y + t · v

)
to

(
t

t · v

)
. This means that the encryption simulation can be performed

without knowledge of x and the key generation simulation can be performed only
knowing the output x⊤y.

More formally, we prove in Lemma 10 that for any PPT adversary A′ there exists
a PPT adversary B such that Adv12(A′) ≤ 2Qsk ·AdvDDH

G2
+2Qsk/p− 1. The intuition

is that using a Hybrid argument through the queries asked we use the n-fold DDH
assumption (see Appendix 2.2) to swap t ·v for a value sampled uniformly at random
so we can remove y.

Finally, adding it all up, and considering that Game 0 is the real experiment and
Game 2 is the ideal experiment, we get

AdvFH-SIM
IPFE (A) = Adv01(A) + Adv12(A) ≤ 2Qsk · AdvDDH

G2
(B) + 1

p
+

2Qsk

p− 1
.

□

4.3 Proof of Auxiliary Lemma

Lemma 10 For any PPT adversary A′ there exists a PPT adversary B such that

Adv12(A′) ≤ 2Qsk · AdvDDH
G2

+
2Qsk

p− 1
.

where Qsk denotes the number of queries performed to KeyGen.

Proof We will prove this through a series of Hybrid Games Hα
ρ for ρ ∈ [Qsk] and

α ∈ {0, 1, 2}, defined in Figure 4. We show that Game 1 = H0
1 ≈c H1

1 ≈s H2
1 ≈c

H0
2 ≈c . . . ≈c H2

Qsk
≈c= H0

Qsk+1
Game 2.
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H0
ρ, H1

ρ , H2
ρ

IPFE.KeyGenHρ,α(IPFE.msk, x⊤y, y) : In query i t
$←− Zp

-if i < ρ: ỹ = 0 and ṽ = t · v,

-if i = ρ: ỹ = y, ỹ = 0 and ṽ = t · v, ṽ
$←− Zn

p ,

-if i > ρ: ỹ = y and ṽ = t · v

sk1 =

[
−u⊤

(
t

ỹ + ṽ

)
+ c−1 · x⊤y

]
2

, sk2 =

[(
t

ỹ + ṽ

)]
2

IPFE.sky = (sk1, sk2)

Fig. 4 Games for the hybrid argument in Lemma 10. Changes only occur on the KeyGen
algorithm so the others are omitted and assumed the same as in Game 1 in Figure 3.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0
it interacts with a PPT adversary A′ as in Hybrid Hi−1

ρ , otherwise it interacts as

in Hybrid Hi
ρ. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We

define Advα(i−1)i(A
′) := |Pr[b̃ = 1|b = 0] − Pr[b̃ = 1|b = 1]| for i = 1, 2. We define

analogously Advρ
(i−1)i

(A′) for distinguishing between Hybrid H2
i−1 and Hybrid H0

i .

Hybrid H1
ρ.

In this change we have swapped ṽ from t · v to uniformly at random. We show that
for any PPT adversary A′ trying to distinguish these two Hybrids we can construct
a PPT adversary B against the n-fold DDH assumption in G2.

When, B receives the n-fold DDH challenge [t]2 = [(t, 1)⊤]2, [W ]2 := [(w1,
w2)

⊤]2 for some w1,w2 ∈ Zn
p , it runs IPFE.SetUpHρ,1 and IPFE.EncHρ,1 and in

IPFE.m̃sk it substitutes v for [w2]2. Note that only having the element in G2 is not
an issue since after Game 1 v is only used during KeyGen and as such only the val-
ues in G2 are needed. It is in this step where using our order in layering the schemes
from [8, Section 3] instead of the order in [14, Section 6.3] comes into play.

Then for query i ∈ [Qsk], if i ̸= ρ it runs KeyGenHρ,1 normally, but if i = ρ it sets
[t]2 as the first part of the n-fold DDH challenge and ṽ = [w1]2. Once again, only
having the elements in G2 is not an issue since the operations can be performed in
the group. Finally, it outputs the same bit as adversary A′. It is clear to see that if

the DDH challenge [W ]2 is of the form [tr⊤]2 = [(tr, r)⊤]2 for some r
$←− Zn

p then

it is the same distribution as in Hybrid H0
ρ while if [W ]2 is uniformly at random it

is the same distribution as in Hybrid H1
ρ. As such we get

Advα01(A′) ≤ AdvQ-DDH
G2

(B)

≤ AdvDDH
G2

(B) + 1

p− 1
,

where we have applied the random self-reducibility of DDH, Lemma 1.

Hybrid H2
ρ.

In this change we have swapped y from y to 0. Distinguishing between these Hybrids
is distinguishing between y + ṽ and ṽ, and since ṽ is sampled uniformly at random
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and only used once they are indistinguishable. Therefore, for any PPT adversary A′,
Advα12(A′) = 0.

Hybrid H0
ρ+1.

In this change we have swapped back ṽ from sampled uniformly at random to t · v.
As such this transition is analogous to the change from H0

ρ to H1
ρ, so for any PPT

adversary A′ there exists a PPT adversary B such that

Advρ
i(i+1)

(A′) ≤ AdvDDH
G2

(B) + 1

p− 1
.

Finally, adding all the transitions together and noting that H0
1 is identically

distributed to Game 1, while H0
Qsk+1 is identically distributed to Game 2, we get

Adv12(A′) ≤ 2Qsk · AdvDDH
G2

+
2Qsk

p− 1
.

where Qsk denotes the number of queries performed to KeyGen. □

5 Randomized Quadratic Functional
Encryption Scheme

In this section we describe our randomized quadratic functional encryption
scheme for bounded-norm quadratic functionalities. We first describe the fam-
ily of functions we want to cover. Let Fn

Q,B : J0, BKn → J0, n2 · B3K be the
family of quadratic functions such that a function F ∈ Fn

Q,B is defined by a

matrix in J0, BKn×n which applied to x ∈ J0, BKn gives x⊤Fx. We then define
the family of randomized functions F̂n

Q,B,ϵ : J0, BKn×R → Z such that a func-

tion F̂ ∈ F̂n
Q,B,ϵ is defined by a matrix in J0, BKn×n and a distribution Dϵ over

Z which applied to x ∈ J0, BKn gives x⊤Fx + e(rF ), where rF ← R is used
as a seed to sample e(rF ) following the distribution Dϵ.

To construct our RQFE scheme we use a function-hiding inner-product
functional encryption whose family of functions is F̃2n

IP : Z2n
p → GT (for some

PG = (G1,G2,GT , p, P1, P2, e) ← PGGen(1κ)). A function y ∈ F̃2n
IP is defined

by a vector in Zn+m
p and applied to z gives y(z) :=

[
z⊤y

]
T
.

5.1 Description of the Scheme

Let IPFE = (IPFE.SetUp, IPFE.Enc, IPFE.KeyGen, IPFE.Dec) be a function-
hiding inner-product functional encryption scheme for the family of functions
F̃2n

IP . Below is a description of our RQFE scheme for the family of functions

F̂n
Q,B,ϵ.

Encryption Scheme 5 (RQFE Scheme)

• RQFE.SetUp(1κ, F̂n
Q,B,ϵ) : Sample PG = (G1,G2,GT , p, P1, P2, e)← PGGen

(1κ) and choose Dϵ a distribution over Zp. Then sample u
$←− Zn

p , w
$←− Z2n

p



34 SIM Secure MIQFE: Applications to DP

and c
$←− Zp. Run IPFE.msk← IPFE.SetUp(1κ, F̃2n

IP ,PG). Output

RQFE.param = (PG, Dϵ) and

RQFE.msk = (u,w, c, IPFE.msk).

• RQFE.Enc(RQFE.msk,x) : Compute

ctx := x+ c · u,

IPFE.c← IPFE.Enc

(
IPFE.msk,w + c

(
ctx
x

))
.

Output RQFE.cx = (ctx, IPFE.c).

• RQFE.KeyGen(RQFE.msk,F ) : Sample rF ← R for e(rF ) ∼ Dϵ and u′
F

$←−
Zp. Compute

t′F = e(rF ) + u′
F ,

IPFE.sk ← IPFE.KeyGen

(
IPFE.msk,

(
u⊤F
Fu

))
,

zkF ← w⊤
(
u⊤F
Fu

)
− u′

F .

Output RQFE.skF = (F , IPFE.sk, t′F , zkF ).
• RQFE.Dec(RQFE.cx,RQFE.skF ) : Compute

[d]T ← IPFE.Dec(IPFE.c, IPFE.sk)

[v]T := [ct⊤xFctx]T − [d]T + [t′F + zkF ]T

Output log([v]T ) if v ∈ [0, n2 ·B3+α] and ⊥ otherwise, where α is such that
Pr[Dϵ > α] = neg(κ).

Remark 3 Note that in our RQFE construction, setting the distributionDϵ as the zero
distribution, the construction reduces exactly to the multi-input construction from
Encryption Scheme 3 for the parameter ℓ = 1, mirroring the result in [6] where their
randomized inner-product scheme reduces to the multi-input inner-product scheme
of [20, Section 3.1 Figure 4].

5.2 Correctness and Security

Proposition 11 The RQFE scheme defined in Encryption Scheme 5 is a correct
randomized functional encryption scheme for F̂n,m

Q,B,ϵ as long as IPFE is a correct

scheme for F̃n+m
IP .
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Proof For ease of notation and reading we will leave out the [.]T . Let x ∈ J0, BKn be

any plaintext and F̂ 1, . . . , F̂Q ∈ F̂ℓ,X,Y
ϵ any set of randomized functions. Then for

any i ∈ [Q] we get that vi ← RQFE.Dec(RQFE.cx,RQFE.skF i) satisfies the following:

ct⊤xF ictx = x⊤F ix+ c · u⊤F ix+ x⊤F ic · u+ c · u⊤F ic · u

from which we want to cancel out everything but x⊤F ix.
Let us take a look at γi (which are all the extra terms apart from x⊤F ix). Given

that IPFE is a correct scheme for Fn+m
IP we have that

di =

(
w + c

(
ctx
x

))⊤ (
u⊤F i

F iu

)
= w⊤

(
u⊤F i

F iy

)
+ c · x⊤(u⊤F i) + c2 · u⊤(u⊤F i) + c · x⊤F iu

= w⊤
(
u⊤F i

F iu

)
+ c · u⊤F ix+ c · u⊤F ic · u+ x⊤F ic · u.

Finally, adding t′F i and zfF i we get

vi = ct⊤xF ictx − di + t′F i + zkF i

= x⊤F ix+ c · u⊤F ix+ x⊤F ic · u+ c · u⊤F ic · u

−
(
w⊤

(
u⊤F i

F iu

)
+ c · u⊤F ix+ c · u⊤F ic · u+ x⊤F ic · u

)
+ eF i + u′F i +w⊤

(
u⊤F i

F iu

)
− u′F i

= x⊤F ix+ e(rF i).

This is clearly the same as F̂ i(x; r) for r ← R when e(rF ) ≤ α since e(rF ) is
sampled from Dϵ independently for every query F . And since Pr[Dϵ > α] = neg(κ)

by definition, then vi and F̂ i(x; r) are computationally indistinguishable. □

Theorem 12 The RQFE scheme described in 5 is one selective simulation secure, if
the underlying inner-product functional encryption scheme is one selective function-
hiding simulation secure. In other words, for any PPT adversary A there exist PPT
adversaries B such that

AdvSIMRQFE(A) ≤ AdvFH-SIM
IPFE (B) + 1

p
.

Proof Let A be a PPT adversary playing the 1-SEL-SIM security game for RQFE,
and let κ ∈ N be a security parameter. We will prove the result through a series
of games Game i for i ∈ {0, 1, 2, 3, 4, 5}, defined in Figure 5 with changes in Game
i + 1 being over Game i. We show that ExprealA (1κ) = Game 0 ≈s Game 1 ≈c

Game 2 ≈s Game 3 ≈s Game 4 ≈s Game 5 = ExpidealA,S (1κ). Let also IPFE.Sim =
(IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim) be the simulator for function-hiding
1-SEL-SIM for the IPFE scheme.

Let C′ be a challenger that chooses b ∈ {0, 1} uniformly at random. If b = 0 it
interacts with a PPT adversary A′ as in Game i, otherwise it interacts as in Game
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Game 0, Game 1 , Game 2 Game 3 Game 4 Game 5

RQFE.SetUpi(1κ, F̂
n

Q,B,ϵ) :

PG ← PGGen(1κ),u
$←− Zn

p ,w
$←− Z2n

p , c
$←− Zp If c = 0 abort.

IPFE.msk← IPFE.SetUp(1κ, F̃2n
IP ,PG), IPFE.msk′ = IPFE.msk

IPFE.m̃sk← IPFE.SetUpSim(1κ, F̃2n
IP ,PG), IPFE.msk′ = IPFE.m̃sk

RQFE.param = PG, RQFE.msk =
(
u,w, c, IPFE.msk′

)
RQFE.Enci(RQFE.msk, x) :

ũ = u, ũ = u− c−1x

c̃tx = x+ c · ũ,
(
note that c̃tx = c · u

)
IPFE.c← IPFE.Enc

(
IPFE.msk,w + c

(
c̃tx
x

))
, IPFE.c′ = IPFE.c

IPFE.c← IPFE.Enc (IPFE.msk,w) , IPFE.c′ = IPFE.c

IPFE.c̃← IPFE.EncSim(IPFE.m̃sk) , IPFE.c′ = IPFE.c̃

st = 0, st = ũ , st = 0

RQFE.c = (c̃tx, IPFE.c
′)

RQFE.KeyGeni(RQFE.msk, st, v, F ) :

e(rF )← Dϵ, u
′
F

$←− Zp, t
′
F = e(rF ) + u′

F , t′F
$←− Zp

d = 0, d = w⊤
(
ũ⊤F
F ũ

)
, d = w⊤

(
u⊤F
Fu

)
IPFE.sk ← IPFE.KeyGen

(
IPFE.msk,

(
ũ⊤F
F ũ

))
, IPFE.sk′ = IPFE.sk

IPFE.s̃k ← IPFE.KeyGenSim(IPFE.m̃sk, d), IPFE.sk′ = IPFE.s̃k

zkF = w⊤
(
ũ⊤F
F ũ

)
− u′

F , zkF =

(
w − c

(
c̃tx
x

))⊤(
ũ⊤F
F ũ

)
− u′

F

zkF = w⊤
(
ũ⊤F
F ũ

)
− c̃t

⊤
xF c̃tx + x⊤Fx− u′

F , zkF = w⊤
(
u⊤F
Fu

)
− c̃t

⊤
xF c̃tx + x⊤Fx− u′

F

zkF = v +w⊤
(
u⊤F
Fu

)
− c̃t

⊤
xF c̃tx − t′F

RQFE.skF = (F , IPFE.sk′, zkF )

Fig. 5 Games for the security proof of the RQFE scheme from Encryption Scheme 5.

i+ 1. At the end of the interaction, A′ will make its guess b̃ ∈ {0, 1}. We define (for

i = 0, 1, 2, 3, 4) Advi(i+1)(A′) :=
∣∣∣Pr [b̃ = 1|b = 0

]
− Pr

[
b̃ = 1|b = 1

]∣∣∣ .
Game 0.

This is the real experiment for 1-SEL-SIM security for RQFE.

Game 1.

In this game we simulate the IPFE plaintext, by sampling it by uniformly at random.

In other words, we change w+ c

(
ctx
x

)
for w during the encryption. Then, to keep

coherence, we change zkF from w⊤
(
u⊤F
Fu

)
− u′F to

(
w − c

(
ctx
x

))⊤ (
u⊤F
Fu

)
−

u′F . Indeed, we get

[d]T =

[
w⊤

(
u⊤F
Fu

)]
T

,

[v]T =
[
ct⊤xFctx − d+ t′F + zkF

]
T
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=

[
ct⊤xFctx −w⊤

(
u⊤F
Fu

)
+ t′F +

(
w − c

(
ctx
x

))⊤ (
u⊤F
Fu

)
− u′F

]
T

=
[
x⊤Fx+ e(rF )

]
T
.

Then, distinguishing between Game 0 and Game 1 is the same as distinguishing

betweenw+c

(
ctx
x

)
andw. Sincew is sampled uniformly at random in Z2n

p and only

used once (we are proving one selective security), these two vectors are statistically
indistinguishable. As such, for any PPT adversary A′, Adv01(A′) = 0.

Game 2.

In this game we are substituting the IPFE algorithms (IPFE.SetUp,
IPFE.Enc, IPFE.KeyGen) used to compute d by their corresponding simulators
(IPFE.SetUpSim, IPFE.EncSim, IPFE.KeyGenSim). Then, distinguishing between
games would imply an adversary breaking 1-SEL-SIM security for IPFE. More
formally, for any PPT adversary A′, there exists a PPT adversary B such that
Adv12(A′) ≤ AdvFH-SIM

IPFE (B).

Game 3.

In this game we simulate the ciphertext by swapping ctx for c · u which is random.
To do so while keeping coherence, Game 3 is a rewriting of Game 2 replacing u for
ũ := u− c−1x where we abort the SetUp if c ̸= 0. Indeed,

c̃tx : = x+ c · ũ = x+ c(u− c−1x) = c · u,

zkF =

(
w − c

(
c̃tx
x

))⊤ (
ũ⊤F
F ũ

)
− u′F

= w⊤
(
ũ⊤F
F ũ

)
−

(
c(u− c−1x)⊤F c · u+ x⊤F c(u− c−1x)

)
− u′F

= w⊤
(
ũ⊤F
F ũ

)
−

(
c · u⊤F c · u− x⊤F c · u+ x⊤F c · u− x⊤Fx

)
= w⊤

(
ũ⊤F
F ũ

)
− c̃t

⊤
xF c̃tx + x⊤Fx− u′F

As such, for the change in c, the probability to abort during SetUp is 1/p. Then,
as long as u and ũ are indistinguishable, so will be Game 0 and Game 1. Now, ũ
will exist as long as c has an inverse, which it will since c ̸= 0, and given that u is
sampled uniformly at random in Zn

p and used only once (we are proving one selective
security), then u and ũ are statistically indistinguishable. Therefore, for any PPT
adversary A′, Adv23(A′) ≤ 1/p.

Game 4.

In this game we change back d from w⊤
(
ũ⊤F
F ũ

)
to w⊤

(
u⊤F
Fu

)
, and to keep

coherence we do the same change in zkF . It is clear that given an adversary that
distinguishes between the values that have been changed, then we can construct
an adversary that distinguishes u from ũ. As we discussed in Game 3, u is sam-
pled uniformly at random in Zn

p and used only once, so u and ũ are statistically
indistinguishable. As such, for any PPT adversary A′, Adv34(A′) = 0.
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Table 5 Efficiency estimates for our MIQFE and IPFE constructions.

Secret key Ciphertext Functional key

Generic MIQFE ℓ2 · IPFE2n
msk + ℓ(1 + n)|p|+ ℓ22n|p| ℓ · IPFE2n

cx
+ n|p| ℓ2 · IPFE2n

sky
+ |p|

Generic RQFE IPFE2n
msk + (3n+ 1)|p| IPFE2n

cx
+ n|p| IPFE2n

sky
+ 2|p|

IPFE (2n+ 1)|p| (n+ 2)|G1| (n+ 2)|G2|

Concrete MIQFE ℓ2(4n+ 1)|p|+ ℓ(1 + n)|p|+ ℓ22n|p| ℓ(2n+ 2)|G1|+ n|p| ℓ2 · (2n+ 2)|G2|+ |p|

Concrete RQFE (7n+ 1)|p| (2n+ 2)|G1|+ n|p| (2n+ 2)|G2|+ 2|p|

Game 5.

In this game we finish the simulation by sampling t′F uniformly at random and

incorporating the noise from Dϵ from the value v = x⊤Fx + e(rF ), the inherent
leakage of the scheme. Coherence is indeed held, since zkF + t′F remains the same.
This means that distinguishing between Game 4 and Game 5 is distinguishing e(rF )+
u′F from uniformly at random. Since u′F is sampled uniformly in Zp both games are
indistinguishable. Therefore, for any PPT adversary A′, Adv45(A′) = 0.

Finally, adding it all up, and considering that Game 0 is the real experiment and
Game 5 is the ideal experiment, we get

AdvSIMRQFE(A) = Adv01(A) + Adv12(A) + Adv23(A) + Adv34(A) + Adv45(A)

≤ AdvFH-SIM
IPFE (B) + 1

p
.

□

6 Generic Efficiency Considerations

For any generic function-hiding simulation secure IPFE, our MIQFE scheme
supporting ℓ inputs of n coefficient each, needs for ℓ2 instances of IPFE, ℓ for
each input to handle the noise generated with combining with each of the
other inputs. A part from that, the master secret key needs for {ui}i∈[ℓ] ∈ Zn

p ,
{ci}i∈[ℓ] ∈ Zp and {wi,j∈[ℓ]} ∈ Z2n

p ; the ciphertexts need for ctxi
∈ Zn

p ; and
the functional keys need for zkF ∈ Zp.

For any generic function-hiding simulation secure IPFE, our RQFE scheme
supporting inputs of n coefficient each, needs only one instance of IPFE in com-
parison to the ℓ2 needed for MIQFE, thus eliminating the quadratic overcost.
Apart from that, the master secret key needs for u ∈ Zn

p , c ∈ Zp and w ∈ Z2n
p ;

the ciphertexts need for ctx ∈ Zn
p ; and the functional keys need for t′F ∈ Zp

and zkF ∈ Zp.
Our function-hiding IPFE scheme supporting n coefficients, needs in the

master secret key for u ∈ Zn+1
p and v ∈ Zn

p ; the ciphertext for ct1 ∈ G1 and

ct2 ∈ Gn+1
1 ; and the functional keys need for sk1 ∈ G2 and sk2 ∈ Gn+1

2 , which
also gives us concrete efficiency estimates of a concrete instantiation of our
MIQFE scheme. All this is shown in Table 5, where IPFEk

s denotes the size of
the element referred by s of the base IPFE scheme for k coefficients.
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7 Privacy and Implementation of RQFE

In this section we discuss the applications of our RQFE in differential privacy.
More specifically, we give a short summary of the result and setup from [6]
where they prove the relationship between RFE schemes and differential privacy
and we specify how our RQFE scheme works in this setting.

7.1 Differential Privacy Considerations

The first objective is to prove whether our RQFE is differentially private for
some choice of distribution Dϵ, and to do so we must construct the pri-
vacy mechanism M we need to analyze. Given that in functional encryption
the adversary has access to the ciphertext and the functional decryption key
from which they derive the output, the mechanism should include these three
objects: ciphertext, functional key and output. More formally, for the family
of queries Fn

Q,B , we define the mechanismM to be

M(x,F ; (rx, rF )) =


RQFE.cx ← RQFE.Enc(RQFE.msk,x; rx)

RQFE.skF ← RQFE.KeyGen(RQFE.msk,F ; rF )

s← RQFE.Dec(cx, skF )

for (rx, rF ) ← R, where Enc and KeyGen denote the algorithms taking
rx and rF as seeds for their randomness respectively and RQFE.msk ←
RQFE.SetUp(1κ, F̂n

Q,B). We divide the randomness space in two to more
accurately represent the randomness needed for the RQFE algorithms.

However, directly verifying that differential privacy holds for such a mech-
anism is not evident, since one would need to compare the distributions of the
ciphertext and the functional key for different neighbouring databases. Ideally,
this would be done by extending the differential privacy of the decryption s,
where it suffices to verify that the mechanism M′(x,F ; r) = x⊤Fx + e(r)
where e(r) ← Dϵ is differentially private. To do so we use the following
Theorem.

Theorem 13 (Differential Privacy for Randomized Functional Encryption, [6]) Let
RFE be a 1-SEL-SIM secure randomized functional encryption scheme against Q func-
tional key queries and M′ be an ϵ computationally differentially private mechanism
for Q queries. Then the mechanismM is an ϵ computationally differentially private
mechanism for Q queries.

In this case, computational differential privacy [47] is used, a relaxation of
differential privacy where the adversary is considered computationally bounded
instead of statistical. This is due to the fact that randomized functional encryp-
tion relies in computational assumptions, and as such the confidentiality of x
in the ciphertext is not guaranteed against a statistical adversary. Since com-
putational differential privacy is a relaxation of differential privacy, it suffices
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to chooseM′ such that it satisfies standard differential privacy (Definition 13)
for the whole scheme to be computationally differentially private.

As said in Section 2.4, we will use the Geometric mechanism with the
parameters in Lemma 3 in function of the sensitivity of the family of functions
∆F . For the quadratic family of functions Fn

Q,B , we get ∆F = 2n ·B2. Indeed
we have that for any F ∈ Fn

Q,B and any neighbouring databases x,x′ differing
only in coordinate k,

∥F (x)− F (x′)∥1 =

∣∣∣∣∣∑
i,j∈n

xi · xj · fi,j −
∑
i,j∈n

x′
i · x′

j · fi,j

∣∣∣∣∣
=

∣∣∣∣∣∑
i,j∈n

fi,j(xi · xj − x′
i · x′

j)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈n

fi,k(xi · xk − x′
i · x′

k) +
∑
j∈n

fk,j(xk · xj − x′
k · x′

j)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈n

fi,k · xi(xk − x′
k) +

∑
j∈n

fk,j · xj(xk − x′
k)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈n

fi,k · xi +
∑
j∈n

fk,j · xj

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈n

fi,k · xi

∣∣∣∣∣+
∣∣∣∣∣∑
j∈n

fk,j · xj

∣∣∣∣∣
which in turn, given that x ∈ J0, BKn and F ∈ J0, BKn×n results in

∆F := max
∥x−x′∥≤1
F∈Fn

Q,B

∥F (x)− F (x′)∥1

≤ 2n ·B2.

Finally, adding this together with Lemma 3 and the property of sequential
composition (Proposition 2) we get that by defining Dϵ ∼ Geo(exp(−ϵ/2Q ·
n · B2)) the mechanism M′ is (ϵ, 0)-differentially private against Q adaptive
queries. Also, by applying Lemma 4 we get that M′ is (O(1/ϵ) · 2Q · n · B2 ·
log(β/2), β)-useful.

7.2 Implementation Specifics

For a concrete implementation, we take the RQFE scheme from Encryption
Scheme 5 using as a base function-hiding IPFE scheme the one presented in
Encryption Scheme 4, due to the fact that it is the only known implementation
holding simulation security in the standard model. Note that the decryption
algorithm requires to compute the discrete logarithm of the output, which
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means this output should be bounded by some bound K = poly(κ). Then,
we can use the baby-step giant-step algorithm [48] to compute this discrete
logarithm in Õ(K1/2). For a practical implementation we will considerK ≈ 240

so that the computation of the discrete logarithm takes around 1.5s.
To better adapt to real-life use-cases we have done two adjustments to

the construction proposed in Section 5. First of all we consider positive and
negative inputs for both the database x and the function F . This does not
change the output bound K, and only requires us to run the discrete logarithm
algorithm twice: once with the generator of GT (for the positive values), and
once with its inverse (for the negative values). Secondly, we have separated the
bound for the inputs into two, a bound X for the database and a bound F for
the function. The only change this makes is the bound K is now defined as
n2 ·X2 ·F +α with α such that Pr[Dϵ > α] = neg(κ). These modifications do
not change the security proof, and allow us to consider databases and functions
in a much more fine-grained manner.

Given these changes and our notation, the RQFE output will be bounded
by K = n2 · X2 · F + α with probability β, where α, β are taken from the
utility of the mechanism M′, and we want K ≈ 240. We assume the number
of queries supported Q = 16, the bound for those queries F = 24, the privacy
budget ϵ = 0.1 and the probability β = 2−100 so as to be negligible. This
gives us a direct correlation between the number of database entries and the
maximum bound for these database entries. Note that these values need to be
low since the adversary can choose any challenge xn such that ∥x∥∞ < X and
query any function F n×n such that ∥F ∥∞ < F . In real life scenarios it may
be more beneficial to make assumptions on the database or the queries (for
example sparse matrices) such that the output bound K can be guaranteed
to be ≈ 240 with bigger parameters. For example, in χ2 testing the encrypted
observations would add to a known value, and the quadratic function to be
applied is very sparse (it is only non-zero at the diagonal and one column).

The implementation was coded in C using the libraries GMP [49] for mul-
tiple precision integers and MCL [50] for fast pairing-friendly groups based
on elliptic curves. More specifically, we use their implementation of the curve
BLS12-381 [51], a fast pairing-friendly curve achieving 128-bit security. We
give in Table 6 the resulting values when run for different values of n (database
entries) and |X| (size of database entries). These experimental results show
what was expected, the sizes of the master secret key, ciphertext and functional
decryption key all grow linearly with the amount of database entries n. The
encryption times also grow linearly as expected, while key generation times and
decryption times grow quadratically with n, due to the fact that matrix oper-
ations are needed (u⊤F and Fu during key generation and ct⊤xFctx during
decryption). Finally, the set up times show a less conclusive behaviour since
the times are dominated by computing the public parameters (setting up the
pairing friendly curve).
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Table 6 Efficiency values for RQFE instantiation.

n |X| msk cx skF

Sizes

10 14 1 KB 2 KB 3 KB
100 11 15 KB 17 KB 28 KB
1 000 7 156 KB 172 KB 281 KB
10 000 4 1 MB 1 MB 2 MB

n SetUp Encrypt KeyGen Decrypt

Comp. time

10 0.0007 s 0.0008s 0.0019s 1.2317 s
100 0.0008 s 0.0122 s 0.0174 s 1.5613 s
1 000 0.0041 s 0.0940 s 0.2712 s 2.2094 s
10 000 0.0070 s 0.9199 s 14.7027 s 13.8325 s

8 Conclusion

This work contributes to the relations between multi-input functional encryp-
tion and efficient randomized functional encryption for differential privacy, and
may inspire further work in the subject. Regarding the MIQFE scheme, an
interesting direction to follow would be to improve the ciphertext efficiency
of the scheme, to see if O(nℓ) is possible while satisfying simulation security.
Another noteworthy direction to explore is to look for a transformation directly
from single input QFE to MIQFE, so as to try to avoid pairing based schemes,
which seem inevitable when using function-hiding IPFE.

Regarding the RQFE scheme and differential privacy, an interesting chal-
lenge would be to tackle adaptive databases, where an analyst holding a
functional key can obtain a statistic from a changing database while main-
taining differential privacy. In this case, some sort of homomorphism property
seems necessary as well as the capability to be secure against several plaintexts,
even if constraining these (one must be able to be generated from another
through some well-defined operations) may help in proving these properties.

References

[1] D. Boneh, A. Sahai, B. Waters, Functional encryption: Definitions
and challenges, in Theory of Cryptography, ed. by Y. Ishai (Springer,
Berlin, Heidelberg, 2011), pp. 253–273. https://doi.org/10.1007/
978-3-642-19571-6 16

[2] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Paper 2010/556 (2010). https://eprint.iacr.org/2010/556

[3] A. Shamir, Identity-based cryptosystems and signature schemes, in
Advances in Cryptology, ed. by G.R. Blakley, D. Chaum (Springer, Berlin,
Heidelberg, 1985), pp. 47–53. https://doi.org/10.1007/3-540-39568-7 5

[4] A. Sahai, B. Waters, Fuzzy identity-based encryption, in Advances in
Cryptology – EUROCRYPT 2005, ed. by R. Cramer (Springer, Berlin,

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/3-540-39568-7_5


REFERENCES 43

Heidelberg, 2005), pp. 457–473. https://doi.org/10.1007/11426639 27
[5] V. Goyal, A. Jain, V. Koppula, A. Sahai, Functional encryption for ran-

domized functionalities, in Theory of Cryptography, ed. by Y. Dodis,
J.B. Nielsen (Springer, Berlin, Heidelberg, 2015), pp. 325–351. https:
//doi.org/10.1007/978-3-662-46497-7 13

[6] F. Alborch Escobar, S. Canard, F. Laguillaumie, D.H. Phan, Compu-
tational differential privacy for encrypted databases supporting linear
queries. Proceedings on Privacy Enhancing Technologies 2024(4), 583—
-604 (2024). https://doi.org/10.56553/popets-2024-0131

[7] J. Zalonis, F. Armknecht, L. Scheu-Hachtel, Differentially private func-
tional encryption. Proceedings on Privacy Enhancing Technologies
2024(2), 509—-530 (2024). https://doi.org/10.56553/popets-2024-0061

[8] M. Abdalla, F. Bourse, A.D. Caro, D. Pointcheval, Simple functional
encryption schemes for inner products, in Public-Key Cryptography –
PKC 2015, ed. by J. Katz (Springer, Berlin, Heidelberg, 2015), pp.
733–751. https://doi.org/10.1007/978-3-662-46447-2 33
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